WO2016021745A1 - Work station including sample holder for cryogenic electron microscope for correlative imaging detection of light microscope and electron microscope, correlative imaging detection apparatus including same, and imaging detection method and imaging system using same - Google Patents

Work station including sample holder for cryogenic electron microscope for correlative imaging detection of light microscope and electron microscope, correlative imaging detection apparatus including same, and imaging detection method and imaging system using same Download PDF

Info

Publication number
WO2016021745A1
WO2016021745A1 PCT/KR2014/007230 KR2014007230W WO2016021745A1 WO 2016021745 A1 WO2016021745 A1 WO 2016021745A1 KR 2014007230 W KR2014007230 W KR 2014007230W WO 2016021745 A1 WO2016021745 A1 WO 2016021745A1
Authority
WO
WIPO (PCT)
Prior art keywords
grid
specimen
electron microscope
workstation
holder
Prior art date
Application number
PCT/KR2014/007230
Other languages
French (fr)
Korean (ko)
Inventor
정현석
전상미
Original Assignee
한국기초과학지원연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국기초과학지원연구원 filed Critical 한국기초과학지원연구원
Priority to PCT/KR2014/007230 priority Critical patent/WO2016021745A1/en
Publication of WO2016021745A1 publication Critical patent/WO2016021745A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/42Low-temperature sample treatment, e.g. cryofixation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/24Base structure
    • G02B21/28Base structure with cooling device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/34Microscope slides, e.g. mounting specimens on microscope slides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes

Definitions

  • the present invention relates to a workstation for a cooperative measurement of a light microscope and an electron microscope, a cooperative measuring apparatus including the same, a measuring method and a measuring system using the same.
  • An optical microscope is a microscope made to investigate the position and characteristics of a particular component or element by injecting a fluorescent dye that fluoresces under ultraviolet light close to visible rays into a sample.
  • the fluorescent dye used is characterized by absorbing ultraviolet light of short wavelength and emitting energy of long wavelength.
  • optical microscopy is performed by immunofluorescence staining of antibodies capable of reacting with a specific antigen when the immunoassay is performed in a hospital, followed by observing it, and is classified as a fluorescence microscope by this feature.
  • Such an optical microscope can be usefully used for a sample which has a fluorescent substance itself or can be adsorbed on a fluorescent material. Therefore, the optical microscope can be used to identify the path of infection of bacteria or viruses, to locate functional proteins in the cell, and to change the environment. It is widely used for identifying biological phenomena such as specific protein expression and intracellular detection / testing of biological samples.
  • an electron microscope uses an electron beam instead of visible rays used in an optical microscope and an electron lens instead of a glass lens to create an enlarged image of an object.
  • the electron microscope scans the surface of a sample placed in a vacuum with a fine electron beam to accelerate the electrons from the filament and scanning electron microscopy (SEM) to display an enlarged image, and transmits the electron beam exiting the hole of the anode to the specimen.
  • SEM scanning electron microscopy
  • TEM Transmission electron microscopy
  • the electron microscope can observe the state within the ultra-fine area with high magnification, but has a disadvantage in that it is not suitable for observing the characteristics of the large area. Therefore, recently, in observing living cells, by linking the optical microscope and the electron microscope, a method of intensively observing the extracted region through the electron microscope after extracting the necessary signal through the optical microscope has been used.
  • a rapid cooling process of a biological sample through a separate device may be carried by an optical microscope, and a manual operation may be accompanied by a tool such as tweezers in the process of transporting a biological sample observed by the optical microscope to an electron microscope.
  • a tool such as tweezers in the process of transporting a biological sample observed by the optical microscope to an electron microscope.
  • breakage or damage of the sample grid occurred in each process of carrying the sample grid from which signals were extracted by a pretreatment process and an optical microscope.
  • the sample grid pretreated by rapid cooling has to maintain a constant temperature during the final delivery to the electron microscope, there is a problem that the sample transport operation is very difficult and cumbersome, and takes a lot of time.
  • Korean Patent No. 10-1396420 which is pre-registered by the applicant of the present invention, is pre-processed by dipping the sample grid in liquid nitrogen and transported the pre-treated sample grid and mounted on the optical microscope.
  • a description is given of a coupled cryogenic specimen preparation device of an electron microscope, which is configured such that a series of processes to observe and observe can be performed continuously in a single specimen preparation device.
  • the present invention in view of the above point, the pre-treatment process of the specimen grid, the measurement through the optical microscope and the electron microscope can be carried out through a single device, the specimen grid in the optical microscope It is an object of the present invention to provide a linked measuring device and a measuring method using the same for a cooperative measurement of an optical microscope and an electron microscope that do not need to be moved in order to maintain the cooling state.
  • the grid receiving groove may include a grid receiving portion formed in the grid receiving groove and including a temperature sensor for measuring the temperature of the specimen grid, and a through hole formed through the outside.
  • the workstation and a cooler for storing the liquid nitrogen for performing a pretreatment process for cooling the specimen grid, and an extension tube formed extending to one side of the cooler, connected to the workstation during the pretreatment process, the pretreatment process is And a specimen mounting holder which, after being performed, is detached from the workstation and inserted into the measuring section of the electron microscope for linked measurements.
  • a work station for performing a pretreatment process of cooling a specimen grid, a cooler in which liquid nitrogen is stored, and an extension tube extending to one side of the cooler, and connected to the work station during a pretreatment process.
  • a specimen mounting holder which is detached from the workstation after being performed and inserted into the measuring section of the electron microscope for linkage measurement; an optical microscope for measuring a signal for identifying an analyte on a specimen grid preprocessed by the workstation; and An electron microscope that analyzes the signal measured by an optical microscope.
  • the specimen grid may be positioned and the workstation is formed with a grid receiving portion including a through hole formed to penetrate to the outside on one side, inserting the specimen mounting holder through the through hole Positioning a specimen grid inside the grid receptacle, then cooling, placing the cooled specimen grid in the specimen mounting holder, and forming a signal on the cooled specimen grid using an optical microscope And after forming the signal, separating the specimen mounting holder from the work station.
  • the pre-treatment process for cooling the specimen grid, and the measurement by the optical microscope is performed in a single linked measuring device, and after the measurement by the optical microscope to the electron microscope It is possible to reduce the time required to move the specimen grid and to prevent damage to the specimen grid by allowing the specimen to be fed as it is without having to move the specimen grid.
  • the frozen state of the specimen grid can be continuously maintained during the movement of the specimen grid after the measurement through the optical microscope, thereby improving the accuracy of the measurement through the electron microscope.
  • FIG. 1 is a perspective view of a workstation and an associated measuring device including the same according to a first embodiment of the present invention.
  • FIG. 2 is a side view of the workstation shown in FIG. 1 and the associated measurement device including the same;
  • FIG. 3 is an enlarged perspective view of the grid receiving portion of the workstation shown in FIG.
  • FIG. 4 is a plan view and a side view of the grid receptacle shown in FIG. 3;
  • FIG. 5 is a perspective view of a workstation and an associated measuring device including the same according to a second embodiment of the present invention
  • FIG. 6 is a side view of the workstation shown in FIG. 5 and the associated measurement device including the same;
  • FIG. 7 is an enlarged perspective view of the grid receiving portion of the workstation shown in FIG. 5; FIG.
  • FIG. 8 is a plan view and a side view of the grid receptacle shown in FIG. 7;
  • FIG. 9 is an enlarged perspective view of the measuring lens holder according to the first and second embodiments of the present invention.
  • FIG. 10 is a side view of a specimen mounting holder according to the first and second embodiments of the present invention.
  • FIG. 11 is a perspective view of a workstation and a cooperative measurement apparatus including the same according to the first embodiment of the present invention.
  • FIG. 1 is a perspective view of a workstation and a cooperative measuring apparatus including the same according to an embodiment of the present invention
  • FIG. 2 is a side view of the workstation and the cooperative measuring apparatus including the same shown in FIG. 1.
  • the associated measuring device is a workstation 10 for performing a pretreatment process for cooling the specimen grid, and connected to the workstation 10 during the pretreatment process and pretreatment.
  • a specimen mounting holder 14 is included that is detached from the workstation 10 after the procedure is performed so that it can be inserted into the measurement section of the electron microscope for linked measurements.
  • the workstation 10 is provided with a box part 120 in which the grid receiving part 150 is formed, and an external terminal part which is provided at the lower part of the box part 120 and is an external device connecting terminal for connecting to an external measuring device or control device.
  • An upper plate 110 having an opening for covering the upper portion of the box portion 120 and exposing the grid accommodating portion 150 to an upper portion thereof, and an upper plate 110 vertically supporting the upper plate 110.
  • the first handle 121 and the second handle 141 are provided on the upper and base plates 140 of the box part 120, respectively.
  • the second handle 141 is formed to be rotatable in a vertical direction and a horizontal direction.
  • the second handle 141 is hinged to the handle is rotatable in the vertical and horizontal directions.
  • the box portion 120 is formed of a thermally conductive material containing copper on the inside, and the outside is formed of the hardest acetal material among the resin types.
  • a heat insulating layer formed of a heat insulating material containing styrofoam is formed in a multilayer structure between the inner side and the outer side.
  • the grid receiving portion 150 is formed to accommodate the specimen grid to be measured.
  • the grid accommodating part 150 is an inlet hole into which an inlet pipe 124 for supplying liquid nitrogen for cooling the specimen grid from the liquid nitrogen tank (not shown) provided outside of the workstation 10 is inserted ( 324 and a discharge hole 325 into which the discharge pipe 125 for discharging the liquid nitrogen supplied therein to the outside is inserted.
  • the inlet pipe 124 and the discharge pipe 125 may be provided with a valve (not shown), respectively, to control the inflow and discharge of liquid nitrogen. This may facilitate the workstation 10 to move with the electron microscope.
  • the grid receiving part 150 includes a receiving part cover 152 that covers or opens the upper part, and a handle 154 is formed on the upper part of the receiving part cover 152 so that the grid holding part 150 can be easily covered and opened by a hand. do.
  • the accommodating part cover 152 may be formed of a transparent material such as acrylic, glass, or synthetic resin, but is not limited thereto and may be formed of various materials.
  • the accommodating part cover 152 may be formed of a material containing acrylic to facilitate observation.
  • the receiving part cover 152 may be formed with an opening 155 having a long hole shape to allow the work tool to be inserted into the grid receiving part 150 while covering the upper part of the grid receiving part 150. have.
  • the workstation 10 for performing the pre-treatment process for cooling the specimen grid the cooler 170 in which the liquid nitrogen is stored, and the extension tube extending to one side of the cooler 170
  • a specimen mounting holder which is connected to the workstation 10 during the pretreatment process, and which is detached from the workstation 10 after the pretreatment process is carried out so that it is inserted into the measuring part of the electron microscope for the associated measurement.
  • a linkage measuring apparatus for linkage measurement between an optical microscope and an electron microscope including 14 is provided.
  • Specimen mounting holder 14 is provided on one side of the workstation 10 is detachably coupled, the front end of the extension tube 180 extending to one side is inserted into the side of the workstation 10 grid receiving portion 150 It is coupled to be located in the grid receiving groove 340 of the).
  • the specimen mounting holder 14 of various lengths seat the cooler 170 to the base plate 140, while supporting the lower portion of the cooler 170 to slide in a direction to be separated from the grid receiving portion 150 In the direction of insertion into the grid accommodating part 150, it may be supported by a sliding guide 190 having a stopper for limiting insertion.
  • the sliding guide 190 is slid back and forth so that the specimen mounting holder 14 can be easily moved.
  • FIG. 3 is an enlarged perspective view of the grid accommodating part of the linked measurement device shown in FIG. 1, and FIG. 4 is a plan view and a side view of the linked measurement device shown in FIG. 3.
  • the grid receiving portion 150 forms an inner space that is open toward the upper portion of the workstation 10, and is formed in the box portion 120 to form the upper plate 110. Exposed upward through the opening.
  • a coolant accommodating part 310 accommodating liquid nitrogen supplied therein, and a grid accommodating groove 340 which is separated from the coolant accommodating part 310 to form a space in which the specimen grid is located.
  • a through hole 156 penetrating to the outside of the workstation 10 is formed at one side of the inside.
  • the grid accommodating part 150 further forms an inlet hole 324 and an outlet hole 325 at the other side of the inside. Liquid nitrogen is introduced into the inlet hole 324, and liquid nitrogen is discharged from the outlet hole 325.
  • the discharge hole 325 is formed at a position higher than the inlet hole 324 so that the liquid nitrogen can be discharged while maintaining a constant water level.
  • an inflow partition 312 having a '-' shape is formed inside the grid accommodating part 150 to prevent splashing of the liquid nitrogen flowing from the inflow hole 324.
  • the coolant accommodating part 310 and the grid accommodating groove 340 are separated from each other by the accommodating partition wall 323 so that the liquid nitrogen contained in the coolant accommodating part 310 does not flow into the grid accommodating groove 340.
  • the receiving portion partition wall 323 is made of copper, and is designed to be slightly lower than the height of the entire box portion. This design allows the specimen grid 152 to be closed during image observation and the cold air of liquid nitrogen flows toward the grid receiving groove 340 where the specimen grid is frozen in the grid receiver 150, whereby the specimen grid is liquid nitrogen. Do not melt without.
  • the grid accommodating groove 340 is formed to accommodate the specimen grid therein, and a lens groove into which the measuring lens is inserted into the lower portion of the grid accommodating groove 340 to measure the specimen grid through an optical microscope. 342 is formed at the bottom.
  • the workstation according to the present invention is to measure the specimen grid by connecting the specimen grid with an optical microscope and an electron microscope. For example, when observing a living cell specimen, the position of the signal observed through the optical microscope is prevented from changing. It is preferred to use liquid nitrogen to rapidly freeze the specimen grid, but not limited thereto.
  • the grid accommodating part 150 is a cooling part groove 320 for inserting a grid holder (not shown) for storing a plurality of the specimen grid into the lower side of the coolant accommodating part 310 to maintain the state locked in liquid nitrogen. Is formed.
  • the holder holder groove 330 is further formed to deliver the grid holder from the cooling unit groove 320 to be seated on one side of the grid receiving groove 340.
  • the grid holder may be formed in a circular shape
  • the cooling unit groove 320 and the holder seating groove 330 may be formed in a circular shape so as to insert the grid holder.
  • the cooling unit groove 320 and the holder seating groove 330 may be formed to prevent protrusions of the grid holder by forming protrusions 321 and 331 respectively having a concave-convex structure with the grid holder on one side.
  • the holder seating groove 330 may enable the specimen grid to be stably taken out of the grid holder.
  • a temperature sensor 343 may be formed inside the grid accommodating hole so that the user can adjust the temperature by sensing the internal temperature cooled by the coolant.
  • the temperature measured by the temperature sensor 343 serves as a basis for controlling an external control device connected through the external terminal unit 122, and the external control device controls the inflow and discharge of liquid nitrogen to adjust the temperature of the sample grid. Keep it.
  • FIG. 5 is a perspective view of a workstation and a cooperative measuring apparatus including the same according to the second embodiment of the present invention
  • FIG. 6 is a side view of the workstation and the cooperative measuring apparatus including the same shown in FIG. 5.
  • the workstation according to the second embodiment has the same basic configuration and operation as the workstation according to the first embodiment, but the workstation according to the second embodiment is more portable.
  • the work station 10 removes the inlet pipe 124 and the inlet hole 324 from which the liquid nitrogen is supplied from the outside to facilitate movement with an electron microscope, but the outlet 125 and the outlet hole 325 have overflows of the liquid nitrogen. It is maintained to prevent overflow.
  • the receiving cover 152 is formed with a first inlet hole 156 and a second inlet hole 157, the first inlet hole 156 is inserted into the first inlet pipe 360, the second inlet hole 157 is a second inlet pipe 370 is inserted. Detailed description of the first inlet pipe 360 and the second inlet pipe 370 will be described later.
  • FIG. 7 is an enlarged perspective view of the grid receiving portion of the workstation shown in FIG. 5, and FIG. 8 is a plan view and a side view of the grid receiving portion shown in FIG. 7.
  • the grid accommodating part 150 flows in liquid nitrogen contained in the portable cooling part 350 through the first inflow pipe 360 and the second inflow pipe 370.
  • the portable cooling unit 350 may be formed in a funnel or container shape.
  • the first inflow pipe 360 introduces liquid nitrogen into the grid receiving groove 340
  • the second inflow pipe 370 introduces liquid nitrogen into the coolant accommodation portion 310.
  • first inlet pipe 360 may be inserted into the first inlet hole 156 to introduce liquid nitrogen into the grid receiving groove 340
  • the second inlet pipe 370 may be the second inlet hole 157.
  • the liquid nitrogen may be introduced into the coolant accommodating part 310.
  • first inflow pipe 360 and the second inflow pipe 370 may enter the liquid nitrogen through the opening 155 of the accommodation cover 152 shown in the first embodiment.
  • the first inlet pipe 360 connected to the portable cooling unit 350 is basically formed at a position higher than the second inlet pipe 370.
  • the first inlet pipe 360 may stop the inflow of liquid nitrogen faster than the second inlet pipe 370, which is the liquid nitrogen flow into the coolant accommodating part 310 and maintains the temperature at the same time as the grid receiving groove ( 340 may stop the introduction of liquid nitrogen to facilitate image measurement.
  • first inlet pipe 360 and the second inlet pipe 370 may further include a valve to adjust the amount of liquid nitrogen inlet.
  • FIG. 9 is an enlarged perspective view of the measuring lens holder according to the first and second embodiments of the present invention.
  • the measuring lens holder 400 is provided to prevent freezing of the measuring lens.
  • the measuring lens holder 400 includes a holder body 410, a gas injection unit 420, and a buffer 430.
  • the holder body 410 is inserted into the measuring lens, the gas injection unit 420 is formed on one side of the holder body 410 in order to prevent the freezing or frost of the measuring lens by injecting an inert gas such as nitrogen gas. .
  • the buffer 430 is installed to prevent shock absorption and vibration of the measurement lens inserted into the holder body 410. That is, the buffer 430 provides a measurement lens to protect from external shock.
  • the measuring lens holder 400 secures a problem that when the sample cooled by liquid nitrogen and the measuring lens are close to each other, the measuring lens is frozen or frost is generated due to a temperature difference to obtain an accurate image.
  • FIG. 10 shows a side view of the specimen mounting holder shown in the first and second embodiments of the present invention.
  • the specimen mounting holder 14 includes a cooler 170 capable of storing liquid nitrogen therein, an extension pipe 180 extending from one side of the cooler 170 to supply liquid nitrogen, and an extension pipe 180.
  • a seating head 380 is formed at an extended tip of the head and provided with a grid seating groove 382 to seat the specimen grid.
  • the cooler 170 is preferably formed in a small size that can be easily carried and moved by the hand.
  • the liquid nitrogen stored in the cooler 170 is supplied to the seating head 380 through the extension pipe 180, thereby supplying the liquid nitrogen to the specimen grid seated on the seating head 380.
  • the specimen mounting holder 14 is manufactured so that the seating head 380 formed at the tip of the extension tube 180 may be inserted into a measurement unit of a conventional general electron microscope to position the specimen grid.
  • the extension tube 180 of the specimen mounting holder 14 forms a step in which the diameter becomes smaller at the front end side in a plurality of places, so that the extension tube 180 can be stopped exactly at the inserted position to the end, an electron microscope or a workpiece It can be formed to accurately position the specimen grid inside the station 10.
  • the extension pipe 180 is formed to extend to one side of the box portion 120 in which the coolant is stored, the inner side is formed of a heat insulating material such as styrofoam, the outer side is formed of the hardest acetal material of the resin type.
  • extension tube 180 is provided with a cog wheel therein to adjust the thickness and length according to the specimen mounting holder 14 having various thicknesses and lengths, or the extension tube 180 according to the size of the specimen mounting holder 14; Equipped with a removable structure to fit the size.
  • the specimen mounting holder detachable to the grid receiving portion 150 and the measuring portion of the electron microscope for measuring the optical microscope respectively Mount the cryogenic specimen grid in the grid seating groove (382) at the end of (14) and allow measurements to be made.
  • the seating head 380 of the specimen mounting holder 14 is placed in the grid receiving groove 340 of the grid receiving portion 150 at the workstation 10. .
  • the grid holder storing the cryogenic specimen is first placed in the receiving portion 320, and when the temperature of the grid receiving groove 340 is stabilized to ⁇ 185 degrees or less, the grid holder is cooled with water.
  • the mounting head 380 of the specimen mounting holder 14 which is lifted up from the receiving portion 320 and seated in the holder seating groove 330 of the grid receiving portion 150, and the specimen grid is positioned adjacently by using a tweezer or the like.
  • the specimen mounting holder 14 is separated from the workstation 10 to separate the seating head 380 on which the specimen grid is seated from the grid receiving portion 150 and then into the inside of the electron microscope. Insertion is carried out for imaging measurements based on the signal of the optical microscope.
  • the liquid nitrogen by the cooler 170 of the specimen mounting holder 14 is continuously supplied from the time point at which the specimen grid measured by the optical microscope is separated from the workstation 10 to the electron microscope until the measurement is completed.
  • the state of the specimen grid according to the signal measured by the optical microscope can be accurately maintained in the cryogenic phase.
  • the pretreatment process for cooling the specimen grid and the measurement through the optical microscope is performed in a single linked measurement device, it is necessary to move the specimen grid after the measurement through the optical microscope It can be put into the measuring section of the electron microscope as it is.
  • FIG. 11 is a perspective view of a workstation and a cooperative measurement apparatus including the same according to the first embodiment of the present invention.
  • a height adjusting device 510 is further provided to support a lower surface of the base plate 140 of the linked measuring device according to the previous embodiment to adjust the vertical height of the linked measuring device.
  • the height adjusting device 510 is a ground plate 520 supporting the bottom of the ground, a folding member 540 for forming a vertical driving stroke by a plurality of links between the ground plate 520 and the base plate 140 and Insertion of the operating shaft 530 is a screw thread formed in the folding member 540, it may be formed including a drive lever 550 for driving the folding member 540 up and down.
  • the measuring method according to the present embodiment may be executed using the workstation and the associated measuring device including the same.
  • the specimen mounting holder 14 is inserted into one side of the grid receiving portion 150 for positioning the specimen grid on the optical microscope, so that the specimen is inserted into the grid receiving groove 340 of the grid receiving portion 150.
  • the first step of positioning the seating head 380 of the specimen mounting holder 14, the grid is mounted, and after filling the liquid nitrogen in the grid receiving portion 150, the grid holder storing the cryogenic specimen to the receiving portion 320 Firstly, after waiting for the temperature of the grid accommodating groove 340 to stabilize below ⁇ 185 degrees, the grid holder is lifted from the coolant accommodating part 320 and seated on the holder seating groove 330 of the grid accommodating part 150.
  • the cryogenic grid stored in the grid holder is mounted in the grid seating groove 382, which is a sample inserting portion of the seating head 380 of the grid receiving portion 150 to measure the signal through the optical microscope Step 3 and above
  • the mounting holder 14 By separating the mounting holder 14 from the grid receiving portion it may be made of a fourth step of measuring the input and the mounting head 380 by an electron microscope.
  • the third step uses a method of picking up the specimen grid cooled by the grid holder with tweezers and transferring it to the seating head 380.
  • the grid holder is lifted up from the coolant accommodating part 310 and can be easily moved to the grid accommodating groove 340 positioned adjacent to the holder seating groove 330 of the grid accommodating part 150.
  • the frozen state can be continuously maintained.
  • the fourth step is a liquid by the cooler 170 provided in the specimen mounting holder 14 until the specimen mounting holder 14 is separated from the grid receiving portion 150 and the measurement by the electron microscope is completed. Supplying nitrogen to the specimen grid to maintain cooling.
  • the specimen grid in the pre-treatment process before the measurement of the specimen grid through the optical microscope to enable the rapid input to the optical microscope after cooling, the specimen grid In addition to preventing breakage, the specimen grid can be kept frozen.
  • first handle 122 external terminal portion
  • discharge pipe 140 base plate
  • extension tube 190 sliding guide
  • coolant accommodating part 312 inflow partition
  • cooling portion groove 323 receiving portion partition wall
  • buffer 510 height adjusting device

Abstract

The present invention relates to: a work station for correlative measurement of a light microscope and an electron microscope, more specifically, a work station that includes a sample holder for a cryogenic electron microscope for correlative imaging detection of a light microscope and an electron microscope; a correlative imaging detection apparatus including the same; and an imaging detection method and an imaging system using the same, wherein the work station comprises: a grid accommodating part (150) that is formed on the upper surface of the work station (10) for locating a sample grid in a light microscope and has a coolant accommodating portion (310), a grid accommodating recess (340), and a through-hole (156) that are formed therein, wherein liquid nitrogen for cooling the sample grid is supplied into the coolant accommodating portion (310), the grid accommodating recess (340) is used to locate the sample grid in a space that is separated from the coolant accommodating portion (310) by an accommodating-portion partition wall (323), and the through-hole (156) is formed on a side of the grid accommodating recess (340) to communicate with the outside; and a sample holder (14) that is attached/detached to locate a mounting head (380) in the grid accommodating part (150) through the through-hole (156), wherein the mounting head (380) on which the sample gird is seated is formed at a tip end of an extension tube (180) through which liquid nitrogen is supplied from a cooler (170) outside the grid accommodating part (150).

Description

광학현미경과 전자현미경의 연계형 이미징 검출을 위해 초저온 전자현미경 시편장착 홀더를 포함하는 워크 스테이션과 이를 포함한 연계형 이미징 검출장치 및 이를 이용한 이미징 검출 방법과 이미징 시스템Workstation including cryogenic electron microscope specimen holder for linked imaging detection of optical microscope and electron microscope, linked imaging detection apparatus including the same, imaging detection method and imaging system using the same
본 발명은 광학현미경(light Microscope)과 전자현미경(Electron Microscope)의 연계 측정을 위한 워크 스테이션과 이를 포함하는 연계 측정 장치 및 이를 이용한 측정방법 및 측정시스템에 관한 것이다.The present invention relates to a workstation for a cooperative measurement of a light microscope and an electron microscope, a cooperative measuring apparatus including the same, a measuring method and a measuring system using the same.
일반적으로 의료, 생명 기술분야에서 생체 시료를 관찰하기 위한 장치로서, 광학현미경(light Microscope)과 전자현미경(Electron Microscope)이 널리 사용되고 있다.In general, as a device for observing biological samples in the medical and biotechnology fields, light microscopes and electron microscopes are widely used.
광학현미경은 가시광선(visible rays)에 가까운 자외선 하에서 형광을 발하는 형광색소를 시료에 주입함으로써 특별한 성분이나 원소의 위치와 특성 등을 조사할 수 있도록 만들어진 현미경이다. 이때 사용되는 형광색소는 단파장의 자외선을 흡수해 장파장의 에너지를 방출하는 특징이 있다. 예컨데 광학현미경은 병원에서 면역검사를 할 때 특정 항원과 반응할 수 있는 항체를 형광물질로 염색시킨 뒤, 이를 관찰하는 방식으로 면역 검사를 하도록 하며, 이러한 특징에 의해 형광현미경으로 분류되기도 한다. 이러한 광학현미경은 시료 자체가 형광성을 가지거나, 형광물질에 흡착할 수 있는 시료에 유용하게 사용될 수 있으며, 따라서 광학현미경은 박테리아나 바이러스의 감염 경로 규명과 세포내 기능성 단백질의 위치확인 및 환경변화에 따른 특정 단백질 발현여부와 같은 생물학적 현상규명과 생체 시료의 세포내 검출/검사에 많이 이용된다.An optical microscope is a microscope made to investigate the position and characteristics of a particular component or element by injecting a fluorescent dye that fluoresces under ultraviolet light close to visible rays into a sample. In this case, the fluorescent dye used is characterized by absorbing ultraviolet light of short wavelength and emitting energy of long wavelength. For example, optical microscopy is performed by immunofluorescence staining of antibodies capable of reacting with a specific antigen when the immunoassay is performed in a hospital, followed by observing it, and is classified as a fluorescence microscope by this feature. Such an optical microscope can be usefully used for a sample which has a fluorescent substance itself or can be adsorbed on a fluorescent material. Therefore, the optical microscope can be used to identify the path of infection of bacteria or viruses, to locate functional proteins in the cell, and to change the environment. It is widely used for identifying biological phenomena such as specific protein expression and intracellular detection / testing of biological samples.
한편, 전자현미경은 광학현미경에서 사용하는 가시광선(visible rays) 대신 전자선(electron beam)을 사용하고, 유리렌즈(glass lens) 대신에 전자렌즈(electron lens)를 사용하여 물체의 확대상을 만드는 장치를 말한다. 이러한 전자현미경은 진공 중에 놓여진 시료 표면을 미세한 전자선으로 주사하여 확대상을 표시하는 주사전자현미경(SEM; scanning electron microscopy)과 필라멘트에서 나온 전자를 가속하여 양극의 구멍을 빠져 나온 전자빔을 시편에 투과시켜 상을 얻고 그 상을 전자렌즈로 확대하는 투과전자현미경(TEM; transmission electron microscopy)로 구분될 수 있다. Meanwhile, an electron microscope uses an electron beam instead of visible rays used in an optical microscope and an electron lens instead of a glass lens to create an enlarged image of an object. Say. The electron microscope scans the surface of a sample placed in a vacuum with a fine electron beam to accelerate the electrons from the filament and scanning electron microscopy (SEM) to display an enlarged image, and transmits the electron beam exiting the hole of the anode to the specimen. Transmission electron microscopy (TEM), which obtains an image and magnifies the image with an electron lens, can be classified.
최근, 산업 분야의 극미세 기술의 산업화로 인해 미세 물질의 표면 및 내부 형상을 정확하게 관찰할 수 있도록 하는 기술이 점차 발전하고 있으며, 이러한 전자현미경의 도입으로 의료 생명 기술 분야의 기술이 급속히 발달하고 있다. 전자현미경은 분해능이 높기 때문에 광학현미경에 비해 고배율로 물체를 관찰할 수 있을 뿐만 아니라, 물체의 미세구조와 hardness, reflectivity 등의 물성과의 연관성을 규명할 수 있고, 물체를 구성하는 입자들의 형상과 크기와 원소와 화합물의 종류 및 상대적인 양을 분석할 수 있는 장점이 있다.Recently, due to the industrialization of ultra-fine technology in the industrial field, technologies for accurately observing the surface and internal shape of fine materials have been gradually developed, and the technology of the medical biotechnology field has been rapidly developed by the introduction of the electron microscope. . Since electron microscopes have high resolution, they can not only observe objects with higher magnification than optical microscopes, but also can correlate the physical structure of the objects with physical properties such as hardness and reflectivity. It has the advantage of being able to analyze the size and type and relative amounts of elements and compounds.
그러나, 전자현미경은 극미세 면적 내의 상태를 고배율로 관찰할 수 있지만, 넓은 면적의 특징을 관찰하기에 적합하지 않은 단점이 있다. 따라서 최근 들어서는 생체 세포를 관찰함에 있어서, 광학현미경과 전자현미경을 연계시킴으로써, 광학현미경을 통해 필요한 시그널을 추출해낸 후 추출된 부위를 전자현미경을 통해 집중적으로 관찰하는 방법이 이용되고 있는 추세이다.However, the electron microscope can observe the state within the ultra-fine area with high magnification, but has a disadvantage in that it is not suitable for observing the characteristics of the large area. Therefore, recently, in observing living cells, by linking the optical microscope and the electron microscope, a method of intensively observing the extracted region through the electron microscope after extracting the necessary signal through the optical microscope has been used.
종래에 있어서, 광학현미경과 전자현미경을 연계시켜 생체시료를 관찰하기 위해서는 예컨데, 생체 시료를 액체에 혼탁시킨 후 피펫으로 소정의 처리가 된 지지막에 올리고 여과지 등으로 물기를 제거한 다음, 액체질소를 공급하여 얼음 결정이 생기지 않도록 급속 냉각시키는 전처리 공정 수행하고, 그 후, 급속 냉각된 생체 시료 그리드를 광학현미경으로 운반하여 관찰한 후 다시 한번 전자현미경으로 운반하여 관찰하는 과정이 필요하다.In the related art, in order to observe a biological sample by linking an optical microscope and an electron microscope, for example, after a biological sample is clouded in a liquid, the pipette is placed on a support membrane treated with a predetermined pipette, and water is removed with a filter paper, and then liquid nitrogen is removed. It is necessary to carry out a pretreatment step of rapidly cooling to prevent ice crystals from being supplied, and then to carry and observe the rapidly cooled biological sample grid by an optical microscope, and then again by electron microscope.
따라서, 종래에는 별도의 장치를 통해 생체 시료를 급속 냉각 처리한 후 광학현미경으로 운반하는 과정과, 광학현미경으로 관찰된 생체 시료를 전자현미경으로 운반하는 과정에서 핀셋 등의 공구를 통한 수작업이 수반될 수 밖에 없다. 따라서 종래에는 전처리 공정 및 광학현미경에 의해 시그널이 추출된 시료 그리드를 운반하는 각 과정에서 시료 그리드의 파손이나 손상 등이 발생하는 경우가 발생되었다. 또한, 급속 냉각에 의해 전처리된 시료 그리드는 전자현미경으로 최종 운반되는 동안 온도를 일정하게 유지해야 하므로, 시료 운반작업이 매우 까다롭고 번거로우며, 많은 시간이 소요되는 문제점이 있었다.Therefore, in the related art, a rapid cooling process of a biological sample through a separate device may be carried by an optical microscope, and a manual operation may be accompanied by a tool such as tweezers in the process of transporting a biological sample observed by the optical microscope to an electron microscope. There is no choice but to. Therefore, in the prior art, breakage or damage of the sample grid occurred in each process of carrying the sample grid from which signals were extracted by a pretreatment process and an optical microscope. In addition, the sample grid pretreated by rapid cooling has to maintain a constant temperature during the final delivery to the electron microscope, there is a problem that the sample transport operation is very difficult and cumbersome, and takes a lot of time.
이러한 문제점을 해결하기 위한 기술로서, 본 발명의 출원인에 의해 선 출원 등록된 국내등록 제10-1396420호는 시료 그리드를 액체질소에 담그어 냉각시키는 전처리 과정과 전처리된 시료 그리드를 운반하여 광학현미경에 장착하고 관찰하는 일련의 과정이 단일의 시편 준비장치 내에서 연속적으로 수행될 수 있도록 구성되는 전자현미경의 연계형 초저온 시편준비장치에 관한 기술이 기재되어 있다. 이를 위해 상기 국내등록 제10-1396420호는 도 7에 도시된 바와 같이, 시편준비장치(A)의 본체(1)에 형성된 주입구(2)를 통해 액체질소를 주입하고, 본체(1) 내에 형성된 시료장착부의 시료보관부(5)에 거치되는 시료 그리드 운반용기로부터 시료 그리드를 꺼내어 상기 시료장착부(4)에 장착한 후 시료 그리드가 장착된 상기 시편준비장치(A)를 광학현미경에 장착하여 관찰할 수 있도록 한 기술이 기재되어 있다.As a technique for solving the above problems, Korean Patent No. 10-1396420, which is pre-registered by the applicant of the present invention, is pre-processed by dipping the sample grid in liquid nitrogen and transported the pre-treated sample grid and mounted on the optical microscope. A description is given of a coupled cryogenic specimen preparation device of an electron microscope, which is configured such that a series of processes to observe and observe can be performed continuously in a single specimen preparation device. To this end, the domestic registration No. 10-1396420, as shown in Figure 7, injects liquid nitrogen through the injection port 2 formed in the main body 1 of the specimen preparation device (A), formed in the main body (1) After removing the sample grid from the sample grid transport container mounted on the sample storage part 5 of the sample mounting part, attaching the sample grid to the sample mounting part 4, and mounting the specimen preparation device A equipped with the sample grid on an optical microscope. A technique is described which makes it possible.
그러나, 상기 국내등록 제10-1396420호는 시료 그리드를 전처리 후 광학현미경으로는 바로 장착할 수 있지만, 전자현미경으로의 투입은 여전히 그리드를 수동으로 운반하여 이루어질 수 밖에 없다. 따라서, 시료 그리드를 전자현미경으로 투입하는 과정에서 손상이 발생될 수 밖에 없으며, 특히, 이러한 전자현미경은 복잡한 측정 환경과, 시료 그리드의 장착 환경을 가짐으로써, 시료 그리드의 운반이 매우 까다롭고 많은 시간을 소요시키는 문제점이 있다.However, although the domestic registration No. 10-1396420 can be mounted immediately with the optical microscope after the pre-treatment, the input to the electron microscope can still be made by manually transporting the grid. Therefore, damage may occur in the process of introducing the sample grid into the electron microscope. In particular, such an electron microscope has a complicated measurement environment and a mounting environment of the sample grid, so that the transport of the sample grid is very difficult and many hours. There is a problem that takes.
이에, 상기한 종래기술의 문제점을 해결하여, 시료 그리드의 전처리와 광학현미경뿐 아니라 전자현미경으로의 투입이 연속적으로 수행될 수 있도록 하는 기술의 도입이 시급히 요구되고 있는 시점이다.Accordingly, it is a time to urgently need to introduce a technology for solving the above-described problems of the prior art so that the pretreatment of the sample grid and the injection into the electron microscope as well as the optical microscope can be continuously performed.
이에 상기와 같은 점을 감안하여 발명된 본 발명은 시편 그리드의 전처리 과정과, 광학현미경을 통한 측정 및 전자현미경을 통한 측정이 하나의 장치를 통해 진행될 수 있도록 하며, 시편 그리드를 광학현미경에서 전자현미경으로 투입하기 위해 이동시킬 필요 없고, 냉각상태가 지속적으로 유지될 수 있도록 하는 광학현미경과 전자현미경의 연계 측정을 위한 연계 측정 장치 및 이를 이용한 측정방법을 제공함을 목적으로 한다.Thus, the present invention in view of the above point, the pre-treatment process of the specimen grid, the measurement through the optical microscope and the electron microscope can be carried out through a single device, the specimen grid in the optical microscope It is an object of the present invention to provide a linked measuring device and a measuring method using the same for a cooperative measurement of an optical microscope and an electron microscope that do not need to be moved in order to maintain the cooling state.
본 발명에 따른 시편 그리드를 냉각시키는 전처리 과정을 수행하고, 시편 장착 홀더에 시편 그리드를 삽입하여 광학현미경 및 전자현미경에서의 이미지 관찰이 상기 시편 그리드의 운반없이 연속적으로 수행되는 워크 스테이션에 있어서,In a workstation in which a pretreatment process of cooling the specimen grid according to the present invention is performed, and the specimen grid is inserted into the specimen mounting holder, the image observation in the optical microscope and the electron microscope is continuously performed without carrying the specimen grid.
상기 워크 스테이션의 외부로부터 액체질소가 공급되는 유입부와 상기 공급된 액체질소가 배출되는 배출공, 상기 액체질소가 수용되는 냉각제 수용부, 상기 냉각제 수용부와 분리되어 형성되고 상기 시편 그리드가 위치될 수 있는 그리드 수용홈, 상기 그리드 수용홈에 형성되어 상기 시편 그리드의 온도를 측정하는 온도센서 및 일측에 외부로 관통되어 형성된 관통공을 포함하는 그리드 수용부를 포함한다.An inlet portion through which liquid nitrogen is supplied from the outside of the work station, an outlet hole through which the supplied liquid nitrogen is discharged, a coolant accommodating portion accommodating the liquid nitrogen, and a coolant accommodating portion, and the specimen grid The grid receiving groove may include a grid receiving portion formed in the grid receiving groove and including a temperature sensor for measuring the temperature of the specimen grid, and a through hole formed through the outside.
또한, 본 발명에 따른 광학현미경과 전자현미경의 연계형 이미징 검출장치는,In addition, the linked imaging detection apparatus of the optical microscope and the electron microscope according to the present invention,
시편 그리드를 냉각시키는 전처리 과정을 수행하기 위한 상기 워크 스테이션 및 액체질소가 저장되는 냉각기와, 상기 냉각기의 일측으로 연장되어 형성되는 연장관을 포함하며, 전처리 과정 중에는 상기 워크 스테이션에 연결되고, 전처리 과정이 수행된 후에 상기 워크 스테이션으로부터 분리되어 연계 측정을 위한 전자 현미경의 측정부에 삽입되도록 하는 시편 장착 홀더를 포함한다.The workstation and a cooler for storing the liquid nitrogen for performing a pretreatment process for cooling the specimen grid, and an extension tube formed extending to one side of the cooler, connected to the workstation during the pretreatment process, the pretreatment process is And a specimen mounting holder which, after being performed, is detached from the workstation and inserted into the measuring section of the electron microscope for linked measurements.
또한, 본 발명에 따른 광학현미경과 전자현미경의 연계 측정을 위한 연계형 이미징 시스템은,In addition, the linked imaging system for the coordinate measurement of the optical microscope and the electron microscope according to the present invention,
시편 그리드를 냉각시키는 전처리 과정을 수행하기 위한 상기 워크 스테이션, 액체질소가 저장되는 냉각기와, 상기 냉각기의 일측으로 연장되어 형성되는 연장관을 포함하며, 전처리 과정 중에는 상기 워크 스테이션에 연결되고, 전처리 과정이 수행된 후에 상기 워크 스테이션으로부터 분리되어 연계 측정을 위한 전자 현미경의 측정부에 삽입되도록 하는 시편 장착 홀더, 상기 워크 스테이션에 의해 전처리된 시편 그리드에 분석 대상을 확인하기 위한 시그널을 측정하는 광학 현미경 및 상기 광학 현미경에 의해 측정된 상기 시그널을 분석하는 전자 현미경을 포함한다.And a work station for performing a pretreatment process of cooling a specimen grid, a cooler in which liquid nitrogen is stored, and an extension tube extending to one side of the cooler, and connected to the work station during a pretreatment process. A specimen mounting holder which is detached from the workstation after being performed and inserted into the measuring section of the electron microscope for linkage measurement; an optical microscope for measuring a signal for identifying an analyte on a specimen grid preprocessed by the workstation; and An electron microscope that analyzes the signal measured by an optical microscope.
마지막으로, 본 발명에 따른 광학현미경과 전자현미경을 연계한 이미징 검출 방법은,Finally, the imaging detection method in conjunction with the optical microscope and the electron microscope according to the present invention,
광학 현미경 하부의 이격된 위치에, 시편 그리드가 위치될 수 있으며 일측에 외부로 관통되어 형성된 관통공을 포함하는 그리드 수용부가 형성된 워크 스테이션을 위치시키는 단계, 상기 관통공을 통해 시편 장착 홀더를 삽입하는 단계, 상기 그리드 수용부 내부에 시편 그리드를 위치시킨 후, 냉각시키는 단계, 상기 냉각된 시편 그리드를 상기 시편 장착 홀더에 위치시키는 단계, 광학 현미경을 이용하여 상기 냉각된 시편 그리드에 시그널을 형성하는 단계 및 상기 시그널을 형성한 후, 상기 시편 장착 홀더를 상기 워크 스테이션으로부터 분리하는 단계를 포함한다.At a spaced position below the optical microscope, the specimen grid may be positioned and the workstation is formed with a grid receiving portion including a through hole formed to penetrate to the outside on one side, inserting the specimen mounting holder through the through hole Positioning a specimen grid inside the grid receptacle, then cooling, placing the cooled specimen grid in the specimen mounting holder, and forming a signal on the cooled specimen grid using an optical microscope And after forming the signal, separating the specimen mounting holder from the work station.
이러한 본 발명에 따른 연계 측정 장치 및 측정방법에 의하면, 시편 그리드를 냉각시키는 전처리 과정과, 광학현미경을 통한 측정하는 과정이 단일의 연계 측정 장치 내에서 이루어지고, 광학현미경을 통한 측정 후 전자현미경으로 투입하기 위해 시편 그리드 옮길 필요 없이 그대로 투입할 수 있도록 함으로써, 시편 그리드를 옮기는데 소요되는 시간을 줄이고, 시편 그리드의 파손을 방지할 수 있다.According to such a linked measuring device and a measuring method according to the present invention, the pre-treatment process for cooling the specimen grid, and the measurement by the optical microscope is performed in a single linked measuring device, and after the measurement by the optical microscope to the electron microscope It is possible to reduce the time required to move the specimen grid and to prevent damage to the specimen grid by allowing the specimen to be fed as it is without having to move the specimen grid.
또한 본 발명에 따르면, 광학현미경을 통한 측정 후 시편 그리드를 옮기는 동안 시편 그리드의 동결 상태를 지속적으로 유지시킬 수 있으며, 이를 통해 전자현미경을 통한 측정의 정확성을 보다 향상시킬 수 있다.According to the present invention, the frozen state of the specimen grid can be continuously maintained during the movement of the specimen grid after the measurement through the optical microscope, thereby improving the accuracy of the measurement through the electron microscope.
도 1은 본 발명의 제1 실시예에 따른 워크 스테이션과 이를 포함한 연계 측정 장치의 사시도.1 is a perspective view of a workstation and an associated measuring device including the same according to a first embodiment of the present invention.
도 2는 도 1에 도시된 워크 스테이션과 이를 포함한 연계 측정 장치의 측면도.2 is a side view of the workstation shown in FIG. 1 and the associated measurement device including the same;
도 3은 도 1에 도시된 워크 스테이션의 그리드 수용부를 확대한 사시도.3 is an enlarged perspective view of the grid receiving portion of the workstation shown in FIG.
도 4는 도 3에 도시된 그리드 수용부의 평면도와 측면도.4 is a plan view and a side view of the grid receptacle shown in FIG. 3;
도 5는 본 발명의 제2 실시예에 따른 워크 스테이션과 이를 포함한 연계 측정 장치의 사시도.5 is a perspective view of a workstation and an associated measuring device including the same according to a second embodiment of the present invention;
도 6은 도 5에 도시된 워크 스테이션과 이를 포함한 연계 측정 장치의 측면도.FIG. 6 is a side view of the workstation shown in FIG. 5 and the associated measurement device including the same; FIG.
도 7은 도 5에 도시된 워크 스테이션의 그리드 수용부를 확대한 사시도.FIG. 7 is an enlarged perspective view of the grid receiving portion of the workstation shown in FIG. 5; FIG.
도 8은 도 7에 도시된 그리드 수용부의 평면도와 측면도.8 is a plan view and a side view of the grid receptacle shown in FIG. 7;
도 9는 본 발명의 제1 및 제2 실시예에 따른 측정렌즈 홀더를 확대한 사시도.9 is an enlarged perspective view of the measuring lens holder according to the first and second embodiments of the present invention;
도 10은 본 발명의 제1 및 제2 실시예에 따른 시편 장착 홀더의 측면도.10 is a side view of a specimen mounting holder according to the first and second embodiments of the present invention.
도 11은 본 발명의 제1 실시예에 따른 워크 스테이션과 이를 포함한 연계 측정 장치의 사시도.11 is a perspective view of a workstation and a cooperative measurement apparatus including the same according to the first embodiment of the present invention.
도 12는 종래기술을 나타낸 사시도.12 is a perspective view showing the prior art.
이하 본 발명의 실시예를 첨부된 예시도면을 참조로 상세히 설명하며, 이러한 실시예는 일례로서 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 여러 가지 상이한 형태로 구현될 수 있으므로, 여기에서 설명하는 실시예에 한정되지 않는다.DETAILED DESCRIPTION Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. Since the exemplary embodiments of the present invention may be embodied in various different forms, one of ordinary skill in the art to which the present invention pertains may be described herein. It is not limited to the Example to make.
도 1은 본 발명의 일실시예에 따른 워크 스테이션과 이를 포함하는 연계 측정 장치의 사시도를 나타내고, 도 2는 도 1에 도시된 워크 스테이션과 이를 포함하는 연계 측정 장치의 측면도를 나타낸다.1 is a perspective view of a workstation and a cooperative measuring apparatus including the same according to an embodiment of the present invention, and FIG. 2 is a side view of the workstation and the cooperative measuring apparatus including the same shown in FIG. 1.
도 1 및 도 2를 함께 참조하면, 본 실시예에 따른 연계 측정 장치는 시편 그리드를 냉각시키는 전처리 과정을 수행하기 위한 워크 스테이션(10)과, 전처리 과정 중에는 상기 워크 스테이션(10)에 연결되고 전처리 과정이 수행된 후에 상기 워크 스테이션(10)으로부터 분리되어 연계 측정을 위한 전자 현미경의 측정부에 삽입되도록 하는 시편 장착 홀더(14)가 포함된다.1 and 2 together, the associated measuring device according to the present embodiment is a workstation 10 for performing a pretreatment process for cooling the specimen grid, and connected to the workstation 10 during the pretreatment process and pretreatment. A specimen mounting holder 14 is included that is detached from the workstation 10 after the procedure is performed so that it can be inserted into the measurement section of the electron microscope for linked measurements.
워크 스테이션(10)은 그리드 수용부(150)가 형성되는 박스부(120)와, 박스부(120)의 하부에 구비되어서 외부의 계측장비 또는 제어장치와 연결하기 위한 외부기기 연결단자인 외부 단자부(122)와, 박스부(120)의 상부를 덮어 상기 그리드 수용부(150)를 상부로 노출시키는 개구부가 형성된 상부 플레이트(110)와, 상부플레이트(110)를 수직하게 지지하여 하부로 이어지는 수직 지지부(123)와, 수직 지지부(123)의 하단을 지지하는 베이스 플레이트(140)와, 베이스 플레이트(140)에 일측면에 형성되어 워크 스테이션(10)을 수평으로 지지하는 수평 지지부(142)를 포함하여 형성될 수 있다.The workstation 10 is provided with a box part 120 in which the grid receiving part 150 is formed, and an external terminal part which is provided at the lower part of the box part 120 and is an external device connecting terminal for connecting to an external measuring device or control device. An upper plate 110 having an opening for covering the upper portion of the box portion 120 and exposing the grid accommodating portion 150 to an upper portion thereof, and an upper plate 110 vertically supporting the upper plate 110. A support 123, a base plate 140 supporting the lower end of the vertical support 123, and a horizontal support 142 formed on one side of the base plate 140 to horizontally support the workstation 10. It may be formed to include.
여기서, 박스부(120)의 상부 및 베이스 플레이트(140)에는 각각 제1 손잡이(121) 및 제2 손잡이(141)가 구비된다. 상기 제2 손잡이(141)는 수직방향과 수평방향으로 회동 가능한 구조로 형성된다. 예를 들면, 제2 손잡이(141)는 손잡이에 경첩이 형성되어 수직 및 수평방향으로 회전 가능하다. 이를 통해, 전자현미경에 시편 장착 홀더를 삽입하기 위해 워크 스테이션(10)으로부터 분리할 때, 용이하게 분리할 수 있도록 한다.Here, the first handle 121 and the second handle 141 are provided on the upper and base plates 140 of the box part 120, respectively. The second handle 141 is formed to be rotatable in a vertical direction and a horizontal direction. For example, the second handle 141 is hinged to the handle is rotatable in the vertical and horizontal directions. Through this, when detached from the workstation 10 to insert the specimen mounting holder in the electron microscope, it can be easily separated.
또한 박스부(120)는 내측이 구리를 포함하는 열전도성 재질로 형성되고, 외측이 수지종류 중 가장 단단한 아세탈 재질로 형성된다. 특히, 내측과 외측의 사이에는 스티로폼을 포함하는 단열성 재질로 형성된 단열층이 복층구조로 형성된다.In addition, the box portion 120 is formed of a thermally conductive material containing copper on the inside, and the outside is formed of the hardest acetal material among the resin types. In particular, a heat insulating layer formed of a heat insulating material containing styrofoam is formed in a multilayer structure between the inner side and the outer side.
상기 그리드 수용부(150)는 측정될 시편 그리드가 수용될 수 있도록 형성된다.The grid receiving portion 150 is formed to accommodate the specimen grid to be measured.
그리드 수용부(150)는 워크 스테이션(10)의 외부에 구비된 액체질소 탱크(미도시함)로부터 내부로 시편 그리드를 냉각시키기 위한 액체질소를 공급하는 유입관(124)이 삽입되는 유입공(324)과, 내부에 공급된 액체질소를 외부로 배출할 수 있도록 하는 배출관(125)가 삽입되는 배출공(325)이 각각 형성된다.The grid accommodating part 150 is an inlet hole into which an inlet pipe 124 for supplying liquid nitrogen for cooling the specimen grid from the liquid nitrogen tank (not shown) provided outside of the workstation 10 is inserted ( 324 and a discharge hole 325 into which the discharge pipe 125 for discharging the liquid nitrogen supplied therein to the outside is inserted.
여기서, 유입관(124) 및 배출관(125)에 밸브(미도시)를 각각 구비하여 액체질소의 유입과 배출을 제어할 수 있다. 이를 통해 워크스테이션(10)이 전자현미경으로 움직이기 용이하게 할 수 있다.Here, the inlet pipe 124 and the discharge pipe 125 may be provided with a valve (not shown), respectively, to control the inflow and discharge of liquid nitrogen. This may facilitate the workstation 10 to move with the electron microscope.
그리드 수용부(150)는 상부를 덮거나 열수 있도록 하는 수용부 커버(152)가 포함되고, 수용부 커버(152)의 상부에는 손잡이(154)가 형성되어, 손으로 잡고 쉽게 덮고 열 수 있도록 형성된다.The grid receiving part 150 includes a receiving part cover 152 that covers or opens the upper part, and a handle 154 is formed on the upper part of the receiving part cover 152 so that the grid holding part 150 can be easily covered and opened by a hand. do.
참고로, 수용부 커버(152)는 아크릴이나, 유리, 합성 수지 등의 투명한 재질로 형성될 수 있으며, 이에 한정되지 않고 다양한 소재로 형성될 수 있다. 바람직하게는 수용부 커버(152)가 아크릴이 포함된 재질로 형성되어 관찰이 용이하게 할 수 있다.For reference, the accommodating part cover 152 may be formed of a transparent material such as acrylic, glass, or synthetic resin, but is not limited thereto and may be formed of various materials. Preferably, the accommodating part cover 152 may be formed of a material containing acrylic to facilitate observation.
또한, 수용부 커버(152)는 그리드 수용부(150)의 상부를 덮은 상태에서 그리드 수용부(150)의 내부로 작업 공구가 삽입될 수 있도록 하는 장공 형태의 개방부(155)가 형성될 수 있다.In addition, the receiving part cover 152 may be formed with an opening 155 having a long hole shape to allow the work tool to be inserted into the grid receiving part 150 while covering the upper part of the grid receiving part 150. have.
또한, 본 발명에 따르면, 시편 그리드를 냉각시키는 전처리 과정을 수행하기 위한 워크 스테이션(10)과, 액체질소가 저장되는 냉각기(170)와, 상기 냉각기(170)의 일측으로 연장되어 형성되는 연장관(180)을 포함하며, 전처리 과정 중에는 상기 워크 스테이션(10)에 연결되고, 전처리 과정이 수행된 후에 상기 워크 스테이션(10)으로부터 분리되어 연계 측정을 위한 전자 현미경의 측정부에 삽입되도록 하는 시편 장착 홀더(14)를 포함하는 광학현미경과 전자현미경의 연계 측정을 위한 연계 측정 장치가 제공된다.In addition, according to the present invention, the workstation 10 for performing the pre-treatment process for cooling the specimen grid, the cooler 170 in which the liquid nitrogen is stored, and the extension tube extending to one side of the cooler 170 ( A specimen mounting holder which is connected to the workstation 10 during the pretreatment process, and which is detached from the workstation 10 after the pretreatment process is carried out so that it is inserted into the measuring part of the electron microscope for the associated measurement. A linkage measuring apparatus for linkage measurement between an optical microscope and an electron microscope including 14 is provided.
본 실시예에서 워크 스테이션은 전술한 워크 스테이션이 적용될 수 있으므로, 이에 관한 설명은 이하에서 생략하기로 한다.In the present embodiment, since the workstation may be applied to the workstation, a description thereof will be omitted below.
시편 장착 홀더(14)는 워크 스테이션(10)의 일측에 구비되어 탈부착 가능하게 결합되며, 일측으로 길게 연장된 연장관(180)의 선단이 워크 스테이션(10)의 측부로 삽입되어 그리드 수용부(150)의 그리드 수용홈(340)에 위치되도록 결합된다. Specimen mounting holder 14 is provided on one side of the workstation 10 is detachably coupled, the front end of the extension tube 180 extending to one side is inserted into the side of the workstation 10 grid receiving portion 150 It is coupled to be located in the grid receiving groove 340 of the).
이때, 다양한 길이의 시편 장착 홀더(14)는 냉각기(170)를 상기한 베이스 플레이트(140)에 안착시키되, 냉각기(170)의 하부를 지지하여 그리드 수용부(150)로부터 분리되는 방향으로 슬라이딩시키고, 그리드 수용부(150)로 삽입되는 방향으로는 삽입을 제한하는 스토퍼가 형성된 슬라이딩 가이드(190)를 통해 지지될 수 있다. 또한 슬라이딩 가이드(190)는 앞뒤로 슬라이딩이 되어 시편 장착 홀더(14)가 용이하게 이동시킬 수 있다.At this time, the specimen mounting holder 14 of various lengths seat the cooler 170 to the base plate 140, while supporting the lower portion of the cooler 170 to slide in a direction to be separated from the grid receiving portion 150 In the direction of insertion into the grid accommodating part 150, it may be supported by a sliding guide 190 having a stopper for limiting insertion. In addition, the sliding guide 190 is slid back and forth so that the specimen mounting holder 14 can be easily moved.
도 3은 도 1에 도시된 연계 측정 장치의 그리드 수용부를 확대한 사시도이고, 도 4는 도3에 도시된 연계 측정 장치의 평면도와 측면도를 나타낸다.FIG. 3 is an enlarged perspective view of the grid accommodating part of the linked measurement device shown in FIG. 1, and FIG. 4 is a plan view and a side view of the linked measurement device shown in FIG. 3.
도 3 및 도 4를 함께 참조하면, 그리드 수용부(150)는 워크 스테이션(10)의 상부를 향해 개방된 내부 공간을 형성하고, 상기한 박스부(120)에 형성되어 상부 플레이트(110)의 개구부를 통해 상부로 노출된다.3 and 4 together, the grid receiving portion 150 forms an inner space that is open toward the upper portion of the workstation 10, and is formed in the box portion 120 to form the upper plate 110. Exposed upward through the opening.
그리드 수용부(150)의 내부 공간에는 내부로 공급된 액체질소를 수용하는 냉각제 수용부(310)와, 냉각제 수용부(310)와 분리되어 시편 그리드가 위치되는 공간을 형성하는 그리드 수용홈(340)이 형성되고, 내부의 일측부에 워크 스테이션(10)의 외부로 관통되는 관통공(156)이 형성된다.In the inner space of the grid accommodating part 150, a coolant accommodating part 310 accommodating liquid nitrogen supplied therein, and a grid accommodating groove 340 which is separated from the coolant accommodating part 310 to form a space in which the specimen grid is located. ) Is formed, and a through hole 156 penetrating to the outside of the workstation 10 is formed at one side of the inside.
그리드 수용부(150)는 내부의 타측부에 유입공(324)과 배출공(325)를 더 형성한다. 유입공(324)는 액체질소가 유입되며, 배출공(325)는 액체질소가 배출된다. 특히, 배출공(325)는 유입공(324)보다 높은 위치에 형성되어 액체질소의 수위가 일정하게 유지되면서 배출될 수 있도록 한다. The grid accommodating part 150 further forms an inlet hole 324 and an outlet hole 325 at the other side of the inside. Liquid nitrogen is introduced into the inlet hole 324, and liquid nitrogen is discharged from the outlet hole 325. In particular, the discharge hole 325 is formed at a position higher than the inlet hole 324 so that the liquid nitrogen can be discharged while maintaining a constant water level.
또한 상기 그리드 수용부(150)의 내측에 상기 유입공(324)으로부터 유입되는 액체질소의 튀는 현상을 방지하는 'ㄱ'자 형상의 유입격벽(312)이 형성된다. 냉각제 수용부(310)와 그리드 수용홈(340)은 수용부 격벽(323)에 의해 서로 분리되어 냉각제 수용부(310)에 수용된 액체질소가 그리드 수용홈(340)으로 유입되지 않도록 형성된다.In addition, an inflow partition 312 having a '-' shape is formed inside the grid accommodating part 150 to prevent splashing of the liquid nitrogen flowing from the inflow hole 324. The coolant accommodating part 310 and the grid accommodating groove 340 are separated from each other by the accommodating partition wall 323 so that the liquid nitrogen contained in the coolant accommodating part 310 does not flow into the grid accommodating groove 340.
여기서, 수용부 격벽(323)은 구리를 포함하고, 전체 박스부의 높이보다 조금 낮게 설계된다. 이러한 설계는 이미지 관찰하는 동안 수용부 커버(152)를 닫고 액체질소의 차가운 공기가 그리드 수용부(150)에서 얼려진 시편 그리드가 위치하는 그리드 수용홈(340) 방향으로 넘어와 시편 그리드가 액체질소없이도 녹지 않도록 한다.Here, the receiving portion partition wall 323 is made of copper, and is designed to be slightly lower than the height of the entire box portion. This design allows the specimen grid 152 to be closed during image observation and the cold air of liquid nitrogen flows toward the grid receiving groove 340 where the specimen grid is frozen in the grid receiver 150, whereby the specimen grid is liquid nitrogen. Do not melt without.
그리드 수용홈(340)은 그 내부에 시편 그리드를 수용할 수 있도록 형성되고, 그리드 수용홈(340)의 하부에는 광학현미경을 통해 시편 그리드를 측정 할 수 있도록 하는 측정 렌즈가 삽입될 수 있는 렌즈홈(342)이 하부에 형성된다.The grid accommodating groove 340 is formed to accommodate the specimen grid therein, and a lens groove into which the measuring lens is inserted into the lower portion of the grid accommodating groove 340 to measure the specimen grid through an optical microscope. 342 is formed at the bottom.
본 발명에 따른 워크 스테이션은 시편 그리드를 광학현미경과 전자현미경을 연계하여 시편 그리드를 측정하기 위한 것으로서, 예컨데 생체 세포 시편을 관찰할 경우, 광학현미경을 통해 관찰된 시그널의 위치가 변동되는 것을 방지하기 위해 시편 그리드를 급속 동결시키는데 액체질소를 사용하는 것이 바람직하나, 이에 한정되는 것은 아니다.The workstation according to the present invention is to measure the specimen grid by connecting the specimen grid with an optical microscope and an electron microscope. For example, when observing a living cell specimen, the position of the signal observed through the optical microscope is prevented from changing. It is preferred to use liquid nitrogen to rapidly freeze the specimen grid, but not limited thereto.
또한, 그리드 수용부(150)는 상기 시편 그리드를 다수 저장하는 그리드 홀더(미도시함)를 냉각제 수용부(310) 일측의 하부로 삽입하여 액체질소에 잠긴 상태를 유지시키는 냉각부홈(320)이 형성된다.In addition, the grid accommodating part 150 is a cooling part groove 320 for inserting a grid holder (not shown) for storing a plurality of the specimen grid into the lower side of the coolant accommodating part 310 to maintain the state locked in liquid nitrogen. Is formed.
그리고, 냉각부홈(320)로부터 상기한 그리드 홀더를 건져내서 상기 그리드 수용홈(340)의 일측에 안착시키는 홀더 안착홈(330)이 더 형성된다.Then, the holder holder groove 330 is further formed to deliver the grid holder from the cooling unit groove 320 to be seated on one side of the grid receiving groove 340.
참고로, 그리드 홀더는 원형으로 형성될 수 있고, 냉각부홈(320)과 홀더 안착홈(330)은 그리드 홀더를 끼워서 삽입할 수 있도록 하는 원형으로 형성될 수 있다.For reference, the grid holder may be formed in a circular shape, and the cooling unit groove 320 and the holder seating groove 330 may be formed in a circular shape so as to insert the grid holder.
이때, 냉각부홈(320)과 홀더 안착홈(330)은 일측부에 그리드 홀더와 각각 요철 구조를 이루는 돌출구(321, 331)를 각각 형성하여, 그리드 홀더가 움직이는 것이 방지되도록 형성될 수 있다. 특히, 홀더 안착홈(330)은 그리드 홀더에서 시편 그리드를 안정적으로 꺼낼 수 있게 할 수 있다.In this case, the cooling unit groove 320 and the holder seating groove 330 may be formed to prevent protrusions of the grid holder by forming protrusions 321 and 331 respectively having a concave-convex structure with the grid holder on one side. In particular, the holder seating groove 330 may enable the specimen grid to be stably taken out of the grid holder.
또한, 상기 그리드 수용홀의 내부에는 온도를 측정할 수 있도록 하는 온도센서(343)가 형성되어, 냉각재에 의해 냉각된 내부 온도를 감지하여 사용자가 온도를 조절할 수 있도록 형성될 수 있다.In addition, a temperature sensor 343 may be formed inside the grid accommodating hole so that the user can adjust the temperature by sensing the internal temperature cooled by the coolant.
자세하게, 온도센서(343)에서 측정된 온도는 외부 단자부(122)를 통하여 연결된 외부 제어장치를 제어하는 기초가 되며, 상기 외부 제어장치는 액체질소의 유입과 배출을 제어하여 시료 그리드의 온도를 일정하게 유지시킨다.In detail, the temperature measured by the temperature sensor 343 serves as a basis for controlling an external control device connected through the external terminal unit 122, and the external control device controls the inflow and discharge of liquid nitrogen to adjust the temperature of the sample grid. Keep it.
도 5는 본 발명의 제2 실시예에 따른 워크 스테이션과 이를 포함한 연계 측정 장치의 사시도를 나타내고, 도 6은 도 5에 도시된 워크 스테이션과 이를 포함한 연계 측정 장치의 측면도를 나타낸다.5 is a perspective view of a workstation and a cooperative measuring apparatus including the same according to the second embodiment of the present invention, and FIG. 6 is a side view of the workstation and the cooperative measuring apparatus including the same shown in FIG. 5.
도 5 및 도 6를 함께 참조하면, 제2 실시예에 따른 워크 스테이션은 제1 실시예에 따른 워크 스테이션과 기본적인 구성 및 동작은 동일하나 제2 실시예에 따른 워크 스테이션이 보다 휴대하기 용이하다. 5 and 6 together, the workstation according to the second embodiment has the same basic configuration and operation as the workstation according to the first embodiment, but the workstation according to the second embodiment is more portable.
워크 스테이션(10)은 전자현미경으로 움직이기 용이하도록 외부로부터 액체질소가 공급되는 유입관(124) 및 유입공(324)이 제거되지만 배출구(125) 및 배출공(325)은 액체질소의 오버 플로우(overflow)를 방지하기 위해 유지된다.The work station 10 removes the inlet pipe 124 and the inlet hole 324 from which the liquid nitrogen is supplied from the outside to facilitate movement with an electron microscope, but the outlet 125 and the outlet hole 325 have overflows of the liquid nitrogen. It is maintained to prevent overflow.
또한 수용부 커버(152)는 제1 유입공(156) 및 제2 유입공(157)이 형성되며, 제1 유입공(156)는 제1 유입관(360)이 삽입되고, 제2 유입공(157)은 제2 유입관(370)이 삽입된다. 상기 제1 유입관(360) 및 제2 유입관(370)의 상세한 설명은 후술된다.In addition, the receiving cover 152 is formed with a first inlet hole 156 and a second inlet hole 157, the first inlet hole 156 is inserted into the first inlet pipe 360, the second inlet hole 157 is a second inlet pipe 370 is inserted. Detailed description of the first inlet pipe 360 and the second inlet pipe 370 will be described later.
상기 전술된 구성 이외의 구성들은 제1 실시예에 따른 워크스테이션과 동일하다.Configurations other than those described above are the same as the workstation according to the first embodiment.
도 7은 도 5에 도시된 워크 스테이션의 그리드 수용부를 확대한 사시도이고, 도 8은 도 7에 도시된 그리드 수용부의 평면도와 측면도를 나타낸다.7 is an enlarged perspective view of the grid receiving portion of the workstation shown in FIG. 5, and FIG. 8 is a plan view and a side view of the grid receiving portion shown in FIG. 7.
도 7 및 도 8을 함께 참조하면, 제2 실시예에 따른 그리드 수용부(150)는 유입공(324)이 제거되며, 배출공(325)만 유지된다. 7 and 8 together, the grid receiving portion 150 according to the second embodiment of the inlet hole 324 is removed, only the discharge hole 325 is maintained.
그리드 수용부(150)는 휴대용 냉각부(350)에 담긴 액체질소가 제1 유입관(360) 및 제2 유입관(370)을 통하여 유입된다. 휴대용 냉각부(350)는 깔대기 또는 용기 형상으로 형성될 수 있다. 또한 제1 유입관(360)는 그리드 수용홈(340)으로 액체질소를 유입시키고, 제2 유입관(370)는 냉각제 수용부(310)로 액체질소를 유입시킨다. The grid accommodating part 150 flows in liquid nitrogen contained in the portable cooling part 350 through the first inflow pipe 360 and the second inflow pipe 370. The portable cooling unit 350 may be formed in a funnel or container shape. In addition, the first inflow pipe 360 introduces liquid nitrogen into the grid receiving groove 340, and the second inflow pipe 370 introduces liquid nitrogen into the coolant accommodation portion 310.
여기서, 제1 유입관(360)은 제1 유입공(156)에 삽입되어 그리드 수용홈(340)에 액체질소를 유입시킬 수 있고, 제2 유입관(370)은 제2 유입공(157)에 삽입되어 냉각제 수용부(310)에 액체질소를 유입시킬 수 있다.Here, the first inlet pipe 360 may be inserted into the first inlet hole 156 to introduce liquid nitrogen into the grid receiving groove 340, and the second inlet pipe 370 may be the second inlet hole 157. The liquid nitrogen may be introduced into the coolant accommodating part 310.
또는 제1 유입관(360) 및 제2 유입관(370)은 제1 실시예에 도시된 수용부 커버(152)의 개방부(155)를 통과하여 액체질소를 유입시킬 수 있다. Alternatively, the first inflow pipe 360 and the second inflow pipe 370 may enter the liquid nitrogen through the opening 155 of the accommodation cover 152 shown in the first embodiment.
이 때, 휴대용 냉각부(350)에 연결된 제1 유입관(360)은 기본적으로 제2 유입관(370)보다 높은 위치에 형성된다. 이로 인해 제1 유입관(360)은 제2 유입관(370)보다 액체질소를 유입 중단이 빠를 수 있으며, 이는 냉각제 수용부(310)에 액체질소가 유입되며 온도 유지를 하는 동시에 그리드 수용홈(340)은 액체질소의 유입이 중단되어 이미지 측정을 용이하게 할 수 있다.At this time, the first inlet pipe 360 connected to the portable cooling unit 350 is basically formed at a position higher than the second inlet pipe 370. As a result, the first inlet pipe 360 may stop the inflow of liquid nitrogen faster than the second inlet pipe 370, which is the liquid nitrogen flow into the coolant accommodating part 310 and maintains the temperature at the same time as the grid receiving groove ( 340 may stop the introduction of liquid nitrogen to facilitate image measurement.
또한 제1 유입관(360) 및 제2 유입관(370)에 밸브를 더 구비하여 액체질소의 유입량을 조절할 수 있다.In addition, the first inlet pipe 360 and the second inlet pipe 370 may further include a valve to adjust the amount of liquid nitrogen inlet.
상기 전술된 구성 이외의 구성들은 제1 실시예에 따른 그리드 수용부(150)와 동일하다.Configurations other than those described above are the same as those of the grid receiving portion 150 according to the first embodiment.
도 9는 본 발명의 제1 및 제2 실시예에 따른 측정렌즈 홀더를 확대한 사시도를 나타낸다.9 is an enlarged perspective view of the measuring lens holder according to the first and second embodiments of the present invention.
도 9를 참조하면, 측정렌즈 홀더(400)는 측정렌즈의 결빙을 방지하기 위하여 구비된다. 측정렌즈 홀더(400)는 홀더 본체(410), 가스 주입부(420) 및 완충제(430)을 포함한다.Referring to FIG. 9, the measuring lens holder 400 is provided to prevent freezing of the measuring lens. The measuring lens holder 400 includes a holder body 410, a gas injection unit 420, and a buffer 430.
홀더 본체(410)는 측정렌즈가 삽입되고, 가스 주입부(420)는 질소가스와 같은 불활성가스를 주입하여 측정렌즈의 결빙이나 성에 발생을 방지하기 위해 홀더 본체(410)의 일측에 형성이 된다. 또한 완충제(430)는 홀더 본체(410) 내부에 삽입된 측정렌즈의 충격흡수 및 진동방지를 위해 설치된다. 즉, 완충제(430)는 측정렌즈가 외부충격으로부터 보호를 해준다.The holder body 410 is inserted into the measuring lens, the gas injection unit 420 is formed on one side of the holder body 410 in order to prevent the freezing or frost of the measuring lens by injecting an inert gas such as nitrogen gas. . In addition, the buffer 430 is installed to prevent shock absorption and vibration of the measurement lens inserted into the holder body 410. That is, the buffer 430 provides a measurement lens to protect from external shock.
따라서, 측정렌즈 홀더(400)는 액체질소로 냉각된 시료와 측정렌즈가 근접하게 되면, 온도 차이로 인해 측정렌즈가 결빙되거나 성에가 생성되어 정확한 이미지를 얻을 수 없게 되는 문제를 보안한다.Therefore, the measuring lens holder 400 secures a problem that when the sample cooled by liquid nitrogen and the measuring lens are close to each other, the measuring lens is frozen or frost is generated due to a temperature difference to obtain an accurate image.
도 10은 본 발명의 제1 및 제2 실시예에 도시된 시편 장착 홀더의 측면도를 나타낸다.10 shows a side view of the specimen mounting holder shown in the first and second embodiments of the present invention.
도 5를 참조하면, 시편 장착 홀더(14)는 내부에 액체질소를 저장할 수 있는 냉각기(170)와, 냉각기(170)로부터 일측으로 연장되어 액체질소를 공급하는 연장관(180)과, 연장관(180)의 연장된 선단에 형성되어 시편 그리드를 안착시킬 수 있도록 그리드 안착홈(382)이 구비된 안착 헤드(380)가 포함된다.Referring to FIG. 5, the specimen mounting holder 14 includes a cooler 170 capable of storing liquid nitrogen therein, an extension pipe 180 extending from one side of the cooler 170 to supply liquid nitrogen, and an extension pipe 180. A seating head 380 is formed at an extended tip of the head and provided with a grid seating groove 382 to seat the specimen grid.
냉각기(170)는 손으로 잡고 쉽게 휴대 및 이동시킬 수 있는 소형으로 형성되는 것이 바람직하다.The cooler 170 is preferably formed in a small size that can be easily carried and moved by the hand.
냉각기(170)에 저장된 액체질소는 연장관(180)을 통해 안착 헤드(380)로 공급됨으로써, 안착 헤드(380)에 안착된 시편 그리드에 액체질소를 공급한다.The liquid nitrogen stored in the cooler 170 is supplied to the seating head 380 through the extension pipe 180, thereby supplying the liquid nitrogen to the specimen grid seated on the seating head 380.
시편 장착 홀더(14)는 연장관(180)의 선단에 형성된 안착 헤드(380)가 기존의 일반적인 전자현미경의 측정부로 삽입되어 시편 그리드를 위치시킬 수 있도록 제작된다.The specimen mounting holder 14 is manufactured so that the seating head 380 formed at the tip of the extension tube 180 may be inserted into a measurement unit of a conventional general electron microscope to position the specimen grid.
이때, 시편 장착 홀더(14)의 연장관(180)은 선단 측에서 직경이 작아지는 단차를 다수 개소에 형성하여, 연장관(180)을 끝까지 삽입된 위치에서 정확히 정지될 수 있도록 함으로써, 전자현미경 또는 워크 스테이션(10)의 내부에 시편 그리드를 정확하게 위치시킬 수 있도록 형성될 수 있다.At this time, the extension tube 180 of the specimen mounting holder 14 forms a step in which the diameter becomes smaller at the front end side in a plurality of places, so that the extension tube 180 can be stopped exactly at the inserted position to the end, an electron microscope or a workpiece It can be formed to accurately position the specimen grid inside the station 10.
여기서, 연장관(180)은 냉각제가 저장되는 박스부(120)의 일측으로 연장되어 형성되며, 내측은 스티로폼 같은 단열성 재질로 형성되고, 외측은 수지종류 중 가장 단단한 아세탈 재질로 형성된다. Here, the extension pipe 180 is formed to extend to one side of the box portion 120 in which the coolant is stored, the inner side is formed of a heat insulating material such as styrofoam, the outer side is formed of the hardest acetal material of the resin type.
또한 연장관(180)은 다양한 두께와 길이를 가진 시편 장착 홀더(14)에 따라 두께와 길이를 조절할 수 있도록 내부에 톱니바퀴를 구비하거나, 시편 장착 홀더(14)의 사이즈에 따라 연장관(180)을 구비하여 상기 사이즈에 맞게 착탈식 구조로 형성될 수 있다.In addition, the extension tube 180 is provided with a cog wheel therein to adjust the thickness and length according to the specimen mounting holder 14 having various thicknesses and lengths, or the extension tube 180 according to the size of the specimen mounting holder 14; Equipped with a removable structure to fit the size.
이하, 상기한 구성에 따른 본 발명의 워크 스테이션 및 이를 포함한 연계 측정 장치의 작동을 상세하게 설명한다.Hereinafter, the operation of the workstation of the present invention and the associated measurement device including the same according to the above configuration will be described in detail.
본 발명에 따르면, 광학현미경과, 전자현미경의 측정을 연계시키는데 있어서, 광학현미경의 측정을 위한 워크 스테이션(10)의 그리드 수용부(150)와, 전자현미경의 측정부에 각각 탈부착 가능한 시편 장착 홀더(14)의 끝부분인 그리드 안착홈 (382)에 초저온 시편 그리드를 장착하고 측정이 이루어지도록 한다.According to the present invention, in linking the measurement of the optical microscope and the electron microscope, the specimen mounting holder detachable to the grid receiving portion 150 and the measuring portion of the electron microscope for measuring the optical microscope, respectively Mount the cryogenic specimen grid in the grid seating groove (382) at the end of (14) and allow measurements to be made.
본 발명에 따르면, 광학현미경상에서 시편 그리드를 측정하기 전에, 워크 스테이션(10)에 시편 장착 홀더(14)의 안착 헤드(380)를 그리드 수용부(150)의 그리드 수용홈(340)에 위치시킨다. 그리드 수용부 (150)에 액체질소를 채운 후 초저온 시편이 저장된 그리드 홀더를 수용부(320)에 우선 위치시키고, 그리드 수용홈(340)의 온도가 -185도 이하로 안정화되면, 그리드 홀더를 냉각수 수용부(320)로부터 건져 올려 그리드 수용부(150)의 홀더 안착홈(330)에 안착시키고, 핀셋 등의 기구를 이용하여 시편 그리드를 인접하게 위치되는 시편 장착 홀더(14)의 안착 헤드(380)의 시료 삽입부인 그리드 안착홈(382)에 장착하여, 광학현미경의 하부에 위치한 렌즈(미도시함)로 측정을 진행한다 According to the invention, prior to measuring the specimen grid on an optical microscope, the seating head 380 of the specimen mounting holder 14 is placed in the grid receiving groove 340 of the grid receiving portion 150 at the workstation 10. . After filling the grid receiving portion 150 with liquid nitrogen, the grid holder storing the cryogenic specimen is first placed in the receiving portion 320, and when the temperature of the grid receiving groove 340 is stabilized to −185 degrees or less, the grid holder is cooled with water. The mounting head 380 of the specimen mounting holder 14 which is lifted up from the receiving portion 320 and seated in the holder seating groove 330 of the grid receiving portion 150, and the specimen grid is positioned adjacently by using a tweezer or the like. ) Is mounted on the grid seating groove 382, which is a sample insertion part of the head, and the measurement is performed with a lens (not shown) located under the optical microscope.
광학현미경을 통해 시그널이 측정되면, 시편 장착 홀더(14)를 워크 스테이션(10)으로부터 분리하여 시편 그리드가 안착된 안착 헤드(380)를 그리드 수용부(150)로부터 분리시킨 후 전자현미경의 내부로 삽입하여 광학현미경의 시그널에 기반한 이미징 측정을 진행한다.When the signal is measured through the optical microscope, the specimen mounting holder 14 is separated from the workstation 10 to separate the seating head 380 on which the specimen grid is seated from the grid receiving portion 150 and then into the inside of the electron microscope. Insertion is carried out for imaging measurements based on the signal of the optical microscope.
이때, 광학현미경을 통해 측정된 시편 그리드를 워크 스테이션(10)로부터 분리하는 시점부터 전자현미경으로 투입하여 측정이 완료될 때까지는 시편 장착 홀더(14)의 냉각기(170)에 의한 액체질소가 지속적으로 공급됨으로써, 광학현미경을 통해 측정한 시그널에 따른 시편 그리드의 상태가 초저온상에서 정확하게 유지될 수 있도록 한다.At this time, the liquid nitrogen by the cooler 170 of the specimen mounting holder 14 is continuously supplied from the time point at which the specimen grid measured by the optical microscope is separated from the workstation 10 to the electron microscope until the measurement is completed. By supplying, the state of the specimen grid according to the signal measured by the optical microscope can be accurately maintained in the cryogenic phase.
따라서, 본 발명에 따른 연계 측정 장치에 의하면, 시편 그리드를 냉각시키는 전처리 과정과, 광학현미경을 통한 측정하는 과정이 단일의 연계 측정 장치 내에서 이루어지고, 광학현미경을 통한 측정 후 시편 그리드를 옮길 필요 없이 그대로 전자현미경의 측정부에 투입할 수 있다.Therefore, according to the linked measuring device according to the present invention, the pretreatment process for cooling the specimen grid and the measurement through the optical microscope is performed in a single linked measurement device, it is necessary to move the specimen grid after the measurement through the optical microscope It can be put into the measuring section of the electron microscope as it is.
따라서, 전자현미경 측정을 위해 시편 그리드를 수작업으로 옮겨야 하는 불편함을 해소할 수 있고, 전자현미경으로 옮기는 동안 시편 그리드의 동결이 지속적으로 유지되도록 함으로써, 전자현미경을 통한 측정의 정확성을 향상시킬 수 있다.Therefore, the inconvenience of manually moving the specimen grid for the electron microscope measurement can be eliminated, and the freezing of the specimen grid is continuously maintained during the transfer to the electron microscope, thereby improving the accuracy of the measurement through the electron microscope. .
뿐만 아니라, 수작업을 통해 시편 그리드를 옮기는 과정에서 손상 및 파손이 발생하는 것을 방지할 수 있다.In addition, damage and breakage can be prevented by manually moving the specimen grid.
도 11은 본 발명의 제1 실시예에 따른 워크 스테이션과 이를 포함한 연계 측정 장치의 사시도를 나타낸다.11 is a perspective view of a workstation and a cooperative measurement apparatus including the same according to the first embodiment of the present invention.
도 11을 참조하면, 앞선 실시예에 따른 연계 측정 장치의 베이스 플레이트(140)의 하부면을 받쳐 상기 연계 측정 장치의 상하 높이를 조절하는 높이조절장치(510)가 더 포함된다.Referring to FIG. 11, a height adjusting device 510 is further provided to support a lower surface of the base plate 140 of the linked measuring device according to the previous embodiment to adjust the vertical height of the linked measuring device.
높이조절장치(510)는 지면의 바닥을 받치는 지면 플레이트(520)와, 지면플레이트(520)와 상기 베이스 플레이트(140) 사이에서 다수의 링크에 의해 상하 구동 스트로크를 형성하는 절첩부재(540) 및 절첩부재(540)에 나사산이 형성된 작동축(530)을 삽입하여, 상기 절첩부재(540)를 상하 구동시키는 구동레버(550)를 포함하여 형성될 수 있다.The height adjusting device 510 is a ground plate 520 supporting the bottom of the ground, a folding member 540 for forming a vertical driving stroke by a plurality of links between the ground plate 520 and the base plate 140 and Insertion of the operating shaft 530 is a screw thread formed in the folding member 540, it may be formed including a drive lever 550 for driving the folding member 540 up and down.
이러한 구성에 따르면, 광학현미경에 위치되는 워크 스테이션(10)에 시편 장착 홀더(14)를 삽입한 상태에서 일체로 상하로 이동시킬 수 있어, 광학현미경을 통한 측정의 정확도를 높일 수 있으며, 전자현미경과 연계한 측정을 보다 효율적이고 용이하게 할 수 있도록 한다.According to this configuration, it can be moved up and down integrally in the state in which the specimen mounting holder 14 is inserted into the workstation 10 located in the optical microscope, it is possible to increase the accuracy of the measurement through the optical microscope, the electron microscope This makes the measurement in conjunction with the system more efficient and easier.
이하에서는 본 발명의 다른 일측면에 따른 광학현미경과 전자현미경을 연계한 측정방법에 대해 설명한다.Hereinafter, a measuring method in which an optical microscope and an electron microscope in accordance with another aspect of the present invention will be described.
참고로, 본 실시예에 따른 측정방법은 앞서 설명한 워크 스테이션 및 이를 포함한 연계 측정 장치를 사용하여 실행될 수 있다.For reference, the measuring method according to the present embodiment may be executed using the workstation and the associated measuring device including the same.
또한, 이하에서 연계 측정 장치의 구성을 언급할 경우, 전술한 도면부호의 구성과 동일한 기능을 하는 구성에 대해서는 동일한 도면부호를 붙여 설명하기로 하며, 전술한 연계 측정 장치의 설명과 중복되는 설명을 피하기 위해 간략하게 설명하기로 한다. In addition, in the following when referring to the configuration of the coordinate measuring device, a configuration having the same function as the configuration of the above-described reference numerals will be described with the same reference numerals, and descriptions that overlap with the description of the above-described coordinate measuring device A brief description will be made to avoid.
본 실시예에 따르면, 광학현미경에 시편 그리드를 위치시키는 그리드 수용부(150)의 일 측부로 시편 장착 홀더(14)를 삽입하여, 상기 그리드 수용부(150)의 그리드 수용홈(340)에 시편 그리드가 장착된 상기 시편 장착 홀더(14)의 안착 헤드(380)를 위치시키는 제1단계와, 그리드 수용부 (150)에 액체질소를 채운 후 초저온 시편이 저장된 그리드 홀더를 수용부(320)에 우선 위치시키고, 그리드 수용홈(340)의 온도가 -185도 이하로 안정화되기를 기다린 후 그리드 홀더를 냉각수 수용부(320)로부터 건져 올려 그리드 수용부(150)의 홀더 안착홈(330)에 안착시키는 제2단계와, 그리드 홀더에 보관한 초저온 그리드를 상기 그리드 수용부(150)의 상기 안착 헤드(380)의 시료 삽입부인 그리드 안착홈(382)에 장착하여 상기 광학현미경을 통해 시그널을 측정하는 제3단계 및 상기 시편 장착 홀더(14)를 상기 그리드 수용부로부터 분리시켜 상기 안착 헤드(380)를 전자현미경으로 투입하고 측정하는 제4단계로 이루어질 수 있다. According to this embodiment, the specimen mounting holder 14 is inserted into one side of the grid receiving portion 150 for positioning the specimen grid on the optical microscope, so that the specimen is inserted into the grid receiving groove 340 of the grid receiving portion 150. The first step of positioning the seating head 380 of the specimen mounting holder 14, the grid is mounted, and after filling the liquid nitrogen in the grid receiving portion 150, the grid holder storing the cryogenic specimen to the receiving portion 320 Firstly, after waiting for the temperature of the grid accommodating groove 340 to stabilize below −185 degrees, the grid holder is lifted from the coolant accommodating part 320 and seated on the holder seating groove 330 of the grid accommodating part 150. In the second step, the cryogenic grid stored in the grid holder is mounted in the grid seating groove 382, which is a sample inserting portion of the seating head 380 of the grid receiving portion 150 to measure the signal through the optical microscope Step 3 and above By separating the mounting holder 14 from the grid receiving portion it may be made of a fourth step of measuring the input and the mounting head 380 by an electron microscope.
그리고, 제3단계는 그리드 홀더에서 냉각된 시편 그리드를 핀셋으로 집어서 상기 안착 헤드(380)로 옮기는 방법을 이용한다.The third step uses a method of picking up the specimen grid cooled by the grid holder with tweezers and transferring it to the seating head 380.
이때, 그리드 홀더는 냉각수 수용부(310)로부터 건져 올려져 그리드 수용부(150)의 홀더 안착홈(330)에 안착된 상태에서 인접하게 위치되는 그리드 수용홈(340)으로 쉽게 이동시킬 수가 있다.At this time, the grid holder is lifted up from the coolant accommodating part 310 and can be easily moved to the grid accommodating groove 340 positioned adjacent to the holder seating groove 330 of the grid accommodating part 150.
그리고, 그리드 홀더가 냉각수 수용부(310)로부터 건져 올려진 후에도 그리드 수용부(150) 내부에서 액체질소의 영향을 계속 받게 되므로, 동결된 상태가 지속적으로 유지될 수 있다.And, even after the grid holder is lifted up from the coolant accommodating part 310, since the liquid nitrogen is continuously affected by the inside of the grid accommodating part 150, the frozen state can be continuously maintained.
또한, 제4단계는 시편 장착 홀더(14)를 그리드 수용부(150)로부터 분리시킨 후 전자현미경에 의한 측정이 완료될 때까지 상기 시편 장착 홀더(14)에 구비된 냉각기(170)에 의한 액체질소를 상기 시편 그리드에 공급하여 냉각을 유지시키는 것을 포함한다.In addition, the fourth step is a liquid by the cooler 170 provided in the specimen mounting holder 14 until the specimen mounting holder 14 is separated from the grid receiving portion 150 and the measurement by the electron microscope is completed. Supplying nitrogen to the specimen grid to maintain cooling.
상기한 바와 같이, 본 발명에 따른 광학현미경과 전자현미경을 연계한 측정방법에 의하면, 광학현미경을 통해 시편 그리드를 측정하기 전 전처리시키는 과정에서 냉각 후 신속하게 광학현미경으로 투입할 수 있도록 함으로써, 시편 그리드의 파손을 방지하는 것은 물론, 시편 그리드의 동결 상태를 지속적으로 유지할 수 있다.As described above, according to the measuring method in conjunction with the optical microscope and the electron microscope according to the present invention, in the pre-treatment process before the measurement of the specimen grid through the optical microscope to enable the rapid input to the optical microscope after cooling, the specimen grid In addition to preventing breakage, the specimen grid can be kept frozen.
뿐만 아니라, 광학현미경을 통한 측정 후 시편 그리드를 전자현미경에 투입하기 위해 별도의 스테이지로 옮길 필요가 없이 하나의 장치에 의해 간편하고, 용이하게 시편 그리드를 옮길 수 있어, 시편 그리드의 이동 중 발생될 수 있는 파손이 방지될 수 있고, 냉각기에 의한 액체질소의 지속적인 공급이 가능하다.In addition, it is possible to easily and easily move the specimen grid by one device without having to move it to a separate stage to input the specimen grid to the electron microscope after measurement through the optical microscope, so that the specimen grid may be generated during the movement of the specimen grid. Possible breakage can be prevented and the continuous supply of liquid nitrogen by the cooler is possible.
이상에서 설명한 바와 같이, 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형 가능함은 물론이다.As described above, although the present invention has been described by way of limited embodiments and drawings, the present invention is not limited thereto and is intended by those skilled in the art to which the present invention pertains. Of course, various modifications and variations are possible within the equivalent scope of the claims to be described below.
[부호의 설명][Description of the code]
10: 워크 스테이션 14: 시편 장착 홀더10: workstation 14: specimen mounting holder
110: 상부 플레이트 120: 박스부110: upper plate 120: box portion
121: 제1 손잡이 122: 외부 단자부121: first handle 122: external terminal portion
123: 수직 지지부 124: 유입관123: vertical support 124: inlet pipe
125: 배출관 140: 베이스 플레이트125: discharge pipe 140: base plate
141: 제2 손잡이 142: 수평 지지부141: second handle 142: horizontal support
150: 그리드 수용부 152: 수용부 커버150: grid receiving portion 152: receiving portion cover
154: 커버 손잡이 155: 개방부154: cover handle 155: opening
156: 제1 유입공 157: 제2 유입공156: first inlet hole 157: second inlet hole
158: 관통공 170: 냉각기158: through hole 170: cooler
180: 연장관 190: 슬라이딩 가이드180: extension tube 190: sliding guide
310: 냉각제 수용부 312: 유입격벽310: coolant accommodating part 312: inflow partition
320: 냉각부홈 323: 수용부 격벽320: cooling portion groove 323: receiving portion partition wall
324: 유입공 325: 배출공324: inlet hole 325: outlet hole
330: 홀더 안착홈 340: 그리드 수용홈330: holder seating groove 340: grid receiving groove
342: 렌즈홈 343: 온도센서342: lens groove 343: temperature sensor
350: 휴대용 냉각부 360: 제1 유입관350: portable cooling unit 360: first inlet pipe
370: 제2 유입관 380: 안착 헤드370: second inlet pipe 380: seating head
382: 그리드 안착홈 400: 측정렌즈 홀더382: grid seating groove 400: measuring lens holder
410: 홀더 본체 420: 가스 주입부410: holder body 420: gas injection portion
430: 완충제 510: 높이조절장치430: buffer 510: height adjusting device
520: 지면 플레이트 530: 작동축520: ground plate 530: working shaft
540: 절첩부재 550: 구동레버540: folding member 550: drive lever

Claims (29)

  1. 시편 그리드를 냉각시키는 전처리 과정을 수행하고, 시편 장착 홀더에 시편 그리드를 삽입하여 광학현미경 및 전자현미경에서의 이미지 관찰이 상기 시편 그리드의 운반없이 연속적으로 수행되는 워크 스테이션에 있어서,In a workstation in which a pretreatment process of cooling a specimen grid is performed, and a specimen grid is inserted into a specimen mounting holder, image observation in an optical microscope and an electron microscope is continuously performed without carrying the specimen grid.
    상기 워크 스테이션의 외부로부터 액체질소가 공급되는 유입부와 상기 공급된 액체질소가 배출되는 배출공;An inlet portion through which liquid nitrogen is supplied from the outside of the work station and a discharge hole through which the supplied liquid nitrogen is discharged;
    상기 액체질소가 수용되는 냉각제 수용부;A coolant accommodating part in which the liquid nitrogen is accommodated;
    상기 냉각제 수용부와 분리되어 형성되고 상기 시편 그리드가 위치될 수 있는 그리드 수용홈;A grid accommodating groove formed separately from the coolant accommodating part and in which the specimen grid is located;
    상기 그리드 수용홈에 형성되어 상기 시편 그리드의 온도를 측정하는 온도센서; 및A temperature sensor formed in the grid receiving groove to measure a temperature of the specimen grid; And
    일측에 외부로 관통되어 형성된 관통공;을 포함하는 그리드 수용부;를 포함하는 광학현미경과 전자현미경의 연계 측정을 위한 워크 스테이션.The workstation for penetrating the optical microscope and the electron microscope including a; including a; grid receiving portion including a through-hole formed through the outside on one side.
  2. 제1항에 있어서,The method of claim 1,
    상기 그리드 수용부의 상부를 열거나 닫을 수 있도록 하는 수용부 커버;가 더 포함된 것을 특징으로 하는 광학현미경과 전자현미경의 연계 측정을 위한 워크 스테이션.And a receptacle cover for opening or closing the upper portion of the grid receptacle.
  3. 제2항에 있어서,The method of claim 2,
    상기 수용부 커버는,The receiving portion cover,
    상기 그리드 수용부의 상부를 덮은 상태에서 상기 그리드 수용부의 내부로 작업 공구가 삽입될 수 있도록 하는 장공 형태의 개방부가 형성된 것을 특징으로 하는 광학현미경과 전자현미경의 연계 측정을 위한 워크 스테이션.And a long hole-type opening configured to allow a work tool to be inserted into the grid receiving portion while covering the upper portion of the grid receiving portion.
  4. 제1항에 있어서,The method of claim 1,
    상기 유입부는,The inlet portion,
    상기 배출공이 형성된 일면에 상기 배출공보다 낮은 높이에 형성되어 상기 액체질소가 외부로부터 유입되는 유입공;을 포함하는 것을 특징으로 하는 광학현미경과 전자현미경의 연계 측정을 위한 워크 스테이션.And an inlet hole formed at a lower level than the outlet hole on one surface of the outlet hole, in which the liquid nitrogen is introduced from the outside.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 그리드 수용부의 내측에 상기 유입공으로부터 유입되는 액체질소의 튀는현상을 방지하는 'ㄱ'자 형상의 유입격벽이 형성되는 것을 특징으로 하는 광학현미경과 전자현미경의 연계 측정을 위한 워크 스테이션. The workstation for measuring the connection between the optical microscope and the electron microscope, characterized in that the 'b' shaped inlet partition is formed to prevent the splashing of the liquid nitrogen flowing from the inlet hole inside the grid receiving portion.
  6. 제2항에 있어서,The method of claim 2,
    상기 수용부 커버는 두 개의 유입공이 형성되고,The receiving portion cover is formed with two inlet holes,
    상기 유입부는,The inlet portion,
    상기 두 개의 유입공;The two inlet holes;
    상기 두 개의 유입공 중 하나에 삽입되어 상기 그리드 수용홈으로 액체질소를 유입시키는 제1 유입관; 및A first inlet pipe inserted into one of the two inlet holes to introduce liquid nitrogen into the grid receiving groove; And
    나머지 하나에 삽입되어 상기 냉각제 수용부로 액체질소를 유입시키는 제2 유입관;을 포함하는 것을 특징으로 하는 광학현미경과 전자현미경의 연계 측정을 위한 워크 스테이션.And a second inlet pipe inserted into the other one to introduce the liquid nitrogen into the coolant accommodating part.
  7. 제3항에 있어서,The method of claim 3,
    상기 유입부는,The inlet portion,
    상기 그리드 수용홈으로 액체질소를 유입시키는 제1 유입관; 및A first inlet pipe for introducing liquid nitrogen into the grid receiving groove; And
    상기 냉각제 수용부로 액체질소를 유입시키는 제2 유입관;를 포함하며,And a second inlet pipe for introducing liquid nitrogen into the coolant accommodating part.
    상기 제1 유입관 및 제2 유입관은,The first inlet pipe and the second inlet pipe,
    상기 개방부를 통과하는 것을 특징으로 하는 광학현미경과 전자현미경의 연계 측정을 위한 워크 스테이션.And a work station for measuring the linkage between the optical microscope and the electron microscope, characterized by passing through the opening.
  8. 제7항에 있어서,The method of claim 7, wherein
    상기 제1 유입관 및 제2 유입관은,The first inlet pipe and the second inlet pipe,
    상기 액체질소를 휴대하면서 공급하는 휴대용 냉각부와 연결되며,Is connected to the portable cooling unit for supplying while carrying the liquid nitrogen,
    제1 유입관은 제2 유입관보다 높은 위치에 형성되어 있는 것을 특징으로 하는 광학현미경과 전자현미경의 연계 측정을 위한 워크 스테이션.The first inlet pipe is formed at a position higher than the second inlet pipe, the workstation for measuring the coupling between the optical microscope and the electron microscope.
  9. 제1항에 있어서,The method of claim 1,
    상기 그리드 수용부는,The grid receiving portion,
    상기 시편 그리드를 다수 저장하는 그리드 홀더를 삽입하여 액체질소에 잠긴 상태를 유지시키는 냉각부홈; 및Cooling groove for inserting the grid holder for storing a plurality of the specimen grid to maintain the state immersed in liquid nitrogen; And
    상기 냉각부홈으로부터 상기 그리드 홀더를 건져내서 상기 그리드 수용홈의 일측에 안착시키는 홀더 안착홈; 을 포함하는 것을 특징으로 하는 광학현미경과 전자현미경의 연계 측정을 위한 워크 스테이션.A holder seating groove which picks up the grid holder from the cooling unit groove and seats on one side of the grid receiving groove; Workstation for measuring the optical microscope and the electron microscope linked to the, characterized in that it comprises a.
  10. 제9항에 있어서,The method of claim 9,
    상기 냉각부홈과 상기 홀더 안착홈은,The cooling unit groove and the holder seating groove,
    상기 그리드 홀더에서 상기 시편 그리드를 꺼내도록 요철 구조의 돌출구가 형성된 것을 특징으로 하는 광학현미경과 전자현미경의 연계 측정을 위한 워크 스테이션.And a protrusion having a concave-convex structure to remove the specimen grid from the grid holder.
  11. 제1항에 있어서,The method of claim 1,
    상기 그리드 수용홈의 하부에는 수용된 시편 그리드를 측정할 수 있는 측정 렌즈가 삽입되는 렌즈홈이 형성된 것을 특징으로 하는 광학현미경과 전자현미경의 연계 측정을 위한 워크 스테이션.And a lens groove into which a measurement lens for measuring the received specimen grid is formed below the grid receiving groove.
  12. 제1항에 있어서,The method of claim 1,
    상기 그리드 수용부는,The grid receiving portion,
    상기 액체질소로 냉각된 시료와 측정렌즈가 근접하는 경우, 상기 측정 렌즈의 결빙 또는 성에을 방지하기 위해 측정렌즈 홀더를 더 포함하는 것을 특징으로 하는 광학현미경과 전자현미경의 연계 측정을 위한 워크 스테이션.And a measuring lens holder to prevent freezing or frost of the measuring lens when the sample cooled by the liquid nitrogen and the measuring lens are close to each other.
  13. 제12항에 있어서,The method of claim 12,
    상기 측정렌즈 홀더는,The measuring lens holder,
    상기 측정렌즈가 삽입되는 홀더 본체;A holder main body into which the measuring lens is inserted;
    상기 홀더 본체의 일측에 불활성 가스를 주입하는 가스 주입부; 및A gas injection unit for injecting an inert gas to one side of the holder body; And
    상기 홀더 본체의 내부에 삽입된 상기 측정렌즈가 외부충격으로부터 보호하는 완충제를 포함하는 것을 특징으로 하는 광학현미경과 전자현미경의 연계 측정을 위한 워크 스테이션.And a buffer for protecting the measurement lens inserted into the holder body from an external shock, wherein the measuring lens is connected to the optical microscope and the electron microscope.
  14. 제1항에 있어서,The method of claim 1,
    상기 그리드 수용부가 형성되는 박스부;A box portion in which the grid receiving portion is formed;
    상기 박스부의 상부를 덮되, 상기 그리드 수용부의 적어도 일부를 노출시키는 개구부가 형성된 상부 플레이트;An upper plate covering an upper portion of the box portion and having an opening for exposing at least a portion of the grid receiving portion;
    상기 상부플레이트를 수직 방향으로 지지하는 지지부; 및A support for supporting the upper plate in a vertical direction; And
    상기 지지부의 하단을 지지하는 베이스 플레이트; 를 더 포함하는 것을 특징으로 하는 광학현미경과 전자현미경의 연계 측정을 위한 워크 스테이션.A base plate supporting a lower end of the support part; Workstation for measuring the optical microscope and the electron microscope linked to the further comprising.
  15. 제14항에 있어서,The method of claim 14,
    상기 박스부는,The box unit,
    내측이 열전도성 재질로 헝성되고, 외측은 아세탈(acetal) 재질로 형성되며,The inside is formed of a thermally conductive material, the outside is formed of an acetal material,
    상기 내측과 상기 외측의 사이에는 단열성 재질로 형성된 단열층이 복층구조로 형성되는 것을 특징으로 하는 광학현미경과 전자현미경의 연계 측정을 위한 워크 스테이션.Between the inner side and the outer side, the insulating layer formed of a heat insulating material is formed in a multi-layered structure, the workstation for measuring the connection between the optical microscope and the electron microscope.
  16. 제1항에 있어서,The method of claim 1,
    상기 그리드 수용홀의 내부에 온도를 측정할 수 있도록 하는 온도센서가 형성된 것을 특징으로 하는 광학현미경과 전자현미경의 연계 측정을 위한 워크 스테이션.And a temperature sensor configured to measure a temperature inside the grid accommodating hole.
  17. 시편 그리드를 냉각시키는 전처리 과정을 수행하기 위한 1항 내지 16항 중 어느 한 항의 워크 스테이션; 및The workstation of any one of claims 1 to 16 for performing a pretreatment procedure to cool the specimen grid; And
    액체질소가 저장되는 냉각기와, 상기 냉각기의 일측으로 연장되어 형성되는 연장관을 포함하며, 전처리 과정 중에는 상기 워크 스테이션에 연결되고, 전처리 과정이 수행된 후에 상기 워크 스테이션으로부터 분리되어 연계 측정을 위한 전자 현미경의 측정부에 삽입되도록 하는 시편 장착 홀더; 를 포함하는 광학현미경과 전자현미경의 연계형 이미징 검출장치.And an extension tube formed extending to one side of the cooler, connected to the workstation during the pretreatment process, and separated from the workstation after the pretreatment process is performed, for an associated microscope Specimen mounting holder to be inserted into the measuring portion of the; Linked imaging detection device of the optical microscope and the electron microscope comprising a.
  18. 제17항에 있어서,The method of claim 17,
    상기 연장관은,The extension tube,
    내측이 단열성 재질로 형성되고, 외측이 아세탈 재질로 형성되며,The inside is formed of a heat insulating material, the outside is formed of acetal material,
    내부에 톱니바퀴를 구비하여 두께 및 길이를 조절하거나,Gears inside to adjust thickness and length,
    상기 시편 장착 홀더의 사이즈에 따라 상기 사이즈에 맞게 착탈식 구조로 형성하는 것을 특징으로 하는 광학현미경과 전자현미경의 연계형 이미징 검출장치.Linked imaging detection device of the optical microscope and the electron microscope, characterized in that to form a removable structure according to the size according to the size of the specimen mounting holder.
  19. 제17항에 있어서,The method of claim 17,
    상기 시편 장착 홀더는,The specimen mounting holder,
    상기 연장관의 선단에 형성되며 시편 그리드를 안착시키는 그리드 안착홈이 형성된 안착 헤드를 포함하는 것을 것을 특징으로 하는 광학현미경과 전자현미경의 연계 측정을 위한 전자현미경의 연계형 이미징 검출장치.And a seating head formed at the tip of the extension tube, the seating head having a grid seating groove for seating a specimen grid.
  20. 제17항에 있어서,The method of claim 17,
    상기 연장관의 선단에는,At the tip of the extension tube,
    직경이 점차 작아지는 적어도 하나의 단차가 형성된 것을 특징으로 하는 광학현미경과 전자현미경의 연계형 이미징 검출장치.At least one step of gradually decreasing diameter is formed of the associated imaging detection device of the optical microscope and the electron microscope.
  21. 제17항에 있어서,The method of claim 17,
    상기 워크 스테이션은, The workstation,
    상기 시편 장착 홀더를 지지하는 베이스 플레이트를 포함하며, A base plate for supporting the specimen mounting holder,
    상기 시편 장착 홀더를 상기 그리드 수용부로부터 분리되는 방향으로 슬라이딩시키고, 상기 시편 장착 홀더가 상기 그리드 수용부로 삽입되는 깊이를 제한하는 스토퍼가 형성된 슬라이딩 가이드를 포함하는 것을 특징으로 하는 광학현미경과 전자현미경의 연계형 이미징 검출장치.And a sliding guide having a stopper for sliding the specimen mounting holder in a direction to be separated from the grid accommodating portion and for limiting a depth at which the specimen mounting holder is inserted into the grid accommodating portion. Linked Imaging Detection Device.
  22. 제17항에 있어서,The method of claim 17,
    상기 워크 스테이션은, The workstation,
    상기 시편 장착 홀더를 지지하는 베이스 플레이트;를 포함하며,And a base plate for supporting the specimen mounting holder.
    상기 베이스 플레이트의 하부면을 받쳐 상기 워크 스테이션의 상하 높이를 조절하는 높이조절장치;를 더 포함하는 것을 특징으로 하는 광학현미경과 전자현미경의 연계 측정을 위한 연계형 이미징 검출장치.Linked imaging detection device for a coordinated measurement of the optical microscope and the electron microscope, characterized in that it further comprises; height adjustment device for adjusting the vertical height of the workstation by supporting the lower surface of the base plate.
  23. 제22항에 있어서,The method of claim 22,
    상기 높이조절장치는 지면의 바닥을 받치는 지면 플레이트;The height adjusting device includes a ground plate supporting the bottom of the ground;
    상기 지면플레이트와 상기 베이스 플레이트 사이에 다수의 링크에 의해 상하 구동되는 절첩부재; 및A folding member driven up and down by a plurality of links between the ground plate and the base plate; And
    상기 절첩부재에 수평하게 나사결합되는 작동축을 삽입하여 상기 절첩부재를 상하 구동시키는 구동레버;를 포함하는 것을 특징으로 하는 광학현미경과 전자현미경의 연계 측정을 위한 연계형 이미징 검출장치.And a driving lever for inserting an operating shaft horizontally screwed into the folding member to drive the folding member up and down. 2.
  24. 시편 그리드를 냉각시키는 전처리 과정을 수행하기 위한 제1항 내지 제16항 중 어느 한 항의 워크 스테이션;17. A work station according to any one of claims 1 to 16 for performing a pretreatment procedure to cool the specimen grid;
    액체질소가 저장되는 냉각기와, 상기 냉각기의 일측으로 연장되어 형성되는 연장관을 포함하며, 전처리 과정 중에는 상기 워크 스테이션에 연결되고, 전처리 과정이 수행된 후에 상기 워크 스테이션으로부터 분리되어 연계 측정을 위한 전자 현미경의 측정부에 삽입되도록 하는 시편 장착 홀더;And an extension tube formed extending to one side of the cooler, connected to the workstation during the pretreatment process, and separated from the workstation after the pretreatment process is performed, for an associated microscope Specimen mounting holder to be inserted into the measuring portion of the;
    상기 워크 스테이션에 의해 전처리된 시편 그리드에 분석 대상을 확인하기 위한 시그널을 측정하는 광학 현미경; 및An optical microscope for measuring a signal for identifying an analyte on a specimen grid preprocessed by the workstation; And
    상기 광학 현미경에 의해 측정된 상기 시그널을 분석하는 전자 현미경; 을 포함하는 광학현미경과 전자현미경의 연계 측정을 위한 연계형 이미징 시스템.An electron microscope for analyzing the signal measured by the optical microscope; Linked imaging system for measurement of the linkage between the optical microscope and the electron microscope comprising a.
  25. 제24항에 있어서,The method of claim 24,
    상기 시편 장착 홀더가 상기 워크 스테이션으로부터 분리되어 상기 전자 현미경의 내부로 삽입되는 동안, 상기 냉각기는 지속적으로 액체질소를 공급하는 것을 특징으로 하는 광학현미경과 전자현미경의 연계 측정을 위한 연계형 이미징 시스템.And the cooler continuously supplies liquid nitrogen while the specimen mounting holder is separated from the workstation and inserted into the interior of the electron microscope.
  26. 광학 현미경 하부의 이격된 위치에, 시편 그리드가 위치될 수 있으며 일측에 외부로 관통되어 형성된 관통공을 포함하는 그리드 수용부가 형성된 워크 스테이션을 위치시키는 단계;Positioning a workstation on which a grid receptacle is formed at a spaced position below the optical microscope, in which a specimen grid may be positioned and a through hole formed through one side;
    상기 관통공을 통해 시편 장착 홀더를 삽입하는 단계;Inserting a specimen mounting holder through the through hole;
    상기 그리드 수용부 내부에 시편 그리드를 위치시킨 후, 냉각시키는 단계;Placing a specimen grid inside the grid receptacle and then cooling;
    상기 냉각된 시편 그리드를 상기 시편 장착 홀더에 위치시키는 단계;Positioning the cooled specimen grid in the specimen mounting holder;
    광학 현미경을 이용하여 상기 냉각된 시편 그리드에 시그널을 형성하는 단계; 및Forming a signal on the cooled specimen grid using an optical microscope; And
    상기 시그널을 형성한 후, 상기 시편 장착 홀더를 상기 워크 스테이션으로부터 분리하는 단계;를 포함하는 광학현미경과 전자현미경을 연계한 이미징 검출 방법.After the signal is formed, separating the specimen mounting holder from the workstation; and an optical microscope and an electron microscope in association with each other.
  27. 제26항에 있어서,The method of claim 26,
    상기 시편 장착 홀더를 상기 워크 스테이션으로부터 분리하는 단계 후, 상기 시편 장착 홀더를 전자현미경으로 투입하여 측정하는 단계;를 더 포함하는 것을 특징으로 하는 광학현미경과 전자현미경을 연계한 이미징 검출 방법.And separating the specimen mounting holder from the work station, and then measuring the specimen mounting holder by using an electron microscope to measure the optical microscope and the electron microscope.
  28. 제26항에 있어서,The method of claim 26,
    상기 냉각된 시편 그리드를 상기 시편 장착 홀더에 위치시키는 단계는 상기 그리드 홀더에서 냉각된 상기 시편 그리드를 핀셋으로 집어서 안착 헤드로 옮기는 것을 특징으로 하는 광학현미경과 전자현미경을 연계한 이미징 검출 방법.The positioning of the cooled specimen grid on the specimen mounting holder comprises: picking the specimen grid cooled from the grid holder with tweezers and transferring the specimen to a seating head.
  29. 제26항에 있어서,The method of claim 26,
    상기 시편 장착 홀더를 상기 그리드 수용부로부터 분리시킨 후, 상기 전자현미경에 의한 측정이 완료될 때까지 상기 시편 장착 홀더에 구비된 냉각기에 의한 액체질소를 상기 시편 그리드에 공급하여 냉각을 유지시키는 것을 특징으로 하는 광학현미경과 전자현미경을 연계한 이미징 검출 방법.After separating the specimen mounting holder from the grid receiving portion, the liquid nitrogen by the cooler provided in the specimen mounting holder is supplied to the specimen grid until the measurement by the electron microscope is completed, to maintain cooling An imaging detection method in which an optical microscope and an electron microscope are used.
PCT/KR2014/007230 2014-08-05 2014-08-05 Work station including sample holder for cryogenic electron microscope for correlative imaging detection of light microscope and electron microscope, correlative imaging detection apparatus including same, and imaging detection method and imaging system using same WO2016021745A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2014/007230 WO2016021745A1 (en) 2014-08-05 2014-08-05 Work station including sample holder for cryogenic electron microscope for correlative imaging detection of light microscope and electron microscope, correlative imaging detection apparatus including same, and imaging detection method and imaging system using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2014/007230 WO2016021745A1 (en) 2014-08-05 2014-08-05 Work station including sample holder for cryogenic electron microscope for correlative imaging detection of light microscope and electron microscope, correlative imaging detection apparatus including same, and imaging detection method and imaging system using same

Publications (1)

Publication Number Publication Date
WO2016021745A1 true WO2016021745A1 (en) 2016-02-11

Family

ID=55264001

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/007230 WO2016021745A1 (en) 2014-08-05 2014-08-05 Work station including sample holder for cryogenic electron microscope for correlative imaging detection of light microscope and electron microscope, correlative imaging detection apparatus including same, and imaging detection method and imaging system using same

Country Status (1)

Country Link
WO (1) WO2016021745A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6410925B1 (en) * 2000-07-31 2002-06-25 Gatan, Inc. Single tilt rotation cryotransfer holder for electron microscopes
US20120024086A1 (en) * 2010-07-28 2012-02-02 Halina Stabacinskiene Cryogenic specimen holder
KR101396420B1 (en) * 2013-12-06 2014-05-20 한국기초과학지원연구원 Cryo-specimen preparation device for correlative microscopy and electron microscope system using thereof
KR101398456B1 (en) * 2013-09-13 2014-05-27 히타치하이테크놀로지즈코리아 주식회사 Specimen holder for observing top section of specimen and method for controlling thereof
JP5522546B2 (en) * 2011-12-19 2014-06-18 コリア ベイシック サイエンス インスティテュート Cryotransfer holder for transmission electron microscope with new structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6410925B1 (en) * 2000-07-31 2002-06-25 Gatan, Inc. Single tilt rotation cryotransfer holder for electron microscopes
US20120024086A1 (en) * 2010-07-28 2012-02-02 Halina Stabacinskiene Cryogenic specimen holder
JP5522546B2 (en) * 2011-12-19 2014-06-18 コリア ベイシック サイエンス インスティテュート Cryotransfer holder for transmission electron microscope with new structure
KR101398456B1 (en) * 2013-09-13 2014-05-27 히타치하이테크놀로지즈코리아 주식회사 Specimen holder for observing top section of specimen and method for controlling thereof
KR101396420B1 (en) * 2013-12-06 2014-05-20 한국기초과학지원연구원 Cryo-specimen preparation device for correlative microscopy and electron microscope system using thereof

Similar Documents

Publication Publication Date Title
WO2019240482A1 (en) Apparatus for in-situ evaluation of properties of oled material and thin film
US6377870B1 (en) Device and method for delivering various transparent substrates into a high-precision measuring instrument
US8516909B2 (en) Cryopreparation chamber for manipulating a sample for electron microscopy
US11125677B2 (en) Systems, devices, and methods for combined wafer and photomask inspection
TW201018893A (en) Variable magnification optics with spray cooling
WO2016182382A1 (en) Station, used for test apparatus, having integrated reaction and detection means
US7502165B2 (en) Arrangement for regulating the temperature of the sample space of a microscope
WO2022250490A1 (en) Micro-particle separation device and micro-particle separation method using same
WO2016021745A1 (en) Work station including sample holder for cryogenic electron microscope for correlative imaging detection of light microscope and electron microscope, correlative imaging detection apparatus including same, and imaging detection method and imaging system using same
EP3441456B1 (en) Cell aspiration support system
KR101529145B1 (en) Work stationcomprising sample holder for cryogenic electron microscopy for correlative imaging detection apparatus in combination of optical microscopy and electron microscopy, correlative imaging detection including said work station, imaging detection method and imaging system by using said work station
WO2015163688A1 (en) Cell smearing apparatus and cell smearing method
KR101672336B1 (en) Correlative microscopy of light microscope and electron microscope using a work station comprising sample holder for cryogenic electron microscopy for correlative imaging detection apparatus in combination of optical microscopy and electron microscopy or correlative imaging detection including said work station
WO2016021860A1 (en) Seed chuck and ingot growing apparatus including same
WO2022039512A1 (en) Multi-channel blood viscosity measuring device
US20230073506A1 (en) Workstation, preparation station and method for manipulating an electron microscopy grid assembly
WO2020197193A1 (en) Immunoassay device and immunoassay method
WO2024034975A1 (en) Automatic cell dispensing device, liquid handling device including same, and automatic cell dispensing method
WO2016125924A1 (en) Sample cooling device and sample cooling method for linked image detection through optical microscope and electron microscope
US11808679B2 (en) Method and apparatus for cryogenic and environmental controlled specimen handling
WO2024085437A1 (en) In-chamber type thin film analysis device
WO2024029737A1 (en) Automatic blood viscosity measurement device
US20240024881A1 (en) Sample carrier for an imaging device
WO2016129791A1 (en) Afm precision measurement method for three-dimensional structure of independent nanostructure, nanostructure scanning device having plurality of afm probes and scanning method using same
WO2023018194A1 (en) Pcr apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14899515

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14899515

Country of ref document: EP

Kind code of ref document: A1