WO2016021784A1 - Organic light-emitting element - Google Patents

Organic light-emitting element Download PDF

Info

Publication number
WO2016021784A1
WO2016021784A1 PCT/KR2014/012854 KR2014012854W WO2016021784A1 WO 2016021784 A1 WO2016021784 A1 WO 2016021784A1 KR 2014012854 W KR2014012854 W KR 2014012854W WO 2016021784 A1 WO2016021784 A1 WO 2016021784A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
light emitting
unsubstituted
heteroaryl
Prior art date
Application number
PCT/KR2014/012854
Other languages
French (fr)
Korean (ko)
Inventor
김장주
김권현
Original Assignee
서울대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교 산학협력단 filed Critical 서울대학교 산학협력단
Publication of WO2016021784A1 publication Critical patent/WO2016021784A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/78Benzo [b] furans; Hydrogenated benzo [b] furans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F13/00Compounds containing elements of Groups 7 or 17 of the Periodic Table
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers

Definitions

  • the present invention relates to an organic light emitting device, and more particularly, to an organic light emitting device including a host and a phosphorescent dopant.
  • the external quantum efficiency (EQE) of the organic light emitting device is affected by the charge balance, the exciton generating efficiency, and the excited state by the internal quantum efficiency and the light emission efficiency. Therefore, the external quantum efficiency of the organic light emitting device can be improved by increasing the light emission efficiency of the light emitting layer.
  • the light emission efficiency of the light emitting layer can be greatly increased when the transition dipole moment of the dopant is oriented horizontally in the host.
  • the horizontal direction here is defined as the direction parallel to the substrate.
  • organic light emitting device that actually implements a light emitting layer including a dopant having a horizontally oriented transition dipole moment.
  • the problem to be solved by the present invention is to develop a dopant having a high horizontal orientation rate of the transition dipole moment to provide an organic light emitting device having a high external quantum efficiency.
  • an organic light emitting device includes a first electrode, a second electrode facing the first electrode, and an emission layer interposed between the first electrode and the second electrode and including a host and a dopant.
  • the dopant has a horizontal orientation ratio of 75% to 100% of the transition dipole moment and is a heteroretic iridium complex.
  • the heteroreptic iridium complex may be represented by the following Chemical Formula 1.
  • R 1 to R 8 are each independently a hydrogen atom, a deuterium atom, a halogen atom, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, Phosphoric acid groups or salts thereof, substituted or unsubstituted C 1 -C 10 alkyl groups, substituted or unsubstituted C 2 -C 10 alkenyl groups, substituted or unsubstituted C 2 -C 10 alkynyl groups, substituted or unsubstituted C 1 -C 10 alkoxy group, substituted or unsubstituted C 3 -C 10 cycloalkyl group, substituted or unsubstituted C 2 -C 10 heterocycloalkyl group, substituted or unsubstituted C 3 -C 10
  • the substituted C 1 -C 10 alkyl group, substituted C 2 -C 10 alkenyl group, substituted C 2 -C 10 alkynyl group, substituted C 1 -C 10 alkoxy group, substituted C 3 -C 10 cycloalkyl group, Substituted C 2 -C 10 heterocycloalkyl group, substituted C 3 -C 10 cycloalkenyl group, substituted C 2 -C 10 heterocycloalkenyl group, substituted C 6 -C 20 aryl group, substituted C 6 -C At least one substituent of a 20 aryloxy group, a substituted C 6 -C 20 arylthio group, a substituted C 2 -C 20 heteroaryl group, a condensed polycyclic group except for a substituted aryl group, and a heterocondensed polycyclic group except a substituted heteroaryl group The one is
  • Q 1 to Q 7 , Q 11 to Q 17 , Q 21 to Q 27 and Q 31 to Q 37 are each independently hydrogen, C 1 -C 20 alkyl group, C 2 -C 20 alkenyl group, C 2 -C 20 alkynyl group or C 1 -C 20 alkoxy group, C 3 -C 10 cycloalkyl group, C 2 -C 10 heterocycloalkyl group, C 3 -C 10 cycloalkenyl group, C 2 -C 10 heterocycloalkenyl group, C 6 -C 20 aryl group, C 6 -C 20 aryloxy, C 6 -C 20 arylthio, C 2 -C 20 heteroaryl group is a condensed polycyclic group, condensed heterocyclic groups other than heteroaryl other than an aryl group are hwangiyi,
  • At least one of R 1 to R 8 is not a hydrogen atom.
  • an organic light emitting device having high external quantum efficiency, current efficiency, and power efficiency can be provided.
  • FIG. 1 is a schematic cross-sectional view of an organic light emitting diode according to an embodiment.
  • FIG. 3 is a cross-sectional view schematically illustrating a structure of an organic light emitting diode according to another embodiment.
  • 4A-4D are normalized absorption spectra and photoluminescence spectra of Compounds 1-4, respectively.
  • 5 is a graph of photoluminescence intensity according to angles of Reference Examples 1 to 4 and Comparative Reference Examples.
  • FIG. 6 is a diagram showing the layer structure of the organic light-emitting device of Examples 1 to 4 and Comparative Example together with the energy level.
  • FIG. 1 is a cross-sectional view schematically showing the structure of an organic light emitting device 10 according to an embodiment.
  • the organic light emitting diode 10 includes a first electrode 11, a second electrode 19 facing the first electrode 11, and the first electrode 11 and the second electrode 19. ) And an organic layer 15 interposed therebetween.
  • the organic layer 15 includes a light emitting layer 16 including a host and a dopant.
  • the first electrode 11 of the organic light emitting device 10 may be an anode to which a positive voltage is applied, and the second electrode 19 may be a cathode to which a negative voltage is applied. have.
  • the first electrode 11 may be a cathode and the second electrode 19 may be an anode.
  • the first electrode 11 is an anode and the second electrode 19 will be described based on the case of a cathode.
  • the organic layer 15 may include a hole transport region between the light emitting layer 16 and the first electrode 11, and may include a hole transport region between the light emitting layer 16 and the second electrode 19. .
  • the hole transport region is a region related to the injection and transport of holes from the anode to the light emitting layer
  • the electron transport region is a region related to the injection and transport of electrons from the cathode to the light emitting layer.
  • a host of the light emitting layer 16 a single host or a mixed host can be used.
  • a mixed host it may include a hole transporting host and an electron transporting host to form an exciplex with each other.
  • the dopant may be a heteroretic iridium complex, in particular a heteroretic iridium complex having a horizontal orientation ratio of 75% to 100% of the transition dipole moment.
  • the horizontal orientation of the transition dipole moment refers to the ratio of the dopant having the transition dipole moment horizontal to the plane of the light emitting layer relative to the entire dopant in the light emitting layer.
  • the external quantum efficiency of the organic light emitting device is affected by the charge balance, the exciton generating efficiency, and the light emission quantum efficiency and light emission efficiency from the excited state.
  • the transition dipole moment of the dopant in the light emitting layer has a high horizontal alignment rate
  • light emission efficiency of the light emitting layer may increase.
  • Dopants with vertical dipole moments in a vertical orientation emit an electric field that primarily travels in a direction parallel to the plane of the light emitting layer, and the emitted light is a waveguide mode or metal that propagates into the light emitting layer and the transparent electrode layer. It is mainly lost by surface plasmon polaritons (SPP) with the electrodes.
  • SPP surface plasmon polaritons
  • the dopant having the horizontally oriented dipole moment emits a lot of electric field traveling in a direction perpendicular to the plane of the light emitting layer, and the emitted light is largely extracted outside the device. Therefore, as the ratio of the horizontally aligned transition dipoles to the vertically aligned transition dipoles increases, the light emission efficiency may increase, thereby increasing the external quantum efficiency.
  • the heteroreptic iridium complex represented by the following Formula 1 may satisfy the horizontal orientation of the transition dipole moment.
  • R 1 to R 8 are each independently a hydrogen atom, a deuterium atom, a halogen atom, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, Phosphoric acid groups or salts thereof, substituted or unsubstituted C 1 -C 10 alkyl groups, substituted or unsubstituted C 2 -C 10 alkenyl groups, substituted or unsubstituted C 2 -C 10 alkynyl groups, substituted or unsubstituted C 1 -C 10 alkoxy group, substituted or unsubstituted C 3 -C 10 cycloalkyl group, substituted or unsubstituted C 2 -C 10 heterocycloalkyl group, substituted or unsubstituted C 3 -C 10
  • the substituted C 1 -C 10 alkyl group, substituted C 2 -C 10 alkenyl group, substituted C 2 -C 10 alkynyl group, substituted C 1 -C 10 alkoxy group, substituted C 3 -C 10 cycloalkyl group, Substituted C 2 -C 10 heterocycloalkyl group, substituted C 3 -C 10 cycloalkenyl group, substituted C 2 -C 10 heterocycloalkenyl group, substituted C 6 -C 20 aryl group, substituted C 6 -C At least one substituent of a 20 aryloxy group, a substituted C 6 -C 20 arylthio group, a substituted C 2 -C 20 heteroaryl group, a condensed polycyclic group except for a substituted aryl group, and a heterocondensed polycyclic group except a substituted heteroaryl group The one is
  • Q 1 to Q 7 , Q 11 to Q 17 , Q 21 to Q 27 and Q 31 to Q 37 are each independently hydrogen, C 1 -C 20 alkyl group, C 2 -C 20 alkenyl group, C 2 -C 20 alkynyl group or C 1 -C 20 alkoxy group, C 3 -C 10 cycloalkyl group, C 2 -C 10 heterocycloalkyl group, C 3 -C 10 cycloalkenyl group, C 2 -C 10 heterocycloalkenyl group, C 6 -C 20 aryl group, C 6 -C 20 aryloxy, C 6 -C 20 arylthio, C 2 -C 20 heteroaryl group is a condensed polycyclic group, condensed heterocyclic groups other than heteroaryl other than an aryl group are hwangiyi,
  • At least one of R 1 to R 8 is not a hydrogen atom.
  • R 1 to R 8 may be independently an electron donating group.
  • R 1 to R 8 are independently of each other a hydrogen atom, -F, -Cl, -Br, -I, hydroxyl group (-OH), methyl group, ethyl group, propyl group, n-butyl group, isobutyl group, sec-butyl group or tert-butyl group, methoxy group, ethoxy group, phenoxide group, phenyl group, or -N (Q 1 ) (Q 2 ), wherein Q 1 and Q 2 are independently of each other a hydrogen atom, a methyl group, It may be an ethyl group, a propyl group, n-butyl group, or a phenyl group. At least one of R 1 to R 8 is not a hydrogen atom.
  • the heteroreptic iridium complex may be one of the following Compounds 1-4.
  • the simulation structural formula is obtained by Density Functional Theory (DFT) calculation.
  • DFT Density Functional Theory
  • the upper part shows the tmd (2,2,6,6-tetrametylheptane-3,5-dionate) portion as an ancillary ligand
  • the lower part is pyridyl-phenyl as the main ligand.
  • the methyl group of the zuligand is a weak electron donating group, which has an effect of providing electrons to the zuligand. Although the electron donating inducing effect of the methyl group is believed to greatly influence the orientation of the electron transition dipole moment of the light emitter, the mechanism by which the transition dipole moment is oriented is not limited thereto.
  • Hole transporting hosts are, for example, mCP (1,3-bis (9-carbazolyl) benzene), TCTA (Tris (4-carbazoyl-9-ylphenyl) amine), CBP (4,4′-Bis (N-carbazolyl) ) -1,1'-biphenyl), mCBP (3,3-bis (carbazol-9-yl) bipheny), NPB (N, N'-di (1-naphthyl) -N, N'-diphenyl- (1 , 1'-biphenyl) -4,4'-diamine), m-MTDATA (4,4 ', 4 "-tris [phenyl (m-tolyl) amino] triphenylamine), TPD (N, N'-bis (3 -methylphenyl) -N, N'-diphen
  • the electron transporting host may comprise a ⁇ -electron deficient heteroaryl compound, phosphine oxide, or sulfone oxide.
  • the ⁇ -electron deficient heteroaryl compound refers to a compound containing a heteroaryl group and a compound having a low electron density of an unlocalized ⁇ -bond of the heteroaryl group due to the high electron affinity of the hetero atom and the like.
  • Electron transporting hosts are, for example, B3PYMPM (bis-4,6- (3,5-di-3-pyridylphenyl) -2-methylpyrimi-dine), TPBi (2,2 ', 2 "-(1,3, 5-benzenetriyl) tris- [1-phenyl-1H-benzimidazole]), 3TPYMB (Tris (2,4,6-triMethyl-3- (pyridin-3-yl) phenyl) borane), BmPyPB (1,3-bis [3,5-di (pyridin-3-yl) phenyl] benzene), TmPyPB (3,3 '-[5'-[3- (3-Pyridinyl) phenyl] [1,1 ': 3', 1 " -terphenyl] -3,3 "-diyl] bispyridine), BSFM (see formula below), PO-T2T (see formula below), PO15 (dibenzo [
  • Combination of hole transport host and electron transport host for example mCP: B3PYMPM, TCTA: B3PYMPM, TCTA: TPBi, TCTA: 3TPYMB, TCTA: BmPyPB, TCTA: BSFM, CBP: B3PYMPM or NPB: BSFM can do.
  • the weight ratio of host to phosphorescent dopant in the organic layer 15 of the organic light emitting device 10 may range from 99.9: 0.1 to 50:50. If the weight ratio of host to phosphorescent dopant satisfies the above range, satisfactory levels of energy transfer and emission may occur.
  • FIG 3 is a cross-sectional view schematically illustrating a structure of an organic light emitting device 20 according to another embodiment.
  • the organic light emitting diode 20 is interposed between the first electrode 21, the second electrode 29 facing the first electrode 21, and the first electrode 21 and the second electrode 29.
  • the organic layer 25 is included.
  • the organic layer 25 is interposed between the light emitting layer 26, the hole transport layer 23 interposed between the light emitting layer 26 and the first electrode 21, and the hole transport layer 23 and the first electrode 21.
  • Interposed between the hole injection layer 22, the electron transport layer 27, and the electron transport layer 27 and the second electrode 28 interposed between the light emitting layer 26 and the second electrode 28.
  • An injection layer 28 is interposed between the light emitting layer 26 and the second electrode 28.
  • An injection layer 28 is omitted.
  • a buffer layer (not shown) may be further included between the light emitting layer 26 and the hole transport layer 23 or between the light emitting layer 26 and the electron transport layer 27.
  • the organic light emitting diode 20 may further include a substrate (not shown).
  • a substrate used in a conventional organic light emitting device may be used, and a glass substrate or a transparent plastic substrate having excellent mechanical strength, thermal stability, transparency, surface smoothness, ease of handling, and water resistance may be used.
  • the first electrode 21 may be formed as a transparent electrode or a reflective electrode, and in the case of a bottom emission type, may be formed as a transparent electrode.
  • a transparent electrode ITO, IZO, ZnO or graphene may be used
  • a reflective electrode Ag, Mg, Al, Pt, Pd, Au, Ni, Nd, Ir, Cr, or a compound thereof may be used.
  • the reflection film After the reflection film is formed, it can be formed by forming a film thereon with ITO, IZO, ZnO or graphene.
  • the first electrode 21 may be formed using various known methods, for example, a deposition method, a sputtering method, or a spin coating method.
  • the hole injection layer 22 may be formed on the first electrode 21 using various methods such as vacuum deposition, spin coating, casting, or LB.
  • a known hole injection material may be used.
  • a phthalocyanine compound such as copper phthalocyanine, m-MTDATA, TDATA, TAPC (4,4′-Cyclohexylidenebis [N, N-bis (4-methylphenyl) benzenamine]), 2-TNATA (4,4 ', 4' '-Tris [2-naphthyl (phenyl) amino] triphenylamine), PANI / DBSA (polyaniline / dodecylbenzenesulfonic acid), PEDOT / PSS (poly (3,4-ethylenedioxythiophene) / poly (4-styrenesulfonate)), PANI / CSA (polyaniline / camphorsulfonic acid) or PANI / PSS (polyaniline / camphorsulfonic acid
  • the hole transport layer 23 may use a hole transport host of the light emitting layer 26.
  • the hole transport layer 23 may use a known hole transport host such as TPD, NPB, ⁇ -NPD, TCTA, or the like.
  • the hole transport layer 23 may be formed using various methods such as vacuum deposition, spin coating, casting or LB.
  • the light emitting layer 26 of the organic light emitting element 20 has the same structure as the light emitting layer 16 of the organic light emitting element 10.
  • the light emitting layer 26 may be formed using various methods such as vacuum deposition, spin coating, cast or LB.
  • the electron transporting layer 27 may use an electron transporting host of the light emitting layer 26.
  • the electron transport layer 27 may be, for example, Alq 3 , BCP (Bathocuproine), Bphen (4,7-diphenyl-1,10-phenanthroline), TAZ (3- (Biphenyl-4-yl) -5- (4- tert-butylphenyl) -4-phenyl-4H-1,2,4-triazole), NTAZ (4- (naphthalen-1-yl) -3,5-diphenyl-4H-1,2,4-triazole), tBu -PBD (2- (4-biphenylyl) -5- (4-tert-butylphenyl) -1,3,4-oxadiazole), Balq (Bis (2-methyl-8-quinolinolato-N1, O8)-(1, Known hole transport properties such as 1'-Biphenyl-4-olato) aluminum), Bebq 2 (Bis (10-hydroxybenz
  • the electron injection layer 28 may be formed using a material such as LiF, NaCl, CsF, Li 2 O, BaO, Liq, or the like.
  • the electron injection layer 28 may be formed using various methods such as vacuum deposition, spin coating, casting or LB.
  • the second electrode 29 is an alkali metal such as lithium, sodium, potassium, rubidium, cesium, alkaline earth metal such as beryllium, magnesium, calcium, strontium, barium, aluminum, scandium, vanadium, zinc, yttrium, indium, cerium, samarium , Metals such as europium, terbium and ytterbium, alloys of two or more of these, or alloys of one or more of these with gold, silver, platinum, copper, manganese, titanium, cobalt, nickel, tungsten and tin And it can be formed from a structure containing at least two of these. If necessary, UV-ozone treated ITO may be used.
  • alkali metal such as lithium, sodium, potassium, rubidium, cesium
  • alkaline earth metal such as beryllium, magnesium, calcium, strontium, barium, aluminum, scandium, vanadium, zinc, yttrium, indium, cerium, samarium .
  • Metals
  • the alloy for example, ITO (indium tin oxide), IZO (indium zinc oxide), ZnO (zinc oxide), graphene or the like can be used.
  • the second electrode 29 may be formed of a transparent oxide such as ITO, IZO, ZnO, or graphene.
  • the second electrode 29 may be formed using various known methods, for example, a deposition method, a sputtering method, or a spin coating method.
  • EL spectra Current density, luminance, electroluminescence spectra (EL spectra) were measured using a programmable source meter (Keithley 2400) and Spectrophotometer (Spectrascan PR650, Photo Research). Angular distribution of EL was measured using a programmable source meter (Keithley 2400) and an optical fiber spectrometer (Ocean Optics S2000). The external quantum efficiency and power efficiency of the organic light emitting element were calculated from each distribution of current density vs. voltage vs. luminance characteristics, EL spectrum, and EL intensity.
  • FIGS. 4A-4D are normalized absorption spectra and photoluminescence spectra of Compounds 1-4, respectively.
  • the absorption and photoluminescence spectra of FIGS. 4A-4D were measured in solution. Chloroform was used as a solvent, and the content of solutes (compounds 1 to 4) was 0.05 mM.
  • the absorption peak wavelength and photoluminescence peak wavelength of the compound 1 to the compound 4 are shown in Table 1.
  • the maximum absorption peaks of Compounds 1 to 4 are 256 nm to 265 nm, respectively, and have absorption peaks up to 455 nm to 470 nm.
  • the measured photoluminescence peak wavelengths of the compounds 1 to 4 are 497 nm to 530 nm to emit light in the green region.
  • the p-polarized photoluminescence intensity of each thin film sample was measured.
  • a continuous wave laser (325 nm, Mellis Griot) was used as the excitation light source.
  • the incident angle of the excitation light source was fixed at 45 degrees.
  • the measurement wavelength of p-polarized photoluminescence by angle is 530 nm which is close to the photoluminescence peak wavelength of the phosphor.
  • TCTA, B3PYMPM and Compound 1 were simultaneously deposited at a weight ratio of 46: 46: 8 on a synthetic quartz substrate at a vacuum degree of 5 ⁇ 10 ⁇ 7 Torr or lower to form a light emitting layer having a thickness of 32 nm.
  • a light emitting layer was manufactured in the same manner as in Reference Example 1, except that Compound 2 was used instead of Compound 1 to form the EML.
  • a light emitting layer was manufactured in the same manner as in Reference Example 1, except that Compound 3 was used instead of Compound 1 in forming the EML.
  • a light emitting layer was manufactured in the same manner as in Reference Example 1, except that Compound 4 was used instead of Compound 1 to form the EML.
  • a light emitting layer was manufactured in the same manner as in Reference Example 1, except that Ir (ppy) 2 tmd was used instead of compound 1 when forming the light emitting layer.
  • Samples of Reference Examples 1-4 and Comparative Reference Example were fixed on a semi-cylindrical lens made of synthetic quartz (fused silica) and irradiated with a 325 nm laser to emit light.
  • the emitted light is passed through a polarizing film, and then rotates a semi-cylindrical lens on which a sample is fixed by using a charge-coupled device (CCD) by 1 degree with respect to the axis of the lens and p-polarized light with 530 nm from 0 to 90 degrees.
  • CCD charge-coupled device
  • P-polarized photoluminescence intensity (the first p-polarized photoluminescence intensity) exhibited when the light emitter had a vertical orientation and p-polarized photoluminescence intensity exhibited by the horizontal orientation (the second p-polarized photoluminescence intensity) exhibited 0 respectively Calculations from degrees to 90 degrees.
  • P-polarized photoluminescence intensity obtained by multiplying the p-polarized photoluminescence intensity of Nos. 1 and 2, respectively, to obtain a weight that matches the measured p-polarized photoluminescence intensity, and thus, Compounds 1 to 4 and Ir (ppy).
  • the horizontal orientation of 2 tmd was determined.
  • the angle-dependent photoluminescence spectra were analyzed using a classical dipole model, which regards emission from excitons as dissipated power from oscillating dipoles.
  • FIG. 5 is a graph of photoluminescence intensity according to angles of Reference Examples 1 to 4 and Comparative Reference Examples. Referring to the graph of FIG. 5, it can be seen that the intensity of photoluminescence measured according to the angle for each reference example matches the intensity of photoluminescence at the horizontal alignment rate of the transition dipole moment of the dopant calculated.
  • Table 2 shows the horizontal alignment rate and photoluminescence quantum yield (PLQY) of the dopants of Reference Examples 1 to 4 and Comparative Reference Examples.
  • An organic light emitting device having the following constitution was manufactured:
  • B3PYMPM Compound 1 (30 nm, 8 wt%) / B3PYMPM (45 nm) / LiF (0.7 nm) / Al (100 nm)
  • the glass substrate in which ITO of 700 micrometers thickness was patterned was used as an anode electrode.
  • the ITO glass substrate was pre-washed with isopropyl alcohol and acetone and exposed to UV-ozone for 10 minutes.
  • TAPC was deposited on the ITO glass substrate to form a 75 nm thick hole injection layer.
  • TCTA was deposited on the hole injection layer to form a hole transport layer having a thickness of 10 nm.
  • B3PYMPM was deposited on the emission layer to form an electron transport layer having a thickness of 45 nm.
  • LiF was deposited on the electron transport layer to form an electron injection layer having a thickness of 0.7 nm, and then Al was deposited to form a cathode having a thickness of 100 nm.
  • the layers were thermally deposited while maintaining a vacuum of 5 ⁇ 10 ⁇ 7 Torr.
  • An organic light emitting device having the following constitution was manufactured:
  • B3PYMPM Compound 2 (30 nm, 8 wt%) / B3PYMPM (45 nm) / LiF (0.7 nm) / Al (100 nm)
  • an organic light emitting diode was manufactured according to the same method as Example 1 except for using Compound 2 instead of Compound 1 in forming the EML.
  • An organic light emitting device having the following constitution was manufactured:
  • B3PYMPM Compound 3 (30 nm, 8 wt%) / B3PYMPM (45 nm) / LiF (0.7 nm) / Al (100 nm)
  • an organic light emitting diode was manufactured according to the same method as Example 1 except for using Compound 3 instead of Compound 1 in forming the EML.
  • An organic light emitting device having the following constitution was manufactured:
  • B3PYMPM Compound 4 (30 nm, 8 wt%) / B3PYMPM (45 nm) / LiF (0.7 nm) / Al (100 nm)
  • an organic light emitting diode was manufactured according to the same method as Example 1 except for using Compound 4 instead of Compound 1 in forming the EML.
  • An organic light emitting device having the following constitution was manufactured:
  • an organic light emitting diode was manufactured according to the same method as Example 1 except for using Ir (ppy) 2 tmd instead of compound 1 when forming an emission layer.
  • FIG. 6 is a diagram showing the layer structure of the organic light-emitting device of Examples 1 to 4 and Comparative Example together with the energy level.
  • an energy barrier may be eliminated when holes and electrons are injected into the light emitting layer using a joint host of a hole transporting host and an electron transporting host.
  • the driving voltage is low and high efficiency can be exhibited without roll-off at high brightness.
  • Examples 7 is a graph of current density vs. voltage and luminance vs. voltage of the organic light emitting diodes of Examples 1 to 4 and Comparative Examples.
  • 8 is a graph showing external quantum efficiency versus luminance of organic light emitting diodes of Examples 1 to 4 and Comparative Examples.
  • 9 is a graph showing current efficiency vs. brightness and power efficiency vs. brightness of the organic light emitting diodes of Examples 1 to 4 and Comparative Examples.
  • Table 3 is a table showing turn-on voltage, external quantum efficiency, current efficiency, and power efficiency of the organic light emitting diodes of Examples 1 to 4 and Comparative Examples.
  • Example 4 the external quantum efficiency of the organic light emitting device of Example 4 was found to be the highest, followed by the organic light emitting device of Example 2, Example 1, Comparative Example, Example 3 The external quantum efficiency was great.
  • An organic light emitting device having high external quantum efficiency, current efficiency, and power efficiency can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

According to an aspect, provided is an organic light-emitting element comprising a first electrode, a second electrode facing the first electrode, and a light-emitting layer interposed between the first and second electrodes, the light-emitting layer comprising a host and a dopant. The dopant is a heteroleptic iridium complex having a transition dipole moment, the horizontal orientation ratio of which is, with regard to a plane of the light-emitting layer, 75% to 100%.

Description

유기 발광 소자Organic light emitting device
유기 발광 소자에 관한 것으로서 더욱 상세하게는 호스트 및 인광 도펀트를 포함하는 유기 발광 소자에 관한 것이다. The present invention relates to an organic light emitting device, and more particularly, to an organic light emitting device including a host and a phosphorescent dopant.
유기 발광 소자의 외부 양자 효율(EQE, external quantum efficiency)은 전하균형(charge balance), 여기자 생성효율, 여기 상태로부터 내부 발광 양자 효율 및 광방출 효율의 영향을 받는다. 따라서 발광층의 광방출 효율을 증가시킴으로써 유기 발광 소자의 외부 양자 효율을 개선할 수 있다. The external quantum efficiency (EQE) of the organic light emitting device is affected by the charge balance, the exciton generating efficiency, and the excited state by the internal quantum efficiency and the light emission efficiency. Therefore, the external quantum efficiency of the organic light emitting device can be improved by increasing the light emission efficiency of the light emitting layer.
호스트 및 도펀트 방식을 채용하는 발광층에 있어서, 호스트 내에서 도펀트의 전이 쌍극자 모멘트가 수평으로 배향되는 경우 발광층의 광방출 효율이 크게 증가할 수 있는 것이 이론적으로 알려져 있다. 여기에서 수평 방향은 기판에 평행한 방향으로 정의된다. 그러나 수평 배향된 전이 쌍극자 모멘트를 갖는 도펀트를 포함하는 발광층을 실제로 구현한 유기 발광 소자에 대한 연구가 부족하다. In the light emitting layer employing the host and dopant method, it is theoretically known that the light emission efficiency of the light emitting layer can be greatly increased when the transition dipole moment of the dopant is oriented horizontally in the host. The horizontal direction here is defined as the direction parallel to the substrate. However, there is a lack of research on an organic light emitting device that actually implements a light emitting layer including a dopant having a horizontally oriented transition dipole moment.
본 발명이 해결하고자 하는 과제는 전이 쌍극자 모멘트의 수평 배향율이 높은 도펀트를 개발하여 높은 외부 양자 효율을 갖는 유기 발광 소자를 제공하는 것이다.The problem to be solved by the present invention is to develop a dopant having a high horizontal orientation rate of the transition dipole moment to provide an organic light emitting device having a high external quantum efficiency.
일 측면에 따라서 제1 전극, 상기 제1 전극과 대향하는 제2 전극 및 상기 제1 전극과 상기 제2 전극 사이에 개재되고, 호스트 및 도펀트를 포함하는 발광층을 포함하는 유기 발광 소자를 제공한다.According to an aspect, an organic light emitting device includes a first electrode, a second electrode facing the first electrode, and an emission layer interposed between the first electrode and the second electrode and including a host and a dopant.
상기 도펀트는 전이 쌍극자 모멘트(transition dipole moment)의 수평 배향율(horizontal orientation ratio)이 75% 내지 100%이고 헤테로렙틱 이리듐 착물이다. The dopant has a horizontal orientation ratio of 75% to 100% of the transition dipole moment and is a heteroretic iridium complex.
상기 헤테로렙틱 이리듐 착물은 하기 화학식 1로 표시될 수 있다. The heteroreptic iridium complex may be represented by the following Chemical Formula 1.
<화학식 1><Formula 1>
Figure PCTKR2014012854-appb-I000001
Figure PCTKR2014012854-appb-I000001
상기 화학식 1 중, In Formula 1,
R1 내지 R8은 서로 독립적으로, 수소 원자, 중수소 원자, 할로겐 원자, 시아노기, 니트로기, 아미노기, 아미디노기, 히드라진기, 히드라존기, 카르복실산기 또는 이의 염, 술폰산기 또는 이의 염, 인산기 또는 이의 염, 치환 또는 비치환된 C1-C10 알킬기, 치환 또는 비치환된 C2-C10 알케닐기, 치환 또는 비치환된 C2-C10 알키닐기, 치환 또는 비치환된 C1-C10 알콕시기, 치환 또는 비치환된 C3-C10 시클로알킬기, 치환 또는 비치환된 C2-C10 헤테로시클로알킬기, 치환 또는 비치환된 C3-C10 시클로알케닐기, 치환 또는 비치환된 C2-C10 헤테로시클로알케닐기, 치환 또는 비치환된 C6-C20 아릴기, 치환 또는 비치환된 C6-C20 아릴옥시기, 치환 또는 비치환된 C6-C20 아릴티오기, 치환 또는 비치환된 C2-C20 헤테로아릴기, 치환 또는 비치환된 아릴기를 제외한 축합다환기, 치환 또는 비치환된 헤테로아릴기를 제외한 헤테로축합다환기, -N(Q1)(Q2), -Si(Q3)(Q4)(Q5) 또는 -B(Q6)(Q7)이고, R 1 to R 8 are each independently a hydrogen atom, a deuterium atom, a halogen atom, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, Phosphoric acid groups or salts thereof, substituted or unsubstituted C 1 -C 10 alkyl groups, substituted or unsubstituted C 2 -C 10 alkenyl groups, substituted or unsubstituted C 2 -C 10 alkynyl groups, substituted or unsubstituted C 1 -C 10 alkoxy group, substituted or unsubstituted C 3 -C 10 cycloalkyl group, substituted or unsubstituted C 2 -C 10 heterocycloalkyl group, substituted or unsubstituted C 3 -C 10 cycloalkenyl group, substituted or unsubstituted A substituted C 2 -C 10 heterocycloalkenyl group, a substituted or unsubstituted C 6 -C 20 aryl group, a substituted or unsubstituted C 6 -C 20 aryloxy group, a substituted or unsubstituted C 6 -C 20 aryl except thio, substituted or unsubstituted C 2 -C 20 heteroaryl group, substituted or unsubstituted aryl group Condensed polycyclic group, a substituted or unsubstituted condensed polycyclic heterocyclic group other than unsubstituted heteroaryl, -N (Q 1) (Q 2), -Si (Q 3) (Q 4) (Q 5) or -B (Q 6) (Q 7 ),
상기 치환된 C1-C10 알킬기, 치환된 C2-C10 알케닐기, 치환된 C2-C10 알키닐기, 치환된 C1-C10 알콕시기, 치환된 C3-C10 시클로알킬기, 치환된 C2-C10 헤테로시클로알킬기, 치환된 C3-C10 시클로알케닐기, 치환된 C2-C10 헤테로시클로알케닐기, 치환된 C6-C20 아릴기, 치환된 C6-C20 아릴옥시기, 치환된 C6-C20 아릴티오기, 치환된 C2-C20 헤테로아릴기, 치환된 아릴기를 제외한 축합다환기, 치환된 헤테로아릴기를 제외한 헤테로축합다환기의 치환기 중 적어도 하나는The substituted C 1 -C 10 alkyl group, substituted C 2 -C 10 alkenyl group, substituted C 2 -C 10 alkynyl group, substituted C 1 -C 10 alkoxy group, substituted C 3 -C 10 cycloalkyl group, Substituted C 2 -C 10 heterocycloalkyl group, substituted C 3 -C 10 cycloalkenyl group, substituted C 2 -C 10 heterocycloalkenyl group, substituted C 6 -C 20 aryl group, substituted C 6 -C At least one substituent of a 20 aryloxy group, a substituted C 6 -C 20 arylthio group, a substituted C 2 -C 20 heteroaryl group, a condensed polycyclic group except for a substituted aryl group, and a heterocondensed polycyclic group except a substituted heteroaryl group The one is
중수소 원자, 할로겐 원자, 시아노기, 니트로기, 아미노기, 아미디노기, 히드라진기, 히드라존기, 카르복실산기 또는 이의 염, 술폰산기 또는 이의 염, 인산기 또는 이의 염, C1-C20 알킬기, C2-C20 알케닐기, C2-C20 알키닐기 또는 C1-C20 알콕시기; Deuterium atom, halogen atom, cyano group, nitro group, amino group, amidino group, hydrazine group, hydrazone group, carboxylic acid group or salt thereof, sulfonic acid group or salt thereof, phosphoric acid group or salt thereof, C 1 -C 20 alkyl group, C 2 -C 20 alkenyl group, C 2 -C 20 alkynyl group or C 1 -C 20 alkoxy group;
중수소 원자, 할로겐 원자, 시아노기, 니트로기, 아미노기, 아미디노기, 히드라진기, 히드라존기, 카르복실산기 또는 이의 염, 술폰산기 또는 이의 염, 인산기 또는 이의 염, C3-C10 시클로알킬기, C2-C10 헤테로시클로알킬기, C3-C10 시클로알케닐기, C2-C10 헤테로시클로알케닐기, C6-C20 아릴기, C6-C20 아릴옥시기, C6-C20 아릴티오기, C2-C20 헤테로아릴기, 아릴기를 제외한 축합다환기, 헤테로아릴기를 제외한 헤테로축합다환기, -N(Q11)(Q12), -Si(Q13)(Q14)(Q15) 및 -B(Q16)(Q17) 중 적어도 하나로 치환된 C1-C20 알킬기, C2-C20 알케닐기, C2-C20 알키닐기 또는 C1-C20 알콕시기; Deuterium atom, halogen atom, cyano group, nitro group, amino group, amidino group, hydrazine group, hydrazone group, carboxylic acid group or salt thereof, sulfonic acid group or salt thereof, phosphoric acid group or salt thereof, C 3 -C 10 cycloalkyl group, C 2 -C 10 heterocycloalkyl group, C 3 -C 10 cycloalkenyl group, C 2 -C 10 heterocycloalkenyl group, C 6 -C 20 aryl group, C 6 -C 20 aryloxy group, C 6 -C 20 Arylthio group, C 2 -C 20 heteroaryl group, condensed polycyclic group except aryl group, heterofused polycyclic group except heteroaryl group, -N (Q 11 ) (Q 12 ), -Si (Q 13 ) (Q 14 ) C 1 -C 20 alkyl group, C 2 -C 20 alkenyl group, C 2 -C 20 alkynyl group or C 1 -C 20 alkoxy group substituted with at least one of (Q 15 ) and -B (Q 16 ) (Q 17 ) ;
C3-C10 시클로알킬기, C2-C10 헤테로시클로알킬기, C3-C10 시클로알케닐기, C2-C10 헤테로시클로알케닐기, C6-C20 아릴기, C6-C20 아릴옥시기, C6-C20 아릴티오기, C2-C20 헤테로아릴기, 아릴기를 제외한 축합다환기, 헤테로아릴기를 제외한 헤테로축합다환기;C 3 -C 10 cycloalkyl group, C 2 -C 10 heterocycloalkyl group, C 3 -C 10 cycloalkenyl group, C 2 -C 10 heterocycloalkenyl group, C 6 -C 20 aryl group, C 6 -C 20 aryl Condensed polycyclic groups excluding oxy group, C 6 -C 20 arylthio group, C 2 -C 20 heteroaryl group, aryl group, heterofused polycyclic group except heteroaryl group;
중수소 원자, 할로겐 원자, 시아노기, 니트로기, 아미노기, 아미디노기, 히드라진기, 히드라존기, 카르복실산기 또는 이의 염, 술폰산기 또는 이의 염, 인산기 또는 이의 염, C1-C20 알킬기, C2-C20 알케닐기, C2-C20 알키닐기 또는 C1-C20 알콕시기, C3-C10 시클로알킬기, C2-C10 헤테로시클로알킬기, C3-C10 시클로알케닐기, C2-C10 헤테로시클로알케닐기, C6-C20 아릴기, C6-C20 아릴옥시기, C6-C20 아릴티오기, C2-C20 헤테로아릴기, 아릴기를 제외한 축합다환기, 헤테로아릴기를 제외한 헤테로축합다환기, -N(Q21)(Q22), -Si(Q23)(Q24)(Q25) 및 -B(Q26)(Q27) 중 적어도 하나로 치환된 C3-C10 시클로알킬기, C2-C10 헤테로시클로알킬기, C3-C10 시클로알케닐기, C2-C10 헤테로시클로알케닐기, C6-C20 아릴기, C6-C20 아릴옥시기, C6-C20 아릴티오기, C2-C20 헤테로아릴기, 아릴기를 제외한 축합다환기, 헤테로아릴기를 제외한 헤테로축합다환기; 또는Deuterium atom, halogen atom, cyano group, nitro group, amino group, amidino group, hydrazine group, hydrazone group, carboxylic acid group or salt thereof, sulfonic acid group or salt thereof, phosphoric acid group or salt thereof, C 1 -C 20 alkyl group, C 2 -C 20 alkenyl group, C 2 -C 20 alkynyl group or C 1 -C 20 alkoxy group, C 3 -C 10 cycloalkyl group, C 2 -C 10 heterocycloalkyl group, C 3 -C 10 cycloalkenyl group, C 2 -C 10 hetero cycloalkenyl group, C 6 -C 20 aryl group, C 6 -C 20 aryloxy, C 6 -C 20 arylthio, C 2 -C 20 heteroaryl group, ventilation is fused an aryl group other than , A heterocondensed polycyclic group excluding a heteroaryl group, substituted with at least one of -N (Q 21 ) (Q 22 ), -Si (Q 23 ) (Q 24 ) (Q 25 ) and -B (Q 26 ) (Q 27 ) C 3 -C 10 cycloalkyl group, C 2 -C 10 heterocycloalkyl group, C 3 -C 10 cycloalkenyl group, C 2 -C 10 heterocycloalkenyl group, C 6 -C 20 aryl group, C 6 -C 20 Aryloxy group, C 6 -C 20 arylthio group, C 2 -C 20 Condensed polycyclic groups except heteroaryl groups, aryl groups, and heterofused polycyclic groups except heteroaryl groups; or
-N(Q31)(Q32), -Si(Q33)(Q34)(Q35) 또는 -B(Q36)(Q37); 이고;-N (Q 31 ) (Q 32 ), -Si (Q 33 ) (Q 34 ) (Q 35 ) or -B (Q 36 ) (Q 37 ); ego;
상기 Q1 내지 Q7, Q11 내지 Q17, Q21 내지 Q27 및 Q31 내지 Q37은 서로 독립적으로, 수소, C1-C20 알킬기, C2-C20 알케닐기, C2-C20 알키닐기 또는 C1-C20 알콕시기, C3-C10 시클로알킬기, C2-C10 헤테로시클로알킬기, C3-C10 시클로알케닐기, C2-C10 헤테로시클로알케닐기, C6-C20 아릴기, C6-C20 아릴옥시기, C6-C20 아릴티오기, C2-C20 헤테로아릴기, 아릴기를 제외한 축합다환기, 헤테로아릴기를 제외한 헤테로축합다환기이되, Q 1 to Q 7 , Q 11 to Q 17 , Q 21 to Q 27 and Q 31 to Q 37 are each independently hydrogen, C 1 -C 20 alkyl group, C 2 -C 20 alkenyl group, C 2 -C 20 alkynyl group or C 1 -C 20 alkoxy group, C 3 -C 10 cycloalkyl group, C 2 -C 10 heterocycloalkyl group, C 3 -C 10 cycloalkenyl group, C 2 -C 10 heterocycloalkenyl group, C 6 -C 20 aryl group, C 6 -C 20 aryloxy, C 6 -C 20 arylthio, C 2 -C 20 heteroaryl group is a condensed polycyclic group, condensed heterocyclic groups other than heteroaryl other than an aryl group are hwangiyi,
R1 내지 R8 중 적어도 하나는 수소 원자가 아니다.At least one of R 1 to R 8 is not a hydrogen atom.
수평 배향율이 높은 이리듐 착물을 도펀트로서 사용함으로써 높은 외부 양자 효율, 전류 효율 및 전력 효율을 갖는 유기 발광 소자를 제공할 수 있다. By using an iridium complex having a high horizontal orientation as a dopant, an organic light emitting device having high external quantum efficiency, current efficiency, and power efficiency can be provided.
도 1은 일 구현예에 따른 유기 발광 소자를 개략적으로 도시한 단면도이다.1 is a schematic cross-sectional view of an organic light emitting diode according to an embodiment.
도 2는 상기 화합물 1 내지 4의 화학식 및 시뮬레이션 구조식을 나타낸 도면이다. 2 is a view showing the chemical formula and the structural formula of the compounds 1 to 4.
도 3은 다른 일 구현예에 따른 유기 발광 소자의 구조를 개략적으로 도시한 단면도이다.3 is a cross-sectional view schematically illustrating a structure of an organic light emitting diode according to another embodiment.
도 4a 내지 도 4d는 각각 화합물 1 내지 화합물 4의 규준화된 흡수 스펙트럼 및 광발광(photoluminescence) 스펙트럼이다.4A-4D are normalized absorption spectra and photoluminescence spectra of Compounds 1-4, respectively.
도 5는 참조예 1 내지 참조예 4 및 비교 참조예의 각도에 따른 광발광 세기의 그래프이다.5 is a graph of photoluminescence intensity according to angles of Reference Examples 1 to 4 and Comparative Reference Examples.
도 6은 실시예 1 내지 실시예 4 및 비교예의 유기 발광 소자의 층 구조를 에너지 레벨과 함께 나타낸 다이어그램이다.6 is a diagram showing the layer structure of the organic light-emitting device of Examples 1 to 4 and Comparative Example together with the energy level.
도 7은 실시예 1 내지 실시예 4 및 비교예의 유기 발광 소자의 전류 밀도 대 전압 및 휘도(luminescence) 대 전압의 그래프이다.7 is a graph of current density vs. voltage and luminance vs. voltage of the organic light emitting diodes of Examples 1 to 4 and Comparative Examples.
도 8은 실시예 1 내지 실시예 4 및 비교예의 유기 발광 소자의 외부 양자 효율 대 휘도를 도시한 그래프이다. 8 is a graph showing external quantum efficiency versus luminance of organic light emitting diodes of Examples 1 to 4 and Comparative Examples.
도 9는 실시예 1 내지 실시예 4 및 비교예의 유기 발광 소자의 전류 효율 대 휘도 및 전력 효율 대 휘도를 도시한 그래프이다.9 is a graph showing current efficiency vs. brightness and power efficiency vs. brightness of the organic light emitting diodes of Examples 1 to 4 and Comparative Examples.
이하에서 첨부된 도면을 참조하여 본 발명의 바람직한 구현예들을 상세히 설명한다. 그러나 본 발명은 여기서 설명되는 구현예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 오히려 여기서 소개되는 구현예들은 개시된 내용이 철저하고 완전해질 수 있도록 그리고 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 제공되는 것이다. 도면에서 동일한 참조번호는 동일한 요소를 지칭한다. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, the invention is not limited to the embodiments described herein but may be embodied in other forms. Rather, the embodiments introduced herein are provided so that the disclosure may be made thorough and complete, and to fully convey the spirit of the present invention to those skilled in the art. Like reference numerals in the drawings refer to like elements.
도 1은 일 구현예에 따른 유기 발광 소자(10)의 구조를 개략적으로 도시한 단면도이다. 1 is a cross-sectional view schematically showing the structure of an organic light emitting device 10 according to an embodiment.
일 구현예에 따른 유기 발광 소자(10)는 제1 전극(11), 상기 제1 전극(11)에 대향하는 제2 전극(19) 및 상기 제1 전극(11)과 상기 제2 전극(19) 사이에 개재된 유기층(15)을 포함한다. 유기층(15)은 호스트 및 도펀트를 포함하는 발광층(16)을 포함한다. The organic light emitting diode 10 according to the exemplary embodiment includes a first electrode 11, a second electrode 19 facing the first electrode 11, and the first electrode 11 and the second electrode 19. ) And an organic layer 15 interposed therebetween. The organic layer 15 includes a light emitting layer 16 including a host and a dopant.
상기 유기 발광 소자(10)의 제1 전극(11)은 (+) 전압이 인가되는 양극(anode)일 수 있고, 제2 전극(19)은 (-) 전압이 인가되는 음극(cathode)일 수 있다. 이와 반대로 제1 전극(11)이 음극일 수 있고 제2 전극(19)은 양극일 수도 있다. 편의상 제1 전극(11)이 양극이고 제2 전극(19)은 음극인 경우를 중심으로 설명한다. The first electrode 11 of the organic light emitting device 10 may be an anode to which a positive voltage is applied, and the second electrode 19 may be a cathode to which a negative voltage is applied. have. In contrast, the first electrode 11 may be a cathode and the second electrode 19 may be an anode. For convenience, the first electrode 11 is an anode and the second electrode 19 will be described based on the case of a cathode.
상기 유기 발광 소자(10)의 제1 전극(11)과 제2 전극(19)에 전압을 인가시키면 유기층(15)으로 정공과 전자가 수송되어 발광층(16)에서 엑시톤(exiton)이 생성된다. When voltage is applied to the first electrode 11 and the second electrode 19 of the organic light emitting diode 10, holes and electrons are transported to the organic layer 15 to generate excitons in the emission layer 16.
한편, 유기층(15)은 발광층(16)과 제1 전극(11) 사이에 정공 수송 영역을 포함할 수 있고, 발광층(16)과 제2 전극(19) 사이에 정공 수송 영역을 포함할 수 있다. 정공 수송 영역은 양극으로부터 발광층으로의 정공의 주입 및 수송에 관련된 영역이고, 전자 수송 영역은 음극으로부터 발광층으로의 전자의 주입 및 수송에 관련된 영역이다. The organic layer 15 may include a hole transport region between the light emitting layer 16 and the first electrode 11, and may include a hole transport region between the light emitting layer 16 and the second electrode 19. . The hole transport region is a region related to the injection and transport of holes from the anode to the light emitting layer, and the electron transport region is a region related to the injection and transport of electrons from the cathode to the light emitting layer.
발광층(16)의 호스트로서 단일 호스트 또는 혼합 호스트를 사용할 수 있다. 혼합 호스트를 사용할 경우 서로 엑시플렉스를 형성하는 정공 수송성 호스트와 전자 수송성 호스트를 포함할 수 있다. As a host of the light emitting layer 16, a single host or a mixed host can be used. When using a mixed host, it may include a hole transporting host and an electron transporting host to form an exciplex with each other.
상기 도펀트는 헤테로렙틱 이리듐 착물일 수 있는데, 특히 전이 쌍극자 모멘트(transition dipole moment)의 수평 배향율(horizontal orientation ratio)이 75% 내지 100%인 헤테로렙틱 이리듐 착물일 수 있다. The dopant may be a heteroretic iridium complex, in particular a heteroretic iridium complex having a horizontal orientation ratio of 75% to 100% of the transition dipole moment.
이때 전이 쌍극자 모멘트의 수평 배향율은 발광층 내의 도펀트 전체에 대한 발광층의 평면에 대하여 수평인 전이 쌍극자 모멘트를 갖는 도펀트의 비율을 의미한다. At this time, the horizontal orientation of the transition dipole moment refers to the ratio of the dopant having the transition dipole moment horizontal to the plane of the light emitting layer relative to the entire dopant in the light emitting layer.
유기 발광 소자의 외부 양자 효율은 전하균형(charge balance), 여기자 생성효율, 여기 상태로부터 발광 양자 효율 및 광방출 효율의 영향을 받는다. The external quantum efficiency of the organic light emitting device is affected by the charge balance, the exciton generating efficiency, and the light emission quantum efficiency and light emission efficiency from the excited state.
발광층에서 도펀트의 전이 쌍극자 모멘트가 높은 수평 배향율을 가질 수록 발광층의 광방출 효율이 증가할 수 있다. 수직배향의 전이 쌍극자 모멘트를 갖는 도펀트는 주로 발광층의 평면과 수평인(평행인) 방향으로 진행하는 전기장을 방출하는데, 이렇게 방출된 빛은 발광층 및 투명 전극층 내로 전파되는 도파 모드(waveguide mode)나 금속 전극과의 SPP(surface plasmon polaritons)에 의하여 주로 손실된다. 이와 달리 수평배향 전이 쌍극자 모멘트를 갖는 도펀트는 발광층의 평면에 수직인 방향으로 진행하는 전기장을 많이 방출하며, 이렇게 방출된 빛은 소자 외부로 추출되는 비율이 크다. 따라서 수직배향 전이쌍극자에 대비하여 수평배향 전이쌍극자의 비율이 높을 수록 광방출 효율이 증가하여 외부 양자 효율이 증가할 수 있다. As the transition dipole moment of the dopant in the light emitting layer has a high horizontal alignment rate, light emission efficiency of the light emitting layer may increase. Dopants with vertical dipole moments in a vertical orientation emit an electric field that primarily travels in a direction parallel to the plane of the light emitting layer, and the emitted light is a waveguide mode or metal that propagates into the light emitting layer and the transparent electrode layer. It is mainly lost by surface plasmon polaritons (SPP) with the electrodes. On the contrary, the dopant having the horizontally oriented dipole moment emits a lot of electric field traveling in a direction perpendicular to the plane of the light emitting layer, and the emitted light is largely extracted outside the device. Therefore, as the ratio of the horizontally aligned transition dipoles to the vertically aligned transition dipoles increases, the light emission efficiency may increase, thereby increasing the external quantum efficiency.
하기 화학식 1로 표시되는 헤테로렙틱 이리듐 착물은 전이 쌍극자 모멘트의 상기 수평 배향율을 만족시킬 수 있다. The heteroreptic iridium complex represented by the following Formula 1 may satisfy the horizontal orientation of the transition dipole moment.
<화학식 1><Formula 1>
Figure PCTKR2014012854-appb-I000002
Figure PCTKR2014012854-appb-I000002
상기 화학식 1 중, In Formula 1,
R1 내지 R8은 서로 독립적으로, 수소 원자, 중수소 원자, 할로겐 원자, 시아노기, 니트로기, 아미노기, 아미디노기, 히드라진기, 히드라존기, 카르복실산기 또는 이의 염, 술폰산기 또는 이의 염, 인산기 또는 이의 염, 치환 또는 비치환된 C1-C10 알킬기, 치환 또는 비치환된 C2-C10 알케닐기, 치환 또는 비치환된 C2-C10 알키닐기, 치환 또는 비치환된 C1-C10 알콕시기, 치환 또는 비치환된 C3-C10 시클로알킬기, 치환 또는 비치환된 C2-C10 헤테로시클로알킬기, 치환 또는 비치환된 C3-C10 시클로알케닐기, 치환 또는 비치환된 C2-C10 헤테로시클로알케닐기, 치환 또는 비치환된 C6-C20 아릴기, 치환 또는 비치환된 C6-C20 아릴옥시기, 치환 또는 비치환된 C6-C20 아릴티오기, 치환 또는 비치환된 C2-C20 헤테로아릴기, 치환 또는 비치환된 아릴기를 제외한 축합다환기, 치환 또는 비치환된 헤테로아릴기를 제외한 헤테로축합다환기, -N(Q1)(Q2), -Si(Q3)(Q4)(Q5) 또는 -B(Q6)(Q7)이고, R 1 to R 8 are each independently a hydrogen atom, a deuterium atom, a halogen atom, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, Phosphoric acid groups or salts thereof, substituted or unsubstituted C 1 -C 10 alkyl groups, substituted or unsubstituted C 2 -C 10 alkenyl groups, substituted or unsubstituted C 2 -C 10 alkynyl groups, substituted or unsubstituted C 1 -C 10 alkoxy group, substituted or unsubstituted C 3 -C 10 cycloalkyl group, substituted or unsubstituted C 2 -C 10 heterocycloalkyl group, substituted or unsubstituted C 3 -C 10 cycloalkenyl group, substituted or unsubstituted A substituted C 2 -C 10 heterocycloalkenyl group, a substituted or unsubstituted C 6 -C 20 aryl group, a substituted or unsubstituted C 6 -C 20 aryloxy group, a substituted or unsubstituted C 6 -C 20 aryl except thio, substituted or unsubstituted C 2 -C 20 heteroaryl group, substituted or unsubstituted aryl group Condensed polycyclic group, a substituted or unsubstituted condensed polycyclic heterocyclic group other than unsubstituted heteroaryl, -N (Q 1) (Q 2), -Si (Q 3) (Q 4) (Q 5) or -B (Q 6) (Q 7 ),
상기 치환된 C1-C10 알킬기, 치환된 C2-C10 알케닐기, 치환된 C2-C10 알키닐기, 치환된 C1-C10 알콕시기, 치환된 C3-C10 시클로알킬기, 치환된 C2-C10 헤테로시클로알킬기, 치환된 C3-C10 시클로알케닐기, 치환된 C2-C10 헤테로시클로알케닐기, 치환된 C6-C20 아릴기, 치환된 C6-C20 아릴옥시기, 치환된 C6-C20 아릴티오기, 치환된 C2-C20 헤테로아릴기, 치환된 아릴기를 제외한 축합다환기, 치환된 헤테로아릴기를 제외한 헤테로축합다환기의 치환기 중 적어도 하나는The substituted C 1 -C 10 alkyl group, substituted C 2 -C 10 alkenyl group, substituted C 2 -C 10 alkynyl group, substituted C 1 -C 10 alkoxy group, substituted C 3 -C 10 cycloalkyl group, Substituted C 2 -C 10 heterocycloalkyl group, substituted C 3 -C 10 cycloalkenyl group, substituted C 2 -C 10 heterocycloalkenyl group, substituted C 6 -C 20 aryl group, substituted C 6 -C At least one substituent of a 20 aryloxy group, a substituted C 6 -C 20 arylthio group, a substituted C 2 -C 20 heteroaryl group, a condensed polycyclic group except for a substituted aryl group, and a heterocondensed polycyclic group except a substituted heteroaryl group The one is
중수소 원자, 할로겐 원자, 시아노기, 니트로기, 아미노기, 아미디노기, 히드라진기, 히드라존기, 카르복실산기 또는 이의 염, 술폰산기 또는 이의 염, 인산기 또는 이의 염, C1-C20 알킬기, C2-C20 알케닐기, C2-C20 알키닐기 또는 C1-C20 알콕시기; Deuterium atom, halogen atom, cyano group, nitro group, amino group, amidino group, hydrazine group, hydrazone group, carboxylic acid group or salt thereof, sulfonic acid group or salt thereof, phosphoric acid group or salt thereof, C 1 -C 20 alkyl group, C 2 -C 20 alkenyl group, C 2 -C 20 alkynyl group or C 1 -C 20 alkoxy group;
중수소 원자, 할로겐 원자, 시아노기, 니트로기, 아미노기, 아미디노기, 히드라진기, 히드라존기, 카르복실산기 또는 이의 염, 술폰산기 또는 이의 염, 인산기 또는 이의 염, C3-C10 시클로알킬기, C2-C10 헤테로시클로알킬기, C3-C10 시클로알케닐기, C2-C10 헤테로시클로알케닐기, C6-C20 아릴기, C6-C20 아릴옥시기, C6-C20 아릴티오기, C2-C20 헤테로아릴기, 아릴기를 제외한 축합다환기, 헤테로아릴기를 제외한 헤테로축합다환기, -N(Q11)(Q12), -Si(Q13)(Q14)(Q15) 및 -B(Q16)(Q17) 중 적어도 하나로 치환된 C1-C20 알킬기, C2-C20 알케닐기, C2-C20 알키닐기 또는 C1-C20 알콕시기; Deuterium atom, halogen atom, cyano group, nitro group, amino group, amidino group, hydrazine group, hydrazone group, carboxylic acid group or salt thereof, sulfonic acid group or salt thereof, phosphoric acid group or salt thereof, C 3 -C 10 cycloalkyl group, C 2 -C 10 heterocycloalkyl group, C 3 -C 10 cycloalkenyl group, C 2 -C 10 heterocycloalkenyl group, C 6 -C 20 aryl group, C 6 -C 20 aryloxy group, C 6 -C 20 Arylthio group, C 2 -C 20 heteroaryl group, condensed polycyclic group except aryl group, heterofused polycyclic group except heteroaryl group, -N (Q 11 ) (Q 12 ), -Si (Q 13 ) (Q 14 ) C 1 -C 20 alkyl group, C 2 -C 20 alkenyl group, C 2 -C 20 alkynyl group or C 1 -C 20 alkoxy group substituted with at least one of (Q 15 ) and -B (Q 16 ) (Q 17 ) ;
C3-C10 시클로알킬기, C2-C10 헤테로시클로알킬기, C3-C10 시클로알케닐기, C2-C10 헤테로시클로알케닐기, C6-C20 아릴기, C6-C20 아릴옥시기, C6-C20 아릴티오기, C2-C20 헤테로아릴기, 아릴기를 제외한 축합다환기, 헤테로아릴기를 제외한 헤테로축합다환기;C 3 -C 10 cycloalkyl group, C 2 -C 10 heterocycloalkyl group, C 3 -C 10 cycloalkenyl group, C 2 -C 10 heterocycloalkenyl group, C 6 -C 20 aryl group, C 6 -C 20 aryl Condensed polycyclic groups excluding oxy group, C 6 -C 20 arylthio group, C 2 -C 20 heteroaryl group, aryl group, heterofused polycyclic group except heteroaryl group;
중수소 원자, 할로겐 원자, 시아노기, 니트로기, 아미노기, 아미디노기, 히드라진기, 히드라존기, 카르복실산기 또는 이의 염, 술폰산기 또는 이의 염, 인산기 또는 이의 염, C1-C20 알킬기, C2-C20 알케닐기, C2-C20 알키닐기 또는 C1-C20 알콕시기, C3-C10 시클로알킬기, C2-C10 헤테로시클로알킬기, C3-C10 시클로알케닐기, C2-C10 헤테로시클로알케닐기, C6-C20 아릴기, C6-C20 아릴옥시기, C6-C20 아릴티오기, C2-C20 헤테로아릴기, 아릴기를 제외한 축합다환기, 헤테로아릴기를 제외한 헤테로축합다환기, -N(Q21)(Q22), -Si(Q23)(Q24)(Q25) 및 -B(Q26)(Q27) 중 적어도 하나로 치환된 C3-C10 시클로알킬기, C2-C10 헤테로시클로알킬기, C3-C10 시클로알케닐기, C2-C10 헤테로시클로알케닐기, C6-C20 아릴기, C6-C20 아릴옥시기, C6-C20 아릴티오기, C2-C20 헤테로아릴기, 아릴기를 제외한 축합다환기, 헤테로아릴기를 제외한 헤테로축합다환기; 또는Deuterium atom, halogen atom, cyano group, nitro group, amino group, amidino group, hydrazine group, hydrazone group, carboxylic acid group or salt thereof, sulfonic acid group or salt thereof, phosphoric acid group or salt thereof, C 1 -C 20 alkyl group, C 2 -C 20 alkenyl group, C 2 -C 20 alkynyl group or C 1 -C 20 alkoxy group, C 3 -C 10 cycloalkyl group, C 2 -C 10 heterocycloalkyl group, C 3 -C 10 cycloalkenyl group, C 2 -C 10 hetero cycloalkenyl group, C 6 -C 20 aryl group, C 6 -C 20 aryloxy, C 6 -C 20 arylthio, C 2 -C 20 heteroaryl group, ventilation is fused an aryl group other than , A heterocondensed polycyclic group excluding a heteroaryl group, substituted with at least one of -N (Q 21 ) (Q 22 ), -Si (Q 23 ) (Q 24 ) (Q 25 ) and -B (Q 26 ) (Q 27 ) C 3 -C 10 cycloalkyl group, C 2 -C 10 heterocycloalkyl group, C 3 -C 10 cycloalkenyl group, C 2 -C 10 heterocycloalkenyl group, C 6 -C 20 aryl group, C 6 -C 20 Aryloxy group, C 6 -C 20 arylthio group, C 2 -C 20 Condensed polycyclic groups except heteroaryl groups, aryl groups, and heterofused polycyclic groups except heteroaryl groups; or
-N(Q31)(Q32), -Si(Q33)(Q34)(Q35) 또는 -B(Q36)(Q37); 이고;-N (Q 31 ) (Q 32 ), -Si (Q 33 ) (Q 34 ) (Q 35 ) or -B (Q 36 ) (Q 37 ); ego;
상기 Q1 내지 Q7, Q11 내지 Q17, Q21 내지 Q27 및 Q31 내지 Q37은 서로 독립적으로, 수소, C1-C20 알킬기, C2-C20 알케닐기, C2-C20 알키닐기 또는 C1-C20 알콕시기, C3-C10 시클로알킬기, C2-C10 헤테로시클로알킬기, C3-C10 시클로알케닐기, C2-C10 헤테로시클로알케닐기, C6-C20 아릴기, C6-C20 아릴옥시기, C6-C20 아릴티오기, C2-C20 헤테로아릴기, 아릴기를 제외한 축합다환기, 헤테로아릴기를 제외한 헤테로축합다환기이되, Q 1 to Q 7 , Q 11 to Q 17 , Q 21 to Q 27 and Q 31 to Q 37 are each independently hydrogen, C 1 -C 20 alkyl group, C 2 -C 20 alkenyl group, C 2 -C 20 alkynyl group or C 1 -C 20 alkoxy group, C 3 -C 10 cycloalkyl group, C 2 -C 10 heterocycloalkyl group, C 3 -C 10 cycloalkenyl group, C 2 -C 10 heterocycloalkenyl group, C 6 -C 20 aryl group, C 6 -C 20 aryloxy, C 6 -C 20 arylthio, C 2 -C 20 heteroaryl group is a condensed polycyclic group, condensed heterocyclic groups other than heteroaryl other than an aryl group are hwangiyi,
R1 내지 R8 중 적어도 하나는 수소 원자가 아니다.At least one of R 1 to R 8 is not a hydrogen atom.
R1 내지 R8은 서로 독립적으로 전자 공여기일 수 있다. R 1 to R 8 may be independently an electron donating group.
구체적으로 R1 내지 R8은 서로 독립적으로 수소 원자, -F, -Cl, -Br, -I, 히드록실기(-OH), 메틸기, 에틸기, 프로필기, n-부틸기, 이소부틸기, sec-부틸기 또는 tert-부틸기, 메톡시기, 에톡시기, 페녹사이드기, 페닐기, 또는 -N(Q1)(Q2)이고, 상기 Q1 및 Q2 는 서로 독립적으로 수소 원자, 메틸기, 에틸기, 프로필기, n-부틸기, 페닐기일 수 있다. 이때 R1 내지 R8 중 적어도 하나는 수소 원자가 아니다.Specifically, R 1 to R 8 are independently of each other a hydrogen atom, -F, -Cl, -Br, -I, hydroxyl group (-OH), methyl group, ethyl group, propyl group, n-butyl group, isobutyl group, sec-butyl group or tert-butyl group, methoxy group, ethoxy group, phenoxide group, phenyl group, or -N (Q 1 ) (Q 2 ), wherein Q 1 and Q 2 are independently of each other a hydrogen atom, a methyl group, It may be an ethyl group, a propyl group, n-butyl group, or a phenyl group. At least one of R 1 to R 8 is not a hydrogen atom.
예를 들어 상기 헤테로렙틱 이리듐 착물은 하기 화합물 1 내지 4 중 하나일 수 있다. For example, the heteroreptic iridium complex may be one of the following Compounds 1-4.
Figure PCTKR2014012854-appb-I000003
Figure PCTKR2014012854-appb-I000003
도 2는 상기 화합물 1 내지 4의 화학식 및 시뮬레이션 구조식을 나타낸 도면이다. 상기 시뮬레이션 구조식은 범밀도함수 이론(Density functional theory, DFT) 계산에 의하여 얻은 것이다. 도 2의 시뮬레이션 구조식에서 위쪽은 보조 리간드(ancillary ligand)인 tmd(2,2,6,6-tetrametylheptane-3,5-dionate) 부분을 나타내고, 아래쪽은 주리간드(main ligand)인 피리딜-페닐 부분을 나타낸다. 주리간드의 메틸기는 약한 전자공여기로서 주리간드에 전자를 제공하는 효과를 준다. 메틸기의 전자 공여 유발 효과가 발광체의 전자 전이 쌍극자 모멘트의 배향에 크게 영향을 주는 것으로 여겨지나, 전이 쌍극자 모멘트가 배향하는 메커니즘이 이에 구속되는 것은 아니다. 2 is a view showing the chemical formula and the structural formula of the compounds 1 to 4. The simulation structural formula is obtained by Density Functional Theory (DFT) calculation. In the simulation structure of FIG. 2, the upper part shows the tmd (2,2,6,6-tetrametylheptane-3,5-dionate) portion as an ancillary ligand, and the lower part is pyridyl-phenyl as the main ligand. Indicates a part. The methyl group of the zuligand is a weak electron donating group, which has an effect of providing electrons to the zuligand. Although the electron donating inducing effect of the methyl group is believed to greatly influence the orientation of the electron transition dipole moment of the light emitter, the mechanism by which the transition dipole moment is oriented is not limited thereto.
혼합 호스트의 경우 정공 수송성 호스트로는 카바졸 유도체 또는 방향족 아민 화합물을 사용할 수 있다. 정공 수송성 호스트는 예를 들어, mCP(1,3-bis(9-carbazolyl)benzene), TCTA(Tris(4-carbazoyl-9-ylphenyl)amine), CBP(4,4′-Bis(N-carbazolyl)-1,1'-biphenyl), mCBP(3,3-bis(carbazol-9-yl)bipheny), NPB(N,N'-di(1-naphthyl)-N,N′-diphenyl-(1,1'-biphenyl)-4,4'-diamine), m-MTDATA(4,4',4"-tris[phenyl(m-tolyl)amino]triphenylamine), TPD(N,N′-bis(3-methylphenyl)-N,N′-diphenylbenzidine) 등을 포함할 수 있지만 이에 한정되지는 않는다. In the case of a mixed host, a carbazole derivative or an aromatic amine compound may be used as the hole transporting host. Hole transporting hosts are, for example, mCP (1,3-bis (9-carbazolyl) benzene), TCTA (Tris (4-carbazoyl-9-ylphenyl) amine), CBP (4,4′-Bis (N-carbazolyl) ) -1,1'-biphenyl), mCBP (3,3-bis (carbazol-9-yl) bipheny), NPB (N, N'-di (1-naphthyl) -N, N'-diphenyl- (1 , 1'-biphenyl) -4,4'-diamine), m-MTDATA (4,4 ', 4 "-tris [phenyl (m-tolyl) amino] triphenylamine), TPD (N, N'-bis (3 -methylphenyl) -N, N'-diphenylbenzidine) and the like, but is not limited thereto.
Figure PCTKR2014012854-appb-I000004
Figure PCTKR2014012854-appb-I000004
혼합 호스트의 경우 전자 수송성 호스트는 π-전자 결여형 헤테로아릴 화합물, 포스핀 옥사이드, 또는 술폰 옥사이드을 포함할 수 있다. π-전자 결여형 헤테로아릴 화합물은 헤테로아릴기를 포함하는 화합물로서 헤테로 원자의 높은 전자 친화도 등으로 인하여 헤테로아릴기의 비편재화된 π-결합의 전자 밀도가 낮아진 화합물을 의미한다. 전자 수송성 호스트는 예를 들어, B3PYMPM(bis-4,6-(3,5-di-3-pyridylphenyl)-2-methylpyrimi-dine), TPBi(2,2',2"-(1,3,5-benzenetriyl)tris-[1-phenyl-1H-benzimidazole]), 3TPYMB(Tris(2,4,6-triMethyl-3-(pyridin-3-yl)phenyl)borane), BmPyPB(1,3-bis[3,5-di (pyridin-3-yl) phenyl]benzene), TmPyPB(3,3'-[5'-[3-(3-Pyridinyl)phenyl][1,1':3',1"-terphenyl]-3,3"-diyl]bispyridine), BSFM(하기 화학식 참조), PO-T2T(하기 화학식 참조), PO15(dibenzo[b,d]thiophene-2,8-diylbis(diphenylphosphine oxide)) 등을 포함할 수 있지만 이에 한정되지 않는다. In the case of a mixed host, the electron transporting host may comprise a π-electron deficient heteroaryl compound, phosphine oxide, or sulfone oxide. The π-electron deficient heteroaryl compound refers to a compound containing a heteroaryl group and a compound having a low electron density of an unlocalized π-bond of the heteroaryl group due to the high electron affinity of the hetero atom and the like. Electron transporting hosts are, for example, B3PYMPM (bis-4,6- (3,5-di-3-pyridylphenyl) -2-methylpyrimi-dine), TPBi (2,2 ', 2 "-(1,3, 5-benzenetriyl) tris- [1-phenyl-1H-benzimidazole]), 3TPYMB (Tris (2,4,6-triMethyl-3- (pyridin-3-yl) phenyl) borane), BmPyPB (1,3-bis [3,5-di (pyridin-3-yl) phenyl] benzene), TmPyPB (3,3 '-[5'-[3- (3-Pyridinyl) phenyl] [1,1 ': 3', 1 " -terphenyl] -3,3 "-diyl] bispyridine), BSFM (see formula below), PO-T2T (see formula below), PO15 (dibenzo [b, d] thiophene-2,8-diylbis (diphenylphosphine oxide)) And the like, but are not limited thereto.
Figure PCTKR2014012854-appb-I000005
Figure PCTKR2014012854-appb-I000005
정공 수송성 호스트와 전자 수송성 호스트의 조합, 예를 들면 mCP:B3PYMPM, TCTA:B3PYMPM, TCTA:TPBi, TCTA:3TPYMB, TCTA:BmPyPB, TCTA:BSFM, CBP:B3PYMPM 또는 NPB:BSFM의 경우 엑시플렉스를 형성할 수 있다. Combination of hole transport host and electron transport host, for example mCP: B3PYMPM, TCTA: B3PYMPM, TCTA: TPBi, TCTA: 3TPYMB, TCTA: BmPyPB, TCTA: BSFM, CBP: B3PYMPM or NPB: BSFM can do.
유기 발광 소자(10)의 유기층(15)에서 호스트 대 인광 도펀트의 중량비는 99.9:0.1 내지 50:50의 범위일 수 있다. 호스트 대 인광 도펀트의 중량비가 상기 범위를 만족할 경우 만족스러운 수준의 에너지 전이와 발광이 일어날 수 있다. The weight ratio of host to phosphorescent dopant in the organic layer 15 of the organic light emitting device 10 may range from 99.9: 0.1 to 50:50. If the weight ratio of host to phosphorescent dopant satisfies the above range, satisfactory levels of energy transfer and emission may occur.
도 3은 다른 일 구현예에 따른 유기 발광 소자(20)의 구조를 개략적으로 도시한 단면도이다. 3 is a cross-sectional view schematically illustrating a structure of an organic light emitting device 20 according to another embodiment.
유기 발광 소자(20)는 제1 전극(21), 상기 제1 전극(21)과 대향된 제2 전극(29) 및 상기 제1 전극(21)과 상기 제2 전극(29) 사이에 개재된 유기층(25)을 포함한다. 유기층(25)은 발광층(26), 상기 발광층(26)과 상기 제1 전극(21) 사이에 개재된 정공 수송층(23), 상기 정공 수송층(23)과 상기 제1 전극(21) 사이에 개재된 정공 주입층(22), 상기 발광층(26)과 상기 제2 전극(28) 사이에 개재된 전자 수송층(27), 상기 전자 수송층(27)과 상기 제2 전극(28) 사이에 개재된 전자 주입층(28)을 포함한다. 여기서 정공 주입층(22) 및 전자 주입층(28) 중 적어도 하나는 생략될 수 있다. 또한 발광층(26)과 정공 수송층(23) 사이 또는 발광층(26)과 전자 수송층(27) 사이에 버퍼층(미도시)을 더 포함할 수도 있다. The organic light emitting diode 20 is interposed between the first electrode 21, the second electrode 29 facing the first electrode 21, and the first electrode 21 and the second electrode 29. The organic layer 25 is included. The organic layer 25 is interposed between the light emitting layer 26, the hole transport layer 23 interposed between the light emitting layer 26 and the first electrode 21, and the hole transport layer 23 and the first electrode 21. Interposed between the hole injection layer 22, the electron transport layer 27, and the electron transport layer 27 and the second electrode 28 interposed between the light emitting layer 26 and the second electrode 28. An injection layer 28. Here, at least one of the hole injection layer 22 and the electron injection layer 28 may be omitted. In addition, a buffer layer (not shown) may be further included between the light emitting layer 26 and the hole transport layer 23 or between the light emitting layer 26 and the electron transport layer 27.
유기 발광 소자(20)는 기판(미도시)을 더 포함할 수 있다. 기판(미도시)으로는 통상적인 유기 발광 소자에 사용되는 기판을 사용할 수 있으며, 기계적 강도, 열적 안정성, 투명성, 표면 평활성, 취급용이성 및 방수성이 우수한 유리 기판 또는 투명 플라스틱 기판을 사용할 수 있다. The organic light emitting diode 20 may further include a substrate (not shown). As the substrate (not shown), a substrate used in a conventional organic light emitting device may be used, and a glass substrate or a transparent plastic substrate having excellent mechanical strength, thermal stability, transparency, surface smoothness, ease of handling, and water resistance may be used.
제1 전극(21)은 투명 전극 또는 반사 전극으로 형성할 수 있으며, 배면 발광형인 경우에는 투명 전극으로 형성할 수 있다. 투명 전극으로 형성할 때는 ITO, IZO, ZnO 또는 그래핀 등을 사용할 수 있고, 반사 전극으로 형성할 때에는 Ag, Mg, Al, Pt, Pd, Au, Ni, Nd, Ir, Cr 또는 이들의 화합물 등으로 반사막을 형성한 후, 그 위에 ITO, IZO, ZnO 또는 그래핀 등으로 막을 형성함으로써 형성할 수 있다. 제1 전극(21)은 공지된 다양한 방법, 예를 들면, 증착법, 스퍼터링법 또는 스핀코팅법 등을 이용하여 형성될 수 있다.The first electrode 21 may be formed as a transparent electrode or a reflective electrode, and in the case of a bottom emission type, may be formed as a transparent electrode. When forming a transparent electrode, ITO, IZO, ZnO or graphene may be used, and when forming a reflective electrode, Ag, Mg, Al, Pt, Pd, Au, Ni, Nd, Ir, Cr, or a compound thereof may be used. After the reflection film is formed, it can be formed by forming a film thereon with ITO, IZO, ZnO or graphene. The first electrode 21 may be formed using various known methods, for example, a deposition method, a sputtering method, or a spin coating method.
정공 주입층(22)은 제1 전극(21) 상부에 진공증착법, 스핀코팅법, 캐스트법 또는 LB법 등과 같은 다양한 방법을 이용하여 형성될 수 있다. 정공 주입층(22)에 사용되는 물질로는 공지된 정공 주입 재료를 사용할 수 있는데, 예를 들면, 구리프탈로시아닌 등과 같은 프탈로시아닌 화합물, m-MTDATA, TDATA, TAPC(4,4′-Cyclohexylidenebis[N,N-bis(4-methylphenyl)benzenamine]), 2-TNATA(4,4',4''-Tris[2-naphthyl(phenyl)amino]triphenylamine), PANI/DBSA (폴리아닐린/도데실벤젠술폰산), PEDOT/PSS(폴리(3,4-에틸렌디옥시티오펜)/폴리(4-스티렌술포네이트)), PANI/CSA (폴리아닐린/캠퍼술폰산) 또는 PANI/PSS (폴리아닐린/폴리(4-스티렌술포네이트)), HATCN(1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile) 등을 사용할 수 있으나, 이에 한정되는 것은 아니다.The hole injection layer 22 may be formed on the first electrode 21 using various methods such as vacuum deposition, spin coating, casting, or LB. As the material used for the hole injection layer 22, a known hole injection material may be used. For example, a phthalocyanine compound such as copper phthalocyanine, m-MTDATA, TDATA, TAPC (4,4′-Cyclohexylidenebis [N, N-bis (4-methylphenyl) benzenamine]), 2-TNATA (4,4 ', 4' '-Tris [2-naphthyl (phenyl) amino] triphenylamine), PANI / DBSA (polyaniline / dodecylbenzenesulfonic acid), PEDOT / PSS (poly (3,4-ethylenedioxythiophene) / poly (4-styrenesulfonate)), PANI / CSA (polyaniline / camphorsulfonic acid) or PANI / PSS (polyaniline / poly (4-styrenesulfonate) ), HATCN (1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile) and the like can be used, but is not limited thereto.
정공 수송층(23)은 발광층(26)의 정공 수송성 호스트를 사용할 수 있다. 또는 정공 수송층(23)은 TPD, NPB, α-NPD, TCTA 등과 같은 공지의 정공 수송성 호스트를 사용할 수 있다. 정공 수송층(23)의 형성은 진공증착법, 스핀코팅법, 캐스트법 또는 LB법 등과 같은 다양한 방법을 이용할 수 있다.The hole transport layer 23 may use a hole transport host of the light emitting layer 26. Alternatively, the hole transport layer 23 may use a known hole transport host such as TPD, NPB, α-NPD, TCTA, or the like. The hole transport layer 23 may be formed using various methods such as vacuum deposition, spin coating, casting or LB.
유기 발광 소자(20)의 발광층(26)은 유기 발광 소자(10)의 발광층(16)과 같은 구성을 갖는다. 발광층(26)은 진공증착법, 스핀코팅법, 캐스트법 또는 LB법 등과 같은 다양한 방법을 사용하여 형성될 수 있다. The light emitting layer 26 of the organic light emitting element 20 has the same structure as the light emitting layer 16 of the organic light emitting element 10. The light emitting layer 26 may be formed using various methods such as vacuum deposition, spin coating, cast or LB.
전자 수송층(27)은 발광층(26)의 전자 수송성 호스트를 사용할 수 있다. 또는 전자 수송층(27)은 예를 들어 Alq3, BCP(Bathocuproine), Bphen(4,7-diphenyl-1,10-phenanthroline), TAZ(3-(Biphenyl-4-yl)-5-(4-tert-butylphenyl)-4-phenyl-4H-1,2,4-triazole), NTAZ(4-(naphthalen-1-yl)-3,5-diphenyl-4H-1,2,4-triazole), tBu-PBD(2-(4-biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole), Balq(Bis(2-methyl-8-quinolinolato-N1,O8)-(1,1'-Biphenyl-4-olato)aluminum), Bebq2(Bis(10-hydroxybenzo[h]quinolinato)beryllium), AND(9,10-Di(naphth-2-yl)anthracene) 등과 같은 공지의 정공 수송성 호스트를 사용할 수 있다. 전자 수송층(27)의 형성은 진공증착법, 스핀코팅법, 캐스트법 또는 LB법 등과 같은 다양한 방법을 이용할 수 있다.The electron transporting layer 27 may use an electron transporting host of the light emitting layer 26. Alternatively, the electron transport layer 27 may be, for example, Alq 3 , BCP (Bathocuproine), Bphen (4,7-diphenyl-1,10-phenanthroline), TAZ (3- (Biphenyl-4-yl) -5- (4- tert-butylphenyl) -4-phenyl-4H-1,2,4-triazole), NTAZ (4- (naphthalen-1-yl) -3,5-diphenyl-4H-1,2,4-triazole), tBu -PBD (2- (4-biphenylyl) -5- (4-tert-butylphenyl) -1,3,4-oxadiazole), Balq (Bis (2-methyl-8-quinolinolato-N1, O8)-(1, Known hole transport properties such as 1'-Biphenyl-4-olato) aluminum), Bebq 2 (Bis (10-hydroxybenzo [h] quinolinato) beryllium), AND (9,10-Di (naphth-2-yl) anthracene) You can use the host. The electron transport layer 27 may be formed using various methods such as vacuum deposition, spin coating, casting or LB.
전자 주입층(28)은 LiF, NaCl, CsF, Li2O, BaO, Liq 등과 같은 물질을 이용하여 형성할 수 있다. 전자 주입층(28)의 형성은 진공증착법, 스핀코팅법, 캐스트법 또는 LB법 등과 같은 다양한 방법을 이용할 수 있다.The electron injection layer 28 may be formed using a material such as LiF, NaCl, CsF, Li 2 O, BaO, Liq, or the like. The electron injection layer 28 may be formed using various methods such as vacuum deposition, spin coating, casting or LB.
제2 전극(29)은 리튬, 나트륨, 칼륨, 루비듐, 세슘 등의 알칼리 금속, 베릴륨, 마그네슘, 칼슘, 스트론튬, 바륨 등의 알칼리 토금속, 알루미늄, 스칸듐, 바나듐, 아연, 이트륨, 인듐, 세륨, 사마륨, 유로퓸, 테르븀, 이테르븀 등의 금속, 이들 중 2개 이상의 합금, 또는 이들 중 1개 이상과 금, 은, 백금, 구리, 망간, 티탄, 코발트, 니켈, 텅스텐, 주석 중 1개 이상과의 합금, 및 이들 중 적어도 2종을 포함하는 구조체로 형성할 수 있다. 필요에 따라서는 ITO에 자외선-오존 처리한 것을 사용할 수도 있다. 합금으로서는, 예를 들면 ITO(인듐주석산화물), IZO(인듐아연산화물), ZnO(아연 산화물) 또는 그래핀 등을 사용할 수 있다. 전면 발광형인 경우 제2 전극(29)은 ITO, IZO, ZnO 또는 그래핀 같은 투명한 산화물로 형성될 수 있다. 제2 전극(29)은 공지된 다양한 방법, 예를 들면, 증착법, 스퍼터링법 또는 스핀코팅법 등을 이용하여 형성될 수 있다.The second electrode 29 is an alkali metal such as lithium, sodium, potassium, rubidium, cesium, alkaline earth metal such as beryllium, magnesium, calcium, strontium, barium, aluminum, scandium, vanadium, zinc, yttrium, indium, cerium, samarium , Metals such as europium, terbium and ytterbium, alloys of two or more of these, or alloys of one or more of these with gold, silver, platinum, copper, manganese, titanium, cobalt, nickel, tungsten and tin And it can be formed from a structure containing at least two of these. If necessary, UV-ozone treated ITO may be used. As the alloy, for example, ITO (indium tin oxide), IZO (indium zinc oxide), ZnO (zinc oxide), graphene or the like can be used. In the case of the top emission type, the second electrode 29 may be formed of a transparent oxide such as ITO, IZO, ZnO, or graphene. The second electrode 29 may be formed using various known methods, for example, a deposition method, a sputtering method, or a spin coating method.
이하에서 비제한적인 참조예 및 실시예를 통하여 일 구현예를 따르는 유기 발광 소자에 대하여 보다 구체적으로 설명한다. 그러나, 본 발명이 하기의 참조예 및 실시예로 한정되는 것은 아니다.Hereinafter, the organic light emitting diode according to the exemplary embodiment will be described in more detail with reference to the following non-limiting examples and examples. However, the present invention is not limited to the following reference examples and examples.
실시예Example
유기 물질들을 대주 전자 재료로부터 구입하였고, LiF는 Materion 사로부터 구입하였다. Organic materials were purchased from Taizhou Electronic Materials and LiF was purchased from Materion.
전류 밀도, 휘도(luminance), 전계발광 스펙트럼(EL spectra)이 프로그램 가능한 소스 미터 (Keithley 2400) 및 스펙트로포토미터(Spectrascan PR650, Photo Research)를 사용하여 측정하였다. EL의 각 분포(angular distribution)을 프로그램 가능한 소스 미터 (Keithley 2400) 및 광 섬유 스펙트로미터(Ocean Optics S2000)을 사용하여 측정하였다. 유기 발광 소자의 외부 양자 효율 및 전력 효율을 전류 밀도 대 전압 대 휘도 특성, EL 스펙트럼 및 EL 강도의 각 분포로부터 계산하였다. Current density, luminance, electroluminescence spectra (EL spectra) were measured using a programmable source meter (Keithley 2400) and Spectrophotometer (Spectrascan PR650, Photo Research). Angular distribution of EL was measured using a programmable source meter (Keithley 2400) and an optical fiber spectrometer (Ocean Optics S2000). The external quantum efficiency and power efficiency of the organic light emitting element were calculated from each distribution of current density vs. voltage vs. luminance characteristics, EL spectrum, and EL intensity.
도펀트의 흡수 및 광발광 스펙트럼Dopant Absorption and Photoluminescence Spectrum
도 4a 내지 도 4d는 각각 화합물 1 내지 화합물 4의 규준화된 흡수 스펙트럼 및 광발광(photoluminescence) 스펙트럼이다. 도 4a 내지 도 4d의 흡수 스펙트럼 및 광발광 스펙트럼은 용액 상태에서 측정되었다. 용매로서 Chloroform을 사용하였고, 용질(화합물 1 내지 화합물 4)의 함량은 0.05 mM 이었다. 화합물 1 내지 화합물 4의 흡수 피크 파장 및 광발광 피크 파장을 표 1에 나타내었다. 4A-4D are normalized absorption spectra and photoluminescence spectra of Compounds 1-4, respectively. The absorption and photoluminescence spectra of FIGS. 4A-4D were measured in solution. Chloroform was used as a solvent, and the content of solutes (compounds 1 to 4) was 0.05 mM. The absorption peak wavelength and photoluminescence peak wavelength of the compound 1 to the compound 4 are shown in Table 1.
표 1
물질 흡수(nm) 광발광(nm) 계산된 광발광(nm) F.W.H.M(nm)
화합물 1 259, 346, 463 519 497 53
화합물 2 259, 342, 458 520 501 55
화합물 3 256, 349, 470 529 503 58
화합물 4 265, 374, 455 530 520 46
Table 1
matter Absorption (nm) Photoluminescence (nm) Calculated photoluminescence (nm) FWHM (nm)
Compound 1 259, 346, 463 519 497 53
Compound 2 259, 342, 458 520 501 55
Compound 3 256, 349, 470 529 503 58
Compound 4 265, 374, 455 530 520 46
도 4a 내지 도 4d 및 표 1을 참조하면, 화합물 1 내지 화합물 4의 최대 흡수 피크는 각각 256nm 내지 265nm 이고, 455nm 내지 470nm까지 흡수 피크를 갖고 있다. 또한, 화합물 1 내지 화합물 4의 측정된 광발광 피크 파장은 497nm 내지 530nm 로서 녹색 영역의 빛을 방출함을 알 수 있다. 4A to 4D and Table 1, the maximum absorption peaks of Compounds 1 to 4 are 256 nm to 265 nm, respectively, and have absorption peaks up to 455 nm to 470 nm. In addition, it can be seen that the measured photoluminescence peak wavelengths of the compounds 1 to 4 are 497 nm to 530 nm to emit light in the green region.
도펀트의 수평 배향율의 측정Measurement of Horizontal Orientation Rate of Dopant
도펀트의 전이 쌍극자 모멘트의 배향을 분석 하기 위해 박막 샘플의 각도별 p-편광 광발광 세기를 측정하였다. 이때 여기광원으로는 연속 발진 레이저(continuous wave laser)(325nm, Mellis Griot사)를 사용하였다. 여기 광원의 입사각은 45도로 고정되었다. 각도별 p-편광 광발광의 측정 파장은 인광 물질의 광발광 피크 파장에 가까운 530nm 이다. In order to analyze the orientation of the transition dipole moment of the dopant, the p-polarized photoluminescence intensity of each thin film sample was measured. In this case, a continuous wave laser (325 nm, Mellis Griot) was used as the excitation light source. The incident angle of the excitation light source was fixed at 45 degrees. The measurement wavelength of p-polarized photoluminescence by angle is 530 nm which is close to the photoluminescence peak wavelength of the phosphor.
참조예 1Reference Example 1
합성 쿼츠 기판 위에 진공 열증착법으로 5×10-7 Torr 이하의 진공도에서 TCTA, B3PYMPM 및 화합물 1을 각각 46:46:8의 중량비(weight ratio)로 동시 증착하여 32 nm 두께의 발광층을 형성하였다. TCTA, B3PYMPM and Compound 1 were simultaneously deposited at a weight ratio of 46: 46: 8 on a synthetic quartz substrate at a vacuum degree of 5 × 10 −7 Torr or lower to form a light emitting layer having a thickness of 32 nm.
참조예 2Reference Example 2
발광층 형성시 화합물 1 대신 화합물 2를 사용한 것을 제외하고 참조예 1과 동일한 방법을 사용하여 발광층을 제조하였다.A light emitting layer was manufactured in the same manner as in Reference Example 1, except that Compound 2 was used instead of Compound 1 to form the EML.
참조예 3Reference Example 3
발광층 형성시 화합물 1 대신 화합물 3을 사용한 것을 제외하고 참조예 1과 동일한 방법을 사용하여 발광층을 제조하였다.A light emitting layer was manufactured in the same manner as in Reference Example 1, except that Compound 3 was used instead of Compound 1 in forming the EML.
참조예 4Reference Example 4
발광층 형성시 화합물 1 대신 화합물 4를 사용한 것을 제외하고 참조예 1과 동일한 방법을 사용하여 발광층을 제조하였다.A light emitting layer was manufactured in the same manner as in Reference Example 1, except that Compound 4 was used instead of Compound 1 to form the EML.
비교 참조예Comparative Reference
발광층 형성시 화합물 1 대신 Ir(ppy)2tmd를 사용한 것을 제외하고 참조예 1과 동일한 방법을 사용하여 발광층을 제조하였다.A light emitting layer was manufactured in the same manner as in Reference Example 1, except that Ir (ppy) 2 tmd was used instead of compound 1 when forming the light emitting layer.
참조예 1 내지 4 및 비교 참조예의 샘플을 합성 쿼츠(fused silica)로 만들어진 반원통형 렌즈 위에 고정시키고, 325 nm 레이저를 조사하여 발광시켰다. 발광된 빛은 편광 필름을 통과시켜 CCD(Charge-coupled device)를 이용하여 샘플이 고정된 반원통형 렌즈를 렌즈의 축에 대하여 1도씩 돌려가며 0도부터 90도까지 530nm의 빛에 대하여 p-편광 광발광 세기를 측정하였다. Samples of Reference Examples 1-4 and Comparative Reference Example were fixed on a semi-cylindrical lens made of synthetic quartz (fused silica) and irradiated with a 325 nm laser to emit light. The emitted light is passed through a polarizing film, and then rotates a semi-cylindrical lens on which a sample is fixed by using a charge-coupled device (CCD) by 1 degree with respect to the axis of the lens and p-polarized light with 530 nm from 0 to 90 degrees. Photoluminescence intensity was measured.
발광체가 수직 배향을 가질 때 나타내는 p-편광 광발광 세기(1번 p-편광 광발광 세기)와 수평 배향을 가질 때 나타내는 p-편광 광발광 세기(2번 p-편광 광발광 세기)를 각각 0도부터 90도까지 계산하였다. 1번과 2번의 p-편광 광발광 세기에 각각 가중치를 곱하여 얻어진 p-편광 광발광 세기가 측정된 p-편광 광발광 세기와 일치되는 가중치를 구해 발광체인 화합물 1 내지 화합물 4 및 Ir(ppy)2tmd의 수평 배향율을 결정하였다. 이때 엑시톤으로부터의 발광을 진동하는 쌍극자(oscillating dipole)로부터 소모되는 전력(dissipated power)으로 간주하는 고전적 쌍극자 모델(classical dipole model)을 사용하여 각도 의존성 광발광 스펙트럼을 분석하였다.P-polarized photoluminescence intensity (the first p-polarized photoluminescence intensity) exhibited when the light emitter had a vertical orientation and p-polarized photoluminescence intensity exhibited by the horizontal orientation (the second p-polarized photoluminescence intensity) exhibited 0 respectively Calculations from degrees to 90 degrees. P-polarized photoluminescence intensity obtained by multiplying the p-polarized photoluminescence intensity of Nos. 1 and 2, respectively, to obtain a weight that matches the measured p-polarized photoluminescence intensity, and thus, Compounds 1 to 4 and Ir (ppy). The horizontal orientation of 2 tmd was determined. At this time, the angle-dependent photoluminescence spectra were analyzed using a classical dipole model, which regards emission from excitons as dissipated power from oscillating dipoles.
도 5는 참조예 1 내지 참조예 4 및 비교 참조예의 각도에 따른 광발광 세기의 그래프이다. 도 5의 그래프를 참조하면, 각 참조예에 대하여 각도에 따라 측정된 광발광의 세기가 계산된 도펀트의 전이 쌍극자 모멘트의 수평 배향율에서의 광발광의 세기와 잘 맞음을 알 수 있다. 참조예 1 내지 참조예 4 및 비교 참조예의 도펀트의 수평 배향율 및 광발광 양자 효율(photoluminescence quantum yield, PLQY)을 표 2에 나타내었다. 5 is a graph of photoluminescence intensity according to angles of Reference Examples 1 to 4 and Comparative Reference Examples. Referring to the graph of FIG. 5, it can be seen that the intensity of photoluminescence measured according to the angle for each reference example matches the intensity of photoluminescence at the horizontal alignment rate of the transition dipole moment of the dopant calculated. Table 2 shows the horizontal alignment rate and photoluminescence quantum yield (PLQY) of the dopants of Reference Examples 1 to 4 and Comparative Reference Examples.
표 2
참조예 1(화합물 1) 참조예 2(화합물 2) 참조예 3(화합물 3) 참조예 4(화합물 4) 비교 참조예(Ir(ppy)2tmd)
수평 배향율 75% 77% 74% 80% 74%
광발광 양자 효율 93% 93% 92% 97% 96%
TABLE 2
Reference Example 1 (Compound 1) Reference Example 2 (Compound 2) Reference Example 3 (Compound 3) Reference Example 4 (Compound 4) Comparative Reference Example (Ir (ppy) 2 tmd)
Horizontal orientation 75% 77% 74% 80% 74%
Photoluminescent Quantum Efficiency 93% 93% 92% 97% 96%
도 5 및 표 2를 참조하면, 화합물 4, 화합물 2, 화합물 1, 화합물 3 및 Ir(ppy)2tmd의 순서로 수평 배향율이 높은 것으로 나타난다. Referring to FIG. 5 and Table 2, it is shown that the horizontal orientation ratio is high in the order of Compound 4, Compound 2, Compound 1, Compound 3, and Ir (ppy) 2 tmd.
유기 발광 소자의 특성 측정Measurement of Characteristics of Organic Light-Emitting Device
실시예 1Example 1
하기와 같은 구성을 갖는 유기 발광 소자를 제조하였다: An organic light emitting device having the following constitution was manufactured:
ITO(70 nm) /TAPC(75 nm) /TCTA(10 nm) /TCTA: B3PYMPM: 화합물 1 (30 nm, 8 wt%) /B3PYMPM (45 nm) /LiF (0.7 nm) /Al (100 nm)ITO (70 nm) / TAPC (75 nm) / TCTA (10 nm) / TCTA: B3PYMPM: Compound 1 (30 nm, 8 wt%) / B3PYMPM (45 nm) / LiF (0.7 nm) / Al (100 nm)
애노드 전극으로서 700Å 두께의 ITO가 패터닝되어 있는 유리 기판을 사용하였다. 상기 ITO 유리 기판을 이소프로필 알코올과 아세톤으로 미리 세정하였고, UV-오존에 10분 동안 노출시켰다. 상기 ITO 유리 기판 상부에 TAPC 를 증착하여 75 nm 두께의 전공주입층을 형성하였다. 상기 정공주입층 상부에 TCTA 를 증착하여 10 nm 두께의 정공수송층을 형성하였다. 상기 정공수송층 상부에 TCTA: B3PYMPM: 화합물 1을 46:46:8의 중량비로 공증착하여 30 nm 두께의 발광층을 형성하였다. 상기 발광층 상부에 B3PYMPM를 증착하여 45 nm 두께의 전자수송층을 형성하였다. 상기 전자수송층 상부에 LiF를 증착하여 0.7 nm 두께의 전자주입층을 형성한 다음 Al을 증착하여 100 nm 두께의 캐소드 전극을 형성하였다. 이때 각 층들은 5×10-7 Torr의 진공을 유지하면서 열증착되었다. As an anode electrode, the glass substrate in which ITO of 700 micrometers thickness was patterned was used. The ITO glass substrate was pre-washed with isopropyl alcohol and acetone and exposed to UV-ozone for 10 minutes. TAPC was deposited on the ITO glass substrate to form a 75 nm thick hole injection layer. TCTA was deposited on the hole injection layer to form a hole transport layer having a thickness of 10 nm. TCTA: B3PYMPM: Compound 1 was co-deposited on the hole transport layer at a weight ratio of 46: 46: 8 to form a light emitting layer having a thickness of 30 nm. B3PYMPM was deposited on the emission layer to form an electron transport layer having a thickness of 45 nm. LiF was deposited on the electron transport layer to form an electron injection layer having a thickness of 0.7 nm, and then Al was deposited to form a cathode having a thickness of 100 nm. At this time, the layers were thermally deposited while maintaining a vacuum of 5 × 10 −7 Torr.
실시예 2Example 2
하기와 같은 구성을 갖는 유기 발광 소자를 제조하였다: An organic light emitting device having the following constitution was manufactured:
ITO(70 nm) /TAPC(75 nm) /TCTA(10 nm) /TCTA: B3PYMPM: 화합물 2 (30 nm, 8 wt%) /B3PYMPM (45 nm) /LiF (0.7 nm) /Al (100 nm)ITO (70 nm) / TAPC (75 nm) / TCTA (10 nm) / TCTA: B3PYMPM: Compound 2 (30 nm, 8 wt%) / B3PYMPM (45 nm) / LiF (0.7 nm) / Al (100 nm)
즉, 발광층 형성시 화합물 1 대신 화합물 2를 사용한 것을 제외하고 실시예 1과 동일한 방법을 사용하여 유기 발광 소자를 제조하였다. That is, an organic light emitting diode was manufactured according to the same method as Example 1 except for using Compound 2 instead of Compound 1 in forming the EML.
실시예 3Example 3
하기와 같은 구성을 갖는 유기 발광 소자를 제조하였다: An organic light emitting device having the following constitution was manufactured:
ITO(70 nm) /TAPC(75 nm) /TCTA(10 nm) /TCTA: B3PYMPM: 화합물 3 (30 nm, 8 wt%) /B3PYMPM (45 nm) /LiF (0.7 nm) /Al (100 nm)ITO (70 nm) / TAPC (75 nm) / TCTA (10 nm) / TCTA: B3PYMPM: Compound 3 (30 nm, 8 wt%) / B3PYMPM (45 nm) / LiF (0.7 nm) / Al (100 nm)
즉, 발광층 형성시 화합물 1 대신 화합물 3을 사용한 것을 제외하고 실시예 1과 동일한 방법을 사용하여 유기 발광 소자를 제조하였다. That is, an organic light emitting diode was manufactured according to the same method as Example 1 except for using Compound 3 instead of Compound 1 in forming the EML.
실시예 4Example 4
하기와 같은 구성을 갖는 유기 발광 소자를 제조하였다: An organic light emitting device having the following constitution was manufactured:
ITO(70 nm) /TAPC(75 nm) /TCTA(10 nm) /TCTA: B3PYMPM: 화합물 4 (30 nm, 8 wt%) /B3PYMPM (45 nm) /LiF (0.7 nm) /Al (100 nm)ITO (70 nm) / TAPC (75 nm) / TCTA (10 nm) / TCTA: B3PYMPM: Compound 4 (30 nm, 8 wt%) / B3PYMPM (45 nm) / LiF (0.7 nm) / Al (100 nm)
즉, 발광층 형성시 화합물 1 대신 화합물 4를 사용한 것을 제외하고 실시예 1과 동일한 방법을 사용하여 유기 발광 소자를 제조하였다.That is, an organic light emitting diode was manufactured according to the same method as Example 1 except for using Compound 4 instead of Compound 1 in forming the EML.
비교예Comparative example
하기와 같은 구성을 갖는 유기 발광 소자를 제조하였다: An organic light emitting device having the following constitution was manufactured:
ITO(70 nm) /TAPC(75 nm) /TCTA(10 nm) /TCTA: B3PYMPM: Ir(ppy)2tmd (30 nm, 8 wt%) /B3PYMPM (45 nm) /LiF (0.7 nm) /Al (100 nm)ITO (70 nm) / TAPC (75 nm) / TCTA (10 nm) / TCTA: B3PYMPM: Ir (ppy) 2 tmd (30 nm, 8 wt%) / B3PYMPM (45 nm) / LiF (0.7 nm) / Al (100 nm)
즉, 발광층 형성시 화합물 1 대신 Ir(ppy)2tmd를 사용한 것을 제외하고 실시예 1과 동일한 방법을 사용하여 유기 발광 소자를 제조하였다.That is, an organic light emitting diode was manufactured according to the same method as Example 1 except for using Ir (ppy) 2 tmd instead of compound 1 when forming an emission layer.
도 6은 실시예 1 내지 실시예 4 및 비교예의 유기 발광 소자의 층 구조를 에너지 레벨과 함께 나타낸 다이어그램이다. 도 6을 참조하면, 정공 수송성 호스트와 전자 수송성 호스트의 공동 호스트를 사용하여 정공 및 전자가 발광층으로 주입될 때 에너지 장벽이 없어질 수 있다. 또한, 정공 수송성 호스트와 전자 수송성 호스트가 엑시플렉스를 형성하기 때문에 구동 전압이 낮고 고휘도에서 롤-오프 없이 고효율을 나타낼 수 있다. 6 is a diagram showing the layer structure of the organic light-emitting device of Examples 1 to 4 and Comparative Example together with the energy level. Referring to FIG. 6, an energy barrier may be eliminated when holes and electrons are injected into the light emitting layer using a joint host of a hole transporting host and an electron transporting host. In addition, since the hole transporting host and the electron transporting host form an exciplex, the driving voltage is low and high efficiency can be exhibited without roll-off at high brightness.
도 7은 실시예 1 내지 실시예 4 및 비교예의 유기 발광 소자의 전류 밀도 대 전압 및 휘도(luminescence) 대 전압의 그래프이다. 도 8은 실시예 1 내지 실시예 4 및 비교예의 유기 발광 소자의 외부 양자 효율 대 휘도를 도시한 그래프이다. 도 9는 실시예 1 내지 실시예 4 및 비교예의 유기 발광 소자의 전류 효율 대 휘도 및 전력 효율 대 휘도를 도시한 그래프이다. 표 3은 실시예 1 내지 실시예 4 및 비교예의 유기 발광 소자의 턴온 전압(turn-on voltage), 외부 양자 효율, 전류 효율 및 전력 효율을 나타낸 표이다. 7 is a graph of current density vs. voltage and luminance vs. voltage of the organic light emitting diodes of Examples 1 to 4 and Comparative Examples. 8 is a graph showing external quantum efficiency versus luminance of organic light emitting diodes of Examples 1 to 4 and Comparative Examples. 9 is a graph showing current efficiency vs. brightness and power efficiency vs. brightness of the organic light emitting diodes of Examples 1 to 4 and Comparative Examples. Table 3 is a table showing turn-on voltage, external quantum efficiency, current efficiency, and power efficiency of the organic light emitting diodes of Examples 1 to 4 and Comparative Examples.
표 3
턴온 전압(V) EQE (%) 전류 효율 (Cd/A) 전력 효율 (lm/W)
비교예 2.4 31.3 108.8 136.0
실시예 1 2.4 31.9 104.2 135.8
실시예 2 2.4 32.0 107.5 147.5
실시예 3 2.4 30.5 108.1 145.8
실시예 4 2.4 34.1 120.5 157.6
TABLE 3
Turn-on voltage (V) EQE (%) Current Efficiency (Cd / A) Power efficiency (lm / W)
Comparative example 2.4 31.3 108.8 136.0
Example 1 2.4 31.9 104.2 135.8
Example 2 2.4 32.0 107.5 147.5
Example 3 2.4 30.5 108.1 145.8
Example 4 2.4 34.1 120.5 157.6
도 7 및 표 3을 참조하면, 실시예 1 내지 실시예 4 및 비교예의 유기 발광 소자의 전압에 따른 전류 밀도 및 휘도는 거의 비슷하며, 따라서 구동 전압도 같게 나타난다. Referring to FIGS. 7 and 3, the current density and the luminance of the organic light emitting diodes of Examples 1 to 4 and Comparative Examples are almost the same, and thus the driving voltages are also the same.
도 8 및 표 3을 참조하면, 외부 양자 효율은 실시예 4의 유기 발광 소자가 가장 높은 것으로 나타났으며, 이어서 실시예 2, 실시예 1, 비교예, 실시예 3의 유기 발광 소자의 순서로 외부 양자 효율이 크게 나타났다. 8 and Table 3, the external quantum efficiency of the organic light emitting device of Example 4 was found to be the highest, followed by the organic light emitting device of Example 2, Example 1, Comparative Example, Example 3 The external quantum efficiency was great.
도 9 및 표 3을 참조하면, 전류 효율은 실시예 4의 유기 발광 소자가 가장 높은 것으로 나타났으며, 이어서 비교예, 실시예 3, 실시예 2, 실시예 1의 유기 발광 소자의 순서로 전류 효율이 크게 나타났다. 또한, 전력 효율도 실시예 4의 유기 발광 소자가 가장 높은 것으로 나타났으며, 실시예 2, 실시예 3, 비교예, 실시예 1의 유기 발광 소자의 순서로 전류 효율이 크게 나타났다. 9 and Table 3, the current efficiency was found to be the highest in the organic light emitting device of Example 4, followed by the current in the order of the organic light emitting device of Comparative Example, Example 3, Example 2, Example 1. The efficiency was great. In addition, power efficiency was also found to be the highest in the organic light emitting device of Example 4, the current efficiency was the largest in the order of the organic light emitting device of Example 2, Example 3, Comparative Example, Example 1.
외부 양자 효율, 전류 효율 및 전력 효율의 순서가 조금씩 다른 것은 소자의 발광스펙트럼의 차이에 기인한다. The slightly different order of external quantum efficiency, current efficiency and power efficiency is due to the difference in the light emission spectrum of the device.
위의 결과로부터 도펀트로서 전이 쌍극자 모멘트의 수평 배향율이 가장 높은 화합물 4를 사용한 실시예 4의 유기 발광 소자의 외부 양자 효율, 전류 효율 및 전력 효율이 가장 높은 것을 알 수 있다. From the above results, it can be seen that the external quantum efficiency, current efficiency, and power efficiency of the organic light emitting device of Example 4, which uses Compound 4, which has the highest horizontal orientation ratio of the transition dipole moment as dopants, are the highest.
높은 외부 양자 효율, 전류 효율 및 전력 효율을 갖는 유기 발광 소자를 제공할 수 있다. An organic light emitting device having high external quantum efficiency, current efficiency, and power efficiency can be provided.

Claims (17)

  1. 제1 전극; A first electrode;
    상기 제1 전극과 대향하는 제2 전극; 및 A second electrode facing the first electrode; And
    상기 제1 전극과 상기 제2 전극 사이에 개재되고, 호스트 및 도펀트를 포함하는 발광층을 포함하되, A light emitting layer interposed between the first electrode and the second electrode and including a host and a dopant,
    상기 도펀트는 전이 쌍극자 모멘트(transition dipole moment)의 상기 발광층의 평면에 대한 수평배향율(horizontal orientation ratio)이 75% 내지 100%인 헤테로렙틱 이리듐 착물인 유기발광소자. The dopant is an organic light emitting device having a heterotropic iridium complex having a horizontal orientation ratio of 75% to 100% with respect to the plane of the light emitting layer at a transition dipole moment.
  2. 제1 항에 있어서, According to claim 1,
    상기 헤테로렙틱 이리듐 착물은 녹색을 발광하는 유기발광소자.The heteroleptic iridium complex is an organic light emitting device that emits green.
  3. 제1 항에 있어서, According to claim 1,
    상기 도펀트는 하기 화학식 1로 표시되는 헤테로렙틱 이리듐 착물인 유기발광소자: The dopant is an organic light emitting device which is a heteroreptic iridium complex represented by Formula 1 below:
    <화학식 1><Formula 1>
    Figure PCTKR2014012854-appb-I000006
    Figure PCTKR2014012854-appb-I000006
    상기 화학식 1 중, In Formula 1,
    R1 내지 R8은 서로 독립적으로, 수소 원자, 중수소 원자, 할로겐 원자, 시아노기, 니트로기, 아미노기, 아미디노기, 히드라진기, 히드라존기, 카르복실산기 또는 이의 염, 술폰산기 또는 이의 염, 인산기 또는 이의 염, 치환 또는 비치환된 C1-C10 알킬기, 치환 또는 비치환된 C2-C10 알케닐기, 치환 또는 비치환된 C2-C10 알키닐기, 치환 또는 비치환된 C1-C10 알콕시기, 치환 또는 비치환된 C3-C10 시클로알킬기, 치환 또는 비치환된 C2-C10 헤테로시클로알킬기, 치환 또는 비치환된 C3-C10 시클로알케닐기, 치환 또는 비치환된 C2-C10 헤테로시클로알케닐기, 치환 또는 비치환된 C6-C20 아릴기, 치환 또는 비치환된 C6-C20 아릴옥시기, 치환 또는 비치환된 C6-C20 아릴티오기, 치환 또는 비치환된 C2-C20 헤테로아릴기, 치환 또는 비치환된 아릴기를 제외한 축합다환기, 치환 또는 비치환된 헤테로아릴기를 제외한 헤테로축합다환기, -N(Q1)(Q2), -Si(Q3)(Q4)(Q5) 또는 -B(Q6)(Q7)이고, R 1 to R 8 are each independently a hydrogen atom, a deuterium atom, a halogen atom, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine group, a hydrazone group, a carboxylic acid group or a salt thereof, a sulfonic acid group or a salt thereof, Phosphoric acid groups or salts thereof, substituted or unsubstituted C 1 -C 10 alkyl groups, substituted or unsubstituted C 2 -C 10 alkenyl groups, substituted or unsubstituted C 2 -C 10 alkynyl groups, substituted or unsubstituted C 1 -C 10 alkoxy group, substituted or unsubstituted C 3 -C 10 cycloalkyl group, substituted or unsubstituted C 2 -C 10 heterocycloalkyl group, substituted or unsubstituted C 3 -C 10 cycloalkenyl group, substituted or unsubstituted A substituted C 2 -C 10 heterocycloalkenyl group, a substituted or unsubstituted C 6 -C 20 aryl group, a substituted or unsubstituted C 6 -C 20 aryloxy group, a substituted or unsubstituted C 6 -C 20 aryl except thio, substituted or unsubstituted C 2 -C 20 heteroaryl group, substituted or unsubstituted aryl group Condensed polycyclic group, a substituted or unsubstituted condensed polycyclic heterocyclic group other than unsubstituted heteroaryl, -N (Q 1) (Q 2), -Si (Q 3) (Q 4) (Q 5) or -B (Q 6) (Q 7 ),
    상기 치환된 C1-C10 알킬기, 치환된 C2-C10 알케닐기, 치환된 C2-C10 알키닐기, 치환된 C1-C10 알콕시기, 치환된 C3-C10 시클로알킬기, 치환된 C2-C10 헤테로시클로알킬기, 치환된 C3-C10 시클로알케닐기, 치환된 C2-C10 헤테로시클로알케닐기, 치환된 C6-C20 아릴기, 치환된 C6-C20 아릴옥시기, 치환된 C6-C20 아릴티오기, 치환된 C2-C20 헤테로아릴기, 치환된 아릴기를 제외한 축합다환기, 치환된 헤테로아릴기를 제외한 헤테로축합다환기의 치환기 중 적어도 하나는The substituted C 1 -C 10 alkyl group, substituted C 2 -C 10 alkenyl group, substituted C 2 -C 10 alkynyl group, substituted C 1 -C 10 alkoxy group, substituted C 3 -C 10 cycloalkyl group, Substituted C 2 -C 10 heterocycloalkyl group, substituted C 3 -C 10 cycloalkenyl group, substituted C 2 -C 10 heterocycloalkenyl group, substituted C 6 -C 20 aryl group, substituted C 6 -C At least one substituent of a 20 aryloxy group, a substituted C 6 -C 20 arylthio group, a substituted C 2 -C 20 heteroaryl group, a condensed polycyclic group except for a substituted aryl group, and a heterocondensed polycyclic group except a substituted heteroaryl group The one is
    중수소 원자, 할로겐 원자, 시아노기, 니트로기, 아미노기, 아미디노기, 히드라진기, 히드라존기, 카르복실산기 또는 이의 염, 술폰산기 또는 이의 염, 인산기 또는 이의 염, C1-C20 알킬기, C2-C20 알케닐기, C2-C20 알키닐기 또는 C1-C20 알콕시기; Deuterium atom, halogen atom, cyano group, nitro group, amino group, amidino group, hydrazine group, hydrazone group, carboxylic acid group or salt thereof, sulfonic acid group or salt thereof, phosphoric acid group or salt thereof, C 1 -C 20 alkyl group, C 2 -C 20 alkenyl group, C 2 -C 20 alkynyl group or C 1 -C 20 alkoxy group;
    중수소 원자, 할로겐 원자, 시아노기, 니트로기, 아미노기, 아미디노기, 히드라진기, 히드라존기, 카르복실산기 또는 이의 염, 술폰산기 또는 이의 염, 인산기 또는 이의 염, C3-C10 시클로알킬기, C2-C10 헤테로시클로알킬기, C3-C10 시클로알케닐기, C2-C10 헤테로시클로알케닐기, C6-C20 아릴기, C6-C20 아릴옥시기, C6-C20 아릴티오기, C2-C20 헤테로아릴기, 아릴기를 제외한 축합다환기, 헤테로아릴기를 제외한 헤테로축합다환기, -N(Q11)(Q12), -Si(Q13)(Q14)(Q15) 및 -B(Q16)(Q17) 중 적어도 하나로 치환된 C1-C20 알킬기, C2-C20 알케닐기, C2-C20 알키닐기 또는 C1-C20 알콕시기; Deuterium atom, halogen atom, cyano group, nitro group, amino group, amidino group, hydrazine group, hydrazone group, carboxylic acid group or salt thereof, sulfonic acid group or salt thereof, phosphoric acid group or salt thereof, C 3 -C 10 cycloalkyl group, C 2 -C 10 heterocycloalkyl group, C 3 -C 10 cycloalkenyl group, C 2 -C 10 heterocycloalkenyl group, C 6 -C 20 aryl group, C 6 -C 20 aryloxy group, C 6 -C 20 Arylthio group, C 2 -C 20 heteroaryl group, condensed polycyclic group except aryl group, heterofused polycyclic group except heteroaryl group, -N (Q 11 ) (Q 12 ), -Si (Q 13 ) (Q 14 ) C 1 -C 20 alkyl group, C 2 -C 20 alkenyl group, C 2 -C 20 alkynyl group or C 1 -C 20 alkoxy group substituted with at least one of (Q 15 ) and -B (Q 16 ) (Q 17 ) ;
    C3-C10 시클로알킬기, C2-C10 헤테로시클로알킬기, C3-C10 시클로알케닐기, C2-C10 헤테로시클로알케닐기, C6-C20 아릴기, C6-C20 아릴옥시기, C6-C20 아릴티오기, C2-C20 헤테로아릴기, 아릴기를 제외한 축합다환기, 헤테로아릴기를 제외한 헤테로축합다환기;C 3 -C 10 cycloalkyl group, C 2 -C 10 heterocycloalkyl group, C 3 -C 10 cycloalkenyl group, C 2 -C 10 heterocycloalkenyl group, C 6 -C 20 aryl group, C 6 -C 20 aryl Condensed polycyclic groups excluding oxy group, C 6 -C 20 arylthio group, C 2 -C 20 heteroaryl group, aryl group, heterofused polycyclic group except heteroaryl group;
    중수소 원자, 할로겐 원자, 시아노기, 니트로기, 아미노기, 아미디노기, 히드라진기, 히드라존기, 카르복실산기 또는 이의 염, 술폰산기 또는 이의 염, 인산기 또는 이의 염, C1-C20 알킬기, C2-C20 알케닐기, C2-C20 알키닐기 또는 C1-C20 알콕시기, C3-C10 시클로알킬기, C2-C10 헤테로시클로알킬기, C3-C10 시클로알케닐기, C2-C10 헤테로시클로알케닐기, C6-C20 아릴기, C6-C20 아릴옥시기, C6-C20 아릴티오기, C2-C20 헤테로아릴기, 아릴기를 제외한 축합다환기, 헤테로아릴기를 제외한 헤테로축합다환기, -N(Q21)(Q22), -Si(Q23)(Q24)(Q25) 및 -B(Q26)(Q27) 중 적어도 하나로 치환된 C3-C10 시클로알킬기, C2-C10 헤테로시클로알킬기, C3-C10 시클로알케닐기, C2-C10 헤테로시클로알케닐기, C6-C20 아릴기, C6-C20 아릴옥시기, C6-C20 아릴티오기, C2-C20 헤테로아릴기, 아릴기를 제외한 축합다환기, 헤테로아릴기를 제외한 헤테로축합다환기; 또는Deuterium atom, halogen atom, cyano group, nitro group, amino group, amidino group, hydrazine group, hydrazone group, carboxylic acid group or salt thereof, sulfonic acid group or salt thereof, phosphoric acid group or salt thereof, C 1 -C 20 alkyl group, C 2 -C 20 alkenyl group, C 2 -C 20 alkynyl group or C 1 -C 20 alkoxy group, C 3 -C 10 cycloalkyl group, C 2 -C 10 heterocycloalkyl group, C 3 -C 10 cycloalkenyl group, C 2 -C 10 hetero cycloalkenyl group, C 6 -C 20 aryl group, C 6 -C 20 aryloxy, C 6 -C 20 arylthio, C 2 -C 20 heteroaryl group, ventilation is fused an aryl group other than , A heterocondensed polycyclic group excluding a heteroaryl group, substituted with at least one of -N (Q 21 ) (Q 22 ), -Si (Q 23 ) (Q 24 ) (Q 25 ) and -B (Q 26 ) (Q 27 ) C 3 -C 10 cycloalkyl group, C 2 -C 10 heterocycloalkyl group, C 3 -C 10 cycloalkenyl group, C 2 -C 10 heterocycloalkenyl group, C 6 -C 20 aryl group, C 6 -C 20 Aryloxy group, C 6 -C 20 arylthio group, C 2 -C 20 Condensed polycyclic groups except heteroaryl groups, aryl groups, and heterofused polycyclic groups except heteroaryl groups; or
    -N(Q31)(Q32), -Si(Q33)(Q34)(Q35) 또는 -B(Q36)(Q37); 이고;-N (Q 31 ) (Q 32 ), -Si (Q 33 ) (Q 34 ) (Q 35 ) or -B (Q 36 ) (Q 37 ); ego;
    상기 Q1 내지 Q7, Q11 내지 Q17, Q21 내지 Q27 및 Q31 내지 Q37은 서로 독립적으로, 수소, C1-C20 알킬기, C2-C20 알케닐기, C2-C20 알키닐기 또는 C1-C20 알콕시기, C3-C10 시클로알킬기, C2-C10 헤테로시클로알킬기, C3-C10 시클로알케닐기, C2-C10 헤테로시클로알케닐기, C6-C20 아릴기, C6-C20 아릴옥시기, C6-C20 아릴티오기, C2-C20 헤테로아릴기, 아릴기를 제외한 축합다환기, 헤테로아릴기를 제외한 헤테로축합다환기이되, Q 1 to Q 7 , Q 11 to Q 17 , Q 21 to Q 27 and Q 31 to Q 37 are each independently hydrogen, C 1 -C 20 alkyl group, C 2 -C 20 alkenyl group, C 2 -C 20 alkynyl group or C 1 -C 20 alkoxy group, C 3 -C 10 cycloalkyl group, C 2 -C 10 heterocycloalkyl group, C 3 -C 10 cycloalkenyl group, C 2 -C 10 heterocycloalkenyl group, C 6 -C 20 aryl group, C 6 -C 20 aryloxy, C 6 -C 20 arylthio, C 2 -C 20 heteroaryl group is a condensed polycyclic group, condensed heterocyclic groups other than heteroaryl other than an aryl group are hwangiyi,
    R1 내지 R8 중 적어도 하나는 수소 원자가 아니다. At least one of R 1 to R 8 is not a hydrogen atom.
  4. 제3 항에 있어서, The method of claim 3, wherein
    R1 내지 R8은 서로 독립적으로 전자 공여기인 유기 발광 소자. R 1 to R 8 are each independently an electron donating group.
  5. 제3 항에 있어서, The method of claim 3, wherein
    R1 내지 R8은 서로 독립적으로 수소 원자, -F, -Cl, -Br, -I, 히드록실기(-OH), 메틸기, 에틸기, 프로필기, n-부틸기, 이소부틸기, sec-부틸기, tert-부틸기, 메톡시기, 에톡시기, 페녹사이드기, 페닐기, 또는 -N(Q1)(Q2)이고, R 1 to R 8 are each independently a hydrogen atom, -F, -Cl, -Br, -I, hydroxyl group (-OH), methyl group, ethyl group, propyl group, n-butyl group, isobutyl group, sec- Butyl group, tert-butyl group, methoxy group, ethoxy group, phenoxide group, phenyl group, or -N (Q 1 ) (Q 2 ),
    상기 Q1 및 Q2 는 서로 독립적으로 수소 원자, 메틸기, 에틸기, 프로필기, n-부틸기, 페닐기인 유기 발광 소자. Q 1 and Q 2 are each independently a hydrogen atom, a methyl group, an ethyl group, a propyl group, n-butyl group, a phenyl group.
  6. 제3 항에 있어서, The method of claim 3, wherein
    상기 헤테로렙틱 이리듐 착물은 하기 화합물 1 내지 4 중 하나인 유기발광소자: The heteroreptic iridium complex is an organic light emitting device of one of the following compounds 1 to 4:
    Figure PCTKR2014012854-appb-I000007
    Figure PCTKR2014012854-appb-I000007
  7. 제1 항에 있어서, According to claim 1,
    상기 발광층 호스트는 서로 엑시플렉스를 형성하는 정공 수송성 호스트와 전자 수송성 호스트를 포함하는 유기 발광 소자.The light emitting layer host includes a hole transporting host and an electron transporting host to form an exciplex with each other.
  8. 제1 항에 있어서, According to claim 1,
    상기 정공 수송성 호스트는 카바졸 유도체 또는 방향족 아민을 포함하는 유기 발광 소자. The hole transport host is an organic light emitting device comprising a carbazole derivative or an aromatic amine.
  9. 제1 항에 있어서, According to claim 1,
    상기 전자 수송성 호스트는 π-전자 결여형 헤테로아릴 화합물을 포함하는 유기 발광 소자.The electron transporting host includes an π-electron-deficient heteroaryl compound.
  10. 제1 항에 있어서, According to claim 1,
    상기 전자 수송성 호스트는 포스핀 옥사이드, 술폰 옥사이드 또는 트리아진 유도체를 포함하는 유기 발광 소자. The electron transporting host includes an phosphine oxide, sulfone oxide or triazine derivative.
  11. 제1 항에 있어서, According to claim 1,
    상기 도펀트 대 상기 혼합 호스트의 중량비는 0.1:99.9 내지 50:50인 유기발광소자. The weight ratio of the dopant to the mixed host is 0.1: 99.9 to 50:50.
  12. 제1 항에 있어서, According to claim 1,
    상기 제1 전극과 상기 발광층 사이에 정공수송영역을 더 포함하는 유기발광소자. The organic light emitting device further comprises a hole transport region between the first electrode and the light emitting layer.
  13. 제1 항에 있어서, According to claim 1,
    상기 발광층과 상기 제2 전극 사이에 전자수송영역을 더 포함하는 유기발광소자. The organic light emitting device further comprises an electron transport region between the light emitting layer and the second electrode.
  14. 제11 항에 있어서, The method of claim 11, wherein
    상기 정공수송영역은 상기 정공 수송성 호스트를 포함하는 유기발광소자. And the hole transport region comprises the hole transport host.
  15. 제12 항에 있어서, The method of claim 12,
    상기 전자수송영역은 상기 전자 수송성 호스트를 포함하는 유기발광소자. The electron transport region includes an electron transport host.
  16. 제1 항 내지 제 15항 중 어느 한 항에 따른 유기발광 소자를 포함하는 조명.An illumination comprising the organic light emitting device according to any one of claims 1 to 15.
  17. 제1 항 내지 제 15항 중 어느 한 항에 따른 유기발광 소자를 포함하는 디스플레이 장치.A display device comprising the organic light emitting device according to any one of claims 1 to 15.
PCT/KR2014/012854 2014-08-08 2014-12-24 Organic light-emitting element WO2016021784A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140102631A KR101646732B1 (en) 2014-08-08 2014-08-08 Organic light-emitting device
KR10-2014-0102631 2014-08-08

Publications (1)

Publication Number Publication Date
WO2016021784A1 true WO2016021784A1 (en) 2016-02-11

Family

ID=55264027

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/012854 WO2016021784A1 (en) 2014-08-08 2014-12-24 Organic light-emitting element

Country Status (2)

Country Link
KR (1) KR101646732B1 (en)
WO (1) WO2016021784A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210265575A1 (en) * 2020-02-14 2021-08-26 Samsung Display Co., Ltd. Organic light-emitting device and apparatus including the same
US20240107874A1 (en) * 2016-06-20 2024-03-28 Universal Display Corporation Organic electroluminescent materials and devices

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102344669B1 (en) * 2016-11-21 2021-12-31 한국전자통신연구원 Organic light emitting diode and fabrication method of the same
KR102460911B1 (en) 2019-10-01 2022-11-01 삼성디스플레이 주식회사 Organic electroluminescence device
KR102505881B1 (en) 2019-10-04 2023-03-06 삼성디스플레이 주식회사 Organic light-emitting device and apparatus including the same
KR102544979B1 (en) 2019-10-04 2023-06-20 삼성디스플레이 주식회사 Organic light-emitting device and apparatus including the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005112520A1 (en) * 2004-05-18 2005-11-24 Nippon Hoso Kyokai Light-emitting device
WO2009073245A1 (en) * 2007-12-06 2009-06-11 Universal Display Corporation Light-emitting organometallic complexes
WO2012147208A1 (en) * 2011-04-28 2012-11-01 パイオニア株式会社 Metal complex composition for organic electroluminescence element organic

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013043877A (en) * 2011-08-26 2013-03-04 Ishihara Sangyo Kaisha Ltd Metal complex compound, coloring matter, and organic electroluminescent element
KR102012047B1 (en) * 2012-01-06 2019-08-19 유니버셜 디스플레이 코포레이션 Highly efficient phosphorescent materials
KR101617877B1 (en) * 2013-01-16 2016-05-03 서울대학교산학협력단 Organic light emitting diode

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005112520A1 (en) * 2004-05-18 2005-11-24 Nippon Hoso Kyokai Light-emitting device
WO2009073245A1 (en) * 2007-12-06 2009-06-11 Universal Display Corporation Light-emitting organometallic complexes
WO2012147208A1 (en) * 2011-04-28 2012-11-01 パイオニア株式会社 Metal complex composition for organic electroluminescence element organic

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J-J. KIM ET AL.: "Highly Efficient Organic Light-Emitting Diodes with Phosphorescent Emitters Having High Quantum Yield and Horizontal Orientation of Transition Dipole Moments", ADVANCED MATERIALS, vol. 26, no. 23, 8 April 2014 (2014-04-08), pages 3844 - 3847 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240107874A1 (en) * 2016-06-20 2024-03-28 Universal Display Corporation Organic electroluminescent materials and devices
US20210265575A1 (en) * 2020-02-14 2021-08-26 Samsung Display Co., Ltd. Organic light-emitting device and apparatus including the same

Also Published As

Publication number Publication date
KR101646732B1 (en) 2016-08-08
KR20160018273A (en) 2016-02-17

Similar Documents

Publication Publication Date Title
JP7265013B2 (en) Organic molecules, uses of organic molecules, compositions, optoelectronic devices and methods for making optoelectronic devices
WO2016133252A1 (en) Organic light-emitting element comprising host, phosphorescent dopant, and fluorescent dopant
WO2016021784A1 (en) Organic light-emitting element
EP2296204B1 (en) Light-emitting element
TWI841601B (en) Organic electroluminescent device emitting blue light
KR20190127581A (en) Organic Electroluminescent Device Emitting Blue Light
KR20190052625A (en) Organic molecules for use in optoelectronic devices
EP4004992A1 (en) Organic electroluminescent device emitting green light
KR20170057796A (en) Compound for organic electroluminescent device and organic electroluminescent device comprising the same
WO2018206138A1 (en) Organic electroluminescent device
KR20200050407A (en) Compound for capping layer and organic electroluminescent divice including the same
WO2016003053A1 (en) Compound for phosphorescent host and organic light-emitting element comprising same
TWI848065B (en) Organic electroluminescent element
KR20190109303A (en) Organic molecules for optoelctronic devices
TWI781218B (en) Organic molecules, in particular for use in optoelectronic devices
WO2019216575A1 (en) Condensed cyclic compound and organic light emitting diode comprising same
KR20200073993A (en) Organic Electroluminescent Devices Comprising Host Compounds
WO2022168825A1 (en) Organic electroluminescence element, method for designing luminous composition, and program
WO2021141370A1 (en) Novel compound and organic light-emitting diode comprising same
WO2012091279A1 (en) Compound for an organic optoelectronic device, an organic light-emitting element comprising the same, and a display device comprising the organic light-emitting element
JP7408125B2 (en) Charge transport materials and organic light emitting devices
JP2023002882A (en) Compound, light-emitting material, and organic light-emitting element
KR20230044230A (en) Organic Molecules for Optoelectronic Devices
KR101857547B1 (en) Hole Transfer Compound and Organic Light-Emitting Diodes Using The same
KR20140139972A (en) Novel organic compound and organic electroluminescent device comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14899527

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14899527

Country of ref document: EP

Kind code of ref document: A1