WO2016021583A1 - Liquid crystal display device - Google Patents

Liquid crystal display device Download PDF

Info

Publication number
WO2016021583A1
WO2016021583A1 PCT/JP2015/072052 JP2015072052W WO2016021583A1 WO 2016021583 A1 WO2016021583 A1 WO 2016021583A1 JP 2015072052 W JP2015072052 W JP 2015072052W WO 2016021583 A1 WO2016021583 A1 WO 2016021583A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
liquid crystal
carbon atoms
crystal display
pigment
Prior art date
Application number
PCT/JP2015/072052
Other languages
French (fr)
Japanese (ja)
Inventor
栗山 毅
河村 丞治
近藤 仁
博志 牧
淳一郎 小池
宍倉 正視
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2016520169A priority Critical patent/JP6002998B2/en
Priority to KR1020167035820A priority patent/KR20170003701A/en
Priority to CN201580040424.3A priority patent/CN106537239B/en
Publication of WO2016021583A1 publication Critical patent/WO2016021583A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/12Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings at least two benzene rings directly linked, e.g. biphenyls
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/20Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/42Mixtures of liquid crystal compounds covered by two or more of the preceding groups C09K19/06 - C09K19/40
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers

Definitions

  • the present invention relates to a liquid crystal display device.
  • Liquid crystal display devices are used in various electric appliances for home use, measuring instruments, automotive panels, word processors, electronic notebooks, printers, computers, televisions, etc., including clocks and calculators.
  • Typical liquid crystal display methods include TN (twisted nematic), STN (super twisted nematic), DS (dynamic light scattering), GH (guest / host), and IPS (in-plane switching).
  • Type OCB (optical compensation birefringence) type, ECB (voltage controlled birefringence) type, VA (vertical alignment) type, CSH (color super homeotropic) type, FLC (ferroelectric liquid crystal), etc.
  • As a driving method multiplex driving is generally used instead of conventional static driving, and the active matrix (AM) method driven by a TFT (thin film transistor), TFD (thin film diode) or the like has become mainstream recently. ing.
  • TFT thin film transistor
  • TFD thin film diode
  • a general color liquid crystal display device has a transparent electrode layer (a common electrode) between one alignment film of two substrates (1) each having an alignment film (4) and the substrate. 3a) and a color filter layer (2), a pixel electrode layer (3b) is provided between the other alignment film and the substrate, these substrates are arranged so that the alignment films face each other, and a liquid crystal layer ( 5) is sandwiched.
  • the color filter layer is composed of a color filter composed of a black matrix, a red colored layer (R), a green colored layer (G), a blue colored layer (B), and, if necessary, a yellow colored layer (Y).
  • the liquid crystal material constituting the liquid crystal layer has been subjected to a high degree of management because impurities have a great influence on the electrical characteristics of the display device if the impurities remain in the material.
  • the alignment film directly affects the liquid crystal layer and the impurities remaining in the alignment film move to the liquid crystal layer, thereby affecting the electrical characteristics of the liquid crystal layer. The characteristics of the liquid crystal display device due to the impurities in the alignment film material are being studied.
  • the material such as the organic pigment used for the color filter layer is also assumed to have an influence on the liquid crystal layer due to impurities contained in the same manner as the alignment film material.
  • an alignment film and a transparent electrode are interposed between the color filter layer and the liquid crystal layer, it has been considered that the direct influence on the liquid crystal layer is significantly less than that of the alignment film material.
  • the alignment film is usually only 0.1 ⁇ m or less in thickness, and the common electrode used on the color filter layer side for the transparent electrode is usually 0.5 ⁇ m or less even if the film thickness is increased to increase the conductivity. .
  • the color filter layer and the liquid crystal layer are placed in a completely isolated environment, and the color filter layer is formed by impurities contained in the color filter layer through the alignment film and the transparent electrode.
  • display defects such as white spots due to a decrease in voltage holding ratio (VHR), an increase in ion density (ID), uneven alignment, and burn-in may occur.
  • VHR voltage holding ratio
  • ID ion density
  • burn-in may occur.
  • the elution of impurities into the liquid crystal is controlled by using pigments whose ratio of the extract of ethyl formate is not more than a specific value.
  • Patent Document 1 A method (Patent Document 1) and a method (Patent Document 2) for controlling the elution of impurities into a liquid crystal by specifying a pigment in a blue colored layer have been studied. However, these methods are not significantly different from simply reducing impurities in the pigment, and are insufficient as an improvement to solve display defects even in the current state of progress in pigment purification technology. Met.
  • the difficulty of dissolving the organic impurities in the liquid crystal layer is expressed by the hydrophobic parameter of the liquid crystal molecules contained in the liquid crystal layer. Because of the correlation between the parameter value and the hydrophobic parameter and the —OCF 3 group at the end of the liquid crystal molecule, a liquid crystal compound having —OCF 3 group at the end of the liquid crystal molecule is contained in a certain proportion or more.
  • Patent Document 3 A method for producing a liquid crystal composition.
  • An object of the present invention is to provide a liquid crystal display device that solves the problem of display defects such as unevenness and burn-in.
  • the inventors of the present application have made extensive studies on a combination of a coloring material and the like for constituting a color filter and a structure of a liquid crystal material constituting a liquid crystal layer, and as a result, a liquid crystal material having a specific structure.
  • a liquid crystal display device using a color filter using a pigment and a compound having a specific structure prevents a decrease in voltage holding ratio (VHR) and an increase in ion density (ID) of the liquid crystal layer, and causes white spots and uneven alignment.
  • VHR voltage holding ratio
  • ID ion density
  • the present invention A first substrate; a second substrate; a liquid crystal layer sandwiched between the first substrate and the second substrate; a color filter comprising at least an RGB three-color pixel portion; a pixel electrode and a common electrode And the liquid crystal layer has the general formula (I)
  • R 31 represents an alkyl group having 1 to 10 carbon atoms, an alkoxy group, an alkenyl group having 2 to 10 carbon atoms or an alkenyloxy group
  • M 31 to M 33 are each independently trans-1
  • X 31 and X 32 each independently represent a hydrogen atom or a fluorine atom
  • Z 31 represents a fluorine atom, a trifluoromethoxy group or a trifluoromethyl group
  • n 31 and n 32 each independently represent 0, 1 or 2
  • n 31 + n 32 represents 0, 1 or 2
  • M 1 and M 33 may be in the case of plurality of different be the same.
  • the compounds represented by) contain one or two or more, the general formulas formulas (II-a) (II- f)
  • R 19 to R 30 each independently represent an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, or an alkenyl group having 2 to 10 carbon atoms
  • X 21 represents hydrogen
  • R 1 to R 10 are each independently a hydrogen atom, an alkyl group having 1 to 12 carbon atoms which may be branched, an alkoxy group, —CO 2 — (carboxylate ion group), —CO 2.
  • R 21, -SO 3 - (sulfonic acid ion group), - SO 3 M, .R 21 and R 22 represents an -SO 2 NR 21 R 22 are each independently a hydrogen atom, a branched structure having 1 to 12 carbon atoms Represents a good alkyl group or a cyclic alkyl group having 1 to 10 carbon atoms, and R 21 and R 22 may form a ring structure.
  • R 11 is -CO 2 - (carboxylate ion group), - CO 2 R 21, -SO 3 - ( sulfonic acid ion group), - SO 3 M, represents a -SO 2 NR 23 R 24.
  • R 23 and R 24 each independently represents a hydrogen atom, an alkyl group having 1 to 12 carbon atoms which may be branched, or a cyclic alkyl group having 1 to 10 carbon atoms, and R 23 and R 24 form a ring structure. Also good.
  • M represents a hydrogen atom, a sodium atom or a potassium atom.
  • one or more of R 1 to R 10 are —SO 2 NR 21 R 22 .
  • the liquid crystal display device characterized by containing the xanthene compound represented by this.
  • the liquid crystal display device of the present invention uses a color filter that uses a specific liquid crystal composition, a specific pigment, and a specific compound, thereby reducing the voltage holding ratio (VHR) of the liquid crystal layer and increasing the ion density (ID).
  • VHR voltage holding ratio
  • ID ion density
  • FIG. 1 An example of the liquid crystal display device of the present invention is shown in FIG.
  • a transparent electrode layer (3a) serving as a common electrode, a specific pigment, and a specific pigment between one of the two substrates (1) of the first substrate and the second substrate (1) having the alignment film (4)
  • a color filter layer (2a) containing a specific compound is provided, a pixel electrode layer (3b) is provided between the other alignment film and the substrate, and these substrates are arranged so that the alignment films face each other.
  • a liquid crystal layer (5a) containing a specific liquid crystal composition is sandwiched.
  • the two substrates in the display device are bonded together by a sealing material and a sealing material disposed in the peripheral region, and in many cases, formed by a granular spacer or a photolithography method in order to maintain a distance between the substrates.
  • Spacer pillars made of the prepared resin are arranged.
  • liquid crystal layer in the liquid crystal display device of the present invention has the general formula (I)
  • R 31 represents an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, or an alkenyloxy group having 2 to 10 carbon atoms
  • M 31 to M 33 each independently represent a trans-1,4-cyclohexylene group or a 1,4-phenylene group, and one or two —CH in the trans-1,4-cyclohexylene group 2 — may be substituted with —O— so that the oxygen atom is not directly adjacent, and one or two hydrogen atoms in the phenylene group may be substituted with a fluorine atom
  • X 31 and X 32 independently represents a hydrogen atom or a fluorine atom
  • Z 31 represents a fluorine atom, a trifluoromethoxy group or a trifluoromethyl group
  • n 31 and n 32 represent 0, 1 or 2 independently of each other.
  • R 19 to R 30 each independently represent an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, or an alkenyl group having 2 to 10 carbon atoms
  • X 21 represents hydrogen
  • R 31 when the ring structure to which R 31 is bonded is a phenyl group (aromatic), R 31 is a linear alkyl group having 1 to 5 carbon atoms or a linear number of carbon atoms. 1 to 4 (or more) alkoxy groups and alkenyl groups having 4 to 5 carbon atoms are preferred, and when the ring structure to which they are bonded is a saturated ring structure such as cyclohexane, pyran and dioxane, linear Are preferably an alkyl group having 1 to 5 carbon atoms, a linear alkoxy group having 1 to 4 carbon atoms (or more) and a linear alkenyl group having 2 to 5 carbon atoms.
  • R 31 is preferably an alkyl group. Further, if it is important to make a liquid crystal display device having a low viscosity and a high response speed, R 31 is preferably an alkenyl group. Further, for the purpose of further shortening the response speed with a low viscosity and a high nematic-isotropic phase transition temperature (Tni), it is preferable to use an alkenyl group whose terminal is not an unsaturated bond. It is particularly preferred that the methyl group is adjacent to the end. Further, if importance is attached to good solubility at low temperatures, as one solution, R 31 is preferably an alkoxy group. As another solution, it is preferable to use many types of R 31 in combination.
  • R 31 a compound having an alkyl group or an alkenyl group having 2, 3 and 4 carbon atoms is preferably used in combination, and a compound having 3 or 5 carbon atoms is preferably used in combination. It is preferable to use compounds 4 and 5 in combination.
  • M 31 to M 33 are
  • M 31 is,
  • M 32 is,
  • M 33 is
  • At least one of X 31 and X 32 is preferably a fluorine atom, more preferably both are fluorine atoms.
  • Z 31 is preferably a fluorine atom or a trifluoromethoxy group.
  • X 31 , X 32 and Z 31 F.
  • n 31 is preferably 1 or 2
  • n 32 is preferably 0 or 1, more preferably 0, and n 31 + n 32 is preferably 1 or 2, and more preferably 2.
  • the compound represented by the general formula (I) is preferably a compound represented by the following general formula (Ia) to general formula (If).
  • R 32 represents an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, or an alkenyloxy group having 2 to 10 carbon atoms
  • X 31 to X 38 each independently represent a hydrogen atom or a fluorine atom
  • Z 31 represents a fluorine atom, a trifluoromethoxy group or a trifluoromethyl group.
  • R 32 is a straight-chain alkyl group having 1 to 5 carbon atoms and a straight chain when the ring structure to which R 32 is bonded is a phenyl group (aromatic).
  • a chain-like alkoxy group having 1 to 4 (or more) carbon atoms and an alkenyl group having 4 to 5 carbon atoms are preferred, and the ring structure to which they are bonded is a saturated ring structure such as cyclohexane, pyran and dioxane Includes a straight-chain alkyl group having 1 to 5 carbon atoms, a straight-chain alkoxy group having 1 to 4 (or more) carbon atoms and a straight-chain alkenyl group having 2 to 5 carbon atoms. preferable.
  • R 31 is preferably an alkyl group. Further, if it is important to make a liquid crystal display device having a low viscosity and a high response speed, R 31 is preferably an alkenyl group. Further, for the purpose of further shortening the response speed with a low viscosity and a high nematic-isotropic phase transition temperature (Tni), it is preferable to use an alkenyl group whose terminal is not an unsaturated bond. It is particularly preferred that the methyl group is adjacent to the end. Further, if importance is attached to good solubility at low temperatures, as one solution, R 31 is preferably an alkoxy group. As another solution, it is preferable to use many types of R 31 in combination.
  • R 31 a compound having an alkyl group or an alkenyl group having 2, 3 and 4 carbon atoms is preferably used in combination, and a compound having 3 or 5 carbon atoms is preferably used in combination. It is preferable to use compounds 4 and 5 in combination.
  • At least one of X 31 and X 32 is preferably a fluorine atom, more preferably both are fluorine atoms.
  • Z 31 is preferably a fluorine atom or a trifluoromethoxy group.
  • X 31 , X 32 and Z 31 F.
  • n 31 is preferably 1 or 2
  • n 32 is preferably 0 or 1
  • n 31 + n 32 is preferably 1 or 2, and more preferably 2.
  • At least one of X 33 and X 34 is preferably a fluorine atom, and more preferably both are fluorine atoms.
  • At least one of X 35 and X 36 is preferably a fluorine atom, and the fact that both are fluorine atoms is effective in increasing ⁇ , but it is effective for Tni, solubility at low temperatures and liquid crystal display elements. From the viewpoint of chemical stability. At least one of X 37 and X 38 is preferably a hydrogen atom, and preferably both of them are hydrogen atoms. When at least one of X 37 and X 38 is a fluorine atom, it is not preferable from the viewpoint of Tni, solubility at low temperature, and chemical stability when a liquid crystal display device is formed.
  • the compound group represented by the general formula (I) preferably contains 1 to 8 types, particularly preferably 1 to 5 types, and the content thereof is preferably 3 to 50% by mass, More preferably, it is 5 to 40% by mass.
  • R 19 to R 30 are linear alkyl groups having 1 to 5 carbon atoms when the ring structure to which they are bonded is a phenyl group (aromatic).
  • Alkenyl groups are preferred.
  • R 19 to R 30 are preferably alkyl groups.
  • R 19 to R 30 are preferably alkenyl groups.
  • R 19 to R 30 it is preferable to use many types of R 19 to R 30 in combination.
  • R 19 to R 30 a compound having an alkyl group or an alkenyl group having 2, 3 and 4 carbon atoms is preferably used in combination, and a compound having 3 or 5 carbon atoms is preferably used in combination. It is preferable to use the compounds of formulas 3, 4 and 5 in combination.
  • R 19 to R 20 are preferably an alkyl group or an alkoxy group, and at least one of them is preferably an alkoxy group. More preferably, R 19 is an alkyl group and R 20 is an alkoxy group. More preferably, R 19 is an alkyl group having 3 to 5 carbon atoms, and R 20 is an alkoxy group having 1 to 2 carbon atoms.
  • R 21 to R 22 are preferably an alkyl group or an alkenyl group, and at least one of them is preferably an alkenyl group. In the case where both are alkenyl groups, they are preferably used to increase the response speed, but are not preferable when it is desired to improve the chemical stability of the liquid crystal display element.
  • At least one of R 23 to R 24 is preferably an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, or an alkenyl group having 4 to 5 carbon atoms. If a good balance between the response speed and Tni is required, at least one of R 23 to R 24 is preferably an alkenyl group. If a good balance between the response speed and solubility at low temperature is required, R 23 to At least one of R 24 is preferably an alkoxy group.
  • At least one of R 25 to R 26 is preferably an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, or an alkenyl group having 2 to 5 carbon atoms.
  • R 25 ⁇ R 26 is an alkenyl group
  • R 25 ⁇ At least one of R 26 is preferably an alkoxy group. More preferably, R 25 is an alkenyl group and R 26 is an alkyl group. It is also preferred that R 25 is an alkyl group and R 26 is an alkoxy group.
  • At least one of R 27 to R 28 is preferably an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, or an alkenyl group having 2 to 5 carbon atoms.
  • R 27 ⁇ R 28 is an alkenyl group
  • R 27 ⁇ At least one of R 28 is preferably an alkoxy group. More preferably, R 27 is an alkyl group or an alkenyl group, and R 28 is an alkyl group. It is also preferred that R 27 is an alkyl group and R 28 is an alkoxy group. Furthermore, it is particularly preferred that R 27 is an alkyl group and R 28 is an alkyl group.
  • X 21 is preferably a fluorine atom.
  • At least one of R 29 to R 30 is preferably an alkyl group having 1 to 5 carbon atoms or an alkenyl group having 4 to 5 carbon atoms. If a good balance between response speed and Tni is required, at least one of R 29 to R 30 is preferably an alkenyl group, and if high reliability is required, at least one of R 29 to R 30 is an alkyl group. It is preferable that More preferably, R 29 is an alkyl group or an alkenyl group, and R 30 is an alkyl group or an alkenyl group. It is also preferred that R 29 is an alkyl group and R 30 is an alkenyl group. Furthermore, it is also preferred that R 29 is an alkyl group and R 30 is an alkyl group.
  • the compound group represented by the general formula (II-a) to the general formula (II-f) preferably contains 1 to 10 types, particularly preferably 1 to 8 types, and its content is 5 It is preferably ⁇ 80 mass%, more preferably 10 to 70 mass%, and particularly preferably 20 to 60 mass%.
  • the liquid crystal layer in the liquid crystal display device of the present invention may further have the general formula (III-a) to the general formula (III-f)
  • R 41 represents an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, or an alkenyloxy group having 2 to 10 carbon atoms
  • X 41 to X 48 each independently represent a hydrogen atom or a fluorine atom
  • Z 41 represents a fluorine atom, a trifluoromethoxy group or a trifluoromethyl group.
  • R 41 is a straight-chain alkyl group having 1 to 5 carbon atoms and a straight chain when the ring structure to which R 41 is bonded is a phenyl group (aromatic).
  • a chain-like alkoxy group having 1 to 4 (or more) carbon atoms and an alkenyl group having 4 to 5 carbon atoms are preferred, and the ring structure to which they are bonded is a saturated ring structure such as cyclohexane, pyran and dioxane Includes a straight-chain alkyl group having 1 to 5 carbon atoms, a straight-chain alkoxy group having 1 to 4 (or more) carbon atoms and a straight-chain alkenyl group having 2 to 5 carbon atoms. preferable.
  • R 41 is preferably an alkyl group. Further, if it is important to make a liquid crystal display device having a low viscosity and a high response speed, R 41 is preferably an alkenyl group. Further, for the purpose of further shortening the response speed with a low viscosity and a high nematic-isotropic phase transition temperature (Tni), it is preferable to use an alkenyl group whose terminal is not an unsaturated bond. It is particularly preferred that the methyl group is adjacent to the end. Moreover, if importance is attached to good solubility at low temperature, as one solution, R 41 is preferably an alkoxy group.
  • R 41 it is preferable to use many types of R 41 in combination.
  • R 41 it is preferable to use a compound having an alkyl group or an alkenyl group having 2, 3 and 4 carbon atoms, preferably a compound having 3 and 5 carbon atoms is preferably used in combination, It is preferable to use compounds 4 and 5 in combination.
  • At least one of X 41 and X 42 is preferably a fluorine atom, more preferably both are fluorine atoms.
  • Z 41 is preferably a fluorine atom or a trifluoromethoxy group.
  • X 41 , X 42 and Z 41 F.
  • X 43 and X 44 at least one of them is preferably a fluorine atom, and both of them are preferably a fluorine atom in order to obtain a large ⁇ .
  • both of them are preferably a fluorine atom in order to obtain a large ⁇ .
  • At least one of X 45 and X 46 is preferably a hydrogen atom, and preferably both of them are hydrogen atoms.
  • the heavy use of fluorine atoms is not preferable from the viewpoints of Tni, solubility at low temperatures, and chemical stability when a liquid crystal display device is formed.
  • At least one of X 47 and X 48 is preferably a hydrogen atom, and preferably both are hydrogen atoms.
  • the compound selected from the group of compounds represented by general formula (III-a) to general formula (III-f) preferably contains 1 to 10 types, more preferably 1 to 8 types, The content is preferably 5 to 50% by mass, and more preferably 10 to 40% by mass.
  • ⁇ at 25 ° C. is preferably +3.5 or more, more preferably +3.5 to +15.0.
  • ⁇ n at 25 ° C. is preferably 0.08 to 0.14, and more preferably 0.09 to 0.13. More specifically, when it corresponds to a thin cell gap, it is preferably 0.10 to 0.13, and when it corresponds to a thick cell gap, it is preferably 0.08 to 0.10.
  • the ⁇ at 20 ° C. is preferably 10 to 45 mPa ⁇ s, more preferably 10 to 25 mPa ⁇ s, and particularly preferably 10 to 20 mPa ⁇ s.
  • T ni is preferably 60 ° C. to 120 ° C., more preferably 70 ° C. to 100 ° C., and particularly preferably 70 ° C. to 85 ° C.
  • the liquid crystal composition in the present invention may contain a normal nematic liquid crystal, a smectic liquid crystal, a cholesteric liquid crystal and the like in addition to the above-described compounds.
  • the liquid crystal composition in the present invention may contain one or more polymerizable compounds in order to produce a liquid crystal display element such as a PS mode, a transverse electric field type PSA mode, or a transverse electric field type PSVA mode.
  • the polymerizable compound that can be used include a photopolymerizable monomer that undergoes polymerization by energy rays such as light.
  • the structure has, for example, a liquid crystal skeleton in which a plurality of six-membered rings such as biphenyl derivatives and terphenyl derivatives are connected. Examples thereof include a polymerizable compound. More specifically, the general formula (V)
  • X 51 and X 52 each independently represent a hydrogen atom or a methyl group
  • Sp 1 and Sp 2 are each independently a single bond, an alkylene group having 1 to 8 carbon atoms, or —O— (CH 2 ) s —
  • Z 51 represents —OCH 2 —, —CH 2 O—, —COO—, —OCO—, —CF 2 O—, —OCF 2 —, —CH 2 CH.
  • M 51 represents a 1,4-phenylene group, a trans-1,4-cyclohexylene group or a single bond, and all 1,4-phenylene groups in the formula have an arbitrary hydrogen atom substituted by a fluorine atom. Also good. ) Is preferred.
  • X 51 and X 52 are each preferably a diacrylate derivative that represents a hydrogen atom, or a dimethacrylate derivative that has a methyl group, and a compound in which one represents a hydrogen atom and the other represents a methyl group.
  • the polymerization rate of these compounds is the fastest for diacrylate derivatives, slow for dimethacrylate derivatives, and intermediate for asymmetric compounds, and a preferred embodiment can be used depending on the application.
  • a dimethacrylate derivative is particularly preferable.
  • Sp 1 and Sp 2 each independently represent a single bond, an alkylene group having 1 to 8 carbon atoms or —O— (CH 2 ) s —, but at least one of them is a single bond in a PSA display element.
  • a compound in which both represent a single bond or one in which one represents a single bond and the other represents an alkylene group having 1 to 8 carbon atoms or —O— (CH 2 ) s — is preferable.
  • 1 to 4 alkyl groups are preferable, and s is preferably 1 to 4.
  • Z 51 is —OCH 2 —, —CH 2 O—, —COO—, —OCO—, —CF 2 O—, —OCF 2 —, —CH 2 CH 2 —, —CF 2 CF 2 — or a single bond
  • M 51 represents a 1,4-phenylene group, a trans-1,4-cyclohexylene group or a single bond in which any hydrogen atom may be substituted by a fluorine atom.
  • C represents a ring structure other than a single bond
  • Z 51 is preferably a linking group other than a single bond.
  • Z 51 is preferably a single bond.
  • the ring structure between Sp 1 and Sp 2 is specifically preferably the structure described below.
  • the following formulas (Va-1) to (Va-5) are preferable. It is more preferable to represent (Va-1) to formula (Va-3), and it is particularly preferable to represent formula (Va-1).
  • both ends shall be bonded to Sp 1 or Sp 2.
  • the polymerizable compounds containing these skeletons are optimal for PSA-type liquid crystal display elements because of their alignment restriction power after polymerization, and a good alignment state is obtained, so that display unevenness is suppressed or does not occur at all.
  • the general formula (V-1) to the general formula (V-4) are particularly preferable, and the general formula (V-2) is most preferable.
  • the polymerization proceeds even when no polymerization initiator is present, but may contain a polymerization initiator in order to accelerate the polymerization.
  • the polymerization initiator include benzoin ethers, benzophenones, acetophenones, benzyl ketals, acylphosphine oxides, and the like.
  • the liquid crystal composition containing the polymerizable compound in the present invention is provided with liquid crystal alignment ability by polymerization of the polymerizable compound contained therein by ultraviolet irradiation, and transmits light through the birefringence of the liquid crystal composition. It is used in a liquid crystal display element that controls As liquid crystal display elements, AM-LCD (active matrix liquid crystal display element), TN (nematic liquid crystal display element), STN-LCD (super twisted nematic liquid crystal display element), OCB-LCD and IPS-LCD (in-plane switching liquid crystal display element) However, it is particularly useful for AM-LCDs and can be used for transmissive or reflective liquid crystal display elements.
  • the color filter according to the present invention includes at least an RGB three-color pixel portion.
  • the following general formula (1) is used as a color material.
  • R 1 to R 10 are each independently a hydrogen atom, an alkyl group having 1 to 12 carbon atoms which may be branched, an alkoxy group, —CO 2 — (carboxylate ion group), —CO 2.
  • R 21, -SO 3 - (sulfonic acid ion group), - SO 3 M, .R 21 and R 22 represents an -SO 2 NR 21 R 22 are each independently a hydrogen atom, a branched structure having 1 to 12 carbon atoms Represents a good alkyl group or a cyclic alkyl group having 1 to 10 carbon atoms, and R 21 and R 22 may form a ring structure.
  • R 11 is -CO 2 - (carboxylate ion group), - CO 2 R 21, -SO 3 - ( sulfonic acid ion group), - SO 3 M, represents a -SO 2 NR 23 R 24.
  • R 23 and R 24 each independently represents a hydrogen atom, an alkyl group having 1 to 12 carbon atoms which may be branched, or a cyclic alkyl group having 1 to 10 carbon atoms, and R 23 and R 24 form a ring structure. Also good.
  • M represents a hydrogen atom, a sodium atom or a potassium atom.
  • R 1 to R 10 are —SO 2 NR 21 R 22 .
  • the xanthene compound represented by this is contained. Especially, it is preferable to contain the xanthene compound represented by the said General formula (1) in at least 1 pixel part of R pixel part and B pixel part.
  • the RGB three-color pixel portion includes, as coloring materials, a diketopyrrolopyrrole pigment and / or an anionic red organic dye in the R pixel portion, a metal halide phthalocyanine pigment, a phthalocyanine green dye, and a phthalocyanine in the G pixel portion. It is preferable that at least one selected from the group consisting of a mixture of a blue-based dye and an azo-based yellow organic dye contains an ⁇ -type phthalocyanine pigment or a cationic blue organic dye in the B pixel portion.
  • the alkyl groups represented by R 1 to R 10 are methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group.
  • Examples of the alkyl group represented by R 21 and R 22 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a pentyl group, a hexyl group, and a heptyl group.
  • Examples of the C1-C10 cyclic alkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, a 2-cyclohexylethyl group, and the like.
  • R 21 and R 22 is preferably other than hydrogen.
  • R 11 is -CO 2 - (carboxylate ion group), - CO 2 R 21, -SO 3 - ( sulfonic acid ion group), - SO 3 M, represents a -SO 2 NR 23 R 24.
  • R 23 and R 24 each independently represents a hydrogen atom, an alkyl group having 1 to 12 carbon atoms which may be branched, or a cyclic alkyl group having 1 to 10 carbon atoms, and R 23 and R 24 form a ring structure. Also good.
  • Examples of the alkyl group represented by R 23 and R 24 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a pentyl group, a hexyl group, and a heptyl group.
  • Examples of the C1-C10 cyclic alkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, a cyclohexylmethyl group, and the like.
  • a cyclopentyl group, a cyclohexyl group, a cyclohexyl group, and the like can be given.
  • a heptyl group, a cyclooctyl group, and a 2-cyclohexylethyl group are preferable.
  • R 23 and R 24 is preferably other than hydrogen.
  • Specific examples of the xanthene compound represented by the general formula (1) include, for example, the compounds described below, but the present invention is not limited to these unless it exceeds the gist.
  • Ra dodecyl
  • R a 2-ethylhexyl
  • R a 2-cyclohexylethyl
  • R a 2-ethylhexyl
  • R b 2-ethylhexyl
  • R a decyl
  • R b decyl
  • R a dodecyl
  • R a 2-ethylhexyl
  • R a 2-cyclohexylethyl
  • R a 2-ethylhexyl
  • R b 2-ethylhexyl
  • No.15: R a decyl
  • R b decyl
  • the G pixel portion preferably contains at least one selected from the group consisting of metal halide phthalocyanine pigments, phthalocyanine green dyes, and mixtures of phthalocyanine blue dyes and azo yellow organic dyes.
  • the metal halide phthalocyanine pigment is selected from the group consisting of Al, Si, Sc, Ti, V, Mg, Fe, Co, Ni, Zn, Cu, Ga, Ge, Y, Zr, Nb, In, Sn and Pb.
  • Metal halide phthalocyanine pigments that are bonded together are preferred. Examples of the metal halide phthalocyanine pigment include the following two groups of metal halide phthalocyanine pigments.
  • (First group) It has a metal selected from the group consisting of Al, Si, Sc, Ti, V, Mg, Fe, Co, Ni, Zn, Cu, Ga, Ge, Y, Zr, Nb, In, Sn, and Pb as a central metal.
  • a halogenated metal phthalocyanine pigment in which 8 to 16 halogen atoms per phthalocyanine molecule are bonded to the benzene ring of the phthalocyanine molecule, and when the central metal is trivalent, the central metal has one halogen atom
  • the central metal when a hydroxyl group or a sulfonic acid group (—SO 3 H) is bonded and the central metal is a tetravalent metal, the central metal has one oxygen atom or two halogens which may be the same or different.
  • a halogenated metal phthalocyanine pigment to which any one of an atom, a hydroxyl group and a sulfonic acid group is bonded.
  • all the halogen atoms bonded to the benzene ring may be the same or different. Different halogen atoms may be bonded to one benzene ring.
  • the halogenated metal phthalocyanine pigment in which 9 to 15 bromine atoms out of 8 to 16 halogen atoms per phthalocyanine molecule are bonded to the benzene ring of the phthalocyanine molecule exhibits a yellowish bright green color, It is most suitable for use in the green pixel portion of the color filter.
  • the metal halide phthalocyanine pigment is insoluble or hardly soluble in water or an organic solvent.
  • the halogenated metal phthalocyanine pigment includes both a pigment that has not been subjected to a finishing treatment described later (also referred to as a crude pigment) and a pigment that has been subjected to a finishing treatment.
  • halogenated metal phthalocyanine pigments belonging to the first group and the second group can be represented by the following general formula (PIG-1).
  • the metal halide phthalocyanine pigments belonging to the first group are as follows.
  • X 1 to X 16 each represents a hydrogen atom, a chlorine atom, a bromine atom, or an iodine atom.
  • the four X atoms bonded to one benzene ring may be the same or different.
  • 8 to 16 are chlorine, bromine or iodine atoms.
  • M represents a central metal.
  • a pigment having a total of less than 8 chlorine atoms, bromine atoms and iodine atoms out of 16 X 1 to X 16 is blue.
  • the total of chlorine atom, bromine atom and iodine atom is 8 or more, and the yellow color becomes stronger as the total value is larger.
  • Y bonded to the central metal M is a monovalent atomic group selected from the group consisting of a halogen atom of any one of fluorine, chlorine, bromine or iodine, an oxygen atom, a hydroxyl group and a sulfonic acid group, and m is bonded to the central metal M.
  • a halogen atom of any one of fluorine, chlorine, bromine or iodine an oxygen atom
  • a hydroxyl group and a sulfonic acid group bonded to the central metal M.
  • m The value of m is determined by the valence of the central metal M.
  • One of the groups is attached to the central metal.
  • the central metal M is divalent like Mg, Fe, Co, Ni, Zn, Cu, Zr, Sn, Pb, Y does not exist.
  • the halogenated metal phthalocyanine pigment belonging to the second group is as follows in the general formula (PIG-1).
  • X 1 to X 16 are as defined above, and the central metal M represents a trivalent metal selected from the group consisting of Al, Sc, Ga, Y and In, m represents 1.
  • Y represents the following atomic group.
  • the central metal M has the same definition as described above, and X 17 to X 32 have the same definition as X 1 to X 16 in the general formula (PIG-1).
  • A represents a divalent atomic group selected from the group consisting of an oxygen atom, a sulfur atom, sulfinyl (—SO—) and sulfonyl (—SO 2 —).
  • M in the general formula (PIG-1) and M in the atomic group Y are bonded via the divalent atomic group A. That is, the metal halide phthalocyanine pigment belonging to the second group is a metal halide phthalocyanine dimer in which two molecules of metal halide phthalocyanine are constituent units and these are bonded via the divalent atomic group.
  • halogenated metal phthalocyanine pigment represented by the general formula (PIG-1) include the following (1) to (4).
  • chlorinated brominated zinc phthalocyanine pigments include C.I. I. Pigment Green 58, particularly preferred.
  • a halogenated metal phthalocyanine pigment having any of the groups and having 8 to 16 halogen atoms bonded to 4 benzene rings per phthalocyanine molecule.
  • the center metal has a tetravalent metal selected from the group consisting of Si, Ti, V, Ge, Zr and Sn, such as halogenated oxytitanium phthalocyanine and halogenated oxyvanadium phthalocyanine. 8 to 16 halogen atoms bonded to four benzene rings per one phthalocyanine molecule, having one oxygen atom or two halogen atoms which may be the same or different, a hydroxyl group or a sulfonic acid group Halogenated metal phthalocyanine pigment.
  • a tetravalent metal selected from the group consisting of Si, Ti, V, Ge, Zr and Sn, such as halogenated oxytitanium phthalocyanine and halogenated oxyvanadium phthalocyanine. 8 to 16 halogen atoms bonded to four benzene rings per one phthalocyanine molecule, having one oxygen atom or two halogen atoms which may be the same or different
  • a halogenated ⁇ -oxo-aluminum phthalocyanine dimer and a halogenated ⁇ -thio-aluminum phthalocyanine dimer.
  • the valence metal is the central metal
  • the halogenated metal phthalocyanine is composed of two molecules of 8-16 halogen atoms bonded to 4 benzene rings per phthalocyanine molecule. Each central metal of these structural units is an oxygen atom.
  • a pigment comprising a metal halide phthalocyanine dimer bonded through a divalent atomic group selected from the group consisting of sulfur atom, sulfinyl and sulfonyl.
  • the metal halide phthalocyanine pigment include C.I. I. One or more selected from Pigment Green 7, 36 and 58 are preferred, and one or two selected from Green 36 and 58 are more preferred.
  • Specific examples of the phthalocyanine green dye include C.I. I. One or more selected from Solvent Green 4, 5, 7, and 28 are preferred.
  • Specific examples of phthalocyanine blue dyes include C.I. I. Solvent Blue 4, 5, 25, 35, 36, 38, 58, 59, 67 and 70 are preferred, and Blue 25, 38, 67 are preferred. And one or more selected from 70 are more preferred.
  • Specific examples of the azo yellow organic dye include C.I. I. Solvent Yellow 2, 4, 14, 16, 18, 21, 56, 72, 82, 124, 162, and 163 are preferred, preferably Yellow 82 And one or two selected from 162 are more preferred.
  • the R pixel portion preferably contains a diketopyrrolopyrrole pigment and / or an anionic red organic dye.
  • a diketopyrrolopyrrole pigment include C.I. I. One or two or more selected from Pigment Red 254, 255, 264, 272, Orange 71 and 73 are preferred, and one or more selected from Red 254, 255, 264 and 272 Is more preferred, and C.I. I. Pigment Red 254 is particularly preferred.
  • Specific examples of the anionic red organic dye include C.I. I. One or more selected from Solvent Red 124, Acid Red 52 and 289 are preferred. I. Solvent Red 124 is particularly preferred.
  • the B pixel portion preferably contains an ⁇ -type phthalocyanine pigment or a cationic blue organic dye.
  • an ⁇ -type phthalocyanine pigment Pigment Blue 15: 6 is preferable, and as the cationic blue organic dye, a triarylmethane-based dye is preferably contained.
  • the RGB three-color pixel portion is a color material that contains C.I. I. Solvent Red 124 in the G pixel portion.
  • I. Solvent Blue 67 and C.I. I. Solvent Yellow 82 or a mixture thereof with 162 contains Pigment Blue 15: 6 in the B pixel portion, and the xanthene compound represented by the general formula (1) in the R pixel portion and / or the B pixel portion. It is preferable to contain.
  • the RGB three-color pixel portion includes C.I. I. Pigment Red 254 in the G pixel portion. I.
  • the RGB three-color pixel portion further includes C.I. I. Pigment Red 177, 242, 166, 167, 179, C.I. I. Pigment Orange 38, 71, C.I. I. Pigment Yellow 150, 215, 185, 138, 139, C.I. I. Acid Red 52, C.I. I. Basic Red 1, C.I. I. Solvent Red 89, C.I. I. Solvent Orange 56, C.I. I. It is preferable to contain at least one organic dye / pigment selected from the group consisting of Solvent Yellow 21, 82, 83: 1, 33 and 162.
  • the RGB three-color pixel portion is further provided with C.I. I. Pigment Yellow 150, 215, 185, 138, C.I. I. It is preferable to contain at least one organic dye / pigment selected from the group consisting of Solvent Yellow 21, 82, 83: 1 and 33.
  • the RGB three-color pixel portion further includes C.I. I. Pigment Violet 23, C.I. I. Basic Violet 10, C.I. I. Acid Blue 1, 90, 83, C.I. I. Direct Blue 86, C.I. I. It is preferable to contain at least one organic dye / pigment selected from the group consisting of Pigment Blue 15, 15: 1, 15: 2, 15: 3 and 15: 4.
  • the color filter is composed of at least an RGB three-color pixel portion and a Y pixel portion.
  • the color filter may have a black matrix.
  • the chromaticity x and chromaticity y in the XYZ color system under the C light source of each pixel portion prevent a decrease in voltage holding ratio (VHR) and an increase in ion density (ID) of the liquid crystal layer. From the viewpoint of suppressing the occurrence of display defect problems such as white spots, uneven alignment, and baking, the following are preferable.
  • the chromaticity x in the XYZ color system under the C light source of the R pixel portion is preferably 0.58 to 0.69, more preferably 0.62 to 0.68, and the chromaticity y is 0.
  • .30 to 0.36 is preferable, 0.31 to 0.35 is more preferable, chromaticity x is 0.58 to 0.69, and chromaticity y is 0.30 to 0. More preferably, the chromaticity x is 0.62 to 0.68, and the chromaticity y is more preferably 0.31 to 0.35.
  • the chromaticity x in the XYZ color system under the C light source of the G pixel portion is preferably 0.19 to 0.35, more preferably 0.20 to 0.26, and the chromaticity y is 0. .54 to 0.76 is preferred, 0.64 to 0.74 is more preferred, chromaticity x is 0.19 to 0.35, and chromaticity y is 0.54 to 0. More preferably, the chromaticity x is 0.20 to 0.26, and the chromaticity y is 0.64 to 0.74.
  • the chromaticity x in the XYZ color system under the C light source of the B pixel portion is preferably 0.12 to 0.20, more preferably 0.13 to 0.19, and the chromaticity y is 0. 0.01 to 0.16 is preferable, 0.03 to 0.09 is more preferable, chromaticity x is 0.12 to 0.20, and chromaticity y is 0.01 to 0. More preferably, the chromaticity x is 0.13 to 0.19, and the chromaticity y is 0.03 to 0.09.
  • the chromaticity x in the XYZ color system under the C light source of the Y pixel portion is preferably 0.46 to 0.50, more preferably 0.47 to 0.48, and the chromaticity y is 0. .48 to 0.53 is preferable, 0.50 to 0.52 is more preferable, chromaticity x is 0.46 to 0.50, and chromaticity y is 0.48 to 0. More preferably, the chromaticity x is 0.47 to 0.48, and the chromaticity y is 0.50 to 0.52.
  • the XYZ color system means a color system approved as a standard color system by the CIE (International Lighting Commission) in 1931.
  • the chromaticity in each of the pixel portions can be adjusted by changing the type of dye / pigment used and the mixing ratio thereof.
  • a yellow dye and / or orange pigment is used as the red dye / pigment
  • the yellow dye / pigment is used as the green dye / pigment
  • a purple dye or yellowish dye is used as the blue dye / pigment. It is possible to adjust by adding an appropriate amount of the blue dye / pigment. It can also be adjusted by appropriately adjusting the particle size of the pigment.
  • the color filter can form the color filter pixel portion by a conventionally known method.
  • a typical method for forming the pixel portion is a photolithography method, which applies and heats a photocurable composition to be described later on the surface of the transparent substrate for the color filter provided with the black matrix. After drying (pre-baking), pattern exposure is performed by irradiating ultraviolet rays through a photomask to cure the photo-curable compound at the location corresponding to the pixel portion, and then developing the unexposed portion with a developer. In this method, the non-pixel portion is removed and the pixel portion is fixed to the transparent substrate. In this method, a pixel portion made of a cured colored film of a photocurable composition is formed on a transparent substrate.
  • a photocurable composition to be described later is prepared for each pixel of other colors such as an R pixel, a G pixel, a B pixel, and a Y pixel as necessary.
  • a color filter having colored pixel portions of pixels, G pixels, B pixels, and Y pixels can be manufactured.
  • Examples of a method for applying a photocurable composition described later on a transparent substrate such as glass include a spin coating method, a slit coating method, a roll coating method, and an ink jet method.
  • the drying conditions of the coating film of the photocurable composition applied to the transparent substrate are usually about 50 to 150 ° C. for about 1 to 15 minutes, although it varies depending on the type of each component, the blending ratio and the like.
  • the light used for photocuring the photocurable composition it is preferable to use ultraviolet rays or visible light in the wavelength range of 200 to 500 nm. Various light sources that emit light in this wavelength range can be used.
  • Examples of the developing method include a liquid piling method, a dipping method, and a spray method.
  • the transparent substrate on which the necessary color pixel portion is formed is washed with water and dried.
  • the color filter thus obtained is subjected to a heat treatment (post-baking) at 90 to 280 ° C. for a predetermined time by a heating device such as a hot plate or an oven, thereby removing volatile components in the colored coating film and simultaneously applying light.
  • the unreacted photocurable compound remaining in the cured colored film of the curable composition is thermally cured to complete the color filter.
  • the color material for a color filter of the present invention By using the color material for a color filter of the present invention with the liquid crystal composition of the present invention, the voltage holding ratio (VHR) of the liquid crystal layer is reduced and the ion density (ID) is prevented from being increased. It is possible to provide a liquid crystal display device that solves the problem of display defects such as baking.
  • the color filter pigment composition of the present invention an organic solvent and a dispersant are used as essential components, and these are mixed and stirred and dispersed so as to be uniform.
  • a photocurable compound and, if necessary, a thermoplastic resin or a photopolymerization initiator are added to the photocurable composition. A method of forming a composition is common.
  • organic solvent used here examples include aromatic solvents such as toluene, xylene, methoxybenzene, ethyl acetate, propyl acetate, butyl acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, diethylene glycol methyl ether acetate.
  • aromatic solvents such as toluene, xylene, methoxybenzene, ethyl acetate, propyl acetate, butyl acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, diethylene glycol methyl ether acetate.
  • Acetate solvents such as diethylene glycol ethyl ether acetate, diethylene glycol propyl ether acetate, diethylene glycol butyl ether acetate, propionate solvents such as ethoxyethyl propionate, alcohol solvents such as methanol and ethanol, butyl cellosolve, propylene glycol monomethyl ether, diethylene glycol ethyl Ether, diethylene glycol dimethyl ether Ether solvents such as tellurium, ketone solvents such as methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone, aliphatic hydrocarbon solvents such as hexane, N, N-dimethylformamide, ⁇ -butyrolactam, N-methyl-2-pyrrolidone, aniline And nitrogen compound solvents such as pyridine, lactone solvents such as ⁇ -butyrolactone, and carbamate esters such as a 48:52 mixture of
  • Dispersants used here include, for example, Big Chemie's Dispersic 130, Dispersic 161, Dispersic 162, Dispersic 163, Dispersic 170, Dispersic 171, Dispersic 174, Dispersic 180, Dispersic 182, Dispersic 183, Dispersic 184, Dispersic 185, Dispersic 2000, Dispersic 2001, Dispersic 2020, Dispersic 2050, Dispersic 2070, Dispersic 2096, Dispersic 2150, Dispersic LPN21116, Dispersic LPN6919 Efka EFKA 46, EFKA 47, EFKA 452, EFKA LP4008, EFKA 009, Efka LP4010, Efka LP4050, LP4055, Efka400, Efka401, Evka402, Efka403, Efka450, Efka451, Efka453, Evka4540, Efka4550, EfkaLP4560, Efka120, Efka150, Evka
  • rosin such as acrylic resin, urethane resin, alkyd resin, wood rosin, gum rosin, tall oil rosin, polymerized rosin, disproportionated rosin, hydrogenated rosin, oxidized rosin, modified rosin such as maleated rosin, Rosin derivatives such as rosinamine, lime rosin, rosin alkylene oxide adduct, rosin alkyd adduct, rosin modified phenol
  • a synthetic resin that is liquid and water-insoluble at room temperature can be contained. Addition of these dispersants and resins also contributes to reduction of flocculation, improvement of pigment dispersion stability, and improvement of viscosity characteristics of the dispersion.
  • thermoplastic resin used for the preparation of the photocurable composition include urethane resins, acrylic resins, polyamide resins, polyimide resins, styrene maleic acid resins, styrene maleic anhydride resins, and the like. .
  • photocurable compound examples include 1,6-hexanediol diacrylate, ethylene glycol diacrylate, neopentyl glycol diacrylate, triethylene glycol diacrylate, bis (acryloxyethoxy) bisphenol A, and 3-methylpentanediol diacrylate.
  • Bifunctional monomers such as acrylate, trimethylol propaton triacrylate, pentaerythritol triacrylate, tris [2- (meth) acryloyloxyethyl) isocyanurate, dipentaerythritol hexaacrylate, dipentaerythritol pentaacrylate, etc.
  • Relatively high molecular weight such as low molecular weight polyfunctional monomer, polyester acrylate, polyurethane acrylate, polyether acrylate, etc. Functional monomer.
  • the photopolymerization initiator include acetophenone, benzophenone, benzyldimethylketanol, benzoyl peroxide, 2-chlorothioxanthone, 1,3-bis (4′-azidobenzal) -2-propane, 1,3-bis (4 ′ -Azidobenzal) -2-propane-2'-sulfonic acid, 4,4'-diazidostilbene-2,2'-disulfonic acid, and the like.
  • photopolymerization initiators include, for example, “Irgacure (trade name) -184”, “Irgacure (trade name) -369”, “Darocur (trade name) -1173” manufactured by BASF, “Lucirin- "TPO”, Nippon Kayaku Co., Ltd. "Kayacure (trade name) DETX”, “Kayacure (trade name) OA”, Stofer “Bicure 10", “Bicure 55", Akzo "Trigonal PI”, Sand “Sandray 1000" manufactured by Upjohn, “Deep” manufactured by Upjohn, and “Biimidazole” manufactured by Kurokin Kasei.
  • a well-known and usual photosensitizer can also be used together with the said photoinitiator.
  • the photosensitizer include amines, ureas, compounds having a sulfur atom, compounds having a phosphorus atom, compounds having a chlorine atom, nitriles or other compounds having a nitrogen atom. These can be used alone or in combination of two or more.
  • the blending ratio of the photopolymerization initiator is not particularly limited, but is preferably in the range of 0.1 to 30% with respect to the compound having a photopolymerizable or photocurable functional group on a mass basis.
  • the photosensitivity at the time of photocuring tends to decrease, and if it exceeds 30%, crystals of the photopolymerization initiator are precipitated when the pigment-dispersed resist coating film is dried. May cause deterioration of film properties.
  • the materials as described above 300 to 1000 parts of the organic solvent and 1 to 100 parts of the dispersant are made uniform per 100 parts of the color filter pigment composition of the present invention on a mass basis.
  • the dye / pigment solution can be obtained by stirring and dispersing in the same manner.
  • the pigment dispersion is combined with 3 to 20 parts in total of the thermoplastic resin and the photocurable compound per 1 part of the pigment composition for a color filter of the present invention and 0.05 to 3 parts per 1 part of the photocurable compound.
  • a photopolymerization initiator and, if necessary, an organic solvent may be further added, and a photocurable composition for forming a color filter pixel portion can be obtained by stirring and dispersing so as to be uniform.
  • the developer a known and commonly used organic solvent or alkaline aqueous solution can be used.
  • the photocurable composition contains a thermoplastic resin or a photocurable compound, and at least one of them has an acid value and exhibits alkali solubility
  • the color filter can be washed with an alkaline aqueous solution. It is effective for forming the pixel portion.
  • the manufacturing method of the color filter pixel part by the photolithographic method was described in detail, the color filter pixel part prepared by using the pigment composition for the color filter of the present invention can be used in other electrodeposition methods, transfer methods, and micelle electrolysis methods.
  • a color filter may be manufactured by forming each color pixel portion by a PVED (Photovoltaic Electrodeposition) method, an inkjet method, a reverse printing method, a thermosetting method, or the like.
  • PVED Photovoltaic Electrodeposition
  • a color filter may be used in a state where an organic pigment is applied to a substrate and dried, or when a curable resin is contained in the pigment dispersion, a color filter may be obtained by curing with heat or active energy rays.
  • a volatile component in the coating film may be removed by heat treatment (post-baking) at 100 to 280 ° C. for a predetermined time using a heating device such as a hot plate or an oven.
  • particles having an ⁇ -type phthalocyanine pigment which is an organic pigment
  • particles having an ⁇ -type phthalocyanine pigment have a volume fraction of 1% or less of particles greater than 1000 nm and 25% or less of 40 nm to 1000 nm.
  • the state of the organic pigment in the state of the color filter contributes to the suppression of display defects such as white spots, alignment unevenness, and burn-in.
  • the particles having a particle size of 40 nm or more and 1000 nm or less are high-order particles in which primary particles are aggregated, such as secondary particles or tertiary and quaternary particles, and more preferably have a volume fraction of 15% or less. Moreover, when there are many particles of 100 nm or more and 1000 nm or less, the display state is affected.
  • the volume fraction of particles of 100 nm or more and 1000 nm or less is preferably 7% or less, more preferably 3% or less.
  • coarse particles larger than 1000 nm are not preferred because they may adversely affect the display state, and are preferably 1% or less. This can be done by observing the color filter surface with an appropriate optical microscope or the like.
  • Ultra-small angle X-ray scattering profile In order to measure the volume fraction of particles of 1000 nm or less, it can be obtained by analyzing an ultra small angle X-ray scattering profile based on the ultra small angle X-ray scattering method.
  • the step (B) of obtaining a theoretical scattering profile from the value of the temporary radius R 1 and the temporary normalized dispersion value by simulation, and the theoretical scattering profile and the measured scattering profile are: Step (C) for obtaining a residual square sum Z value between the theoretical scattering profile and the measured scattering profile by curve fitting, and the residual square sum Z value obtained in step (C) is 2% or less.
  • Steps (B) to (C) are repeated n times, and from the results of curve fitting the theoretical scattering profile and the measured scattering profile, the primary particle diameter of organic pigment and the average particle diameter of higher order particles, normalized dispersion value, A step (D) of determining at least one of the volume fractions.
  • the ultra-small angle X-ray scattering method (Ultra-Small Angle X-ray Scattering: USAXS) is not only a small angle region where the scattering angle is 0.1 ° ⁇ (2 ⁇ ) ⁇ 10 °, but also 0 ° ⁇ (2 ⁇ ) ⁇ 0. It is a method that simultaneously measures diffuse scattering and diffraction occurring in the ultra-small angle region of 1 °. In the small-angle X-ray scattering method, if there are regions with different electron densities of about 1 to 100 nm in the material, the diffuse scattering of X-rays can be measured by the difference in electron density.
  • the main technology for realizing the ultra-small angle X-ray scattering method is to reduce the background scattering intensity in the ultra-small angle region by reducing the wavelength width and beam diameter of incident X-rays, and from the sample to the detector as much as possible. This is achieved by two techniques for measuring a portion having a small scattering angle with high accuracy by increasing a distance, that is, a so-called camera length. In the small laboratory apparatus, this is mainly achieved by the former technique. Further, as a program for obtaining the particle size distribution from the X-ray small angle scattering curve, it is preferable to use a program such as NANO-solver (manufactured by Rigaku Corporation) or GIF (manufactured by PANalytical).
  • NANO-solver manufactured by Rigaku Corporation
  • GIF manufactured by PANalytical
  • the luminance of the incident X-ray of the X-ray scattering apparatus is 10 6 Brilliance (photons / sec / mm 2 / mrad 2 /0.1% bandwidth) or more.
  • the scattering intensity can be measured, and is preferably 10 7 Brilliance or higher.
  • the luminance of the incident X-ray is preferably 10 16 Brilliance or higher, more preferably 10 18 Brilliance or higher.
  • a large-scale synchrotron radiation facility such as a light source such as SPring-8 in Hyogo Prefecture or Photon Factory in Ibaraki Prefecture can be used.
  • a desired scattering region can be set by selecting an arbitrary camera length.
  • several kinds of metal absorbing plates called attenuators are used on the incident side, and the exposure time is set to 0. 0.
  • the optimum measurement conditions can be selected from a wide range of purposes.
  • the attenuator examples include a thin film made of Au, Ag, or molybdenum.
  • step (A) after setting the color filter on the sample holder, sample stage, etc. of a commercially available X-ray diffractometer, each of the scattering angles (2 ⁇ ) in the range of less than 10 °.
  • the scattering intensity I at the scattering angle (2 ⁇ ) is measured to measure a small-angle X-ray scattering profile (measured scattering profile).
  • the ultra-small-angle scattering device using synchrotron radiation used when the substrate is a glass coating uses a double crystal spectrometer to monochromatic white light extracted from a circular accelerator called a storage ring, and changes the wavelength in the X-ray region (for example, 1 ⁇ ).
  • the step (A) is an operation for converting to a scattering intensity I at each scattering angle (2 ⁇ ) in a range of less than 0 ° to obtain a small-angle X-ray scattering profile (measured scattering profile).
  • step (B) from the measured scattering profile obtained, it is assumed that the organic pigment is a spherical particle with a radius R and there is a variation in the particle size distribution, and the value of the temporary radius R 1 and the temporary standard A theoretical scattering profile is obtained from the normalized dispersion value using a commercially available analysis software.
  • the scattering intensity I can be approximated as the following formula (1).
  • q represents a scattering vector
  • V represents a volume integration region, and means that the entire material is integrated.
  • F (q) is a shape factor
  • S (q) is a structure factor
  • S (q) 1 when the particles are randomly present in the substance.
  • the scattering vector q is expressed by the following formula (2).
  • is the X-ray wavelength
  • 2 ⁇ is the scattering angle.
  • the shape factor F (q) is represented by the following formula (3).
  • the scattering intensity I can be described if the shape factor F (q) is calculated assuming a temporary radius R value.
  • the scattering intensity I is assumed only when the particles in the substance have a certain size (the radius R is constant).
  • the particles are rarely present in a certain size, and there is generally some variation (particle size distribution variation) in the particle size.
  • the object of the present invention is to accurately and accurately measure the particle size distribution of organic pigments having such a particle size distribution variation, it is necessarily assumed that the particle size distribution varies. Will be needed.
  • the scattering intensity I is given by a superposition of scattering generated from particles having various sizes.
  • a known distribution function used in statistics can be used.
  • the ⁇ distribution function is used. Is preferred. This ⁇ distribution function is expressed by the following formula (4).
  • R 0 is an average radius of the spherical particles
  • M is a spread parameter of the particle size distribution.
  • M which is a spread parameter of the particle size distribution in Expression (5), is output as a normalized dispersion value ⁇ (%) as a result of the conversion of Expression (6) as an analysis result.
  • step (B) the scattering intensity I at the scattering angle (2 ⁇ ) is calculated by simulation from the value of the temporary radius R 1 and the temporary normalized dispersion value to obtain the theoretical scattering profile.
  • step (C) curve fitting between the theoretical scattering profile calculated from the scattering intensity I and the measured scattering profile is performed by the method of least squares.
  • the variables to be refined in profile fitting are the average particle diameter (nm) and the normalized dispersion value (%).
  • Profile fitting is performed so that the residual square sum Z value between the measurement profile and the theoretical scattering profile is minimized by the method of least squares. The smaller the residual square sum Z value, the higher the accuracy of particle size analysis. The In general, when the Z value decreases to less than 2%, it may be determined that the two profiles almost overlap and converge at the visual level.
  • the Z value is preferably less than 1%, more preferably less than 0.5%.
  • step (A) When X-ray scattering is measured in the step (A) including the ultra-small angle scattering region, a relatively large particle size is included in the analysis range, so one kind of particle size distribution assumed in the step (B), that is, one kind of average.
  • step C In the fitting analysis of step C assuming the primary particle size and the normalized dispersion value, the residual sum of squares Z value does not sufficiently decrease, and the measurement profile and the theoretical scattering profile may not show good agreement. The reason for this is that the particle size distribution is not a single type, and pigment particles having a larger particle size and particles aggregated in a higher order are included. Introduce a diameter distribution model.
  • step (D) until the residual sum of squares Z value obtained in step (C) becomes 2% or less, a new value of radius R n + 1 (n is an integer, R n ⁇ R n + 1 ) and temporary
  • the normalized dispersion value is added to set a plurality of particle size distribution models, and the steps (B) to (C) are repeated n times.
  • a new particle size distribution model having a larger average particle size is assumed, the radius is R 2 (in this case, R 2 > R 1 ), and the scattering intensity I of each component is I (1 ) And I (2), the left term of the pre-scattering intensity equation (5) is corrected as in equations (7) and (8).
  • M 1 is a first type particle size distribution spread parameter.
  • M 2 is a second type of particle size distribution spread parameter.
  • I Total k (1) I (1) + k (2) I (2) (9)
  • k (1) and k (2) are scale factors representing the composition ratio of each component.
  • the total scattering intensity can be described as in equation (10) with a total of n particle size distribution models.
  • I Total k (1) I (1) + k (2) I (2) +... + K (n) I (n) (10)
  • the volume fractions w (1), w (2)... W (n) of each of the n particle size distribution components are represented by the ratio shown in Equation (11). .
  • w (1): w (2): ...: w (n) k (1): k (2): ...: k (n) (11)
  • the variables to be refined in profile fitting are the average particle size (nm) of each particle size distribution component, the normalized dispersion value (%) representing the width of each particle size distribution, and the volume fraction (%) of each component. . Further, profile fitting is performed so that the Z value, which is the residual sum of squares of the measurement profile and the total theoretical scattering profile, is minimized, and each of the variables is determined.
  • the normalized dispersion value of each particle size distribution component may be fixed with reference to the normalized dispersion value obtained in the step (C).
  • the profile fitting by the least square method with fewer variables becomes easier to converge. In this way, the average particle diameter, normalized dispersion value (%), and volume fraction (%) of each component are obtained as analysis results.
  • the liquid crystal composition is aligned on the first substrate and the surface in contact with the liquid crystal composition on the second substrate. Although arranged between the liquid crystal layers, even if the alignment film is thick, it is as thin as 100 nm or less, and completely blocks the interaction between the pigment such as a pigment constituting the color filter and the liquid crystal compound constituting the liquid crystal layer. It is not a thing. Further, in a liquid crystal display device that does not use an alignment film, the interaction between a pigment such as a pigment constituting a color filter and a liquid crystal compound constituting a liquid crystal layer becomes larger.
  • alignment film material transparent organic materials such as polyimide, polyamide, BCB (Penzocyclobutene Polymer), polyvinyl alcohol and the like can be used. Particularly, p-phenylenediamine, 4,4′-diaminodiphenylmethane, etc.
  • Aliphatic or alicyclic tetracarboxylic anhydrides such as aliphatic or alicyclic diamines, butanetetracarboxylic anhydride, 2,3,5-tricarboxycyclopentylacetic anhydride, pyromellitic dianhydride
  • a polyimide alignment film obtained by imidizing a polyamic acid synthesized from an aromatic tetracarboxylic anhydride such as a product is preferable.
  • rubbing is generally used as a method for imparting orientation, but when used for a vertical orientation film or the like, it can be used without imparting orientation.
  • the alignment film material a material containing chalcone, cinnamate, cinnamoyl or azo group in the compound can be used, and it may be used in combination with materials such as polyimide and polyamide. In this case, the alignment film is rubbed. Or a photo-alignment technique may be used.
  • the alignment film is generally formed by applying the alignment film material on a substrate by a method such as spin coating to form a resin film, but a uniaxial stretching method, Langmuir-Blodgett method, or the like can also be used. .
  • a conductive metal oxide can be used as a material for the transparent electrode.
  • the metal oxide include indium oxide (In 2 O 3 ), tin oxide (SnO 2 ), and zinc oxide.
  • ZnO indium tin oxide
  • In 2 O 3 —SnO 2 indium zinc oxide
  • niobium-doped titanium dioxide Ti 1-x Nb x O 2
  • fluorine-doped tin oxide graphene
  • ZnO zinc oxide
  • In 2 O 3 —SnO 2 indium tin oxide
  • In 2 O 3 —ZnO indium zinc oxide
  • a photo-etching method or a method using a mask can be used.
  • the liquid crystal display device of the present invention is particularly useful for a liquid crystal display device for active matrix driving, and is used for a liquid crystal display device for TN mode, IPS mode, polymer-stabilized IPS mode, FFS mode, OCB mode, VA mode or ECB mode. Applicable.
  • the liquid crystal display device is combined with a backlight and used in various applications such as liquid crystal televisions, personal computer monitors, mobile phones, smartphone displays, notebook personal computers, personal digital assistants, and digital signage.
  • the backlight include a cold cathode tube type backlight, a two-wavelength peak pseudo-white backlight and a three-wavelength peak backlight using a light emitting diode or an organic EL element using an inorganic material.
  • T ni Nematic phase-isotropic liquid phase transition temperature (° C.) ⁇ n: refractive index anisotropy at 25 ° C. ⁇ : dielectric anisotropy at 25 ° C. ⁇ : viscosity at 20 ° C. (mPa ⁇ s) ⁇ 1: rotational viscosity at 25 ° C. (mPa ⁇ s) VHR: Voltage holding ratio at 70 ° C.
  • Red dye coloring composition 2 instead of 10 parts of red dye 1 of the red dye coloring composition 1, 8 parts of red dye 1 (CI Solvent Red 124) and 2 parts of yellow dye 1 (CI Solvent Yellow 21) are used. In the same manner as above, a red dye coloring composition 2 was obtained.
  • Red dye coloring composition 3 instead of 10 parts of the red dye 1 of the red dye coloring composition 1, 10 parts of red dye 2 (CI Solvent Red 1) was used to obtain a red dye coloring composition 3 in the same manner as described above.
  • Green Dye Coloring Composition 1 Instead of 10 parts of the red dye 1 of the red dye coloring composition 1, 3 parts of blue dye 1 (CI Solvent Blue 67) and 7 parts of yellow dye 1 (CI Solvent Yellow 162) are used. In the same manner as above, a green dye coloring composition 1 was obtained.
  • Green Dye Coloring Composition 2 Instead of 7 parts of the yellow dye 1 of the green dye coloring composition 1, 4 parts of yellow dye 1 (CI Solvent Yellow 162) and 3 parts of yellow dye 3 (CI Solvent Yellow 82) are used. In the same manner as above, a green dye coloring composition 2 was obtained.
  • Green dye coloring composition 3 Instead of 3 parts of blue dye 1 and 7 parts of yellow dye 1 in the green dye coloring composition 1, 10 parts of green dye 1 (CI Solvent Green 7) is used in the same manner as described above to give a green dye coloring composition. Product 3 was obtained.
  • Blue dye coloring composition 1 Blue dye coloring composition 1 was obtained in the same manner as described above using 10 parts of blue dye 2 (CI Solvent Blue 12) instead of 10 parts of red dye 1 of red dye coloring composition 1 above. .
  • a yellow dye coloring composition 2 was obtained in the same manner as described above using 10 parts of yellow dye 4 (CI Solvent Yellow 2) instead of 10 parts of yellow dye 1 of the yellow dye coloring composition 1.
  • Red pigment coloring composition 1 10 parts of Red Pigment 1 (CI Pigment Red 254, “IRGAPHOR RED BT-CF” manufactured by BASF) is placed in a polybin, 55 parts of propylene glycol monomethyl ether acetate, Dispersic LPN21116 (manufactured by BYK Chemie) 7.0 Add 0.3-0.4mm ⁇ zirconia beads “ER-120S” manufactured by Saint-Gobain, and disperse with a paint conditioner (manufactured by Toyo Seiki Co., Ltd.) for 4 hours, and then filter through a 1 ⁇ m filter to obtain a pigment dispersion. Obtained.
  • a paint conditioner manufactured by Toyo Seiki Co., Ltd.
  • Red pigment coloring composition 2 instead of 10 parts of red pigment 1 of the above-mentioned red pigment coloring composition 1, 6 parts of red pigment 1 and 2 parts of red pigment 2 (FASTOGEN SUPER RED ATY-TR manufactured by CI Pigment Red 177 DIC Corporation), yellow pigment 2 Using 2 parts of (C.I. Pigment Yellow 139), a red pigment coloring composition 2 was obtained in the same manner as described above.
  • Red pigment coloring composition 3 Instead of 10 parts of the red pigment 1 of the red pigment coloring composition 1, 8 parts of the red pigment 1 and 2 parts of the xanthene compound represented by the general formula (1) (compound No. 16: CI Acid Red 289) In the same manner as above, a red pigment composition 3 was obtained.
  • Green pigment coloring composition 1 instead of 10 parts of the red pigment 1 of the red pigment coloring composition 1, 6 parts of green pigment 1 (CI Pigment Green 36, “FASTOGEN GREEN 2YK-CF” manufactured by DIC Corporation) and yellow pigment 1 (C.I. Pigment Yellow 150, 4 parts of FANCHON FAST YELLOW E4GN manufactured by BAYER) was used in the same manner as above to obtain a green pigment coloring composition 1.
  • green pigment 1 CI Pigment Green 36, “FASTOGEN GREEN 2YK-CF” manufactured by DIC Corporation
  • yellow pigment 1 C.I. Pigment Yellow 150, 4 parts of FANCHON FAST YELLOW E4GN manufactured by BAYER
  • Green pigment coloring composition 2 instead of 6 parts of green pigment 1 and 4 parts of yellow pigment 1 of the green pigment coloring composition 1, 4 parts of green pigment 2 (CI Pigment Green 58, FASTOGEN GREEN A110 manufactured by DIC Corporation) and yellow pigment 3 (C Green pigment coloring composition 2 was obtained in the same manner as described above using 6 parts of I. Pigment YELLOW 138).
  • Blue pigment coloring composition 1 Blue pigment 1 (CI Pigment Blue 15: 6, FASTOGEN Blue A510 manufactured by DIC Corporation) 1.80 parts, xanthene compound (Compound No. 2) represented by the general formula (1) 0.18 parts, BYK-LPN21116 (Bic Chemie) 2.84 parts, cyclohexanone 10.19 parts, 0.3-0.4 mm ⁇ Sepul beads are placed in a polybin and dispersed with a paint conditioner (manufactured by Toyo Seiki Co., Ltd.) for 4 hours. Obtained.
  • a paint conditioner manufactured by Toyo Seiki Co., Ltd.
  • Blue pigment coloring composition 2 In place of the xanthene compound of the blue pigment coloring composition 1, the xanthene compound (compound No. 4) represented by the general formula (1) was used to obtain a blue pigment coloring composition 2 in the same manner as described above.
  • Blue pigment coloring composition 3 In place of the xanthene compound of the blue pigment coloring composition 1, the xanthene compound (compound No. 1) represented by the general formula (1) was used to obtain a blue pigment coloring composition 3 in the same manner as described above.
  • yellow pigment coloring composition 1 In place of 10 parts of the red pigment 1 of the red pigment coloring composition 1, 10 parts of yellow pigment 1 (CI Pigment Yellow 150, FANCHON FAST YELLOW E4GN manufactured by LANXESS) was used in the same manner as described above, and yellow pigment 1 A colored composition 1 was obtained.
  • yellow pigment 1 CI Pigment Yellow 150, FANCHON FAST YELLOW E4GN manufactured by LANXESS
  • the red coloring composition was applied to a glass substrate on which a black matrix had been formed in advance so as to have a film thickness of 2 ⁇ m by spin coating. After drying at 70 ° C. for 20 minutes, a striped pattern was exposed to ultraviolet rays through a photomask in an exposure machine equipped with an ultrahigh pressure mercury lamp. Spray development with an alkali developer for 90 seconds, washing with ion exchange water, and air drying. Further, post-baking was performed at 230 ° C. for 30 minutes in a clean oven to form red pixels, which are striped colored layers, on a transparent substrate. Next, the green coloring composition is similarly applied by spin coating so that the film thickness becomes 2 ⁇ m.
  • the striped colored layer was exposed and developed at a place different from the above-mentioned red pixel by an exposure machine, thereby forming a green pixel adjacent to the above-mentioned red pixel.
  • red pixels and blue pixels adjacent to the green pixels were formed by spin coating with a film thickness of 2 ⁇ m.
  • a color filter having striped pixels of three colors of red, green, and blue on the transparent substrate was obtained.
  • the yellow coloring composition was similarly formed by spin coating to form a yellow pixel adjacent to the red pixel and the green pixel with a film thickness of 2 ⁇ m.
  • a color filter having striped pixels of four colors of red, green, blue and yellow on the transparent substrate was obtained.
  • Color filters 1 to 4 and comparative color filter 1 were prepared using the dye coloring composition or pigment coloring composition shown in the following table.
  • the primary particle volume fraction represented by the distribution of the average particle diameter of 1 nm or more and less than 40 nm in the B pixel portion of the color filters 1 to 5 is 88.4% and the distribution of 40 nm or more and less than 100 nm
  • the volume fraction of secondary particles represented is 11.6%
  • the volume fraction of tertiary particles represented by a distribution of 100 nm to 1000 nm is 0.0%
  • the volume fraction occupied by particles of 40 nm to 1000 nm is The rate was 11.6%.
  • Measuring instruments and measuring methods are as follows.
  • Analysis software Fit2D for two-dimensional data imaging and one-dimensionalization (obtained from the homepage of the European Synchron Radiation Facility [http://www.esrf.eu/computing/scientific/FIT2D/]) The analysis of the particle size distribution was performed with software NANO-Solver (Ver 3.6) manufactured by Rigaku Corporation.
  • Examples 1 to 5 An electrode structure is formed on at least one of the first and second substrates, a horizontal alignment film is formed on each facing side, and then a weak rubbing process is performed to create an IPS cell.
  • a liquid crystal composition 1 shown below was sandwiched between two substrates. The physical property values of the liquid crystal composition 1 are shown in the following table.
  • the liquid crystal composition 1 has a liquid crystal phase temperature range of 75.5 ° C. that is practical as a liquid crystal composition for TV, has a large absolute value of dielectric anisotropy, has a low viscosity, and an optimal ⁇ n. You can see that The liquid crystal display devices of Examples 1 to 5 were able to realize high VHR and small ID. Further, even in the burn-in evaluation, there was no afterimage, or even a very slight and acceptable level.
  • Example 6 As in Example 1, the liquid crystal compositions 2 to 3 shown in the following table are sandwiched, and the liquid crystal display devices of Examples 6 to 15 are prepared using the color filters 1 to 5 shown in the above table. Was measured. The burn-in evaluation of the liquid crystal display device was performed. The results are shown in the table below.
  • the liquid crystal display devices of Examples 6 to 15 were able to realize high VHR and small ID. Further, even in the burn-in evaluation, there was no afterimage, or even a very slight and acceptable level.
  • Example 16 to 30 As in Example 1, the liquid crystal compositions 4 to 6 shown in the following table are sandwiched, and the liquid crystal display devices of Examples 16 to 30 are prepared using the color filters 1 to 5 shown in the above table. Was measured. The burn-in evaluation of the liquid crystal display device was performed. The results are shown in the table below.
  • liquid crystal display devices of Examples 16 to 30 were able to realize high VHR and small ID. Further, even in the burn-in evaluation, there was no afterimage, or even a very slight and acceptable level.
  • the liquid crystal display devices of Examples 31 to 45 were able to realize high VHR and small ID. Further, even in the burn-in evaluation, there was no afterimage, or even a very slight and acceptable level.
  • Example 46 to 55 An electrode structure is formed on at least one of the first and second substrates, a horizontal alignment film is formed on each facing side, and then a weak rubbing process is performed to create an FFS cell.
  • Liquid crystal compositions 10 to 11 shown in the following table were sandwiched between two substrates.
  • liquid crystal display devices of Examples 46 to 55 were able to realize high VHR and small ID. Further, even in the burn-in evaluation, there was no afterimage, or even a very slight and acceptable level.
  • Example 56 to 70 As in Example 37, the liquid crystal compositions 12 to 14 shown in the following table are sandwiched, and the liquid crystal display devices of Examples 56 to 70 are prepared using the color filters 1 to 5 shown in the above table, and the VHR and ID are set. It was measured. The burn-in evaluation of the liquid crystal display device was performed. The results are shown in the table below.
  • liquid crystal display devices of Examples 56 to 70 were able to realize high VHR and small ID. Further, even in the burn-in evaluation, there was no afterimage, or even a very slight and acceptable level.
  • a liquid crystal composition 15 was prepared by mixing 0.3% by mass of bismethacrylic acid biphenyl-4,4′-diyl with the liquid crystal composition 10 used in Example 37.
  • the liquid crystal composition 15 is sandwiched between TN cells, and a polymerization treatment is performed by irradiating with ultraviolet rays (3.0 J / cm 2 ) for 600 seconds while a driving voltage is applied between the electrodes.
  • Liquid crystal display devices of Examples 71 to 75 were prepared using the filters 1 to 5, and their VHR and ID were measured. The burn-in evaluation of the liquid crystal display device was performed. The results are shown in the table below.
  • liquid crystal display devices of Examples 71 to 75 were able to realize high VHR and small ID. Further, even in the burn-in evaluation, there was no afterimage, or even a very slight and acceptable level.
  • a liquid crystal composition 16 was prepared by mixing 0.3% by mass of bismethacrylic acid biphenyl-4,4′-diyl with the liquid crystal composition 8 used in Example 29.
  • the liquid crystal composition 16 was sandwiched between IPS cells, and ultraviolet light was irradiated (3.0 J / cm 2 ) for 600 seconds while a driving voltage was applied between the electrodes, followed by polymerization treatment.
  • Liquid crystal display devices of Examples 76 to 80 were prepared using filters 1 to 5, and their VHR and ID were measured. The burn-in evaluation of the liquid crystal display device was performed. The results are shown in the table below.
  • liquid crystal display devices of Examples 76 to 80 were able to realize high VHR and small ID. Further, even in the burn-in evaluation, there was no afterimage, or even a very slight and acceptable level.
  • a liquid crystal composition 17 was prepared by mixing 0.3% by mass of bismethacrylic acid 3-fluorobiphenyl-4,4′-diyl with the liquid crystal composition 6 used in Example 21.
  • the liquid crystal composition 17 is sandwiched between FFS cells, and a polymerization treatment is performed by irradiating with ultraviolet rays (3.0 J / cm 2 ) for 600 seconds while a driving voltage is applied between the electrodes.
  • Liquid crystal display devices of Examples 81 to 85 were prepared using filters 1 to 5, and their VHR and ID were measured. The burn-in evaluation of the liquid crystal display device was performed. The results are shown in the table below.
  • liquid crystal display devices of Examples 81 to 85 were able to realize high VHR and small ID. Also, no afterimage was found in the burn-in evaluation.
  • Comparative Examples 1 to 5 The comparative liquid crystal composition 1 shown below was sandwiched between the IPS cells used in Example 1.
  • Liquid crystal display devices of Comparative Examples 1 to 5 were prepared using the color filters 1 to 5 shown in the above table, and their VHR and ID were measured. The burn-in evaluation of the liquid crystal display device was performed. The results are shown in the table below.
  • the liquid crystal display devices of Comparative Examples 1 to 5 had lower VHR and larger ID than the liquid crystal display devices of the present invention. Also, in the burn-in evaluation, afterimages were observed and the level was not acceptable.
  • Comparative Examples 6 to 15 In the same manner as in Example 1, the liquid crystal display devices of Comparative Examples 6 to 15 were prepared by sandwiching the comparative liquid crystal compositions 2 and 3 shown in the following table and using the color filters 1 to 5 shown in the above table. ID was measured. The burn-in evaluation of the liquid crystal display device was performed. The results are shown in the table below.
  • the liquid crystal display devices of Comparative Examples 6 to 15 had lower VHR and larger ID than the liquid crystal display devices of the present invention. Also, in the burn-in evaluation, afterimages were observed and the level was not acceptable.
  • Comparative Examples 16 to 25 As in Example 1, the liquid crystal display devices of Comparative Examples 16 to 25 were prepared by sandwiching the comparative liquid crystal compositions 4 to 5 shown in the following table and using the color filters 1 to 5 shown in the above table. ID was measured. The burn-in evaluation of the liquid crystal display device was performed. The results are shown in the table below.
  • the liquid crystal display devices of Comparative Examples 16 to 25 had lower VHR and larger ID than the liquid crystal display device of the present invention. Also, in the burn-in evaluation, afterimages were observed and the level was not acceptable.
  • Comparative Examples 26 to 40 As in Example 1, the liquid crystal display devices of Comparative Examples 26 to 40 were prepared by sandwiching the comparative liquid crystal compositions 6 to 8 shown in the following table and using the color filters 1 to 5 shown in the above table. ID was measured. The burn-in evaluation of the liquid crystal display device was performed. The results are shown in the table below.
  • the liquid crystal display devices of Comparative Examples 26 to 40 had lower VHR and larger ID than the liquid crystal display devices of the present invention. Also, in the burn-in evaluation, afterimages were observed and the level was not acceptable.
  • Comparative Examples 41 to 55 As in Example 1, the liquid crystal display devices of Comparative Examples 41 to 55 were prepared by sandwiching the comparative liquid crystal compositions 9 to 11 shown in the following table and using the color filters 1 to 5 shown in the above table. ID was measured. The burn-in evaluation of the liquid crystal display device was performed. The results are shown in the table below.
  • the liquid crystal display devices of Comparative Examples 41 to 55 had lower VHR and larger ID than the liquid crystal display devices of the present invention. Also, in the burn-in evaluation, afterimages were observed and the level was not acceptable.
  • Comparative Examples 56-63 In Examples 5, 13, 17, 25, 37, 45, 61 and 65, except that the comparative color filter 1 shown in the above table was used in place of the color filter 1, the liquid crystal display devices of Comparative Examples 56 to 63 were similarly used. Was prepared, and its VHR and ID were measured. The burn-in evaluation of the liquid crystal display device was performed. The results are shown in the table below.
  • the liquid crystal display devices of Comparative Examples 56 to 63 had lower VHR and larger ID than the liquid crystal display devices of the present invention. Also, in the burn-in evaluation, afterimages were observed and the level was not acceptable.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Liquid Crystal Substances (AREA)
  • Liquid Crystal (AREA)
  • Optical Filters (AREA)

Abstract

The present invention relates to a liquid crystal display device employing a colour filter in which a specific liquid crystal composition, a specific pigment, and a specific compound are used. The present invention provides a liquid crystal display device which inhibits a reduction in the voltage holding ratio (VHR) of a liquid crystal layer, inhibits an increase in ion density (ID), and resolves problems related to display defects such as white spots, alignment unevenness, and burn-in. This liquid crystal display device is characterized in that a reduction in the voltage holding ratio (VHR) of the liquid crystal layer is inhibited, an increase in ion density (ID) is inhibited, and the occurrence of display defects such as burn-in is suppressed. Accordingly, the liquid crystal display device is particularly useful as an active-matrix-drive TN-mode, IPS-mode, polymer-stabilized IPS-mode, FFS-mode, OCB-mode, VA-mode, or ECB-mode liquid crystal display device. Furthermore, the liquid crystal display device is applicable as a liquid crystal display device such as a liquid-crystal TV, monitor, portable telephone, or smartphone.

Description

液晶表示装置Liquid crystal display
 本発明は、液晶表示装置に関する。 The present invention relates to a liquid crystal display device.
 液晶表示装置は、時計、電卓をはじめとして、家庭用各種電気機器、測定機器、自動車用パネル、ワープロ、電子手帳、プリンター、コンピューター、テレビ等に用いられるようになっている。液晶表示方式としては、その代表的なものにTN(捩れネマチック)型、STN(超捩れネマチック)型、DS(動的光散乱)型、GH(ゲスト・ホスト)型、IPS(インプレーンスイッチング)型、OCB(光学補償複屈折)型、ECB(電圧制御複屈折)型、VA(垂直配向)型、CSH(カラースーパーホメオトロピック)型、あるいはFLC(強誘電性液晶)等を挙げることができる。また駆動方式としても従来のスタティック駆動からマルチプレックス駆動が一般的になり、単純マトリックス方式、最近ではTFT(薄膜トランジスタ)やTFD(薄膜ダイオード)等により駆動されるアクティブマトリックス(AM)方式が主流となっている。 Liquid crystal display devices are used in various electric appliances for home use, measuring instruments, automotive panels, word processors, electronic notebooks, printers, computers, televisions, etc., including clocks and calculators. Typical liquid crystal display methods include TN (twisted nematic), STN (super twisted nematic), DS (dynamic light scattering), GH (guest / host), and IPS (in-plane switching). Type, OCB (optical compensation birefringence) type, ECB (voltage controlled birefringence) type, VA (vertical alignment) type, CSH (color super homeotropic) type, FLC (ferroelectric liquid crystal), etc. . As a driving method, multiplex driving is generally used instead of conventional static driving, and the active matrix (AM) method driven by a TFT (thin film transistor), TFD (thin film diode) or the like has become mainstream recently. ing.
 一般的なカラー液晶表示装置は、図1に示すように、それぞれ配向膜(4)を有する2枚の基板(1)の一方の配向膜と基板の間に、共通電極となる透明電極層(3a)及びカラーフィルタ層(2)を備え、もう一方の配向膜と基板の間に画素電極層(3b)備え、これらの基板を配向膜同士が対向するように配置し、その間に液晶層(5)を挟持して構成されている。
 前記カラーフィルタ層は、ブラックマトリックスと赤色着色層(R)、緑色着色層(G)、青色着色層(B)、及び必要に応じて黄色着色層(Y)から構成されるカラーフィルタにより構成される。
 液晶層を構成する液晶材料は、材料中に不純物が残留すると表示装置の電気的特性に大きな影響を及ぼすことから不純物についての高度な管理がなされてきた。又、配向膜を形成する材料に関しても配向膜は液晶層が直接接触し、配向膜中に残存した不純物が液晶層に移動することにより、液晶層の電気的特性に影響を及ぼすことは既に知られており、配向膜材料中の不純物に起因する液晶表示装置の特性についての検討がなされつつある。
As shown in FIG. 1, a general color liquid crystal display device has a transparent electrode layer (a common electrode) between one alignment film of two substrates (1) each having an alignment film (4) and the substrate. 3a) and a color filter layer (2), a pixel electrode layer (3b) is provided between the other alignment film and the substrate, these substrates are arranged so that the alignment films face each other, and a liquid crystal layer ( 5) is sandwiched.
The color filter layer is composed of a color filter composed of a black matrix, a red colored layer (R), a green colored layer (G), a blue colored layer (B), and, if necessary, a yellow colored layer (Y). The
The liquid crystal material constituting the liquid crystal layer has been subjected to a high degree of management because impurities have a great influence on the electrical characteristics of the display device if the impurities remain in the material. In addition, regarding the material for forming the alignment film, it is already known that the alignment film directly affects the liquid crystal layer and the impurities remaining in the alignment film move to the liquid crystal layer, thereby affecting the electrical characteristics of the liquid crystal layer. The characteristics of the liquid crystal display device due to the impurities in the alignment film material are being studied.
 一方、カラーフィルタ層に用いられる有機顔料等の材料についても、配向膜材料と同様に含有する不純物による、液晶層への影響が想定される。しかし、カラーフィルタ層と液晶層の間には、配向膜と透明電極が介在するため、液晶層への直接的な影響は配向膜材料と比較して大幅に少ないものと考えられていた。しかし、配向膜は通常0.1μm以下の膜厚に過ぎず、透明電極もカラーフィルタ層側に用いられる共通電極は導電率を上げるために膜厚を上げたものでも通常0.5μm以下である。従って、カラーフィルタ層と液晶層は完全に隔離された環境におかれているとは言えず、カラーフィルタ層が、配向膜及び透明電極を介してカラーフィルタ層に含まれる不純物により、液晶層の電圧保持率(VHR)の低下、イオン密度(ID)の増加による白抜け、配向むら、焼き付きなどの表示不良を発現する可能性がある。
 カラーフィルタを構成する顔料に含まれる不純物に起因した表示不良を解決する方法として、顔料の蟻酸エチルによる抽出物の割合を特定値以下とした顔料を用いて、不純物の液晶への溶出を制御する方法(特許文献1)や青色着色層中の顔料を特定することで不純物の液晶への溶出を制御する方法(特許文献2)が検討されてきた。しかしながら、これらの方法では顔料中の不純物を単純に低減することと大きな差異はなく、近年、顔料の精製技術が進歩している現状においても表示不良を解決するための改良としては不十分なものであった。
On the other hand, the material such as the organic pigment used for the color filter layer is also assumed to have an influence on the liquid crystal layer due to impurities contained in the same manner as the alignment film material. However, since an alignment film and a transparent electrode are interposed between the color filter layer and the liquid crystal layer, it has been considered that the direct influence on the liquid crystal layer is significantly less than that of the alignment film material. However, the alignment film is usually only 0.1 μm or less in thickness, and the common electrode used on the color filter layer side for the transparent electrode is usually 0.5 μm or less even if the film thickness is increased to increase the conductivity. . Therefore, it cannot be said that the color filter layer and the liquid crystal layer are placed in a completely isolated environment, and the color filter layer is formed by impurities contained in the color filter layer through the alignment film and the transparent electrode. There is a possibility that display defects such as white spots due to a decrease in voltage holding ratio (VHR), an increase in ion density (ID), uneven alignment, and burn-in may occur.
As a method of solving display defects caused by impurities contained in pigments constituting the color filter, the elution of impurities into the liquid crystal is controlled by using pigments whose ratio of the extract of ethyl formate is not more than a specific value. A method (Patent Document 1) and a method (Patent Document 2) for controlling the elution of impurities into a liquid crystal by specifying a pigment in a blue colored layer have been studied. However, these methods are not significantly different from simply reducing impurities in the pigment, and are insufficient as an improvement to solve display defects even in the current state of progress in pigment purification technology. Met.
 一方、カラーフィルタ中に含まれる有機不純物と液晶組成物の関係に着目し、この有機不純物の液晶層への溶解しにくさを液晶層に含まれる液晶分子の疎水性パラメーターによって表し、この疎水性パラメーターの値を一定値以上とする方法やこの疎水性パラメーターと液晶分子末端の-OCF基に相関関係があることから、液晶分子末端に-OCF基を有する液晶化合物を一定割合以上含有する液晶組成物とする方法(特許文献3)が開示されている。
 しかしながら、当該引用文献の開示においても顔料中の不純物による液晶層への影響を抑えることが発明の本質となっており、カラーフィルタに使用される染顔料等の色材の構造と液晶材料の構造との直接的な関係については検討が行われておらず、高度化する液晶表示装置の表示不良問題の解決には至っていなかった。
On the other hand, paying attention to the relationship between the organic impurities contained in the color filter and the liquid crystal composition, the difficulty of dissolving the organic impurities in the liquid crystal layer is expressed by the hydrophobic parameter of the liquid crystal molecules contained in the liquid crystal layer. Because of the correlation between the parameter value and the hydrophobic parameter and the —OCF 3 group at the end of the liquid crystal molecule, a liquid crystal compound having —OCF 3 group at the end of the liquid crystal molecule is contained in a certain proportion or more. A method for producing a liquid crystal composition (Patent Document 3) is disclosed.
However, in the disclosure of the cited document as well, it is the essence of the invention to suppress the influence of impurities in the pigment on the liquid crystal layer. The direct relationship with the above has not been studied, and the problem of display defects of liquid crystal display devices that have been advanced has not been solved.
特開2000-19321号公報JP 2000-19321 A 特開2009-109542号公報JP 2009-109542 A 特開2000-192040号公報Japanese Patent Laid-Open No. 2000-192040
 本発明は、特定の液晶組成物と特定の顔料を使用したカラーフィルタを用いることで、液晶層の電圧保持率(VHR)の低下、イオン密度(ID)の増加を防止し、白抜け、配向むら、焼き付けなどの表示不良の問題を解決する液晶表示装置を提供することにある。 In the present invention, by using a color filter using a specific liquid crystal composition and a specific pigment, a decrease in voltage holding ratio (VHR) and an increase in ion density (ID) of the liquid crystal layer are prevented, white spots, alignment An object of the present invention is to provide a liquid crystal display device that solves the problem of display defects such as unevenness and burn-in.
 本願発明者らは、上記課題を解決するためにカラーフィルタを構成するための染顔料等の色材及び液晶層を構成する液晶材料の構造の組み合わせについて鋭意検討した結果、特定の構造の液晶材料と、特定の構造の顔料及び化合物を使用したカラーフィルタを用いた液晶表示装置が、液晶層の電圧保持率(VHR)の低下、イオン密度(ID)の増加を防止し、白抜け、配向むら、焼き付きなどの表示不良の問題を解決することを見出し本願発明の完成に至った。
 即ち、本発明は、
第一の基板と、第二の基板と、前記第一の基板と第二の基板間に挟持された液晶層と、少なくともRGB三色画素部から構成されるカラーフィルタと、画素電極と共通電極とを備え、前記液晶層が一般式(I)
In order to solve the above-mentioned problems, the inventors of the present application have made extensive studies on a combination of a coloring material and the like for constituting a color filter and a structure of a liquid crystal material constituting a liquid crystal layer, and as a result, a liquid crystal material having a specific structure. And a liquid crystal display device using a color filter using a pigment and a compound having a specific structure prevents a decrease in voltage holding ratio (VHR) and an increase in ion density (ID) of the liquid crystal layer, and causes white spots and uneven alignment. The inventors have found that the problem of display defects such as image sticking is solved, and have completed the present invention.
That is, the present invention
A first substrate; a second substrate; a liquid crystal layer sandwiched between the first substrate and the second substrate; a color filter comprising at least an RGB three-color pixel portion; a pixel electrode and a common electrode And the liquid crystal layer has the general formula (I)
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
(式中、R31は炭素原子数1~10のアルキル基、アルコキシ基、炭素原子数2~10のアルケニル基又はアルケニルオキシ基を表し、M31~M33はお互い独立してトランス-1,4-シクロへキシレン基又は1,4-フェニレン基を表し、該トランス-1,4-シクロへキシレン基中の1つ又は2つの-CH-は酸素原子が直接隣接しないように、-O-で置換されていてもよく、該フェニレン基中の1つ又は2つの水素原子はフッ素原子で置換されていてもよく、X31及びX32はお互い独立して水素原子又はフッ素原子を表し、Z31はフッ素原子、トリフルオロメトキシ基又はトリフルオロメチル基を表し、n31は及びn32はお互い独立して0、1又は2を表し、n31+n32は0、1又は2を表し、M31及びM33が複数存在する場合には同一であっても異なっていても良い。)で表される化合物を一種又は二種以上含有し、一般式(II-a)から一般式(II-f) (Wherein R 31 represents an alkyl group having 1 to 10 carbon atoms, an alkoxy group, an alkenyl group having 2 to 10 carbon atoms or an alkenyloxy group, and M 31 to M 33 are each independently trans-1, Represents a 4-cyclohexylene group or a 1,4-phenylene group, and one or two —CH 2 — in the trans-1,4-cyclohexylene group is —O 2 such that an oxygen atom is not directly adjacent to the group. -One or two hydrogen atoms in the phenylene group may be substituted with a fluorine atom, X 31 and X 32 each independently represent a hydrogen atom or a fluorine atom, Z 31 represents a fluorine atom, a trifluoromethoxy group or a trifluoromethyl group, n 31 and n 32 each independently represent 0, 1 or 2, n 31 + n 32 represents 0, 1 or 2, M 1 and M 33 may be in the case of plurality of different be the same. The compounds represented by) contain one or two or more, the general formulas formulas (II-a) (II- f)
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
(式中、R19~R30はお互い独立して炭素原子数1~10のアルキル基、炭素原子数1~10のアルコキシ基又は炭素原子数2~10のアルケニル基を表し、X21は水素原子又はフッ素原子を表す。)で表される化合物からなる群より選ばれる化合物を一種又は二種以上含有する液晶組成物を含有し、
前記RGB三色画素部の少なくとも1つの画素部中に、色材として、下記一般式(1)
(Wherein R 19 to R 30 each independently represent an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, or an alkenyl group having 2 to 10 carbon atoms, and X 21 represents hydrogen A liquid crystal composition containing one or more compounds selected from the group consisting of compounds represented by:
In at least one pixel portion of the RGB three-color pixel portion, as a color material, the following general formula (1)
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
(式(1)中、R~R10はそれぞれ独立に水素原子、炭素数1~12の分岐しても良いアルキル基、アルコキシ基、-CO (カルボン酸イオン基)、-CO21、-SO (スルホン酸イオン基)、-SOM、-SONR2122を表す。R21およびR22はそれぞれ独立に水素原子、炭素数1~12の分岐しても良いアルキル基、炭素数1~10の環状アルキル基を表し、R21とR22で環構造を形成しても良い。
11は-CO (カルボン酸イオン基)、-CO21、-SO (スルホン酸イオン基)、-SOM、-SONR2324を表す。R23およびR24はそれぞれ独立に水素原子、炭素数1~12の分岐しても良いアルキル基、炭素数1~10の環状アルキル基を表し、R23とR24で環構造を形成しても良い。Mは水素原子、ナトリウム原子またはカリウム原子を表す。但し、R~R10のうち1以上が-SONR2122である。)で表されるキサンテン化合物を含有することを特徴とする液晶表示装置を提供する。
(In the formula (1), R 1 to R 10 are each independently a hydrogen atom, an alkyl group having 1 to 12 carbon atoms which may be branched, an alkoxy group, —CO 2 (carboxylate ion group), —CO 2. R 21, -SO 3 - (sulfonic acid ion group), - SO 3 M, .R 21 and R 22 represents an -SO 2 NR 21 R 22 are each independently a hydrogen atom, a branched structure having 1 to 12 carbon atoms Represents a good alkyl group or a cyclic alkyl group having 1 to 10 carbon atoms, and R 21 and R 22 may form a ring structure.
R 11 is -CO 2 - (carboxylate ion group), - CO 2 R 21, -SO 3 - ( sulfonic acid ion group), - SO 3 M, represents a -SO 2 NR 23 R 24. R 23 and R 24 each independently represents a hydrogen atom, an alkyl group having 1 to 12 carbon atoms which may be branched, or a cyclic alkyl group having 1 to 10 carbon atoms, and R 23 and R 24 form a ring structure. Also good. M represents a hydrogen atom, a sodium atom or a potassium atom. However, one or more of R 1 to R 10 are —SO 2 NR 21 R 22 . The liquid crystal display device characterized by containing the xanthene compound represented by this.
 本発明の液晶表示装置は、特定の液晶組成物と特定の顔料及び特定の化合物を使用したカラーフィルタを用いることで、液晶層の電圧保持率(VHR)の低下、イオン密度(ID)の増加を防止することができ、白抜け、配向むら、焼き付けなどの表示不良の発生を防止することができる。 The liquid crystal display device of the present invention uses a color filter that uses a specific liquid crystal composition, a specific pigment, and a specific compound, thereby reducing the voltage holding ratio (VHR) of the liquid crystal layer and increasing the ion density (ID). Thus, it is possible to prevent display defects such as white spots, uneven alignment, and baking.
従来の一般的な液晶表示装置の一例を示す図である。It is a figure which shows an example of the conventional common liquid crystal display device. 本発明の液晶表示装置の一例を示す図である。It is a figure which shows an example of the liquid crystal display device of this invention.
1  基板
2  カラーフィルタ層
2a 特定の顔料及び特定の化合物を含有するカラーフィルタ層
3a 透明電極層(共通電極)
3b 画素電極層
4  配向膜
5  液晶層
5a 特定の液晶組成物を含有する液晶層
DESCRIPTION OF SYMBOLS 1 Substrate 2 Color filter layer 2a Color filter layer 3a containing specific pigment and specific compound Transparent electrode layer (common electrode)
3b Pixel electrode layer 4 Alignment film 5 Liquid crystal layer 5a Liquid crystal layer containing a specific liquid crystal composition
 本発明の液晶表示装置の一例を図2に示す。配向膜(4)を有する第一の基板と第二の基板の2枚の基板(1)の一方の配向膜と基板の間に、共通電極となる透明電極層(3a)及び特定の顔料及び特定の化合物を含有するカラーフィルタ層(2a)を備え、もう一方の配向膜と基板の間に画素電極層(3b)備え、これらの基板を配向膜同士が対向するように配置し、その間に特定の液晶組成物を含有する液晶層(5a)を挟持して構成されている。
 前記表示装置における2枚の基板は、周辺領域に配置されたシール材及び封止材によって貼り合わされていて、多くの場合その間には基板間距離を保持するために粒状スペーサーまたはフォトリソグラフィー法により形成された樹脂からなるスペーサー柱が配置されている。
An example of the liquid crystal display device of the present invention is shown in FIG. A transparent electrode layer (3a) serving as a common electrode, a specific pigment, and a specific pigment between one of the two substrates (1) of the first substrate and the second substrate (1) having the alignment film (4) A color filter layer (2a) containing a specific compound is provided, a pixel electrode layer (3b) is provided between the other alignment film and the substrate, and these substrates are arranged so that the alignment films face each other. A liquid crystal layer (5a) containing a specific liquid crystal composition is sandwiched.
The two substrates in the display device are bonded together by a sealing material and a sealing material disposed in the peripheral region, and in many cases, formed by a granular spacer or a photolithography method in order to maintain a distance between the substrates. Spacer pillars made of the prepared resin are arranged.
(液晶層)
 本発明の液晶表示装置における液晶層は、一般式(I)
(Liquid crystal layer)
The liquid crystal layer in the liquid crystal display device of the present invention has the general formula (I)
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
(式中、R31は炭素原子数1~10のアルキル基、炭素原子数1~10のアルコキシ基、炭素原子数2~10のアルケニル基又は炭素原子数2~10のアルケニルオキシ基を表し、M31~M33はお互い独立してトランス-1,4-シクロへキシレン基又は1,4-フェニレン基を表し、該トランス-1,4-シクロへキシレン基中の1つ又は2つの-CH-は酸素原子が直接隣接しないように、-O-で置換されていてもよく、該フェニレン基中の1つ又は2つの水素原子はフッ素原子で置換されていてもよく、X31及びX32はお互い独立して水素原子又はフッ素原子を表し、Z31はフッ素原子、トリフルオロメトキシ基又はトリフルオロメチル基を表し、n31は及びn32はお互い独立して0、1又は2を表し、n31+n32は0、1又は2を表し、M31及びM33が複数存在する場合には同一であっても異なっていても良い。)で表される化合物を一種又は二種以上含有し、一般式(II-a)から一般式(II-f) (Wherein R 31 represents an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, or an alkenyloxy group having 2 to 10 carbon atoms, M 31 to M 33 each independently represent a trans-1,4-cyclohexylene group or a 1,4-phenylene group, and one or two —CH in the trans-1,4-cyclohexylene group 2 — may be substituted with —O— so that the oxygen atom is not directly adjacent, and one or two hydrogen atoms in the phenylene group may be substituted with a fluorine atom, and X 31 and X 32 independently represents a hydrogen atom or a fluorine atom, Z 31 represents a fluorine atom, a trifluoromethoxy group or a trifluoromethyl group, n 31 and n 32 represent 0, 1 or 2 independently of each other. , 31 + n 32 is 0, 1 or 2, M 31 and M 33 are contained a compound represented by may be the same or different.) One or two or more if there are a plurality, From general formula (II-a) to general formula (II-f)
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
(式中、R19~R30はお互い独立して炭素原子数1~10のアルキル基、炭素原子数1~10のアルコキシ基又は炭素原子数2~10のアルケニル基を表し、X21は水素原子又はフッ素原子を表す。)で表される化合物からなる群より選ばれる化合物を一種又は二種以上含有する液晶組成物から構成される。 (Wherein R 19 to R 30 each independently represent an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, or an alkenyl group having 2 to 10 carbon atoms, and X 21 represents hydrogen A liquid crystal composition containing one or more compounds selected from the group consisting of compounds represented by the formula:
 一般式(I)において、R31はそれが結合する環構造がフェニル基(芳香族)である場合には、直鎖状の炭素原子数1~5のアルキル基、直鎖状の炭素原子数1~4(またはそれ以上)のアルコキシ基及び炭素原子数4~5のアルケニル基が好ましく、それが結合する環構造がシクロヘキサン、ピラン及びジオキサンなどの飽和した環構造の場合には、直鎖状の炭素原子数1~5のアルキル基、直鎖状の炭素原子数1~4(またはそれ以上)のアルコキシ基及び直鎖状の炭素原子数2~5のアルケニル基が好ましい。
熱や光に対する化学的安定性が良いことを重視すれば、R31はアルキル基が好ましい。また、粘度が小さく応答速度が速い液晶表示素子を作ることが重視されるならば、R31はアルケニル基が好ましい。さらに、粘度が小さくかつネマチック-等方相転移温度(Tni)が高く、応答速度の更なる短縮を目的とするならば、末端が不飽和結合ではないアルケニル基を用いることが好ましく、アルケニル基の隣にメチル基が末端としてあることが特に好ましい。また、低温での溶解度が良いことを重視するならば、一つの解決策としては、R31はアルコキシ基とすることが好ましい。また、他の解決策としては、多種類のR31を併用することが好ましい。例えば、R31として、炭素原子数2、3及び4のアルキル基またはアルケニル基を持つ化合物を併用することが好ましく、炭素原子数3及び5の化合物を併用することが好ましく、炭素原子数3、4及び5の化合物を併用することが好ましい。
31~M33は、
In the general formula (I), when the ring structure to which R 31 is bonded is a phenyl group (aromatic), R 31 is a linear alkyl group having 1 to 5 carbon atoms or a linear number of carbon atoms. 1 to 4 (or more) alkoxy groups and alkenyl groups having 4 to 5 carbon atoms are preferred, and when the ring structure to which they are bonded is a saturated ring structure such as cyclohexane, pyran and dioxane, linear Are preferably an alkyl group having 1 to 5 carbon atoms, a linear alkoxy group having 1 to 4 carbon atoms (or more) and a linear alkenyl group having 2 to 5 carbon atoms.
In view of good chemical stability against heat and light, R 31 is preferably an alkyl group. Further, if it is important to make a liquid crystal display device having a low viscosity and a high response speed, R 31 is preferably an alkenyl group. Further, for the purpose of further shortening the response speed with a low viscosity and a high nematic-isotropic phase transition temperature (Tni), it is preferable to use an alkenyl group whose terminal is not an unsaturated bond. It is particularly preferred that the methyl group is adjacent to the end. Further, if importance is attached to good solubility at low temperatures, as one solution, R 31 is preferably an alkoxy group. As another solution, it is preferable to use many types of R 31 in combination. For example, as R 31 , a compound having an alkyl group or an alkenyl group having 2, 3 and 4 carbon atoms is preferably used in combination, and a compound having 3 or 5 carbon atoms is preferably used in combination. It is preferable to use compounds 4 and 5 in combination.
M 31 to M 33 are
Figure JPOXMLDOC01-appb-C000013
であることが好ましい。
31は、
Figure JPOXMLDOC01-appb-C000013
It is preferable that
M 31 is,
Figure JPOXMLDOC01-appb-C000014
であることが好ましく、
Figure JPOXMLDOC01-appb-C000014
It is preferable that
Figure JPOXMLDOC01-appb-C000015
であることが更に好ましい。
32は、
Figure JPOXMLDOC01-appb-C000015
More preferably.
M 32 is,
Figure JPOXMLDOC01-appb-C000016
であることが好ましく、
Figure JPOXMLDOC01-appb-C000016
It is preferable that
Figure JPOXMLDOC01-appb-C000017
であることがより好ましく、
Figure JPOXMLDOC01-appb-C000017
More preferably,
Figure JPOXMLDOC01-appb-C000018
であることが更に好ましい。
33は、
Figure JPOXMLDOC01-appb-C000018
More preferably.
M 33 is
Figure JPOXMLDOC01-appb-C000019
であることが好ましく、
Figure JPOXMLDOC01-appb-C000019
It is preferable that
Figure JPOXMLDOC01-appb-C000020
であることがより好ましく、
Figure JPOXMLDOC01-appb-C000020
More preferably,
Figure JPOXMLDOC01-appb-C000021
であることが更に好ましい。
Figure JPOXMLDOC01-appb-C000021
More preferably.
31及びX32は、少なくともどちらか一つはフッ素原子が好ましく、二つともフッ素原子であることが更に好ましい。
31は、フッ素原子またはトリフルオロメトキシ基であることが好ましい。
31、X32およびZ31の組み合わせとしては、一つの実施形態ではX31=F、X32=FおよびZ31=Fである。さらに別の実施形態では、X31=F、X32=HおよびZ31=Fである。またさらに別の実施形態では、X31=F、X32=HおよびZ31=OCF3である。またさらに別の実施形態では、X31=F、X32=FおよびZ31=OCF3である。またさらに別の実施形態では、X31=H、X32=HおよびZ31=OCF3である。
31は1又は2が好ましく、n32は0又は1が好ましく、0が更に好ましく、n31+n32は1又は2が好ましく、2がさらに好ましい。
At least one of X 31 and X 32 is preferably a fluorine atom, more preferably both are fluorine atoms.
Z 31 is preferably a fluorine atom or a trifluoromethoxy group.
As a combination of X 31 , X 32 and Z 31 , in one embodiment, X 31 = F, X 32 = F and Z 31 = F. In yet another embodiment, X 31 = F, X 32 = H and Z 31 = F. In yet another embodiment, X 31 = F, X 32 = H and Z 31 = OCF3. In yet another embodiment, X 31 = F, X 32 = F and Z 31 = OCF3. In yet another embodiment, X 31 = H, X 32 = H and Z 31 = OCF3.
n 31 is preferably 1 or 2, n 32 is preferably 0 or 1, more preferably 0, and n 31 + n 32 is preferably 1 or 2, and more preferably 2.
 一般式(I)で表される化合物は、より具体的には、下記の一般式(I-a)から一般式(I-f)で表される化合物が好ましい。 More specifically, the compound represented by the general formula (I) is preferably a compound represented by the following general formula (Ia) to general formula (If).
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
(式中、R32は炭素原子数1~10のアルキル基、炭素原子数1~10のアルコキシ基、炭素原子数2~10のアルケニル基又は炭素原子数2~10のアルケニルオキシ基を表し、X31~X38はお互い独立して水素原子又はフッ素原子を表し、Z31はフッ素原子、トリフオロメトキシ基又はトリフルオロメチル基を表す。)
 一般式(Ia)~一般式(If)において、R32はそれが結合する環構造がフェニル基(芳香族)である場合には、直鎖状の炭素原子数1~5のアルキル基、直鎖状の炭素原子数1~4(またはそれ以上)のアルコキシ基及び炭素原子数4~5のアルケニル基が好ましく、それが結合する環構造がシクロヘキサン、ピラン及びジオキサンなどの飽和した環構造の場合には、直鎖状の炭素原子数1~5のアルキル基、直鎖状の炭素原子数1~4(またはそれ以上)のアルコキシ基及び直鎖状の炭素原子数2~5のアルケニル基が好ましい。
(Wherein R 32 represents an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, or an alkenyloxy group having 2 to 10 carbon atoms, X 31 to X 38 each independently represent a hydrogen atom or a fluorine atom, and Z 31 represents a fluorine atom, a trifluoromethoxy group or a trifluoromethyl group.)
In the general formulas (Ia) to (If), R 32 is a straight-chain alkyl group having 1 to 5 carbon atoms and a straight chain when the ring structure to which R 32 is bonded is a phenyl group (aromatic). A chain-like alkoxy group having 1 to 4 (or more) carbon atoms and an alkenyl group having 4 to 5 carbon atoms are preferred, and the ring structure to which they are bonded is a saturated ring structure such as cyclohexane, pyran and dioxane Includes a straight-chain alkyl group having 1 to 5 carbon atoms, a straight-chain alkoxy group having 1 to 4 (or more) carbon atoms and a straight-chain alkenyl group having 2 to 5 carbon atoms. preferable.
 熱や光に対する化学的安定性が良いことを重視すれば、R31はアルキル基が好ましい。また、粘度が小さく応答速度が速い液晶表示素子を作ることが重視されるならば、R31はアルケニル基が好ましい。さらに、粘度が小さくかつネマチック-等方相転移温度(Tni)が高く、応答速度の更なる短縮を目的とするならば、末端が不飽和結合ではないアルケニル基を用いることが好ましく、アルケニル基の隣にメチル基が末端としてあることが特に好ましい。また、低温での溶解度が良いことを重視するならば、一つの解決策としては、R31はアルコキシ基とすることが好ましい。また、他の解決策としては、多種類のR31を併用することが好ましい。例えば、R31として、炭素原子数2、3及び4のアルキル基またはアルケニル基を持つ化合物を併用することが好ましく、炭素原子数3及び5の化合物を併用することが好ましく、炭素原子数3、4及び5の化合物を併用することが好ましい。 In view of good chemical stability against heat and light, R 31 is preferably an alkyl group. Further, if it is important to make a liquid crystal display device having a low viscosity and a high response speed, R 31 is preferably an alkenyl group. Further, for the purpose of further shortening the response speed with a low viscosity and a high nematic-isotropic phase transition temperature (Tni), it is preferable to use an alkenyl group whose terminal is not an unsaturated bond. It is particularly preferred that the methyl group is adjacent to the end. Further, if importance is attached to good solubility at low temperatures, as one solution, R 31 is preferably an alkoxy group. As another solution, it is preferable to use many types of R 31 in combination. For example, as R 31 , a compound having an alkyl group or an alkenyl group having 2, 3 and 4 carbon atoms is preferably used in combination, and a compound having 3 or 5 carbon atoms is preferably used in combination. It is preferable to use compounds 4 and 5 in combination.
 X31及びX32は、少なくともどちらか一つはフッ素原子が好ましく、二つともフッ素原子であることが更に好ましい。
31は、フッ素原子またはトリフルオロメトキシ基であることが好ましい。
31、X32およびZ31の組み合わせとしては、一つの実施形態ではX31=F、X32=FおよびZ31=Fである。さらに別の実施形態では、X31=F、X32=HおよびZ31=Fである。またさらに別の実施形態では、X31=F、X32=HおよびZ31=OCF3である。またさらに別の実施形態では、X31=F、X32=FおよびZ31=OCF3である。またさらに別の実施形態では、X31=H、X32=HおよびZ31=OCF3である。
31は1又は2が好ましく、n32は0又は1が好ましく、0が更に好ましく、n31+n32は1又は2が好ましく、2がさらに好ましい。
33及びX34は、少なくともどちらか一つはフッ素原子が好ましく、二つともフッ素原子であることが更に好ましい。
At least one of X 31 and X 32 is preferably a fluorine atom, more preferably both are fluorine atoms.
Z 31 is preferably a fluorine atom or a trifluoromethoxy group.
As a combination of X 31 , X 32 and Z 31 , in one embodiment, X 31 = F, X 32 = F and Z 31 = F. In yet another embodiment, X 31 = F, X 32 = H and Z 31 = F. In yet another embodiment, X 31 = F, X 32 = H and Z 31 = OCF3. In yet another embodiment, X 31 = F, X 32 = F and Z 31 = OCF3. In yet another embodiment, X 31 = H, X 32 = H and Z 31 = OCF3.
n 31 is preferably 1 or 2, n 32 is preferably 0 or 1, more preferably 0, and n 31 + n 32 is preferably 1 or 2, and more preferably 2.
At least one of X 33 and X 34 is preferably a fluorine atom, and more preferably both are fluorine atoms.
 X35及びX36は、少なくともどちらか一つはフッ素原子が好ましく、二つともフッ素原子であることはΔεを大きくする場合は効果があるが、Tni、低温での溶解性や液晶表示素子にしたときの化学的安定性の観点から好ましくない。
37及びX38は、少なくともどちらか一つは水素原子が好ましく、二つとも水素原子であることが好ましい。X37及びX38のうち少なくともどちらか一つがフッ素原子である場合、Tni、低温での溶解性や液晶表示素子にしたときの化学的安定性の観点から好ましくない。
 一般式(I)で表される化合物群は1種~8種含有することが好ましく、1種~5種含有することが特に好ましく、その含有量は3~50質量%であるのが好ましく、5~40質量%であることがより好ましい。
At least one of X 35 and X 36 is preferably a fluorine atom, and the fact that both are fluorine atoms is effective in increasing Δε, but it is effective for Tni, solubility at low temperatures and liquid crystal display elements. From the viewpoint of chemical stability.
At least one of X 37 and X 38 is preferably a hydrogen atom, and preferably both of them are hydrogen atoms. When at least one of X 37 and X 38 is a fluorine atom, it is not preferable from the viewpoint of Tni, solubility at low temperature, and chemical stability when a liquid crystal display device is formed.
The compound group represented by the general formula (I) preferably contains 1 to 8 types, particularly preferably 1 to 5 types, and the content thereof is preferably 3 to 50% by mass, More preferably, it is 5 to 40% by mass.
 一般式(IIa)~一般式(IIf)において、R19~R30はそれが結合する環構造がフェニル基(芳香族)である場合には、直鎖状の炭素原子数1~5のアルキル基、直鎖状の炭素原子数1~4(またはそれ以上)のアルコキシ基及び炭素原子数4~5のアルケニル基が好ましく、それが結合する環構造がシクロヘキサン、ピラン及びジオキサンなどの飽和した環構造の場合には、直鎖状の炭素原子数1~5のアルキル基、直鎖状の炭素原子数1~4(またはそれ以上)のアルコキシ基及び直鎖状の炭素原子数2~5のアルケニル基が好ましい。 In the general formulas (IIa) to (IIf), R 19 to R 30 are linear alkyl groups having 1 to 5 carbon atoms when the ring structure to which they are bonded is a phenyl group (aromatic). A straight-chain alkoxy group having 1 to 4 (or more) carbon atoms and an alkenyl group having 4 to 5 carbon atoms, and the ring structure to which they are bonded is a saturated ring such as cyclohexane, pyran and dioxane. In the case of the structure, a linear alkyl group having 1 to 5 carbon atoms, a linear alkoxy group having 1 to 4 (or more) carbon atoms, and a straight chain having 2 to 5 carbon atoms. Alkenyl groups are preferred.
 熱や光に対する化学的安定性が良いことを重視すれば、R19~R30はアルキル基が好ましい。また、粘度が小さく応答速度が速い液晶表示素子を作ることが重視されるならば、R19~R30はアルケニル基が好ましい。さらに、粘度が小さくかつネマチック-等方相転移温度(Tni)が高く、応答速度の更なる短縮を目的とするならば、末端が不飽和結合ではないアルケニル基を用いることが好ましく、アルケニル基の隣にメチル基が末端としてあることが特に好ましい。また、低温での溶解度が良いことを重視するならば、一つの解決策としては、R19~R30はアルコキシ基とすることが好ましい。また、他の解決策としては、多種類のR19~R30を併用することが好ましい。例えば、R19~R30として、炭素原子数2、3及び4のアルキル基またはアルケニル基を持つ化合物を併用することが好ましく、炭素原子数3及び5の化合物を併用することが好ましく、炭素原子数3、4及び5の化合物を併用することが好ましい。 In view of good chemical stability against heat and light, R 19 to R 30 are preferably alkyl groups. In addition, if it is important to make a liquid crystal display device having a low viscosity and a high response speed, R 19 to R 30 are preferably alkenyl groups. Further, for the purpose of further shortening the response speed with a low viscosity and a high nematic-isotropic phase transition temperature (Tni), it is preferable to use an alkenyl group whose terminal is not an unsaturated bond. It is particularly preferred that the methyl group is adjacent to the end. If importance is placed on good solubility at low temperatures, as one solution, R 19 to R 30 are preferably alkoxy groups. As another solution, it is preferable to use many types of R 19 to R 30 in combination. For example, as R 19 to R 30 , a compound having an alkyl group or an alkenyl group having 2, 3 and 4 carbon atoms is preferably used in combination, and a compound having 3 or 5 carbon atoms is preferably used in combination. It is preferable to use the compounds of formulas 3, 4 and 5 in combination.
 R19~R20はアルキル基またはアルコキシ基が好ましく、少なくとも一方はアルコキシ基であることが好ましい。R19がアルキル基でありR20がアルコキシ基であることがより好ましい。R19が炭素原子数3~5のアルキル基でありR20が炭素原子数1~2のアルコキシ基であることがさらに好ましい。
 R21~R22はアルキル基またはアルケニル基が好ましく、少なくとも一方はアルケニル基であることが好ましい。両方ともアルケニル基の場合は応答速度を早くする場合に好適に用いられるが、液晶表示素子の化学的安定性を良くしたい場合は好ましくない。
 R23~R24の少なくとも一方は、炭素原子数1~5のアルキル基、炭素原子数1~5のアルコキシ基または炭素原子数4~5のアルケニル基が好ましい。応答速度とTniのバランスが良いことを求めれば、R23~R24の少なくとも一方はアルケニル基であることが好ましく、応答速度と低温での溶解性のバランスが良いことを求めれば、R23~R24の少なくとも一方はアルコキシ基であることが好ましい。
R 19 to R 20 are preferably an alkyl group or an alkoxy group, and at least one of them is preferably an alkoxy group. More preferably, R 19 is an alkyl group and R 20 is an alkoxy group. More preferably, R 19 is an alkyl group having 3 to 5 carbon atoms, and R 20 is an alkoxy group having 1 to 2 carbon atoms.
R 21 to R 22 are preferably an alkyl group or an alkenyl group, and at least one of them is preferably an alkenyl group. In the case where both are alkenyl groups, they are preferably used to increase the response speed, but are not preferable when it is desired to improve the chemical stability of the liquid crystal display element.
At least one of R 23 to R 24 is preferably an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, or an alkenyl group having 4 to 5 carbon atoms. If a good balance between the response speed and Tni is required, at least one of R 23 to R 24 is preferably an alkenyl group. If a good balance between the response speed and solubility at low temperature is required, R 23 to At least one of R 24 is preferably an alkoxy group.
 R25~R26の少なくとも一方は、炭素原子数1~5のアルキル基、炭素原子数1~5のアルコキシ基または炭素原子数2~5のアルケニル基が好ましい。応答速度とTniのバランスが良いことを求めれば、R25~R26の少なくとも一方はアルケニル基であることが好ましく、応答速度と低温での溶解性のバランスが良いことを求めれば、R25~R26の少なくとも一方はアルコキシ基であることが好ましい。R25はアルケニル基でありR26はアルキル基であることがより好ましい。また、R25はアルキル基でありR26はアルコキシ基であることも好ましい。
 R27~R28の少なくとも一方は、炭素原子数1~5のアルキル基、炭素原子数1~5のアルコキシ基または炭素原子数2~5のアルケニル基が好ましい。応答速度とTniのバランスが良いことを求めれば、R27~R28の少なくとも一方はアルケニル基であることが好ましく、応答速度と低温での溶解性のバランスが良いことを求めれば、R27~R28の少なくとも一方はアルコキシ基であることが好ましい。R27はアルキル基またはアルケニル基でありR28はアルキル基であることがより好ましい。また、R27はアルキル基でありR28はアルコキシ基であることも好ましい。さらに、R27はアルキル基でありR28はアルキル基であることが特に好ましい。
21はフッ素原子であることが好ましい。
At least one of R 25 to R 26 is preferably an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, or an alkenyl group having 2 to 5 carbon atoms. By obtaining the balance of response speed and Tni are good, it is preferable that at least one of R 25 ~ R 26 is an alkenyl group, by obtaining a good balance of solubility in response speed and low temperature, R 25 ~ At least one of R 26 is preferably an alkoxy group. More preferably, R 25 is an alkenyl group and R 26 is an alkyl group. It is also preferred that R 25 is an alkyl group and R 26 is an alkoxy group.
At least one of R 27 to R 28 is preferably an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, or an alkenyl group having 2 to 5 carbon atoms. By obtaining the balance of response speed and Tni are good, it is preferable that at least one of R 27 ~ R 28 is an alkenyl group, by obtaining a good balance of solubility in response speed and low temperature, R 27 ~ At least one of R 28 is preferably an alkoxy group. More preferably, R 27 is an alkyl group or an alkenyl group, and R 28 is an alkyl group. It is also preferred that R 27 is an alkyl group and R 28 is an alkoxy group. Furthermore, it is particularly preferred that R 27 is an alkyl group and R 28 is an alkyl group.
X 21 is preferably a fluorine atom.
 R29~R30の少なくとも一方は、炭素原子数1~5のアルキル基または炭素原子数4~5のアルケニル基が好ましい。応答速度とTniのバランスが良いことを求めれば、R29~R30の少なくとも一方はアルケニル基であることが好ましく、信頼性が良いことを求めれば、R29~R30の少なくとも一方はアルキル基であることが好ましい。R29はアルキル基またはアルケニル基でありR30はアルキル基またはアルケニル基であることがより好ましい。また、R29はアルキル基でありR30はアルケニル基であることも好ましい。さらに、R29はアルキル基でありR30はアルキル基であることも好ましい。
 一般式(II-a)から一般式(II-f)で表される化合物群は1種~10種含有することが好ましく、1種~8種含有することが特に好ましく、その含有量は5~80質量%であるのが好ましく、10~70質量%であることがより好ましく、20~60質量%であることが特に好ましい。
At least one of R 29 to R 30 is preferably an alkyl group having 1 to 5 carbon atoms or an alkenyl group having 4 to 5 carbon atoms. If a good balance between response speed and Tni is required, at least one of R 29 to R 30 is preferably an alkenyl group, and if high reliability is required, at least one of R 29 to R 30 is an alkyl group. It is preferable that More preferably, R 29 is an alkyl group or an alkenyl group, and R 30 is an alkyl group or an alkenyl group. It is also preferred that R 29 is an alkyl group and R 30 is an alkenyl group. Furthermore, it is also preferred that R 29 is an alkyl group and R 30 is an alkyl group.
The compound group represented by the general formula (II-a) to the general formula (II-f) preferably contains 1 to 10 types, particularly preferably 1 to 8 types, and its content is 5 It is preferably ˜80 mass%, more preferably 10 to 70 mass%, and particularly preferably 20 to 60 mass%.
 本発明の液晶表示装置における液晶層は、更に、一般式(III-a)から一般式(III-f) The liquid crystal layer in the liquid crystal display device of the present invention may further have the general formula (III-a) to the general formula (III-f)
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
(式中、R41は炭素原子数1~10のアルキル基、炭素原子数1~10のアルコキシ基、炭素原子数2~10のアルケニル基又は炭素原子数2~10のアルケニルオキシ基を表し、X41~X48はお互い独立して水素原子又はフッ素原子を表し、Z41はフッ素原子、トリフオロメトキシ基又はトリフルオロメチル基を表す。)で表される化合物群から選ばれる化合物を一種又は二種以上含有することができる。
 一般式(IIIa)~一般式(IIIf)において、R41はそれが結合する環構造がフェニル基(芳香族)である場合には、直鎖状の炭素原子数1~5のアルキル基、直鎖状の炭素原子数1~4(またはそれ以上)のアルコキシ基及び炭素原子数4~5のアルケニル基が好ましく、それが結合する環構造がシクロヘキサン、ピラン及びジオキサンなどの飽和した環構造の場合には、直鎖状の炭素原子数1~5のアルキル基、直鎖状の炭素原子数1~4(またはそれ以上)のアルコキシ基及び直鎖状の炭素原子数2~5のアルケニル基が好ましい。
(Wherein R 41 represents an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, or an alkenyloxy group having 2 to 10 carbon atoms, X 41 to X 48 each independently represent a hydrogen atom or a fluorine atom, and Z 41 represents a fluorine atom, a trifluoromethoxy group or a trifluoromethyl group.) Two or more kinds can be contained.
In the general formulas (IIIa) to (IIIf), R 41 is a straight-chain alkyl group having 1 to 5 carbon atoms and a straight chain when the ring structure to which R 41 is bonded is a phenyl group (aromatic). A chain-like alkoxy group having 1 to 4 (or more) carbon atoms and an alkenyl group having 4 to 5 carbon atoms are preferred, and the ring structure to which they are bonded is a saturated ring structure such as cyclohexane, pyran and dioxane Includes a straight-chain alkyl group having 1 to 5 carbon atoms, a straight-chain alkoxy group having 1 to 4 (or more) carbon atoms and a straight-chain alkenyl group having 2 to 5 carbon atoms. preferable.
 熱や光に対する化学的安定性が良いことを重視すれば、R41はアルキル基が好ましい。また、粘度が小さく応答速度が速い液晶表示素子を作ることが重視されるならば、R41はアルケニル基が好ましい。さらに、粘度が小さくかつネマチック-等方相転移温度(Tni)が高く、応答速度の更なる短縮を目的とするならば、末端が不飽和結合ではないアルケニル基を用いることが好ましく、アルケニル基の隣にメチル基が末端としてあることが特に好ましい。また、低温での溶解度が良いことを重視するならば、一つの解決策としては、R41はアルコキシ基とすることが好ましい。また、他の解決策としては、多種類のR41を併用することが好ましい。例えば、R41として、炭素原子数2、3及び4のアルキル基またはアルケニル基を持つ化合物を併用することが好ましく、炭素原子数3及び5の化合物を併用することが好ましく、炭素原子数3、4及び5の化合物を併用することが好ましい。 In view of good chemical stability against heat and light, R 41 is preferably an alkyl group. Further, if it is important to make a liquid crystal display device having a low viscosity and a high response speed, R 41 is preferably an alkenyl group. Further, for the purpose of further shortening the response speed with a low viscosity and a high nematic-isotropic phase transition temperature (Tni), it is preferable to use an alkenyl group whose terminal is not an unsaturated bond. It is particularly preferred that the methyl group is adjacent to the end. Moreover, if importance is attached to good solubility at low temperature, as one solution, R 41 is preferably an alkoxy group. Moreover, as another solution, it is preferable to use many types of R 41 in combination. For example, as R 41 , it is preferable to use a compound having an alkyl group or an alkenyl group having 2, 3 and 4 carbon atoms, preferably a compound having 3 and 5 carbon atoms is preferably used in combination, It is preferable to use compounds 4 and 5 in combination.
 X41及びX42は、少なくともどちらか一つはフッ素原子が好ましく、二つともフッ素原子であることが更に好ましい。
 Z41は、フッ素原子またはトリフルオロメトキシ基であることが好ましい。
41、X42およびZ41の組み合わせとしては、一つの実施形態ではX41=F、X42=FおよびZ41=Fである。さらに別の実施形態では、X41=F、X42=HおよびZ41=Fである。またさらに別の実施形態では、X41=F、X42=HおよびZ41=OCF3である。またさらに別の実施形態では、X41=F、X42=FおよびZ41=OCF3である。またさらに別の実施形態では、X41=H、X42=HおよびZ41=OCF3である。
43及びX44は、少なくともどちらか一つはフッ素原子が好ましく、二つともフッ素原子であることは大きなΔεを得るために好ましいが、反対に、低温での溶解性を良くする場合には好ましくない。
At least one of X 41 and X 42 is preferably a fluorine atom, more preferably both are fluorine atoms.
Z 41 is preferably a fluorine atom or a trifluoromethoxy group.
As a combination of X 41 , X 42 and Z 41 , in one embodiment, X 41 = F, X 42 = F and Z 41 = F. In yet another embodiment, X 41 = F, X 42 = H and Z 41 = F. In yet another embodiment, X 41 = F, X 42 = H and Z 41 = OCF3. In yet another embodiment, X 41 = F, X 42 = F and Z 41 = OCF 3. In yet another embodiment, X 41 = H, X 42 = H and Z 41 = OCF 3.
For X 43 and X 44 , at least one of them is preferably a fluorine atom, and both of them are preferably a fluorine atom in order to obtain a large Δε. On the other hand, when improving solubility at low temperatures, It is not preferable.
 X45及びX46は、少なくともどちらか一つは水素原子が好ましく、二つとも水素原子であることが好ましい。フッ素原子を多用することは、Tni、低温での溶解性や液晶表示素子にしたときの化学的安定性の観点から好ましくない。
 X47及びX48は、少なくともどちらか一つは水素原子が好ましく、二つとも水素原子であることが好ましい。X47及びX48のうち少なくともどちらか一つがフッ素原子である場合、Tni、低温での溶解性や液晶表示素子にしたときの化学的安定性の観点から好ましくない。
 一般式(III-a)から一般式(III-f)で表される化合物群から選ばれる化合物は、1種~10種含有することが好ましく、1種~8種含有することがより好ましく、その含有量は5~50質量%であることが好ましく、10~40質量%であることがより好ましい。
At least one of X 45 and X 46 is preferably a hydrogen atom, and preferably both of them are hydrogen atoms. The heavy use of fluorine atoms is not preferable from the viewpoints of Tni, solubility at low temperatures, and chemical stability when a liquid crystal display device is formed.
At least one of X 47 and X 48 is preferably a hydrogen atom, and preferably both are hydrogen atoms. When at least one of X 47 and X 48 is a fluorine atom, it is not preferable from the viewpoint of Tni, solubility at low temperature, and chemical stability when a liquid crystal display device is formed.
The compound selected from the group of compounds represented by general formula (III-a) to general formula (III-f) preferably contains 1 to 10 types, more preferably 1 to 8 types, The content is preferably 5 to 50% by mass, and more preferably 10 to 40% by mass.
 本発明の液晶表示装置における液晶層の液晶組成物は、25℃におけるΔεが+3.5以上であるのが好ましく、+3.5~+15.0であるのがより好ましい。また、25℃におけるΔnが0.08~0.14であるのが好ましく、0.09~0.13であるのがより好ましい。更に詳述すると、薄いセルギャップに対応する場合は0.10~0.13であることが好ましく、厚いセルギャップに対応する場合は0.08~0.10であることが好ましい。20℃におけるηが10~45mPa・sであるのが好ましく、10~25mPa・sであることがより好ましく、10~20mPa・sであることが特に好ましい。また、Tniが60℃~120℃であるのが好ましく、70℃~100℃がより好ましく、70℃~85℃が特に好ましい。 In the liquid crystal composition of the liquid crystal display device of the present invention, Δε at 25 ° C. is preferably +3.5 or more, more preferably +3.5 to +15.0. Further, Δn at 25 ° C. is preferably 0.08 to 0.14, and more preferably 0.09 to 0.13. More specifically, when it corresponds to a thin cell gap, it is preferably 0.10 to 0.13, and when it corresponds to a thick cell gap, it is preferably 0.08 to 0.10. The η at 20 ° C. is preferably 10 to 45 mPa · s, more preferably 10 to 25 mPa · s, and particularly preferably 10 to 20 mPa · s. Further, T ni is preferably 60 ° C. to 120 ° C., more preferably 70 ° C. to 100 ° C., and particularly preferably 70 ° C. to 85 ° C.
 本発明における液晶組成物は、上述の化合物以外に、通常のネマチック液晶、スメクチック液晶、コレステリック液晶などを含有してもよい。
 本発明における液晶組成物には、PSモード、横電界型PSAモード又は横電界型PSVAモードなどの液晶表示素子を作製するために、重合性化合物を一種又は二種以上含有することができる。使用できる重合性化合物として、光などのエネルギー線により重合が進行する光重合性モノマーなどが挙げられ、構造として、例えば、ビフェニル誘導体、ターフェニル誘導体などの六員環が複数連結した液晶骨格を有する重合性化合物などが挙げられる。更に具体的には、一般式(V)
The liquid crystal composition in the present invention may contain a normal nematic liquid crystal, a smectic liquid crystal, a cholesteric liquid crystal and the like in addition to the above-described compounds.
The liquid crystal composition in the present invention may contain one or more polymerizable compounds in order to produce a liquid crystal display element such as a PS mode, a transverse electric field type PSA mode, or a transverse electric field type PSVA mode. Examples of the polymerizable compound that can be used include a photopolymerizable monomer that undergoes polymerization by energy rays such as light. The structure has, for example, a liquid crystal skeleton in which a plurality of six-membered rings such as biphenyl derivatives and terphenyl derivatives are connected. Examples thereof include a polymerizable compound. More specifically, the general formula (V)
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
(式中、X51及びX52はそれぞれ独立して、水素原子又はメチル基を表し、
Sp及びSpはそれぞれ独立して、単結合、炭素原子数1~8のアルキレン基又は-O-(CH-(式中、sは2から7の整数を表し、酸素原子は芳香環に結合するものとする。)を表し、Z51は-OCH-、-CHO-、-COO-、-OCO-、-CFO-、-OCF-、-CHCH-、-CFCF-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-COO-CHCH-、-OCO-CHCH-、-CHCH-COO-、-CHCH-OCO-、-COO-CH-、-OCO-CH-、-CH-COO-、-CH-OCO-、-CY=CY-(式中、Y及びYはそれぞれ独立して、フッ素原子又は水素原子を表す。)、-C≡C-又は単結合を表し、
51は1,4-フェニレン基、トランス-1,4-シクロヘキシレン基又は単結合を表し、式中の全ての1,4-フェニレン基は、任意の水素原子がフッ素原子により置換されていても良い。)で表される二官能モノマーが好ましい。
(Wherein, X 51 and X 52 each independently represent a hydrogen atom or a methyl group,
Sp 1 and Sp 2 are each independently a single bond, an alkylene group having 1 to 8 carbon atoms, or —O— (CH 2 ) s — (wherein s represents an integer of 2 to 7, Z 51 represents —OCH 2 —, —CH 2 O—, —COO—, —OCO—, —CF 2 O—, —OCF 2 —, —CH 2 CH. 2 —, —CF 2 CF 2 —, —CH═CH—COO—, —CH═CH—OCO—, —COO—CH═CH—, —OCO—CH═CH—, —COO—CH 2 CH 2 — , —OCO—CH 2 CH 2 —, —CH 2 CH 2 —COO—, —CH 2 CH 2 —OCO—, —COO—CH 2 —, —OCO—CH 2 —, —CH 2 —COO—, — CH 2 -OCO -, - CY 1 = CY 2 - ( wherein, Y 1 and Y 2 it Independently represents a fluorine atom or a hydrogen atom), -. C≡C- or a single bond,
M 51 represents a 1,4-phenylene group, a trans-1,4-cyclohexylene group or a single bond, and all 1,4-phenylene groups in the formula have an arbitrary hydrogen atom substituted by a fluorine atom. Also good. ) Is preferred.
 X51及びX52は、何れも水素原子を表すジアクリレート誘導体、何れもメチル基を有するジメタクリレート誘導体の何れも好ましく、一方が水素原子を表しもう一方がメチル基を表す化合物も好ましい。これらの化合物の重合速度は、ジアクリレート誘導体が最も早く、ジメタクリレート誘導体が遅く、非対称化合物がその中間であり、その用途により好ましい態様を用いることができる。PSA表示素子においては、ジメタクリレート誘導体が特に好ましい。
 Sp及びSpはそれぞれ独立して、単結合、炭素原子数1~8のアルキレン基又は-O-(CH-を表すが、PSA表示素子においては少なくとも一方が単結合であることが好ましく、共に単結合を表す化合物又は一方が単結合でもう一方が炭素原子数1~8のアルキレン基又は-O-(CH-を表す態様が好ましい。この場合1~4のアルキル基が好ましく、sは1~4が好ましい。
X 51 and X 52 are each preferably a diacrylate derivative that represents a hydrogen atom, or a dimethacrylate derivative that has a methyl group, and a compound in which one represents a hydrogen atom and the other represents a methyl group. The polymerization rate of these compounds is the fastest for diacrylate derivatives, slow for dimethacrylate derivatives, and intermediate for asymmetric compounds, and a preferred embodiment can be used depending on the application. In the PSA display element, a dimethacrylate derivative is particularly preferable.
Sp 1 and Sp 2 each independently represent a single bond, an alkylene group having 1 to 8 carbon atoms or —O— (CH 2 ) s —, but at least one of them is a single bond in a PSA display element. A compound in which both represent a single bond or one in which one represents a single bond and the other represents an alkylene group having 1 to 8 carbon atoms or —O— (CH 2 ) s — is preferable. In this case, 1 to 4 alkyl groups are preferable, and s is preferably 1 to 4.
 Z51は、-OCH-、-CHO-、-COO-、-OCO-、-CFO-、-OCF-、-CHCH-、-CFCF-又は単結合が好ましく、-COO-、-OCO-又は単結合がより好ましく、単結合が特に好ましい。
 M51は任意の水素原子がフッ素原子により置換されていても良い1,4-フェニレン基、トランス-1,4-シクロヘキシレン基又は単結合を表すが、1,4-フェニレン基又は単結合が好ましい。Cが単結合以外の環構造を表す場合、Z51は単結合以外の連結基も好ましく、M51が単結合の場合、Z51は単結合が好ましい。
Z 51 is —OCH 2 —, —CH 2 O—, —COO—, —OCO—, —CF 2 O—, —OCF 2 —, —CH 2 CH 2 —, —CF 2 CF 2 — or a single bond Are preferred, —COO—, —OCO— or a single bond is more preferred, and a single bond is particularly preferred.
M 51 represents a 1,4-phenylene group, a trans-1,4-cyclohexylene group or a single bond in which any hydrogen atom may be substituted by a fluorine atom. preferable. When C represents a ring structure other than a single bond, Z 51 is preferably a linking group other than a single bond. When M 51 is a single bond, Z 51 is preferably a single bond.
 これらの点から、一般式(V)において、Sp及びSpの間の環構造は、具体的には次に記載する構造が好ましい。
 一般式(V)において、M51が単結合を表し、環構造が二つの環で形成される場合において、次の式(Va-1)~式(Va-5)を表すことが好ましく、式(Va-1)~式(Va-3)を表すことがより好ましく、式(Va-1)を表すことが特に好ましい。
From these points, in the general formula (V), the ring structure between Sp 1 and Sp 2 is specifically preferably the structure described below.
In the general formula (V), when M 51 represents a single bond and the ring structure is formed of two rings, the following formulas (Va-1) to (Va-5) are preferable. It is more preferable to represent (Va-1) to formula (Va-3), and it is particularly preferable to represent formula (Va-1).
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
(式中、両端はSp又はSpに結合するものとする。)
 これらの骨格を含む重合性化合物は重合後の配向規制力がPSA型液晶表示素子に最適であり、良好な配向状態が得られることから、表示ムラが抑制されるか、又は、全く発生しない。
 以上のことから、重合性化合物としては、一般式(V-1)~一般式(V-4)が特に好ましく、中でも一般式(V-2)が最も好ましい。
(In the formula, both ends shall be bonded to Sp 1 or Sp 2. )
The polymerizable compounds containing these skeletons are optimal for PSA-type liquid crystal display elements because of their alignment restriction power after polymerization, and a good alignment state is obtained, so that display unevenness is suppressed or does not occur at all.
From the above, as the polymerizable compound, the general formula (V-1) to the general formula (V-4) are particularly preferable, and the general formula (V-2) is most preferable.
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
(式中、Spは炭素原子数2から5のアルキレン基を表す。)
 本発明における液晶組成物に重合性化合物を添加する場合において、重合開始剤が存在しない場合でも重合は進行するが、重合を促進するために重合開始剤を含有していてもよい。重合開始剤としては、ベンゾインエーテル類、ベンゾフェノン類、アセトフェノン類、ベンジルケタール類、アシルフォスフィンオキサイド類等が挙げられる。
(In the formula, Sp 2 represents an alkylene group having 2 to 5 carbon atoms.)
In the case of adding a polymerizable compound to the liquid crystal composition in the present invention, the polymerization proceeds even when no polymerization initiator is present, but may contain a polymerization initiator in order to accelerate the polymerization. Examples of the polymerization initiator include benzoin ethers, benzophenones, acetophenones, benzyl ketals, acylphosphine oxides, and the like.
 本発明における重合性化合物を含有した液晶組成物は、これに含まれる重合性化合物が紫外線照射により重合することで液晶配向能が付与され、液晶組成物の複屈折を利用して光の透過光量を制御する液晶表示素子に使用される。液晶表示素子として、AM-LCD(アクティブマトリックス液晶表示素子)、TN(ネマチック液晶表示素子)、STN-LCD(超ねじれネマチック液晶表示素子)、OCB-LCD及びIPS-LCD(インプレーンスイッチング液晶表示素子)に有用であるが、AM-LCDに特に有用であり、透過型あるいは反射型の液晶表示素子に用いることができる。 The liquid crystal composition containing the polymerizable compound in the present invention is provided with liquid crystal alignment ability by polymerization of the polymerizable compound contained therein by ultraviolet irradiation, and transmits light through the birefringence of the liquid crystal composition. It is used in a liquid crystal display element that controls As liquid crystal display elements, AM-LCD (active matrix liquid crystal display element), TN (nematic liquid crystal display element), STN-LCD (super twisted nematic liquid crystal display element), OCB-LCD and IPS-LCD (in-plane switching liquid crystal display element) However, it is particularly useful for AM-LCDs and can be used for transmissive or reflective liquid crystal display elements.
(カラーフィルタ)
 本発明におけるカラーフィルタは、少なくともRGB三色画素部から構成されるが、当該RGB三色画素部の少なくとも1つの画素部中には、色材として、下記一般式(1)
(Color filter)
The color filter according to the present invention includes at least an RGB three-color pixel portion. In at least one pixel portion of the RGB three-color pixel portion, the following general formula (1) is used as a color material.
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
(式(1)中、R~R10はそれぞれ独立に水素原子、炭素数1~12の分岐しても良いアルキル基、アルコキシ基、-CO (カルボン酸イオン基)、-CO21、-SO (スルホン酸イオン基)、-SOM、-SONR2122を表す。R21およびR22はそれぞれ独立に水素原子、炭素数1~12の分岐しても良いアルキル基、炭素数1~10の環状アルキル基を表し、R21とR22で環構造を形成しても良い。
11は-CO (カルボン酸イオン基)、-CO21、-SO (スルホン酸イオン基)、-SOM、-SONR2324を表す。R23およびR24はそれぞれ独立に水素原子、炭素数1~12の分岐しても良いアルキル基、炭素数1~10の環状アルキル基を表し、R23とR24で環構造を形成しても良い。Mは水素原子、ナトリウム原子またはカリウム原子を表す。但し、R~R10のうち1以上が-SONR2122である。)で表されるキサンテン化合物を含有する。
 中でも、R画素部及びB画素部の少なくとも1つの画素部中に上記一般式(1)で表されるキサンテン化合物を含有することが好ましい。
(In the formula (1), R 1 to R 10 are each independently a hydrogen atom, an alkyl group having 1 to 12 carbon atoms which may be branched, an alkoxy group, —CO 2 (carboxylate ion group), —CO 2. R 21, -SO 3 - (sulfonic acid ion group), - SO 3 M, .R 21 and R 22 represents an -SO 2 NR 21 R 22 are each independently a hydrogen atom, a branched structure having 1 to 12 carbon atoms Represents a good alkyl group or a cyclic alkyl group having 1 to 10 carbon atoms, and R 21 and R 22 may form a ring structure.
R 11 is -CO 2 - (carboxylate ion group), - CO 2 R 21, -SO 3 - ( sulfonic acid ion group), - SO 3 M, represents a -SO 2 NR 23 R 24. R 23 and R 24 each independently represents a hydrogen atom, an alkyl group having 1 to 12 carbon atoms which may be branched, or a cyclic alkyl group having 1 to 10 carbon atoms, and R 23 and R 24 form a ring structure. Also good. M represents a hydrogen atom, a sodium atom or a potassium atom. However, one or more of R 1 to R 10 are —SO 2 NR 21 R 22 . The xanthene compound represented by this is contained.
Especially, it is preferable to contain the xanthene compound represented by the said General formula (1) in at least 1 pixel part of R pixel part and B pixel part.
 また、RGB三色画素部は、色材として、R画素部中にジケトピロロピロール顔料及び/又はアニオン性赤色有機染料を、G画素部中にハロゲン化金属フタロシアニン顔料、フタロシアニン系緑色染料、フタロシアニン系青色染料とアゾ系黄色有機染料との混合物からなる群から選ばれる少なくとも一種を、B画素部中にε型フタロシアニン顔料又はカチオン性青色有機染料を含有するのが好ましい。
 上記一般式(1)において、R~R10で表されるアルキル基としてはメチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、水酸基、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、ノニルオキシ基、デシルオキシ基、ウンデシルオキシ基、ドデシルオキシ基、-CO (カルボン酸イオン基)、-CO21、-SO (スルホン酸イオン基)、-SONa、-SOK又は-SOH、-SONR23R24などが挙げられる。
In addition, the RGB three-color pixel portion includes, as coloring materials, a diketopyrrolopyrrole pigment and / or an anionic red organic dye in the R pixel portion, a metal halide phthalocyanine pigment, a phthalocyanine green dye, and a phthalocyanine in the G pixel portion. It is preferable that at least one selected from the group consisting of a mixture of a blue-based dye and an azo-based yellow organic dye contains an ε-type phthalocyanine pigment or a cationic blue organic dye in the B pixel portion.
In the above general formula (1), the alkyl groups represented by R 1 to R 10 are methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group. , Undecyl group, dodecyl group, hydroxyl group, methoxy group, ethoxy group, propoxy group, butoxy group, pentyloxy group, hexyloxy group, heptyloxy group, octyloxy group, nonyloxy group, decyloxy group, undecyloxy group, dodecyloxy group group, -CO 2 - (carboxylate ion group), - CO 2 R 21, -SO 3 - ( sulfonic acid ion group), - SO 3 Na, -SO 3 K or -SO 3 H, -SO 2 NR 23 R24 etc. are mentioned.
 R21およびR22で表されるアルキル基としては例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、2-エチルヘキシル基、ノニル基、デシル基、ウンデシル基、ドデシル基等を挙げることができ、ヘキシル基、ヘプチル基、オクチル基、2-エチルヘキシル基、ノニル基、デシル基、ウンデシル基、ドデシル基であることが好ましい。炭素数1~10の環状アルキル基としては例えばシクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、2-シクロヘキシルエチル基等を挙げることができ、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、2-シクロヘキシルエチル基であることが好ましい。
 R21とR22が環構造を形成する場合、具体例として以下の構造が挙げられる。
Examples of the alkyl group represented by R 21 and R 22 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a pentyl group, a hexyl group, and a heptyl group. Group, octyl group, 2-ethylhexyl group, nonyl group, decyl group, undecyl group, dodecyl group, etc., and hexyl group, heptyl group, octyl group, 2-ethylhexyl group, nonyl group, decyl group, undecyl group The dodecyl group is preferred. Examples of the C1-C10 cyclic alkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, a 2-cyclohexylethyl group, and the like. A cyclopentyl group, a cyclohexyl group And a cycloheptyl group, a cyclooctyl group, and a 2-cyclohexylethyl group.
When R 21 and R 22 form a ring structure, specific examples include the following structures.
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
 R21およびR22のうちどちらか1つは水素以外であることが好ましい。
 R11は-CO (カルボン酸イオン基)、-CO21、-SO (スルホン酸イオン基)、-SOM、-SONR2324を表す。R23およびR24はそれぞれ独立に水素原子、炭素数1~12の分岐しても良いアルキル基、炭素数1~10の環状アルキル基を表し、R23とR24で環構造を形成しても良い。R23およびR24で表されるアルキル基としては例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、2-エチルヘキシル基、ノニル基、デシル基、ウンデシル基、ドデシル基等を挙げることができ、ヘキシル基、ヘプチル基、オクチル基、2-エチルヘキシル基、ノニル基、デシル基、ウンデシル基、ドデシル基であることが好ましい。炭素数1~10の環状アルキル基としては例えばシクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロヘキシルメチル基等を挙げることができ、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、2-シクロヘキシルエチル基であることが好ましい。
 R23とR24が環構造を形成する場合、具体例として以下の構造が挙げられる。
Either one of R 21 and R 22 is preferably other than hydrogen.
R 11 is -CO 2 - (carboxylate ion group), - CO 2 R 21, -SO 3 - ( sulfonic acid ion group), - SO 3 M, represents a -SO 2 NR 23 R 24. R 23 and R 24 each independently represents a hydrogen atom, an alkyl group having 1 to 12 carbon atoms which may be branched, or a cyclic alkyl group having 1 to 10 carbon atoms, and R 23 and R 24 form a ring structure. Also good. Examples of the alkyl group represented by R 23 and R 24 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a pentyl group, a hexyl group, and a heptyl group. Group, octyl group, 2-ethylhexyl group, nonyl group, decyl group, undecyl group, dodecyl group, etc., and hexyl group, heptyl group, octyl group, 2-ethylhexyl group, nonyl group, decyl group, undecyl group The dodecyl group is preferred. Examples of the C1-C10 cyclic alkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, a cyclohexylmethyl group, and the like. A cyclopentyl group, a cyclohexyl group, a cyclohexyl group, and the like can be given. A heptyl group, a cyclooctyl group, and a 2-cyclohexylethyl group are preferable.
When R 23 and R 24 form a ring structure, specific examples include the following structures.
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
 R23およびR24のうちどちらか1つは水素以外であることが好ましい。
 前記一般式(1)で表されるキサンテン化合物の具体例としては、例えば、以下に記載した化合物があげられるが、本発明はその主旨を超えない限り、これらに限定されるものではない。
Either one of R 23 and R 24 is preferably other than hydrogen.
Specific examples of the xanthene compound represented by the general formula (1) include, for example, the compounds described below, but the present invention is not limited to these unless it exceeds the gist.
Figure JPOXMLDOC01-appb-C000030
No.1: Ra=ドデシル
No.2: Ra=2-エチルヘキシル
No.3: Ra=2-シクロヘキシルエチル
Figure JPOXMLDOC01-appb-C000030
No.1: Ra = dodecyl
No.2: R a = 2-ethylhexyl
No.3: R a = 2-cyclohexylethyl
Figure JPOXMLDOC01-appb-C000031
No.4: Ra=2-エチルヘキシル, Rb=2-エチルヘキシルNo.5: Ra=デシル, Rb=デシル
Figure JPOXMLDOC01-appb-C000031
No.4: R a = 2-ethylhexyl, R b = 2-ethylhexyl No.5: R a = decyl, R b = decyl
Figure JPOXMLDOC01-appb-C000032
No.6: Ra=ドデシル
No.7: Ra=2-エチルヘキシルNo.8: Ra=2-シクロヘキシルエチル
Figure JPOXMLDOC01-appb-C000032
No.6: Ra = dodecyl
No. 7: R a = 2-ethylhexyl No. 8: R a = 2-cyclohexylethyl
Figure JPOXMLDOC01-appb-C000033
No.9: Ra=2-エチルヘキシル, Rb=2-エチルヘキシルNo.10: Ra=デシル, Rb=デシル
Figure JPOXMLDOC01-appb-C000033
No. 9: R a = 2-ethylhexyl, R b = 2-ethylhexyl No. 10: R a = decyl, R b = decyl
Figure JPOXMLDOC01-appb-C000034
No.11:Ra=ドデシル
No.12:Ra=2-エチルヘキシルNo.13: Ra=2-シクロヘキシルエチル
Figure JPOXMLDOC01-appb-C000034
No. 11: R a = dodecyl
No. 12: R a = 2-ethylhexyl No. 13: R a = 2-cyclohexylethyl
Figure JPOXMLDOC01-appb-C000035
No.14: Ra=2-エチルヘキシル, Rb=2-エチルヘキシル
No.15: Ra=デシル, Rb=デシル
Figure JPOXMLDOC01-appb-C000035
No. 14: R a = 2-ethylhexyl, R b = 2-ethylhexyl
No.15: R a = decyl, R b = decyl
Figure JPOXMLDOC01-appb-C000036
No.16:C.I.Acid Red 289
Figure JPOXMLDOC01-appb-C000036
No. 16: C.I. I. Acid Red 289
(G画素部)
 G画素部中には、ハロゲン化金属フタロシアニン顔料、フタロシアニン系緑色染料、フタロシアニン系青色染料とアゾ系黄色有機染料との混合物からなる群から選ばれる少なくとも一種を含有するのが好ましい。ハロゲン化金属フタロシニアン顔料としては、Al、Si、Sc、Ti、V、Mg、Fe、Co、Ni、Zn、Cu、Ga、Ge、Y、Zr、Nb、In、Sn及びPbからなる群から選ばれる金属を中心金属として有するハロゲン化金属フタロシアニン顔料であり、その中心金属が三価の場合には、その中心金属には1つのハロゲン原子、水酸基又はスルホン酸基のいずれかが結合しているか、又はオキソ又はチオ架橋しており、その中心金属が四価金属の場合には、その中心金属には1つの酸素原子又は同一でも異なっていても良い2つのハロゲン原子、水酸基又はスルホン酸基のいずれかが結合しているハロゲン化金属フタロシアニン顔料が好ましい。該ハロゲン化金属フタロシアニン顔料としては、次の2つの群のハロゲン化金属フタロシアニン顔料が挙げられる。
(G pixel part)
The G pixel portion preferably contains at least one selected from the group consisting of metal halide phthalocyanine pigments, phthalocyanine green dyes, and mixtures of phthalocyanine blue dyes and azo yellow organic dyes. The metal halide phthalocyanine pigment is selected from the group consisting of Al, Si, Sc, Ti, V, Mg, Fe, Co, Ni, Zn, Cu, Ga, Ge, Y, Zr, Nb, In, Sn and Pb. Is a halogenated metal phthalocyanine pigment having a central metal as a central metal, and when the central metal is trivalent, either one halogen atom, a hydroxyl group or a sulfonic acid group is bonded to the central metal, Or when the central metal is a tetravalent metal, the central metal is either one oxygen atom or two halogen atoms, hydroxyl groups or sulfonic acid groups which may be the same or different. Metal halide phthalocyanine pigments that are bonded together are preferred. Examples of the metal halide phthalocyanine pigment include the following two groups of metal halide phthalocyanine pigments.
 (第一群)
 Al、Si、Sc、Ti、V、Mg、Fe、Co、Ni、Zn、Cu、Ga、Ge、Y、Zr、Nb、In、Sn及びPbからなる群から選ばれる金属を中心金属として有し、フタロシアニン分子1個当たり8~16個のハロゲン原子がフタロシアニン分子のベンゼン環に結合したハロゲン化金属フタロシアニン顔料であり、その中心金属が三価の場合には、その中心金属には1つのハロゲン原子、水酸基又はスルホン酸基(-SO3H)のいずれかが結合しており、中心金属が四価金属の場合には、その中心金属には1つの酸素原子又は同一でも異なっていても良い2つのハロゲン原子、水酸基又はスルホン酸基のいずれかが結合しているハロゲン化金属フタロシアニン顔料。
(First group)
It has a metal selected from the group consisting of Al, Si, Sc, Ti, V, Mg, Fe, Co, Ni, Zn, Cu, Ga, Ge, Y, Zr, Nb, In, Sn, and Pb as a central metal. A halogenated metal phthalocyanine pigment in which 8 to 16 halogen atoms per phthalocyanine molecule are bonded to the benzene ring of the phthalocyanine molecule, and when the central metal is trivalent, the central metal has one halogen atom When a hydroxyl group or a sulfonic acid group (—SO 3 H) is bonded and the central metal is a tetravalent metal, the central metal has one oxygen atom or two halogens which may be the same or different. A halogenated metal phthalocyanine pigment to which any one of an atom, a hydroxyl group and a sulfonic acid group is bonded.
 (第二群)
 Al、Sc、Ga、Y及びInからなる群から選ばれる三価金属を中心金属とし、フタロシアニン分子1個当たり8~16個のハロゲン原子がフタロシアニン分子のベンゼン環に結合したハロゲン化金属フタロシアニンの2分子を構成単位とし、これら構成単位の各中心金属が酸素原子、硫黄原子、スルフィニル(-SO-)及びスルホニル(-SO2-)からなる群から選ばれる二価原子団を介して結合したハロゲン化金属フタロシアニン二量体からなる顔料。
(Second group)
2 of halogenated metal phthalocyanine having a trivalent metal selected from the group consisting of Al, Sc, Ga, Y and In as a central metal and having 8 to 16 halogen atoms bonded to the benzene ring of the phthalocyanine molecule per phthalocyanine molecule. Halogenation in which a molecule is a structural unit and each central metal of these structural units is bonded via a divalent atomic group selected from the group consisting of oxygen atom, sulfur atom, sulfinyl (—SO—) and sulfonyl (—SO 2 —) A pigment composed of a metal phthalocyanine dimer.
 該ハロゲン化金属フタロシアニン顔料において、ベンゼン環に結合するハロゲン原子は、全て同一であっても、それぞれ異なっていてもよい。また、ひとつのベンゼン環に異なるハロゲン原子が結合していてもよい。
 ここで、フタロシアニン分子1個当たり8~16個のハロゲン原子のうち9~15個の臭素原子がフタロシアニン分子のベンゼン環に結合したハロゲン化金属フタロシアニン顔料は、黄味を帯びた明るい緑色を呈し、カラーフィルタの緑色画素部への使用に最適である。該ハロゲン化金属フタロシアニン顔料は、水や有機溶媒に不溶または難溶である。該ハロゲン化金属フタロシアニン顔料には、後述する仕上げ処理が行われていない顔料(粗顔料とも呼ばれる)も、仕上げ処理が行われた顔料も、いずれも包含される。
In the metal halide phthalocyanine pigment, all the halogen atoms bonded to the benzene ring may be the same or different. Different halogen atoms may be bonded to one benzene ring.
Here, the halogenated metal phthalocyanine pigment in which 9 to 15 bromine atoms out of 8 to 16 halogen atoms per phthalocyanine molecule are bonded to the benzene ring of the phthalocyanine molecule exhibits a yellowish bright green color, It is most suitable for use in the green pixel portion of the color filter. The metal halide phthalocyanine pigment is insoluble or hardly soluble in water or an organic solvent. The halogenated metal phthalocyanine pigment includes both a pigment that has not been subjected to a finishing treatment described later (also referred to as a crude pigment) and a pigment that has been subjected to a finishing treatment.
 前記第一群および第二群に属するハロゲン化金属フタロシアニン顔料は、下記一般式(PIG-1)で表すことが出来る。 The halogenated metal phthalocyanine pigments belonging to the first group and the second group can be represented by the following general formula (PIG-1).
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
 第一群に属するハロゲン化金属フタロシアニン顔料は、前記一般式(PIG-1)において、次の通りである。
 一般式(PIG-1)において、X~X16は、水素原子、塩素原子、臭素原子またはヨウ素原子を表す。ひとつのベンゼン環に結合した4個のXの原子は同一でも異なっていても良い。4個のベンゼン環に結合したX~X16のうち、8~16個は塩素原子、臭素原子またはヨウ素原子である。Mは中心金属を表す。後述するY及びそれの個数mが同一であるハロゲン化金属フタロシアニン顔料の範囲において、16個のX~X16のうち塩素原子、臭素原子及びヨウ素原子の合計が8未満の顔料は青色であり、同様に16個のX~X16のうち塩素原子、臭素原子及びヨウ素原子の合計が8以上の顔料で前記合計値が大きいほど黄味が強くなる。中心金属Mに結合するYはフッ素、塩素、臭素またはヨウ素のいずれかのハロゲン原子、酸素原子、水酸基及びスルホン酸基からなる群から選ばれる一価原子団であり、mは中心金属Mに結合するYの数を表し、0~2の整数である。
In the general formula (PIG-1), the metal halide phthalocyanine pigments belonging to the first group are as follows.
In the general formula (PIG-1), X 1 to X 16 each represents a hydrogen atom, a chlorine atom, a bromine atom, or an iodine atom. The four X atoms bonded to one benzene ring may be the same or different. Of X 1 to X 16 bonded to four benzene rings, 8 to 16 are chlorine, bromine or iodine atoms. M represents a central metal. In the range of Y and the number of halogenated metal phthalocyanine pigments having the same number m, a pigment having a total of less than 8 chlorine atoms, bromine atoms and iodine atoms out of 16 X 1 to X 16 is blue. Similarly, among the 16 X 1 to X 16 pigments, the total of chlorine atom, bromine atom and iodine atom is 8 or more, and the yellow color becomes stronger as the total value is larger. Y bonded to the central metal M is a monovalent atomic group selected from the group consisting of a halogen atom of any one of fluorine, chlorine, bromine or iodine, an oxygen atom, a hydroxyl group and a sulfonic acid group, and m is bonded to the central metal M. Represents the number of Y to be represented, and is an integer of 0-2.
 中心金属Mの原子価により、mの値が決定される。中心金属Mが、Al、Sc、Ga、Y、Inの様に原子価が3価の場合、m=1であり、フッ素、塩素、臭素、ヨウ素、水酸基及びスルホン酸基からなる群から選ばれる基の一つが中心金属に結合する。中心金属Mが、Si、Ti、V、Ge、Zr、Snの様に原子価が4価の場合は、m=2であり、酸素の一つが中心金属に結合するか、またはフッ素、塩素、臭素、ヨウ素、水酸基及びスルホン酸基からなる群から選ばれる基の二つが中心金属に結合する。中心金属Mが、Mg、Fe、Co、Ni、Zn、Cu、Zr、Sn、Pbの様に原子価が2価の場合は、Yは存在しない。 The value of m is determined by the valence of the central metal M. When the central metal M is trivalent like Al, Sc, Ga, Y, and In, m = 1, and is selected from the group consisting of fluorine, chlorine, bromine, iodine, hydroxyl group, and sulfonic acid group. One of the groups is attached to the central metal. When the central metal M is tetravalent like Si, Ti, V, Ge, Zr, Sn, m = 2 and one of oxygen is bonded to the central metal or fluorine, chlorine, Two of the groups selected from the group consisting of bromine, iodine, hydroxyl group and sulfonic acid group are bonded to the central metal. When the central metal M is divalent like Mg, Fe, Co, Ni, Zn, Cu, Zr, Sn, Pb, Y does not exist.
 また、第二群に属するハロゲン化金属フタロシアニン顔料は、前記一般式(PIG-1)において次の通りである。
 前記一般式(PIG-1)において、X~X16については、前記定義と同義であり、中心金属MはAl、Sc、Ga、Y及びInからなる群から選ばれる三価金属を表し、mは1を表す。Yは次の原子団を表す。
The halogenated metal phthalocyanine pigment belonging to the second group is as follows in the general formula (PIG-1).
In the general formula (PIG-1), X 1 to X 16 are as defined above, and the central metal M represents a trivalent metal selected from the group consisting of Al, Sc, Ga, Y and In, m represents 1. Y represents the following atomic group.
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
 なお、原子団Yの化学構造中、中心金属Mは前記した定義と同義であり、X17~X32については、一般式(PIG-1)において前記したX~X16の定義と同義である。Aは、酸素原子、硫黄原子、スルフィニル(-SO-)及びスルホニル(-SO2-)からなる群から選ばれる二価原子団を表す。一般式(PIG-1)中のMと原子団YのMとは、二価原子団Aを介して結合していることを表す。
 即ち、第二群に属するハロゲン化金属フタロシアニン顔料は、ハロゲン化金属フタロシアニンの2分子を構成単位とし、これらが前記二価原子団を介して結合したハロゲン化金属フタロシアニン二量体である。
In the chemical structure of the atomic group Y, the central metal M has the same definition as described above, and X 17 to X 32 have the same definition as X 1 to X 16 in the general formula (PIG-1). is there. A represents a divalent atomic group selected from the group consisting of an oxygen atom, a sulfur atom, sulfinyl (—SO—) and sulfonyl (—SO 2 —). M in the general formula (PIG-1) and M in the atomic group Y are bonded via the divalent atomic group A.
That is, the metal halide phthalocyanine pigment belonging to the second group is a metal halide phthalocyanine dimer in which two molecules of metal halide phthalocyanine are constituent units and these are bonded via the divalent atomic group.
 一般式(PIG-1)で表わされるハロゲン化金属フタロシアニン顔料としては、具体的には、次の(1)~(4)が挙げられる。
 (1) ハロゲン化銅フタロシアニン顔料、ハロゲン化錫フタロシアニン顔料、ハロゲン化ニッケルフタロシアニン顔料、ハロゲン化亜鉛フタロシアニン顔料の様な、Mg、Fe、Co、Ni、Zn、Cu、Zr、Sn及びPbからなる群から選ばれる二価金属を中心金属として有し、かつフタロシアニン分子1個当たり4個のベンゼン環に8~16個のハロゲン原子が結合したハロゲン化金属フタロシアニン顔料。なお、この中で、塩素化臭素化亜鉛フタロシアニン顔料は、C.I.Pigment Green 58であり、特に好ましい。
 (2) ハロゲン化クロロアルミニウムフタロシアニンの様な、Al、Sc、Ga、Y及びInからなる群から選ばれる三価金属を中心金属として有し、中心金属には1つのハロゲン原子、水酸基又はスルホン酸基のいずれかを有し、かつフタロシアニン分子1個当たり4個のベンゼン環に8~16個のハロゲン原子が結合したハロゲン化金属フタロシアニン顔料。
 (3) ハロゲン化オキシチタニウムフタロシアニン、ハロゲン化オキシバナジウムフタロシアニンの様な、Si、Ti、V、Ge、Zr及びSnからなる群から選ばれる四価金属を中心金属として有し、中心金属には1つの酸素原子又は同一でも異なっていても良い2つのハロゲン原子、水酸基又はスルホン酸基のいずれかを有し、かつフタロシアニン分子1個当たり4個のベンゼン環に8~16個のハロゲン原子が結合したハロゲン化金属フタロシアニン顔料。
 (4) ハロゲン化されたμ-オキソ-アルミニウムフタロシアニン二量体、ハロゲン化されたμ-チオ-アルミニウムフタロシアニン二量体の様な、Al、Sc、Ga、Y及びInからなる群から選ばれる三価金属を中心金属とし、フタロシアニン分子1個当たり4個のベンゼン環に8~16個のハロゲン原子が結合したハロゲン化金属フタロシアニンの2分子を構成単位とし、これら構成単位の各中心金属が酸素原子、硫黄原子、スルフィニル及びスルホニルからなる群から選ばれる二価原子団を介して結合したハロゲン化金属フタロシアニン二量体からなる顔料。
Specific examples of the halogenated metal phthalocyanine pigment represented by the general formula (PIG-1) include the following (1) to (4).
(1) A group consisting of Mg, Fe, Co, Ni, Zn, Cu, Zr, Sn, and Pb, such as a halogenated copper phthalocyanine pigment, a halogenated tin phthalocyanine pigment, a halogenated nickel phthalocyanine pigment, and a halogenated zinc phthalocyanine pigment. A halogenated metal phthalocyanine pigment having a divalent metal selected from 1 as a central metal and 8 to 16 halogen atoms bonded to 4 benzene rings per phthalocyanine molecule. Of these, chlorinated brominated zinc phthalocyanine pigments include C.I. I. Pigment Green 58, particularly preferred.
(2) A trivalent metal selected from the group consisting of Al, Sc, Ga, Y and In, such as a halogenated chloroaluminum phthalocyanine, is used as a central metal, and the central metal contains one halogen atom, hydroxyl group or sulfonic acid. A halogenated metal phthalocyanine pigment having any of the groups and having 8 to 16 halogen atoms bonded to 4 benzene rings per phthalocyanine molecule.
(3) The center metal has a tetravalent metal selected from the group consisting of Si, Ti, V, Ge, Zr and Sn, such as halogenated oxytitanium phthalocyanine and halogenated oxyvanadium phthalocyanine. 8 to 16 halogen atoms bonded to four benzene rings per one phthalocyanine molecule, having one oxygen atom or two halogen atoms which may be the same or different, a hydroxyl group or a sulfonic acid group Halogenated metal phthalocyanine pigment.
(4) Three selected from the group consisting of Al, Sc, Ga, Y and In, such as a halogenated μ-oxo-aluminum phthalocyanine dimer and a halogenated μ-thio-aluminum phthalocyanine dimer. The valence metal is the central metal, and the halogenated metal phthalocyanine is composed of two molecules of 8-16 halogen atoms bonded to 4 benzene rings per phthalocyanine molecule. Each central metal of these structural units is an oxygen atom. And a pigment comprising a metal halide phthalocyanine dimer bonded through a divalent atomic group selected from the group consisting of sulfur atom, sulfinyl and sulfonyl.
 ハロゲン化金属フタロシアニン顔料としては、具体的には、C.I.Pigment Green 7、同36及び同58から選ばれる1種又は2種以上が好ましく、Green 36及び同58から選ばれる1種又は2種がより好ましい。フタロシアニン系緑色染料としては、具体的には、C.I.Solvent Green 4、同5、同7及び同28から選ばれる1種又は2種以上が好ましい。フタロシアニン系青色染料としては、具体的には、C.I.Solvent Blue 4、同5、同25、同35、同36、同38、同58、同59、同67及び同70から選ばれる1種又は2種以上が好ましく、Blue 25、同38、同67及び同70から選ばれる1種又は2種以上がより好ましい。アゾ系黄色有機染料としては、具体的には、C.I.Solvent Yellow 2、同4、同14、同16、同18、同21、同56、同72、同82、同124、同162及び同163から選ばれる1種又は2種以上が好ましく、Yellow 82及び同162から選ばれる1種又は2種がより好ましい。 Specific examples of the metal halide phthalocyanine pigment include C.I. I. One or more selected from Pigment Green 7, 36 and 58 are preferred, and one or two selected from Green 36 and 58 are more preferred. Specific examples of the phthalocyanine green dye include C.I. I. One or more selected from Solvent Green 4, 5, 7, and 28 are preferred. Specific examples of phthalocyanine blue dyes include C.I. I. Solvent Blue 4, 5, 25, 35, 36, 38, 58, 59, 67 and 70 are preferred, and Blue 25, 38, 67 are preferred. And one or more selected from 70 are more preferred. Specific examples of the azo yellow organic dye include C.I. I. Solvent Yellow 2, 4, 14, 16, 18, 21, 56, 72, 82, 124, 162, and 163 are preferred, preferably Yellow 82 And one or two selected from 162 are more preferred.
(R画素部)
 R画素部中には、ジケトピロロピロール顔料及び/又はアニオン性赤色有機染料を含有するのが好ましい。ジケトピロロピロール顔料としては、具体的にはC.I.Pigment Red 254、同255、同264、同272、Orange 71及び同73から選ばれる1種又は2種以上が好ましく、Red 254、同255、同264及び同272から選ばれる1種又は2種以上がより好ましく、C.I.Pigment Red 254が特に好ましい。アニオン性赤色有機染料としては、具体的には、C.I.Solvent Red 124、Acid Red 52及び同289から選ばれる1種又は2種以上が好ましく、C.I.Solvent Red 124が特に好ましい。
(R pixel part)
The R pixel portion preferably contains a diketopyrrolopyrrole pigment and / or an anionic red organic dye. Specific examples of the diketopyrrolopyrrole pigment include C.I. I. One or two or more selected from Pigment Red 254, 255, 264, 272, Orange 71 and 73 are preferred, and one or more selected from Red 254, 255, 264 and 272 Is more preferred, and C.I. I. Pigment Red 254 is particularly preferred. Specific examples of the anionic red organic dye include C.I. I. One or more selected from Solvent Red 124, Acid Red 52 and 289 are preferred. I. Solvent Red 124 is particularly preferred.
(B画素部)
 B画素部中には、ε型フタロシアニン顔料又はカチオン性青色有機染料を含有するのが好ましい。ε型フタロシアニン顔料としては、Pigment Blue 15:6が好ましく、カチオン性青色有機染料としては、トリアリールメタン系染料を含有するのが好ましい。
(B pixel part)
The B pixel portion preferably contains an ε-type phthalocyanine pigment or a cationic blue organic dye. As the ε-type phthalocyanine pigment, Pigment Blue 15: 6 is preferable, and as the cationic blue organic dye, a triarylmethane-based dye is preferably contained.
 前記RGB三色画素部は、色材として、R画素部中にC.I.Solvent Red 124を、G画素部中に、C.I.Solvent Blue 67とC.I.Solvent Yellow 82または同162との混合物を、B画素部中にPigment Blue 15:6を含有し、R画素部中及び/又はB画素部中に前記一般式(1)で表されるキサンテン化合物を含有するのが好ましい。
 また、前記RGB三色画素部は、色材として、R画素部中にC.I.Pigment Red 254を、G画素部中に、C.I.Pigment Green 7、同36及び同58から選ばれる1種又は2種以上を、B画素部中にPigment Blue 15:6及び/又はトリアリールメタン系染料を含有し、R画素部中及び/又はB画素部中に前記一般式(1)で表されるキサンテン化合物を含有するのも好ましい。
The RGB three-color pixel portion is a color material that contains C.I. I. Solvent Red 124 in the G pixel portion. I. Solvent Blue 67 and C.I. I. Solvent Yellow 82 or a mixture thereof with 162 contains Pigment Blue 15: 6 in the B pixel portion, and the xanthene compound represented by the general formula (1) in the R pixel portion and / or the B pixel portion. It is preferable to contain.
In addition, the RGB three-color pixel portion includes C.I. I. Pigment Red 254 in the G pixel portion. I. 1 or 2 or more selected from Pigment Green 7, 36 and 58, Pigment Blue 15: 6 and / or a triarylmethane dye in the B pixel portion, and in the R pixel portion and / or B It is also preferable to contain the xanthene compound represented by the general formula (1) in the pixel portion.
 前記RGB三色画素部は、色材として、R画素部中に更に、C.I.Pigment Red 177、同242、同166、同167、同179、C.I.Pigment Orange 38、同71、C.I.Pigment Yellow 150、同215、同185、同138、同139、C.I.Acid Red 52、C.I.Basic Red 1、C.I.Solvent Red 89、C.I.Solvent Orange 56、C.I.Solvent Yellow 21、同82、同83:1、同33及び同162からなる群から選ばれる少なくとも1種の有機染顔料を含有するのが好ましい。 The RGB three-color pixel portion further includes C.I. I. Pigment Red 177, 242, 166, 167, 179, C.I. I. Pigment Orange 38, 71, C.I. I. Pigment Yellow 150, 215, 185, 138, 139, C.I. I. Acid Red 52, C.I. I. Basic Red 1, C.I. I. Solvent Red 89, C.I. I. Solvent Orange 56, C.I. I. It is preferable to contain at least one organic dye / pigment selected from the group consisting of Solvent Yellow 21, 82, 83: 1, 33 and 162.
 前記RGB三色画素部は、色材として、G画素部中に更に、C.I.Pigment Yellow 150、同215、同185、同138、C.I.Solvent Yellow 21、同82、同83:1及び同33からなる群から選ばれる少なくとも1種の有機染顔料を含有するのが好ましい。
 前記RGB三色画素部は、色材として、B画素部中に更にC.I.Pigment Violet 23、C.I.Basic Violet 10、C.I.Acid Blue 1、同90、同83、C.I.Direct Blue 86、C.I.Pigment Blue 15、同15:1、同15:2、同15:3及び同15:4からなる群から選ばれる少なくとも1種の有機染顔料を含有するのが好ましい。
 また、カラーフィルタが、少なくともRGB三色画素部とY画素部とから構成され、色材として、Y画素部に、C.I.Pigment Yellow 150、同215、同185、同138、同139、C.I.Solvent Yellow 21、82、同83:1、同33及び同162からなる群から選ばれる少なくとも1種の黄色有機染顔料を含有するのも好ましい。また、カラーフィルタは、ブラックマトリックスを有していてもよい。
The RGB three-color pixel portion is further provided with C.I. I. Pigment Yellow 150, 215, 185, 138, C.I. I. It is preferable to contain at least one organic dye / pigment selected from the group consisting of Solvent Yellow 21, 82, 83: 1 and 33.
The RGB three-color pixel portion further includes C.I. I. Pigment Violet 23, C.I. I. Basic Violet 10, C.I. I. Acid Blue 1, 90, 83, C.I. I. Direct Blue 86, C.I. I. It is preferable to contain at least one organic dye / pigment selected from the group consisting of Pigment Blue 15, 15: 1, 15: 2, 15: 3 and 15: 4.
Further, the color filter is composed of at least an RGB three-color pixel portion and a Y pixel portion. I. Pigment Yellow 150, 215, 185, 138, 139, C.I. I. It is also preferable to contain at least one yellow organic dye / pigment selected from the group consisting of Solvent Yellow 21, 82, 83: 1, 33 and 162. The color filter may have a black matrix.
 本発明におけるカラーフィルタにおける各画素部のC光源下のXYZ表色系での色度x及び色度yは、液晶層の電圧保持率(VHR)の低下、イオン密度(ID)の増加を防止し、白抜け、配向むら、焼き付けなどの表示不良の問題発生を抑制する観点から、以下のようなものが好ましい。
 R画素部のC光源下のXYZ表色系での色度xは0.58~0.69であるのが好ましく、0.62~0.68であるのがより好ましく、色度yは0.30~0.36であるのが好ましく、0.31~0.35であるのがより好ましく、色度xは0.58~0.69であり、且つ色度yは0.30~0.36であるのがより好ましく、色度xは0.62~0.68であり、且つ色度yは0.31~0.35であるのがより好ましい。
In the color filter according to the present invention, the chromaticity x and chromaticity y in the XYZ color system under the C light source of each pixel portion prevent a decrease in voltage holding ratio (VHR) and an increase in ion density (ID) of the liquid crystal layer. From the viewpoint of suppressing the occurrence of display defect problems such as white spots, uneven alignment, and baking, the following are preferable.
The chromaticity x in the XYZ color system under the C light source of the R pixel portion is preferably 0.58 to 0.69, more preferably 0.62 to 0.68, and the chromaticity y is 0. .30 to 0.36 is preferable, 0.31 to 0.35 is more preferable, chromaticity x is 0.58 to 0.69, and chromaticity y is 0.30 to 0. More preferably, the chromaticity x is 0.62 to 0.68, and the chromaticity y is more preferably 0.31 to 0.35.
 G画素部のC光源下のXYZ表色系での色度xは0.19~0.35であるのが好ましく、0.20~0.26であるのがより好ましく、色度yは0.54~0.76であるのが好ましく、0.64~0.74であるのがより好ましく、色度xは0.19~0.35であり、且つ色度yは0.54~0.76であるのがより好ましく、色度xは0.20~0.26であり、且つ色度yは0.64~0.74であるのがより好ましい。 The chromaticity x in the XYZ color system under the C light source of the G pixel portion is preferably 0.19 to 0.35, more preferably 0.20 to 0.26, and the chromaticity y is 0. .54 to 0.76 is preferred, 0.64 to 0.74 is more preferred, chromaticity x is 0.19 to 0.35, and chromaticity y is 0.54 to 0. More preferably, the chromaticity x is 0.20 to 0.26, and the chromaticity y is 0.64 to 0.74.
 B画素部のC光源下のXYZ表色系での色度xは0.12~0.20であるのが好ましく、0.13~0.19であるのがより好ましく、色度yは0.01~0.16であるのが好ましく、0.03~0.09であるのがより好ましく、色度xは0.12~0.20であり、且つ色度yは0.01~0.16であるのがより好ましく、色度xは0.13~0.19であり、且つ色度yは0.03~0.09であるのがより好ましい。 The chromaticity x in the XYZ color system under the C light source of the B pixel portion is preferably 0.12 to 0.20, more preferably 0.13 to 0.19, and the chromaticity y is 0. 0.01 to 0.16 is preferable, 0.03 to 0.09 is more preferable, chromaticity x is 0.12 to 0.20, and chromaticity y is 0.01 to 0. More preferably, the chromaticity x is 0.13 to 0.19, and the chromaticity y is 0.03 to 0.09.
 Y画素部のC光源下のXYZ表色系での色度xは0.46~0.50であるのが好ましく、0.47~0.48であるのがより好ましく、色度yは0.48~0.53であるのが好ましく、0.50~0.52であるのがより好ましく、色度xは0.46~0.50であり、且つ色度yは0.48~0.53であるのがより好ましく、色度xは0.47~0.48であり、且つ色度yは0.50~0.52であるのがより好ましい。
 ここで、XYZ表色系とは、1931年にCIE(国際照明委員会)において標準表色系として承認された表色系をいう。
The chromaticity x in the XYZ color system under the C light source of the Y pixel portion is preferably 0.46 to 0.50, more preferably 0.47 to 0.48, and the chromaticity y is 0. .48 to 0.53 is preferable, 0.50 to 0.52 is more preferable, chromaticity x is 0.46 to 0.50, and chromaticity y is 0.48 to 0. More preferably, the chromaticity x is 0.47 to 0.48, and the chromaticity y is 0.50 to 0.52.
Here, the XYZ color system means a color system approved as a standard color system by the CIE (International Lighting Commission) in 1931.
 前記の各画素部における色度は、用いる染顔料の種類やそれらの混合比率を変えることで調整することができる。例えば、R画素の場合は赤色染顔料に黄色染顔料及び/又は橙色顔料を、G画素の場合は緑色染顔料に黄色染顔料を、B画素の場合は青色染顔料に紫色染顔料又は黄味の青色染顔料を適当量添加することによって調整することが可能である。また、顔料の粒径を適宜調整することによっても調整できる。
 カラーフィルタは、従来公知の方法でカラーフィルタ画素部を形成することができる。画素部の形成方法の代表的な方法としては、フォトリソグラフィー法であり、これは、後記する光硬化性組成物を、カラーフィルタ用の透明基板のブラックマトリックスを設けた側の面に塗布、加熱乾燥(プリベーク)した後、フォトマスクを介して紫外線を照射することでパターン露光を行って、画素部に対応する箇所の光硬化性化合物を硬化させた後、未露光部分を現像液で現像し、非画素部を除去して画素部を透明基板に固着させる方法である。この方法では、光硬化性組成物の硬化着色皮膜からなる画素部が透明基板上に形成される。
The chromaticity in each of the pixel portions can be adjusted by changing the type of dye / pigment used and the mixing ratio thereof. For example, in the case of the R pixel, a yellow dye and / or orange pigment is used as the red dye / pigment, in the case of the G pixel, the yellow dye / pigment is used as the green dye / pigment, and in the case of the B pixel, a purple dye or yellowish dye is used as the blue dye / pigment. It is possible to adjust by adding an appropriate amount of the blue dye / pigment. It can also be adjusted by appropriately adjusting the particle size of the pigment.
The color filter can form the color filter pixel portion by a conventionally known method. A typical method for forming the pixel portion is a photolithography method, which applies and heats a photocurable composition to be described later on the surface of the transparent substrate for the color filter provided with the black matrix. After drying (pre-baking), pattern exposure is performed by irradiating ultraviolet rays through a photomask to cure the photo-curable compound at the location corresponding to the pixel portion, and then developing the unexposed portion with a developer. In this method, the non-pixel portion is removed and the pixel portion is fixed to the transparent substrate. In this method, a pixel portion made of a cured colored film of a photocurable composition is formed on a transparent substrate.
 R画素、G画素、B画素、必要に応じてY画素等の他の色の画素ごとに、後記する光硬化性組成物を調製して、前記した操作を繰り返すことにより、所定の位置にR画素、G画素、B画素、Y画素の着色画素部を有するカラーフィルタを製造することができる。
 後記する光硬化性組成物をガラス等の透明基板上に塗布する方法としては、例えば、スピンコート法、スリットコート法、ロールコート法、インクジェット法等が挙げられる。
 透明基板に塗布した光硬化性組成物の塗膜の乾燥条件は、各成分の種類、配合割合等によっても異なるが、通常、50~150℃で、1~15分間程度である。また、光硬化性組成物の光硬化に用いる光としては、200~500nmの波長範囲の紫外線、あるいは可視光を使用するのが好ましい。この波長範囲の光を発する各種光源が使用できる。
A photocurable composition to be described later is prepared for each pixel of other colors such as an R pixel, a G pixel, a B pixel, and a Y pixel as necessary. A color filter having colored pixel portions of pixels, G pixels, B pixels, and Y pixels can be manufactured.
Examples of a method for applying a photocurable composition described later on a transparent substrate such as glass include a spin coating method, a slit coating method, a roll coating method, and an ink jet method.
The drying conditions of the coating film of the photocurable composition applied to the transparent substrate are usually about 50 to 150 ° C. for about 1 to 15 minutes, although it varies depending on the type of each component, the blending ratio and the like. Further, as the light used for photocuring the photocurable composition, it is preferable to use ultraviolet rays or visible light in the wavelength range of 200 to 500 nm. Various light sources that emit light in this wavelength range can be used.
 現像方法としては、例えば、液盛り法、ディッピング法、スプレー法等が挙げられる。光硬化性組成物の露光、現像の後に、必要な色の画素部が形成された透明基板は水洗いし乾燥させる。こうして得られたカラーフィルタは、ホットプレート、オーブン等の加熱装置により、90~280℃で、所定時間加熱処理(ポストベーク)することによって、着色塗膜中の揮発性成分を除去すると同時に、光硬化性組成物の硬化着色皮膜中に残存する未反応の光硬化性化合物が熱硬化し、カラーフィルタが完成する。
 本発明のカラーフィルタ用色材は、本発明の液晶組成物と用いることで、液晶層の電圧保持率(VHR)の低下、イオン密度(ID)の増加を防止し、白抜け、配向むら、焼き付けなどの表示不良の問題を解決する液晶表示装置を提供することが可能となる。
 前記光硬化性組成物の製造方法としては、本発明のカラーフィルタ用顔料組成物と、有機溶剤と分散剤とを必須成分として使用し、これらを混合し均一となる様に攪拌分散を行って、まずカラーフィルタの画素部を形成するための顔料分散液を調製してから、そこに、光硬化性化合物と、必要に応じて熱可塑性樹脂や光重合開始剤等を加えて前記光硬化性組成物とする方法が一般的である。
Examples of the developing method include a liquid piling method, a dipping method, and a spray method. After exposure and development of the photocurable composition, the transparent substrate on which the necessary color pixel portion is formed is washed with water and dried. The color filter thus obtained is subjected to a heat treatment (post-baking) at 90 to 280 ° C. for a predetermined time by a heating device such as a hot plate or an oven, thereby removing volatile components in the colored coating film and simultaneously applying light. The unreacted photocurable compound remaining in the cured colored film of the curable composition is thermally cured to complete the color filter.
By using the color material for a color filter of the present invention with the liquid crystal composition of the present invention, the voltage holding ratio (VHR) of the liquid crystal layer is reduced and the ion density (ID) is prevented from being increased. It is possible to provide a liquid crystal display device that solves the problem of display defects such as baking.
As a method for producing the photocurable composition, the color filter pigment composition of the present invention, an organic solvent and a dispersant are used as essential components, and these are mixed and stirred and dispersed so as to be uniform. First, after preparing a pigment dispersion for forming the pixel portion of the color filter, a photocurable compound and, if necessary, a thermoplastic resin or a photopolymerization initiator are added to the photocurable composition. A method of forming a composition is common.
 ここで用いられる有機溶媒としては、例えば、トルエンやキシレン、メトキシベンゼン等の芳香族系溶剤、酢酸エチルや酢酸プロピルや酢酸ブチル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、ジエチレングリコールメチルエーテルアセテート、ジエチレングリコールエチルエーテルアセテート、ジエチレングリコールプロピルエーテルアセテート、ジエチレングリコールブチルエーテルアセテート等の酢酸エステル系溶剤、エトキシエチルプロピオネート等のプロピオネート系溶剤、メタノール、エタノール等のアルコール系溶剤、ブチルセロソルブ、プロピレングリコールモノメチルエーテル、ジエチレングリコールエチルエーテル、ジエチレングリコールジメチルエーテル等のエーテル系溶剤、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶剤、ヘキサン等の脂肪族炭化水素系溶剤、N,N-ジメチルホルムアミド、γ-ブチロラクタム、N-メチル-2-ピロリドン、アニリン、ピリジン等の窒素化合物系溶剤、γ-ブチロラクトン等のラクトン系溶剤、カルバミン酸メチルとカルバミン酸エチルの48:52の混合物の様なカルバミン酸エステル等が挙げられる。 Examples of the organic solvent used here include aromatic solvents such as toluene, xylene, methoxybenzene, ethyl acetate, propyl acetate, butyl acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, diethylene glycol methyl ether acetate. , Acetate solvents such as diethylene glycol ethyl ether acetate, diethylene glycol propyl ether acetate, diethylene glycol butyl ether acetate, propionate solvents such as ethoxyethyl propionate, alcohol solvents such as methanol and ethanol, butyl cellosolve, propylene glycol monomethyl ether, diethylene glycol ethyl Ether, diethylene glycol dimethyl ether Ether solvents such as tellurium, ketone solvents such as methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone, aliphatic hydrocarbon solvents such as hexane, N, N-dimethylformamide, γ-butyrolactam, N-methyl-2-pyrrolidone, aniline And nitrogen compound solvents such as pyridine, lactone solvents such as γ-butyrolactone, and carbamate esters such as a 48:52 mixture of methyl carbamate and ethyl carbamate.
 ここで用いられる分散剤としては、例えば、ビックケミー社のディスパービック130、ディスパービック161、ディスパービック162、ディスパービック163、ディスパービック170、ディスパービック171、ディスパービック174、ディスパービック180、ディスパービック182、ディスパービック183、ディスパービック184、ディスパービック185、ディスパービック2000、ディスパービック2001、ディスパービック2020、ディスパービック2050、ディスパービック2070、ディスパービック2096、ディスパービック2150、ディスパービックLPN21116、ディスパービックLPN6919エフカ社のエフカ46、エフカ47、エフカ452、エフカLP4008、エフカ4009、エフカLP4010、エフカLP4050、LP4055、エフカ400、エフカ401、エフカ402、エフカ403、エフカ450、エフカ451、エフカ453、エフカ4540、エフカ4550、エフカLP4560、エフカ120、エフカ150、エフカ1501、エフカ1502、エフカ1503、ルーブリゾール社のソルスパース3000、ソルスパース9000、ソルスパース13240、ソルスパース13650、ソルスパース13940、ソルスパース17000、18000、ソルスパース20000、ソルスパース21000、ソルスパース20000、ソルスパース24000、ソルスパース26000、ソルスパース27000、ソルスパース28000、ソルスパース32000、ソルスパース36000、ソルスパース37000、ソルスパース38000、ソルスパース41000、ソルスパース42000、ソルスパース43000、ソルスパース46000、ソルスパース54000、ソルスパース71000、味の素株式会社のアジスパーPB711、アジスパーPB821、アジスパーPB822、アジスパーPB814、アジスパーPN411、アジスパーPA111等の分散剤や、アクリル系樹脂、ウレタン系樹脂、アルキッド系樹脂、ウッドロジン、ガムロジン、トール油ロジン等の天然ロジン、重合ロジン、不均化ロジン、水添ロジン、酸化ロジン、マレイン化ロジン等の変性ロジン、ロジンアミン、ライムロジン、ロジンアルキレンオキシド付加物、ロジンアルキド付加物、ロジン変性フェノール等のロジン誘導体等の、室温で液状かつ水不溶性の合成樹脂を含有させることが出来る。これら分散剤や、樹脂の添加は、フロッキュレーションの低減、顔料の分散安定性の向上、分散体の粘度特性を向上にも寄与する。 Dispersants used here include, for example, Big Chemie's Dispersic 130, Dispersic 161, Dispersic 162, Dispersic 163, Dispersic 170, Dispersic 171, Dispersic 174, Dispersic 180, Dispersic 182, Dispersic 183, Dispersic 184, Dispersic 185, Dispersic 2000, Dispersic 2001, Dispersic 2020, Dispersic 2050, Dispersic 2070, Dispersic 2096, Dispersic 2150, Dispersic LPN21116, Dispersic LPN6919 Efka EFKA 46, EFKA 47, EFKA 452, EFKA LP4008, EFKA 009, Efka LP4010, Efka LP4050, LP4055, Efka400, Efka401, Evka402, Efka403, Efka450, Efka451, Efka453, Evka4540, Efka4550, EfkaLP4560, Efka120, Efka150, Evka1501, Evka1501, 1502, Efka 1503, Lubrizol's Sol Sparse 3000, Sol Sparse 9000, Sol Sparse 13240, Sol Sparse 13650, Sol Sparse 13940, Sol Sparse 17000, 18000, Sol Sparse 20000, Sol Sparse 21000, Sol Sparse 20000, Sol Sparse 24000, Sol Sparse 26000, Sol Sparse 28000, Sol Sparse 28000, Sol Sparse 32000, Sol Sparse 3 000, Solsperce 37000, Solsperse 38000, Solsperse 41000, Solsperse 42000, Solsperse 43000, Solsperse 46000, Solsperse 54000, Solsperse 71000, Ajinomoto Co., Ltd. Agents, natural rosin such as acrylic resin, urethane resin, alkyd resin, wood rosin, gum rosin, tall oil rosin, polymerized rosin, disproportionated rosin, hydrogenated rosin, oxidized rosin, modified rosin such as maleated rosin, Rosin derivatives such as rosinamine, lime rosin, rosin alkylene oxide adduct, rosin alkyd adduct, rosin modified phenol A synthetic resin that is liquid and water-insoluble at room temperature can be contained. Addition of these dispersants and resins also contributes to reduction of flocculation, improvement of pigment dispersion stability, and improvement of viscosity characteristics of the dispersion.
 また、分散助剤として、有機顔料誘導体の、例えば、フタルイミドメチル誘導体、同スルホン酸誘導体、同N-(ジアルキルアミノ)メチル誘導体、同N-(ジアルキルアミノアルキル)スルホン酸アミド誘導体等も含有することも出来る。もちろん、これら誘導体は、異なる種類のものを二種以上併用することも出来る。
 光硬化性組成物の調製に使用する熱可塑性樹脂としては、例えば、ウレタン系樹脂、アクリル系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、スチレンマレイン酸系樹脂、スチレン無水マレイン酸系樹脂等が挙げられる。
 光硬化性化合物としては、例えば、1,6-ヘキサンジオールジアクリレート、エチレングリコールジアクリレート、ネオペンチルグリコールジアクリレート、トリエチレングリコールジアクリレート、ビス(アクリロキシエトキシ)ビスフェノールA、3-メチルペンタンジオールジアクリレート等のような2官能モノマー、トリメチルロールプロパトントリアクリレート、ペンタエリスリトールトリアクリレート、トリス〔2-(メタ)アクリロイルオキシエチル)イソシアヌレート、ジペンタエリスリトールヘキサアクリレート、ジペンタエリスリトールペンタアクリレート等の比較的分子量の小さな多官能モノマー、ポリエステルアクリレート、ポリウレタンアクリレート、ポリエーテルアクリレート等の様な比較的分子量の大きな多官能モノマーが挙げられる。
 光重合開始剤としては、例えばアセトフェノン、ベンゾフェノン、ベンジルジメチルケタノール、ベンゾイルパーオキサイド、2-クロロチオキサントン、1,3-ビス(4’-アジドベンザル)-2-プロパン、1,3-ビス(4’-アジドベンザル)-2-プロパン-2’-スルホン酸、4,4’-ジアジドスチルベン-2,2’-ジスルホン酸等が挙げられる。市販の光重合開始剤としては、たとえば、BASF社製「イルガキュア(商標名)-184」、「イルガキュア(商標名)-369」、「ダロキュア(商標名)-1173」、BASF社製「ルシリン-TPO」、日本化薬社製「カヤキュアー(商標名)DETX」、「カヤキュアー(商標名)OA」、ストーファー社製「バイキュアー10」、「バイキュアー55」、アクゾー社製「トリゴナールPI」、サンド社製「サンドレー1000」、アップジョン社製「デープ」、黒金化成社製「ビイミダゾール」などがある。
Further, as a dispersion aid, organic pigment derivatives such as phthalimidomethyl derivatives, sulfonic acid derivatives, N- (dialkylamino) methyl derivatives, N- (dialkylaminoalkyl) sulfonic acid amide derivatives, etc. You can also. Of course, two or more of these derivatives can be used in combination.
Examples of the thermoplastic resin used for the preparation of the photocurable composition include urethane resins, acrylic resins, polyamide resins, polyimide resins, styrene maleic acid resins, styrene maleic anhydride resins, and the like. .
Examples of the photocurable compound include 1,6-hexanediol diacrylate, ethylene glycol diacrylate, neopentyl glycol diacrylate, triethylene glycol diacrylate, bis (acryloxyethoxy) bisphenol A, and 3-methylpentanediol diacrylate. Bifunctional monomers such as acrylate, trimethylol propaton triacrylate, pentaerythritol triacrylate, tris [2- (meth) acryloyloxyethyl) isocyanurate, dipentaerythritol hexaacrylate, dipentaerythritol pentaacrylate, etc. Relatively high molecular weight such as low molecular weight polyfunctional monomer, polyester acrylate, polyurethane acrylate, polyether acrylate, etc. Functional monomer.
Examples of the photopolymerization initiator include acetophenone, benzophenone, benzyldimethylketanol, benzoyl peroxide, 2-chlorothioxanthone, 1,3-bis (4′-azidobenzal) -2-propane, 1,3-bis (4 ′ -Azidobenzal) -2-propane-2'-sulfonic acid, 4,4'-diazidostilbene-2,2'-disulfonic acid, and the like. Commercially available photopolymerization initiators include, for example, “Irgacure (trade name) -184”, “Irgacure (trade name) -369”, “Darocur (trade name) -1173” manufactured by BASF, “Lucirin- "TPO", Nippon Kayaku Co., Ltd. "Kayacure (trade name) DETX", "Kayacure (trade name) OA", Stofer "Bicure 10", "Bicure 55", Akzo "Trigonal PI", Sand "Sandray 1000" manufactured by Upjohn, "Deep" manufactured by Upjohn, and "Biimidazole" manufactured by Kurokin Kasei.
 また上記光重合開始剤に公知慣用の光増感剤を併用することもできる。光増感剤としては、たとえば、アミン類、尿素類、硫黄原子を有する化合物、燐原子を有する化合物、塩素原子を有する化合物またはニトリル類もしくはその他の窒素原子を有する化合物等が挙げられる。これらは、単独で用いることも、2種以上を組み合わせて用いることもできる。
 光重合開始剤の配合率は、特に限定されるものではないが、質量基準で、光重合性あるいは光硬化性官能基を有する化合物に対して0.1~30%の範囲が好ましい。0.1%未満では、光硬化時の感光度が低下する傾向にあり、30%を超えると、顔料分散レジストの塗膜を乾燥させたときに、光重合開始剤の結晶が析出して塗膜物性の劣化を引き起こすことがある。
Moreover, a well-known and usual photosensitizer can also be used together with the said photoinitiator. Examples of the photosensitizer include amines, ureas, compounds having a sulfur atom, compounds having a phosphorus atom, compounds having a chlorine atom, nitriles or other compounds having a nitrogen atom. These can be used alone or in combination of two or more.
The blending ratio of the photopolymerization initiator is not particularly limited, but is preferably in the range of 0.1 to 30% with respect to the compound having a photopolymerizable or photocurable functional group on a mass basis. If it is less than 0.1%, the photosensitivity at the time of photocuring tends to decrease, and if it exceeds 30%, crystals of the photopolymerization initiator are precipitated when the pigment-dispersed resist coating film is dried. May cause deterioration of film properties.
 前記した様な各材料を使用して、質量基準で、本発明のカラーフィルタ用顔料組成物100部当たり、300~1000部の有機溶剤と、1~100部の分散剤とを、均一となる様に攪拌分散して前記染顔料液を得ることができる。次いでこの顔料分散液に、本発明のカラーフィルタ用顔料組成物1部当たり、熱可塑性樹脂と光硬化性化合物の合計が3~20部、光硬化性化合物1部当たり0.05~3部の光重合開始剤と、必要に応じてさらに有機溶剤を添加し、均一となる様に攪拌分散してカラーフィルタ画素部を形成するための光硬化性組成物を得ることができる。 Using each of the materials as described above, 300 to 1000 parts of the organic solvent and 1 to 100 parts of the dispersant are made uniform per 100 parts of the color filter pigment composition of the present invention on a mass basis. The dye / pigment solution can be obtained by stirring and dispersing in the same manner. Next, the pigment dispersion is combined with 3 to 20 parts in total of the thermoplastic resin and the photocurable compound per 1 part of the pigment composition for a color filter of the present invention and 0.05 to 3 parts per 1 part of the photocurable compound. A photopolymerization initiator and, if necessary, an organic solvent may be further added, and a photocurable composition for forming a color filter pixel portion can be obtained by stirring and dispersing so as to be uniform.
 現像液としては、公知慣用の有機溶剤やアルカリ水溶液を使用することができる。特に前記光硬化性組成物に、熱可塑性樹脂または光硬化性化合物が含まれており、これらの少なくとも一方が酸価を有し、アルカリ可溶性を呈する場合には、アルカリ水溶液での洗浄がカラーフィルタ画素部の形成に効果的である。
フォトリソグラフィー法によるカラーフィルタ画素部の製造方法について詳記したが、本発明のカラーフィルタ用顔料組成物を使用して調製されたカラーフィタ画素部は、その他の電着法、転写法、ミセル電解法、PVED(PhotovoltaicElectrodeposition)法、インクジェット法、反転印刷法、熱硬化法等の方法で各色画素部を形成して、カラーフィルタを製造してもよい。
As the developer, a known and commonly used organic solvent or alkaline aqueous solution can be used. In particular, when the photocurable composition contains a thermoplastic resin or a photocurable compound, and at least one of them has an acid value and exhibits alkali solubility, the color filter can be washed with an alkaline aqueous solution. It is effective for forming the pixel portion.
Although the manufacturing method of the color filter pixel part by the photolithographic method was described in detail, the color filter pixel part prepared by using the pigment composition for the color filter of the present invention can be used in other electrodeposition methods, transfer methods, and micelle electrolysis methods. A color filter may be manufactured by forming each color pixel portion by a PVED (Photovoltaic Electrodeposition) method, an inkjet method, a reverse printing method, a thermosetting method, or the like.
 有機顔料を基材に塗布して乾燥させた状態でカラーフィルタとしてもよいし、顔料分散体に硬化性樹脂が含まれる場合、熱や活性エネルギー線により硬化することでカラーフィルタとしてもよい。また、ホットプレート、オーブン等の加熱装置により、100~280℃で、所定時間加熱処理(ポストベーク)することによって、塗膜中の揮発性成分を除去する工程を行ってもかまわない。 A color filter may be used in a state where an organic pigment is applied to a substrate and dried, or when a curable resin is contained in the pigment dispersion, a color filter may be obtained by curing with heat or active energy rays. In addition, a volatile component in the coating film may be removed by heat treatment (post-baking) at 100 to 280 ° C. for a predetermined time using a heating device such as a hot plate or an oven.
〔カラーフィルタにおける顔料の粒子状態〕
 本発明のカラーフィルタは、有機顔料であるε型フタロシニアン顔料の粒子の体積分率が、1000nmより大きい粒子が1%以下であって、40nm以上1000nm以下が25%以下であることが好ましい。カラーフィルタにおいて、カラーフィルタの状態での有機顔料の状態が、もっとも白抜け、配向むら、焼き付けなどの表示不良の抑制に貢献する。カラーフィルタとなった状態での有機顔料粒子を規定することで、上記の表示不良を効果的に防止することができる。
 40nm以上1000nm以下の粒子は、二次粒子あるいは三次、四次粒子といった、一次粒子が凝集した高次粒子であって、より好ましくは体積分率が15%以下である。
 また、100nm以上1000nm以下の粒子が多いと、表示状態に影響を及ぼす。100nm以上1000nm以下の粒子の体積分率は、7%以下が好ましく、より好ましくは3%以下である。
 上記ε型フタロシニアン顔料において、1000nmより大きいような粗大粒子は表示状態に悪影響を及ぼしかねないため好ましくなく、1%以下とするのが好ましい。これは、カラーフィルタ表面を適当な光学顕微鏡等で観察すればよい。
[Pigment particle state in color filter]
In the color filter of the present invention, it is preferable that particles having an ε-type phthalocyanine pigment, which is an organic pigment, have a volume fraction of 1% or less of particles greater than 1000 nm and 25% or less of 40 nm to 1000 nm. In the color filter, the state of the organic pigment in the state of the color filter contributes to the suppression of display defects such as white spots, alignment unevenness, and burn-in. By defining the organic pigment particles in the state of being a color filter, it is possible to effectively prevent the above display defects.
The particles having a particle size of 40 nm or more and 1000 nm or less are high-order particles in which primary particles are aggregated, such as secondary particles or tertiary and quaternary particles, and more preferably have a volume fraction of 15% or less.
Moreover, when there are many particles of 100 nm or more and 1000 nm or less, the display state is affected. The volume fraction of particles of 100 nm or more and 1000 nm or less is preferably 7% or less, more preferably 3% or less.
In the ε-type phthalocyanine pigment, coarse particles larger than 1000 nm are not preferred because they may adversely affect the display state, and are preferably 1% or less. This can be done by observing the color filter surface with an appropriate optical microscope or the like.
〔超小角エックス線散乱プロファイル〕
 1000nm以下の粒子の体積分率を測定するには、超小角エックス線散乱法に基づいた超小角エックス線散乱プロファイルを解析することで求めることができる。
 具体的には、超小角エックス線散乱法に基づき、有機顔料の超小角エックス線散乱プロファイル(測定散乱プロファイル)を測定する工程(A)と、前記有機顔料を、半径Rの球状粒子であって粒径分布のばらつきが存在すると仮定して、仮の半径Rの値と仮の規格化分散値から、理論散乱プロファイルをシミュレーションにより求める工程(B)と、該理論散乱プロファイルと前記測定散乱プロファイルとをカーブフィッティングさせて、前記理論散乱プロファイルと前記測定散乱プロファイルとの残差二乗和Z値を得る工程(C)と、工程(C)にて得られる残差二乗和Z値が2%以下となるまで、新たな半径Rn+1の値(nは整数、R<Rn+1)とそれぞれ仮の規格化分散値を加えて複数の粒径分布モデルを設定して前記工程(B)から(C)をn回繰り返し、前記理論散乱プロファイルと前記測定散乱プロファイルとをカーブフィッティングさせた結果から有機顔料の一次粒子径及び高次粒子の平均粒子径、規格化分散値、体積分率のうちの少なくとも一種を決定する工程(D)とを有する測定方法である。
(Ultra-small angle X-ray scattering profile)
In order to measure the volume fraction of particles of 1000 nm or less, it can be obtained by analyzing an ultra small angle X-ray scattering profile based on the ultra small angle X-ray scattering method.
Specifically, based on the ultra-small-angle X-ray scattering method, a step (A) of measuring an ultra-small-angle X-ray scattering profile (measured scattering profile) of an organic pigment, and the organic pigment is a spherical particle having a radius R and having a particle size Assuming that there is a variation in distribution, the step (B) of obtaining a theoretical scattering profile from the value of the temporary radius R 1 and the temporary normalized dispersion value by simulation, and the theoretical scattering profile and the measured scattering profile are: Step (C) for obtaining a residual square sum Z value between the theoretical scattering profile and the measured scattering profile by curve fitting, and the residual square sum Z value obtained in step (C) is 2% or less. to the (n is an integer, R n <R n + 1 ) a new radius R n + 1 of the value added to the respective normalized variance of provisionally setting a plurality of particle size distribution model Steps (B) to (C) are repeated n times, and from the results of curve fitting the theoretical scattering profile and the measured scattering profile, the primary particle diameter of organic pigment and the average particle diameter of higher order particles, normalized dispersion value, A step (D) of determining at least one of the volume fractions.
 超小角エックス線散乱法(Ultra-Small Angle X-ray Scattering:USAXS)とは、散乱角が0.1°<(2θ)<10°である小角領域だけでなく、0°<(2θ)≦0.1°という超小角領域で生じる散漫な散乱・回折も同時に測定する方法である。小角エックス線散乱法では、物質中に1~100nm程度の大きさの電子密度の異なる領域があると、その電子密度差によりエックス線の散漫散乱を計測することができるが、この超小角エックス線散乱法では、物質中に1~1000nm程度の大きさの電子密度の異なる領域があると、その電子密度差によりエックス線の散漫散乱が計測される。この散乱角と散乱強度に基づいて測定対象物の粒子径を求める。 The ultra-small angle X-ray scattering method (Ultra-Small Angle X-ray Scattering: USAXS) is not only a small angle region where the scattering angle is 0.1 ° <(2θ) <10 °, but also 0 ° <(2θ) ≦ 0. It is a method that simultaneously measures diffuse scattering and diffraction occurring in the ultra-small angle region of 1 °. In the small-angle X-ray scattering method, if there are regions with different electron densities of about 1 to 100 nm in the material, the diffuse scattering of X-rays can be measured by the difference in electron density. In this ultra-small angle X-ray scattering method, If there are regions with different electron densities of about 1 to 1000 nm in the substance, diffuse scattering of X-rays is measured due to the difference in electron density. The particle diameter of the measurement object is obtained based on the scattering angle and the scattering intensity.
 超小角エックス線散乱法を実現する主要技術は、入射X線の波長幅やビーム径を絞り超小角領域のバックグラウンド散乱強度を低減する高度な光学系制御技術を用い、できるだけサンプルから検出器までの距離、いわゆるカメラ長を長くして散乱角の小さい部分を高精度に測定する2つの技術で達成される。実験室用の小型の装置では主に前者の技術で達成される。
 また、X線小角散乱曲線から粒径分布を求めるためのプログラムとしては、NANO-solver(株式会社リガク製)又はGIFT(PANalytical製)等のプログラムを用いることが好ましい。
The main technology for realizing the ultra-small angle X-ray scattering method is to reduce the background scattering intensity in the ultra-small angle region by reducing the wavelength width and beam diameter of incident X-rays, and from the sample to the detector as much as possible. This is achieved by two techniques for measuring a portion having a small scattering angle with high accuracy by increasing a distance, that is, a so-called camera length. In the small laboratory apparatus, this is mainly achieved by the former technique.
Further, as a program for obtaining the particle size distribution from the X-ray small angle scattering curve, it is preferable to use a program such as NANO-solver (manufactured by Rigaku Corporation) or GIF (manufactured by PANalytical).
 ε型フタロシニアン顔料の粒径物性値を測定する場合、エックス線散乱装置の入射エックス線の輝度が10Brilliance(photons/sec/mm/mrad/0.1%bandwidth)以上であれば、十分な散乱強度を測定することが可能であり、好ましくは10Brilliance以上である。塗膜の基板がガラスなどの場合、エックス線を吸収しやすいため、入射エックス線の輝度が著しく不足するので、ε型フタロシニアン顔料の一次粒子及び高次粒子の平均粒子径、規格化分散値、体積分率を精度よく測定するには、入射X線の輝度が1016Brilliance以上であることが好ましく、より好ましくは1018Brilliance以上である。 When measuring the particle size physical property value of the ε-type phthalocyanine pigment, it is sufficient if the luminance of the incident X-ray of the X-ray scattering apparatus is 10 6 Brilliance (photons / sec / mm 2 / mrad 2 /0.1% bandwidth) or more. The scattering intensity can be measured, and is preferably 10 7 Brilliance or higher. When the substrate of the coating film is glass or the like, it is easy to absorb X-rays, so the brightness of incident X-rays is extremely insufficient, so the average particle size, normalized dispersion value, volume fraction of primary and high-order particles of ε-type phthalocyanine pigment In order to accurately measure the rate, the luminance of the incident X-ray is preferably 10 16 Brilliance or higher, more preferably 10 18 Brilliance or higher.
 1016Brilliance以上の高輝度エックス線源を得るために、大型放射光施設、たとえば兵庫県のSPring-8や茨城県のPhoton Factory等の光源を用いることができる。このような設備では、任意のカメラ長を選択することで目的の散乱領域を設定できる。また、十分な散乱強度を得るためや、試料ダメージを防ぐため、さらには検出器の保護のために入射側にアテネーターと呼ばれる数種の金属製の吸収板を使用したり、露光時間を0.5~60秒程度で任意で調整することにより、最適な測定条件を広範囲の目的から選択することができる。アテネーターは、例えばAu、Ag、モリブデン製の薄膜などが挙げられる。
 測定の具体的な手順としては、まず、工程(A)で、カラーフィルタを市販のエックス線回折装置の試料ホルダー、試料台等に設置した後、散乱角(2θ)が10°未満の範囲の各散乱角(2θ)における散乱強度Iを測定して、小角エックス線散乱プロファイル(測定散乱プロファイル)を測定する。
In order to obtain a high-intensity X-ray source of 10 16 Brilliance or higher, a large-scale synchrotron radiation facility such as a light source such as SPring-8 in Hyogo Prefecture or Photon Factory in Ibaraki Prefecture can be used. In such a facility, a desired scattering region can be set by selecting an arbitrary camera length. Further, in order to obtain sufficient scattering intensity, to prevent sample damage, and to protect the detector, several kinds of metal absorbing plates called attenuators are used on the incident side, and the exposure time is set to 0. 0. By arbitrarily adjusting in 5 to 60 seconds, the optimum measurement conditions can be selected from a wide range of purposes. Examples of the attenuator include a thin film made of Au, Ag, or molybdenum.
As a specific procedure of the measurement, first, in step (A), after setting the color filter on the sample holder, sample stage, etc. of a commercially available X-ray diffractometer, each of the scattering angles (2θ) in the range of less than 10 °. The scattering intensity I at the scattering angle (2θ) is measured to measure a small-angle X-ray scattering profile (measured scattering profile).
 基板がガラスである塗膜の場合に用いる放射光による超小角散乱装置は、蓄積リングと呼ばれる円形加速器から取り出した白色光を二結晶分光器で単色化し、X線領域の波長(例えば1Å)を線源とし、試料台に設置した塗膜に入射させ、散乱光を2次元検出器で一定時間露光し、同心円状に得られた散乱プロファイルを1次元に平均化し、散乱角(2θ)が10°未満の範囲の各散乱角(2θ)における散乱強度Iに変換し、小角エックス線散乱プロファイル(測定散乱プロファイル)を得る作業を工程(A)とする。
 次いで、工程(B)では、得られた測定散乱プロファイルから、有機顔料を半径Rの球状粒子であって粒径分布のばらつきが存在すると仮定して、仮の半径R1の値と仮の規格化分散値から、市販の解析ソフトウェアを用いてシミュレーションを行い、理論散乱プロファイルを求める。
The ultra-small-angle scattering device using synchrotron radiation used when the substrate is a glass coating uses a double crystal spectrometer to monochromatic white light extracted from a circular accelerator called a storage ring, and changes the wavelength in the X-ray region (for example, 1Å). As a radiation source, it is made incident on a coating film placed on a sample stage, and the scattered light is exposed for a certain time with a two-dimensional detector, and the scattering profile obtained concentrically is averaged in one dimension, and the scattering angle (2θ) is 10 The step (A) is an operation for converting to a scattering intensity I at each scattering angle (2θ) in a range of less than 0 ° to obtain a small-angle X-ray scattering profile (measured scattering profile).
Next, in step (B), from the measured scattering profile obtained, it is assumed that the organic pigment is a spherical particle with a radius R and there is a variation in the particle size distribution, and the value of the temporary radius R 1 and the temporary standard A theoretical scattering profile is obtained from the normalized dispersion value using a commercially available analysis software.
 一般に、物質中にΔρ(r)の電子密度差領域が存在した場合、散乱強度Iは下記式(1)のように近似することができる。 Generally, when an electron density difference region of Δρ (r) exists in a substance, the scattering intensity I can be approximated as the following formula (1).
Figure JPOXMLDOC01-appb-M000039
Figure JPOXMLDOC01-appb-M000039
 上記式(1)において、qは散乱ベクトル、Vは体積積分の領域を示し、物質全体で積分を行うことを意味する。また、F(q)は形状因子、S(q)は構造因子であり、粒子が物質中で無秩序に存在する場合、S(q)=1となる。また、散乱ベクトルqは、下記式(2)で表される。 In the above formula (1), q represents a scattering vector, V represents a volume integration region, and means that the entire material is integrated. Further, F (q) is a shape factor, and S (q) is a structure factor, and S (q) = 1 when the particles are randomly present in the substance. The scattering vector q is expressed by the following formula (2).
Figure JPOXMLDOC01-appb-M000040
Figure JPOXMLDOC01-appb-M000040
 上記式(2)において、λはエックス線の波長であり、2θは散乱角である。上記式(1)において、粒子が半径Rの球状であれば、形状因子F(q)は、下記式(3)で表される。 In the above formula (2), λ is the X-ray wavelength, and 2θ is the scattering angle. In the above formula (1), if the particle is spherical with a radius R, the shape factor F (q) is represented by the following formula (3).
Figure JPOXMLDOC01-appb-M000041
Figure JPOXMLDOC01-appb-M000041
 したがって、上記式(1)、(2)、及び(3)より、仮の半径Rの値を仮定して、形状因子F(q)が計算されるならば、散乱強度Iが記述できる。しかしながら、上記散乱強度Iは、物質中の粒子が、ある一定の大きさ(半径Rが一定)を持つ場合しか想定していない。ところが、実際の物質中では、粒子が一定の大きさで存在していることは稀で粒子の大きさには、ある程度のばらつき(粒径分布のばらつき)が存在するのが一般的である。また、本発明で目的としているのは、このような粒径分布のばらつきがある有機顔料の粒径分布を正確に精度よく測定することであるから、必然的に、粒径分布のばらつきという仮定が必要となってくる。 Therefore, from the above formulas (1), (2), and (3), the scattering intensity I can be described if the shape factor F (q) is calculated assuming a temporary radius R value. However, the scattering intensity I is assumed only when the particles in the substance have a certain size (the radius R is constant). However, in an actual substance, the particles are rarely present in a certain size, and there is generally some variation (particle size distribution variation) in the particle size. In addition, since the object of the present invention is to accurately and accurately measure the particle size distribution of organic pigments having such a particle size distribution variation, it is necessarily assumed that the particle size distribution varies. Will be needed.
 この粒径分布のばらつきがあると、上記散乱強度Iは、様々なサイズを持つ粒子から生じる散乱の重ね合わせで与えられる。粒径分布のばらつきの仮定に用いる分布関数は、統計学で用いられる公知の分布関数を使用することができるが、実際の物質における粒径分布のばらつきを考慮すると、Γ分布関数を使用するのが好ましい。このΓ分布関数は、下記式(4)で表される。 If there is a variation in the particle size distribution, the scattering intensity I is given by a superposition of scattering generated from particles having various sizes. As the distribution function used to assume the dispersion of the particle size distribution, a known distribution function used in statistics can be used. However, in consideration of the dispersion of the particle size distribution in an actual substance, the Γ distribution function is used. Is preferred. This Γ distribution function is expressed by the following formula (4).
Figure JPOXMLDOC01-appb-M000042
Figure JPOXMLDOC01-appb-M000042
 ここで、Rは球状粒子の平均半径、Mは粒径分布の広がりパラメータである。さて、物質中の粒径分布が上記Γ分布関数で与えられ、散乱強度Iが様々な半径Rの粒子(平均半径はR)から生じる散乱の重ね合わせで与えられると仮定できるとすると、粒径分布のばらつきが存在する場合の散乱強度Iは、上記式(3)及び(4)を用いて、下記式(5)で表される。 Here, R 0 is an average radius of the spherical particles, and M is a spread parameter of the particle size distribution. Now, assuming that the particle size distribution in the material is given by the above Γ distribution function and that the scattering intensity I is given by the superposition of scattering resulting from particles of various radii R 1 (average radius is R 0 ), The scattering intensity I when there is a variation in the particle size distribution is expressed by the following formula (5) using the above formulas (3) and (4).
Figure JPOXMLDOC01-appb-M000043
Figure JPOXMLDOC01-appb-M000043
 式(5)内の粒子径分布の広がりパラメータであるMは、解析結果としては式(6)の変換により、規格化分散値σ(%)として出力される。 M, which is a spread parameter of the particle size distribution in Expression (5), is output as a normalized dispersion value σ (%) as a result of the conversion of Expression (6) as an analysis result.
Figure JPOXMLDOC01-appb-M000044
Figure JPOXMLDOC01-appb-M000044
 上記式(5)より、工程(B)では、仮の半径Rの値と仮の規格化分散値から、シミュレーションにより散乱角(2θ)における散乱強度Iを計算し、理論散乱プロファイルを求める。
 次いで、工程(C)では、散乱強度Iから計算される理論散乱プロファイルと測定散乱プロファイルとのカーブフィッティングを最小自乗法により実行する。
From the above equation (5), in step (B), the scattering intensity I at the scattering angle (2θ) is calculated by simulation from the value of the temporary radius R 1 and the temporary normalized dispersion value to obtain the theoretical scattering profile.
Next, in step (C), curve fitting between the theoretical scattering profile calculated from the scattering intensity I and the measured scattering profile is performed by the method of least squares.
 プロファイルフィッティングにおいて精密化する変数は、平均粒子径(nm)、規格化分散値(%)である。また、プロファイルフィッティングは測定プロファイルと理論散乱プロファイルとの残差二乗和Z値が最小自乗法により最小となるよう実行され、この残差二乗和Z値は小さいほど粒径解析の精度が高いとされる。一般にZ値は2%未満にまで下がると両プロファイルは目視レベルでほぼ重なり、収束したと判断してよい。好ましくはZ値が1%未満であり、より好ましくは0.5%未満である。収束時の変数である平均一次粒子径及び規格化分散値が解析結果として得られる。 The variables to be refined in profile fitting are the average particle diameter (nm) and the normalized dispersion value (%). Profile fitting is performed so that the residual square sum Z value between the measurement profile and the theoretical scattering profile is minimized by the method of least squares. The smaller the residual square sum Z value, the higher the accuracy of particle size analysis. The In general, when the Z value decreases to less than 2%, it may be determined that the two profiles almost overlap and converge at the visual level. The Z value is preferably less than 1%, more preferably less than 0.5%. An average primary particle diameter and a normalized dispersion value, which are variables at the time of convergence, are obtained as analysis results.
 工程(A)で超小角散乱領域を含めてエックス線散乱を測定すると、比較的大きな粒子径まで解析範囲に含まれるため、工程(B)で仮定した一種類の粒径分布、すなわち一種類の平均一次粒子径、および規格化分散値を仮定した工程Cのフィッティング解析では、残差二乗和Z値が十分に下がらず、測定プロファイルと理論散乱プロファイルが良好な一致を示さないことがある。
 その理由が、粒径分布が一種類ではなく、より大きな粒子径を持つ顔料粒子や高次に凝集した粒子も含まれるなど、複数の粒径分布を持っているからと仮定し、新たな粒径分布モデルを導入する。
When X-ray scattering is measured in the step (A) including the ultra-small angle scattering region, a relatively large particle size is included in the analysis range, so one kind of particle size distribution assumed in the step (B), that is, one kind of average. In the fitting analysis of step C assuming the primary particle size and the normalized dispersion value, the residual sum of squares Z value does not sufficiently decrease, and the measurement profile and the theoretical scattering profile may not show good agreement.
The reason for this is that the particle size distribution is not a single type, and pigment particles having a larger particle size and particles aggregated in a higher order are included. Introduce a diameter distribution model.
 工程(D)では、工程(C)にて得られる残差二乗和Z値が2%以下となるまで、新たな半径Rn+1の値(nは整数、 R<Rn+1)とそれぞれ仮の規格化分散値を加えて複数の粒径分布モデルを設定して前記工程(B)から(C)をn回繰り返す。
 具体的には、より大きな平均粒子径を持つ新たな粒径分布モデルを仮定し、その半径をRとし(このときR>Rとする)、各成分の散乱強度IをI(1)、およびI(2)とすると、前期散乱強度式(5)の左項は式(7)、(8)のように修正される。
In step (D), until the residual sum of squares Z value obtained in step (C) becomes 2% or less, a new value of radius R n + 1 (n is an integer, R n <R n + 1 ) and temporary The normalized dispersion value is added to set a plurality of particle size distribution models, and the steps (B) to (C) are repeated n times.
Specifically, a new particle size distribution model having a larger average particle size is assumed, the radius is R 2 (in this case, R 2 > R 1 ), and the scattering intensity I of each component is I (1 ) And I (2), the left term of the pre-scattering intensity equation (5) is corrected as in equations (7) and (8).
Figure JPOXMLDOC01-appb-M000045
 Mは1種類目の粒径分布広がりパラメータである。
Figure JPOXMLDOC01-appb-M000045
M 1 is a first type particle size distribution spread parameter.
Figure JPOXMLDOC01-appb-M000046
 Mは2種類目の粒径分布広がりパラメータである。
Figure JPOXMLDOC01-appb-M000046
M 2 is a second type of particle size distribution spread parameter.
同様に3つ目の半径R3やそれ以上の分布を仮定した場合もI(3)、I(4)・・I(n)と記述することができる。
 2個の平均粒子径をもつ粒径分布モデル系の全散乱強度ITotalは式(9)で表される。
Total=k(1)I(1)+k(2)I(2)・・・(9)
 k(1)、k(2)は、それぞれの成分の組成比を表すスケールファクターである。
 同様に、3つ以上の平均粒子径をもつ粒径分布モデルを仮定し、合計n個の粒径分布モデルで全散乱強度を式(10)のように記述することができる。
Total=k(1)I(1)+k(2)I(2)+・・・+k(n)I(n)・・・(10)
Similarly, when assuming a distribution of the third radius R3 or higher, it can be described as I (3), I (4)... I (n).
The total scattering intensity I Total of the particle size distribution model system having two average particle sizes is expressed by Equation (9).
I Total = k (1) I (1) + k (2) I (2) (9)
k (1) and k (2) are scale factors representing the composition ratio of each component.
Similarly, assuming a particle size distribution model having three or more average particle sizes, the total scattering intensity can be described as in equation (10) with a total of n particle size distribution models.
I Total = k (1) I (1) + k (2) I (2) +... + K (n) I (n) (10)
 前期複数の粒径分布において、たとえばn個の各粒径分布成分の体積分率w(1)、w(2)・・・w(n)は、式(11)に示す比で表される。
w(1):w(2):・・・:w(n)=k(1):k(2):・・・:k(n)・・・(11)
In the plurality of particle size distributions in the previous period, for example, the volume fractions w (1), w (2)... W (n) of each of the n particle size distribution components are represented by the ratio shown in Equation (11). .
w (1): w (2): ...: w (n) = k (1): k (2): ...: k (n) (11)
 プロファイルフィッティングにおいて精密化する変数は、各粒径分布成分の平均粒子径(nm)、各粒径分布の幅を表す規格化分散値(%)、および各成分の体積分率(%)である。また、プロファイルフィッティングは測定プロファイルと全理論散乱プロファイルの残差二乗和であるZ値が最小となるよう実行され、前記各変数が決定される。 The variables to be refined in profile fitting are the average particle size (nm) of each particle size distribution component, the normalized dispersion value (%) representing the width of each particle size distribution, and the volume fraction (%) of each component. . Further, profile fitting is performed so that the Z value, which is the residual sum of squares of the measurement profile and the total theoretical scattering profile, is minimized, and each of the variables is determined.
 本(D)工程におけるプロファイルフィッティングが良好に収束しない場合、すなわち残差二乗和Z値の最小値が求められないとき、決定すべき変数が多過ぎることが原因になっていることがある。このとき、(C)工程で求められた規格化分散値を参考にして各粒径分布成分の規格化分散値を固定してもよい。本操作により、変数の少なくなった最小自乗法によるプロファイルフィッティングは収束が容易になる。こうして各粒径分布成分の平均粒子径、規格化分散値(%)、および各成分の体積分率(%)が解析結果として得られる。 When the profile fitting in this step (D) does not converge well, that is, when the minimum value of the residual sum of squares Z value cannot be obtained, it may be caused by too many variables to be determined. At this time, the normalized dispersion value of each particle size distribution component may be fixed with reference to the normalized dispersion value obtained in the step (C). By this operation, the profile fitting by the least square method with fewer variables becomes easier to converge. In this way, the average particle diameter, normalized dispersion value (%), and volume fraction (%) of each component are obtained as analysis results.
(配向膜)
 本発明の液晶表示装置において、第一の基板と、第二の基板上の液晶組成物と接する面には液晶組成物を配向させるため、配向膜を必要とする液晶表示装置においてはカラーフィルタと液晶層間に配置するものであるが、配向膜の膜厚が厚いものでも100nm以下と薄く、カラーフィルタを構成する顔料等の色素と液晶層を構成する液晶化合物との相互作用を完全に遮断するものでは無い。
 又、配向膜を用いない液晶表示装置においては、カラーフィルタを構成する顔料等の色素と液晶層を構成する液晶化合物との相互作用はより大きくなる。
(Alignment film)
In the liquid crystal display device of the present invention, the liquid crystal composition is aligned on the first substrate and the surface in contact with the liquid crystal composition on the second substrate. Although arranged between the liquid crystal layers, even if the alignment film is thick, it is as thin as 100 nm or less, and completely blocks the interaction between the pigment such as a pigment constituting the color filter and the liquid crystal compound constituting the liquid crystal layer. It is not a thing.
Further, in a liquid crystal display device that does not use an alignment film, the interaction between a pigment such as a pigment constituting a color filter and a liquid crystal compound constituting a liquid crystal layer becomes larger.
 配向膜材料としては、ポリイミド、ポリアミド、BCB(ペンゾシクロブテンポリマー)、ポリビニルアルコールなどの透明性有機材料を用いることができ、特に、p-フェニレンジアミン、4,4’-ジアミノジフエニルメタンなどの脂肪族または脂環族ジアミン等のジアミン及びブタンテトラカルボン酸無水物や2,3,5-トリカルボキシシクロペンチル酢酸無水物等の脂肪族又は脂環式テトラカルボン酸無水物、ピロメリット酸二無水物等の芳香族テトラカルボン酸無水物から合成されるポリアミック酸をイミド化した、ポリイミド配向膜が好ましい。この場合の配向付与方法は、ラビングを用いることが一般的であるが、垂直配向膜等に使用する場合は配向を付与しないで使用することもできる。
 配向膜材料としては、カルコン、シンナメート、シンナモイル又はアゾ基等を化合物中に含む、材料を使用することができ、ポリイミド、ポリアミド等の材料と組み合わせて使用してもよく、この場合配向膜はラビングを用いてもよく光配向技術を用いてもよい。
 配向膜は、基板上に前記配向膜材料をスピンコート法などの方法により塗布して樹脂膜を形成することが一般的であるが、一軸延伸法、ラングミュア・ブロジェット法等を用いることもできる。
As the alignment film material, transparent organic materials such as polyimide, polyamide, BCB (Penzocyclobutene Polymer), polyvinyl alcohol and the like can be used. Particularly, p-phenylenediamine, 4,4′-diaminodiphenylmethane, etc. Aliphatic or alicyclic tetracarboxylic anhydrides such as aliphatic or alicyclic diamines, butanetetracarboxylic anhydride, 2,3,5-tricarboxycyclopentylacetic anhydride, pyromellitic dianhydride A polyimide alignment film obtained by imidizing a polyamic acid synthesized from an aromatic tetracarboxylic anhydride such as a product is preferable. In this case, rubbing is generally used as a method for imparting orientation, but when used for a vertical orientation film or the like, it can be used without imparting orientation.
As the alignment film material, a material containing chalcone, cinnamate, cinnamoyl or azo group in the compound can be used, and it may be used in combination with materials such as polyimide and polyamide. In this case, the alignment film is rubbed. Or a photo-alignment technique may be used.
The alignment film is generally formed by applying the alignment film material on a substrate by a method such as spin coating to form a resin film, but a uniaxial stretching method, Langmuir-Blodgett method, or the like can also be used. .
(透明電極)
 本発明の液晶表示装置において、透明電極の材料としては、導電性の金属酸化物を用いることができ、金属酸化物としては酸化インジウム(In)、酸化スズ(SnO)、酸化亜鉛(ZnO)、酸化インジウムスズ(In―SnO)、酸化インジウム亜鉛(In―ZnO)、ニオブ添加二酸化チタン(Ti1-xNbx)、フッ素ドープ酸化スズ、グラフェンナノリボン又は金属ナノワイヤー等が使用できるが、酸化亜鉛(ZnO)、酸化インジウムスズ(In―SnO)又は酸化インジウム亜鉛(In―ZnO)が好ましい。これらの透明導電膜のパターニングには、フォト・エッチング法やマスクを用いる方法などを使用することができる。
(Transparent electrode)
In the liquid crystal display device of the present invention, a conductive metal oxide can be used as a material for the transparent electrode. Examples of the metal oxide include indium oxide (In 2 O 3 ), tin oxide (SnO 2 ), and zinc oxide. (ZnO), indium tin oxide (In 2 O 3 —SnO 2 ), indium zinc oxide (In 2 O 3 —ZnO), niobium-doped titanium dioxide (Ti 1-x Nb x O 2 ), fluorine-doped tin oxide, graphene Although nanoribbons or metal nanowires can be used, zinc oxide (ZnO), indium tin oxide (In 2 O 3 —SnO 2 ), or indium zinc oxide (In 2 O 3 —ZnO) is preferable. For patterning these transparent conductive films, a photo-etching method or a method using a mask can be used.
 本発明の液晶表示装置は、特にアクティブマトリックス駆動用液晶表示装置に有用であり、TNモード、IPSモード、高分子安定化IPSモード、FFSモード、OCBモード、VAモード又はECBモード用液晶表示装置に適用できる。
 本液晶表示装置と、バックライトを組み合わせて、液晶テレビ、パソコンのモニター、携帯電話、スマートフォンのディスプレイや、ノート型パーソナルコンピューター、携帯情報端末、デジタルサイネージ等の様々な用途で使用される。バックライトとしては、冷陰極管タイプバックライト、無機材料を用いた発光ダイオードや有機EL素子を用いた、2波長ピークの擬似白色バックライトと3波長ピークのバックライト等がある。
The liquid crystal display device of the present invention is particularly useful for a liquid crystal display device for active matrix driving, and is used for a liquid crystal display device for TN mode, IPS mode, polymer-stabilized IPS mode, FFS mode, OCB mode, VA mode or ECB mode. Applicable.
The liquid crystal display device is combined with a backlight and used in various applications such as liquid crystal televisions, personal computer monitors, mobile phones, smartphone displays, notebook personal computers, personal digital assistants, and digital signage. Examples of the backlight include a cold cathode tube type backlight, a two-wavelength peak pseudo-white backlight and a three-wavelength peak backlight using a light emitting diode or an organic EL element using an inorganic material.
 以下に実施例を挙げて本発明を更に詳述するが、本発明はこれらの実施例に限定されるものではない。また、以下の実施例及び比較例の組成物における「%」は『質量%』を意味する。
 実施例中、測定した特性は以下の通りである。
 Tni :ネマチック相-等方性液体相転移温度(℃)
 Δn :25℃における屈折率異方性
 Δε :25℃における誘電率異方性
 η  :20℃における粘度(mPa・s)
 γ1 :25℃における回転粘性(mPa・s)
 VHR:70℃における電圧保持率(%)
(セル厚3.5μmのセルに液晶組成物を注入し、5V印加、フレームタイム200ms、パルス幅64μsの条件で測定した時の測定電圧と初期印加電圧との比を%で表した値)
 ID :70℃におけるイオン密度(pC/cm
(セル厚3.5μmのセルに液晶組成物を注入し、MTR-1(株式会社東陽テクニカ製)で20V印加、周波数0.05Hzの条件で測定した時のイオン密度値)
 焼き付き:
 液晶表示素子の焼き付き評価は、表示エリア内に所定の固定パターンを1000時間表示させた後に、全画面均一な表示を行ったときの固定パターンの残像のレベルを目視にて以下の4段階評価で行った。
 ◎残像無し
 ○残像ごく僅かに有るも許容できるレベル
 △残像有り許容できないレベル
 ×残像有りかなり劣悪
尚、実施例において化合物の記載について以下の略号を用いる。
(環構造)
EXAMPLES The present invention will be described in further detail with reference to examples below, but the present invention is not limited to these examples. Further, “%” in the compositions of the following Examples and Comparative Examples means “% by mass”.
In the examples, the measured characteristics are as follows.
T ni : Nematic phase-isotropic liquid phase transition temperature (° C.)
Δn: refractive index anisotropy at 25 ° C. Δε: dielectric anisotropy at 25 ° C. η: viscosity at 20 ° C. (mPa · s)
γ1: rotational viscosity at 25 ° C. (mPa · s)
VHR: Voltage holding ratio at 70 ° C. (%)
(The ratio of the measured voltage to the initial applied voltage in% when the liquid crystal composition was injected into a cell having a cell thickness of 3.5 μm and measured under the conditions of 5 V applied, frame time 200 ms, and pulse width 64 μs)
ID: Ion density at 70 ° C. (pC / cm 2 )
(Ion density value measured by injecting a liquid crystal composition into a cell having a cell thickness of 3.5 μm and applying 20 V with MTR-1 (manufactured by Toyo Corporation) and a frequency of 0.05 Hz)
Burn-in:
The burn-in evaluation of the liquid crystal display element is based on the following four-level evaluation of the afterimage level of the fixed pattern when the predetermined fixed pattern is displayed in the display area for 1000 hours and then the entire screen is uniformly displayed. went.
◎ No afterimage ○ Although there is a slight afterimage Acceptable level △ Without afterimage Unacceptable level × Afterimage fairly bad In addition, the following abbreviations are used for the description of compounds in the examples.
(Ring structure)
Figure JPOXMLDOC01-appb-C000047
(側鎖構造及び連結構造)
Figure JPOXMLDOC01-appb-C000047
(Side chain structure and linking structure)
Figure JPOXMLDOC01-appb-T000048
Figure JPOXMLDOC01-appb-T000048
[カラーフィルタの作成]
[着色組成物の調製]
[赤色染料着色組成物1]
 赤色染料1(C.I.Solvent Red 124)10部をポリビンに入れ、プロピレングリコールモノメチルエーテルアセテート55部、0.3-0.4mmφセプルビーズを加え、ペイントコンディショナー(東洋精機株式会社製)で4時間分散した後、5μmのフィルタで濾過し染料着色液を得た。 この染料着色液75.00部とポリエステルアクリレート樹脂(アロニックス(商標名)M7100、東亜合成化学工業株式会社製)5.50部、ジぺンタエリストールヘキサアクリレート(KAYARAD(商標名)DPHA、日本化薬株式会社製)5.00部、ベンゾフェノン(KAYACURE(商標名)BP-100、日本化薬株式会社製)1.00部、ユーカーエステルEEP13.5部を分散撹拌機で撹拌し、孔径1.0μmのフィルタで濾過し、赤色染料着色組成物1を得た。
[Create color filter]
[Preparation of colored composition]
[Red dye coloring composition 1]
Place 10 parts of Red Dye 1 (CI Solvent Red 124) in a plastic bottle, add 55 parts of propylene glycol monomethyl ether acetate and 0.3-0.4 mmφ Sepul beads, and use paint conditioner (Toyo Seiki Co., Ltd.) for 4 hours. After dispersion, the mixture was filtered through a 5 μm filter to obtain a dye coloring liquid. 75.00 parts of this dye coloring liquid, 5.50 parts of polyester acrylate resin (Aronix (trade name) M7100, manufactured by Toa Gosei Chemical Co., Ltd.), dipentaerystol hexaacrylate (KAYARAD (trade name) DPHA, Nippon Kayaku) 5.00 parts of Yakuhin Co., Ltd., 1.00 parts of benzophenone (KAYACURE (trade name) BP-100, Nippon Kayaku Co., Ltd.) and 13.5 parts of Euker Ester EEP are stirred with a dispersion stirrer. Filtration through a 0 μm filter gave a red dye coloring composition 1.
[赤色染料着色組成物2]
 上記赤色染料着色組成物1の赤色染料1 10部に代え、赤色染料1(C.I.Solvent Red 124)8部と黄色染料1(C.I.Solvent Yellow 21)2部を用いて、上記と同様にして、赤色染料着色組成物2を得た。
[Red dye coloring composition 2]
Instead of 10 parts of red dye 1 of the red dye coloring composition 1, 8 parts of red dye 1 (CI Solvent Red 124) and 2 parts of yellow dye 1 (CI Solvent Yellow 21) are used. In the same manner as above, a red dye coloring composition 2 was obtained.
[赤色染料着色組成物3]
 上記赤色染料着色組成物1の赤色染料1 10部に代え、赤色染料2(C.I.Solvent Red 1)10部を用いて、上記と同様にして、赤色染料着色組成物3を得た。
[Red dye coloring composition 3]
Instead of 10 parts of the red dye 1 of the red dye coloring composition 1, 10 parts of red dye 2 (CI Solvent Red 1) was used to obtain a red dye coloring composition 3 in the same manner as described above.
[緑色染料着色組成物1]
 上記赤色染料着色組成物1の赤色染料1 10部に代え、青色染料1(C.I.Solvent Blue 67)3部と黄色染料1(C.I.Solvent Yellow 162)7部を用いて、上記と同様にして、緑色染料着色組成物1を得た。
[Green Dye Coloring Composition 1]
Instead of 10 parts of the red dye 1 of the red dye coloring composition 1, 3 parts of blue dye 1 (CI Solvent Blue 67) and 7 parts of yellow dye 1 (CI Solvent Yellow 162) are used. In the same manner as above, a green dye coloring composition 1 was obtained.
[緑色染料着色組成物2]
 上記緑色染料着色組成物1の黄色染料1 7部に代え、黄色染料1(C.I.Solvent Yellow 162)4部と黄色染料3(C.I.Solvent Yellow 82)3部を用いて、上記と同様にして、緑色染料着色組成物2を得た。
[Green Dye Coloring Composition 2]
Instead of 7 parts of the yellow dye 1 of the green dye coloring composition 1, 4 parts of yellow dye 1 (CI Solvent Yellow 162) and 3 parts of yellow dye 3 (CI Solvent Yellow 82) are used. In the same manner as above, a green dye coloring composition 2 was obtained.
[緑色染料着色組成物3]
 上記緑色染料着色組成物1の青色染料1 3部と黄色染料1 7部に代え、緑色染料1(C.I.Solvent Green 7)10部を用いて、上記と同様にして、緑色染料着色組成物3を得た。
[Green dye coloring composition 3]
Instead of 3 parts of blue dye 1 and 7 parts of yellow dye 1 in the green dye coloring composition 1, 10 parts of green dye 1 (CI Solvent Green 7) is used in the same manner as described above to give a green dye coloring composition. Product 3 was obtained.
[青色染料着色組成物1]
 上記、赤色染料着色組成物1の赤色染料1 10部に代え、青色染料2(C.I.Solvent Blue 12)10部を用いて、上記と同様にして、青色染料着色組成物1を得た。
[Blue dye coloring composition 1]
Blue dye coloring composition 1 was obtained in the same manner as described above using 10 parts of blue dye 2 (CI Solvent Blue 12) instead of 10 parts of red dye 1 of red dye coloring composition 1 above. .
[黄色染料着色組成物1]
 上記赤色染料着色組成物1の赤色染料1 10部に代え、黄色染料1(C.I.Solvent Yellow 21)10部を用いて、上記と同様にして、黄色染料着色組成物1を得た。
[Yellow dye coloring composition 1]
Instead of 10 parts of the red dye 1 of the red dye coloring composition 1, 10 parts of a yellow dye 1 (CI Solvent Yellow 21) was used to obtain a yellow dye coloring composition 1 in the same manner as described above.
[黄色染料着色組成物2]
 上記黄色染料着色組成物1の黄色染料1 10部に代え、黄色染料4(C.I.Solvent Yellow 2)10部を用いて、上記と同様にして、黄色染料着色組成物2を得た。
[Yellow dye coloring composition 2]
A yellow dye coloring composition 2 was obtained in the same manner as described above using 10 parts of yellow dye 4 (CI Solvent Yellow 2) instead of 10 parts of yellow dye 1 of the yellow dye coloring composition 1.
[赤色顔料着色組成物1]
 赤色顔料1(C.I.Pigment Red 254、BASF社製「IRGAPHOR RED BT-CF」)10部をポリビンに入れ、プロピレングリコールモノメチルエーテルアセテート55部、ディスパービックLPN21116(ビックケミー株式会社製)7.0部、Saint-Gobain社製0.3-0.4mmφジルコニアビーズ「ER-120S」を加え、ペイントコンディショナー(東洋精機株式会社製)で4時間分散した後、1μmのフィルタで濾過し顔料分散液を得た。この顔料分散液75.00部とポリエステルアクリレート樹脂(アロニックス(商標名)M7100、東亜合成化学工業株式会社製)5.50部、ジぺンタエリストールヘキサアクリレート(KAYARAD(商標名)DPHA、日本化薬株式会社製)5.00部、ベンゾフェノン(KAYACURE(商標名)BP-100、日本化薬株式会社製)1.00部、ユーカーエステルEEP13.5部を分散撹拌機で撹拌し、孔径1.0μmのフィルタで濾過し、赤色顔料着色組成物1を得た。
[Red pigment coloring composition 1]
10 parts of Red Pigment 1 (CI Pigment Red 254, “IRGAPHOR RED BT-CF” manufactured by BASF) is placed in a polybin, 55 parts of propylene glycol monomethyl ether acetate, Dispersic LPN21116 (manufactured by BYK Chemie) 7.0 Add 0.3-0.4mmφ zirconia beads “ER-120S” manufactured by Saint-Gobain, and disperse with a paint conditioner (manufactured by Toyo Seiki Co., Ltd.) for 4 hours, and then filter through a 1 μm filter to obtain a pigment dispersion. Obtained. 75.00 parts of this pigment dispersion, 5.50 parts of polyester acrylate resin (Aronix (trade name) M7100, manufactured by Toa Gosei Chemical Co., Ltd.), dipentaerystol hexaacrylate (KAYARAD (trade name) DPHA, Nippon Kayaku) 5.00 parts of Yakuhin Co., Ltd., 1.00 parts of benzophenone (KAYACURE (trade name) BP-100, Nippon Kayaku Co., Ltd.) and 13.5 parts of Euker Ester EEP are stirred with a dispersion stirrer. Filtration through a 0 μm filter gave a red pigment coloring composition 1.
[赤色顔料着色組成物2]
 上記赤色顔料着色組成物1の赤色顔料1 10部に代え、赤色顔料1 6部と赤色顔料2(C.I.Pigment Red 177 DIC株式会社製FASTOGEN SUPER RED ATY-TR)2部、黄色顔料2(C.I.Pigment Yellow 139)2部を用いて、上記と同様にして、赤色顔料着色組成物2を得た。
[Red pigment coloring composition 2]
Instead of 10 parts of red pigment 1 of the above-mentioned red pigment coloring composition 1, 6 parts of red pigment 1 and 2 parts of red pigment 2 (FASTOGEN SUPER RED ATY-TR manufactured by CI Pigment Red 177 DIC Corporation), yellow pigment 2 Using 2 parts of (C.I. Pigment Yellow 139), a red pigment coloring composition 2 was obtained in the same manner as described above.
[赤色顔料着色組成物3]
 上記赤色顔料着色組成物1の赤色顔料1 10部に代え、赤色顔料1 8部、前記一般式(1)で表されるキサンテン化合物(化合物No.16:C.I.Acid Red 289)2部を用いて上記と同様に、赤色顔料組成物3を得た。
[Red pigment coloring composition 3]
Instead of 10 parts of the red pigment 1 of the red pigment coloring composition 1, 8 parts of the red pigment 1 and 2 parts of the xanthene compound represented by the general formula (1) (compound No. 16: CI Acid Red 289) In the same manner as above, a red pigment composition 3 was obtained.
[緑色顔料着色組成物1]
 上記赤色顔料着色組成物1の赤色顔料1 10部に代え、緑色顔料1(C.I.Pigment Green 36、DIC株式会社製「FASTOGEN GREEN 2YK-CF」)6部と黄色顔料1(C.I.Pigment Yellow 150、BAYER社製FANCHON FAST YELLOW E4GN)4部を用いて、上記と同様にして、緑色顔料着色組成物1を得た。
[Green pigment coloring composition 1]
Instead of 10 parts of the red pigment 1 of the red pigment coloring composition 1, 6 parts of green pigment 1 (CI Pigment Green 36, “FASTOGEN GREEN 2YK-CF” manufactured by DIC Corporation) and yellow pigment 1 (C.I. Pigment Yellow 150, 4 parts of FANCHON FAST YELLOW E4GN manufactured by BAYER) was used in the same manner as above to obtain a green pigment coloring composition 1.
[緑色顔料着色組成物2]
 上記緑色顔料着色組成物1の緑色顔料1 6部、黄色顔料1 4部に代え、緑色顔料2(C.I.Pigment Green 58、DIC株式会社製FASTOGEN GREEN A110)4部と黄色顔料3(C.I.Pigment YELLOW 138)6部を用いて、上記と同様にして、緑色顔料着色組成物2を得た。
[Green pigment coloring composition 2]
Instead of 6 parts of green pigment 1 and 4 parts of yellow pigment 1 of the green pigment coloring composition 1, 4 parts of green pigment 2 (CI Pigment Green 58, FASTOGEN GREEN A110 manufactured by DIC Corporation) and yellow pigment 3 (C Green pigment coloring composition 2 was obtained in the same manner as described above using 6 parts of I. Pigment YELLOW 138).
[青色顔料着色組成物1]
 青色顔料1(C.I.Pigment Blue 15:6、DIC株式会社製FASTOGEN Blue A510) 1.80部、前記一般式(1)で表されるキサンテン化合物(化合物No.2)0.18部、BYK-LPN21116(ビックケミー社) 2.84部、シクロヘキサノン 10.19部、 0.3-0.4mmφセプルビーズをポリビンに入れ、ペイントコンディショナー(東洋精機株式会社製)で4時間分散し、顔料分散液を得た。この顔料分散液75.00部とポリエステルアクリレート樹脂(アロニックス(商標名)M7100、東亜合成化学工業株式会社製)5.50部、ジぺンタエリスリトールヘキサアクリレート(KAYARAD(商標名)DPHA、日本化薬株式会社製)5.00部、ベンゾフェノン(KAYACURE(商標名)BP-100、日本化薬株式会社製)1.00部、ユーカーエステルEEP(ユニオンカーバイド社製)13.5部を分散撹拌機で撹拌し、孔径1.0μmのフィルタで濾過し、青色顔料着色組成物1を得た。
[Blue pigment coloring composition 1]
Blue pigment 1 (CI Pigment Blue 15: 6, FASTOGEN Blue A510 manufactured by DIC Corporation) 1.80 parts, xanthene compound (Compound No. 2) represented by the general formula (1) 0.18 parts, BYK-LPN21116 (Bic Chemie) 2.84 parts, cyclohexanone 10.19 parts, 0.3-0.4 mmφ Sepul beads are placed in a polybin and dispersed with a paint conditioner (manufactured by Toyo Seiki Co., Ltd.) for 4 hours. Obtained. 75.00 parts of this pigment dispersion, 5.50 parts of polyester acrylate resin (Aronix (trade name) M7100, manufactured by Toa Gosei Chemical Co., Ltd.), dipentaerythritol hexaacrylate (KAYARAD (trade name) DPHA, Nippon Kayaku) 5.00 parts manufactured by KK, 1.00 parts benzophenone (KAYACURE (trade name) BP-100, manufactured by Nippon Kayaku Co., Ltd.), and 13.5 parts euker ester EEP (manufactured by Union Carbide) with a dispersion stirrer. The mixture was stirred and filtered through a filter having a pore size of 1.0 μm to obtain a blue pigment coloring composition 1.
[青色顔料着色組成物2]
 上記青色顔料着色組成物1のキサンテン化合物に代え、一般式(1)で表されるキサンテン化合物(化合物No.4)を用いて、上記と同様にして、青色顔料着色組成物2を得た。
[Blue pigment coloring composition 2]
In place of the xanthene compound of the blue pigment coloring composition 1, the xanthene compound (compound No. 4) represented by the general formula (1) was used to obtain a blue pigment coloring composition 2 in the same manner as described above.
[青色顔料着色組成物3]
 上記青色顔料着色組成物1のキサンテン化合物に代え、一般式(1)で表されるキサンテン化合物(化合物No.1)を用いて、上記と同様にして、青色顔料着色組成物3を得た。
[Blue pigment coloring composition 3]
In place of the xanthene compound of the blue pigment coloring composition 1, the xanthene compound (compound No. 1) represented by the general formula (1) was used to obtain a blue pigment coloring composition 3 in the same manner as described above.
[青色顔料着色組成物4]
 上記青色顔料着色組成物1のキサンテン化合物に代え、一般式(1)で表されるキサンテン化合物(化合物No.12)を用いて、上記と同様にして、青色顔料着色組成物4を得た。
[Blue pigment coloring composition 4]
Instead of the xanthene compound of the blue pigment coloring composition 1, a blue pigment coloring composition 4 was obtained in the same manner as described above using the xanthene compound (Compound No. 12) represented by the general formula (1).
[黄色顔料着色組成物1]
 上記赤色顔料着色組成物1の赤色顔料1 10部に代え、黄色顔料1(C.I.Pigment Yellow 150、LANXESS社製FANCHON FAST YELLOW E4GN)10部を用いて、上記と同様にして、黄色顔料着色組成物1を得た。
[Yellow pigment coloring composition 1]
In place of 10 parts of the red pigment 1 of the red pigment coloring composition 1, 10 parts of yellow pigment 1 (CI Pigment Yellow 150, FANCHON FAST YELLOW E4GN manufactured by LANXESS) was used in the same manner as described above, and yellow pigment 1 A colored composition 1 was obtained.
[カラーフィルタの作製]
 予めブラックマトリックスが形成されてあるガラス基板に、赤色着色組成物をスピンコートにより膜厚2μmとなるように塗布した。70℃で20分間乾燥の後、超高圧水銀ランプを備えた露光機にて、紫外線をフォトマスクを介してストライプ状のパターン露光をした。アルカリ現像液にて90秒間スプレー現像、イオン交換水で洗浄し、風乾した。さらに、クリーンオーブン中で、230℃で30分間ポストベークを行い、ストライプ状の着色層である赤色画素を透明基板上に形成した。
 次に、緑色着色組成物も同様にスピンコートにて膜厚が2μmとなるように塗布。乾燥後、露光機にてストライプ状の着色層を前述の赤色画素とはずらした場所に露光し現像することで、前述赤色画素と隣接した緑色画素を形成した。
 次に、青色着色組成物についても同様にスピンコートにて膜厚2μmで赤色画素、緑色画素と隣接した青色画素を形成した。これで、透明基板上に赤、緑、青の3色のストライプ状の画素を持つカラーフィルタが得られた。
 必要に応じて、黄色着色組成物についても、同様にスピンコートにて膜厚2μmで赤色画素、緑色画素と隣接した黄色画素を形成した。これで、透明基板上に赤、緑、青、黄の4色のストライプ状の画素を持つカラーフィルタが得られた。
 下記表に示す染料着色組成物又は顔料着色組成物を用い、カラーフィルタ1~4及び比較カラーフィルタ1を作成した。
[Production of color filter]
The red coloring composition was applied to a glass substrate on which a black matrix had been formed in advance so as to have a film thickness of 2 μm by spin coating. After drying at 70 ° C. for 20 minutes, a striped pattern was exposed to ultraviolet rays through a photomask in an exposure machine equipped with an ultrahigh pressure mercury lamp. Spray development with an alkali developer for 90 seconds, washing with ion exchange water, and air drying. Further, post-baking was performed at 230 ° C. for 30 minutes in a clean oven to form red pixels, which are striped colored layers, on a transparent substrate.
Next, the green coloring composition is similarly applied by spin coating so that the film thickness becomes 2 μm. After drying, the striped colored layer was exposed and developed at a place different from the above-mentioned red pixel by an exposure machine, thereby forming a green pixel adjacent to the above-mentioned red pixel.
Next, similarly for the blue coloring composition, red pixels and blue pixels adjacent to the green pixels were formed by spin coating with a film thickness of 2 μm. Thus, a color filter having striped pixels of three colors of red, green, and blue on the transparent substrate was obtained.
If necessary, the yellow coloring composition was similarly formed by spin coating to form a yellow pixel adjacent to the red pixel and the green pixel with a film thickness of 2 μm. As a result, a color filter having striped pixels of four colors of red, green, blue and yellow on the transparent substrate was obtained.
Color filters 1 to 4 and comparative color filter 1 were prepared using the dye coloring composition or pigment coloring composition shown in the following table.
Figure JPOXMLDOC01-appb-T000049
Figure JPOXMLDOC01-appb-T000049
〔カラーフィルタ中の有機顔料体積分率の測定〕
(顕微鏡での粗大粒子の測定)
 得られたカラーフィルタ1~5のB画素部について、任意の5点について、Nikon社製光学顕微鏡Optiphot2で、2000倍にて観察を行ったところ、いずれにおいても1000nm以上の粗大粒子は観察されなかった。
[Measurement of organic pigment volume fraction in color filter]
(Measurement of coarse particles with a microscope)
Regarding the B pixel portion of the obtained color filters 1 to 5, when any five points were observed at 2000 times with Nikon optical microscope Optiphot 2, coarse particles of 1000 nm or more were not observed in any of them. It was.
(USAXSでのカラーフィルタ1~5の測定)
 カラーフィルタ1~5のB画素部をAl製試料ホルダーにテープで貼り付け、透過用の試料台にセットした。以下の条件で超小角エックス線散乱測定を行い、解析した結果、3つの粒子径分布が得られ、このうち平均粒子径1nm以上40nm未満の分布で表される粒子を1次粒子、同様に40nm以上100nm未満の分布を2次粒子、および100nm以上1000nm以下の分布を3次粒子と表し、上記2次粒子と3次粒子の合計を高次粒子とした。
 上記測定・解析の結果、カラーフィルタ1~5のB画素部における平均粒子径1nm以上40nm未満の分布で表される1次粒子の体積分率は88.4%、40nm以上100nm未満の分布で表される2次粒子の体積分率は11.6%、100nm以上1000nm以下の分布で表される3次粒子の体積分率は0.0%で、40nm以上1000nm以下の粒子の占める体積分率は11.6%であった。
(Measurement of color filters 1-5 at USAXS)
The B pixel portions of the color filters 1 to 5 were attached to an Al sample holder with tape and set on a transmission sample stage. As a result of performing ultra-small-angle X-ray scattering measurement and analyzing under the following conditions, three particle size distributions are obtained. Of these, particles represented by a distribution having an average particle size of 1 nm or more and less than 40 nm are primary particles, similarly 40 nm or more. The distribution of less than 100 nm is expressed as secondary particles, and the distribution of 100 nm or more and 1000 nm or less is expressed as tertiary particles.
As a result of the above measurement and analysis, the primary particle volume fraction represented by the distribution of the average particle diameter of 1 nm or more and less than 40 nm in the B pixel portion of the color filters 1 to 5 is 88.4% and the distribution of 40 nm or more and less than 100 nm The volume fraction of secondary particles represented is 11.6%, the volume fraction of tertiary particles represented by a distribution of 100 nm to 1000 nm is 0.0%, and the volume fraction occupied by particles of 40 nm to 1000 nm is The rate was 11.6%.
 測定機器、測定方法は以下の通りである。
測定装置:大型放射光施設:SPring-8の中で、フロンティアソフトマター開発産学連合が所有するビームライン:BL03XU 第2ハッチ
測定モード:超小角X線散乱(USAXS)
測定条件:波長0.1nm、カメラ長6m、ビームスポットサイズ 140μm×80μm、アテネーター なし、露光時間 30秒、2θ= 0.01~1.5°
解析ソフト:2次元データの画像化と1次元化をFit2D (European Synchrotron Radiation Facilityのホームページ[http://www.esrf.eu/computing/scientific/FIT2D/]より入手)
 粒度分布の解析を(株)リガク社製ソフトウェアNANO-Solver(Ver3.6)で行った。 
Measuring instruments and measuring methods are as follows.
Measuring device: Large synchrotron radiation facility: SPring-8, Frontier Soft Matter Development Industry-Academia Union beamline: BL03XU Second hatch measurement mode: Ultra-small angle X-ray scattering (USAXS)
Measurement conditions: wavelength 0.1 nm, camera length 6 m, beam spot size 140 μm × 80 μm, no attenuator, exposure time 30 seconds, 2θ = 0.01-1.5 °
Analysis software: Fit2D for two-dimensional data imaging and one-dimensionalization (obtained from the homepage of the European Synchron Radiation Facility [http://www.esrf.eu/computing/scientific/FIT2D/])
The analysis of the particle size distribution was performed with software NANO-Solver (Ver 3.6) manufactured by Rigaku Corporation.
 当該カラーフィルタの各画素部について、オリンパス製顕微鏡MX-50と大塚電子製分光光度計MCPD-3000顕微分光測光装置を用いて、CIE1931 XYZ表色系のC光源におけるx値とy値を測定した。結果を下記表に示す。 For each pixel portion of the color filter, an x value and a y value were measured for a CIE 1931IXYZ color system C light source using an Olympus microscope MX-50 and an Otsuka Electronics spectrophotometer MCPD-3000 microspectrophotometer. . The results are shown in the table below.
Figure JPOXMLDOC01-appb-T000050
Figure JPOXMLDOC01-appb-T000050
(実施例1~5)
 電極構造を第一及び第二の基板の少なくとも一方に作成し、各々の対向側に水平配向性の配向膜を形成したのち弱ラビング処理を行い、IPSセルを作成し、第一の基板と第二の基板の間に以下に示す液晶組成物1を挟持した。液晶組成物1の物性値を下記表に示す。次に、上記表に示すカラーフィルタ1~5を用いて実施例1~5の液晶表示装置を作成した(dgap=4.0μm、配向膜AL-1051)。得られた液晶表示装置のVHR及びIDを測定した。また、得られた液晶表示装置の焼き付き評価を行った。その結果を下記表に示す。
(Examples 1 to 5)
An electrode structure is formed on at least one of the first and second substrates, a horizontal alignment film is formed on each facing side, and then a weak rubbing process is performed to create an IPS cell. A liquid crystal composition 1 shown below was sandwiched between two substrates. The physical property values of the liquid crystal composition 1 are shown in the following table. Next, liquid crystal display devices of Examples 1 to 5 were produced using the color filters 1 to 5 shown in the above table (d gap = 4.0 μm, alignment film AL-1051). VHR and ID of the obtained liquid crystal display device were measured. The obtained liquid crystal display device was evaluated for burn-in. The results are shown in the table below.
Figure JPOXMLDOC01-appb-T000051
Figure JPOXMLDOC01-appb-T000051
Figure JPOXMLDOC01-appb-T000052
Figure JPOXMLDOC01-appb-T000052
 液晶組成物1は、TV用液晶組成物として実用的な75.5℃の液晶相温度範囲を有し、大きい誘電率異方性の絶対値を有し、低い粘性及び最適なΔnを有していることがわかる。
 実施例1~5の液晶表示装置は、高いVHR及び小さいIDを実現できた。また、焼き付き評価においても残像がないか、又はあってもごく僅かであり許容できるレベルであった。
The liquid crystal composition 1 has a liquid crystal phase temperature range of 75.5 ° C. that is practical as a liquid crystal composition for TV, has a large absolute value of dielectric anisotropy, has a low viscosity, and an optimal Δn. You can see that
The liquid crystal display devices of Examples 1 to 5 were able to realize high VHR and small ID. Further, even in the burn-in evaluation, there was no afterimage, or even a very slight and acceptable level.
(実施例6~15)
 実施例1と同様に下記表に示す液晶組成物2~3を狭持し、上記表に示すカラーフィルタ1~5を用いて実施例6~15の液晶表示装置を作成し、そのVHR及びIDを測定した。また、その液晶表示装置の焼き付き評価を行った。その結果を下記表に示す。
(Examples 6 to 15)
As in Example 1, the liquid crystal compositions 2 to 3 shown in the following table are sandwiched, and the liquid crystal display devices of Examples 6 to 15 are prepared using the color filters 1 to 5 shown in the above table. Was measured. The burn-in evaluation of the liquid crystal display device was performed. The results are shown in the table below.
Figure JPOXMLDOC01-appb-T000053
Figure JPOXMLDOC01-appb-T000053
Figure JPOXMLDOC01-appb-T000054
Figure JPOXMLDOC01-appb-T000054
Figure JPOXMLDOC01-appb-T000055
Figure JPOXMLDOC01-appb-T000055
 実施例6~15の液晶表示装置は、高いVHR及び小さいIDを実現できた。また、焼き付き評価においても残像がないか、又はあってもごく僅かであり許容できるレベルであった。 The liquid crystal display devices of Examples 6 to 15 were able to realize high VHR and small ID. Further, even in the burn-in evaluation, there was no afterimage, or even a very slight and acceptable level.
(実施例16~30)
 実施例1と同様に下記表に示す液晶組成物4~6を狭持し、上記表に示すカラーフィルタ1~5を用いて実施例16~30の液晶表示装置を作成し、そのVHR及びIDを測定した。また、その液晶表示装置の焼き付き評価を行った。その結果を下記表に示す。
(Examples 16 to 30)
As in Example 1, the liquid crystal compositions 4 to 6 shown in the following table are sandwiched, and the liquid crystal display devices of Examples 16 to 30 are prepared using the color filters 1 to 5 shown in the above table. Was measured. The burn-in evaluation of the liquid crystal display device was performed. The results are shown in the table below.
Figure JPOXMLDOC01-appb-T000056
Figure JPOXMLDOC01-appb-T000056
Figure JPOXMLDOC01-appb-T000057
Figure JPOXMLDOC01-appb-T000057
Figure JPOXMLDOC01-appb-T000058
Figure JPOXMLDOC01-appb-T000058
Figure JPOXMLDOC01-appb-T000059
Figure JPOXMLDOC01-appb-T000059
 実施例16~30の液晶表示装置は、高いVHR及び小さいIDを実現できた。また、焼き付き評価においても残像がないか、又はあってもごく僅かであり許容できるレベルであった。 The liquid crystal display devices of Examples 16 to 30 were able to realize high VHR and small ID. Further, even in the burn-in evaluation, there was no afterimage, or even a very slight and acceptable level.
(実施例31~45)
 電極構造を第一及び第二の基板に作成し、各々の対向側に水平配向性の配向膜を形成したのち弱ラビング処理を行い、TNセルを作成し、第一の基板と第二の基板の間に下記表に示す液晶組成物7~9を挟持した。次に、上記表に示すカラーフィルタ1~5を用いて実施例31~45の液晶表示装置を作成した(dgap=3.5μm、配向膜SE-7492)。得られた液晶表示装置のVHR及びIDを測定した。また、得られた液晶表示装置の焼き付き評価を行った。その結果を下記表に示す。
(Examples 31 to 45)
An electrode structure is formed on the first and second substrates, a horizontal alignment film is formed on each opposing side, and then a weak rubbing treatment is performed to create a TN cell. The first substrate and the second substrate Between these, liquid crystal compositions 7 to 9 shown in the following table were sandwiched. Next, liquid crystal display devices of Examples 31 to 45 were prepared using the color filters 1 to 5 shown in the above table (d gap = 3.5 μm, alignment film SE-7492). VHR and ID of the obtained liquid crystal display device were measured. The obtained liquid crystal display device was evaluated for burn-in. The results are shown in the table below.
Figure JPOXMLDOC01-appb-T000060
Figure JPOXMLDOC01-appb-T000060
Figure JPOXMLDOC01-appb-T000061
Figure JPOXMLDOC01-appb-T000061
Figure JPOXMLDOC01-appb-T000062
Figure JPOXMLDOC01-appb-T000062
Figure JPOXMLDOC01-appb-T000063
Figure JPOXMLDOC01-appb-T000063
 実施例31~45の液晶表示装置は、高いVHR及び小さいIDを実現できた。また、焼き付き評価においても残像がないか、又はあってもごく僅かであり許容できるレベルであった。 The liquid crystal display devices of Examples 31 to 45 were able to realize high VHR and small ID. Further, even in the burn-in evaluation, there was no afterimage, or even a very slight and acceptable level.
(実施例46~55)
 電極構造を第一及び第二の基板の少なくとも一方に作成し、各々の対向側に水平配向性の配向膜を形成したのち弱ラビング処理を行い、FFSセルを作成し、第一の基板と第二の基板の間に下記表に示す液晶組成物10~11を挟持した。次に、上記表に示すカラーフィルタ1~5を用いて実施例46~55の液晶表示装置を作成した(dgap=4.0μm、配向膜AL-1051)。得られた液晶表示装置のVHR及びIDを測定した。また、得られた液晶表示装置の焼き付き評価を行った。その結果を下記表に示す。
(Examples 46 to 55)
An electrode structure is formed on at least one of the first and second substrates, a horizontal alignment film is formed on each facing side, and then a weak rubbing process is performed to create an FFS cell. Liquid crystal compositions 10 to 11 shown in the following table were sandwiched between two substrates. Next, liquid crystal display devices of Examples 46 to 55 were prepared using the color filters 1 to 5 shown in the above table (d gap = 4.0 μm, alignment film AL-1051). VHR and ID of the obtained liquid crystal display device were measured. The obtained liquid crystal display device was evaluated for burn-in. The results are shown in the table below.
Figure JPOXMLDOC01-appb-T000064
Figure JPOXMLDOC01-appb-T000064
Figure JPOXMLDOC01-appb-T000065
Figure JPOXMLDOC01-appb-T000065
Figure JPOXMLDOC01-appb-T000066
Figure JPOXMLDOC01-appb-T000066
 実施例46~55の液晶表示装置は、高いVHR及び小さいIDを実現できた。また、焼き付き評価においても残像がないか、又はあってもごく僅かであり許容できるレベルであった。 The liquid crystal display devices of Examples 46 to 55 were able to realize high VHR and small ID. Further, even in the burn-in evaluation, there was no afterimage, or even a very slight and acceptable level.
(実施例56~70)
 実施例37と同様に下記表に示す液晶組成物12~14を狭持し、上記表に示すカラーフィルタ1~5を用いて実施例56~70の液晶表示装置作成し、そのVHR及びIDを測定した。また、その液晶表示装置の焼き付き評価を行った。その結果を下記表に示す。
(Examples 56 to 70)
As in Example 37, the liquid crystal compositions 12 to 14 shown in the following table are sandwiched, and the liquid crystal display devices of Examples 56 to 70 are prepared using the color filters 1 to 5 shown in the above table, and the VHR and ID are set. It was measured. The burn-in evaluation of the liquid crystal display device was performed. The results are shown in the table below.
Figure JPOXMLDOC01-appb-T000067
Figure JPOXMLDOC01-appb-T000067
Figure JPOXMLDOC01-appb-T000068
Figure JPOXMLDOC01-appb-T000068
Figure JPOXMLDOC01-appb-T000069
Figure JPOXMLDOC01-appb-T000069
Figure JPOXMLDOC01-appb-T000070
Figure JPOXMLDOC01-appb-T000070
 実施例56~70の液晶表示装置は、高いVHR及び小さいIDを実現できた。また、焼き付き評価においても残像がないか、又はあってもごく僅かであり許容できるレベルであった。 The liquid crystal display devices of Examples 56 to 70 were able to realize high VHR and small ID. Further, even in the burn-in evaluation, there was no afterimage, or even a very slight and acceptable level.
(実施例71~75)
 実施例37で用いた液晶組成物10にビスメタクリル酸ビフェニル‐4,4’‐ジイルを0.3質量%混合し液晶組成物15とした。TNセルにこの液晶組成物15を挟持し、電極間に駆動電圧を印加したまま、紫外線を600秒間照射(3.0J/cm)し、重合処理を行い、次に、上記表に示すカラーフィルタ1~5を用いて実施例71~75の液晶表示装置を作成し、そのVHR及びIDを測定した。また、その液晶表示装置の焼き付き評価を行った。その結果を下記表に示す。
(Examples 71 to 75)
A liquid crystal composition 15 was prepared by mixing 0.3% by mass of bismethacrylic acid biphenyl-4,4′-diyl with the liquid crystal composition 10 used in Example 37. The liquid crystal composition 15 is sandwiched between TN cells, and a polymerization treatment is performed by irradiating with ultraviolet rays (3.0 J / cm 2 ) for 600 seconds while a driving voltage is applied between the electrodes. Liquid crystal display devices of Examples 71 to 75 were prepared using the filters 1 to 5, and their VHR and ID were measured. The burn-in evaluation of the liquid crystal display device was performed. The results are shown in the table below.
Figure JPOXMLDOC01-appb-T000071
Figure JPOXMLDOC01-appb-T000071
 実施例71~75の液晶表示装置は、高いVHR及び小さいIDを実現できた。また、焼き付き評価においても残像がないか、又はあってもごく僅かであり許容できるレベルであった。 The liquid crystal display devices of Examples 71 to 75 were able to realize high VHR and small ID. Further, even in the burn-in evaluation, there was no afterimage, or even a very slight and acceptable level.
(実施例76~80)
 実施例29で用いた液晶組成物8にビスメタクリル酸ビフェニル‐4,4’‐ジイルを0.3質量%混合し液晶組成物16とした。IPSセルにこの液晶組成物16を挟持し、電極間に駆動電圧を印加したまま、紫外線を600秒間照射(3.0J/cm)し、重合処理を行い、次に、上記表に示すカラーフィルタ1~5を用いて実施例76~80の液晶表示装置を作成し、そのVHR及びIDを測定した。また、その液晶表示装置の焼き付き評価を行った。その結果を下記表に示す。
(Examples 76 to 80)
A liquid crystal composition 16 was prepared by mixing 0.3% by mass of bismethacrylic acid biphenyl-4,4′-diyl with the liquid crystal composition 8 used in Example 29. The liquid crystal composition 16 was sandwiched between IPS cells, and ultraviolet light was irradiated (3.0 J / cm 2 ) for 600 seconds while a driving voltage was applied between the electrodes, followed by polymerization treatment. Liquid crystal display devices of Examples 76 to 80 were prepared using filters 1 to 5, and their VHR and ID were measured. The burn-in evaluation of the liquid crystal display device was performed. The results are shown in the table below.
Figure JPOXMLDOC01-appb-T000072
Figure JPOXMLDOC01-appb-T000072
 実施例76~80の液晶表示装置は、高いVHR及び小さいIDを実現できた。また、焼き付き評価においても残像がないか、又はあってもごく僅かであり許容できるレベルであった。 The liquid crystal display devices of Examples 76 to 80 were able to realize high VHR and small ID. Further, even in the burn-in evaluation, there was no afterimage, or even a very slight and acceptable level.
(実施例81~85)
 実施例21で用いた液晶組成物6にビスメタクリル酸 3‐フルオロビフェニル‐4,4’‐ジイルを0.3質量%混合し液晶組成物17とした。FFSセルにこの液晶組成物17を挟持し、電極間に駆動電圧を印加したまま、紫外線を600秒間照射(3.0J/cm)し、重合処理を行い、次に、上記表に示すカラーフィルタ1~5を用いて実施例81~85の液晶表示装置を作成し、そのVHR及びIDを測定した。また、その液晶表示装置の焼き付き評価を行った。その結果を下記表に示す。
(Examples 81 to 85)
A liquid crystal composition 17 was prepared by mixing 0.3% by mass of bismethacrylic acid 3-fluorobiphenyl-4,4′-diyl with the liquid crystal composition 6 used in Example 21. The liquid crystal composition 17 is sandwiched between FFS cells, and a polymerization treatment is performed by irradiating with ultraviolet rays (3.0 J / cm 2 ) for 600 seconds while a driving voltage is applied between the electrodes. Liquid crystal display devices of Examples 81 to 85 were prepared using filters 1 to 5, and their VHR and ID were measured. The burn-in evaluation of the liquid crystal display device was performed. The results are shown in the table below.
Figure JPOXMLDOC01-appb-T000073
Figure JPOXMLDOC01-appb-T000073
 実施例81~85の液晶表示装置は、高いVHR及び小さいIDを実現できた。また、焼き付き評価においても残像がなかった。 The liquid crystal display devices of Examples 81 to 85 were able to realize high VHR and small ID. Also, no afterimage was found in the burn-in evaluation.
(比較例1~5)
 実施例1で用いたIPSセルに以下に示す比較液晶組成物1を挟持した。上記表に示すカラーフィルタ1~5を用いて比較例1~5の液晶表示装置を作製し、そのVHR及びIDを測定した。また、その液晶表示装置の焼き付き評価を行った。その結果を下記表に示す。
(Comparative Examples 1 to 5)
The comparative liquid crystal composition 1 shown below was sandwiched between the IPS cells used in Example 1. Liquid crystal display devices of Comparative Examples 1 to 5 were prepared using the color filters 1 to 5 shown in the above table, and their VHR and ID were measured. The burn-in evaluation of the liquid crystal display device was performed. The results are shown in the table below.
Figure JPOXMLDOC01-appb-T000074
Figure JPOXMLDOC01-appb-T000074
Figure JPOXMLDOC01-appb-T000075
Figure JPOXMLDOC01-appb-T000075
 比較例1~5の液晶表示装置は、本願発明の液晶表示装置と比較して、VHRは低く、IDも大きくなってしまった。また、焼き付き評価においても残像の発生が認められ許容できるレベルではなかった。 The liquid crystal display devices of Comparative Examples 1 to 5 had lower VHR and larger ID than the liquid crystal display devices of the present invention. Also, in the burn-in evaluation, afterimages were observed and the level was not acceptable.
(比較例6~15)
 実施例1と同様に下記表に示す比較液晶組成物2及び3を狭持し、上記表に示すカラーフィルタ1~5を用いて比較例6~15の液晶表示装置を作製し、そのVHR及びIDを測定した。また、その液晶表示装置の焼き付き評価を行った。その結果を下記表に示す。
(Comparative Examples 6 to 15)
In the same manner as in Example 1, the liquid crystal display devices of Comparative Examples 6 to 15 were prepared by sandwiching the comparative liquid crystal compositions 2 and 3 shown in the following table and using the color filters 1 to 5 shown in the above table. ID was measured. The burn-in evaluation of the liquid crystal display device was performed. The results are shown in the table below.
Figure JPOXMLDOC01-appb-T000076
Figure JPOXMLDOC01-appb-T000076
Figure JPOXMLDOC01-appb-T000077
Figure JPOXMLDOC01-appb-T000077
Figure JPOXMLDOC01-appb-T000078
Figure JPOXMLDOC01-appb-T000078
 比較例6~15の液晶表示装置は、本願発明の液晶表示装置と比較して、VHRは低く、IDも大きくなってしまった。また、焼き付き評価においても残像の発生が認められ許容できるレベルではなかった。 The liquid crystal display devices of Comparative Examples 6 to 15 had lower VHR and larger ID than the liquid crystal display devices of the present invention. Also, in the burn-in evaluation, afterimages were observed and the level was not acceptable.
(比較例16~25)
 実施例1と同様に下記表に示す比較液晶組成物4~5を狭持し、上記表に示すカラーフィルタ1~5を用いて比較例16~25の液晶表示装置を作製し、そのVHR及びIDを測定した。また、その液晶表示装置の焼き付き評価を行った。その結果を下記表に示す。
(Comparative Examples 16 to 25)
As in Example 1, the liquid crystal display devices of Comparative Examples 16 to 25 were prepared by sandwiching the comparative liquid crystal compositions 4 to 5 shown in the following table and using the color filters 1 to 5 shown in the above table. ID was measured. The burn-in evaluation of the liquid crystal display device was performed. The results are shown in the table below.
Figure JPOXMLDOC01-appb-T000079
Figure JPOXMLDOC01-appb-T000079
Figure JPOXMLDOC01-appb-T000080
Figure JPOXMLDOC01-appb-T000080
Figure JPOXMLDOC01-appb-T000081
Figure JPOXMLDOC01-appb-T000081
 比較例16~25の液晶表示装置は、本願発明の液晶表示装置と比較して、VHRは低く、IDも大きくなってしまった。また、焼き付き評価においても残像の発生が認められ許容できるレベルではなかった。 The liquid crystal display devices of Comparative Examples 16 to 25 had lower VHR and larger ID than the liquid crystal display device of the present invention. Also, in the burn-in evaluation, afterimages were observed and the level was not acceptable.
(比較例26~40)
 実施例1と同様に下記表に示す比較液晶組成物6~8を狭持し、上記表に示すカラーフィルタ1~5を用いて比較例26~40の液晶表示装置を作製し、そのVHR及びIDを測定した。また、その液晶表示装置の焼き付き評価を行った。その結果を下記表に示す。
(Comparative Examples 26 to 40)
As in Example 1, the liquid crystal display devices of Comparative Examples 26 to 40 were prepared by sandwiching the comparative liquid crystal compositions 6 to 8 shown in the following table and using the color filters 1 to 5 shown in the above table. ID was measured. The burn-in evaluation of the liquid crystal display device was performed. The results are shown in the table below.
Figure JPOXMLDOC01-appb-T000082
Figure JPOXMLDOC01-appb-T000082
Figure JPOXMLDOC01-appb-T000083
Figure JPOXMLDOC01-appb-T000083
Figure JPOXMLDOC01-appb-T000084
Figure JPOXMLDOC01-appb-T000084
Figure JPOXMLDOC01-appb-T000085
Figure JPOXMLDOC01-appb-T000085
 比較例26~40の液晶表示装置は、本願発明の液晶表示装置と比較して、VHRは低く、IDも大きくなってしまった。また、焼き付き評価においても残像の発生が認められ許容できるレベルではなかった。 The liquid crystal display devices of Comparative Examples 26 to 40 had lower VHR and larger ID than the liquid crystal display devices of the present invention. Also, in the burn-in evaluation, afterimages were observed and the level was not acceptable.
(比較例41~55)
 実施例1と同様に下記表に示す比較液晶組成物9~11を狭持し、上記表に示すカラーフィルタ1~5を用いて比較例41~55の液晶表示装置を作製し、そのVHR及びIDを測定した。また、その液晶表示装置の焼き付き評価を行った。その結果を下記表に示す。
(Comparative Examples 41 to 55)
As in Example 1, the liquid crystal display devices of Comparative Examples 41 to 55 were prepared by sandwiching the comparative liquid crystal compositions 9 to 11 shown in the following table and using the color filters 1 to 5 shown in the above table. ID was measured. The burn-in evaluation of the liquid crystal display device was performed. The results are shown in the table below.
Figure JPOXMLDOC01-appb-T000086
Figure JPOXMLDOC01-appb-T000086
Figure JPOXMLDOC01-appb-T000087
Figure JPOXMLDOC01-appb-T000087
Figure JPOXMLDOC01-appb-T000088
Figure JPOXMLDOC01-appb-T000088
Figure JPOXMLDOC01-appb-T000089
Figure JPOXMLDOC01-appb-T000089
 比較例41~55の液晶表示装置は、本願発明の液晶表示装置と比較して、VHRは低く、IDも大きくなってしまった。また、焼き付き評価においても残像の発生が認められ許容できるレベルではなかった。 The liquid crystal display devices of Comparative Examples 41 to 55 had lower VHR and larger ID than the liquid crystal display devices of the present invention. Also, in the burn-in evaluation, afterimages were observed and the level was not acceptable.
(比較例56~63)
 実施例5、13、17、25、37、45、61及び65において、カラーフィルタ1に代えて上記表に示す比較カラーフィルタ1を用いた以外は同様にして比較例56~63の液晶表示装置を作製し、そのVHR及びIDを測定した。また、その液晶表示装置の焼き付き評価を行った。その結果を下記表に示す。
(Comparative Examples 56-63)
In Examples 5, 13, 17, 25, 37, 45, 61 and 65, except that the comparative color filter 1 shown in the above table was used in place of the color filter 1, the liquid crystal display devices of Comparative Examples 56 to 63 were similarly used. Was prepared, and its VHR and ID were measured. The burn-in evaluation of the liquid crystal display device was performed. The results are shown in the table below.
Figure JPOXMLDOC01-appb-T000090
Figure JPOXMLDOC01-appb-T000090
Figure JPOXMLDOC01-appb-T000091
Figure JPOXMLDOC01-appb-T000091
 比較例56~63の液晶表示装置は、本願発明の液晶表示装置と比較して、VHRは低く、IDも大きくなってしまった。また、焼き付き評価においても残像の発生が認められ許容できるレベルではなかった。 The liquid crystal display devices of Comparative Examples 56 to 63 had lower VHR and larger ID than the liquid crystal display devices of the present invention. Also, in the burn-in evaluation, afterimages were observed and the level was not acceptable.

Claims (14)

  1. 第一の基板と、第二の基板と、前記第一の基板と第二の基板間に挟持された液晶組成物層と、少なくともRGB三色画素部から構成されるカラーフィルタと、画素電極と共通電極とを備え、前記液晶組成物層が一般式(I)
    Figure JPOXMLDOC01-appb-C000001
    (式中、R31は炭素原子数1から10のアルキル基、炭素原子数1から10のアルコキシ基、炭素原子数2から10のアルケニル基又は炭素原子数2から10のアルケニルオキシ基を表し、M31~M33はお互い独立してトランス-1,4-シクロへキシレン基又は1,4-フェニレン基を表し、該トランス-1,4-シクロへキシレン基中の1つ又は2つの-CH-は酸素原子が直接隣接しないように、-O-で置換されていてもよく、該フェニレン基中の1つ又は2つの水素原子はフッ素原子で置換されていてもよく、X31及びX32はお互い独立して水素原子又はフッ素原子を表し、Z31はフッ素原子、トリフルオロメトキシ基又はトリフルオロメチル基を表し、n31は及びn32はお互い独立して0、1又は2を表し、n31+n32は0、1又は2を表し、M31及びM33が複数存在する場合には同一であっても異なっていても良い。)で表される化合物を一種又は二種以上含有し、一般式(II-a)から一般式(II-f)
    Figure JPOXMLDOC01-appb-C000002
    (式中、R19~R30はお互い独立して炭素原子数1から10のアルキル基、炭素原子数1から10のアルコキシ基又は炭素原子数2から10のアルケニル基を表し、X21は水素原子又はフッ素原子を表す。)で表される化合物からなる群より選ばれる化合物を一種又は二種以上含有する液晶組成物を含有し、
    前記RGB三色画素部の少なくとも1つの画素部中に、色材として、下記一般式(1)
    Figure JPOXMLDOC01-appb-C000003
    (式(1)中、R~R10はそれぞれ独立に水素原子、炭素数1~12の分岐しても良いアルキル基、アルコキシ基、-CO (カルボン酸イオン基)、-CO21、-SO (スルホン酸イオン基)、-SOM、-SONR2122を表す。R21およびR22はそれぞれ独立に水素原子、炭素数1~12の分岐しても良いアルキル基、炭素数1~10の環状アルキル基を表し、R21とR22で環構造を形成しても良い。
    11は-CO (カルボン酸イオン基)、-CO21、-SO (スルホン酸イオン基)、-SOM、-SONR2324を表す。R23およびR24はそれぞれ独立に水素原子、炭素数1~12の分岐しても良いアルキル基、炭素数1~10の環状アルキル基を表し、R23とR24で環構造を形成しても良い。Mは水素原子、ナトリウム原子またはカリウム原子を表す。但し、R~R10のうち1以上が-SONR2122である。)で表されるキサンテン化合物を含有する液晶表示装置。
    A first substrate; a second substrate; a liquid crystal composition layer sandwiched between the first substrate and the second substrate; a color filter comprising at least an RGB three-color pixel portion; and a pixel electrode; A liquid crystal composition layer having the general formula (I)
    Figure JPOXMLDOC01-appb-C000001
    (Wherein R 31 represents an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, or an alkenyloxy group having 2 to 10 carbon atoms, M 31 to M 33 each independently represent a trans-1,4-cyclohexylene group or a 1,4-phenylene group, and one or two —CH in the trans-1,4-cyclohexylene group 2 — may be substituted with —O— so that the oxygen atom is not directly adjacent, and one or two hydrogen atoms in the phenylene group may be substituted with a fluorine atom, and X 31 and X 32 represents a hydrogen atom or a fluorine atom independently of one another, Z 31 is a fluorine atom, a trifluoromethoxy group or a trifluoromethyl group, n 31 is and n 32 independently from each other 0, 1 or 2 Represents, n 31 + n 32 is 0, 1 or 2, M 31 and M 33 may be in the case of plurality of different be the same.) In the compound one or two or more represented From general formula (II-a) to general formula (II-f)
    Figure JPOXMLDOC01-appb-C000002
    (Wherein R 19 to R 30 each independently represent an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, or an alkenyl group having 2 to 10 carbon atoms, and X 21 represents hydrogen A liquid crystal composition containing one or more compounds selected from the group consisting of compounds represented by:
    In at least one pixel portion of the RGB three-color pixel portion, as a color material, the following general formula (1)
    Figure JPOXMLDOC01-appb-C000003
    (In the formula (1), R 1 to R 10 are each independently a hydrogen atom, an alkyl group having 1 to 12 carbon atoms which may be branched, an alkoxy group, —CO 2 (carboxylate ion group), —CO 2. R 21, -SO 3 - (sulfonic acid ion group), - SO 3 M, .R 21 and R 22 represents an -SO 2 NR 21 R 22 are each independently a hydrogen atom, a branched structure having 1 to 12 carbon atoms Represents a good alkyl group or a cyclic alkyl group having 1 to 10 carbon atoms, and R 21 and R 22 may form a ring structure.
    R 11 is -CO 2 - (carboxylate ion group), - CO 2 R 21, -SO 3 - ( sulfonic acid ion group), - SO 3 M, represents a -SO 2 NR 23 R 24. R 23 and R 24 each independently represents a hydrogen atom, an alkyl group having 1 to 12 carbon atoms which may be branched, or a cyclic alkyl group having 1 to 10 carbon atoms, and R 23 and R 24 form a ring structure. Also good. M represents a hydrogen atom, a sodium atom or a potassium atom. However, one or more of R 1 to R 10 are —SO 2 NR 21 R 22 . The liquid crystal display device containing the xanthene compound represented by this.
  2.  前記RGB三色画素部のR画素部及びB画素部の少なくとも1つの画素部中に、色材として、下記一般式(1)
    Figure JPOXMLDOC01-appb-C000004
    (式(1)中、R~R10はそれぞれ独立に水素原子、炭素数1~12の分岐しても良いアルキル基、アルコキシ基、-CO (カルボン酸イオン基)、-CO21、-SO (スルホン酸イオン基)、-SOM、-SONR2122を表す。R21およびR22はそれぞれ独立に水素原子、炭素数1~12の分岐しても良いアルキル基、炭素数1~10の環状アルキル基を表し、R21とR22で環構造を形成しても良い。
    11は-CO (カルボン酸イオン基)、-CO21、-SO (スルホン酸イオン基)、-SOM、-SONR2324を表す。R23およびR24はそれぞれ独立に水素原子、炭素数1~12の分岐しても良いアルキル基、炭素数1~10の環状アルキル基を表し、R23とR24で環構造を形成しても良い。Mは水素原子、ナトリウム原子またはカリウム原子を表す。但し、R~R10のうち1以上が-SONR2122である。)で表されるキサンテン化合物を含有する請求項1記載の液晶表示装置。
    In the at least one pixel portion of the R pixel portion and the B pixel portion of the RGB three-color pixel portion, as a color material, the following general formula (1)
    Figure JPOXMLDOC01-appb-C000004
    (In the formula (1), R 1 to R 10 are each independently a hydrogen atom, an alkyl group having 1 to 12 carbon atoms which may be branched, an alkoxy group, —CO 2 (carboxylate ion group), —CO 2. R 21, -SO 3 - (sulfonic acid ion group), - SO 3 M, .R 21 and R 22 represents an -SO 2 NR 21 R 22 are each independently a hydrogen atom, a branched structure having 1 to 12 carbon atoms Represents a good alkyl group or a cyclic alkyl group having 1 to 10 carbon atoms, and R 21 and R 22 may form a ring structure.
    R 11 is -CO 2 - (carboxylate ion group), - CO 2 R 21, -SO 3 - ( sulfonic acid ion group), - SO 3 M, represents a -SO 2 NR 23 R 24. R 23 and R 24 each independently represents a hydrogen atom, an alkyl group having 1 to 12 carbon atoms which may be branched, or a cyclic alkyl group having 1 to 10 carbon atoms, and R 23 and R 24 form a ring structure. Also good. M represents a hydrogen atom, a sodium atom or a potassium atom. However, one or more of R 1 to R 10 are —SO 2 NR 21 R 22 . The liquid crystal display device of Claim 1 containing the xanthene compound represented by this.
  3.  前記RGB三色画素部のB画素部中に色材として、ε型フタロシアニン顔料を含有する請求項1又は2記載の液晶表示装置。 3. A liquid crystal display device according to claim 1, wherein an epsilon phthalocyanine pigment is contained as a color material in the B pixel portion of the RGB three-color pixel portion.
  4. 前記B画素中のε型フタロシアニン顔料としてC.I.Pigment Blue 15:6を含有する請求項3記載の液晶表示装置。 As an ε-type phthalocyanine pigment in the B pixel, C.I. I. The liquid crystal display device according to claim 3, which contains Pigment Blue 15: 6.
  5. 前記B画素部中のε型フタロシアニン顔料が、全粒子のうち粒子径が1000nmより大きい粒子の占める体積分率が1%以下であって、40nm以上1000nm以下の粒子の占める体積分率が25%以下であるε型フタロシアニン顔料である請求項3又は4記載の液晶表示装置。 In the ε-type phthalocyanine pigment in the B pixel portion, the volume fraction occupied by particles having a particle size larger than 1000 nm out of all particles is 1% or less, and the volume fraction occupied by particles of 40 nm or more and 1000 nm or less is 25%. The liquid crystal display device according to claim 3 or 4, which is an ε-type phthalocyanine pigment as described below.
  6. 前記RGB三色画素部が、色材として、R画素部中にジケトピロロピロール顔料及び/又はアニオン性赤色有機染料を、G画素部中にハロゲン化金属フタロシアニン顔料、フタロシアニン系緑色染料、フタロシアニン系青色染料とアゾ系黄色有機染料との混合物からなる群から選ばれる少なくとも一種を含有する請求項1~5の何れか一項に記載の液晶表示装置。 The RGB three-color pixel portion includes, as a color material, a diketopyrrolopyrrole pigment and / or an anionic red organic dye in the R pixel portion, a metal halide phthalocyanine pigment, a phthalocyanine green dye, and a phthalocyanine type in the G pixel portion. 6. The liquid crystal display device according to claim 1, comprising at least one selected from the group consisting of a mixture of a blue dye and an azo yellow organic dye.
  7. G画素部中にAl、Si、Sc、Ti、V、Mg、Fe、Co、Ni、Zn、Cu、Ga、Ge、Y、Zr、Nb、In、Sn及びPbからなる群から選ばれる金属を中心金属として有するハロゲン化金属フタロシアニン顔料であり、その中心金属が三価の場合には、その中心金属には1つのハロゲン原子、水酸基又はスルホン酸基のいずれかが結合しているか、又はオキソ又はチオ架橋しており、その中心金属が四価金属の場合には、その中心金属には1つの酸素原子又は同一でも異なっていても良い2つのハロゲン原子、水酸基又はスルホン酸基のいずれかが結合しているハロゲン化金属フタロシアニン顔料を含有する請求項1~6の何れか一項に記載の液晶表示装置。 In the G pixel portion, a metal selected from the group consisting of Al, Si, Sc, Ti, V, Mg, Fe, Co, Ni, Zn, Cu, Ga, Ge, Y, Zr, Nb, In, Sn, and Pb is used. A halogenated metal phthalocyanine pigment having a central metal, and when the central metal is trivalent, either one halogen atom, hydroxyl group or sulfonic acid group is bonded to the central metal, or oxo or When thio-bridged and the central metal is a tetravalent metal, one oxygen atom or two halogen atoms, which may be the same or different, a hydroxyl group, or a sulfonic acid group is bonded to the central metal. The liquid crystal display device according to any one of claims 1 to 6, comprising a halogenated metal phthalocyanine pigment.
  8. R画素部中にC.I.Solvent Red 124を、G画素部中にC.I.Solvent Blue 67とC.I.Solvent Yellow 82又は同162との混合物を含有する請求項1~7の何れか一項に記載の液晶表示装置。 In the R pixel portion, C.I. I. Solvent Red 124 with C.I. I. Solvent Blue 67 and C.I. I. The liquid crystal display device according to any one of claims 1 to 7, comprising a mixture with Solvent Yellow 82 or 162.
  9. R画素部中にC.I.Pigment Red 254を、G画素部中に、C.I.Pigment Green 7、同36及び同58から選ばれる1種又は2種以上を含有する請求項1~7の何れか一項に記載の液晶表示装置。 In the R pixel portion, C.I. I. Pigment Red 254 in the G pixel portion, C.I. I. The liquid crystal display device according to any one of claims 1 to 7, comprising one or more selected from Pigment Green 7, 36 and 58.
  10. カラーフィルタが、少なくともRGB三色画素部とY画素部とから構成され、色材として、Y画素部に、C.I.Pigment Yellow 150、同215、同185、同138、同139、C.I.Solvent Yellow 21、82、同83:1、同33、同162からなる群から選ばれる少なくとも1種の黄色有機染顔料を含有する請求項1~9の何れか一項に記載の液晶表示装置。 The color filter is composed of at least an RGB three-color pixel portion and a Y pixel portion. I. Pigment Yellow 150, 215, 185, 138, 139, C.I. I. 10. The liquid crystal display device according to claim 1, comprising at least one yellow organic dye / pigment selected from the group consisting of Solvent Yellow 21, 82, 83: 1, 33, 162.
  11. 一般式(I)で表される化合物が、一般式(I-a)から一般式(I-f)
    Figure JPOXMLDOC01-appb-C000005
    (式中、R31は炭素原子数1から10のアルキル基、炭素原子数1から10のアルコキシ基、炭素原子数2から10のアルケニル基又は炭素原子数2から10のアルケニルオキシ基を表し、X31~X38はお互い独立して水素原子又はフッ素原子を表し、Z31はフッ素原子、トリフオロメトキシ基又はトリフルオロメチル基を表す。)で表される化合物である請求項1~10の何れか一項に記載の液晶表示装置。
    The compounds represented by the general formula (I) are converted from the general formula (Ia) to the general formula (If).
    Figure JPOXMLDOC01-appb-C000005
    (Wherein R 31 represents an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, or an alkenyloxy group having 2 to 10 carbon atoms, X 31 to X 38 each independently represents a hydrogen atom or a fluorine atom, and Z 31 represents a fluorine atom, a trifluoromethoxy group or a trifluoromethyl group.) The liquid crystal display device according to any one of the above.
  12. 前記液晶組成物層に、更に一般式(III-a)から一般式(III-f)
    Figure JPOXMLDOC01-appb-C000006
    (式中、R41は炭素原子数1から10のアルキル基、炭素原子数1から10のアルコキシ基、炭素原子数2から10のアルケニル基又は炭素原子数2から10のアルケニルオキシ基を表し、X41~X48はお互い独立して水素原子又はフッ素原子を表し、Z41はフッ素原子、トリフオロメトキシ基又はトリフルオロメチル基を表す。)で表される化合物群から選ばれる化合物を一種又は二種以上含有する請求項1~11の何れか一項に記載の液晶表示装置。
    In the liquid crystal composition layer, the general formula (III-a) to the general formula (III-f)
    Figure JPOXMLDOC01-appb-C000006
    (Wherein R 41 represents an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, or an alkenyloxy group having 2 to 10 carbon atoms, X 41 to X 48 each independently represent a hydrogen atom or a fluorine atom, and Z 41 represents a fluorine atom, a trifluoromethoxy group or a trifluoromethyl group.) The liquid crystal display device according to any one of claims 1 to 11, comprising two or more kinds.
  13. 前記液晶組成物層に、重合性化合物を一種又は二種以上含有する液晶組成物を重合してなる重合体により構成される請求項1~12の何れか一項に記載の液晶表示装置。 The liquid crystal display device according to any one of claims 1 to 12, wherein the liquid crystal composition layer is composed of a polymer obtained by polymerizing a liquid crystal composition containing one or more polymerizable compounds.
  14. 前記液晶組成物層に、一般式(V)
    Figure JPOXMLDOC01-appb-C000007
    (式中、X及びXはそれぞれ独立して、水素原子又はメチル基を表し、
    Sp及びSpはそれぞれ独立して、単結合、炭素原子数1~8のアルキレン基又は-O-(CH-(式中、sは2から7の整数を表し、酸素原子は芳香環に結合するものとする。)を表し、Zは-OCH-、-CHO-、-COO-、-OCO-、-CFO-、-OCF-、-CHCH-、-CFCF-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-COO-CHCH-、-OCO-CHCH-、-CHCH-COO-、-CHCH-OCO-、-COO-CH-、-OCO-CH-、-CH-COO-、-CH-OCO-、-CY=CY-(式中、Y及びYはそれぞれ独立して、フッ素原子又は水素原子を表す。)、-C≡C-又は単結合を表し、Cは1,4-フェニレン基、トランス-1,4-シクロヘキシレン基又は単結合を表し、式中の全ての1,4-フェニレン基は、任意の水素原子がフッ素原子により置換されていても良い。)で表されるニ官能モノマーを含有する請求項1~13の何れか一項に記載の液晶表示装置。
    The liquid crystal composition layer has the general formula (V)
    Figure JPOXMLDOC01-appb-C000007
    (Wherein, X 1 and X 2 each independently represent a hydrogen atom or a methyl group,
    Sp 1 and Sp 2 are each independently a single bond, an alkylene group having 1 to 8 carbon atoms, or —O— (CH 2 ) s — (wherein s represents an integer of 2 to 7, Z 1 represents —OCH 2 —, —CH 2 O—, —COO—, —OCO—, —CF 2 O—, —OCF 2 —, —CH 2 CH. 2 —, —CF 2 CF 2 —, —CH═CH—COO—, —CH═CH—OCO—, —COO—CH═CH—, —OCO—CH═CH—, —COO—CH 2 CH 2 — , —OCO—CH 2 CH 2 —, —CH 2 CH 2 —COO—, —CH 2 CH 2 —OCO—, —COO—CH 2 —, —OCO—CH 2 —, —CH 2 —COO—, — CH 2 -OCO -, - CY 1 = CY 2 - ( wherein, Y 1 and Y 2 are each And represents a fluorine atom or a hydrogen atom.), —C≡C— or a single bond, C represents a 1,4-phenylene group, a trans-1,4-cyclohexylene group or a single bond, All of the 1,4-phenylene groups therein may have an arbitrary hydrogen atom substituted with a fluorine atom. The liquid crystal display device according to any one of claims 1 to 13, which contains a bifunctional monomer represented by formula (1).
PCT/JP2015/072052 2014-08-06 2015-08-04 Liquid crystal display device WO2016021583A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016520169A JP6002998B2 (en) 2014-08-06 2015-08-04 Liquid crystal display
KR1020167035820A KR20170003701A (en) 2014-08-06 2015-08-04 Liquid crystal display device
CN201580040424.3A CN106537239B (en) 2014-08-06 2015-08-04 Liquid crystal display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-160355 2014-08-06
JP2014160355 2014-08-06

Publications (1)

Publication Number Publication Date
WO2016021583A1 true WO2016021583A1 (en) 2016-02-11

Family

ID=55263845

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/072052 WO2016021583A1 (en) 2014-08-06 2015-08-04 Liquid crystal display device

Country Status (4)

Country Link
JP (1) JP6002998B2 (en)
KR (1) KR20170003701A (en)
CN (1) CN106537239B (en)
WO (1) WO2016021583A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017210601A (en) * 2016-05-23 2017-11-30 住友化学株式会社 Liquid crystal composition
JP2020204726A (en) * 2019-06-18 2020-12-24 Dic株式会社 Liquid crystal display element

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018216483A1 (en) * 2017-05-26 2018-11-29 Dic株式会社 Liquid crystal display device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013037348A (en) * 2011-07-08 2013-02-21 Sumitomo Chemical Co Ltd Colored photosensitive resin composition
JP2013100463A (en) * 2011-10-14 2013-05-23 Jsr Corp Coloring agent, colored composition, color filter and display element
JP5321932B1 (en) * 2013-02-21 2013-10-23 Dic株式会社 Liquid crystal display

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000019321A (en) * 1998-06-29 2000-01-21 Toray Ind Inc Pigment for color filter, color paste and color filter
JP2000192040A (en) * 1998-12-25 2000-07-11 Toshiba Corp Liquid crystal display
JP2009109542A (en) 2007-10-26 2009-05-21 Toppan Printing Co Ltd Color filter and in-plane switching mode-type liquid crystal display device equipped with the same
JP6192968B2 (en) * 2012-04-10 2017-09-06 住友化学株式会社 Colorant dispersion
WO2014112122A1 (en) * 2013-01-21 2014-07-24 Dic株式会社 Liquid crystal display device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013037348A (en) * 2011-07-08 2013-02-21 Sumitomo Chemical Co Ltd Colored photosensitive resin composition
JP2013100463A (en) * 2011-10-14 2013-05-23 Jsr Corp Coloring agent, colored composition, color filter and display element
JP5321932B1 (en) * 2013-02-21 2013-10-23 Dic株式会社 Liquid crystal display

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017210601A (en) * 2016-05-23 2017-11-30 住友化学株式会社 Liquid crystal composition
JP2020204726A (en) * 2019-06-18 2020-12-24 Dic株式会社 Liquid crystal display element

Also Published As

Publication number Publication date
JPWO2016021583A1 (en) 2017-04-27
CN106537239B (en) 2018-05-25
JP6002998B2 (en) 2016-10-05
KR20170003701A (en) 2017-01-09
CN106537239A (en) 2017-03-22

Similar Documents

Publication Publication Date Title
JP5321932B1 (en) Liquid crystal display
JP5273494B1 (en) Liquid crystal display
JP5505568B1 (en) Liquid crystal display
JP5413706B1 (en) Liquid crystal display
JP5413705B1 (en) Liquid crystal display
JP5299593B1 (en) Liquid crystal display
JP5299588B1 (en) Liquid crystal display
JP6002998B2 (en) Liquid crystal display
JP5652576B1 (en) Liquid crystal display
WO2015079561A1 (en) Lcd device
JP2019061017A (en) Liquid crystal display device
JP6083492B2 (en) Liquid crystal display
JP5765503B2 (en) Liquid crystal display
JP5299594B1 (en) Liquid crystal display
JP2014209157A (en) Liquid crystal display device
JP6680402B2 (en) Liquid crystal display
TWI460260B (en) Liquid crystal display device
TWI439538B (en) Liquid crystal display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15828944

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016520169

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167035820

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15828944

Country of ref document: EP

Kind code of ref document: A1