WO2016021407A1 - Polyamino acid derivative in which nucleic acid antimetabolites are bonded - Google Patents

Polyamino acid derivative in which nucleic acid antimetabolites are bonded Download PDF

Info

Publication number
WO2016021407A1
WO2016021407A1 PCT/JP2015/070785 JP2015070785W WO2016021407A1 WO 2016021407 A1 WO2016021407 A1 WO 2016021407A1 JP 2015070785 W JP2015070785 W JP 2015070785W WO 2016021407 A1 WO2016021407 A1 WO 2016021407A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
nucleic acid
polyethylene glycol
binding
antimetabolite
Prior art date
Application number
PCT/JP2015/070785
Other languages
French (fr)
Japanese (ja)
Inventor
正行 北川
大 川村
佳奈 水沼
中村 巌
大地 長井
千恵子 瀬野
啓一朗 山本
裕介 齋藤
綾香 望月
上村 和也
Original Assignee
日本化薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化薬株式会社 filed Critical 日本化薬株式会社
Publication of WO2016021407A1 publication Critical patent/WO2016021407A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7052Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
    • A61K31/706Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom
    • A61K31/7064Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines
    • A61K31/7068Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines having oxo groups directly attached to the pyrimidine ring, e.g. cytidine, cytidylic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates

Definitions

  • the present invention relates to a polyaspartic acid derivative or polyglutamic acid derivative to which a nucleic acid metabolism antagonist is bound, and a use thereof.
  • nucleic acid metabolism antagonists have been developed for the purpose of treating malignant tumors or viral diseases.
  • an antitumor agent anticancer agent
  • zalcitabine, lamivudine, etc. are used clinically.
  • nucleic acid antimetabolites have extremely strong pharmacological activity in the in vitro evaluation.
  • these drugs are susceptible to metabolism and excretion in the living body, and there is a problem that in vivo evaluation, the drug efficacy of the original drug cannot be fully exhibited.
  • Many of these drugs require high doses for clinical treatment.
  • gemcitabine has a strong activity comparable to powerful antitumor agents such as paclitaxel and doxorubicin, in vitro cytostatic activity evaluation (IC 50 value).
  • IC 50 value in vitro cytostatic activity evaluation
  • the clinical use of gemcitabine requires a high dose of 1,000 mg / m 2 as a use per body surface area.
  • Non-Patent Document 1 This is because the in-vivo utilization rate is lowered because the 4-position amino group of the nucleobase part of gemcitabine is metabolized and inactivated by cytidine deaminase, which is a metabolic enzyme of 2′-deoxycytidine. It is considered (Non-Patent Document 1).
  • Non-Patent Document 2 describes a polymerized derivative in which cytarabine, which is a nucleic acid antimetabolite, is bound to polyglutamic acids having an average molecular weight of about 30 kilodaltons.
  • cytarabine which is a nucleic acid antimetabolite
  • polyglutamic acids having an average molecular weight of about 30 kilodaltons.
  • polymerized derivatives of drugs are easily recognized by foreign bodies in the living body, and there is a concern that many drugs are trapped in phagocytic tissues such as the liver.
  • hypersensitivity reaction is caused by inducing immunity. In such a case, there is a concern that repeated administration as a drug cannot be performed.
  • Patent Document 1 describes a polymerized derivative in which a cytidine derivative is bound to polyethylene glycols.
  • Non-Patent Document 3 describes a polymerized derivative in which aspartic acid is branched at both ends of polyethylene glycols, and cytarabine is bound thereto via an appropriate linking group.
  • Patent Document 2 describes a polymerized derivative having a structure in which an amino acid is branched at the end of a polyethylene glycol chain and the drug is released after each branch undergoes a benzyl elimination reaction.
  • PBS phosphate buffered saline
  • Patent Document 3 and Patent Document 4 describe a polymerized derivative in which a nucleic acid antimetabolite and a hydrophobic substituent are bonded to a side chain carboxy group of a block copolymer of polyethylene glycols and a polyacidic amino acid.
  • Patent Document 5 describes a polymerized derivative in which a nucleic acid antimetabolite is bound to a side chain carboxy group of a block copolymer of polyethylene glycols and a polyacidic amino acid via a linker having a hydrophobic substituent. Has been.
  • the polymer conjugates of these nucleic acid antimetabolites are bipolar polymers having both a hydrophobic segment having a hydrophobic substituent introduced into the side chain carboxy group and polyethylene glycol, which is a hydrophilic segment. For this reason, the polymer conjugate of the nucleic acid antimetabolite is considered to form a self-aggregate having the hydrophobic segment as the inner core and the hydrophilic segment as the outer side due to intermolecular aggregation of the hydrophobic segment in an aqueous solution.
  • the polymer conjugate of the nucleic acid antimetabolite has a property of undergoing hydrolysis in a phosphate buffered saline (PBS) solution to dissociate the slowly bound nucleic acid antimetabolite. Therefore, these polymerized nucleic acid antimetabolites have a characteristic that they continue to exert a tumor growth inhibitory effect for a long period of time at a low dose as compared with conventional nucleic acid antimetabolites.
  • sustained-release nucleic acid antimetabolite prodrugs also cause side effects that occur due to the same action and mechanism of action over a long period of time.
  • nucleic acid antimetabolite bone marrow suppression recognized as manifestation of leukopenia or the like is a problem as a dose limiting factor.
  • An object of the present invention is to provide a nucleic acid metabolism antagonist that improves the antitumor effect and has low side effects, particularly bone marrow suppression. Specifically, an object of the present invention is to provide a nucleic acid metabolism antagonist that exhibits a tumor growth inhibitory effect for a long period of time and does not prolong myelosuppression.
  • polyamino acid derivatives can improve the antitumor effect and avoid prolonged myelosuppression, which is a side effect.
  • the molecular weight of the polyamino acid derivative is 20 kilodaltons or more and 200 kilodaltons or less, and the mass content of the polyethylene glycol segment in the polyamino acid derivative is 30% by mass or more and 90% by mass or less.
  • nucleic acid antimetabolite according to [1] or [2], wherein the nucleic acid antimetabolite is an amino acid antimetabolite having an amino group, and the nucleic acid antimetabolite is bound via an amide bond at the amino group.
  • Antimetabolite-binding polyamino acid derivative wherein the nucleic acid antimetabolite is an amino acid antimetabolite having an amino group, and the nucleic acid antimetabolite is bound via an amide bond at the amino group.
  • nucleic acid antimetabolite-binding polyamino acid derivative according to any one of [1] to [3], wherein the mass content of the nucleic acid antimetabolite is 2% by mass to 60% by mass.
  • the nucleic acid antimetabolite-binding polyamino acid derivative is represented by the general formula (1) [Wherein, R 1 represents a hydrogen atom, a group selected from the group consisting of alkyl groups and polyethylene glycol segments of carbon atoms (C1 ⁇ C8), acyl R 2 is a hydrogen atom, the number of carbon atoms (C1 ⁇ C8) A group selected from the group consisting of a group and a C1-C8 alkoxycarbonyl group, R 3 represents a polyethylene glycol segment, R 4 represents a nucleic acid antimetabolite binding residue, and R 5 represents an asparagine An acid bond residue and / or an aspartate imide bond residue, R 6 represents a hydroxyl group and / or —N (R 7 ) CONH (R 8 ), and R 7 and R 8 may be the same or different.
  • R 1 represents a hydrogen atom, a group selected from the group consisting of alkyl groups and polyethylene glycol segments of carbon atom
  • the amino acid unit to which R 3 is bonded, the amino acid unit to which R 4 is bonded, and the R 5 are bonded to each other Any one of the above [1] to [4], wherein the amino acid unit, the amino acid unit to which R 6 is bonded, and the amino acid unit in which the side chain carboxy group is an intramolecular cyclization type are each independently a random sequence.
  • X 2 represents the following general formula (2) or general formula (3) [Wherein R 9 and R 10 each independently represents a hydrogen atom or an alkyl group having from 1 to 8 carbon atoms (C1 to C8), and R 11 represents a hydrogen atom or an optionally substituted carbon number (C1 to C8).
  • R 9 and R 10 each independently represents a hydrogen atom or an alkyl group having from 1 to 8 carbon atoms (C1 to C8), and R 11 represents a hydrogen atom or an optionally substituted carbon number (C1 to C8).
  • CX—CY represents C ⁇ C (two The nucleic acid antimetabolite-binding polyamino acid derivative according to [5] above, which exhibits a heavy bond).
  • R 5 represents the following general formula (4), general formula (5), and general formula (6).
  • R 9 , R 10 , R 11 and CX-CY have the same meaning as described above
  • R 12 represents a hydroxyl group and / or —N (R 13 ) CONH (R 14 )
  • R 13 , R 14 May be the same or different and represents a linear, branched or cyclic alkyl group having a carbon number (C1 to C8) which may be substituted with a tertiary amino group.
  • the polyethylene glycol segment of R 3 is represented by the following general formula (7)
  • R 15 represents a hydrogen atom or a linear, branched or cyclic alkyl group having a carbon number (C1 to C8) which may have a substituent, and n is 5 to 2,500.
  • the nucleic acid antimetabolite is represented by the formula (8): [Wherein, -Rf represents the formula (9): Wherein R 16 represents a hydrogen atom or an acyl group of a fatty acid ester], and is any one or more nucleic acid metabolism antagonists, [1] to [8] ]
  • the nucleic acid antimetabolite binding polyamino acid derivative according to any one of the above.
  • the nucleic acid antimetabolite is represented by the formula (10): [Wherein, -Rf represents the formula (11): The nucleic acid antimetabolite binding according to any one of [1] to [9] above, wherein R 16 represents a hydrogen atom or an acyl group of a fatty acid ester] Polyamino acid derivative.
  • the nucleic acid antimetabolite-binding polyamino acid derivative of the present invention is an aspartic acid and / or glutamic acid having a side chain carboxy group in the polymer main chain, and a plurality of polyethylene glycol segments and a plurality of nucleic acid metabolisms in the side chain carboxy group. It comprises an antagonist.
  • the polyamino acid derivative has the property of gradually dissociating and releasing the bound nucleic acid antimetabolite, while remaining in the blood and being distributed in the body after administration in vivo.
  • the polyamino acid derivative can be controlled to have a molecular weight within an appropriate range, and by controlling the content of the polyethylene glycol segment, side effects can be avoided while improving the efficacy of the nucleic acid antimetabolite. In particular, it is possible to provide a drug that avoids prolonged myelosuppression.
  • the nucleic acid antimetabolite-binding polyamino acid derivative of the present invention is a polyamino acid derivative containing a plurality of units of aspartic acid derivatives and / or glutamic acid derivatives, and a polyethylene glycol segment with respect to the side chain carboxy group having a plurality And a nucleoside derivative which is a nucleic acid metabolism antagonist. The details will be described below.
  • the nucleic acid antimetabolite-binding polyamino acid derivative of the present invention is a polymer compound having a polyamino acid derivative containing a plurality of units of aspartic acid derivatives and / or glutamic acid derivatives as a polymer main chain structure. That is, a polyamino acid derivative containing an acidic amino acid aspartic acid and / or glutamic acid as a polymer main chain and having a plurality of side chain carboxy groups is used as the main chain structure of the polymer carrier, and the side chain carboxy group is polyethylene glycol. Polymerized derivatives chemically functionalized with segments and nucleic acid antimetabolites.
  • the polymer main chain of the polyamino acid derivative is not particularly limited as long as it is a polymer structure containing a plurality of aspartic acids and / or glutamic acids and having a plurality of side chain carboxy groups. That is, as long as it contains a plurality of units of aspartic acid and / or glutamic acid, it may be a polyamino acid derivative that optionally contains other amino acids.
  • the other amino acid may be a natural amino acid or a non-natural amino acid, and any of L-form and D-form can be used without particular limitation.
  • Examples of the other amino acids include hydrocarbon amino acids such as glycine, ⁇ -alanine, alanine, leucine and phenylalanine, and basic amino acids such as lysine, arginine and histidine.
  • the side chain carboxy group of the polyamino acid derivative is used as a binding functional group for binding a later-described polyethylene glycol segment and a nucleic acid antimetabolite. For this reason, it is preferable that the polyamino acid derivative has a higher side chain carboxy group content.
  • the polymer main chain of the polyamino acid derivative is preferably a polyamino acid main chain polymer in which aspartic acid and / or glutamic acid-containing units are contained in 50 units% or more of the polyamino acid composition, and the aspartic acid and / or A main chain polymer containing 80 unit% or more of glutamic acid units is more preferable.
  • Particularly preferred is a polyamino acid main chain composed of aspartic acid and / or glutamic acid. That is, particularly preferred polyamino acid main chain is polyaspartic acid, polyglutamic acid or poly (aspartic acid-glutamic acid) copolymer.
  • aspartic acid remains as a side chain so that one carboxy group can function as a binding functional group, and a polyamino acid main chain is constructed by an amide bond using the other carboxy group.
  • the carboxy group constituting the polyamino acid main chain may be an ⁇ -amide bond polymer, a ⁇ -amide bond polymer, or a mixture thereof.
  • glutamic acid in the polyamino acid derivative remains as a side chain so that one carboxy group can function as a binding functional group, and a polyamino acid main chain is constructed by an amide bond using the other carboxy group.
  • the carboxy group constituting the polyamino acid main chain may be an ⁇ -amide bond type polymer, a ⁇ -amide bond type polymer, or a mixture thereof.
  • the polymer main chain of the polyamino acid derivative is polyaspartic acid or polyglutamic acid, it is a structure in which aspartic acid or glutamic acid is polymerized in an appropriate number of units. , ⁇ -amide bond type polymer, ⁇ -amide bond type polymer, or a mixture thereof.
  • the polymer main chain of the polyamino acid derivative is the poly (aspartic acid-glutamic acid) copolymer, it is a polyamino acid structure in which aspartic acid and glutamic acid are mixed. It may be the body.
  • the bonding mode may be an ⁇ -amide bond polymer, a ⁇ -amide bond polymer with a side chain carboxy group or a ⁇ -amide bond polymer, and a mixture thereof. Also good.
  • the number of polymerization of the amino acid main chain of the polyamino acid derivative is preferably 3 to 300 units. More preferably, the polymerization number of the amino acid main chain is 3 to 250 units, and the polymerization number is particularly preferably 10 to 200 units. Among them, the number of units containing aspartic acid and / or glutamic acid is 3 to 300, preferably 3 to 250 units, and particularly preferably 10 to 200 units.
  • the terminal group of the polyamino acid derivative is not particularly limited to both the N terminal group and the C terminal group, and may be an unprotected free amino group and a free carboxylic acid, and salts thereof.
  • An appropriate modification of the C-terminal group may be used.
  • the modified N-terminal group of the polyamino acid derivative include acylamide-type modified products, alkoxycarbonylamide-type modified products (urethane-type modified products), alkylaminocarbonylamide-type modified products (urea-type modified products), and the like. it can.
  • examples of the modified form of the C-terminal group of the polyamino acid derivative include an ester-type modified form, an amide-type modified form, and a thioester-type modified form.
  • the modifying group of the N terminal group and the C terminal group of the polyamino acid derivative may be any modifying group. Both terminal groups are preferably substituents that do not interfere with the hydrophilicity of the polyamino acid derivative.
  • a linear, branched or cyclic alkyl group having a carbon number (C1 to C8) which may have a substituent via an appropriate bonding group bonded to the N-terminal group and the C-terminal group.
  • a terminal modifying group such as an aromatic group having carbon atoms (C6 to C18) which may have a substituent, an aralkyl group having carbon atoms (C7 to C20) which may have a substituent.
  • a terminal modifying group such as an aromatic group having carbon atoms (C6 to C18) which may have a substituent, an aralkyl group having carbon atoms (C7 to C20) which may have a substituent.
  • it may be a polyethylene glycol substituent capable of imparting water solubility, such as a terminal modifying group bonded through an appropriate bonding group bonded to the N terminal group and the C terminal group.
  • the N-terminal group is preferably a suitable acylamide-type modified product or alkoxycarbonylamide-type modified product (urethane-type modified product), and has the above-described substituent via a carbonyl group or a carbonyloxy group.
  • An aralkyl group having a carbon number (C7 to C20) may be preferable.
  • the C-terminal group is preferably a suitable amide type substituent or ester type substituent, and the number of carbon atoms (C1 to C8) optionally having the above substituent via an amide group or ester group.
  • Linear, branched or cyclic alkyl group, an aromatic group having a carbon number (C6 to C18) which may have a substituent, and a carbon number which has a substituent (C7 to C7) C20) is preferably an aralkyl group or a polyethylene glycol substituent.
  • a polyethylene glycol segment is bonded to a side chain carboxy group directly or via a bonding group.
  • the polyethylene glycol segment is a segment having a repeating structure of an ethyleneoxy group: (CH 2 CH 2 O) unit.
  • a segment structure containing a polyethylene glycol chain having an ethyleneoxy group unit polymerization degree of 5 to 10,000 units, more preferably a polymerization degree of 5 to 5,000 units.
  • the polyethylene glycol segment is preferably a segment part having a molecular weight corresponding to polyethylene glycol of 200 daltons to 500 kilodaltons, more preferably a structural part having a molecular weight of 200 daltons to 250 kilodaltons, and particularly preferably a molecular weight. 200 to 150 kilodaltons. Particularly preferred are polyethylene glycol segments having a molecular weight of 1,000 to 50 kilodaltons.
  • the molecular weight of the polyethylene glycol segment used in the present invention is determined by the GPC method based on the polyethylene glycol standard product of the polyethylene glycol segment structural compound used in preparing the nucleic acid antimetabolite-binding polyamino acid derivative of the present invention.
  • required by the peak top molecular weight measured is employ
  • One terminal group of the polyethylene glycol segment is a linking group for bonding to the carboxy group of the polyamino acid main chain directly or via a bonding group. That is, an oxygen atom of an ethyleneoxy group: (CH 2 CH 2 O) unit is a terminal group.
  • the other end group of the polyethylene glycol segment is not particularly limited, and may be a hydrogen atom, a hydroxyl group, an alkoxy group having a carbon number (C1 to C8) which may have a substituent, or a substituent. And an aralkyloxy group having a carbon number (C7 to C20) which may be included.
  • the substituent in the alkoxy group and aralkyloxy group include a hydroxyl group, an amino group, a formyl group, and a carboxy group.
  • alkoxy group having a carbon number (C1 to C8) which may have a substituent in the terminal group examples include a linear, branched or cyclic alkoxy group having a carbon number (C1 to C8).
  • an alkoxy group having a carbon number (C1 to C4) such as a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, an s-butoxy group, or a t-butoxy group. Particularly preferred is a methoxy group, an ethoxy group, an n-propoxy group or an isopropoxy group.
  • the aralkyloxy group having a carbon number (C7 to C20) which may have a substituent in the terminal group is a linear or branched alkyl group in which any one hydrogen atom is substituted with an aryl group. is there.
  • a benzyloxy group, a 4-phenylbutyloxy group, and an 8-phenyloctyloxy group are preferable.
  • the polyethylene glycol segment is bonded to the side chain carboxy group directly or via a bonding group.
  • the terminal group of the ethyleneoxy group: (CH 2 CH 2 O) unit is an oxygen atom, and the side chain carboxy group and an ester bond It is the mode which is doing.
  • the present invention also includes an embodiment in which the polyethylene glycol segment is bonded to the side chain carboxy group via a bonding group.
  • the linking group has a binding functional group in which one end group is bonded to the terminal oxygen atom of the polyethylene glycol segment in an ether bond mode, an ester bond, a urethane bond, or a carbonate bond, and the other end group is on the side. It is preferably an alkylene group having a linking functional group capable of forming an ester bond, an amide bond or a thioester bond with a chain carboxy group and having a substituent (C1 to C8).
  • linking group as a linking group that is ether-bonded to the polyethylene glycol segment and amide bond, ester bond or thioester bond to the side chain carboxy group, for example, — (CH 2 ) x —NH— (x is 1-8) -(CH 2 ) x -O- (x represents an integer of 1 to 8) and-(CH 2 ) x -S- (x represents an integer of 1 to 8).
  • a linking group that is ester-bonded to a polyethylene glycol segment and is linked to an amide bond, ester bond or thioester bond to a side chain carboxy group for example, —CO— (CH 2 ) x —NH— (x represents an integer of 1 to 8) , —CO— (CH 2 ) x —O— (wherein x represents an integer of 1 to 8) and —CO— (CH 2 ) x —S— (wherein x represents an integer of 1 to 8).
  • the linking group is particularly preferably — (CH 2 ) x —NH— (x represents an integer of 1 to 8), which is a linking group that has an ether bond with a polyethylene glycol segment and an amide bond with a side chain carboxy group.
  • an amino acid derivative as said coupling group of a polyethyleneglycol segment and a side chain carboxy group.
  • an amino acid derivative is used as a linking group
  • the N-terminal amino group of the amino acid is amide-bonded to the side chain carboxy group
  • the C-terminal carboxy group is used as an ester bond with the terminal oxygen atom of the polyethylene glycol segment.
  • the amino acid used may be a natural amino acid or a non-natural amino acid, and any of L-form and D-form can be used without particular limitation.
  • hydrocarbon amino acids such as glycine, ⁇ -alanine, alanine, leucine and phenylalanine
  • acidic amino acids such as aspartic acid and glutamic acid
  • basic amino acids such as lysine, arginine and histidine
  • the polyethylene glycol segment preferably has 2 to 80 units bonded to a plurality of side chain carboxy groups of the polyamino acid derivative according to the present invention. That is, the nucleic acid antimetabolite-binding polyamino acid derivative preferably comprises a plurality of units of polyethylene glycol segments. More preferred are those having 2 to 70 units of polyethylene glycol segments, and particularly preferred is an embodiment in which 2 to 60 units are bound.
  • the nucleic acid antimetabolite-binding polyamino acid derivative of the present invention binds a nucleic acid antimetabolite to the side chain carboxy group directly or via a bonding group.
  • the nucleic acid antimetabolite is a compound having a structure of a nucleoside derivative having pharmacological activity such as antitumor activity or antiviral activity.
  • As the nucleic acid metabolism antagonist in the present invention it is preferable to use pyrimidine base nucleoside derivatives, purine base nucleoside derivatives, triazine base nucleoside derivatives and the like.
  • the nucleic acid metabolism antagonist is preferably a compound having an amino group and / or a hydroxyl group in the molecule.
  • nucleic acid antimetabolite having an amino group in the nucleoside nucleobase and a pyrimidine base nucleoside derivative having an amino group, a purine base nucleoside derivative having an amino group, and a triazine base nucleoside derivative having an amino group are preferable.
  • a nucleic acid antimetabolite having an amino group is particularly preferred because it can be introduced into a polyamino acid derivative by an amide bond with the amino group.
  • cytarabine As the nucleic acid metabolism antagonist, a plurality of compounds having antitumor activity and antiviral activity are known.
  • cytarabine gemcitabine, azacitidine, decitabine, nelarabine, 2′-methylidene-2′-deoxycytidine (DC), having the structure shown in the following formula (12): Troxacitabine, 3′-ethynylcytidine, 2′-cyano-2′-deoxy-1- ⁇ -D-arabinofuranosylcytosine (CNDAC), 2′-deoxy-5,6-dihydro- 5-azacytidine (DHAC), 5′-fluoro-2′-deoxycytidine (NSC-48006), 4′-thio- ⁇ -D-arabinofuranosylcytosine (OSI-7836), cladri Down (cladribine), clofarabine (Clofarabine) or fludarabine (Fludarabine),
  • the nucleic acid antimetabolite-binding polyamino acid derivative of the present invention is obtained by binding the nucleic acid antimetabolite to a side chain carboxy group of a polyamino acid directly or via a binding group.
  • a nucleic acid antimetabolite having an amino group and / or a hydroxyl group is used, and an amide bond with the side chain carboxy group by the amino group or the hydroxyl group What is necessary is just to couple
  • the bonding mode may be any of an amide bond only, an ester bond only, or a mixture of an amide bond and an ester bond.
  • the mode of binding to the side chain carboxy group may be appropriately selected.
  • the nucleic acid antimetabolite also includes an embodiment in which the side chain carboxy group is bonded via a suitable linking group.
  • the linking group has a binding functional group in which one terminal group can bind to an amino group and / or a hydroxyl group that is a binding functional group of the nucleic acid antimetabolite, an amide bond, an ester bond, a carbonate bond, a urethane bond, or a urea bond.
  • the other terminal group has a linking functional group capable of forming an amide bond, an ester bond or a thioester bond with the side chain carboxy group, and optionally having a substituent (C1-C8) alkylene group It is preferable that
  • the amino group and / or hydroxyl group of the nucleic acid antimetabolite is linked to an amide bond or ester bond
  • the side chain carboxy group is linked to an amide bond, ester bond or thioester bond.
  • —CO— (CH 2 ) y —O— (y represents an integer of 1 to 8).
  • —CO— (CH 2 ) y —S— (y represents an integer of 1 to 8).
  • Examples of a mode in which a urea bond or a urethane bond with a nucleic acid antimetabolite and a side chain carboxy group with an amide bond, an ester bond or a thioester bond include -CONH- (CH 2 ) y -NH- (where y is 1 to 8). -CONH- (CH 2 ) y -O- (y is an integer of 1 to 8), -CONH- (CH 2 ) y -S- (y is an integer of 1 to 8) Is mentioned.
  • the form of carbonate bond with a nucleic acid antimetabolite and side chain carboxy group with amide bond, ester bond or thioester bond is, for example, —COO— (CH 2 ) y —NH— (y is an integer of 1 to 8) -COO- (CH 2 ) y -O- (y is an integer of 1 to 8), -COO- (CH 2 ) y -S- (y is an integer of 1 to 8) Can be mentioned.
  • the hydrogen atom of the alkylene group of the linking group may be modified with an appropriate substituent.
  • substituents include a hydroxyl group, an amino group, a halogen atom, an alkyl group having a carbon number (C1 to C8), an alkylcarbonylalkoxy group having a carbon number (C1 to C8), and an alkylcarbonylamide group having a carbon number (C1 to C8).
  • the linking group is a —CO— (CH 2 ) y —NH— (y represents an integer of 1 to 8) having a carboxy group on the binding side with a nucleic acid antimetabolite and the other having an amino group or a hydroxyl group, —CO— (CH 2 ) y —O— (y is an integer of 1 to 8) is preferred.
  • y represents an integer of 1 to 8.
  • preferred —CO— (CH 2 ) y —NH— (y represents an integer of 1 to 8) includes —CO—CH 2 —NH—, —CO— (CH 2 ) 2 —NH. —, —CO— (CH 2 ) 4 —NH—, —CO— (CH 2 ) 6 —NH—.
  • the case of 1 is synonymous with the amino acid skeleton. Therefore, an amino acid derivative may be used as the binding group.
  • the amino acid derivative is used as a linking group
  • the N-terminal amino group of the amino acid is an amide bond with the side chain carboxy group
  • the C-terminal carboxy group is an amide bond or an ester bond with the amino group or hydroxyl group of the nucleic acid antimetabolite. Used as a linking group in embodiments.
  • the amino acid used may be a natural amino acid or a non-natural amino acid, and any of L-form and D-form can be used without any particular limitation.
  • hydrocarbon amino acids such as glycine, ⁇ -alanine, alanine, leucine and phenylalanine
  • acidic amino acids such as aspartic acid and glutamic acid
  • basic amino acids such as lysine, arginine and histidine
  • an aspartic acid derivative is an aspartic acid derivative binding group in which an ⁇ -carboxy group functions as a binding group of the nucleic acid antimetabolite and the ⁇ -carboxy group is an amide.
  • an aspartic acid derivative in which a ⁇ -carboxy group functions as a binding group of the nucleic acid antimetabolite and the ⁇ -carboxy group is an amide may be used.
  • the amide in the other carboxy group that is not a binding group of the nucleic acid antimetabolite is, for example, an alkylamide having a carbon number (C1-20) which may have a substituent, or a substituent.
  • the linking group that binds the nucleic acid antimetabolite to the side chain carboxy group is particularly preferable because reliable dissociation of the nucleic acid antimetabolite is promoted.
  • the alkylamide having a carbon number (C1-20) which may have a substituent of an aspartic acid derivative as a linking group include, for example, methylamide, ethylamide, isopropylamide, t-butylamide, cyclohexylamide, dodecylamide, octadecyl Examples include amides.
  • Examples of the aromatic amide having a carbon number (C5 to C20) which may have a substituent of the aspartic acid derivative include phenylamide, 4-methoxyphenylamide, 4-dimethylaminophenylamide, 4-hydroxyphenyl. Examples include amides. Examples of the aralkyl amide having a carbon number (C7 to C20) which may have a substituent of the aspartic acid derivative include benzylamide, 2-phenylethylamide, 4-phenylbutyramide, 8-phenyloctylamide and the like. Is mentioned.
  • amino acid amide in which the carboxy group of the aspartic acid derivative is protected examples include glycinyl-methyl ester, alanyl-methyl ester, leucinyl-methyl ester, isoleucinyl-methyl ester, valinyl-methyl ester, phenylalanyl-methyl ester, Examples include alanyl-ethyl ester, leucinyl-ethyl ester, isoleucinyl-ethyl ester, alanyl-butyl ester, and leucinyl-butyl ester.
  • the nucleic acid antimetabolite-binding polyamino acid derivative of the present invention preferably has an embodiment in which a nucleic acid antimetabolite having an amino group and / or a hydroxyl group is directly bonded to the carboxy group of the aspartic acid unit. That is, when the main chain polymer of the polyamino acid is polyaspartic acid, the nucleic acid antimetabolite may be directly bonded to the side chain carboxy group of the main chain polymer. A nucleic acid antimetabolite may be bound using an aspartic acid derivative as a binding group to be bound.
  • the main chain polymer of the polyamino acid is polyglutamic acid
  • an aspartic acid derivative used as a linking group an aspartic acid amide derivative is preferably used.
  • the nucleic acid antimetabolite-binding polyamino acid derivative of the present invention comprises a polyamino acid containing a plurality of aspartic acid derivatives and / or glutamic acid derivatives as a main chain, and polyethylene glycol on the side chain carboxy group of the aspartic acid and / or glutamic acid.
  • the molecular weight of the polyamino acid derivative of the present invention a calculated value obtained by adding the constituent molecular weights of the above-described constituent parts is adopted as the “molecular weight of the polyamino acid derivative”. That is, (1) the molecular weight of the polyamino acid main chain, (2) the total molecular weight of the polyethylene glycol segment obtained by multiplying the molecular weight of the polyethylene glycol segment by the number of bonds, and (3) the number of bonds in the molecular weight of the binding residue of the nucleic acid antimetabolite.
  • the total molecular weight of the binding group obtained by multiplying the binding group residue molecular weight of any polyethylene glycol segment by the number of bonds is defined as the molecular weight.
  • the molecular weight of the polyamino acid derivative is required to be regulated by the accuracy in kilodalton units. Therefore, the analysis method for each component is not particularly limited as long as it is a sufficiently accurate analysis method for measuring the molecular weight of the polyamino acid derivative in kilodalton units, and various analysis methods are appropriately selected. Good. Below, the preferable analysis method in each component is listed.
  • the molecular weight of the polyamino acid main chain is a calculated value obtained by multiplying the molecular weight of the polymerization monomer unit of the main chain by the number of polymerizations.
  • the calculated value is obtained by adding the molecular weight of the polyethylene glycol segment to the molecular weight of the polymerization monomer unit of the main chain multiplied by the number of polymerizations. is there.
  • the number of polymerizations is the number of polymerizations calculated from the integral value of 1 H-NMR, the number of polymerizations calculated by amino acid analysis, or the number of polymerizations calculated by quantifying the side chain carboxy group of polyamino acid by neutralization titration. be able to.
  • the polyamino acid main chain is a polymer main chain having a single amino acid structure such as polyaspartic acid
  • analysis of 1 H-NMR is simple and preferable
  • the total molecular weight of the polyethylene glycol segment is a calculated value obtained by multiplying the molecular weight of the polyethylene glycol segment by the binding amount.
  • the molecular weight of the polyethylene glycol segment an average molecular weight determined by the peak top molecular weight of the polyethylene glycol segment structural compound to be used, which is measured by a GPC method based on a polyethylene glycol standard product, is employed.
  • the binding amount of the polyethylene glycol segment can be determined by cleaving the polyethylene glycol segment from the nucleic acid antimetabolite-binding polyamino acid derivative and quantitatively analyzing the released polyethylene glycol segment.
  • the constituents of the nucleic acid antimetabolite-binding polyamino acid derivative are a polyethylene glycol segment, a polyamino acid main chain, and a nucleic acid antimetabolite
  • the mass content of the amino acid main chain calculated by amino acid analysis and the nucleic acid antimetabolite
  • the mass content of the nucleic acid antimetabolite calculated by hydrolyzing the bound polyamino acid derivative and quantitatively analyzing the released nucleic acid antimetabolite by high performance liquid chromatography (HPLC) is obtained, and the remaining mass content is determined as polyethylene.
  • a method of calculating as a glycol segment may be used.
  • a method of calculating from the consumption rate of the polyethylene glycol segment in the reaction of introducing the polyethylene glycol segment into the polyamino acid main chain may be used.
  • the total molecular weight of the bonding group of the arbitrary polyethylene glycol segment of (4) is a calculated value obtained by multiplying the bonding group residue molecular weight by the number of bonds.
  • the number of bonds of the bonding group is the same as the number of bonds of the polyethylene glycol segment described above, and can be calculated by using the value.
  • the total molecular weight of the nucleic acid antimetabolite (3) is a calculated value obtained by multiplying the binding residue molecular weight of the nucleic acid antimetabolite by the number of bonds.
  • the binding number of the nucleic acid antimetabolite is a value calculated by hydrolyzing the nucleic acid antimetabolite-binding polyamino acid derivative and quantitatively analyzing the released nucleic acid antimetabolite by high performance liquid chromatography (HPLC). Is preferably used.
  • the total molecular weight of the binding group of any nucleic acid antimetabolite in (5) is a calculated value obtained by multiplying the binding group residue molecular weight by the number of bonds.
  • the number of bonds of the binding group is the same as the number of bonds of the aforementioned nucleic acid antimetabolite, and can be calculated by using the value.
  • the nucleic acid antimetabolite-binding polyamino acid derivative of the present invention is characterized in that the mass content of the polyethylene glycol segment in the polyamino acid derivative is 30% by mass or more and 90% by mass or less.
  • the mass content of the polyethylene glycol segment can be calculated from the content ratio of the total molecular weight of the polyethylene glycol segment of (2) above to the molecular weight of the polyamino acid derivative described above. That is, the mass content of the polyethylene glycol segment is calculated by the following formula.
  • Mass content of polyethylene glycol segment (%) total molecular weight of polyethylene glycol segment / polyamino acid derivative molecular weight ⁇ 100
  • the polyethylene glycol segment has a mass molecular weight of 30% by mass to 90% by mass, and preferably 35% by mass to 85% by mass.
  • the mass content of the nucleic acid antimetabolite in the polyamino acid derivative is preferably 2% by mass or more and 60% by mass or less. If the content of the nucleic acid antimetabolite is less than 2% by mass, the total dose of the polyamino acid derivative is increased in order to ensure an effective amount of the nucleic acid antimetabolite, which is not preferable. On the other hand, when the content of the nucleic acid antimetabolite is more than 60% by mass, myelosuppression tends to be strongly developed. It is preferable to set the content of the nucleic acid antimetabolite in order to ensure administration convenience and achieve sufficient drug efficacy and side effect reduction.
  • the mass content of the nucleic acid antimetabolite in the polyamino acid derivative can be calculated from the content ratio of the total molecular weight of the nucleic acid antimetabolite (3) to the molecular weight of the polyamino acid derivative.
  • a more preferable range of the content of the nucleic acid antimetabolite is 5% by mass or more and 50% by mass or less. It is particularly preferable that the content of the nucleic acid antimetabolite is 5% by mass or more and 40% by mass or less.
  • the nucleic acid antimetabolite-binding polyamino acid derivative of the present invention is preferably prepared by preparing an aqueous solution of the polyamino acid derivative and administering it parenterally.
  • the aqueous solution is prepared by dissolving in water, physiological saline, phosphate buffered saline (PBS solution), 5% glucose aqueous solution, or the like.
  • PBS solution phosphate buffered saline
  • the nucleic acid antimetabolite-binding polyamino acid derivative of the present invention preferably has physical properties that do not exhibit associative properties in the aqueous solution.
  • the association property indicates that the polyamino acid derivative is a physical property that forms an aggregate in which more than 10 molecules self-associate.
  • the “physical property not exhibiting associative property” in the present invention indicates an embodiment in which the polyamino acid derivative in the aqueous solution exists as a monomolecular substance or the self-aggregate forms an aggregate of 10 molecules or less. It is effective to use light scattering intensity using laser light as an index of the self-association property of the nucleic acid antimetabolite-binding hyperbranched compound of the present invention. That is, the self-association property of the nucleic acid antimetabolite-binding hyperbranched compound in an aqueous solution can be confirmed using the laser light scattering intensity as an index.
  • a method for confirming the self-association property of the nucleic acid antimetabolite-binding multibranched compound in an aqueous solution using toluene as a light scattering intensity standard sample and relative intensity with respect to toluene as an index is effective.
  • an aqueous solution having a polyamino acid derivative concentration of 1 mg / mL is measured with a laser light scattering photometer, and the light scattering intensity is 5 times or less as the relative intensity to the light scattering intensity of toluene
  • the amino acid derivative does not exhibit associative properties and is dispersed in an aqueous solution in the form of a monomolecular substance to several molecules.
  • it is a polyamino acid derivative whose light scattering intensity is 3 times or less as relative intensity to the light scattering intensity of toluene.
  • the laser light scattering photometer for example, a dynamic light scattering photometer DLS-8000DL (measurement temperature 25 ° C., measurement angle: 90 °, wavelength: 632.8 nm, ND filter: 5%, PH1: OPEN, manufactured by Otsuka Electronics Co., Ltd.) PH2: SLIT, sample concentration: 1 mg / mL), and measuring the light scattering intensity of an aqueous solution having a polyamino acid derivative concentration of 1 mg / mL with a laser light scattering photometer.
  • toluene used as a standard substance for light scattering intensity measurement is not particularly limited as long as it has a reagent level purity, and can be used.
  • the polyamino acid derivative preferably has a light scattering intensity of 5 times or less, more preferably 3 times or less as a relative intensity with respect to the light scattering intensity of toluene.
  • the lower limit value is not particularly limited, and is a case where a clear light scattering intensity is not exhibited, indicating a state where self-association is not exhibited in an aqueous solution.
  • nucleic acid metabolism antagonists have the problem that bone marrow suppression such as leukopenia occurs as a side effect, making it difficult to continue treatment using the therapeutic agent. For this reason, providing a therapeutic agent for a nucleic acid antimetabolite with low bone marrow suppression is very useful in a method for treating malignant tumors.
  • the molecular weight of the derivative is 20 kilodaltons or more and 200 kilodaltons or less, and the mass content of the polyethylene glycol segment in the polyamino acid derivative is 30 mass% or more and 90 mass% or less.
  • the derivative has physical properties that do not exhibit self-association in an aqueous solution, and as a result, a medicinal product having a high therapeutic effect with little bone marrow suppression can be provided.
  • the nucleic acid antimetabolite-binding polyamino acid derivative of the present invention is preferably a nucleic acid antimetabolite-binding polyamino acid derivative represented by the following general formula (1).
  • R 1 is a group selected from the group consisting of a hydrogen atom, an alkyl group having 1 to 8 carbon atoms and a polyethylene glycol segment
  • R 2 is a hydrogen atom and an acyl group having 1 to 8 carbon atoms (C1 to C8).
  • a group selected from the group consisting of C1-C8 alkoxycarbonyl groups R 3 represents a polyethylene glycol segment
  • R 4 represents a nucleic acid antimetabolite binding residue
  • R 5 represents aspartic acid.
  • R 6 represents a hydroxyl group and / or —N (R 7 ) CONH (R 8 ), and R 7 and R 8 may be the same or different.
  • a tertiary amino group may carbon atoms optionally substituted with (C1 ⁇ C8) for straight, branched or cyclic alkyl group
  • X 1 and X 2 is a linking group
  • X 3 Is methylene Or an ethylene group
  • a, b, c, d, e, f, g, h and i each independently represent an integer of 0 to 200, and the total number of polymerization of the polyamino acid derivative (a + b + c + d + e + f + g + h + i) is 3 250
  • (a + b) is 1 to 95
  • (c + d) is 1 to 175, the amino acid unit to which R 3 is bonded, the amino acid unit to which R
  • the molecular weight of the polyamino acid derivative is 20 kilodaltons or more and 200 kilodaltons or less, and the mass content of the polyethylene glycol segment in the polyamino acid derivative is 30 mass% or more and 90 mass% or less.
  • R 1 in the general formula (1) is a substituent selected from the group consisting of a hydrogen atom, an alkyl group having from 1 to 8 carbon atoms and a polyethylene glycol segment.
  • the alkyl group having a carbon number (C1 to C8) is a linear, branched or cyclic alkyl group having a carbon number (C1 to C8).
  • Examples of the linear alkyl group include a methyl group, an ethyl group, an n-propyl group, an n-butyl group, an n-hexyl group, and an n-octyl group.
  • Examples of the branched alkyl group include isopropyl group, t-butyl group, 1-methyl-propyl group, 2-methyl-propyl group, 2,2-dimethylpropyl group and the like.
  • Examples of the cyclic alkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cyclohexylmethyl group, and a cyclohexylethyl group.
  • the polyethylene glycol segment in R 1 of the general formula (1) is a segment having a repeating structure of ethyleneoxy group; (CH 2 CH 2 O) units.
  • a polyethylene glycol segment having an average molecular weight of 1,000 to 50 kilodaltons is particularly preferred.
  • the average molecular weight of the polyethylene glycol segment used in the present invention is the GPC method based on the polyethylene glycol standard structure of the polyethylene glycol segment structural compound used in preparing the nucleic acid antimetabolite-binding polyamino acid derivative of the present invention. It is an average molecular weight calculated
  • the bonding side terminal group with the polyamino acid main chain is not particularly limited as long as it is a suitable linking group to the polyamino acid derivative.
  • An alkylene group having a carbon number (C1 to C8) which may have a substituent is preferable.
  • a methylene group, ethylene group, propylene group, butylene group, hexamethylene group, octamethylene group and the like can be mentioned. That is, the polyethylene glycol segment structure is preferably a structure in which an oxygen atom of an ethyleneoxy group: (CH 2 CH 2 O) unit and an alkylene group having the carbon number (C1 to C8) are ether-bonded.
  • the terminal group of the polyethylene glycol segment in R 1 is not particularly limited, and may be a hydrogen atom, a hydroxyl group, an alkoxy group having a carbon number (C1 to C8) which may have a substituent, or a substituent. Examples thereof include an optionally substituted carbon number (C7 to C20) aralkyloxy group. Examples of the substituent in the alkoxy group, alkynyloxy group, and aralkyloxy group include a hydroxyl group, an amino group, a formyl group, and a carboxy group.
  • Examples of the carbon number (C1 to C8) alkoxy group which may have a substituent in the terminal group include a linear, branched or cyclic (C1 to C8) alkoxy group.
  • a linear, branched or cyclic (C1 to C8) alkoxy group For example, methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, isobutoxy group, t-butoxy group, n-pentyloxy group, isopentyloxy group, 2-methylbutoxy group, neopentyloxy Group, 1-ethylpropoxy group, n-hexyloxy group, 4-methylpentyloxy group, 3-methylpentyloxy group, 2-methylpentyloxy group, 1-methylpentyloxy group, 3,3-dimethylbutoxy group, 2,2-dimethylbutoxy group, 1,1-dimethylbutoxy group, 1,2-dimethylbutoxy group, 1,3-dimethylbutoxy
  • the carbon number (C7 to C20) aralkyloxy group which may have a substituent in the terminal group is a linear or branched alkyl group in which any one hydrogen atom is substituted with an aryl group .
  • a benzyloxy group, a 4-phenylbutyloxy group, and an 8-phenyloctyloxy group are preferable.
  • R 2 in the general formula (1) represents one or more substituents selected from the group consisting of a hydrogen atom, an acyl group having a carbon number (C1 to C8) and an alkoxycarbonyl group having a carbon number (C1 to C8).
  • the acyl group having a carbon number (C1 to C8) is a linear, branched or cyclic acyl group having a carbon number (C1 to C8). Examples include formyl group, acetyl group, propionyl group, butyroyl group, cyclopropylcarbonyl group, cyclopentanecarbonyl group and the like.
  • the alkoxycarbonyl group having a carbon number (C1 to C8) is a linear, branched or cyclic alkoxycarbonyl group having a carbon number (C1 to C8).
  • R 3 in the general formula (1) represents a polyethylene glycol segment.
  • the polyethylene glycol segment is a segment having a repeating structure of an ethyleneoxy group: (CH 2 CH 2 O) unit.
  • a polyethylene glycol segment having an average molecular weight of 1,000 to 50 kilodaltons is particularly preferred.
  • the average molecular weight of the polyethylene glycol segment used in the present invention is the GPC method based on the polyethylene glycol standard structure of the polyethylene glycol segment structural compound used in preparing the nucleic acid antimetabolite-binding polyamino acid derivative of the present invention. It is an average molecular weight calculated
  • the terminal group of the polyethylene glycol segment in R 3 that is bonded to the side chain carboxy group of the polyamino acid main chain is a linking group for bonding to the side chain carboxy group directly or via a bonding group. . That is, an oxygen atom of an ethyleneoxy group: (CH 2 CH 2 O) unit is a terminal group.
  • the other terminal group of the polyethylene glycol segment in R 3 is not particularly limited, and may be a hydrogen atom, a hydroxyl group, an optionally substituted alkoxy group having a carbon number (C1 to C8), a substituted group. And an aralkyloxy group having a carbon number (C7 to C20) which may have a group.
  • the substituent in the alkoxy group, alkynyloxy group, and aralkyloxy group include a hydroxyl group, an amino group, a formyl group, and a carboxy group.
  • alkoxy group having a carbon number (C1 to C8) which may have a substituent in the terminal group examples include a linear, branched or cyclic (C1 to C8) alkoxy group.
  • a (C1 to C4) alkoxy group such as a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, an s-butoxy group or a t-butoxy group, and particularly preferably A methoxy group, an ethoxy group, an n-propoxy group or an isopropoxy group;
  • the aralkyloxy group having a carbon number (C7 to C20) which may have a substituent in the terminal group is a linear or branched alkyl group in which any one hydrogen atom is substituted with an aryl group. is there.
  • a benzyloxy group, a 4-phenylbutyloxy group, and an 8-phenyloctyloxy group are preferable.
  • R 3 in the general formula (1) is more preferably a polyethylene glycol segment represented by the following general formula (7).
  • R 15 represents a hydrogen atom or a linear, branched or cyclic alkyl group having a carbon number (C1 to C8) which may have a substituent, and n is an integer of 5 to 2,500. Indicates.
  • Examples of the linear, branched or cyclic alkyl group having a carbon number (C1 to C8) which may have a substituent in R 15 include, for example, a methyl group, an ethyl group, and the like. Group, n-propyl group, n-butyl group, n-hexyl group, n-decyl group and the like.
  • Examples of the branched alkyl group include isopropyl group, t-butyl group, 1-methyl-propyl group, 2-methyl-propyl group, 2,2-dimethylpropyl group and the like.
  • Examples of the cyclic alkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, and an adamantyl group.
  • X 1 in the general formula (1) is a linking group that binds the polyethylene glycol segment according to R 3 and the side chain carboxy group of the polyamino acid derivative.
  • the linking group is not particularly limited as long as it is a linking group having functional groups at both ends capable of binding to the oxygen atom of the polyethylene glycol segment end group and the side chain carboxy group of the polyamino acid derivative. It is not something.
  • the linking group has a binding functional group in which one end group is bonded to the terminal oxygen atom of the polyethylene glycol segment in an ether bond mode, an ester bond, a urethane bond, or a carbonate bond, and the other end group is on the side. It is a C1-C8 alkylene group which has a linking functional group capable of forming an ester bond, an amide bond, or a thioester bond with a chain carboxy group and may have a substituent.
  • linking group according to X 1 examples include an ether bond with a polyethylene glycol segment, and a linking group with an amide bond, an ester bond or a thioester bond with a side chain carboxy group, such as — (CH 2 ) x —NH— (where x is 1 represents an integer of 1 to 8), — (CH 2 ) x —O— (x represents an integer of 1 to 8), — (CH 2 ) x —S— (x represents an integer of 1 to 8) Etc.
  • linking group that is ester-bonded to a polyethylene glycol segment and is linked to an amide bond, ester bond or thioester bond to a side chain carboxy group, for example, —CO— (CH 2 ) x —NH— (x represents an integer of 1 to 8) , —CO— (CH 2 ) x —O— (x represents an integer of 1 to 8), —CO— (CH 2 ) x —S— (x represents an integer of 1 to 8), and the like. .
  • linking group that is urethane-bonded to a polyethylene glycol segment and amide bond, ester bond or thioester bond to a side chain carboxy group, for example, —CONH— (CH 2 ) x —NH— (x represents an integer of 1 to 8) , —CONH— (CH 2 ) x —O— (x represents an integer of 1 to 8), —CONH— (CH 2 ) x —S— (x represents an integer of 1 to 8), and the like. .
  • linking group that bonds to a polyethylene glycol segment and binds to a side chain carboxy group to an amide bond, ester bond, or thioester bond for example, —COO— (CH 2 ) x —NH— (x is an integer of 1 to 8).
  • -COO- (CH 2 ) x -S- x represents an integer of 1 to 8
  • it is a linking group that is ether-bonded to a polyethylene glycol segment and amide-bonded to a side chain carboxy group, and as X 1 , — (CH 2 ) x —NH— (x represents an integer of 1 to 8) It is.
  • amino acid derivative as binding group according to the X 1.
  • the linking group is used in such a manner that the N-terminal amino group of the amino acid derivative is amide-bonded with the side chain carboxy group, and the C-terminal carboxy group is the terminal oxygen atom of the polyethylene glycol segment. And an ester bond.
  • amino acids used may be natural amino acids or unnatural amino acids, L body, can be used without being limited particularly either D-form.
  • hydrocarbon amino acids such as glycine, ⁇ -alanine, alanine, leucine and phenylalanine
  • acidic amino acids such as aspartic acid and glutamic acid
  • basic amino acids such as lysine, arginine and histidine
  • the X 1 may be a “bond”.
  • the “bond” refers to an embodiment in which the side chain carboxy group of the polyamino acid derivative and the terminal oxygen atom of the polyethylene glycol segment are directly ester-linked without using a linking group.
  • R 4 in the general formula (1) is a binding residue of a nucleic acid antimetabolite that has antitumor activity or antiviral activity and has a structure of a nucleoside derivative.
  • the nucleic acid antimetabolite that can be used in the present invention is not particularly limited as long as it is a nucleic acid antimetabolite having an amino group and / or a hydroxyl group. Examples of the nucleic acid antimetabolite include pyrimidine antimetabolite, purine antimetabolite, triazine antimetabolite and the like.
  • the binding residue of the nucleic acid antimetabolite is a binding residue in the case of an amide bond by the amino group of the nucleic acid antimetabolite, or a nucleoside derivative in the case of an ester bond by the hydroxyl group of the nucleic acid antimetabolite Refers to the side conjugate structure.
  • the nucleic acid antimetabolite according to R 4 is preferably a nucleic acid antimetabolite having an amino group at the nucleoside base. That is, R 4 is a nucleic acid antimetabolite having an amino group, and is preferably a binding residue bonded by an amide bond.
  • the nucleobase moiety is any one or more selected from the following formula (8), and the group (Rf) bonded thereto is selected from the following formula (9). Particularly preferred is a nucleic acid antimetabolite that is a combination of the above.
  • -Rf represents the formula (9):
  • R 16 represents a hydrogen atom or an acyl group residue of a fatty acid ester.
  • the acyl group of the fatty acid ester in R 16 is an acyl residue in which a monocarboxylic acid having a carbon number (C4 to C30) is ester-bonded.
  • the hydrocarbon having a carbon number (C4 to C30) may be a saturated fatty acid that is a saturated hydrocarbon, or an unsaturated fatty acid that is an unsaturated hydrocarbon containing one or more double bonds.
  • These fatty acid esters are known as fat-soluble derivatives of the nucleic acid antimetabolite, and can be used as an active ingredient of the nucleic acid antimetabolite-binding polyamino acid derivative of the present invention.
  • the saturated fatty acid includes butanoic acid, pentanoic acid, hexanoic acid, octanoic acid, decanoic acid, dodecanoic acid, tetradecanoic acid, hexadecanoic acid, octadecanoic acid, eicosane.
  • An acid, docosanoic acid, etc. are mentioned.
  • Examples of the unsaturated fatty acid include 9-hexadecenoic acid, cis-9-octadecenoic acid, trans-9-octadecenoic acid, cis, cis-9,12-octadecadienoic acid, and 9,12,15-octadecatrienoic acid. 6,9,12-octadecatrienoic acid, 5,8,11,14-eicosatetraenoic acid, and the like.
  • nucleic acid antimetabolite As the nucleic acid antimetabolite according to R 4 in the general formula (1), it is particularly preferable to use a nucleic acid antimetabolite known to be effective as an antitumor agent or an antiviral agent.
  • a nucleic acid antimetabolite known to be effective as an antitumor agent or an antiviral agent For example, cytarabine, gemcitabine, azacitidine, decitabine, nelarabine, 2'-methylidene-2'-deoxycytidine (DMDC), troxacitabine Cytidine (Ethynycytidine), 2′-cyano-2′-deoxy-1- ⁇ -D-arabinofuranosylcytosine (CNDAC), 2′-deoxy-5,6-dihydro-5-azacytidine (DHAC), 5′- Fluoro-2'-deoxycytidine (NSC-48006), 4'-thio- ⁇ -D-arabinofuranos
  • a cytidine antimetabolite is preferably used as the nucleic acid antimetabolite in R 4 of the general formula (1).
  • the nucleobase moiety is a cytidine base represented by the following formula (10), and a group ( Rf) is particularly preferably a nucleic acid antimetabolite that is a combination of any one or more selected from the substituent group of the following formula (11).
  • R 16 is a compound represented by a hydroxyl group or an acyl group of a fatty acid ester.
  • -Rf represents the formula (11):
  • R 16 represents a hydrogen atom or an acyl group of a fatty acid ester.
  • These cytidine antimetabolites are gemcitabine and its fatty acid ester derivatives, cytarabine and its fatty acid ester derivatives, and 3′-ethynylcytidine and its fatty acid ester derivatives.
  • fatty acid ester derivatives include cytarabine-5′-elaidic acid ester (CP-4055), gemcitabine-5′-elaidic acid ester (CP-4126), and the like.
  • X 2 in the general formula (1) is a linking group that binds the nucleic acid metabolism antagonist according to R 4 and the side chain carbonyl group of the polyamino acid main chain.
  • the binding group is not particularly limited as long as it is a binding group having both functional groups capable of binding to the binding functional group of the nucleic acid antimetabolite and the side chain carboxy group of the polyamino acid derivative at both ends. Is not to be done.
  • these binding functional groups include the amide bond, ester bond, urethane bond, carbonate bond and urea bond with the amino group and / or hydroxyl group.
  • the other terminal binding functional group on the side chain carboxy group side of the binding group according to X 2 is preferably an amino group, a hydroxyl group or a thiol group.
  • These binding functional groups can form a side chain carboxy group and an amide bond, an ester bond, or a thioester bond.
  • the bonding group according to X 2 has a substituent in which one end group is a carboxy group, an oxycarboxy group or an aminocarboxy group, and the other end group is an amino group, a hydroxyl group or a thiol group. It is preferably a good (C1-C8) alkylene group.
  • Examples of the linking group according to X 2 include a form of amide bond or ester bond with an amino group and / or hydroxyl group of a nucleic acid antimetabolite, and amide bond, ester bond or thioester bond with a side chain carboxy group.
  • a hydrogen atom may be modified with an appropriate substituent.
  • substituents include a hydroxyl group, an amino group, a halogen atom, an alkyl group having a carbon number (C1 to C8), an alkylcarbonylalkoxy group having a carbon number (C1 to C8), and an alkylcarbonylamide group having a carbon number (C1 to C8).
  • the linking group related to X 2 is preferably a carboxy group on the binding side with the nucleic acid antimetabolite and the other is a linking group having an amino group or a hydroxyl group, and —CO— (CH 2 ) y —NH— (Y represents an integer of 1 to 8) and —CO— (CH 2 ) y —O— (y represents an integer of 1 to 8).
  • y represents an integer of 1 to 8.
  • —CO— (CH 2 ) y —NH— (y represents an integer of 1 to 8), which is a preferred linking group related to X 2 , include —CO—CH 2 —NH—, —CO— (CH 2 ) 2 —NH—, —CO— (CH 2 ) 4 —NH—, —CO— (CH 2 ) 6 —NH—.
  • a linking group according to the X 2 may be used amino acid derivatives.
  • the amino acid derivative is used as a linking group, the N-terminal amino group of the amino acid is amide-bonded to the side chain carboxy group, and the C-terminal carboxy group is amide-bonded or ester-bonded to the amino group or hydroxyl group of the nucleic acid antimetabolite. Used as a linking group in embodiments.
  • the amino acid used may be a natural amino acid or a non-natural amino acid, and any of L-form and D-form can be used without particular limitation.
  • hydrocarbon amino acids such as glycine, ⁇ -alanine, alanine, leucine and phenylalanine
  • acidic amino acids such as aspartic acid and glutamic acid
  • basic amino acids such as lysine, arginine and histidine
  • the aspartic acid derivative is an aspartic acid derivative binding group in which an ⁇ -carboxy group functions as a binding group of the nucleic acid antimetabolite and the ⁇ -carboxy group is an amide.
  • an aspartic acid derivative in which a ⁇ -carboxy group functions as a binding group of the nucleic acid antimetabolite and the ⁇ -carboxy group is an amide may be used.
  • the other carboxy group that is not the binding group of the nucleic acid antimetabolite is an amide, it may have a substituent (C1-20) alkylamide or a substituent.
  • an aromatic amide having a carbon number (C5 to C20), an aralkylamide having a carbon number (C7 to C20) which may have a substituent, or an amino acid residue in which a carboxy group is protected.
  • coupling groups according to the X 2 is a linking group of one of the carboxy groups nucleic acid metabolism antagonist, if one of the carboxy group with aspartic acid derivative is an amide derivative, reliable dissociation of nucleic acid metabolism antagonist Is particularly preferred.
  • alkylamide having a carbon number (C1-20) which may have a substituent of an aspartic acid derivative as a linking group include, for example, methylamide, ethylamide, isopropylamide, t-butylamide, cyclohexylamide, dodecylamide, octadecyl Examples include amides.
  • Examples of the aromatic amide having a carbon number (C5 to C20) which may have a substituent of the aspartic acid derivative include phenylamide, 4-methoxyphenylamide, 4-dimethylaminophenylamide, 4-hydroxyphenyl. Examples include amides. Examples of the aralkyl amide having a carbon number (C7 to C20) which may have a substituent of the aspartic acid derivative include benzylamide, 2-phenylethylamide, 4-phenylbutyramide, 8-phenyloctylamide and the like. Is mentioned.
  • amino acid amide in which the carboxy group of the aspartic acid derivative is protected examples include glycinyl-methyl ester, alanyl-methyl ester, leucinyl-methyl ester, isoleucinyl-methyl ester, valinyl-methyl ester, phenylalanyl-methyl ester, Examples include alanyl-ethyl ester, leucinyl-ethyl ester, isoleucinyl-ethyl ester, alanyl-butyl ester, and leucinyl-butyl ester.
  • an aspartic acid derivative bonding group or a maleic acid derivative bonding group represented by the following general formula (2) or general formula (3) can be used.
  • R 9 and R 10 each independently represent a hydrogen atom or an alkyl group having a carbon number (C1 to C8), and R 11 has a hydrogen atom or a substituent.
  • the alkyl group of C8 is a linear, branched or cyclic alkyl group having a carbon number (C1 to C8).
  • Examples of the linear alkyl group include a methyl group, an ethyl group, an n-propyl group, an n-butyl group, and an n-hexyl group.
  • Examples of the branched alkyl group include isopropyl group, t-butyl group, 1-methyl-propyl group, 2-methyl-propyl group, 2,2-dimethylpropyl group and the like.
  • Examples of the cyclic alkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, and the like.
  • the linear, branched or cyclic alkyl group having a carbon number (C1 to C20) which may have a substituent is, for example, Examples include a methyl group, an ethyl group, an isopropyl group, a t-butyl group, a cyclohexyl group, an n-octyl group, a dodecyl group, and an octadecyl group.
  • Examples of the linear, branched or cyclic aralkyl group having a carbon number (C7 to C20) which may have a substituent include, for example, benzyl group, 2-phenylethyl group, 4-phenylbutyl group, 8 -Phenyloctyl group and the like.
  • Examples of the aromatic group having a carbon number (C5 to C20) which may have a substituent include a phenyl group, a 4-methoxyphenyl group, a 4-dimethylaminophenyl group, and a 4-hydroxyphenyl group. .
  • R 11 may be an amino acid binding residue in which a carboxy group is protected.
  • amino acid-bonded residues in which the carboxy group is protected include glycinyl-methyl ester group, alanyl-methyl ester group, leucinyl-methyl ester group, valinyl-methyl ester group, phenylalanyl-methyl ester group, alanyl-ethyl Examples thereof include an ester group, leucinyl-ethyl ester group, alanyl-butyl ester group, and leucinyl-butyl ester group.
  • the X 2 may be a “bond”. “Binding” means that the side chain carboxy group of the polyamino acid derivative and the amino group and / or hydroxyl group, which is the binding substituent of the nucleic acid antimetabolite, are not directly bound via an amide bond and / or via a binding group. Or the aspect which is ester-bonded is pointed out.
  • X 3 is a methylene group or an ethylene group. That is, if the X 3 is a methylene group, the polymer backbone of the polyamino acid derivative according to the present invention will become polyaspartic acid. On the other hand, the X 3 is the case of an ethylene group, the polymer backbone of the polyamino acid derivative according to the present invention will become polyglutamic acid. Therefore, the polyamino acid derivative according to the general formula (1) is a polyaspartic acid derivative or a polyglutamic acid derivative.
  • the nucleic acid antimetabolite having an amino group and / or a hydroxyl group is directly bonded to the carboxy group of the aspartic acid unit. That is, in the general formula (1), X 3 is a methylene group, the main case chain polymer is polyaspartic acid, nucleic acid metabolism antagonists in the side chain carboxyl group may be bonded directly, also the X 2 As the linking group according to, a nucleic acid antimetabolite may be bound via an aspartic acid derivative.
  • X 3 is an ethylene group and the main chain polymer is polyglutamic acid
  • a nucleic acid antimetabolite is bound via an aspartic acid derivative as the binding group related to X 2.
  • bonding groups according to the X 2 when using the aspartic acid derivative, it is preferable to use aspartic acid amide derivative.
  • R 5 in the general formula (1) represents an aspartic acid residue or an aspartic imide residue.
  • These residues comprise as a binding group according to the X 2, when using the aspartic acid derivative bonded group or maleic acid derivative bonded group, nucleic acid metabolism antagonist from the linking group is indicative of the dissociated residues. Therefore, the aspartic acid residue or aspartic imide residue according to R 5 has the same chemical structure as the above-mentioned aspartic acid derivative-binding group or maleic acid derivative-binding group.
  • Examples of the aspartic acid residue or aspartic imide residue according to R 5 include one or more selected from the substituent group consisting of the following general formula (4), general formula (5), and general formula (6).
  • R 9 , R 10 , R 11 , CX-CY have the same meaning as described above
  • R 12 represents a hydroxyl group and / or —N (R 13 ) CONH (R 14 )
  • R 13 and R 14 may be the same or different and represents a linear, branched or cyclic alkyl group having a carbon number (C1 to C8) which may be substituted with a tertiary amino group.
  • Examples of the linear, branched or cyclic alkyl group having a carbon number (C1 to C8) which may be substituted with a tertiary amino group in R 13 and R 14 include, for example, a methyl group, an ethyl group, n -Propyl group, isopropyl group, isobutyl group, sec-butyl group, t-butyl group, 1-methylbutyl group, 2-methylbutyl group, neopentyl group, cyclohexyl group, etc., preferably isopropyl group, cyclohexyl group Can be mentioned.
  • Examples of the linear, branched or cyclic alkyl group having a carbon number (C1 to C8) which may be substituted with the tertiary amino group include, for example, 2-dimethylaminoethyl group, 3-dimethylaminopropyl group , 5-dimethylaminopentyl group, 6-dimethylaminohexyl group and the like.
  • Preferred examples of R 13 and R 14 include an ethyl group, an isopropyl group, a cyclohexyl group, and a 3-dimethylaminopropyl group.
  • R 12 When R 12 is a hydroxyl group, it represents a carboxylic acid embodiment. Moreover, the arbitrary salt aspect of the carboxylic acid may be sufficient.
  • R 12 is a hydroxyl group and / or —N (R 13 ) CONH (R 14 ), but when it is only a hydroxyl group, a hydroxyl group and —N (R 13 ) CONH (R 14 ) coexist, or —N
  • the mode in the case of only (R 13 ) CONH (R 14 ) can be taken.
  • the abundance ratio of the hydroxyl group to —N (R 13 ) CONH (R 14 ) may be arbitrarily set.
  • R 6 in the general formula (1) represents a hydroxyl group and / or —N (R 7 ) CONH (R 8 ).
  • R 7 and R 8 may be the same or different, and may be a linear, branched or cyclic alkyl group having a carbon number (C1 to C8) which may be substituted with a tertiary amino group. is there.
  • the linear, branched or cyclic alkyl group having a carbon number (C1 to C8) which may be substituted with a tertiary amino group in R 7 and R 8 is, for example, a methyl group, an ethyl group, n -Propyl group, isopropyl group, isobutyl group, sec-butyl group, t-butyl group, 1-methylbutyl group, 2-methylbutyl group, neopentyl group, cyclohexyl group, etc., preferably isopropyl group, cyclohexyl group Can be mentioned.
  • Examples of the linear, branched or cyclic alkyl group having a carbon number (C1 to C8) which may be substituted with the tertiary amino group include, for example, 2-dimethylaminoethyl group, 3-dimethylaminopropyl group , 5-dimethylaminopentyl group, 6-dimethylaminohexyl group and the like.
  • Preferred examples of R 13 and R 14 include an ethyl group, an isopropyl group, a cyclohexyl group, and a 3-dimethylaminopropyl group.
  • R 6 is a hydroxyl group
  • the side chain carboxy group of the nucleic acid antimetabolite-binding polyamino acid derivative is in the form of a carboxylic acid.
  • the arbitrary salt aspect of the carboxylic acid may be sufficient.
  • R 6 is a hydroxyl group and / or —N (R 7 ) CONH (R 8 ), but when it is only a hydroxyl group, a hydroxyl group and —N (R 7 ) CONH (R 8 ) coexist, or —N
  • An embodiment in which only (R 7 ) CONH (R 8 ) is present can be employed.
  • the abundance ratio between the hydroxyl group and —N (R 7 ) CONH (R 8 ) may be arbitrarily set.
  • a, b, c, d, e, f, g, h, and i indicating the contents of the constituent units of the polyamino acid derivative each independently represent an integer of 0 to 200.
  • the polyamino acid derivative includes an amino acid structural unit to which R 3 is bonded, an amino acid structural unit to which R 4 is bonded, an amino acid structural unit to which R 5 is bonded, an amino acid structural unit to which R 6 is bonded, and a side chain carboxy group.
  • intramolecular cyclized amino acid structural units there are intramolecular cyclized amino acid structural units, and each of these amino acid structural units has a structure polymerized in a random sequence in an arbitrary order.
  • the amino acid structural unit in which R 3 , R 4 , R 5 , and R 6 are bonded to the side chain carboxy group and the amino acid structural unit in which the side chain carboxylic acid has an intramolecular cyclized structure are localized in the form of a sequence. It may be a polymer structure composed of a random sequence having no regularity in each constituent unit, that is, a sequence having no particular regularity in the sequence of the side chain modifications. Further, (a + b + c + d + e + f + g + h + i), which is the total number of polymerized constituent units of the polyamino acid, is an integer of 3 to 250. Preferably, the total polymerization number is 5 to 200. The average value of the total number of polymerizations is 3 to 250, preferably 5 to 200.
  • (a + b) which is the total number of structural units to which R 3 which is a polyethylene glycol segment is bonded, is an integer of 1 to 95.
  • the average value of (a + b) is also 1 to 95. That is, the polyamino acid constituent unit to which R 3 of the polyethylene glycol segment is bonded is an essential constituent, and the polyamino acid derivative has at least one unit of polyethylene glycol segment.
  • the polyethylene glycol segment as R 3 is preferably bonded to 2 units or more, and preferably 80 units or less. That is, (a + b) is preferably an integer of 2 to 80, and the average value of (a + b) is also preferably 2 to 80.
  • the total number of structural units (c + d) to which R 4 which is a binding residue of the nucleic acid antimetabolite is bonded is an integer of 1 to 175.
  • the average value of (c + d) is also 1 to 175. That is, the polyamino acid constituent unit to which R 4 which is a nucleic acid antimetabolite binding residue is bound is an essential constituent, and the polyamino acid derivative has at least one unit of nucleic acid antimetabolite binding residue.
  • the nucleic acid antimetabolite binding residue that is R 4 is preferably 5 units or more, and preferably 120 units or less. That is, the (c + d) is preferably an integer of 5 to 120, and the average value of the (c + d) is also preferably 5 to 120.
  • the amino acid structural unit to which R 5 and R 6 are bonded and the amino acid structural unit in which the side chain carboxy group is cyclized in the molecule are arbitrary.
  • the amino acid structural unit R 5 and R 6 are bonded when the X 1 and X 2 are "binding", which usually amino acid building units R 5 and R 6 is attached is not present, the e , F, and g are each 0.
  • the total molecular weight of the nucleic acid antimetabolite-binding polyamino acid derivative represented by the general formula (1) is 20 kilodaltons or more and 200 kilodaltons or less. It is preferably 20 kilodaltons or more and 180 kilodaltons or less, more preferably 20 kilodaltons or more and 160 kilodaltons or less.
  • the method for calculating the total molecular weight is the same as described above, and a calculated value obtained by adding the constituent molecular weights of the constituent parts is adopted as the “molecular weight of the polyamino acid derivative”. That is, (1) the molecular weight of the polyamino acid main chain, (2) the total molecular weight of the polyethylene glycol segment obtained by multiplying the molecular weight of the polyethylene glycol segment by the number of bonds, and (3) the number of bonds in the molecular weight of the binding residue of the nucleic acid antimetabolite.
  • the total molecular weight of the binding group obtained by multiplying the binding group residue molecular weight of any polyethylene glycol segment by the number of bonds and (5) the total molecular weight of the nucleic acid metabolism antagonist
  • the calculated value obtained by adding the total molecular weight of the linking group obtained by multiplying the linking group residue molecular weight by the number of bonds is defined as the molecular weight.
  • the molecular weight of the polyamino acid derivative is required to be regulated by the accuracy in kilodalton units. Therefore, the analysis method for each component is not particularly limited as long as it is a sufficiently accurate analysis method for measuring the molecular weight of the polyamino acid derivative in kilodalton units, and various analysis methods are appropriately selected. Good.
  • the polyethylene glycol segment according to R 3 in the general formula (1) has an average molecular weight per segment of 200 daltons to 500 kilodaltons. Preferably, it is 500 to 100 kilodaltons, more preferably 1 to 50 kilodaltons.
  • the molecular weight of the polyethylene glycol segment is a peak top molecular weight measured by a GPC method based on a polyethylene glycol standard product.
  • the total molecular weight of the polyethylene glycol segment according to R 3 is 400 to 180 kilodaltons, preferably Is 1 to 150 kilodaltons, more preferably 2 to 130 kilodaltons.
  • the nucleic acid antimetabolite-binding polyamino acid derivative of the general formula (1) is characterized in that the mass content of the polyethylene glycol segment in the polyamino acid derivative is 30% by mass or more and 90% by mass or less.
  • the mass content of the polyethylene glycol segment is as defined above, and can be calculated from the content ratio of the total molecular weight of the polyethylene glycol segment to the total molecular weight of the polyamino acid derivative.
  • the polyethylene glycol segment has a mass molecular weight of 30% by mass to 90% by mass, and preferably 35% by mass to 85% by mass.
  • the nucleic acid antimetabolite binding residue of R 4 in the general formula (1) is preferably 2 to 60% by mass in terms of mass content based on the binding molar equivalent of the nucleic acid antimetabolite. More preferably, it is 5 to 50% by mass, and most preferably 5 to 40% by mass. If the content of the nucleic acid antimetabolite is less than 2% by mass, the total dose of the polyamino acid derivative is increased in order to ensure an effective amount of the nucleic acid antimetabolite, which is not preferable. On the other hand, when the content of the nucleic acid antimetabolite is more than 60% by mass, myelosuppression tends to be strongly developed.
  • the mass content of the nucleic acid antimetabolite in the polyamino acid derivative can be calculated from the content ratio of the total molecular weight of the nucleic acid antimetabolite (3) to the molecular weight of the polyamino acid derivative.
  • a more preferable range of the content of the nucleic acid antimetabolite is 5% by mass or more and 50% by mass or less. It is particularly preferable that the content of the nucleic acid antimetabolite is 5% by mass or more and 40% by mass or less.
  • the nucleic acid antimetabolite-binding polyamino acid derivative of the general formula (1) preferably has a physical property that does not show associative properties in an aqueous solution of the polyamino acid derivative. Whether or not the polyamino acid derivative is associated in an aqueous solution has the same meaning as described above, and 1 mg / mL of the aqueous solution can be measured with a laser light scattering photometer and defined by the light scattering intensity. That is, the light scattering intensity may be 5 times or less as a relative intensity with respect to the light scattering intensity of toluene, and a polyamino acid derivative that is 3 times or less is more preferable.
  • the method of measuring the light scattering intensity with a laser light scattering photometer is as defined above.
  • the polyamino acid derivative of the present invention is a polyamino acid comprising an aspartic acid derivative constituent unit and / or a glutamic acid derivative constituent unit in which a polyethylene glycol segment and a nucleic acid antimetabolite are bound to a side chain carboxy group of aspartic acid and / or glutamic acid. Is a derivative.
  • the polyamino acid derivative may be produced by sequentially polymerizing each amino acid structural unit.
  • a polymer main chain of a polyamino acid containing aspartic acid and / or glutamic acid in which a plurality of side chains are free carboxylic acids is constructed, and then a polyethylene glycol segment and a nucleic acid are added to the free carboxylic acid side chains.
  • a method of chemically binding an antimetabolite As the production method, the latter method is preferred because the amount of polyethylene glycol segment introduced and the amount of binding of the nucleic acid antimetabolite are easily controlled.
  • L-aspartic acid-N-carboxylic acid anhydride is subjected to ring-opening polymerization to obtain polyaspartic acid.
  • the polyamino acid derivative according to the present invention can be produced by reacting this with a compound containing a polyethylene glycol segment and a nucleic acid antimetabolite.
  • an arbitrary linking group is used in the binding of the polyethylene glycol segment and / or the nucleic acid antimetabolite
  • the polyethylene glycol segment and / or the nucleic acid antimetabolite having the linking group is prepared and reacted with polyaspartic acid.
  • the polyamino acid derivative according to the present invention using a linking group can be produced.
  • a purification step may be optionally performed, and a polyaspartic acid derivative in which a polyethylene glycol segment and a nucleic acid antimetabolite that can be applied as pharmaceuticals are introduced into a side chain carboxy group can be produced.
  • the nucleic acid antimetabolite-binding polyamino acid derivative of the present invention has a property of gradually releasing a nucleic acid antimetabolite after administration into a living body, and has a use as a pharmaceutical comprising the nucleic acid antimetabolite as an active ingredient.
  • nucleic acid antimetabolite-binding polyamino acid derivative of the present invention as a pharmaceutical is not particularly limited as long as it is a disease having a therapeutic effect by the nucleic acid antimetabolite.
  • it is suitable for pharmaceuticals used for the treatment of malignant tumors, viral diseases and the like.
  • Particularly preferred is a medicament for the treatment of malignant tumors.
  • malignant tumors include non-small cell lung cancer, pancreatic cancer, gastric cancer, colon cancer, rectal cancer, breast cancer, ovarian cancer, bladder cancer, AIDS-related Kaposi's sarcoma and the like.
  • the medicament containing the nucleic acid antimetabolite-binding polyamino acid derivative of the present invention may have other additives usually accepted as pharmaceuticals.
  • additives include excipients, extenders, fillers, binders, wetting agents, disintegrants, lubricants, surfactants, dispersants, buffers, preservatives, solubilizers, preservatives, flavoring agents. Agents, soothing agents, stabilizers, tonicity agents and the like.
  • the medicament containing the nucleic acid antimetabolite-binding polyamino acid derivative of the present invention may be prepared as a therapeutic pharmaceutical preparation.
  • the preparation can be administered by any method such as oral, injection, intrarectal administration, intraportal administration, mixing with organ perfusate, and local administration to the affected organ, preferably parenteral administration. More preferably, intravenous administration by injection, intraarterial administration, or local administration to an affected organ.
  • the dosage of the pharmaceutical containing the nucleic acid antimetabolite-binding polyamino acid derivative of the present invention varies depending on the disease state, administration method, patient state, age, weight, etc., but is usually 1 mg per 1 m 2 of body surface area in terms of nucleic acid antimetabolite. 5,000 mg, preferably 10 mg to 2,000 mg, which may be administered once or divided into several times a day. Moreover, although this administration can be performed every day, repeated administration may be performed after several days to several months. As needed, administration methods, dosages, and administration schedules other than those described above can be used.
  • polyamino acid derivative molecular weight [molecular weight of main chain polyamino acid unit ⁇ polymerization number, or molecular weight of polyethylene glycol segment bonded to terminal of main chain polyamino acid + molecular weight of main chain polyamino acid unit ⁇ polymerization number] + [(polyethylene glycol) Segment + polyethylene glycol binding group residue) molecular weight x number of bonds] + [nucleic acid antimetabolite residue molecular weight x number of bonds] + [nucleic acid antimetabolite binding group residue molecular weight x number of bonds]
  • polyethylene glycol segment uses a polyethylene glycol segment compound in which a propyleneamino group as a bonding group is integrated with a polyethylene glycol segment
  • the “molecular weight of the polyamino acid derivative” in this example is the main component, that is, the molecular weight of the main chain polyamino acid segment, the total molecular weight of (polyethylene glycol segment + the binding group residue), and the total molecular weight of the nucleic acid antimetabolite. , As well as the calculated total value of the total molecular weight of the binding group residues of any nucleic acid antimetabolite.
  • the number of polymerizations of the main chain polyamino acid was calculated from its integral value by 1 H-NMR analysis of the polyamino acid derivative precursor compound before the introduction of the polyethylene glycol segment and the nucleic acid antimetabolite.
  • the peak top molecular weight in the GPC analysis based on the polyethylene glycol standard substance in the polyethylene glycol segment compound before the introduction reaction was adopted.
  • the number of bonds of the polyethylene glycol segment was calculated from the consumption rate in the reaction relative to the charged amount of the polyethylene glycol segment compound in the coupling reaction of the polyamino acid derivative precursor compound and the polyethylene glycol segment compound.
  • the consumption amount of the polyethylene glycol compound was calculated using numerical values obtained by the following analysis. 10 ⁇ L of the reaction solution of the polyamino acid derivative precursor compound, the polyethylene glycol segment compound and the nucleic acid antimetabolite before the start of the reaction (before addition of diisopropylcarbodiimide) was diluted with 90 ⁇ L of 1% phosphoric acid, and HPLC (use column: Superdex 75 10 / 300 GL, manufactured by GE Healthcare, detector: RI).
  • the peak area corresponding to the polyethylene glycol segment compound at this time is As, and 10 ⁇ L of the reaction solution at the end of the reaction is diluted with 90 ⁇ L of 1% phosphoric acid, and the peak area corresponding to the polyethylene glycol compound when analyzed by HPLC is At. It was. And the consumption rate of the polyethylene glycol segment was computed with the following formula
  • equation. [Consumption rate of polyethylene glycol segment compound] 1-At / As
  • the number of binding of the nucleic acid antimetabolite is 10 mg of the polyamino acid derivatives of the obtained Examples and Comparative Examples, precisely dissolved in 1 mL of acetonitrile, mixed with 1 mL of 1 mol / L sodium hydroxide aqueous solution, It hydrolyzed by stirring for 30 minutes. To this hydrolyzed solution, 1 mL of 1 mol / L hydrochloric acid was added, and a water / acetonitrile mixture (1: 1) was added to make exactly 10 mL. This solution was calculated by quantitative analysis of the released nucleic acid antimetabolite using HPLC.
  • the scattering intensity of the polyamino acid derivatives of Examples and Comparative Examples was measured by a dynamic light scattering photometer DLS-8000DL (measurement temperature 25 ° C., measurement angle: 90 °, wavelength: 632.8 nm, ND filter: 5%, manufactured by Otsuka Electronics Co., Ltd.) , PH1: OPEN, PH2: SLIT).
  • a measurement sample for the measurement of scattering intensity a solution prepared by adding 5% glucose injection so as to have a polyamino acid derivative concentration of 1 mg / mL and irradiating with ultrasound for 3 minutes under ice cooling was used.
  • Toluene (manufactured by Junsei Co., Ltd., special grade) used for measurement of light scattering intensity was used after being filtered three times with a 0.2 ⁇ m membrane filter.
  • the light scattering intensity of the toluene standard solution measured by the light scattering intensity meter was 12,934 cps.
  • the number of associated molecules in the measurement sample solution of the polyamino acid derivatives of Examples and Comparative Examples was calculated by the following calculation formula.
  • [Number of associated molecules] [SEC-MALS measured molecular weight] / [Polyamino acid derivative molecular weight]
  • the molecular weight measured by SEC-MALS was measured using DAWN EOS (light scattering detector) and Optilab rEX (RI detector) manufactured by Wyatt Technology, and dn / dc was calculated using the value of polyethylene glycol (0.135).
  • For the measurement sample 5% glucose injection solution was added so that the polyamino acid derivative concentration was 1 mg / mL, and ultrasound was irradiated for 3 minutes under ice cooling. The prepared solution was used.
  • the peak top molecular weight in GPC analysis based on a polyethylene glycol standard was measured.
  • the peak top molecular weight in the GPC analysis was calculated by the following analysis. 25 mg of polyamino acid derivatives of Examples and Comparative Examples were dissolved in 0.05 mmol / L citrate buffer (pH 3.5) / acetonitrile mixture (9: 1), and HPLC (column used: shodex GF510A-4E, Showa Denko Manufactured, detector: RI).
  • Synthesis Example 4 Synthesis of polyaspartic acid having an average polymerization number of 110 (Compound 4) According to the method described in Synthesis Example 1, 135 equivalents of BLA-NCA was used with respect to n-butylamine to obtain the title compound 4.
  • 1 H-NMR 400 MHz, D 2 O, NaOD, ppm: 0.7 (n-butylamine-terminated CH 3 , 3H, integrated value 3.00), 4.2-4.6 (aspartic acid ⁇ CH, 1H, Integration value 109.8) From the molar ratio calculated from the integrated value of n-butylamine and aspartic acid, the polymerization number was calculated to be 110. Therefore, the molecular weight of Compound 4 was 13 kilodaltons.
  • This oil and gemcitabine (3.0 g, manufactured by SCINO PHARM) were dissolved in DMF (57 mL), HOBt (2.1 g) and WSCD hydrochloride (3.3 g) were added, and the temperature was raised from 0 ° C. to room temperature. And stirred overnight. Purified water was added to the reaction mixture, and the mixture was extracted with ethyl acetate (170 mL). The organic layer was washed twice with saturated brine and dried over sodium sulfate. After removing ethyl acetate by concentration under reduced pressure, purification by silica gel column chromatography was performed, followed by vacuum drying to obtain an oily substance (4.9 g).
  • the reaction solution was dropped into a mixed solvent of ethanol (400 mL) and diisopropyl ether (1600 mL) over 1 hour and stirred at room temperature for 30 minutes.
  • the precipitate was collected by filtration and dried in vacuo to obtain a solid (24.1 g).
  • Acetonitrile (460 mL) was added to the solid (23.0 g), dissolved at 35 ° C., and then 0.8 mL of acetic anhydride was added. After stirring for 3 hours, the temperature was lowered to 23 ° C., 0.2N aqueous sodium hydroxide solution (540 mL) was added, and the mixture was stirred for 3 hours.
  • the released gemcitabine was quantified by high performance liquid chromatography (HPLC) to determine the gemcitabine content in this compound.
  • HPLC high performance liquid chromatography
  • the gemcitabine content in Example 1 was 17.1% (w / w). Therefore, the binding rate to the aspartic acid polymerization number 89, which is the polyamino acid main chain, was calculated to be 46.0%.
  • the total molecular weight of gemcitabine in Example 1 was 11 kilodaltons.
  • the binding amount of the polyethylene glycol compound of Example 1 was 3.6 molecules from the charged equivalent of the polyethylene glycol compound and the consumption rate of the polyethylene glycol compound. Therefore, the total polyethylene glycol segment molecular weight was 43 kilodaltons.
  • the molecular weight of the polyamino acid derivative of Example 1 was calculated to be 64 kilodaltons.
  • the polyethylene glycol segment content was calculated to be 67% by mass.
  • the degree of association of the polyamino acid derivative of Example 1 was measured by the laser light scattering intensity. As a result, the light scattering intensity was 23,505 cps. Therefore, the relative ratio with the light scattering intensity of toluene was 1.82.
  • the molecular weight measured by SEC-MALS was 104,300, and the number of associated molecules was 1.6.
  • the peak top molecular weight of the polyamino acid derivative of Example 1 in GPC analysis based on polyethylene glycol standard was 40,955.
  • the released gemcitabine was quantified by high performance liquid chromatography (HPLC) to determine the gemcitabine content of this compound.
  • HPLC high performance liquid chromatography
  • the gemcitabine content in Example 2 was 17.0% (w / w). Therefore, the binding rate to the polyamino acid main chain aspartic acid polymerization number 89 was 44.5%.
  • the total molecular weight of gemcitabine in Example 2 was 10 kilodaltons.
  • the binding amount of the polyethylene glycol compound of Example 2 was 8.3 molecules from the charged equivalent of the polyethylene glycol compound and the consumption rate of the polyethylene glycol compound. Therefore, the total polyethylene glycol segment molecular weight was calculated to be 42 kilodaltons.
  • the feed equivalent of the polyethylene glycol segment compound to the main chain aspartic acid derivative was 8.9 equivalents, and the consumption rate of the polyethylene glycol segment compound was 0.93.
  • the molecular weight of the polyamino acid derivative of Example 2 was calculated to be 62 kilodaltons.
  • the polyethylene glycol segment content was calculated to be 67% by mass.
  • the degree of association of the polyamino acid derivative of Example 2 was measured by the laser light scattering intensity. As a result, the light scattering intensity was 7,430 cps. Therefore, the relative ratio with the light scattering intensity of toluene was 0.57 times.
  • the molecular weight measured by SEC-MALS was 74,150, and the number of associated molecules was 1.2.
  • the released gemcitabine was quantified by high performance liquid chromatography (HPLC) to determine the gemcitabine content of this compound.
  • HPLC high performance liquid chromatography
  • the gemcitabine content in Example 3 was 12.5% (w / w). Therefore, the binding rate to the polyamino acid main chain aspartic acid polymerization number 60 was 38.3%.
  • the total molecular weight of gemcitabine in Example 3 was 6.0 kilodaltons.
  • the binding amount of the polyethylene glycol compound of Example 3 was 3.0 molecules from the charged equivalent of the polyethylene glycol compound and the consumption rate of the polyethylene glycol compound. Therefore, the total polyethylene glycol segment molecular weight was calculated to be 36 kilodaltons.
  • the molecular weight of the polyamino acid derivative of Example 3 was calculated to be 49 kilodaltons.
  • the polyethylene glycol segment content was calculated to be 73% by mass.
  • the degree of association of the polyamino acid derivative of Example 3 was measured by the laser light scattering intensity, whereby the light scattering intensity was 10,270 cps. Therefore, the relative ratio with the light scattering intensity of toluene was 0.79 times.
  • the molecular weight measured by SEC-MALS was 102,500, and the number of associated molecules was 2.1.
  • the peak top molecular weight in GPC analysis of the polyamino acid derivative of Example 3 on the basis of the polyethylene glycol standard substance was 42,642.
  • the released gemcitabine was quantified by high performance liquid chromatography (HPLC) to determine the gemcitabine content of this compound.
  • HPLC high performance liquid chromatography
  • the gemcitabine content in Example 4 was 12.9% (w / w). Therefore, the binding rate to the aspartic acid polymerization number 110 which is the polyamino acid main chain was 44.0%.
  • the total molecular weight of gemcitabine in Example 4 was 13 kilodaltons.
  • the binding amount of the polyethylene glycol compound was 5.5 molecules from the charged equivalent of the polyethylene glycol compound and the consumption rate of the polyethylene glycol compound. Therefore, the total polyethylene glycol segment molecular weight was calculated to be 66 kilodaltons.
  • the molecular weight of the polyamino acid derivative of Example 4 was calculated to be 91 kilodaltons.
  • the polyethylene glycol segment content was calculated to be 72% by mass.
  • the degree of association of the polyamino acid derivative of Example 4 was measured by the laser light scattering intensity, the light scattering intensity was 11,215 cps. Therefore, the relative ratio with the light scattering intensity of toluene was 0.87 times.
  • the molecular weight measured by SEC-MALS was 112,200, and the number of associated molecules was 1.2.
  • the peak top molecular weight of the polyamino acid derivative of Example 4 in the GPC analysis based on the polyethylene glycol standard substance was 58,443.
  • the released gemcitabine was quantified by high performance liquid chromatography (HPLC) to determine the gemcitabine content of this compound.
  • HPLC high performance liquid chromatography
  • the gemcitabine content in Example 5 was 27.9% (w / w). Therefore, the binding rate with respect to 89 aspartic acid polymerization number which is a polyamino acid main chain was 50.6%.
  • the total molecular weight of gemcitabine in Example 5 was 12 kilodaltons.
  • the binding amount of the polyethylene glycol compound was 3.6 molecules from the charged equivalent of the polyethylene glycol compound and the consumption rate of the polyethylene glycol compound. Therefore, the total polyethylene glycol segment molecular weight was calculated to be 18 kilodaltons.
  • the feed equivalent of the polyethylene glycol compound to the main chain aspartic acid derivative was 3.6 equivalents, and the consumption rate of the polyethylene glycol compound was 1.
  • the molecular weight of the polyamino acid derivative of Example 5 was calculated to be 42 kilodaltons.
  • the polyethylene glycol segment content was calculated to be 43% by mass.
  • the degree of association of the polyamino acid derivative of Example 5 was measured by the laser light scattering intensity. As a result, the light scattering intensity was 35,280 cps. Therefore, the relative ratio with the light scattering intensity of toluene was 2.73 times. Further, the molecular weight measured by SEC-MALS was 347,200, and the number of associated molecules was 8.4.
  • the gemcitabine released was quantified by high performance liquid chromatography (HPLC) to determine the gemcitabine content of this compound.
  • HPLC high performance liquid chromatography
  • the gemcitabine content in Example 6 was 10.1% (w / w). Therefore, the binding ratio to the polyamino acid main chain aspartic acid polymerization number 89 was 30.1%.
  • the total molecular weight of gemcitabine in Example 6 was 7.1 kilodalton.
  • the binding amount of the polyethylene glycol compound was 24 molecules based on the charged equivalent of the polyethylene glycol compound and the consumption rate of the polyethylene glycol compound. Therefore, the total polyethylene glycol segment molecular weight was calculated to be 48 kilodaltons.
  • the feed equivalent of the polyethylene glycol compound to the main chain aspartic acid derivative was 24 equivalents, and the consumption rate of the polyethylene glycol compound was 1.
  • the molecular weight of the polyamino acid derivative of Example 6 was calculated to be 70 kilodaltons.
  • the polyethylene glycol segment content was calculated to be 68% by mass.
  • the association degree of the polyamino acid derivative of Example 5 was measured by the laser light scattering intensity, the light scattering intensity was 6,025 cps. Therefore, the relative ratio with the light scattering intensity of toluene was 0.47 times.
  • the molecular weight measured by SEC-MALS was 64,790, and the number of associated molecules was 0.9.
  • the released gemcitabine was quantified by high performance liquid chromatography (HPLC) to determine the gemcitabine content of this compound.
  • HPLC high performance liquid chromatography
  • the gemcitabine content in Example 7 was 7.3% (w / w). Therefore, the binding rate with respect to 89 aspartic acid polymerization number which is a polyamino acid main chain was 21.0%.
  • the total molecular weight of gemcitabine in Example 7 was 4.9 kilodaltons.
  • the binding amount of the polyethylene glycol compound was 24 molecules based on the charged equivalent of the polyethylene glycol compound and the consumption rate of the polyethylene glycol compound. Therefore, the total polyethylene glycol segment molecular weight was calculated to be 48 kilodaltons.
  • the feed equivalent of the polyethylene glycol compound to the main chain aspartic acid derivative was 24 equivalents, and the consumption rate of the polyethylene glycol compound was 1.
  • the molecular weight of the polyamino acid derivative of Example 7 was calculated to be 69 kilodaltons.
  • the polyethylene glycol segment content was calculated to be 70% by mass.
  • the degree of association of the polyamino acid derivative of Example 7 was measured by the laser light scattering intensity. As a result, the light scattering intensity was 5,740 cps. Therefore, the relative ratio with the light scattering intensity of toluene was 0.44 times.
  • the molecular weight measured by SEC-MALS was 64,630 and the number of associated molecules was 0.9.
  • the reaction solution was dropped into a mixed solvent of diisopropyl ether (1060 mL) over 30 minutes and stirred at room temperature for 30 minutes.
  • the precipitate was collected by filtration and washed with diisopropyl ether (50 mL).
  • the obtained precipitate was dissolved in purified water (53 mL), and an ion exchange resin (Dow Chemical Dowex 50 (H + ), 25 mL) was added. After stirring for 30 minutes, the mixture was filtered, and the filtrate was concentrated under reduced pressure and lyophilized to obtain the title compound (4.79 g) according to Example 8.
  • the released gemcitabine was quantified by high performance liquid chromatography (HPLC) to determine the gemcitabine content of this compound.
  • HPLC high performance liquid chromatography
  • the gemcitabine content in Example 8 was 3.5% (w / w). Therefore, the binding rate to the polyamino acid main chain aspartic acid polymerization number 89 was 12.3%.
  • the total molecular weight of gemcitabine in Example 8 was 2.9 kilodaltons.
  • the binding amount of the polyethylene glycol compound was 34.0 molecules from the charged equivalent of the polyethylene glycol compound and the consumption rate of the polyethylene glycol compound.
  • the total polyethylene glycol segment molecular weight was calculated to be 68 kilodaltons.
  • the charged equivalent of the polyethylene glycol compound to the main chain aspartic acid derivative was 37 equivalents, and the consumption rate of the polyethylene glycol compound was 0.92.
  • the molecular weight of the polyamino acid derivative of Example 8 was calculated to be 83 kilodaltons.
  • the polyethylene glycol segment content was calculated to be 82% by mass.
  • the association degree of the polyamino acid derivative of Example 8 was measured by the laser light scattering intensity, whereby the light scattering intensity was 20,545 cps. Therefore, the relative ratio with the light scattering intensity of toluene was 1.59 times.
  • the molecular weight measured by SEC-MALS was 252,800, and the number of associated molecules was 3.1.
  • the gemcitabine released was quantified by high performance liquid chromatography (HPLC) to determine the gemcitabine content in this compound.
  • HPLC high performance liquid chromatography
  • the gemcitabine content in Example 9 was 13.6% (w / w). Therefore, the binding rate of compound 7 to the polyaspartic acid polymerization number 67 was calculated to be 54.4%.
  • the total molecular weight of gemcitabine in Example 9 was 9.6 kilodaltons.
  • the binding amount of the polyethylene glycol compound of Example 9 was 3.5 molecules from the charged equivalent of the polyethylene glycol compound and the consumption rate of the polyethylene glycol compound. Therefore, the total polyethylene glycol segment molecular weight was 42 kilodaltons.
  • the molecular weight of the polyamino acid derivative of Example 9 was calculated to be 71 kilodaltons.
  • the polyethylene glycol segment content was calculated as 77% by mass.
  • the degree of association of the polyamino acid derivative of Example 9 was measured by the laser light scattering intensity, whereby the light scattering intensity was 17,715 cps. Therefore, the relative ratio with the light scattering intensity of toluene was 1.37 times.
  • the molecular weight measured by SEC-MALS was 83,470, and the number of associated molecules was 1.2.
  • the peak top molecular weight in GPC analysis of the polyamino acid derivative of Example 9 based on the polyethylene glycol standard substance was 52,341.
  • the reaction solution was dropped into a mixed solvent of ethyl acetate (150 mL) and diisopropyl ether (1.4 L) over 30 minutes, and stirred at room temperature for 1 hour.
  • the precipitate was collected by filtration and washed with ethyl acetate / diisopropyl ether (1/9 (v / v), 0.5 L).
  • the obtained precipitate was dissolved in purified water (50 mL), and then an ion exchange resin (Dow Chemical Dowex 50 (H + ), 12 mL) was added. After stirring for 20 minutes, the mixture was filtered and freeze-dried to obtain the title compound (2.65 g) according to Comparative Example 1.
  • the released gemcitabine was quantified by high performance liquid chromatography (HPLC) to determine the gemcitabine content of this compound.
  • HPLC high performance liquid chromatography
  • the gemcitabine content in Comparative Example 1 was 17.6% (w / w). Therefore, the binding rate with respect to the aspartic acid polymerization number 22 as the polyamino acid main chain was 38.2%.
  • the total molecular weight of gemcitabine in Comparative Example 1 was 2.2 kilodalton.
  • the binding amount of the polyethylene glycol compound was 4.4 molecules from the charged equivalent of the polyethylene glycol compound and the consumption rate of the polyethylene glycol compound.
  • the total polyethylene glycol segment molecular weight was calculated to be 8.8 kilodaltons.
  • the molecular weight of the polyamino acid derivative of Comparative Example 1 was calculated to be 14 kilodaltons.
  • the polyethylene glycol segment content was calculated to be 64% by mass.
  • the degree of association of the polyamino acid derivative of Comparative Example 1 was measured by the laser light scattering intensity.
  • the light scattering intensity was 3,030 cps. Therefore, the relative ratio with the light scattering intensity of toluene was 0.23 times.
  • the SEC-MALS measurement molecular weight was 17,810, and the number of associated molecules was 1.3.
  • the peak top molecular weight of the polyamino acid derivative of Comparative Example 1 in the GPC analysis based on the polyethylene glycol standard substance was 8,162.
  • the reaction solution was dropped into a mixed solvent of ethanol (0.2 L) and diisopropyl ether (0.8 L) over 15 minutes, and stirred at room temperature for 30 minutes.
  • the precipitate was collected by filtration and washed with ethanol / diisopropyl ether (1/4 (v / v), 0.2 L).
  • the obtained precipitate was dissolved in acetonitrile (90 mL), and purified water (16 mL) and an ion exchange resin (Dow Chemical Dowex 50 (H + ), 20 mL) were added. After stirring for 30 minutes, the mixture was filtered, and the filtrate was concentrated under reduced pressure and lyophilized to obtain the title compound (0.89 g) according to Comparative Example 2.
  • the released gemcitabine was quantified by high performance liquid chromatography (HPLC) to determine the gemcitabine content of this compound.
  • HPLC high performance liquid chromatography
  • the gemcitabine content in Comparative Example 1 was 41.5% (w / w).
  • the binding rate to the polyamino acid main chain aspartic acid polymerization number 89 was 55.1%.
  • the total molecular weight of gemcitabine in Comparative Example 2 was 13 kilodaltons.
  • the binding amount of the polyethylene glycol compound was 3.6 molecules from the charged equivalent of the polyethylene glycol compound and the consumption rate of the polyethylene glycol compound. Therefore, the total polyethylene glycol segment molecular weight was calculated to be 7.2 kilodaltons.
  • the feed equivalent of the polyethylene glycol compound to the main chain aspartic acid derivative was 3.6 equivalents, and the consumption rate of the polyethylene glycol compound was 1.
  • the molecular weight of the polyamino acid derivative of Comparative Example 2 was calculated to be 30 kilodaltons.
  • the polyethylene glycol segment content was calculated to be 24% by mass.
  • the degree of association of the polyamino acid derivative of Comparative Example 2 was measured by laser light scattering intensity. As a result, the light scattering intensity was 205,765 cps. Therefore, the relative ratio with the light scattering intensity of toluene was 15.91 times. Further, the molecular weight measured by SEC-MALS was 1,520,000, and the number of associated molecules was 50.1.
  • the compounds of Examples 1 to 6 and Comparative Examples 1 and 2 were dissolved in a 5% glucose injection solution, and gemcitabine hydrochloride as a control drug was used as a physiological saline solution, and the compounds of Examples 1 to 6 and Comparative Examples 1 and 2 and Gemcitabine hydrochloride was 40 mg / kg in terms of gemcitabine, and Comparative Example 2 was administered once intravenously at a dose of 20 mg / kg in terms of gemcitabine.
  • a group to which a solvent (5% glucose injection solution or physiological saline, 10 mL / kg) was administered was set, and 5% glucose injection solution was administered to the compounds of Examples 1 to 6 and Comparative Examples 1 and 2.
  • the physiological saline administration group was the control group. Seven days after administration, blood was collected, and the reticulocyte count was measured with a blood cell analyzer (XT-2000iV). On the 7th day after administration, the relative value of the reticulocyte count of each compound administration group relative to the solvent control group was calculated. The results are shown in Table 1.
  • the compounds of Examples 1 to 6 and 9 were dissolved in 5% glucose injection and administered at a dose of 40 mg / kg in terms of gemcitabine.
  • Comparative Examples 1 and 2 were dissolved in a 5% glucose injection solution, and Comparative Example 1 was administered at 40 mg / kg in terms of gemcitabine, and Comparative Example 2 was administered at 20 mg / kg in terms of gemcitabine.
  • As a control drug gemcitabine hydrochloride was dissolved in physiological saline and administered at 40 mg / kg. Each compound and control drug was administered into the tail vein 4 times at 3 day intervals. The relative tumor volume was determined from the tumor volume on the administration start date and the evaluation date (16th day or 14th day after the start of administration) and used as an index of the antitumor effect.
  • the tumor volume was calculated by the formula (L ⁇ W 2 ) / 2 by measuring the major axis (L: mm) and minor axis (W: mm) of the tumor. The test was divided into four parts. The results are shown in Tables 2, 3, 4 and 5.
  • the compound of Comparative Example 1 was not significantly different in antitumor effect compared to the control drug.
  • the compound of the present invention showed a strong antitumor effect and sustained its effect as compared with the control drug. This is probably because the compound of Comparative Example 1 was poor in blood retention compared to the compound of the present invention, and could not maintain the drug concentration required to exhibit a stronger antitumor effect than the control drug.
  • Low molecular weight compounds are known to be excreted by the kidney and the like.
  • the compound of Comparative Example 1 has a molecular weight of 14 kilodaltons and is lower in molecular weight than the compound of the present invention.
  • the compounds according to Examples 1 to 6 and 9 of the present invention are more potent than the control drug because the retention in the blood is increased by controlling the molecular weight within an appropriate range, and the drug concentration sufficient to show the drug effect is maintained. It is considered that it showed an antitumor effect.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

 The present invention addresses the problem of providing a polymerized prodrug of nucleic acid antimetabolites that improve an antitumor effect and have minimal side effects, particularly myelosuppression. Provided is a polyamino acid derivative in which polyethylene glycol segments and nucleic acid antimetabolites are bonded either directly or via linking bonds to side chain carboxyl groups, wherein the molecular mass of the polyamino acid derivative is 20 kilodaltons to 200 kilodaltons, and the mass content of the polyethylene glycol segments in the polyamino acid derivative is 30 mass% to 90%.

Description

核酸代謝拮抗剤が結合したポリアミノ酸誘導体Polyamino acid derivative bound with nucleic acid antimetabolite
 本発明は、核酸代謝拮抗剤が結合したポリアスパラギン酸誘導体又はポリグルタミン酸誘導体、及びその用途に関する。 The present invention relates to a polyaspartic acid derivative or polyglutamic acid derivative to which a nucleic acid metabolism antagonist is bound, and a use thereof.
 悪性腫瘍あるいはウイルス性疾患の治療を目的として、種々の核酸代謝拮抗剤の開発が行なわれている。例えば、抗腫瘍剤(抗癌剤)としてはシタラビン(cytarabine)、ゲムシタビン(gemcitabine)、ドキシフルリジン(doxifluridine)、アザシチジン(azacitidine)、デシタビン(decitabine)、ネララビン(nelarabine)等がある。また、抗ウイルス剤としては、ザルシタビン(zalcitabine)、ラミブジン(lamivudine)等が臨床で使用されている。 Various nucleic acid metabolism antagonists have been developed for the purpose of treating malignant tumors or viral diseases. For example, as an antitumor agent (anticancer agent), there are cytarabine, gemcitabine, doxyfluridine, azacitidine, decitabine, nelarabine and the like. Moreover, as an antiviral agent, zalcitabine, lamivudine, etc. are used clinically.
 これらの核酸代謝拮抗剤は、in vitroの評価において、極めて強力な薬理活性を有する。しかしながら、これらの薬剤は生体内において代謝・排泄を受けやすく、in vivoの評価では本来の薬剤が持つ薬効を十分に発揮できない課題がある。これらの薬剤は、臨床上の治療用法としては、投与量が高用量を要するものが多い。例えば、ゲムシタビンは、in vitroにおける細胞増殖抑制活性評価(IC50値)は、パクリタキセルやドキソルビシン等の強力な抗腫瘍剤に匹敵する強い活性を有している。一方、ゲムシタビンの臨床用法は、体表面積あたりの用法として、1,000mg/mの高用量投与が必要である。これは、2’-デオキシシチジンの代謝酵素であるシチジン脱アミノ化酵素によって、ゲムシタビンの核酸塩基部分の4位アミノ基が代謝され、失活されることにより、in vivo利用率が低くなるためと考えられている(非特許文献1)。 These nucleic acid antimetabolites have extremely strong pharmacological activity in the in vitro evaluation. However, these drugs are susceptible to metabolism and excretion in the living body, and there is a problem that in vivo evaluation, the drug efficacy of the original drug cannot be fully exhibited. Many of these drugs require high doses for clinical treatment. For example, gemcitabine has a strong activity comparable to powerful antitumor agents such as paclitaxel and doxorubicin, in vitro cytostatic activity evaluation (IC 50 value). On the other hand, the clinical use of gemcitabine requires a high dose of 1,000 mg / m 2 as a use per body surface area. This is because the in-vivo utilization rate is lowered because the 4-position amino group of the nucleobase part of gemcitabine is metabolized and inactivated by cytidine deaminase, which is a metabolic enzyme of 2′-deoxycytidine. It is considered (Non-Patent Document 1).
 薬剤の代謝・失活を抑制して、生物学的利用能を改善する目的で、高分子担体に薬剤を結合させた高分子化薬剤が研究されている。該高分子化薬剤は、高分子量化に基づき薬物動態が変化し、治療効果の向上がみられることが期待される。非特許文献2には、平均分子量約30キロダルトンのポリグルタミン酸類に、核酸代謝拮抗剤であるシタラビンを結合させた高分子化誘導体が記載されている。しかしながら、薬剤の高分子化誘導体は生体で異物認識されやすく、肝臓等の貪食系組織へ、多くの薬剤が捕捉されてしまう懸念がある。また、免疫を惹起して過敏反応を引き起こす場合があり、その様な場合には、薬剤として繰返し投与ができなくなる懸念がある。 In order to improve the bioavailability by suppressing the metabolism / inactivation of the drug, a polymerized drug in which the drug is bound to a polymer carrier has been studied. The high molecular weight drug is expected to change the pharmacokinetics based on the high molecular weight and to improve the therapeutic effect. Non-Patent Document 2 describes a polymerized derivative in which cytarabine, which is a nucleic acid antimetabolite, is bound to polyglutamic acids having an average molecular weight of about 30 kilodaltons. However, polymerized derivatives of drugs are easily recognized by foreign bodies in the living body, and there is a concern that many drugs are trapped in phagocytic tissues such as the liver. Moreover, there is a case where hypersensitivity reaction is caused by inducing immunity. In such a case, there is a concern that repeated administration as a drug cannot be performed.
 高分子化誘導体の異物認識を回避する方法として、ポリエチレングリコールを利用する方法が知られている。例えば、特許文献1には、ポリエチレングリコール類にシチジン系誘導体を結合させた高分子化誘導体が記載されている。また、非特許文献3には、ポリエチレングリコール類の両末端にアスパラギン酸を分枝状に置換させ、それにシタラビンを適当な結合基を介して結合させた高分子化誘導体が記載されている。さらに、特許文献2には、ポリエチレングリコール鎖の末端にアミノ酸を用い分岐させ、その各分岐がベンジル脱離反応を受けた後に薬剤を放出する構造を持つ高分子化誘導体が記載されている。
 これら高分子誘導体は、リン酸緩衝生理食塩水(PBS)中の加水分解速度と血漿中の加水分解速度の差が大きく、加水分解反応が生体内の酵素に大きく依存するため、臨床上における治療効果が患者の個体差に大きく影響される可能性がある。
As a method for avoiding foreign substance recognition of the polymerized derivative, a method using polyethylene glycol is known. For example, Patent Document 1 describes a polymerized derivative in which a cytidine derivative is bound to polyethylene glycols. Non-Patent Document 3 describes a polymerized derivative in which aspartic acid is branched at both ends of polyethylene glycols, and cytarabine is bound thereto via an appropriate linking group. Furthermore, Patent Document 2 describes a polymerized derivative having a structure in which an amino acid is branched at the end of a polyethylene glycol chain and the drug is released after each branch undergoes a benzyl elimination reaction.
These polymer derivatives have a large difference between the rate of hydrolysis in phosphate buffered saline (PBS) and the rate of hydrolysis in plasma, and the hydrolysis reaction is highly dependent on enzymes in the body. The effect may be greatly influenced by individual differences among patients.
 特許文献3及び特許文献4には、ポリエチレングリコール類とポリ酸性アミノ酸とのブロック共重合体の側鎖カルボキシ基に、核酸代謝拮抗剤及び疎水性置換基を結合させた高分子化誘導体が記載されている。特許文献5には、ポリエチレングリコール類とポリ酸性アミノ酸とのブロック共重合体の側鎖カルボキシ基に、疎水性置換基を有するリンカーを介して核酸代謝拮抗剤を結合させた高分子化誘導体が記載されている。
 これらの核酸代謝拮抗剤の高分子結合体は、側鎖カルボキシ基に疎水性置換基が導入された疎水性セグメントと、親水性セグメントであるポリエチレングリコールを併せ持つ双極性高分子である。このため、該核酸代謝拮抗剤の高分子結合体は、水溶液中において疎水性セグメントの分子間凝集により、疎水性セグメントを内核にして親水性セグメントを外側にした自己会合体を形成すると考えられる。
Patent Document 3 and Patent Document 4 describe a polymerized derivative in which a nucleic acid antimetabolite and a hydrophobic substituent are bonded to a side chain carboxy group of a block copolymer of polyethylene glycols and a polyacidic amino acid. ing. Patent Document 5 describes a polymerized derivative in which a nucleic acid antimetabolite is bound to a side chain carboxy group of a block copolymer of polyethylene glycols and a polyacidic amino acid via a linker having a hydrophobic substituent. Has been.
The polymer conjugates of these nucleic acid antimetabolites are bipolar polymers having both a hydrophobic segment having a hydrophobic substituent introduced into the side chain carboxy group and polyethylene glycol, which is a hydrophilic segment. For this reason, the polymer conjugate of the nucleic acid antimetabolite is considered to form a self-aggregate having the hydrophobic segment as the inner core and the hydrophilic segment as the outer side due to intermolecular aggregation of the hydrophobic segment in an aqueous solution.
 該核酸代謝拮抗剤の高分子結合体は、リン酸緩衝生理食塩水(PBS)溶液において加水分解を受け、緩やかに結合していた核酸代謝拮抗剤を解離する物性を有する。したがって、これらの高分子化核酸代謝拮抗剤は、従来の核酸代謝拮抗剤と比較して低投与量で長期に亘り腫瘍増殖阻害効果を発揮し続ける特徴を有する。しかしながら、このような徐放性の核酸代謝拮抗剤プロドラッグは、薬効と同作用機作で生じる副作用も、長期に亘り発現させてしまう。核酸代謝拮抗剤は、白血球減少等の発現として認められる骨髄抑制が、用量制限因子として問題となっている。徐放性の核酸代謝拮抗剤プロドラッグである高分子化核酸代謝拮抗剤は、骨髄抑制を遷延させる傾向があり、治療効果の向上と副作用の低減を両立させた有用な治療方法を確立する上で、大きな課題となっている。 The polymer conjugate of the nucleic acid antimetabolite has a property of undergoing hydrolysis in a phosphate buffered saline (PBS) solution to dissociate the slowly bound nucleic acid antimetabolite. Therefore, these polymerized nucleic acid antimetabolites have a characteristic that they continue to exert a tumor growth inhibitory effect for a long period of time at a low dose as compared with conventional nucleic acid antimetabolites. However, such sustained-release nucleic acid antimetabolite prodrugs also cause side effects that occur due to the same action and mechanism of action over a long period of time. As for a nucleic acid antimetabolite, bone marrow suppression recognized as manifestation of leukopenia or the like is a problem as a dose limiting factor. High-molecular-weight nucleic acid antimetabolite, a sustained-release nucleic acid antimetabolite prodrug, has a tendency to prolong myelosuppression, and establishes a useful therapeutic method that achieves both improved therapeutic effects and reduced side effects. This is a big issue.
特表2003-524028号公報Special table 2003-524028 gazette 特表2004-532289号公報JP-T-2004-532289 国際公開WO2006/120914号International Publication WO2006 / 120914 国際公開WO2008/056596号International Publication No. WO2008 / 056596 国際公開WO2008/056654号International Publication WO2008 / 056654
 本発明の目的は、抗腫瘍効果を向上させるとともに、副作用、特に骨髄抑制が低い核酸代謝拮抗剤を提供することを課題とする。具体的には、腫瘍増殖阻害効果を長期に亘り発揮しつつ、骨髄抑制が遷延化されない核酸代謝拮抗剤を提供することを課題とする。 An object of the present invention is to provide a nucleic acid metabolism antagonist that improves the antitumor effect and has low side effects, particularly bone marrow suppression. Specifically, an object of the present invention is to provide a nucleic acid metabolism antagonist that exhibits a tumor growth inhibitory effect for a long period of time and does not prolong myelosuppression.
 本発明者らは上記課題を解決するために鋭意研究を行なった結果、ポリアスパラギン酸等のポリ酸性アミノ酸の側鎖カルボキシ基に、複数のポリエチレングリコールセグメントと複数の核酸代謝拮抗剤を結合させたポリアミノ酸誘導体が、抗腫瘍効果の向上と、副作用である骨髄抑制の遷延化を回避できることを見出した。 As a result of intensive studies to solve the above problems, the present inventors have bound a plurality of polyethylene glycol segments and a plurality of nucleic acid antimetabolites to a side chain carboxy group of a polyacidic amino acid such as polyaspartic acid. It has been found that polyamino acid derivatives can improve the antitumor effect and avoid prolonged myelosuppression, which is a side effect.
 即ち、本発明は次の[1]~[11]に関する。
[1] 複数単位のアスパラギン酸誘導体及び/又はグルタミン酸誘導体を含有するポリアミノ酸誘導体あって、その側鎖カルボキシ基に、ポリエチレングリコールセグメント及び核酸代謝拮抗剤が、直接又は結合基を介して結合しており、該ポリアミノ酸誘導体の分子量が20キロダルトン以上で200キロダルトン以下であり、該ポリアミノ酸誘導体におけるポリエチレングリコールセグメントの質量含有率が30質量%以上90質量%以下である、核酸代謝拮抗剤結合ポリアミノ酸誘導体。
That is, the present invention relates to the following [1] to [11].
[1] A polyamino acid derivative containing a plurality of units of an aspartic acid derivative and / or a glutamic acid derivative, wherein a polyethylene glycol segment and a nucleic acid antimetabolite are bonded to the side chain carboxy group directly or via a linking group. The molecular weight of the polyamino acid derivative is 20 kilodaltons or more and 200 kilodaltons or less, and the mass content of the polyethylene glycol segment in the polyamino acid derivative is 30% by mass or more and 90% by mass or less. Polyamino acid derivative.
[2] 前記ポリエチレングリコールセグメントが2~80ユニット結合している前記[1]に記載の核酸代謝拮抗剤結合ポリアミノ酸誘導体。 [2] The nucleic acid antimetabolite-binding polyamino acid derivative according to [1], wherein 2 to 80 units of the polyethylene glycol segment are bonded.
[3] 前記核酸代謝拮抗剤がアミノ基を有する核酸代謝拮抗剤であり、該核酸代謝拮抗剤はアミノ基でアミド結合を介して結合している前記[1]又は[2]に記載の核酸代謝拮抗剤結合ポリアミノ酸誘導体。 [3] The nucleic acid antimetabolite according to [1] or [2], wherein the nucleic acid antimetabolite is an amino acid antimetabolite having an amino group, and the nucleic acid antimetabolite is bound via an amide bond at the amino group. Antimetabolite-binding polyamino acid derivative.
[4] 前記核酸代謝拮抗剤の質量含有率が、2質量%以上60質量%以下である前記[1]~[3]の何れか一項に記載の核酸代謝拮抗剤結合ポリアミノ酸誘導体。 [4] The nucleic acid antimetabolite-binding polyamino acid derivative according to any one of [1] to [3], wherein the mass content of the nucleic acid antimetabolite is 2% by mass to 60% by mass.
[5] 前記核酸代謝拮抗剤結合ポリアミノ酸誘導体が一般式(1)
Figure JPOXMLDOC01-appb-C000009
[式中、Rは水素原子、炭素数(C1~C8)のアルキル基及びポリエチレングリコールセグメントからなる群から選択される基であり、Rは水素原子、炭素数(C1~C8)のアシル基及び炭素数(C1~C8)のアルコキシカルボニル基からなる群から選択される基を示し、Rはポリエチレングリコールセグメントを示し、Rは核酸代謝拮抗剤結合残基を示し、Rはアスパラギン酸結合残基及び/又はアスパラギン酸イミド結合残基を示し、Rは水酸基及び/又は-N(R)CONH(R)を示し、該R及び該Rは同一でも異なってもいてもよく、三級アミノ基で置換されていても良い炭素数(C1~C8)の直鎖状、分岐鎖状又は環状のアルキル基を示し、X及びXは結合基であり、Xはメチレン基又はエチレン基であり、a、b、c、d、e、f、g、h及びiはそれぞれ独立して0~200の整数を示し、ポリアミノ酸誘導体の総重合数である(a+b+c+d+e+f+g+h+i)は3~250であり、(a+b)は1~95であり、(c+d)は1~175であり、前記Rが結合したアミノ酸単位、前記Rが結合したアミノ酸単位、前記Rが結合したアミノ酸単位、前記Rが結合したアミノ酸単位及び側鎖カルボキシ基が分子内環化型のアミノ酸単位が、それぞれ独立してランダムな配列である]で示される前記[1]~[4]の何れか一項に記載の核酸代謝拮抗剤結合ポリアミノ酸誘導体。
[5] The nucleic acid antimetabolite-binding polyamino acid derivative is represented by the general formula (1)
Figure JPOXMLDOC01-appb-C000009
[Wherein, R 1 represents a hydrogen atom, a group selected from the group consisting of alkyl groups and polyethylene glycol segments of carbon atoms (C1 ~ C8), acyl R 2 is a hydrogen atom, the number of carbon atoms (C1 ~ C8) A group selected from the group consisting of a group and a C1-C8 alkoxycarbonyl group, R 3 represents a polyethylene glycol segment, R 4 represents a nucleic acid antimetabolite binding residue, and R 5 represents an asparagine An acid bond residue and / or an aspartate imide bond residue, R 6 represents a hydroxyl group and / or —N (R 7 ) CONH (R 8 ), and R 7 and R 8 may be the same or different. A linear, branched or cyclic alkyl group having a carbon number (C1 to C8) which may be substituted with a tertiary amino group, wherein X 1 and X 2 are linking groups; 3 is methylene A, b, c, d, e, f, g, h and i each independently represents an integer of 0 to 200, and the total number of polymerized polyamino acid derivatives (a + b + c + d + e + f + g + h + i) is 3 to 250, (a + b) is 1 to 95, and (c + d) is 1 to 175. The amino acid unit to which R 3 is bonded, the amino acid unit to which R 4 is bonded, and the R 5 are bonded to each other Any one of the above [1] to [4], wherein the amino acid unit, the amino acid unit to which R 6 is bonded, and the amino acid unit in which the side chain carboxy group is an intramolecular cyclization type are each independently a random sequence. The nucleic acid antimetabolite-binding polyamino acid derivative according to claim 1.
[6] Xは、下記一般式(2)又は一般式(3)
Figure JPOXMLDOC01-appb-C000010
[式中、R、R10はそれぞれ独立して水素原子又は炭素数(C1~C8)のアルキル基を示し、R11は水素原子、置換基を有していても良い炭素数(C1~C20)の直鎖状、分岐鎖状又は環状のアルキル基、置換基を有していても良い炭素数(C1~C20)の直鎖状、分岐鎖状又は環状のアラルキル基、置換基を有していても良い芳香族基及びカルボキシ基が保護されたアミノ酸結合残基からなる群から選択される1種以上の基を示し、CX-CYはCH-CH若しくはZ配置のC=C(二重結合)を示す]である前記[5]に記載の核酸代謝拮抗剤結合ポリアミノ酸誘導体。
[6] X 2 represents the following general formula (2) or general formula (3)
Figure JPOXMLDOC01-appb-C000010
[Wherein R 9 and R 10 each independently represents a hydrogen atom or an alkyl group having from 1 to 8 carbon atoms (C1 to C8), and R 11 represents a hydrogen atom or an optionally substituted carbon number (C1 to C8). A linear, branched or cyclic alkyl group of C20), an optionally substituted linear (C1-C20) linear, branched or cyclic aralkyl group, and a substituent. One or more groups selected from the group consisting of an amino acid-bonded residue in which an aromatic group and a carboxy group may be protected, and CX—CY represents C═C (two The nucleic acid antimetabolite-binding polyamino acid derivative according to [5] above, which exhibits a heavy bond).
[7] Rが下記一般式(4)、一般式(5)及び一般式(6)
Figure JPOXMLDOC01-appb-C000011
[式中、R、R10、R11、CX-CYは前記と同じ意味を示し、R12は水酸基及び/又は-N(R13)CONH(R14)を示し、R13、R14は同一でも異なっていてもよく、三級アミノ基で置換されていても良い炭素数(C1~C8)の直鎖状、分岐鎖状又は環状のアルキル基を示す]からなる置換基群から選ばれる1種以上の基である前記[5]又は[6]に記載の核酸代謝拮抗剤結合ポリアミノ酸誘導体。
[7] R 5 represents the following general formula (4), general formula (5), and general formula (6).
Figure JPOXMLDOC01-appb-C000011
[Wherein R 9 , R 10 , R 11 and CX-CY have the same meaning as described above, R 12 represents a hydroxyl group and / or —N (R 13 ) CONH (R 14 ), and R 13 , R 14 May be the same or different and represents a linear, branched or cyclic alkyl group having a carbon number (C1 to C8) which may be substituted with a tertiary amino group]. The nucleic acid antimetabolite-binding polyamino acid derivative according to [5] or [6], which is one or more kinds of groups.
[8] Rのポリエチレングリコールセグメントが、下記一般式(7)
Figure JPOXMLDOC01-appb-C000012
[式中、R15は水素原子又は置換基を有していても良い炭素数(C1~C8)の直鎖状、分岐鎖状又は環状のアルキル基を示し、nは5~2,500の整数を示す]である前記[5]~[7]の何れか一項に記載の核酸代謝拮抗剤結合ポリアミノ酸誘導体。
[8] The polyethylene glycol segment of R 3 is represented by the following general formula (7)
Figure JPOXMLDOC01-appb-C000012
[In the formula, R 15 represents a hydrogen atom or a linear, branched or cyclic alkyl group having a carbon number (C1 to C8) which may have a substituent, and n is 5 to 2,500. The nucleic acid antimetabolite-binding polyamino acid derivative according to any one of [5] to [7], which is an integer].
[9] 核酸代謝拮抗剤が式(8):
Figure JPOXMLDOC01-appb-C000013
[式中、-Rfは、式(9):
Figure JPOXMLDOC01-appb-C000014
の置換基群より選ばれる基を示し、R16は水素原子又は脂肪酸エステルのアシル基を示す]で表される、いずれか1種以上の核酸代謝拮抗剤である、前記[1]~[8]の何れか一項に記載の核酸代謝拮抗剤結合ポリアミノ酸誘導体。
[9] The nucleic acid antimetabolite is represented by the formula (8):
Figure JPOXMLDOC01-appb-C000013
[Wherein, -Rf represents the formula (9):
Figure JPOXMLDOC01-appb-C000014
Wherein R 16 represents a hydrogen atom or an acyl group of a fatty acid ester], and is any one or more nucleic acid metabolism antagonists, [1] to [8] ] The nucleic acid antimetabolite binding polyamino acid derivative according to any one of the above.
[10] 核酸代謝拮抗剤が式(10):
Figure JPOXMLDOC01-appb-C000015
[式中、-Rfは、式(11):
Figure JPOXMLDOC01-appb-C000016
の置換基群より選ばれる基を示し、R16は水素原子又は脂肪酸エステルのアシル基を示す]で表される前記[1]~[9]の何れか一項に記載の核酸代謝拮抗剤結合ポリアミノ酸誘導体。
[10] The nucleic acid antimetabolite is represented by the formula (10):
Figure JPOXMLDOC01-appb-C000015
[Wherein, -Rf represents the formula (11):
Figure JPOXMLDOC01-appb-C000016
The nucleic acid antimetabolite binding according to any one of [1] to [9] above, wherein R 16 represents a hydrogen atom or an acyl group of a fatty acid ester] Polyamino acid derivative.
[11] 前記[1]~[10]の何れか一項に記載の核酸代謝拮抗剤結合ポリアミノ酸誘導体を含有する医薬。 [11] A medicine containing the nucleic acid antimetabolite-binding polyamino acid derivative according to any one of [1] to [10].
 本発明の核酸代謝拮抗剤結合ポリアミノ酸誘導体は、ポリマー主鎖が側鎖カルボキシ基を有するアスパラギン酸及び/又はグルタミン酸であって、該側鎖カルボキシ基に、複数のポリエチレングリコールセグメント及び複数の核酸代謝拮抗剤を具備することを特徴とする。該ポリアミノ酸誘導体は、生体内に投与後、血中に滞留して体内分布しつつ、結合していた核酸代謝拮抗剤を徐々に解離して放出する物性を有する。該ポリアミノ酸誘導体は、適正範囲の分子量に制御すると共に、ポリエチレングリコールセグメントの含有量を制御することにより、核酸代謝拮抗剤の薬効を向上させつつ、副作用を回避することができる。特に骨髄抑制の遷延化を回避する薬剤を提供することができる。 The nucleic acid antimetabolite-binding polyamino acid derivative of the present invention is an aspartic acid and / or glutamic acid having a side chain carboxy group in the polymer main chain, and a plurality of polyethylene glycol segments and a plurality of nucleic acid metabolisms in the side chain carboxy group. It comprises an antagonist. The polyamino acid derivative has the property of gradually dissociating and releasing the bound nucleic acid antimetabolite, while remaining in the blood and being distributed in the body after administration in vivo. The polyamino acid derivative can be controlled to have a molecular weight within an appropriate range, and by controlling the content of the polyethylene glycol segment, side effects can be avoided while improving the efficacy of the nucleic acid antimetabolite. In particular, it is possible to provide a drug that avoids prolonged myelosuppression.
 本発明の核酸代謝拮抗剤結合ポリアミノ酸誘導体は、複数単位のアスパラギン酸誘導体及び/又はグルタミン酸誘導体を含有するポリアミノ酸誘導体であって、複数個を具備する側鎖カルボキシ基に対して、ポリエチレングリコールセグメントと核酸代謝拮抗剤であるヌクレオシド誘導体を具備することを特徴とする。以下に、その詳細について説明する。 The nucleic acid antimetabolite-binding polyamino acid derivative of the present invention is a polyamino acid derivative containing a plurality of units of aspartic acid derivatives and / or glutamic acid derivatives, and a polyethylene glycol segment with respect to the side chain carboxy group having a plurality And a nucleoside derivative which is a nucleic acid metabolism antagonist. The details will be described below.
 本発明の、核酸代謝拮抗剤結合ポリアミノ酸誘導体は、複数単位のアスパラギン酸誘導体及び/又はグルタミン酸誘導体を含有するポリアミノ酸誘導体をポリマー主鎖構造とする高分子化合物である。すなわち、ポリマー主鎖として、酸性アミノ酸であるアスパラギン酸及び/又はグルタミン酸を含み、複数の側鎖カルボキシ基を有するポリアミノ酸誘導体を高分子担体の主鎖構造とし、該側鎖カルボキシ基が、ポリエチレングリコールセグメント及び核酸代謝拮抗剤により化学的に官能基化された高分子化誘導体である。 The nucleic acid antimetabolite-binding polyamino acid derivative of the present invention is a polymer compound having a polyamino acid derivative containing a plurality of units of aspartic acid derivatives and / or glutamic acid derivatives as a polymer main chain structure. That is, a polyamino acid derivative containing an acidic amino acid aspartic acid and / or glutamic acid as a polymer main chain and having a plurality of side chain carboxy groups is used as the main chain structure of the polymer carrier, and the side chain carboxy group is polyethylene glycol. Polymerized derivatives chemically functionalized with segments and nucleic acid antimetabolites.
 当該ポリアミノ酸誘導体のポリマー主鎖としては、複数のアスパラギン酸及び/又はグルタミン酸を含有し、複数の側鎖カルボキシ基を具備するポリマー構造物であれば特に限定されるものではない。すなわち、アスパラギン酸及び/又はグルタミン酸を複数ユニット含有していれば良く、任意に他のアミノ酸を含有するポリアミノ酸誘導体であっても良い。該他のアミノ酸としては、天然アミノ酸または非天然アミノ酸であって良く、L体、D体のいずれでも特に限定されずに用いることができる。他のアミノ酸としては、例えば、グリシン、β-アラニン、アラニン、ロイシン、フェニルアラニン等の炭化水素系アミノ酸、リジン、アルギニン、ヒスチジン等の塩基性アミノ酸等を挙げることができる。
 該ポリアミノ酸誘導体の側鎖カルボキシ基は、後述するポリエチレングリコールセグメント及び核酸代謝拮抗剤を結合させるための結合性官能基として用いられる。このため、当該ポリアミノ酸誘導体は、側鎖カルボキシ基の含有量が多い方が好ましい。したがって、当該ポリアミノ酸誘導体のポリマー主鎖は、アスパラギン酸及び/又はグルタミン酸の含有ユニットが該ポリアミノ酸構成の50ユニット%以上含有するポリアミノ酸主鎖ポリマーであることが好ましく、該アスパラギン酸及び/又はグルタミン酸ユニットが80ユニット%以上含有する主鎖ポリマーがより好ましい。特に好ましくは、アスパラギン酸及び/又はグルタミン酸で構成されるポリアミノ酸主鎖である。すなわち、特に好ましい当該ポリアミノ酸主鎖としては、ポリアスパラギン酸、ポリグルタミン酸又はポリ(アスパラギン酸-グルタミン酸)共重合体である。
The polymer main chain of the polyamino acid derivative is not particularly limited as long as it is a polymer structure containing a plurality of aspartic acids and / or glutamic acids and having a plurality of side chain carboxy groups. That is, as long as it contains a plurality of units of aspartic acid and / or glutamic acid, it may be a polyamino acid derivative that optionally contains other amino acids. The other amino acid may be a natural amino acid or a non-natural amino acid, and any of L-form and D-form can be used without particular limitation. Examples of the other amino acids include hydrocarbon amino acids such as glycine, β-alanine, alanine, leucine and phenylalanine, and basic amino acids such as lysine, arginine and histidine.
The side chain carboxy group of the polyamino acid derivative is used as a binding functional group for binding a later-described polyethylene glycol segment and a nucleic acid antimetabolite. For this reason, it is preferable that the polyamino acid derivative has a higher side chain carboxy group content. Therefore, the polymer main chain of the polyamino acid derivative is preferably a polyamino acid main chain polymer in which aspartic acid and / or glutamic acid-containing units are contained in 50 units% or more of the polyamino acid composition, and the aspartic acid and / or A main chain polymer containing 80 unit% or more of glutamic acid units is more preferable. Particularly preferred is a polyamino acid main chain composed of aspartic acid and / or glutamic acid. That is, particularly preferred polyamino acid main chain is polyaspartic acid, polyglutamic acid or poly (aspartic acid-glutamic acid) copolymer.
 当該ポリアミノ酸誘導体における、アスパラギン酸は、一方のカルボキシ基が結合性官能基として機能できるよう側鎖として残り、もう一方のカルボキシ基を用いたアミド結合によりポリアミノ酸主鎖を構築する。ポリアミノ酸主鎖を構築するカルボキシ基は、α-アミド結合型重合体であっても、β-アミド結合型重合体であっても、その混合物であっても良い。また、当該ポリアミノ酸誘導体における、グルタミン酸も同様に、一方のカルボキシ基が結合性官能基として機能できるよう側鎖として残り、もう一方のカルボキシ基を用いたアミド結合によりポリアミノ酸主鎖を構築する。ポリアミノ酸主鎖を構築するカルボキシ基は、α-アミド結合型重合体であっても、γ-アミド結合型重合体であっても、その混合物であっても良い。 In the polyamino acid derivative, aspartic acid remains as a side chain so that one carboxy group can function as a binding functional group, and a polyamino acid main chain is constructed by an amide bond using the other carboxy group. The carboxy group constituting the polyamino acid main chain may be an α-amide bond polymer, a β-amide bond polymer, or a mixture thereof. Similarly, glutamic acid in the polyamino acid derivative remains as a side chain so that one carboxy group can function as a binding functional group, and a polyamino acid main chain is constructed by an amide bond using the other carboxy group. The carboxy group constituting the polyamino acid main chain may be an α-amide bond type polymer, a γ-amide bond type polymer, or a mixture thereof.
 当該ポリアミノ酸誘導体のポリマー主鎖が、ポリアスパラギン酸又はポリグルタミン酸である場合、アスパラギン酸又はグルタミン酸が適当ユニット数で重合した構造物であるが、これはα-アミド結合型重合体であっても、β-アミド結合型重合体又はγ-アミド結合型重合体であっても良く、また、それらの混合物であっても良い。
 当該ポリアミノ酸誘導体のポリマー主鎖が、前記ポリ(アスパラギン酸-グルタミン酸)共重合体である場合は、アスパラギン酸とグルタミン酸が混在したポリアミノ酸構造体であり、ランダム結合体であっても、ブロック結合体であっても良い。結合様式としては、α-アミド結合型重合体であっても、側鎖カルボキシ基とのβ-アミド結合型重合体又はγ-アミド結合型重合体であってもよく、それらの混合物であっても良い。
When the polymer main chain of the polyamino acid derivative is polyaspartic acid or polyglutamic acid, it is a structure in which aspartic acid or glutamic acid is polymerized in an appropriate number of units. , Β-amide bond type polymer, γ-amide bond type polymer, or a mixture thereof.
When the polymer main chain of the polyamino acid derivative is the poly (aspartic acid-glutamic acid) copolymer, it is a polyamino acid structure in which aspartic acid and glutamic acid are mixed. It may be the body. The bonding mode may be an α-amide bond polymer, a β-amide bond polymer with a side chain carboxy group or a γ-amide bond polymer, and a mixture thereof. Also good.
 前記ポリアミノ酸誘導体のアミノ酸主鎖の重合数としては、3~300ユニットであることが好ましい。より好ましくはアミノ酸主鎖の重合数として3~250ユニットであり、特に好ましくは重合数が10~200ユニットである。そのうち、アスパラギン酸及び/又はグルタミン酸の含有ユニット数が3~300であり、好ましくは3~250ユニットであり、特に好ましくは10~200ユニットである。 The number of polymerization of the amino acid main chain of the polyamino acid derivative is preferably 3 to 300 units. More preferably, the polymerization number of the amino acid main chain is 3 to 250 units, and the polymerization number is particularly preferably 10 to 200 units. Among them, the number of units containing aspartic acid and / or glutamic acid is 3 to 300, preferably 3 to 250 units, and particularly preferably 10 to 200 units.
 前記ポリアミノ酸誘導体の末端基は、N末端基及びC末端基共に特に限定されるものではなく、無保護の遊離アミノ基及び遊離カルボン酸、並びにそれらの塩であっても良く、N末端基及びC末端基の適当な修飾体であっても良い。
 該ポリアミノ酸誘導体のN末端基の修飾体としては、アシルアミド型修飾体、アルコキシカルボニルアミド型修飾体(ウレタン型修飾体)、アルキルアミノカルボニルアミド型修飾体(ウレア型修飾体)等を挙げることができる。
 一方、該ポリアミノ酸誘導体のC末端基の修飾体としては、エステル型修飾体、アミド型修飾体、チオエステル型修飾体が挙げられる。
 該ポリアミノ酸誘導体のN末端基及びC末端基の修飾基は、任意の修飾基であって良い。両末端基は、該ポリアミノ酸誘導体の親水性を妨げない置換基であることが好ましい。好ましくは、N末端基及びC末端基に結合する適当な結合基を介して、置換基を有していても良い炭素数(C1~C8)の直鎖状、分岐鎖状又は環状のアルキル基、置換基を有していても良い炭素数(C6~C18)の芳香族基、置換基を有していても良い炭素数(C7~C20)のアラルキル基等である末端修飾基を挙げることができる。または、水溶性を付与できるポリエチレングリコール置換基であっても良く、N末端基及びC末端基に結合する適当な結合基を介して結合した末端修飾基であることが挙げられる。
The terminal group of the polyamino acid derivative is not particularly limited to both the N terminal group and the C terminal group, and may be an unprotected free amino group and a free carboxylic acid, and salts thereof. An appropriate modification of the C-terminal group may be used.
Examples of the modified N-terminal group of the polyamino acid derivative include acylamide-type modified products, alkoxycarbonylamide-type modified products (urethane-type modified products), alkylaminocarbonylamide-type modified products (urea-type modified products), and the like. it can.
On the other hand, examples of the modified form of the C-terminal group of the polyamino acid derivative include an ester-type modified form, an amide-type modified form, and a thioester-type modified form.
The modifying group of the N terminal group and the C terminal group of the polyamino acid derivative may be any modifying group. Both terminal groups are preferably substituents that do not interfere with the hydrophilicity of the polyamino acid derivative. Preferably, a linear, branched or cyclic alkyl group having a carbon number (C1 to C8) which may have a substituent via an appropriate bonding group bonded to the N-terminal group and the C-terminal group. And a terminal modifying group such as an aromatic group having carbon atoms (C6 to C18) which may have a substituent, an aralkyl group having carbon atoms (C7 to C20) which may have a substituent. Can do. Alternatively, it may be a polyethylene glycol substituent capable of imparting water solubility, such as a terminal modifying group bonded through an appropriate bonding group bonded to the N terminal group and the C terminal group.
 すなわち、N末端基は、適当なアシルアミド型修飾体又はアルコキシカルボニルアミド型修飾体(ウレタン型修飾体)であることが好ましく、カルボニル基又はカルボニルオキシ基を介した、前記置換基を有していても良い炭素数(C1~C8)の直鎖状、分岐鎖状又は環状のアルキル基、置換基を有していても良い炭素数(C6~C18)の芳香族基、置換基を有していても良い炭素数(C7~C20)のアラルキル基であることが好ましい。
 一方、C末端基としては、適当なアミド型置換基又はエステル型置換基であることが好ましく、アミド基又はエステル基を介した、前記置換基を有していても良い炭素数(C1~C8)の直鎖状、分岐鎖状又は環状のアルキル基、置換基を有していても良い炭素数(C6~C18)の芳香族基、置換基を有していても良い炭素数(C7~C20)のアラルキル基、若しくはポリエチレングリコール置換基であることが好ましい。
That is, the N-terminal group is preferably a suitable acylamide-type modified product or alkoxycarbonylamide-type modified product (urethane-type modified product), and has the above-described substituent via a carbonyl group or a carbonyloxy group. A linear, branched or cyclic alkyl group having a carbon number (C1 to C8), an aromatic group having a carbon number (C6 to C18) which may have a substituent, and a substituent. An aralkyl group having a carbon number (C7 to C20) may be preferable.
On the other hand, the C-terminal group is preferably a suitable amide type substituent or ester type substituent, and the number of carbon atoms (C1 to C8) optionally having the above substituent via an amide group or ester group. ) Linear, branched or cyclic alkyl group, an aromatic group having a carbon number (C6 to C18) which may have a substituent, and a carbon number which has a substituent (C7 to C7) C20) is preferably an aralkyl group or a polyethylene glycol substituent.
 本発明の核酸代謝拮抗剤結合ポリアミノ酸誘導体は、側鎖カルボキシ基に、直接又は結合基を介して、ポリエチレングリコールセグメントが結合している。該ポリエチレングリコールセグメントは、エチレンオキシ基:(CHCHO)単位の繰り返し構造を有するセグメントである。好ましくはエチレンオキシ基単位重合度が5~10,000ユニット、より好ましくは重合度が5~5,000ユニットのポリエチレングリコール鎖を含むセグメント構造である。
 すなわち該ポリエチレングリコールセグメントとは、ポリエチレングリコール相当の分子量として200ダルトン~500キロダルトンのセグメント部であることが好ましく、より好ましくは分子量として200ダルトン~250キロダルトンの構造部分であり、特に好ましくは分子量として200ダルトン~150キロダルトンである。分子量が、1,000ダルトン~50キロダルトンのポリエチレングリコールセグメントであることが、殊更好ましい。
 なお、本発明で用いるポリエチレングリコールセグメントの分子量とは、本発明の核酸代謝拮抗剤結合ポリアミノ酸誘導体を調製する際において、用いるポリエチレングリコールセグメント構造化合物の、ポリエチレングリコール標準品を基準としたGPC法により測定されるピークトップ分子量により求められる平均分子量を採用する。
In the nucleic acid antimetabolite-binding polyamino acid derivative of the present invention, a polyethylene glycol segment is bonded to a side chain carboxy group directly or via a bonding group. The polyethylene glycol segment is a segment having a repeating structure of an ethyleneoxy group: (CH 2 CH 2 O) unit. A segment structure containing a polyethylene glycol chain having an ethyleneoxy group unit polymerization degree of 5 to 10,000 units, more preferably a polymerization degree of 5 to 5,000 units.
That is, the polyethylene glycol segment is preferably a segment part having a molecular weight corresponding to polyethylene glycol of 200 daltons to 500 kilodaltons, more preferably a structural part having a molecular weight of 200 daltons to 250 kilodaltons, and particularly preferably a molecular weight. 200 to 150 kilodaltons. Particularly preferred are polyethylene glycol segments having a molecular weight of 1,000 to 50 kilodaltons.
The molecular weight of the polyethylene glycol segment used in the present invention is determined by the GPC method based on the polyethylene glycol standard product of the polyethylene glycol segment structural compound used in preparing the nucleic acid antimetabolite-binding polyamino acid derivative of the present invention. The average molecular weight calculated | required by the peak top molecular weight measured is employ | adopted.
 該ポリエチレングリコールセグメントの一方の末端基は、前記ポリアミノ酸主鎖のカルボキシ基と、直接又は結合基を介して結合するための連結基である。すなわち、エチレンオキシ基:(CHCHO)単位の酸素原子が末端基となる。 One terminal group of the polyethylene glycol segment is a linking group for bonding to the carboxy group of the polyamino acid main chain directly or via a bonding group. That is, an oxygen atom of an ethyleneoxy group: (CH 2 CH 2 O) unit is a terminal group.
 また、該ポリエチレングリコールセグメントのもう一方の末端基は、特に限定されるものではなく、水素原子、水酸基、置換基を有していても良い炭素数(C1~C8)のアルコキシ基、置換基を有していても良い炭素数(C7~C20)のアラルキルオキシ基等を挙げることができる。該アルコキシ基、アラルキルオキシ基における置換基としては、水酸基、アミノ基、ホルミル基、カルボキシ基等が挙げられる。 The other end group of the polyethylene glycol segment is not particularly limited, and may be a hydrogen atom, a hydroxyl group, an alkoxy group having a carbon number (C1 to C8) which may have a substituent, or a substituent. And an aralkyloxy group having a carbon number (C7 to C20) which may be included. Examples of the substituent in the alkoxy group and aralkyloxy group include a hydroxyl group, an amino group, a formyl group, and a carboxy group.
 該末端基における置換基を有していても良い炭素数(C1~C8)のアルコキシ基としては、直鎖、分岐鎖又は環状の炭素数(C1~C8)のアルコキシ基が挙げられる。例えば、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、t-ブトキシ基、n-ペンチルオキシ基、イソペンチルオキシ基、2-メチルブトキシ基、ネオペンチルオキシ基、1-エチルプロポキシ基、n-ヘキシルオキシ基、4-メチルペンチルオキシ基、3-メチルペンチルオキシ基、2-メチルペンチルオキシ基、1-メチルペンチルオキシ基、3,3-ジメチルブトキシ基、2,2-ジメチルブトキシ基、1,1-ジメチルブトキシ基、1,2-ジメチルブトキシ基、1,3-ジメチルブトキシ基、2,3-ジメチルブトキシ基、2-エチルブトキシ基、シクロプロポキシ基、シクロペンチルオキシ基又はシクロヘキシルオキシ基等が挙げられる。好ましくは炭素数(C1~C4)のアルコキシ基であり、例えば、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、s-ブトキシ基又はt-ブトキシ基等であり、特に好ましくはメトキシ基、エトキシ基、n-プロポキシ基又はイソプロポキシ基である。
 該末端基における置換基を有していても良い炭素数(C7~C20)のアラルキルオキシ基としては、いずれか1カ所の水素原子がアリール基で置換されている直鎖または分岐鎖アルキル基である。例えば、ベンジルオキシ基、2-フェニルエチルオキシ基、4-フェニルブチルオキシ基、3-フェニルブチルオキシ基、5-フェニルペンチルオキシ基、6-フェニルへキシルオキシ基、8-フェニルオクチルオキシ基等が挙げられる。好ましくはベンジルオキシ基、4-フェニルブチルオキシ基、8-フェニルオクチルオキシ基である。
Examples of the alkoxy group having a carbon number (C1 to C8) which may have a substituent in the terminal group include a linear, branched or cyclic alkoxy group having a carbon number (C1 to C8). For example, methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, isobutoxy group, t-butoxy group, n-pentyloxy group, isopentyloxy group, 2-methylbutoxy group, neopentyloxy Group, 1-ethylpropoxy group, n-hexyloxy group, 4-methylpentyloxy group, 3-methylpentyloxy group, 2-methylpentyloxy group, 1-methylpentyloxy group, 3,3-dimethylbutoxy group, 2,2-dimethylbutoxy group, 1,1-dimethylbutoxy group, 1,2-dimethylbutoxy group, 1,3-dimethylbutoxy group, 2,3-dimethylbutoxy group, 2-ethylbutoxy group, cyclopropoxy group, Examples include a cyclopentyloxy group or a cyclohexyloxy group. Preferred is an alkoxy group having a carbon number (C1 to C4), such as a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, an s-butoxy group, or a t-butoxy group. Particularly preferred is a methoxy group, an ethoxy group, an n-propoxy group or an isopropoxy group.
The aralkyloxy group having a carbon number (C7 to C20) which may have a substituent in the terminal group is a linear or branched alkyl group in which any one hydrogen atom is substituted with an aryl group. is there. For example, benzyloxy group, 2-phenylethyloxy group, 4-phenylbutyloxy group, 3-phenylbutyloxy group, 5-phenylpentyloxy group, 6-phenylhexyloxy group, 8-phenyloctyloxy group, etc. It is done. A benzyloxy group, a 4-phenylbutyloxy group, and an 8-phenyloctyloxy group are preferable.
 本発明におけるポリアミノ酸誘導体は、前記ポリエチレングリコールセグメントが、側鎖カルボキシ基に直接又は結合基を介して結合している。該ポリエチレングリコールセグメントが、該側鎖カルボキシ基に直接結合している態様としては、エチレンオキシ基:(CHCHO)単位の末端基が酸素原子であり、該側鎖カルボキシ基とエステル結合している態様である。
 本発明は、該ポリエチレングリコールセグメントが、結合基を介して該側鎖カルボキシ基に結合している態様も含まれる。該結合基は、一方の末端基が、該ポリエチレングリコールセグメントの末端酸素原子とエーテル結合様式、エステル結合、ウレタン結合又はカーボネート結合する結合性官能基を有し、もう一方の末端基が、該側鎖カルボキシ基とエステル結合、アミド結合、チオエステル結合する結合性官能基を有する、置換基を有していても良い炭素数(C1~C8)のアルキレン基であることが好ましい。
In the polyamino acid derivative of the present invention, the polyethylene glycol segment is bonded to the side chain carboxy group directly or via a bonding group. As an aspect in which the polyethylene glycol segment is directly bonded to the side chain carboxy group, the terminal group of the ethyleneoxy group: (CH 2 CH 2 O) unit is an oxygen atom, and the side chain carboxy group and an ester bond It is the mode which is doing.
The present invention also includes an embodiment in which the polyethylene glycol segment is bonded to the side chain carboxy group via a bonding group. The linking group has a binding functional group in which one end group is bonded to the terminal oxygen atom of the polyethylene glycol segment in an ether bond mode, an ester bond, a urethane bond, or a carbonate bond, and the other end group is on the side. It is preferably an alkylene group having a linking functional group capable of forming an ester bond, an amide bond or a thioester bond with a chain carboxy group and having a substituent (C1 to C8).
 前記結合基において、前記ポリエチレングリコールセグメントとエーテル結合し、側鎖カルボキシ基とアミド結合、エステル結合又はチオエステル結合する結合基として、例えば、-(CH-NH-(xは1~8の整数を示す)、-(CH-O-(xは1~8の整数を示す)、-(CH-S-(xは1~8の整数を示す)が挙げられる。ポリエチレングリコールセグメントとエステル結合し、側鎖カルボキシ基とアミド結合、エステル結合又はチオエステル結合する結合基として、例えば、-CO-(CH-NH-(xは1~8の整数を示す)、-CO-(CH-O-(xは1~8の整数を示す)、-CO-(CH-S-(xは1~8の整数を示す)が挙げられる。ポリエチレングリコールセグメントとウレタン結合し、側鎖カルボキシ基とアミド結合、エステル結合又はチオエステル結合する結合基として、-CONH-(CH-NH-(xは1~8の整数を示す)、-CONH-(CH-O-(xは1~8の整数を示す)、-CONH-(CH-S-(xは1~8の整数を示す)を挙げることができる。ポリエチレングリコールセグメントとカーボネート結合した様式とし、側鎖カルボキシ基とアミド結合、エステル結合又はチオエステル結合する結合基として、-COO-(CH-NH-(xは1~8の整数を示す)、-COO-(CH-O-(xは1~8の整数を示す)、-COO-(CH-S-(xは1~8の整数を示す)を挙げることができる。該結合基としては、ポリエチレングリコールセグメントとエーテル結合し、側鎖カルボキシ基とアミド結合する結合基である-(CH-NH-(xは1~8の整数を示す)が特に好ましい。 In the linking group, as a linking group that is ether-bonded to the polyethylene glycol segment and amide bond, ester bond or thioester bond to the side chain carboxy group, for example, — (CH 2 ) x —NH— (x is 1-8) -(CH 2 ) x -O- (x represents an integer of 1 to 8) and-(CH 2 ) x -S- (x represents an integer of 1 to 8). As a linking group that is ester-bonded to a polyethylene glycol segment and is linked to an amide bond, ester bond or thioester bond to a side chain carboxy group, for example, —CO— (CH 2 ) x —NH— (x represents an integer of 1 to 8) , —CO— (CH 2 ) x —O— (wherein x represents an integer of 1 to 8) and —CO— (CH 2 ) x —S— (wherein x represents an integer of 1 to 8). —CONH— (CH 2 ) x —NH— (x represents an integer of 1 to 8) as a linking group that is bonded to a polyethylene glycol segment by urethane and is bonded to a side chain carboxy group by an amide bond, ester bond or thioester bond, CONH— (CH 2 ) x —O— (x represents an integer of 1 to 8) and —CONH— (CH 2 ) x —S— (x represents an integer of 1 to 8). -COO- (CH 2 ) x -NH- (x represents an integer of 1 to 8) as a linking group that binds to a polyethylene glycol segment and carbonate, and a side chain carboxy group to an amide bond, ester bond or thioester bond , —COO— (CH 2 ) x —O— (x represents an integer of 1 to 8), —COO— (CH 2 ) x —S— (x represents an integer of 1 to 8). it can. The linking group is particularly preferably — (CH 2 ) x —NH— (x represents an integer of 1 to 8), which is a linking group that has an ether bond with a polyethylene glycol segment and an amide bond with a side chain carboxy group.
 また、ポリエチレングリコールセグメントと側鎖カルボキシ基の前記結合基として、アミノ酸誘導体を用いても良い。アミノ酸誘導体を結合基とする場合、該アミノ酸のN末アミノ基が、前記側鎖カルボキシ基とアミド結合し、C末カルボキシ基が、該ポリエチレングリコールセグメントの末端酸素原子とエステル結合する態様で用いられる。
 該結合基としてアミノ酸誘導体を用いる場合、用いられるアミノ酸は、天然アミノ酸または非天然アミノ酸であってよく、L体、D体のいずれでも特に限定されずに用いることができる。例えば、グリシン、β-アラニン、アラニン、ロイシン、フェニルアラニン等の炭化水素系アミノ酸、アスパラギン酸、グルタミン酸等の酸性アミノ酸、リジン、アルギニン、ヒスチジン等の塩基性アミノ酸等を用いることができる。
Moreover, you may use an amino acid derivative as said coupling group of a polyethyleneglycol segment and a side chain carboxy group. When an amino acid derivative is used as a linking group, the N-terminal amino group of the amino acid is amide-bonded to the side chain carboxy group, and the C-terminal carboxy group is used as an ester bond with the terminal oxygen atom of the polyethylene glycol segment. .
When an amino acid derivative is used as the linking group, the amino acid used may be a natural amino acid or a non-natural amino acid, and any of L-form and D-form can be used without particular limitation. For example, hydrocarbon amino acids such as glycine, β-alanine, alanine, leucine and phenylalanine, acidic amino acids such as aspartic acid and glutamic acid, basic amino acids such as lysine, arginine and histidine can be used.
 前記ポリエチレングリコールセグメントは、本発明に係るポリアミノ酸誘導体の複数有る側鎖カルボキシ基に対し、2~80ユニットが結合していることが好ましい。すなわち、当該核酸代謝拮抗剤結合ポリアミノ酸誘導体は、複数ユニットのポリエチレングリコールセグメントを具備することが好ましい。より好ましくは2~70ユニットのポリエチレングリコールセグメントを具備するものであり、特に好ましくは2~60ユニットが結合した態様である。 The polyethylene glycol segment preferably has 2 to 80 units bonded to a plurality of side chain carboxy groups of the polyamino acid derivative according to the present invention. That is, the nucleic acid antimetabolite-binding polyamino acid derivative preferably comprises a plurality of units of polyethylene glycol segments. More preferred are those having 2 to 70 units of polyethylene glycol segments, and particularly preferred is an embodiment in which 2 to 60 units are bound.
 本発明の核酸代謝拮抗剤結合ポリアミノ酸誘導体は、側鎖カルボキシ基に直接又は結合基を介して、核酸代謝拮抗剤を結合している。核酸代謝拮抗剤は、抗腫瘍活性又は抗ウイルス活性等の薬理活性を有するヌクレオシド誘導体の構造の化合物である。本発明における核酸代謝拮抗剤としては、ピリミジン塩基ヌクレオシド誘導体、プリン塩基ヌクレオシド誘導体、トリアジン塩基ヌクレオシド誘導体等を用いることが好ましい。該核酸代謝拮抗剤は、分子内にアミノ基及び/又は水酸基を有する化合物を用いることが好ましい。すなわち、前記アミノ基及び/又は水酸基によるアミド結合及び/又はエステル結合を介して、前述のポリアミノ酸主鎖に導入することができることから好ましい。特に、ヌクレオシドの核酸塩基にアミノ基を有する核酸代謝拮抗剤を用いることが好ましく、アミノ基を有するピリミジン塩基ヌクレオシド誘導体、アミノ基を有するプリン塩基ヌクレオシド誘導体、アミノ基を有するトリアジン塩基ヌクレオシド誘導体が好ましい。アミノ基を有する核酸代謝拮抗剤は、該アミノ基によるアミド結合でポリアミノ酸誘導体に導入することができることから、殊更好ましい。 The nucleic acid antimetabolite-binding polyamino acid derivative of the present invention binds a nucleic acid antimetabolite to the side chain carboxy group directly or via a bonding group. The nucleic acid antimetabolite is a compound having a structure of a nucleoside derivative having pharmacological activity such as antitumor activity or antiviral activity. As the nucleic acid metabolism antagonist in the present invention, it is preferable to use pyrimidine base nucleoside derivatives, purine base nucleoside derivatives, triazine base nucleoside derivatives and the like. The nucleic acid metabolism antagonist is preferably a compound having an amino group and / or a hydroxyl group in the molecule. That is, it is preferable because it can be introduced into the aforementioned polyamino acid main chain via an amide bond and / or an ester bond due to the amino group and / or hydroxyl group. In particular, it is preferable to use a nucleic acid antimetabolite having an amino group in the nucleoside nucleobase, and a pyrimidine base nucleoside derivative having an amino group, a purine base nucleoside derivative having an amino group, and a triazine base nucleoside derivative having an amino group are preferable. A nucleic acid antimetabolite having an amino group is particularly preferred because it can be introduced into a polyamino acid derivative by an amide bond with the amino group.
 当該核酸代謝拮抗剤として、抗腫瘍活性や抗ウイルス活性を有する複数の化合物が知られている。例えば、下記式(12)に構造を示すシタラビン(cytarabine)、ゲムシタビン(gemcitabine)、アザシチジン(azacitidine)、デシタビン(decitabine)、ネララビン(nelarabine)、2’-メチリデン-2’-デオキシシチジン(DMDC)、トロキサシタビン(troxacitabine)、3’-エチニルシチジン(Ethynylcytidine)、2’-シアノ-2’-デオキシ-1-β-D-アラビノフラノシルシトシン(CNDAC)、2’-デオキシ-5,6-ジヒドロ-5-アザシチジン(DHAC)、5’-フルオロ-2’-デオキシシチジン(NSC-48006)、4’-チオ-β-D-アラビノフラノシルシトシン(OSI-7836)、クラドリビン(Cladribine)、クロファラビン(Clofarabine)又はフルダラビン(Fludarabine)、シタラビン-5’-エライジン酸エステル(CP-4055)、ゲムシタビン-5’-エライジン酸エステル(CP-4126)等が挙げられる。本発明のポリアミノ酸誘導体に用いられる核酸代謝拮抗剤は、これらの化合物に限定されるものではないが、適用する好ましい化合物として挙げることができる。 As the nucleic acid metabolism antagonist, a plurality of compounds having antitumor activity and antiviral activity are known. For example, cytarabine, gemcitabine, azacitidine, decitabine, nelarabine, 2′-methylidene-2′-deoxycytidine (DC), having the structure shown in the following formula (12): Troxacitabine, 3′-ethynylcytidine, 2′-cyano-2′-deoxy-1-β-D-arabinofuranosylcytosine (CNDAC), 2′-deoxy-5,6-dihydro- 5-azacytidine (DHAC), 5′-fluoro-2′-deoxycytidine (NSC-48006), 4′-thio-β-D-arabinofuranosylcytosine (OSI-7836), cladri Down (cladribine), clofarabine (Clofarabine) or fludarabine (Fludarabine), cytarabine-5'-elaidate (CP-4055), gemcitabine-5'-elaidic acid ester (CP-4126), and the like. The nucleic acid antimetabolite used in the polyamino acid derivative of the present invention is not limited to these compounds, but can be mentioned as preferred compounds to be applied.
 本発明の核酸代謝拮抗剤結合ポリアミノ酸誘導体は、前記核酸代謝拮抗剤をポリアミノ酸の側鎖カルボキシ基へ、直接又は結合基を介して結合させたものである。
 該核酸代謝拮抗剤を該側鎖カルボキシ基へ直接結合させる場合は、アミノ基及び/又は水酸基を有する核酸代謝拮抗剤を用い、該アミノ基による該側鎖カルボキシ基とのアミド結合又は該水酸基による該側鎖カルボキシ基とのエステル結合にて結合させれば良い。結合様式は、アミド結合のみの場合、エステル結合のみの場合、又はアミド結合とエステル結合との混合体の場合の何れでも良い。用いる核酸代謝拮抗剤の結合性官能基に応じて、側鎖カルボキシ基への結合様式を適宜選択して良い。
The nucleic acid antimetabolite-binding polyamino acid derivative of the present invention is obtained by binding the nucleic acid antimetabolite to a side chain carboxy group of a polyamino acid directly or via a binding group.
When the nucleic acid antimetabolite is directly bonded to the side chain carboxy group, a nucleic acid antimetabolite having an amino group and / or a hydroxyl group is used, and an amide bond with the side chain carboxy group by the amino group or the hydroxyl group What is necessary is just to couple | bond by the ester bond with this side chain carboxy group. The bonding mode may be any of an amide bond only, an ester bond only, or a mixture of an amide bond and an ester bond. Depending on the binding functional group of the nucleic acid antimetabolite used, the mode of binding to the side chain carboxy group may be appropriately selected.
 また、該核酸代謝拮抗剤は、該側鎖カルボキシ基へ適当な結合基を介して結合させる態様も含まれる。該結合基は、一方の末端基が、該核酸代謝拮抗剤の結合性官能基であるアミノ基及び/又は水酸基とアミド結合、エステル結合、カーボネート結合、ウレタン結合又はウレア結合できる結合性官能基を有し、もう一方の末端基が、該側鎖カルボキシ基とアミド結合、エステル結合、チオエステル結合する結合性官能基を有する、置換基を有していても良い炭素数(C1~C8)アルキレン基であることが好ましい。 The nucleic acid antimetabolite also includes an embodiment in which the side chain carboxy group is bonded via a suitable linking group. The linking group has a binding functional group in which one terminal group can bind to an amino group and / or a hydroxyl group that is a binding functional group of the nucleic acid antimetabolite, an amide bond, an ester bond, a carbonate bond, a urethane bond, or a urea bond. And the other terminal group has a linking functional group capable of forming an amide bond, an ester bond or a thioester bond with the side chain carboxy group, and optionally having a substituent (C1-C8) alkylene group It is preferable that
 核酸代謝拮抗剤と側鎖カルボキシ基を結合させる前記結合基において、核酸代謝拮抗剤のアミノ基及び/又は水酸基とアミド結合又はエステル結合し、側鎖カルボキシ基とアミド結合、エステル結合又はチオエステル結合する様式としては、例えば、-CO-(CH-NH-(yは1~8の整数を示す)、-CO-(CH-O-(yは1~8の整数を示す)、-CO-(CH-S-(yは1~8の整数を示す)が挙げられる。核酸代謝拮抗剤とウレア結合又はウレタン結合し、側鎖カルボキシ基とアミド結合、エステル結合又はチオエステル結合する様式としては、例えば、-CONH-(CH-NH-(yは1~8の整数を示す)、-CONH-(CH-O-(yは1~8の整数を示す)、-CONH-(CH-S-(yは1~8の整数を示す)が挙げられる。一方、核酸代謝拮抗剤とカーボネート結合し、側鎖カルボキシ基とアミド結合、エステル結合又はチオエステル結合する様式としては、例えば、-COO-(CH-NH-(yは1~8の整数を示す)、-COO-(CH-O-(yは1~8の整数を示す)、-COO-(CH-S-(yは1~8の整数を示す)を挙げることができる。 In the linking group that binds the nucleic acid antimetabolite to the side chain carboxy group, the amino group and / or hydroxyl group of the nucleic acid antimetabolite is linked to an amide bond or ester bond, and the side chain carboxy group is linked to an amide bond, ester bond or thioester bond. As the format, for example, —CO— (CH 2 ) y —NH— (y represents an integer of 1 to 8), —CO— (CH 2 ) y —O— (y represents an integer of 1 to 8). ), —CO— (CH 2 ) y —S— (y represents an integer of 1 to 8). Examples of a mode in which a urea bond or a urethane bond with a nucleic acid antimetabolite and a side chain carboxy group with an amide bond, an ester bond or a thioester bond include -CONH- (CH 2 ) y -NH- (where y is 1 to 8). -CONH- (CH 2 ) y -O- (y is an integer of 1 to 8), -CONH- (CH 2 ) y -S- (y is an integer of 1 to 8) Is mentioned. On the other hand, the form of carbonate bond with a nucleic acid antimetabolite and side chain carboxy group with amide bond, ester bond or thioester bond is, for example, —COO— (CH 2 ) y —NH— (y is an integer of 1 to 8) -COO- (CH 2 ) y -O- (y is an integer of 1 to 8), -COO- (CH 2 ) y -S- (y is an integer of 1 to 8) Can be mentioned.
 前記結合基のアルキレン基は水素原子が適当な置換基により修飾されていても良い。該置換基としては、水酸基、アミノ基、ハロゲン原子、炭素数(C1~C8)のアルキル基、炭素数(C1~C8)のアルキルカルボニルアルコキシ基、炭素数(C1~C8)のアルキルカルボニルアミド基、炭素数(C1~C8)のアルキルカルボニルアルキルアミド基、炭素数(C1~C8)のアルキルアリール基、炭素数(C1~C8)のアルコキシ基、炭素数(C1~C8)のアルキルアミノ基、炭素数(C1~C8)のアシルアミド基、炭素数(C1~C8)のアルコキシカルボニルアミノ基等を挙げることができる。 The hydrogen atom of the alkylene group of the linking group may be modified with an appropriate substituent. Examples of the substituent include a hydroxyl group, an amino group, a halogen atom, an alkyl group having a carbon number (C1 to C8), an alkylcarbonylalkoxy group having a carbon number (C1 to C8), and an alkylcarbonylamide group having a carbon number (C1 to C8). An alkylcarbonylalkylamide group having a carbon number (C1 to C8), an alkylaryl group having a carbon number (C1 to C8), an alkoxy group having a carbon number (C1 to C8), an alkylamino group having a carbon number (C1 to C8), And an acylamide group having a carbon number (C1 to C8) and an alkoxycarbonylamino group having a carbon number (C1 to C8).
 前記結合基は、核酸代謝拮抗剤との結合側がカルボキシ基であり、もう一方がアミノ基又は水酸基を有する-CO-(CH-NH-(yは1~8の整数を示す)、-CO-(CH-O-(yは1~8の整数を示す)が好ましい。特に好ましくは、該核酸代謝拮抗剤とアミド結合又はエステル結合することができるカルボキシ基を有すると共に、該側鎖カルボキシ基とアミド結合できるアミノ基を有する-CO-(CH-NH-(yは1~8の整数を示す)である。
 該結合基として、好ましい-CO-(CH-NH-(yは1~8の整数を示す)としては、-CO-CH-NH-、-CO-(CH-NH-、-CO-(CH-NH-、-CO-(CH-NH-である。
The linking group is a —CO— (CH 2 ) y —NH— (y represents an integer of 1 to 8) having a carboxy group on the binding side with a nucleic acid antimetabolite and the other having an amino group or a hydroxyl group, —CO— (CH 2 ) y —O— (y is an integer of 1 to 8) is preferred. Particularly preferably, —CO— (CH 2 ) y —NH— () having a carboxy group capable of amide bond or ester bond with the nucleic acid antimetabolite and an amino group capable of amide bond with the side chain carboxy group. y represents an integer of 1 to 8.
As the linking group, preferred —CO— (CH 2 ) y —NH— (y represents an integer of 1 to 8) includes —CO—CH 2 —NH—, —CO— (CH 2 ) 2 —NH. —, —CO— (CH 2 ) 4 —NH—, —CO— (CH 2 ) 6 —NH—.
 前記核酸代謝拮抗剤の、好ましい結合基として挙げた置換基を有していても良い-CO-(CH-NH-(yは1~8の整数を示す)基において、該yが1の場合はアミノ酸骨格と同義である。したがって、当該結合基としてアミノ酸誘導体を用いても良い。該アミノ酸誘導体を結合基として用いる場合、該アミノ酸のN末アミノ基が前記側鎖カルボキシ基とアミド結合し、C末カルボキシ基が該核酸代謝拮抗剤のアミノ基又は水酸基とアミド結合又はエステル結合する態様の結合基として用いられる。
 当該結合基としてアミノ酸誘導体を用いる場合、用いられるアミノ酸は、天然アミノ酸または非天然アミノ酸であってよく、L体、D体のいずれでも特に限定されずに用いることができる。例えば、グリシン、β-アラニン、アラニン、ロイシン、フェニルアラニン等の炭化水素系アミノ酸、アスパラギン酸、グルタミン酸等の酸性アミノ酸、リジン、アルギニン、ヒスチジン等の塩基性アミノ酸等を用いることができる。
In the nucleic acid antimetabolite, the —CO— (CH 2 ) y —NH— (y represents an integer of 1 to 8) group optionally having substituent (s) as the preferred linking group, The case of 1 is synonymous with the amino acid skeleton. Therefore, an amino acid derivative may be used as the binding group. When the amino acid derivative is used as a linking group, the N-terminal amino group of the amino acid is an amide bond with the side chain carboxy group, and the C-terminal carboxy group is an amide bond or an ester bond with the amino group or hydroxyl group of the nucleic acid antimetabolite. Used as a linking group in embodiments.
When an amino acid derivative is used as the binding group, the amino acid used may be a natural amino acid or a non-natural amino acid, and any of L-form and D-form can be used without any particular limitation. For example, hydrocarbon amino acids such as glycine, β-alanine, alanine, leucine and phenylalanine, acidic amino acids such as aspartic acid and glutamic acid, basic amino acids such as lysine, arginine and histidine can be used.
 前記核酸代謝拮抗剤の結合基としてアミノ酸誘導体を用いる場合、アスパラギン酸誘導体を用いることが好ましい。該アスパラギン酸誘導体としては、α-カルボキシ基が前記核酸代謝拮抗剤の結合基として機能し、β-カルボキシ基がアミド体であるアスパラギン酸誘導体結合基である。または、β-カルボキシ基が前記核酸代謝拮抗剤の結合基として機能し、α-カルボキシ基がアミド体であるアスパラギン酸誘導体であっても良い。該核酸代謝拮抗剤の結合基ではないもう一方のカルボキシ基における該アミド体とは、例えば置換基を有していても良い炭素数(C1~20)のアルキルアミド、置換基を有していても良い炭素数(C5~C20)の芳香族アミド、置換基を有していても良い炭素数(C7~C20)のアラルキルアミド又はカルボキシ基が保護されたアミノ酸残基等が挙げられる。 When using an amino acid derivative as the binding group of the nucleic acid antimetabolite, it is preferable to use an aspartic acid derivative. The aspartic acid derivative is an aspartic acid derivative binding group in which an α-carboxy group functions as a binding group of the nucleic acid antimetabolite and the β-carboxy group is an amide. Alternatively, an aspartic acid derivative in which a β-carboxy group functions as a binding group of the nucleic acid antimetabolite and the α-carboxy group is an amide may be used. The amide in the other carboxy group that is not a binding group of the nucleic acid antimetabolite is, for example, an alkylamide having a carbon number (C1-20) which may have a substituent, or a substituent. And an aromatic amide having a good carbon number (C5 to C20), an aralkylamide having a carbon number (C7 to C20) which may have a substituent, or an amino acid residue in which a carboxy group is protected.
 核酸代謝拮抗剤と側鎖カルボキシ基を結合させる前記結合基は、一方のカルボキシ基が核酸代謝拮抗剤の結合基であり、一方のカルボキシ基がアミド誘導体であるアスパラギン酸誘導体を用いた場合が、核酸代謝拮抗剤の確実な解離が促されることから、特に好ましい。
 結合基としてのアスパラギン酸誘導体の置換基を有していても良い炭素数(C1~20)のアルキルアミドとしては、例えば、メチルアミド、エチルアミド、イソプロピルアミド、t-ブチルアミド、シクロヘキシルアミド、ドデシルアミド、オクタデシルアミド等が挙げられる。該アスパラギン酸誘導体の置換基を有していても良い炭素数(C5~C20)の芳香族アミドとしては、例えば、フェニルアミド、4-メトキシフェニルアミド、4-ジメチルアミノフェニルアミド、4-ヒドロキシフェニルアミド等が挙げられる。該アスパラギン酸誘導体の置換基を有していても良い炭素数(C7~C20)のアラルキルアミドとしては、例えば、ベンジルアミド、2-フェニルエチルアミド、4-フェニルブチルアミド、8-フェニルオクチルアミド等が挙げられる。該アスパラギン酸誘導体のカルボキシ基が保護されたアミノ酸アミドとしては、例えば、グリシニル-メチルエステル、アラニル-メチルエステル、ロイシニル-メチルエステル、イソロイシニル-メチルエステル、バリニル-メチルエステル、フェニルアラニル-メチルエステル、アラニル-エチルエステル、ロイシニル-エチルエステル、イソロイシニル-エチルエステル、アラニル-ブチルエステル、ロイシニル-ブチルエステル等が挙げられる。
In the case of using an aspartic acid derivative in which one carboxy group is a linking group of a nucleic acid antimetabolite and one carboxy group is an amide derivative, the linking group that binds the nucleic acid antimetabolite to the side chain carboxy group, This is particularly preferable because reliable dissociation of the nucleic acid antimetabolite is promoted.
Examples of the alkylamide having a carbon number (C1-20) which may have a substituent of an aspartic acid derivative as a linking group include, for example, methylamide, ethylamide, isopropylamide, t-butylamide, cyclohexylamide, dodecylamide, octadecyl Examples include amides. Examples of the aromatic amide having a carbon number (C5 to C20) which may have a substituent of the aspartic acid derivative include phenylamide, 4-methoxyphenylamide, 4-dimethylaminophenylamide, 4-hydroxyphenyl. Examples include amides. Examples of the aralkyl amide having a carbon number (C7 to C20) which may have a substituent of the aspartic acid derivative include benzylamide, 2-phenylethylamide, 4-phenylbutyramide, 8-phenyloctylamide and the like. Is mentioned. Examples of the amino acid amide in which the carboxy group of the aspartic acid derivative is protected include glycinyl-methyl ester, alanyl-methyl ester, leucinyl-methyl ester, isoleucinyl-methyl ester, valinyl-methyl ester, phenylalanyl-methyl ester, Examples include alanyl-ethyl ester, leucinyl-ethyl ester, isoleucinyl-ethyl ester, alanyl-butyl ester, and leucinyl-butyl ester.
 本発明の核酸代謝拮抗剤結合ポリアミノ酸誘導体は、アミノ基及び/又は水酸基を有する核酸代謝拮抗剤が、アスパラギン酸ユニットのカルボキシ基に直接結合した態様であることが好ましい。すなわち、当該ポリアミノ酸の主鎖ポリマーがポリアスパラギン酸である場合、主鎖ポリマーの側鎖カルボキシ基に該核酸代謝拮抗剤が直接結合して良く、また、核酸代謝拮抗剤と側鎖カルボキシ基を結合させる結合基としてアスパラギン酸誘導体を用いて、核酸代謝拮抗剤を結合させても良い。
 また、当該ポリアミノ酸の主鎖ポリマーがポリグルタミン酸である場合、核酸代謝拮抗剤と側鎖カルボキシ基を結合させる結合基としてアスパラギン酸誘導体を用いて、核酸代謝拮抗剤を結合させることが好ましい。結合基として用いる該アスパラギン酸誘導体は、アスパラギン酸アミド誘導体を用いることが好ましい。
The nucleic acid antimetabolite-binding polyamino acid derivative of the present invention preferably has an embodiment in which a nucleic acid antimetabolite having an amino group and / or a hydroxyl group is directly bonded to the carboxy group of the aspartic acid unit. That is, when the main chain polymer of the polyamino acid is polyaspartic acid, the nucleic acid antimetabolite may be directly bonded to the side chain carboxy group of the main chain polymer. A nucleic acid antimetabolite may be bound using an aspartic acid derivative as a binding group to be bound.
Further, when the main chain polymer of the polyamino acid is polyglutamic acid, it is preferable to bind the nucleic acid antimetabolite using an aspartic acid derivative as a binding group for binding the nucleic acid antimetabolite and the side chain carboxy group. As the aspartic acid derivative used as a linking group, an aspartic acid amide derivative is preferably used.
 本発明の核酸代謝拮抗剤結合ポリアミノ酸誘導体は、複数のアスパラギン酸誘導体及び/又はグルタミン酸誘導体を含有するポリアミノ酸を主鎖として、該アスパラギン酸及び/又は該グルタミン酸の側鎖カルボキシ基に、ポリエチレングリコールセグメントと核酸代謝拮抗剤が、直接又は結合基を介して結合した化学構造を特徴とするポリアミノ酸誘導体であり、該ポリアミノ酸誘導体の分子量が20キロダルトン以上で200キロダルトン以下であることを特徴とする。より好ましくは、分子量が20キロダルトン以上であり160キロダルトン以下である。 The nucleic acid antimetabolite-binding polyamino acid derivative of the present invention comprises a polyamino acid containing a plurality of aspartic acid derivatives and / or glutamic acid derivatives as a main chain, and polyethylene glycol on the side chain carboxy group of the aspartic acid and / or glutamic acid. A polyamino acid derivative characterized by a chemical structure in which a segment and a nucleic acid antimetabolite are bonded directly or via a linking group, wherein the molecular weight of the polyamino acid derivative is 20 kilodaltons or more and 200 kilodaltons or less And More preferably, the molecular weight is 20 kilodaltons or more and 160 kilodaltons or less.
 本発明のポリアミノ酸誘導体の分子量は、上記の構成部分の各構成分子量を合算した計算値を当該「ポリアミノ酸誘導体の分子量」として採用する。すなわち、(1)ポリアミノ酸主鎖の分子量、(2)ポリエチレングリコールセグメントの分子量にその結合数を乗じたポリエチレングリコールセグメントの総分子量、(3)核酸代謝拮抗剤の結合残基分子量にその結合数を乗じた核酸代謝拮抗剤の総分子量、(4)任意のポリエチレングリコールセグメントの結合基残基分子量にその結合数を乗じた該結合基の総分子量、並びに(5)任意の核酸代謝拮抗剤の結合基残基分子量にその結合数を乗じた該結合基の総分子量、を合算した計算値を当該分子量とする。
 当該ポリアミノ酸誘導体の分子量は、キロダルトン単位での精度による分子量規定が求められるものである。したがって、前記各構成部分の分析方法は、当該ポリアミノ酸誘導体のキロダルトン単位での分子量測定において、十分な精度の分析方法であれば特に限定されるものではなく、様々な分析方法を適宜選択して良い。以下に、各構成部分における好ましい分析方法を挙げる。
As the molecular weight of the polyamino acid derivative of the present invention, a calculated value obtained by adding the constituent molecular weights of the above-described constituent parts is adopted as the “molecular weight of the polyamino acid derivative”. That is, (1) the molecular weight of the polyamino acid main chain, (2) the total molecular weight of the polyethylene glycol segment obtained by multiplying the molecular weight of the polyethylene glycol segment by the number of bonds, and (3) the number of bonds in the molecular weight of the binding residue of the nucleic acid antimetabolite. (4) the total molecular weight of the binding group obtained by multiplying the binding group residue molecular weight of any polyethylene glycol segment by the number of bonds, and (5) the total molecular weight of the nucleic acid metabolism antagonist The calculated value obtained by adding the total molecular weight of the linking group obtained by multiplying the linking group residue molecular weight by the number of bonds is defined as the molecular weight.
The molecular weight of the polyamino acid derivative is required to be regulated by the accuracy in kilodalton units. Therefore, the analysis method for each component is not particularly limited as long as it is a sufficiently accurate analysis method for measuring the molecular weight of the polyamino acid derivative in kilodalton units, and various analysis methods are appropriately selected. Good. Below, the preferable analysis method in each component is listed.
 前記(1)ポリアミノ酸主鎖の分子量は、該主鎖の重合モノマー単位の分子量にその重合数を乗じた計算値である。なお、ポリアミノ酸主鎖の末端にポリエチレングリコールセグメントが結合している場合は、ポリエチレングリコールセグメントの分子量に、該主鎖の重合モノマー単位の分子量にその重合数を乗じた値を加えた計算値である。該重合数はH-NMRの積分値から算出された重合数や、アミノ酸分析により算出される重合数、ポリアミノ酸の側鎖カルボキシ基を中和滴定により定量して算出される重合数を用いることができる。該ポリアミノ酸主鎖が、ポリアスパラギン酸等の単一のアミノ酸構成によるポリマー主鎖である場合は、H-NMRの分析が簡便であり好ましく、H-NMRの積分値から基準となるプロトンの積分値を用いて算出された重合数を用いることが好ましい。 (1) The molecular weight of the polyamino acid main chain is a calculated value obtained by multiplying the molecular weight of the polymerization monomer unit of the main chain by the number of polymerizations. When the polyethylene glycol segment is bonded to the end of the polyamino acid main chain, the calculated value is obtained by adding the molecular weight of the polyethylene glycol segment to the molecular weight of the polymerization monomer unit of the main chain multiplied by the number of polymerizations. is there. The number of polymerizations is the number of polymerizations calculated from the integral value of 1 H-NMR, the number of polymerizations calculated by amino acid analysis, or the number of polymerizations calculated by quantifying the side chain carboxy group of polyamino acid by neutralization titration. be able to. When the polyamino acid main chain is a polymer main chain having a single amino acid structure such as polyaspartic acid, analysis of 1 H-NMR is simple and preferable, and protons serving as a reference from the integrated value of 1 H-NMR It is preferable to use the number of polymerizations calculated using the integral value.
 前記(2)ポリエチレングリコールセグメントの総分子量は、ポリエチレングリコールセグメントの分子量にその結合量を乗じた計算値である。ポリエチレングリコールセグメントの分子量は、用いるポリエチレングリコールセグメント構造化合物の、ポリエチレングリコール標準品を基準としたGPC法により測定されるピークトップ分子量により求められる平均分子量を採用する。 (2) The total molecular weight of the polyethylene glycol segment is a calculated value obtained by multiplying the molecular weight of the polyethylene glycol segment by the binding amount. As the molecular weight of the polyethylene glycol segment, an average molecular weight determined by the peak top molecular weight of the polyethylene glycol segment structural compound to be used, which is measured by a GPC method based on a polyethylene glycol standard product, is employed.
 ポリエチレングリコールセグメントの結合量は、核酸代謝拮抗剤結合ポリアミノ酸誘導体から、ポリエチレングリコールセグメントを開裂させて、遊離するポリエチレングリコールセグメントを定量分析することにより求める方法が挙げられる。または、核酸代謝拮抗剤結合ポリアミノ酸誘導体の構成成分はポリエチレングリコールセグメント,ポリアミノ酸主鎖および核酸代謝拮抗剤であるので,アミノ酸分析により算出されるアミノ酸主鎖の質量含有率と当該核酸代謝拮抗剤結合ポリアミノ酸誘導体を加水分解し、遊離する核酸代謝拮抗剤を、高速液体クロマトグラフィー(HPLC)定量分析することによって算出される核酸代謝拮抗剤の質量含有率を求め,残りの質量含有率をポリエチレングリコールセグメントとして算出する方法を用いても良い。若しくは、当該ポリアミノ酸主鎖に対しポリエチレングリコールセグメントを導入する反応において、ポリエチレングリコールセグメントの消費率から算出する方法であっても良い。
 なお、前記(4)の任意のポリエチレングリコールセグメントの結合基の総分子量は、該結合基残基分子量にその結合数を乗じた計算値である。該結合基の結合数は、前述のポリエチレングリコールセグメントの結合数と同じであり、その値を用いることで算出することができる。
The binding amount of the polyethylene glycol segment can be determined by cleaving the polyethylene glycol segment from the nucleic acid antimetabolite-binding polyamino acid derivative and quantitatively analyzing the released polyethylene glycol segment. Alternatively, since the constituents of the nucleic acid antimetabolite-binding polyamino acid derivative are a polyethylene glycol segment, a polyamino acid main chain, and a nucleic acid antimetabolite, the mass content of the amino acid main chain calculated by amino acid analysis and the nucleic acid antimetabolite The mass content of the nucleic acid antimetabolite calculated by hydrolyzing the bound polyamino acid derivative and quantitatively analyzing the released nucleic acid antimetabolite by high performance liquid chromatography (HPLC) is obtained, and the remaining mass content is determined as polyethylene. A method of calculating as a glycol segment may be used. Alternatively, a method of calculating from the consumption rate of the polyethylene glycol segment in the reaction of introducing the polyethylene glycol segment into the polyamino acid main chain may be used.
In addition, the total molecular weight of the bonding group of the arbitrary polyethylene glycol segment of (4) is a calculated value obtained by multiplying the bonding group residue molecular weight by the number of bonds. The number of bonds of the bonding group is the same as the number of bonds of the polyethylene glycol segment described above, and can be calculated by using the value.
 前記(3)核酸代謝拮抗剤の総分子量は、核酸代謝拮抗剤の結合残基分子量にその結合数を乗じた計算値である。該核酸代謝拮抗剤の結合数は、当該核酸代謝拮抗剤結合ポリアミノ酸誘導体を加水分解し、遊離する核酸代謝拮抗剤を、高速液体クロマトグラフィー(HPLC)にて定量分析することによって算出された値を用いることが好ましい。
 なお、前記(5)の、任意の核酸代謝拮抗剤の結合基の総分子量は、該結合基残基分子量にその結合数を乗じた計算値である。該結合基の結合数は、前述の核酸代謝拮抗剤の結合数と同じであり、その値を用いることで算出することができる。
The total molecular weight of the nucleic acid antimetabolite (3) is a calculated value obtained by multiplying the binding residue molecular weight of the nucleic acid antimetabolite by the number of bonds. The binding number of the nucleic acid antimetabolite is a value calculated by hydrolyzing the nucleic acid antimetabolite-binding polyamino acid derivative and quantitatively analyzing the released nucleic acid antimetabolite by high performance liquid chromatography (HPLC). Is preferably used.
The total molecular weight of the binding group of any nucleic acid antimetabolite in (5) is a calculated value obtained by multiplying the binding group residue molecular weight by the number of bonds. The number of bonds of the binding group is the same as the number of bonds of the aforementioned nucleic acid antimetabolite, and can be calculated by using the value.
 本発明の核酸代謝拮抗剤結合ポリアミノ酸誘導体は、該ポリアミノ酸誘導体におけるポリエチレングリコールセグメントの質量含有率が、30質量%以上90質量%以下であることを特徴とする。該ポリエチレングリコールセグメントの質量含有率は、前述の該ポリアミノ酸誘導体の分子量に対する、前記(2)のポリエチレングリコールセグメントの総分子量の含有比率により算出することができる。すなわち、ポリエチレングリコールセグメントの質量含有率は、以下の式で算出する。
(計算式) ポリエチレングリコールセグメントの質量含有率(%)=ポリエチレングリコールセグメント総分子量/ポリアミノ酸誘導体分子量×100
 前記ポリエチレングリコールセグメントの質量分子量は、30質量%以上90質量%以下であり、35質量%以上85質量%以下であることが好ましい。
The nucleic acid antimetabolite-binding polyamino acid derivative of the present invention is characterized in that the mass content of the polyethylene glycol segment in the polyamino acid derivative is 30% by mass or more and 90% by mass or less. The mass content of the polyethylene glycol segment can be calculated from the content ratio of the total molecular weight of the polyethylene glycol segment of (2) above to the molecular weight of the polyamino acid derivative described above. That is, the mass content of the polyethylene glycol segment is calculated by the following formula.
(Calculation formula) Mass content of polyethylene glycol segment (%) = total molecular weight of polyethylene glycol segment / polyamino acid derivative molecular weight × 100
The polyethylene glycol segment has a mass molecular weight of 30% by mass to 90% by mass, and preferably 35% by mass to 85% by mass.
 本発明の核酸代謝拮抗剤結合ポリアミノ酸誘導体は、該ポリアミノ酸誘導体における核酸代謝拮抗剤の質量含有率が、2質量%以上60質量%以下であることが好ましい。
 核酸代謝拮抗剤の含有率が2質量%より少ないと、核酸代謝拮抗剤の有効量を確保するために当該ポリアミノ酸誘導体の総投与量が多くなり、投与利便性が低下するため好ましくない。一方、核酸代謝拮抗剤の含有率が60質量%より多い場合、骨髄抑制が強く発現する傾向がある。投与利便性を確保し、十分な薬効と副作用の低減を達成するために、核酸代謝拮抗剤の含有量を設定することが好ましい。
 該ポリアミノ酸誘導体における核酸代謝拮抗剤の質量含有率は、前述の該ポリアミノ酸誘導体の分子量に対する、前記(3)核酸代謝拮抗剤の総分子量の含有比率により算出することができる。核酸代謝拮抗剤の含有量のより好ましい範囲は、5質量%以上で50質量%以下である。核酸代謝拮抗剤含量が5質量%以上で40質量%以下であることが特に好ましい。
In the nucleic acid antimetabolite-binding polyamino acid derivative of the present invention, the mass content of the nucleic acid antimetabolite in the polyamino acid derivative is preferably 2% by mass or more and 60% by mass or less.
If the content of the nucleic acid antimetabolite is less than 2% by mass, the total dose of the polyamino acid derivative is increased in order to ensure an effective amount of the nucleic acid antimetabolite, which is not preferable. On the other hand, when the content of the nucleic acid antimetabolite is more than 60% by mass, myelosuppression tends to be strongly developed. It is preferable to set the content of the nucleic acid antimetabolite in order to ensure administration convenience and achieve sufficient drug efficacy and side effect reduction.
The mass content of the nucleic acid antimetabolite in the polyamino acid derivative can be calculated from the content ratio of the total molecular weight of the nucleic acid antimetabolite (3) to the molecular weight of the polyamino acid derivative. A more preferable range of the content of the nucleic acid antimetabolite is 5% by mass or more and 50% by mass or less. It is particularly preferable that the content of the nucleic acid antimetabolite is 5% by mass or more and 40% by mass or less.
 本発明の核酸代謝拮抗剤結合ポリアミノ酸誘導体は、該ポリアミノ酸誘導体の水溶液を調製して、非経口的に投与して用いることが好ましい。該水溶液は、水、生理食塩水、リン酸緩衝生理食塩水(PBS溶液)、5%ブドウ糖水溶液等により溶解して調製される。
 本発明の核酸代謝拮抗剤結合ポリアミノ酸誘導体は、該水溶液において、会合性を示さない物性であることが好ましい。ここで会合性とは、当該ポリアミノ酸誘導体が10分子より多くの分子で自己会合した凝集体を形成する物性であることを示す。したがって、本発明における「会合性を示さない物性」とは、水溶液中における当該ポリアミノ酸誘導体が単分子体で存在するか、若しくは自己会合体が10分子以下の会合体形成である態様を示す。
本発明の核酸代謝拮抗剤結合多分岐化合物の自己会合性の指標として、レーザー光を用いた光散乱強度を用いることが有効である。すなわち、当該核酸代謝拮抗剤結合多分岐化合物の水溶液中での自己会合性を、レーザー光散乱強度を指標として確認することができる。その際、トルエンを光散乱強度標準試料として、トルエンに対する相対強度を指標として、当該核酸代謝拮抗剤結合多分岐化合物の水溶液中での自己会合性を確認する方法が有効である。
 本発明において、当該ポリアミノ酸誘導体の濃度が1mg/mLの水溶液を、レーザー光散乱光度計にて計測し、光散乱強度がトルエンの光散乱強度に対する相対強度として5倍以下である場合、該ポリアミノ酸誘導体が会合性を示さず、ほぼ単分子体~数分子にて水溶液中に分散していると考えられる。好ましくは、光散乱強度がトルエンの光散乱強度に対する相対強度として3倍以下となるポリアミノ酸誘導体である。
The nucleic acid antimetabolite-binding polyamino acid derivative of the present invention is preferably prepared by preparing an aqueous solution of the polyamino acid derivative and administering it parenterally. The aqueous solution is prepared by dissolving in water, physiological saline, phosphate buffered saline (PBS solution), 5% glucose aqueous solution, or the like.
The nucleic acid antimetabolite-binding polyamino acid derivative of the present invention preferably has physical properties that do not exhibit associative properties in the aqueous solution. Here, the association property indicates that the polyamino acid derivative is a physical property that forms an aggregate in which more than 10 molecules self-associate. Therefore, the “physical property not exhibiting associative property” in the present invention indicates an embodiment in which the polyamino acid derivative in the aqueous solution exists as a monomolecular substance or the self-aggregate forms an aggregate of 10 molecules or less.
It is effective to use light scattering intensity using laser light as an index of the self-association property of the nucleic acid antimetabolite-binding hyperbranched compound of the present invention. That is, the self-association property of the nucleic acid antimetabolite-binding hyperbranched compound in an aqueous solution can be confirmed using the laser light scattering intensity as an index. At that time, a method for confirming the self-association property of the nucleic acid antimetabolite-binding multibranched compound in an aqueous solution using toluene as a light scattering intensity standard sample and relative intensity with respect to toluene as an index is effective.
In the present invention, when an aqueous solution having a polyamino acid derivative concentration of 1 mg / mL is measured with a laser light scattering photometer, and the light scattering intensity is 5 times or less as the relative intensity to the light scattering intensity of toluene, It is considered that the amino acid derivative does not exhibit associative properties and is dispersed in an aqueous solution in the form of a monomolecular substance to several molecules. Preferably, it is a polyamino acid derivative whose light scattering intensity is 3 times or less as relative intensity to the light scattering intensity of toluene.
 レーザー光散乱光度計としては、例えば、大塚電子社製ダイナミック光散乱光度計DLS-8000DL(測定温度25℃、測定角度:90°、波長:632.8nm、NDフィルター:5%、PH1:OPEN、PH2:SLIT、サンプル濃度:1mg/mL)を用い、当該ポリアミノ酸誘導体の濃度が1mg/mLの水溶液を、レーザー光散乱光度計にて光散乱強度を計測する測定方法を挙げることができる。
 なお、光散乱強度測定の標準物質して用いるトルエンは、試薬レベルの純度であれば特に限定されるものではなく用いることができる。光散乱分析の試料調製において通常行う、前処理濾過を行ったトルエンを用いることが好ましい。
 当該ポリアミノ酸誘導体は、この測定方法において、光散乱強度がトルエンの光散乱強度に対する相対強度として5倍以下である場合が好ましく、より好ましくは3倍以下である。この場合、下限値は特に限定されるものではなく、明確な光散乱強度を示さない場合であり、水溶液中において自己会合性を示さない状態を示している。
As the laser light scattering photometer, for example, a dynamic light scattering photometer DLS-8000DL (measurement temperature 25 ° C., measurement angle: 90 °, wavelength: 632.8 nm, ND filter: 5%, PH1: OPEN, manufactured by Otsuka Electronics Co., Ltd.) PH2: SLIT, sample concentration: 1 mg / mL), and measuring the light scattering intensity of an aqueous solution having a polyamino acid derivative concentration of 1 mg / mL with a laser light scattering photometer.
In addition, toluene used as a standard substance for light scattering intensity measurement is not particularly limited as long as it has a reagent level purity, and can be used. It is preferable to use toluene that has been subjected to pretreatment filtration, which is usually performed in sample preparation for light scattering analysis.
In this measurement method, the polyamino acid derivative preferably has a light scattering intensity of 5 times or less, more preferably 3 times or less as a relative intensity with respect to the light scattering intensity of toluene. In this case, the lower limit value is not particularly limited, and is a case where a clear light scattering intensity is not exhibited, indicating a state where self-association is not exhibited in an aqueous solution.
 本発明の核酸代謝拮抗剤結合ポリアミノ酸誘導体の水溶液中における自己会合性の有無は、骨髄抑制といった副作用と相関する。核酸代謝拮抗剤は、副作用として白血球減少等の骨髄抑制が発現し、該治療剤を用いた治療継続を困難とする問題がある。このため、骨髄抑制の少ない核酸代謝拮抗剤治療剤を提供することは、悪性腫瘍等の治療方法において、非常に有用である。本発明の核酸代謝拮抗剤結合ポリアミノ酸誘導体は、該誘導体の分子量を20キロダルトン以上で200キロダルトン以下にし、該ポリアミノ酸誘導体におけるポリエチレングリコールセグメントの質量含有率が30質量%以上90質量%以下とすることで、該誘導体が水溶液中における自己会合性を示さない物性となり、結果として骨髄抑制が少ない治療効果の高い医薬品を提供することができる。 The presence or absence of self-association in the aqueous solution of the nucleic acid antimetabolite-binding polyamino acid derivative of the present invention correlates with side effects such as bone marrow suppression. Nucleic acid metabolism antagonists have the problem that bone marrow suppression such as leukopenia occurs as a side effect, making it difficult to continue treatment using the therapeutic agent. For this reason, providing a therapeutic agent for a nucleic acid antimetabolite with low bone marrow suppression is very useful in a method for treating malignant tumors. In the nucleic acid antimetabolite-binding polyamino acid derivative of the present invention, the molecular weight of the derivative is 20 kilodaltons or more and 200 kilodaltons or less, and the mass content of the polyethylene glycol segment in the polyamino acid derivative is 30 mass% or more and 90 mass% or less. As a result, the derivative has physical properties that do not exhibit self-association in an aqueous solution, and as a result, a medicinal product having a high therapeutic effect with little bone marrow suppression can be provided.
 本発明の核酸代謝拮抗剤結合ポリアミノ酸誘導体は、下記一般式(1)で示される核酸代謝拮抗剤結合ポリアミノ酸誘導体であることが好ましい。
Figure JPOXMLDOC01-appb-C000017
 式中、Rは水素原子、炭素数(C1~C8)のアルキル基及びポリエチレングリコールセグメントからなる群から選択される基であり、Rは水素原子、炭素数(C1~C8)のアシル基及び炭素数(C1~C8)のアルコキシカルボニル基からなる群から選択される基を示し、Rはポリエチレングリコールセグメントを示し、Rは核酸代謝拮抗剤結合残基を示し、Rはアスパラギン酸結合残基及び/又はアスパラギン酸イミド結合残基を示し、Rは水酸基及び/又は-N(R)CONH(R)を示し、該R及び該Rは同一でも異なってもいてもよく、三級アミノ基で置換されていても良い炭素数(C1~C8)の直鎖状、分岐鎖状又は環状のアルキル基を示し、X及びXは結合基であり、Xはメチレン基又はエチレン基であり、a、b、c、d、e、f、g、h及びiはそれぞれ独立して0~200の整数を示し、ポリアミノ酸誘導体の総重合数である(a+b+c+d+e+f+g+h+i)は3~250であり、(a+b)は1~95であり、(c+d)は1~175であり、前記Rが結合したアミノ酸単位、前記Rが結合したアミノ酸単位、前記Rが結合したアミノ酸単位、前記Rが結合したアミノ酸単位及び側鎖カルボキシ基が分子内環化型のアミノ酸単位が、それぞれ独立してランダムな配列である核酸代謝拮抗剤結合ポリアミノ酸誘導体である。なお、該ポリアミノ酸誘導体の分子量が20キロダルトン以上で200キロダルトン以下であり、該ポリアミノ酸誘導体におけるポリエチレングリコールセグメントの質量含有率が30質量%以上90質量%以下であることを特徴とする。
The nucleic acid antimetabolite-binding polyamino acid derivative of the present invention is preferably a nucleic acid antimetabolite-binding polyamino acid derivative represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000017
In the formula, R 1 is a group selected from the group consisting of a hydrogen atom, an alkyl group having 1 to 8 carbon atoms and a polyethylene glycol segment, and R 2 is a hydrogen atom and an acyl group having 1 to 8 carbon atoms (C1 to C8). And a group selected from the group consisting of C1-C8 alkoxycarbonyl groups, R 3 represents a polyethylene glycol segment, R 4 represents a nucleic acid antimetabolite binding residue, and R 5 represents aspartic acid. A bonding residue and / or an aspartic imide bonding residue, R 6 represents a hydroxyl group and / or —N (R 7 ) CONH (R 8 ), and R 7 and R 8 may be the same or different. at best, a tertiary amino group may carbon atoms optionally substituted with (C1 ~ C8) for straight, branched or cyclic alkyl group, X 1 and X 2 is a linking group, X 3 Is methylene Or an ethylene group, a, b, c, d, e, f, g, h and i each independently represent an integer of 0 to 200, and the total number of polymerization of the polyamino acid derivative (a + b + c + d + e + f + g + h + i) is 3 250, (a + b) is 1 to 95, (c + d) is 1 to 175, the amino acid unit to which R 3 is bonded, the amino acid unit to which R 4 is bonded, and the amino acid to which R 5 is bonded The unit, the amino acid unit to which R 6 is bonded, and the amino acid unit in which the side chain carboxy group is an intramolecular cyclization type are each independently a random sequence of a nucleic acid antimetabolite-binding polyamino acid derivative. The molecular weight of the polyamino acid derivative is 20 kilodaltons or more and 200 kilodaltons or less, and the mass content of the polyethylene glycol segment in the polyamino acid derivative is 30 mass% or more and 90 mass% or less.
 前記一般式(1)におけるRは、水素原子、炭素数(C1~C8)のアルキル基及びポリエチレングリコールセグメントからなる群から選択される置換基である。
 前記炭素数(C1~C8)のアルキル基としては、直鎖状、分岐鎖状又は環状の炭素数(C1~C8)のアルキル基である。直鎖状アルキル基としては、例えばメチル基、エチル基、n-プロピル基、n-ブチル基、n-へキシル基、n-オクチル基等を挙げることができる。分岐鎖状アルキル基としては、例えばイソプロピル基、t-ブチル基、1-メチル-プロピル基、2-メチル-プロピル基、2,2-ジメチルプロピル基等が挙げられる。環状アルキル基としては、例えばシクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロへキシルメチル基、シクロへキシルエチル基等が挙げられる。
R 1 in the general formula (1) is a substituent selected from the group consisting of a hydrogen atom, an alkyl group having from 1 to 8 carbon atoms and a polyethylene glycol segment.
The alkyl group having a carbon number (C1 to C8) is a linear, branched or cyclic alkyl group having a carbon number (C1 to C8). Examples of the linear alkyl group include a methyl group, an ethyl group, an n-propyl group, an n-butyl group, an n-hexyl group, and an n-octyl group. Examples of the branched alkyl group include isopropyl group, t-butyl group, 1-methyl-propyl group, 2-methyl-propyl group, 2,2-dimethylpropyl group and the like. Examples of the cyclic alkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cyclohexylmethyl group, and a cyclohexylethyl group.
 前記一般式(1)のRにおけるポリエチレングリコールセグメントとしては、エチレンオキシ基;(CHCHO)単位の繰り返し構造を有するセグメントである。好ましくはエチレンオキシ基単位重合度が5~10,000ユニット、より好ましくは重合度が5~5,000ユニットのポリエチレングリコール鎖を含むセグメント構造である。すなわち該ポリエチレングリコールセグメントは、ポリエチレングリコール相当の平均分子量として200ダルトン~500キロダルトンのセグメント部であることが好ましく、より好ましくは平均分子量として200ダルトン~250キロダルトンの構造部分であり、特に好ましくは平均分子量として200ダルトン~150キロダルトンである。平均分子量として1,000ダルトン~50キロダルトンのポリエチレングリコールセグメントであることが、殊更好ましい。
 なお、本発明で用いるポリエチレングリコールセグメントの平均分子量とは、本発明の核酸代謝拮抗剤結合ポリアミノ酸誘導体を調製する際において、用いるポリエチレングリコールセグメント構造化合物の、ポリエチレングリコール標準品を基準としたGPC法により測定されるピークトップ分子量により求められる平均分子量である。
The polyethylene glycol segment in R 1 of the general formula (1) is a segment having a repeating structure of ethyleneoxy group; (CH 2 CH 2 O) units. A segment structure containing a polyethylene glycol chain having an ethyleneoxy group unit polymerization degree of 5 to 10,000 units, more preferably a polymerization degree of 5 to 5,000 units. That is, the polyethylene glycol segment is preferably a segment portion having an average molecular weight of 200 to 500 kilodaltons equivalent to polyethylene glycol, more preferably a structural portion having an average molecular weight of 200 to 250 kilodaltons, particularly preferably. The average molecular weight is 200 to 150 kilodaltons. A polyethylene glycol segment having an average molecular weight of 1,000 to 50 kilodaltons is particularly preferred.
The average molecular weight of the polyethylene glycol segment used in the present invention is the GPC method based on the polyethylene glycol standard structure of the polyethylene glycol segment structural compound used in preparing the nucleic acid antimetabolite-binding polyamino acid derivative of the present invention. It is an average molecular weight calculated | required by the peak top molecular weight measured by (1).
 該Rとしてのポリエチレングリコールセグメントにおける、ポリアミノ酸主鎖との結合側末端基は、該ポリアミノ酸誘導体への適当な結合基であれば特に限定されるものではない。好ましくは置換基を有していても良い炭素数(C1~C8)のアルキレン基である。例えば、メチレン基、エチレン基、プロピレン基、ブチレン基、ヘキサメチレン基、オクタメチレン基等が挙げられる。すなわち、エチレンオキシ基:(CHCHO)単位の酸素原子と、前記炭素数(C1~C8)のアルキレン基がエーテル結合した構造である該ポリエチレングリコールセグメント構成であることが好ましい。 In the polyethylene glycol segment as R 1 , the bonding side terminal group with the polyamino acid main chain is not particularly limited as long as it is a suitable linking group to the polyamino acid derivative. An alkylene group having a carbon number (C1 to C8) which may have a substituent is preferable. For example, a methylene group, ethylene group, propylene group, butylene group, hexamethylene group, octamethylene group and the like can be mentioned. That is, the polyethylene glycol segment structure is preferably a structure in which an oxygen atom of an ethyleneoxy group: (CH 2 CH 2 O) unit and an alkylene group having the carbon number (C1 to C8) are ether-bonded.
 また、該Rにおける該ポリエチレングリコールセグメントの末端基は特に限定されるものではなく、水素原子、水酸基、置換基を有していても良い炭素数(C1~C8)のアルコキシ基、置換基を有していても良い炭素数(C7~C20)アラルキルオキシ基等を挙げることができる。該アルコキシ基、アルキニルオキシ基、アラルキルオキシ基における置換基としては、水酸基、アミノ基、ホルミル基、カルボキシ基等が挙げられる。
 該末端基における置換基を有していても良い炭素数(C1~C8)アルコキシ基としては、直鎖、分岐鎖又は環状の(C1~C8)アルコキシ基が挙げられる。例えば、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、t-ブトキシ基、n-ペンチルオキシ基、イソペンチルオキシ基、2-メチルブトキシ基、ネオペンチルオキシ基、1-エチルプロポキシ基、n-ヘキシルオキシ基、4-メチルペンチルオキシ基、3-メチルペンチルオキシ基、2-メチルペンチルオキシ基、1-メチルペンチルオキシ基、3,3-ジメチルブトキシ基、2,2-ジメチルブトキシ基、1,1-ジメチルブトキシ基、1,2-ジメチルブトキシ基、1,3-ジメチルブトキシ基、2,3-ジメチルブトキシ基、2-エチルブトキシ基、シクロプロポキシ基、シクロペンチルオキシ基又はシクロヘキシルオキシ基等が挙げられる。好ましくは(C1~C4)アルコキシ基であり、例えば、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、s-ブトキシ基又はt-ブトキシ基等であり、特に好ましくはメトキシ基、エトキシ基、n-プロポキシ基又はイソプロポキシ基である。
 該末端基における置換基を有していても良い炭素数(C7~C20)アラルキルオキシ基としては、いずれか1カ所の水素原子がアリール基で置換されている直鎖または分岐鎖アルキル基である。例えば、ベンジルオキシ基、2-フェニルエチルオキシ基、4-フェニルブチルオキシ基、3-フェニルブチルオキシ基、5-フェニルペンチルオキシ基、6-フェニルへキシルオキシ基、8-フェニルオクチルオキシ基等が挙げられる。好ましくはベンジルオキシ基、4-フェニルブチルオキシ基、8-フェニルオクチルオキシ基である。
Further, the terminal group of the polyethylene glycol segment in R 1 is not particularly limited, and may be a hydrogen atom, a hydroxyl group, an alkoxy group having a carbon number (C1 to C8) which may have a substituent, or a substituent. Examples thereof include an optionally substituted carbon number (C7 to C20) aralkyloxy group. Examples of the substituent in the alkoxy group, alkynyloxy group, and aralkyloxy group include a hydroxyl group, an amino group, a formyl group, and a carboxy group.
Examples of the carbon number (C1 to C8) alkoxy group which may have a substituent in the terminal group include a linear, branched or cyclic (C1 to C8) alkoxy group. For example, methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, isobutoxy group, t-butoxy group, n-pentyloxy group, isopentyloxy group, 2-methylbutoxy group, neopentyloxy Group, 1-ethylpropoxy group, n-hexyloxy group, 4-methylpentyloxy group, 3-methylpentyloxy group, 2-methylpentyloxy group, 1-methylpentyloxy group, 3,3-dimethylbutoxy group, 2,2-dimethylbutoxy group, 1,1-dimethylbutoxy group, 1,2-dimethylbutoxy group, 1,3-dimethylbutoxy group, 2,3-dimethylbutoxy group, 2-ethylbutoxy group, cyclopropoxy group, Examples include a cyclopentyloxy group or a cyclohexyloxy group. Preferred is a (C1 to C4) alkoxy group, such as a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, an s-butoxy group or a t-butoxy group, and particularly preferably A methoxy group, an ethoxy group, an n-propoxy group or an isopropoxy group;
The carbon number (C7 to C20) aralkyloxy group which may have a substituent in the terminal group is a linear or branched alkyl group in which any one hydrogen atom is substituted with an aryl group . For example, benzyloxy group, 2-phenylethyloxy group, 4-phenylbutyloxy group, 3-phenylbutyloxy group, 5-phenylpentyloxy group, 6-phenylhexyloxy group, 8-phenyloctyloxy group, etc. It is done. A benzyloxy group, a 4-phenylbutyloxy group, and an 8-phenyloctyloxy group are preferable.
 前記一般式(1)におけるRは、水素原子、炭素数(C1~C8)のアシル基及び炭素数(C1~C8)のアルコキシカルボニル基からなる群から選択される1種以上の置換基を示す。
 前記炭素数(C1~C8)のアシル基としては、直鎖状、分岐鎖状又は環状の炭素数(C1~C8)のアシル基である。例えば、ホルミル基、アセチル基、プロピオニル基、ブチロイル基、シクロプロピルカルボニル基、シクロペンタンカルボニル基等が挙げられる。
 前記炭素数(C1~C8)のアルコキシカルボニル基としては、直鎖状、分岐鎖状又は環状の炭素数(C1~C8)のアルコキシカルボニル基である。例えば、メトキシカルボニル基、エトキシカルボニル基、プロポキシカルボニル基、イソプロポキシカルボニル基、n-ブトキシカルボニル基、t-ブトキシカルボニル基、ペントキシカルボニル基、ヘキシルオキシカルボニル基、シクロプロポキシカルボニル基、シクロペンチルオキシカルボニル基、シクロヘキシルオキシカルボニル基等が挙げられる。
R 2 in the general formula (1) represents one or more substituents selected from the group consisting of a hydrogen atom, an acyl group having a carbon number (C1 to C8) and an alkoxycarbonyl group having a carbon number (C1 to C8). Show.
The acyl group having a carbon number (C1 to C8) is a linear, branched or cyclic acyl group having a carbon number (C1 to C8). Examples include formyl group, acetyl group, propionyl group, butyroyl group, cyclopropylcarbonyl group, cyclopentanecarbonyl group and the like.
The alkoxycarbonyl group having a carbon number (C1 to C8) is a linear, branched or cyclic alkoxycarbonyl group having a carbon number (C1 to C8). For example, methoxycarbonyl group, ethoxycarbonyl group, propoxycarbonyl group, isopropoxycarbonyl group, n-butoxycarbonyl group, t-butoxycarbonyl group, pentoxycarbonyl group, hexyloxycarbonyl group, cyclopropoxycarbonyl group, cyclopentyloxycarbonyl group And a cyclohexyloxycarbonyl group.
 前記一般式(1)におけるRは、ポリエチレングリコールセグメントを示す。該ポリエチレングリコールセグメントとしては、エチレンオキシ基:(CHCHO)単位の繰り返し構造を有するセグメントである。好ましくはエチレンオキシ基単位重合度が5~10,000ユニット、より好ましくは重合度が5~5,000ユニットのポリエチレングリコール鎖を含むセグメント構造である。すなわち該ポリエチレングリコールセグメントは、ポリエチレングリコール相当の平均分子量として200ダルトン~500キロダルトンのセグメント部であることが好ましく、より好ましくは平均分子量として200ダルトン~250キロダルトンの構造部分であり、特に好ましくは平均分子量として200ダルトン~150キロダルトンである。平均分子量として1,000ダルトン~50キロダルトンのポリエチレングリコールセグメントであることが、殊更好ましい。
 なお、本発明で用いるポリエチレングリコールセグメントの平均分子量とは、本発明の核酸代謝拮抗剤結合ポリアミノ酸誘導体を調製する際において、用いるポリエチレングリコールセグメント構造化合物の、ポリエチレングリコール標準品を基準としたGPC法により測定されるピークトップ分子量により求められる平均分子量である。
R 3 in the general formula (1) represents a polyethylene glycol segment. The polyethylene glycol segment is a segment having a repeating structure of an ethyleneoxy group: (CH 2 CH 2 O) unit. A segment structure containing a polyethylene glycol chain having an ethyleneoxy group unit polymerization degree of 5 to 10,000 units, more preferably a polymerization degree of 5 to 5,000 units. That is, the polyethylene glycol segment is preferably a segment portion having an average molecular weight of 200 to 500 kilodaltons equivalent to polyethylene glycol, more preferably a structural portion having an average molecular weight of 200 to 250 kilodaltons, particularly preferably. The average molecular weight is 200 to 150 kilodaltons. A polyethylene glycol segment having an average molecular weight of 1,000 to 50 kilodaltons is particularly preferred.
The average molecular weight of the polyethylene glycol segment used in the present invention is the GPC method based on the polyethylene glycol standard structure of the polyethylene glycol segment structural compound used in preparing the nucleic acid antimetabolite-binding polyamino acid derivative of the present invention. It is an average molecular weight calculated | required by the peak top molecular weight measured by (1).
 該Rにおける該ポリエチレングリコールセグメントの、前記ポリアミノ酸主鎖の側鎖カルボキシ基と結合する側の末端基は、該側鎖カルボキシ基と直接又は結合基を介して結合するための連結基である。すなわち、エチレンオキシ基:(CHCHO)単位の酸素原子が末端基となる。 The terminal group of the polyethylene glycol segment in R 3 that is bonded to the side chain carboxy group of the polyamino acid main chain is a linking group for bonding to the side chain carboxy group directly or via a bonding group. . That is, an oxygen atom of an ethyleneoxy group: (CH 2 CH 2 O) unit is a terminal group.
 一方、該Rにおける該ポリエチレングリコールセグメントの他方の末端基は特に限定されるものではなく、水素原子、水酸基、置換基を有していても良い炭素数(C1~C8)のアルコキシ基、置換基を有していても良い炭素数(C7~C20)のアラルキルオキシ基等を挙げることができる。該アルコキシ基、アルキニルオキシ基、アラルキルオキシ基における置換基としては、水酸基、アミノ基、ホルミル基、カルボキシ基等が挙げられる。
 該末端基における置換基を有していても良い炭素数(C1~C8)のアルコキシ基としては、直鎖、分岐鎖又は環状の(C1~C8)のアルコキシ基が挙げられる。例えば、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、t-ブトキシ基、n-ペンチルオキシ基、イソペンチルオキシ基、2-メチルブトキシ基、ネオペンチルオキシ基、1-エチルプロポキシ基、n-ヘキシルオキシ基、4-メチルペンチルオキシ基、3-メチルペンチルオキシ基、2-メチルペンチルオキシ基、1-メチルペンチルオキシ基、3,3-ジメチルブトキシ基、2,2-ジメチルブトキシ基、1,1-ジメチルブトキシ基、1,2-ジメチルブトキシ基、1,3-ジメチルブトキシ基、2,3-ジメチルブトキシ基、2-エチルブトキシ基、シクロプロポキシ基、シクロペンチルオキシ基又はシクロヘキシルオキシ基等が挙げられる。好ましくは(C1~C4)アルコキシ基であり、例えば、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、s-ブトキシ基又はt-ブトキシ基等であり、特に好ましくはメトキシ基、エトキシ基、n-プロポキシ基又はイソプロポキシ基である。
 該末端基における置換基を有していても良い炭素数(C7~C20)のアラルキルオキシ基としては、いずれか1カ所の水素原子がアリール基で置換されている直鎖または分岐鎖アルキル基である。例えば、ベンジルオキシ基、2-フェニルエチルオキシ基、4-フェニルブチルオキシ基、3-フェニルブチルオキシ基、5-フェニルペンチルオキシ基、6-フェニルへキシルオキシ基、8-フェニルオクチルオキシ基等が挙げられる。好ましくはベンジルオキシ基、4-フェニルブチルオキシ基、8-フェニルオクチルオキシ基である。
On the other hand, the other terminal group of the polyethylene glycol segment in R 3 is not particularly limited, and may be a hydrogen atom, a hydroxyl group, an optionally substituted alkoxy group having a carbon number (C1 to C8), a substituted group. And an aralkyloxy group having a carbon number (C7 to C20) which may have a group. Examples of the substituent in the alkoxy group, alkynyloxy group, and aralkyloxy group include a hydroxyl group, an amino group, a formyl group, and a carboxy group.
Examples of the alkoxy group having a carbon number (C1 to C8) which may have a substituent in the terminal group include a linear, branched or cyclic (C1 to C8) alkoxy group. For example, methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, isobutoxy group, t-butoxy group, n-pentyloxy group, isopentyloxy group, 2-methylbutoxy group, neopentyloxy Group, 1-ethylpropoxy group, n-hexyloxy group, 4-methylpentyloxy group, 3-methylpentyloxy group, 2-methylpentyloxy group, 1-methylpentyloxy group, 3,3-dimethylbutoxy group, 2,2-dimethylbutoxy group, 1,1-dimethylbutoxy group, 1,2-dimethylbutoxy group, 1,3-dimethylbutoxy group, 2,3-dimethylbutoxy group, 2-ethylbutoxy group, cyclopropoxy group, Examples include a cyclopentyloxy group or a cyclohexyloxy group. Preferred is a (C1 to C4) alkoxy group, such as a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, an s-butoxy group or a t-butoxy group, and particularly preferably A methoxy group, an ethoxy group, an n-propoxy group or an isopropoxy group;
The aralkyloxy group having a carbon number (C7 to C20) which may have a substituent in the terminal group is a linear or branched alkyl group in which any one hydrogen atom is substituted with an aryl group. is there. For example, benzyloxy group, 2-phenylethyloxy group, 4-phenylbutyloxy group, 3-phenylbutyloxy group, 5-phenylpentyloxy group, 6-phenylhexyloxy group, 8-phenyloctyloxy group, etc. It is done. A benzyloxy group, a 4-phenylbutyloxy group, and an 8-phenyloctyloxy group are preferable.
 前記一般式(1)におけるRは、より好ましくは下記一般式(7)で示されるポリエチレングリコールセグメントである。
Figure JPOXMLDOC01-appb-C000018
 式中、R15は水素原子又は置換基を有していても良い炭素数(C1~C8)の直鎖状、分岐鎖状又は環状のアルキル基を示し、nは5~2,500の整数を示す。
R 3 in the general formula (1) is more preferably a polyethylene glycol segment represented by the following general formula (7).
Figure JPOXMLDOC01-appb-C000018
In the formula, R 15 represents a hydrogen atom or a linear, branched or cyclic alkyl group having a carbon number (C1 to C8) which may have a substituent, and n is an integer of 5 to 2,500. Indicates.
 前記R15における置換基を有していても良い炭素数(C1~C8)の直鎖状、分岐鎖状又は環状のアルキル基は、例えば、直鎖状アルキル基としては、例えばメチル基、エチル基、n-プロピル基、n-ブチル基、n-へキシル基、n-デシル基等を挙げることができる。分岐鎖状アルキル基としては、例えばイソプロピル基、t-ブチル基、1-メチル-プロピル基、2-メチル-プロピル基、2,2-ジメチルプロピル基等が挙げられる。環状アルキル基としては、例えばシクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、アダマンチル基等が挙げられる。
 有しても良い置換基としては、メルカプト基、水酸基、ハロゲン原子、ニトロ基、シアノ基、炭素環若しくは複素環アリール基、アルキルチオ基、アリールチオ基、アルキルスルフィニル基、アリールスルフィニル基、アルキルスルホニル基、アリールスルホニル基、スルファモイル基、アルコキシ基、アリールオキシ基、アシルオキシ基、アルコキシカルボニルオキシ基、カルバモイルオキシ基、置換又は無置換アミノ基、アシルアミノ基、アルコキシカルボニルアミノ基、ウレイド基、スルホニルアミノ基、スルファモイルアミノ基、ホルミル基、アシル基、カルボキシ基、アルコキシカルボニル基、カルバモイル基又はシリル基等を挙げることができる。芳香環上の置換位置は、オルト位でも、メタ位でも、パラ位でも良い。
Examples of the linear, branched or cyclic alkyl group having a carbon number (C1 to C8) which may have a substituent in R 15 include, for example, a methyl group, an ethyl group, and the like. Group, n-propyl group, n-butyl group, n-hexyl group, n-decyl group and the like. Examples of the branched alkyl group include isopropyl group, t-butyl group, 1-methyl-propyl group, 2-methyl-propyl group, 2,2-dimethylpropyl group and the like. Examples of the cyclic alkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, and an adamantyl group.
Examples of the substituent that may have a mercapto group, a hydroxyl group, a halogen atom, a nitro group, a cyano group, a carbocyclic or heterocyclic aryl group, an alkylthio group, an arylthio group, an alkylsulfinyl group, an arylsulfinyl group, an alkylsulfonyl group, Arylsulfonyl group, sulfamoyl group, alkoxy group, aryloxy group, acyloxy group, alkoxycarbonyloxy group, carbamoyloxy group, substituted or unsubstituted amino group, acylamino group, alkoxycarbonylamino group, ureido group, sulfonylamino group, sulfa A moylamino group, a formyl group, an acyl group, a carboxy group, an alkoxycarbonyl group, a carbamoyl group or a silyl group can be exemplified. The substitution position on the aromatic ring may be the ortho position, the meta position, or the para position.
 前記一般式(1)におけるXは、前記Rに係るポリエチレングリコールセグメントとポリアミノ酸誘導体の側鎖カルボキシ基とを結合させる結合基である。該結合基としては、該ポリエチレングリコールセグメント末端基の酸素原子と、該ポリアミノ酸誘導体の側鎖カルボキシ基に対して、それぞれ結合可能な官能基を両末端に有する結合基であれば、特に限定されるものではない。 X 1 in the general formula (1) is a linking group that binds the polyethylene glycol segment according to R 3 and the side chain carboxy group of the polyamino acid derivative. The linking group is not particularly limited as long as it is a linking group having functional groups at both ends capable of binding to the oxygen atom of the polyethylene glycol segment end group and the side chain carboxy group of the polyamino acid derivative. It is not something.
 該結合基は、一方の末端基が、該ポリエチレングリコールセグメントの末端酸素原子とエーテル結合様式、エステル結合、ウレタン結合又はカーボネート結合する結合性官能基を有し、もう一方の末端基が、該側鎖カルボキシ基とエステル結合、アミド結合、チオエステル結合する結合性官能基を有する、置換基を有していても良い炭素数(C1~C8)のアルキレン基である。
 該Xに係る結合基としては、ポリエチレングリコールセグメントとエーテル結合し、側鎖カルボキシ基とアミド結合、エステル結合又はチオエステル結合する結合基として、例えば、-(CH-NH-(xは1~8の整数を示す)、-(CH-O-(xは1~8の整数を示す)、-(CH-S-(xは1~8の整数を示す)等が挙げられる。ポリエチレングリコールセグメントとエステル結合し、側鎖カルボキシ基とアミド結合、エステル結合又はチオエステル結合する結合基として、例えば、-CO-(CH-NH-(xは1~8の整数を示す)、-CO-(CH-O-(xは1~8の整数を示す)、-CO-(CH-S-(xは1~8の整数を示す)等が挙げられる。ポリエチレングリコールセグメントとウレタン結合し、側鎖カルボキシ基とアミド結合、エステル結合又はチオエステル結合する結合基として、例えば、-CONH-(CH-NH-(xは1~8の整数を示す)、-CONH-(CH-O-(xは1~8の整数を示す)、-CONH-(CH-S-(xは1~8の整数を示す)等が挙げられる。また、ポリエチレングリコールセグメントとカーボネート結合し、側鎖カルボキシ基とアミド結合、エステル結合又はチオエステル結合する結合基として、例えば、-COO-(CH-NH-(xは1~8の整数を示す)、-COO-(CH-O-(xは1~8の整数を示す)、-COO-(CH-S-(xは1~8の整数を示す)等を挙げることができる。好ましくは、ポリエチレングリコールセグメントとエーテル結合し、側鎖カルボキシ基とアミド結合する結合基であり、該Xとしては、-(CH-NH-(xは1~8の整数を示す)である。
The linking group has a binding functional group in which one end group is bonded to the terminal oxygen atom of the polyethylene glycol segment in an ether bond mode, an ester bond, a urethane bond, or a carbonate bond, and the other end group is on the side. It is a C1-C8 alkylene group which has a linking functional group capable of forming an ester bond, an amide bond, or a thioester bond with a chain carboxy group and may have a substituent.
Examples of the linking group according to X 1 include an ether bond with a polyethylene glycol segment, and a linking group with an amide bond, an ester bond or a thioester bond with a side chain carboxy group, such as — (CH 2 ) x —NH— (where x is 1 represents an integer of 1 to 8), — (CH 2 ) x —O— (x represents an integer of 1 to 8), — (CH 2 ) x —S— (x represents an integer of 1 to 8) Etc. As a linking group that is ester-bonded to a polyethylene glycol segment and is linked to an amide bond, ester bond or thioester bond to a side chain carboxy group, for example, —CO— (CH 2 ) x —NH— (x represents an integer of 1 to 8) , —CO— (CH 2 ) x —O— (x represents an integer of 1 to 8), —CO— (CH 2 ) x —S— (x represents an integer of 1 to 8), and the like. . As a linking group that is urethane-bonded to a polyethylene glycol segment and amide bond, ester bond or thioester bond to a side chain carboxy group, for example, —CONH— (CH 2 ) x —NH— (x represents an integer of 1 to 8) , —CONH— (CH 2 ) x —O— (x represents an integer of 1 to 8), —CONH— (CH 2 ) x —S— (x represents an integer of 1 to 8), and the like. . In addition, as a linking group that bonds to a polyethylene glycol segment and binds to a side chain carboxy group to an amide bond, ester bond, or thioester bond, for example, —COO— (CH 2 ) x —NH— (x is an integer of 1 to 8). -COO- (CH 2 ) x -O- (x represents an integer of 1 to 8), -COO- (CH 2 ) x -S- (x represents an integer of 1 to 8), etc. Can be mentioned. Preferably, it is a linking group that is ether-bonded to a polyethylene glycol segment and amide-bonded to a side chain carboxy group, and as X 1 , — (CH 2 ) x —NH— (x represents an integer of 1 to 8) It is.
 また、該Xに係る結合基としてアミノ酸誘導体を用いても良い。アミノ酸誘導体を結合基とする場合の結合基の使用態様としては、アミノ酸誘導体のN末アミノ基が、前記側鎖カルボキシ基とアミド結合し、C末カルボキシ基が、該ポリエチレングリコールセグメントの末端酸素原子とエステル結合する態様である。
 該Xに係る結合基としてアミノ酸誘導体を用いる場合、用いられるアミノ酸は、天然アミノ酸または非天然アミノ酸であってよく、L体、D体のいずれでも特に限定されずに用いることができる。例えば、グリシン、β-アラニン、アラニン、ロイシン、フェニルアラニン等の炭化水素系アミノ酸、アスパラギン酸、グルタミン酸等の酸性アミノ酸、リジン、アルギニン、ヒスチジン等の塩基性アミノ酸等を用いることができる。
It is also possible to use an amino acid derivative as binding group according to the X 1. When the amino acid derivative is used as a linking group, the linking group is used in such a manner that the N-terminal amino group of the amino acid derivative is amide-bonded with the side chain carboxy group, and the C-terminal carboxy group is the terminal oxygen atom of the polyethylene glycol segment. And an ester bond.
When using an amino acid derivative as binding group according to the X 1, amino acids used may be natural amino acids or unnatural amino acids, L body, can be used without being limited particularly either D-form. For example, hydrocarbon amino acids such as glycine, β-alanine, alanine, leucine and phenylalanine, acidic amino acids such as aspartic acid and glutamic acid, basic amino acids such as lysine, arginine and histidine can be used.
 また、該Xは「結合」であってよい。「結合」とは、特に結合基を介せず、当該ポリアミノ酸誘導体の側鎖カルボキシ基と該ポリエチレングリコールセグメントの末端酸素原子が、直接エステル結合している態様を指す。 The X 1 may be a “bond”. The “bond” refers to an embodiment in which the side chain carboxy group of the polyamino acid derivative and the terminal oxygen atom of the polyethylene glycol segment are directly ester-linked without using a linking group.
 前記一般式(1)におけるRは、抗腫瘍活性又は抗ウイルス活性を有しヌクレオシド誘導体の構造を有する核酸代謝拮抗剤の結合残基である。本発明において、用いることができる核酸代謝拮抗剤としては、アミノ基及び/又は水酸基を有する核酸代謝拮抗剤であれば特に限定されるものではない。該核酸代謝拮抗剤としては、例えば、ピリミジン系代謝拮抗剤、プリン系代謝拮抗剤、トリアジン系代謝拮抗剤等が挙げられる。ここで、核酸代謝拮抗剤の結合残基とは、該核酸代謝拮抗剤のアミノ基によるアミド結合した場合の結合残基、若しくは、該核酸代謝拮抗剤の水酸基によるエステル結合した場合の、ヌクレオシド誘導体側の結合体構造を指す。 R 4 in the general formula (1) is a binding residue of a nucleic acid antimetabolite that has antitumor activity or antiviral activity and has a structure of a nucleoside derivative. The nucleic acid antimetabolite that can be used in the present invention is not particularly limited as long as it is a nucleic acid antimetabolite having an amino group and / or a hydroxyl group. Examples of the nucleic acid antimetabolite include pyrimidine antimetabolite, purine antimetabolite, triazine antimetabolite and the like. Here, the binding residue of the nucleic acid antimetabolite is a binding residue in the case of an amide bond by the amino group of the nucleic acid antimetabolite, or a nucleoside derivative in the case of an ester bond by the hydroxyl group of the nucleic acid antimetabolite Refers to the side conjugate structure.
 前記Rに係る核酸代謝拮抗剤は、ヌクレオシド塩基にアミノ基を有する核酸代謝拮抗剤を用いることが好ましい。すなわち、該Rは、アミノ基を有する核酸代謝拮抗剤であって、アミド結合により結合した結合残基であることが好ましい。 The nucleic acid antimetabolite according to R 4 is preferably a nucleic acid antimetabolite having an amino group at the nucleoside base. That is, R 4 is a nucleic acid antimetabolite having an amino group, and is preferably a binding residue bonded by an amide bond.
 前記Rは、核酸塩基部分が下記式(8)から選択されるいずれか1種以上であり、それに結合している基(Rf)が下記式(9)から選択されるいずれか1種以上の組み合せである核酸代謝拮抗剤であることが特に好ましい。
Figure JPOXMLDOC01-appb-C000019
[式中、-Rfは、式(9):
Figure JPOXMLDOC01-appb-C000020
の置換基群より選ばれる基を示し、R16は水素原子又は脂肪酸エステルのアシル基残基を示す。]
In R 4 , the nucleobase moiety is any one or more selected from the following formula (8), and the group (Rf) bonded thereto is selected from the following formula (9). Particularly preferred is a nucleic acid antimetabolite that is a combination of the above.
Figure JPOXMLDOC01-appb-C000019
[Wherein, -Rf represents the formula (9):
Figure JPOXMLDOC01-appb-C000020
And R 16 represents a hydrogen atom or an acyl group residue of a fatty acid ester. ]
 前記R16における脂肪酸エステルのアシル基は、炭素数(C4~C30)の炭化水素のモノカルボン酸がエステル結合したアシル残基である。炭素数(C4~C30)の炭化水素は、飽和炭化水素である飽和脂肪酸であっても良く、1以上の二重結合を含む不飽和炭化水素である不飽和脂肪酸であってもよい。これらの脂肪酸エステルは、当該核酸代謝拮抗剤の脂溶性誘導体として知られており、本発明の核酸代謝拮抗剤結合ポリアミノ酸誘導体の有効成分として使用することができる。
 前記R16としての脂肪酸エステルのアシル基残基の脂肪酸において、前記飽和脂肪酸としては、ブタン酸、ペンタン酸、ヘキサン酸、オクタン酸、デカン酸、ドデカン酸、テトラデカン酸、ヘキサデカン酸、オクタデカン酸、エイコサン酸、ドコサン酸等が挙げられる。
 また前記不飽和脂肪酸としては、9-ヘキサデセン酸、cis-9-オクタデセン酸、trans-9-オクタデセン酸、cis,cis-9,12-オクタデカジエン酸、9,12,15-オクタデカトリエン酸、6,9,12-オクタデカトリエン酸、5,8,11,14-エイコサテトラエン酸等が挙げられる。
The acyl group of the fatty acid ester in R 16 is an acyl residue in which a monocarboxylic acid having a carbon number (C4 to C30) is ester-bonded. The hydrocarbon having a carbon number (C4 to C30) may be a saturated fatty acid that is a saturated hydrocarbon, or an unsaturated fatty acid that is an unsaturated hydrocarbon containing one or more double bonds. These fatty acid esters are known as fat-soluble derivatives of the nucleic acid antimetabolite, and can be used as an active ingredient of the nucleic acid antimetabolite-binding polyamino acid derivative of the present invention.
In the fatty acid of the acyl group residue of the fatty acid ester as R 16 , the saturated fatty acid includes butanoic acid, pentanoic acid, hexanoic acid, octanoic acid, decanoic acid, dodecanoic acid, tetradecanoic acid, hexadecanoic acid, octadecanoic acid, eicosane. An acid, docosanoic acid, etc. are mentioned.
Examples of the unsaturated fatty acid include 9-hexadecenoic acid, cis-9-octadecenoic acid, trans-9-octadecenoic acid, cis, cis-9,12-octadecadienoic acid, and 9,12,15-octadecatrienoic acid. 6,9,12-octadecatrienoic acid, 5,8,11,14-eicosatetraenoic acid, and the like.
 一般式(1)のRに係る核酸代謝拮抗剤は、抗腫瘍剤又は抗ウイルス剤として有効性が知られている核酸代謝拮抗剤を用いることが特に好ましい。例えば、シタラビン(cytarabine)、ゲムシタビン(gemcitabine)、アザシチジン(azacitidine)、デシタビン(decitabine)、ネララビン(nelarabine)、2’-メチリデン-2’-デオキシシチジン(DMDC)、トロキサシタビン(troxacitabine)、3’-エチニルシチジン(Ethynylcytidine)、2’-シアノ-2’-デオキシ-1-β-D-アラビノフラノシルシトシン(CNDAC)、2’-デオキシ-5,6-ジヒドロ5-アザシチジン(DHAC)、5’-フルオロ-2’-デオキシシチジン(NSC-48006)、4’-チオ-β-D-アラビノフラノシルシトシン(OSI-7836)、クラドリビン(Cladribine)、クロファラビン(Clofarabine)又はフルダラビン(Fludarabine)、シタラビン-5’-エライジン酸エステル(CP-4055)、ゲムシタビン-5’-エライジン酸エステル(CP-4126)である。 As the nucleic acid antimetabolite according to R 4 in the general formula (1), it is particularly preferable to use a nucleic acid antimetabolite known to be effective as an antitumor agent or an antiviral agent. For example, cytarabine, gemcitabine, azacitidine, decitabine, nelarabine, 2'-methylidene-2'-deoxycytidine (DMDC), troxacitabine Cytidine (Ethynycytidine), 2′-cyano-2′-deoxy-1-β-D-arabinofuranosylcytosine (CNDAC), 2′-deoxy-5,6-dihydro-5-azacytidine (DHAC), 5′- Fluoro-2'-deoxycytidine (NSC-48006), 4'-thio-β-D-arabinofuranosylcytosine (OSI-7836), cladribine, clofala Down (Clofarabine) or fludarabine (Fludarabine), cytarabine-5'-elaidate (CP-4055), gemcitabine-5'-elaidic acid ester (CP-4126).
 一般式(1)のRにおける核酸代謝拮抗剤は、シチジン系代謝拮抗剤を用いることが好ましく、核酸塩基部分が下記式(10)で示されるシチジン塩基であり、それに結合している基(Rf)が下記式(11)の置換基群から選択されるいずれか1種以上の組み合せである核酸代謝拮抗剤であることが特に好ましい。ここで、R16は水酸基又は脂肪酸エステルのアシル基で表される化合物である。 As the nucleic acid antimetabolite in R 4 of the general formula (1), a cytidine antimetabolite is preferably used. The nucleobase moiety is a cytidine base represented by the following formula (10), and a group ( Rf) is particularly preferably a nucleic acid antimetabolite that is a combination of any one or more selected from the substituent group of the following formula (11). Here, R 16 is a compound represented by a hydroxyl group or an acyl group of a fatty acid ester.
Figure JPOXMLDOC01-appb-C000021
[式中、-Rfは、式(11):
Figure JPOXMLDOC01-appb-C000022
の置換基群より選ばれる基を示し、R16は水素原子又は脂肪酸エステルのアシル基を示す。]
 これらのシチジン系代謝拮抗剤は、ゲムシタビン(gemcitabine)及びその脂肪酸エステル誘導体、シタラビン(cytarabine)及びその脂肪酸エステル誘導体、並びに3’-エチニルシチジン(Ethynylcytidine)及びその脂肪酸エステル誘導体である。脂肪酸エステル誘導体として、シタラビン-5’-エライジン酸エステル(CP-4055)、ゲムシタビン-5’-エライジン酸エステル(CP-4126)等である。
Figure JPOXMLDOC01-appb-C000021
[Wherein, -Rf represents the formula (11):
Figure JPOXMLDOC01-appb-C000022
And R 16 represents a hydrogen atom or an acyl group of a fatty acid ester. ]
These cytidine antimetabolites are gemcitabine and its fatty acid ester derivatives, cytarabine and its fatty acid ester derivatives, and 3′-ethynylcytidine and its fatty acid ester derivatives. Examples of fatty acid ester derivatives include cytarabine-5′-elaidic acid ester (CP-4055), gemcitabine-5′-elaidic acid ester (CP-4126), and the like.
 前記一般式(1)におけるXは、前記Rに係る核酸代謝拮抗剤と、ポリアミノ酸主鎖の側鎖カルボニル基とを結合させる結合基である。該結合基としては、該核酸代謝拮抗剤の結合性官能基と、該ポリアミノ酸誘導体の側鎖カルボキシ基に対して、それぞれ結合可能な官能基を両末端に有する結合基であれば、特に限定されるものではない。
 該Xに係る結合基の該核酸代謝拮抗剤側の末端結合性官能基としては、カルボキシ基、オキシカルボキシ基又はアミノカルボキシ基が好ましい。該核酸代謝拮抗剤が分子中にアミノ基及び/又は水酸基を有することから、これらの結合性官能基は、該アミノ基及び/又は水酸基とアミド結合、エステル結合、ウレタン結合、カーボネート結合及びウレア結合する。
 該Xに係る結合基のもう一方の、前記側鎖カルボキシ基側の末端結合性官能基としては、アミノ基、水酸基又はチオール基が好ましい。これらの結合性官能基は、側鎖カルボキシ基とアミド結合、エステル結合、チオエステル結合できる。
X 2 in the general formula (1) is a linking group that binds the nucleic acid metabolism antagonist according to R 4 and the side chain carbonyl group of the polyamino acid main chain. The binding group is not particularly limited as long as it is a binding group having both functional groups capable of binding to the binding functional group of the nucleic acid antimetabolite and the side chain carboxy group of the polyamino acid derivative at both ends. Is not to be done.
The terminal binding functional group of the nucleic acid metabolism antagonist side bonding groups according to the X 2, carboxy, oxy carboxy group or an amino carboxy group. Since the nucleic acid antimetabolite has an amino group and / or a hydroxyl group in the molecule, these binding functional groups include the amide bond, ester bond, urethane bond, carbonate bond and urea bond with the amino group and / or hydroxyl group. To do.
The other terminal binding functional group on the side chain carboxy group side of the binding group according to X 2 is preferably an amino group, a hydroxyl group or a thiol group. These binding functional groups can form a side chain carboxy group and an amide bond, an ester bond, or a thioester bond.
 すなわち該Xに係る結合基は、一方の末端基がカルボキシ基、オキシカルボキシ基又はアミノカルボキシ基であり、もう一方の末端基がアミノ基、水酸基又はチオール基である置換基を有していても良い炭素数(C1~C8)アルキレン基であることが好ましい。
 前記Xに係る結合基としては、核酸代謝拮抗剤のアミノ基及び/又は水酸基とアミド結合又はエステル結合し、側鎖カルボキシ基とアミド結合、エステル結合又はチオエステル結合する様式としては、例えば、-CO-(CH-NH-(yは1~8の整数を示す)、-CO-(CH-O-(yは1~8の整数を示す)、-CO-(CH-S-(yは1~8の整数を示す)等が挙げられる。核酸代謝拮抗剤とウレア結合又はウレタン結合し、側鎖カルボキシ基とアミド結合、エステル結合又はチオエステル結合する様式としては、-CONH-(CH-NH-(yは1~8の整数を示す)、-CONH-(CH-O-(yは1~8の整数を示す)、-CONH-(CH-S-(yは1~8の整数を示す)等が挙げられる。一方、核酸代謝拮抗剤とカーボネート結合し、側鎖カルボキシ基とアミド結合、エステル結合又はチオエステル結合する様式としては、-COO-(CH-NH-(yは1~8の整数を示す)、-COO-(CH-O-(yは1~8の整数を示す)、-COO-(CH-S-(yは1~8の整数を示す)を挙げることができる。
That is, the bonding group according to X 2 has a substituent in which one end group is a carboxy group, an oxycarboxy group or an aminocarboxy group, and the other end group is an amino group, a hydroxyl group or a thiol group. It is preferably a good (C1-C8) alkylene group.
Examples of the linking group according to X 2 include a form of amide bond or ester bond with an amino group and / or hydroxyl group of a nucleic acid antimetabolite, and amide bond, ester bond or thioester bond with a side chain carboxy group. CO— (CH 2 ) y —NH— (y represents an integer of 1 to 8), —CO— (CH 2 ) y —O— (y represents an integer of 1 to 8), —CO— (CH 2 ) y -S- (y is an integer of 1 to 8). As a mode of binding a urea bond or a urethane bond with a nucleic acid antimetabolite, and a side chain carboxy group with an amide bond, an ester bond or a thioester bond, —CONH— (CH 2 ) y —NH— (where y is an integer of 1 to 8) -CONH- (CH 2 ) y -O- (y is an integer of 1 to 8), -CONH- (CH 2 ) y -S- (y is an integer of 1 to 8), etc. Can be mentioned. On the other hand, as a mode of forming a carbonate bond with a nucleic acid antimetabolite and binding a side chain carboxy group with an amide bond, an ester bond or a thioester bond, —COO— (CH 2 ) y —NH— (y represents an integer of 1 to 8) ), —COO— (CH 2 ) y —O— (y represents an integer of 1 to 8), —COO— (CH 2 ) y —S— (y represents an integer of 1 to 8). Can do.
 前記Xに係る結合基のアルキレン基は、水素原子が適当な置換基により修飾されていても良い。該置換基としては、水酸基、アミノ基、ハロゲン原子、炭素数(C1~C8)のアルキル基、炭素数(C1~C8)のアルキルカルボニルアルコキシ基、炭素数(C1~C8)のアルキルカルボニルアミド基、炭素数(C1~C8)のアルキルカルボニルアルキルアミド基、炭素数(C1~C8)のアルキルアリール基、炭素数(C1~C8)のアルコキシ基、炭素数(C1~C8)のアルキルアミノ基、炭素数(C1~C8)のアシルアミド基、炭素数(C1~C8)のアルコキシカルボニルアミノ基等を挙げることができる。 In the alkylene group of the linking group according to X 2 , a hydrogen atom may be modified with an appropriate substituent. Examples of the substituent include a hydroxyl group, an amino group, a halogen atom, an alkyl group having a carbon number (C1 to C8), an alkylcarbonylalkoxy group having a carbon number (C1 to C8), and an alkylcarbonylamide group having a carbon number (C1 to C8). An alkylcarbonylalkylamide group having a carbon number (C1 to C8), an alkylaryl group having a carbon number (C1 to C8), an alkoxy group having a carbon number (C1 to C8), an alkylamino group having a carbon number (C1 to C8), And an acylamide group having a carbon number (C1 to C8) and an alkoxycarbonylamino group having a carbon number (C1 to C8).
 前記Xに係る結合基として、好ましくは、核酸代謝拮抗剤との結合側がカルボキシ基であり、もう一方がアミノ基又は水酸基を有する結合基であり、-CO-(CH-NH-(yは1~8の整数を示す)、-CO-(CH-O-(yは1~8の整数を示す)を挙げることができる。特に好ましくは、該核酸代謝拮抗剤とアミド結合又はエステル結合することができるカルボキシ基を有すると共に、該側鎖カルボキシ基とアミド結合できるアミノ基を有する-CO-(CH-NH-(yは1~8の整数を示す)である。
 該Xに係る好ましい結合基である-CO-(CH-NH-(yは1~8の整数を示す)の具体例としては、-CO-CH-NH-、-CO-(CH-NH-、-CO-(CH-NH-、-CO-(CH-NH-である。
The linking group related to X 2 is preferably a carboxy group on the binding side with the nucleic acid antimetabolite and the other is a linking group having an amino group or a hydroxyl group, and —CO— (CH 2 ) y —NH— (Y represents an integer of 1 to 8) and —CO— (CH 2 ) y —O— (y represents an integer of 1 to 8). Particularly preferably, —CO— (CH 2 ) y —NH— () having a carboxy group capable of amide bond or ester bond with the nucleic acid antimetabolite and an amino group capable of amide bond with the side chain carboxy group. y represents an integer of 1 to 8.
Specific examples of —CO— (CH 2 ) y —NH— (y represents an integer of 1 to 8), which is a preferred linking group related to X 2 , include —CO—CH 2 —NH—, —CO— (CH 2 ) 2 —NH—, —CO— (CH 2 ) 4 —NH—, —CO— (CH 2 ) 6 —NH—.
 前記Xに係る好ましい結合基として挙げた置換基を有していても良い-CO-(CH-NH-(yは1~8の整数を示す)基において、該yが1の場合はアミノ酸骨格と同義である。したがって、当該Xに係る結合基として、アミノ酸誘導体を用いても良い。
 該アミノ酸誘導体を結合基とする場合、該アミノ酸のN末アミノ基が前記側鎖カルボキシ基とアミド結合し、C末カルボキシ基が該核酸代謝拮抗剤のアミノ基又は水酸基とアミド結合又はエステル結合する態様の結合基として用いられる。
 結合基としてアミノ酸誘導体を用いる場合、用いられるアミノ酸は、天然アミノ酸または非天然アミノ酸であってよく、L体、D体のいずれでも特に限定されずに用いることができる。例えば、グリシン、β-アラニン、アラニン、ロイシン、フェニルアラニン等の炭化水素系アミノ酸、アスパラギン酸、グルタミン酸等の酸性アミノ酸、リジン、アルギニン、ヒスチジン等の塩基性アミノ酸等を用いることができる。
In the —CO— (CH 2 ) y —NH— (y represents an integer of 1 to 8) group optionally having substituent (s) listed as preferred linking groups for X 2 , The case is synonymous with the amino acid skeleton. Therefore, a linking group according to the X 2, may be used amino acid derivatives.
When the amino acid derivative is used as a linking group, the N-terminal amino group of the amino acid is amide-bonded to the side chain carboxy group, and the C-terminal carboxy group is amide-bonded or ester-bonded to the amino group or hydroxyl group of the nucleic acid antimetabolite. Used as a linking group in embodiments.
When an amino acid derivative is used as a linking group, the amino acid used may be a natural amino acid or a non-natural amino acid, and any of L-form and D-form can be used without particular limitation. For example, hydrocarbon amino acids such as glycine, β-alanine, alanine, leucine and phenylalanine, acidic amino acids such as aspartic acid and glutamic acid, basic amino acids such as lysine, arginine and histidine can be used.
 前記Xに係る結合基としてアミノ酸誘導体を用いる場合、アスパラギン酸誘導体を用いることが好ましい。該アスパラギン酸誘導体としては、α-カルボキシ基が前記核酸代謝拮抗剤の結合基として機能し、β-カルボキシ基がアミド体であるアスパラギン酸誘導体結合基である。または、β-カルボキシ基が前記核酸代謝拮抗剤の結合基として機能し、α-カルボキシ基がアミド体であるアスパラギン酸誘導体であっても良い。該核酸代謝拮抗剤の結合基ではない、もう一方のカルボキシ基がアミド体である場合は、置換基を有していても良い炭素数(C1~20)のアルキルアミド、置換基を有していても良い炭素数(C5~C20)の芳香族アミド、置換基を有していても良い炭素数(C7~C20)のアラルキルアミド又はカルボキシ基が保護されたアミノ酸残基等が挙げられる。 When using an amino acid derivative as binding group according to the X 2, it is preferable to use the aspartic acid derivative. The aspartic acid derivative is an aspartic acid derivative binding group in which an α-carboxy group functions as a binding group of the nucleic acid antimetabolite and the β-carboxy group is an amide. Alternatively, an aspartic acid derivative in which a β-carboxy group functions as a binding group of the nucleic acid antimetabolite and the α-carboxy group is an amide may be used. When the other carboxy group that is not the binding group of the nucleic acid antimetabolite is an amide, it may have a substituent (C1-20) alkylamide or a substituent. And an aromatic amide having a carbon number (C5 to C20), an aralkylamide having a carbon number (C7 to C20) which may have a substituent, or an amino acid residue in which a carboxy group is protected.
 前記Xに係る結合基として、一方のカルボキシ基が核酸代謝拮抗剤の結合基であり、一方のカルボキシ基がアミド誘導体であるアスパラギン酸誘導体を用いた場合が、核酸代謝拮抗剤の確実な解離が促されることから、特に好ましい。結合基としてのアスパラギン酸誘導体の置換基を有していても良い炭素数(C1~20)のアルキルアミドとしては、例えば、メチルアミド、エチルアミド、イソプロピルアミド、t-ブチルアミド、シクロヘキシルアミド、ドデシルアミド、オクタデシルアミド等が挙げられる。該アスパラギン酸誘導体の置換基を有していても良い炭素数(C5~C20)の芳香族アミドとしては、例えば、フェニルアミド、4-メトキシフェニルアミド、4-ジメチルアミノフェニルアミド、4-ヒドロキシフェニルアミド等が挙げられる。該アスパラギン酸誘導体の置換基を有していても良い炭素数(C7~C20)のアラルキルアミドとしては、例えば、ベンジルアミド、2-フェニルエチルアミド、4-フェニルブチルアミド、8-フェニルオクチルアミド等が挙げられる。該アスパラギン酸誘導体のカルボキシ基が保護されたアミノ酸アミドとしては、例えば、グリシニル-メチルエステル、アラニル-メチルエステル、ロイシニル-メチルエステル、イソロイシニル-メチルエステル、バリニル-メチルエステル、フェニルアラニル-メチルエステル、アラニル-エチルエステル、ロイシニル-エチルエステル、イソロイシニル-エチルエステル、アラニル-ブチルエステル、ロイシニル-ブチルエステル等が挙げられる。 As coupling groups according to the X 2, is a linking group of one of the carboxy groups nucleic acid metabolism antagonist, if one of the carboxy group with aspartic acid derivative is an amide derivative, reliable dissociation of nucleic acid metabolism antagonist Is particularly preferred. Examples of the alkylamide having a carbon number (C1-20) which may have a substituent of an aspartic acid derivative as a linking group include, for example, methylamide, ethylamide, isopropylamide, t-butylamide, cyclohexylamide, dodecylamide, octadecyl Examples include amides. Examples of the aromatic amide having a carbon number (C5 to C20) which may have a substituent of the aspartic acid derivative include phenylamide, 4-methoxyphenylamide, 4-dimethylaminophenylamide, 4-hydroxyphenyl. Examples include amides. Examples of the aralkyl amide having a carbon number (C7 to C20) which may have a substituent of the aspartic acid derivative include benzylamide, 2-phenylethylamide, 4-phenylbutyramide, 8-phenyloctylamide and the like. Is mentioned. Examples of the amino acid amide in which the carboxy group of the aspartic acid derivative is protected include glycinyl-methyl ester, alanyl-methyl ester, leucinyl-methyl ester, isoleucinyl-methyl ester, valinyl-methyl ester, phenylalanyl-methyl ester, Examples include alanyl-ethyl ester, leucinyl-ethyl ester, isoleucinyl-ethyl ester, alanyl-butyl ester, and leucinyl-butyl ester.
 前記Xは、下記一般式(2)又は一般式(3)で示されるアスパラギン酸誘導体結合基又はマレイン酸誘導体結合基を用いることができる。
Figure JPOXMLDOC01-appb-C000023
 ここで、式(2)及び(3)中、R、R10はそれぞれ独立して水素原子又は炭素数(C1~C8)のアルキル基を示し、R11は水素原子、置換基を有していても良い炭素数(C1~C20)の直鎖状、分岐鎖状又は環状のアルキル基、置換基を有していても良い炭素数(C7~C20)の直鎖状、分岐鎖状又は環状のアラルキル基、置換基を有していても良い炭素数(C5~C20)の芳香族基、及びカルボキシ基が保護されたアミノ酸結合残基からなる群から選択される1種以上の基を示し、CX-CYはCH-CH若しくはZ配置のC=C(二重結合)である。
As X 2 , an aspartic acid derivative bonding group or a maleic acid derivative bonding group represented by the following general formula (2) or general formula (3) can be used.
Figure JPOXMLDOC01-appb-C000023
Here, in the formulas (2) and (3), R 9 and R 10 each independently represent a hydrogen atom or an alkyl group having a carbon number (C1 to C8), and R 11 has a hydrogen atom or a substituent. A linear, branched or cyclic alkyl group having a carbon number (C1 to C20) which may be optionally substituted, a linear or branched chain having a carbon number (C7 to C20) which may have a substituent, or One or more groups selected from the group consisting of a cyclic aralkyl group, an aromatic group having a carbon number (C5 to C20) which may have a substituent, and an amino acid bond residue in which a carboxy group is protected; CX-CY is CH-CH or Z = C (double bond) in the Z configuration.
 前記Xの結合基として、一般式(2)又は式(3)で示すアスパラギン酸誘導体結合基又はマレイン酸誘導体結合基を用いる場合、式中、R、R10における、炭素数(C1~C8)のアルキル基は、直鎖状、分岐鎖状又は環状の炭素数(C1~C8)のアルキル基である。
 直鎖状アルキル基としては、例えばメチル基、エチル基、n-プロピル基、n-ブチル基、n-へキシル基等を挙げることができる。
 分岐鎖状アルキル基としては、例えばイソプロピル基、t-ブチル基、1-メチル-プロピル基、2-メチル-プロピル基、2,2-ジメチルプロピル基等が挙げられる。
 環状アルキル基としては、例えばシクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基等が挙げられる。
As coupling groups of the X 2, when using the formula (2) or formula aspartic acid derivative bonded group or maleic acid derivative bonded groups shown by (3), wherein, R 9, in R 10, carbon atoms (C1 ~ The alkyl group of C8) is a linear, branched or cyclic alkyl group having a carbon number (C1 to C8).
Examples of the linear alkyl group include a methyl group, an ethyl group, an n-propyl group, an n-butyl group, and an n-hexyl group.
Examples of the branched alkyl group include isopropyl group, t-butyl group, 1-methyl-propyl group, 2-methyl-propyl group, 2,2-dimethylpropyl group and the like.
Examples of the cyclic alkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, and the like.
 前記一般式(2)又は式(3)に係るR11において、置換基を有していても良い炭素数(C1~C20)の直鎖状、分岐鎖状又は環状のアルキル基とは、例えばメチル基、エチル基、イソプロピル基、t-ブチル基、シクロヘキシル基、n-オクチル基、ドデシル基、オクタデシル基が挙げられる。
 置換基を有していても良い炭素数(C7~C20)の直鎖状、分岐鎖状又は環状のアラルキル基としては、例えば、ベンジル基、2-フェニルエチル基、4-フェニルブチル基、8-フェニルオクチル基等が挙げられる。
 置換基を有していても良い炭素数(C5~C20)の芳香族基としては、例えば、フェニル基、4-メトキシフェニル基、4-ジメチルアミノフェニル基、4-ヒドロキシフェニル基等が挙げられる。
In R 11 according to the general formula (2) or the formula (3), the linear, branched or cyclic alkyl group having a carbon number (C1 to C20) which may have a substituent is, for example, Examples include a methyl group, an ethyl group, an isopropyl group, a t-butyl group, a cyclohexyl group, an n-octyl group, a dodecyl group, and an octadecyl group.
Examples of the linear, branched or cyclic aralkyl group having a carbon number (C7 to C20) which may have a substituent include, for example, benzyl group, 2-phenylethyl group, 4-phenylbutyl group, 8 -Phenyloctyl group and the like.
Examples of the aromatic group having a carbon number (C5 to C20) which may have a substituent include a phenyl group, a 4-methoxyphenyl group, a 4-dimethylaminophenyl group, and a 4-hydroxyphenyl group. .
 また、前記R11は、カルボキシ基が保護されたアミノ酸結合残基であっても良い。カルボキシ基が保護されたアミノ酸結合残基としては、例えば、グリシニル-メチルエステル基、アラニル-メチルエステル基、ロイシニル-メチルエステル基、バリニル-メチルエステル基、フェニルアラニル-メチルエステル基、アラニル-エチルエステル基、ロイシニル-エチルエステル基、アラニル-ブチルエステル基、ロイシニル-ブチルエステル基等が挙げられる。 R 11 may be an amino acid binding residue in which a carboxy group is protected. Examples of amino acid-bonded residues in which the carboxy group is protected include glycinyl-methyl ester group, alanyl-methyl ester group, leucinyl-methyl ester group, valinyl-methyl ester group, phenylalanyl-methyl ester group, alanyl-ethyl Examples thereof include an ester group, leucinyl-ethyl ester group, alanyl-butyl ester group, and leucinyl-butyl ester group.
 また、該Xは「結合」であってよい。「結合」とは、特に結合基を介せず、当該ポリアミノ酸誘導体の側鎖カルボキシ基と、該核酸代謝拮抗剤の結合性置換基であるアミノ基及び/又は水酸基が、直接アミド結合及び/又はエステル結合している態様を指す。 The X 2 may be a “bond”. “Binding” means that the side chain carboxy group of the polyamino acid derivative and the amino group and / or hydroxyl group, which is the binding substituent of the nucleic acid antimetabolite, are not directly bound via an amide bond and / or via a binding group. Or the aspect which is ester-bonded is pointed out.
 前記一般式(1)において、Xはメチレン基又はエチレン基である。すなわち、該Xがメチレン基の場合、本発明に係るポリアミノ酸誘導体のポリマー主鎖はポリアスパラギン酸となる。一方、該Xがエチレン基の場合、本発明に係るポリアミノ酸誘導体のポリマー主鎖はポリグルタミン酸となる。したがって、該一般式(1)に係るポリアミノ酸誘導体は、ポリアスパラギン酸誘導体又はポリグルタミン酸誘導体である。 In the general formula (1), X 3 is a methylene group or an ethylene group. That is, if the X 3 is a methylene group, the polymer backbone of the polyamino acid derivative according to the present invention will become polyaspartic acid. On the other hand, the X 3 is the case of an ethylene group, the polymer backbone of the polyamino acid derivative according to the present invention will become polyglutamic acid. Therefore, the polyamino acid derivative according to the general formula (1) is a polyaspartic acid derivative or a polyglutamic acid derivative.
 本発明は、アミノ基及び/又は水酸基を有する核酸代謝拮抗剤は、アスパラギン酸ユニットのカルボキシ基に直接結合した態様であることが好ましい。すなわち、一般式(1)において、Xがメチレン基であり、主鎖ポリマーがポリアスパラギン酸である場合、側鎖カルボキシ基に該核酸代謝拮抗剤が直接結合して良く、また、前記Xに係る結合基として、アスパラギン酸誘導体を介して核酸代謝拮抗剤を結合させても良い。また、一般式(1)において、Xがエチレン基であり、主鎖ポリマーがポリグルタミン酸である場合、前記Xに係る結合基として、アスパラギン酸誘導体を介して核酸代謝拮抗剤を結合させることが好ましい。なお、前記Xに係る結合基として、アスパラギン酸誘導体を用いる場合、アスパラギン酸アミド誘導体を用いることが好ましい。 In the present invention, it is preferable that the nucleic acid antimetabolite having an amino group and / or a hydroxyl group is directly bonded to the carboxy group of the aspartic acid unit. That is, in the general formula (1), X 3 is a methylene group, the main case chain polymer is polyaspartic acid, nucleic acid metabolism antagonists in the side chain carboxyl group may be bonded directly, also the X 2 As the linking group according to, a nucleic acid antimetabolite may be bound via an aspartic acid derivative. In the general formula (1), when X 3 is an ethylene group and the main chain polymer is polyglutamic acid, a nucleic acid antimetabolite is bound via an aspartic acid derivative as the binding group related to X 2. Is preferred. As bonding groups according to the X 2, when using the aspartic acid derivative, it is preferable to use aspartic acid amide derivative.
 前記一般式(1)におけるRは、アスパラギン酸残基又はアスパラギン酸イミド残基を示す。これらの残基は、前記Xに係る結合基として、アスパラギン酸誘導体結合基又はマレイン酸誘導体結合基を用いた場合、該結合基から核酸代謝拮抗剤が解離した残基を示すものである。したがって、該Rに係るアスパラギン酸残基又はアスパラギン酸イミド残基は、前述のアスパラギン酸誘導体結合基又はマレイン酸誘導体結合基における化学構造と同じである。 R 5 in the general formula (1) represents an aspartic acid residue or an aspartic imide residue. These residues comprise as a binding group according to the X 2, when using the aspartic acid derivative bonded group or maleic acid derivative bonded group, nucleic acid metabolism antagonist from the linking group is indicative of the dissociated residues. Therefore, the aspartic acid residue or aspartic imide residue according to R 5 has the same chemical structure as the above-mentioned aspartic acid derivative-binding group or maleic acid derivative-binding group.
 該Rに係るアスパラギン酸残基又はアスパラギン酸イミド残基としては、例えば、下記一般式(4)、一般式(5)及び一般式(6)からなる置換基群から選ばれる1種以上の残基である。
Figure JPOXMLDOC01-appb-C000024
 ここで、式中、R、R10、R11、CX-CYは前記と同じ意味を示し、R12は水酸基及び/又は-N(R13)CONH(R14)を示し、R13及びR14は同一でも異なっていてもよく、三級アミノ基で置換されていても良い炭素数(C1~C8)の直鎖状、分岐鎖状又は環状のアルキル基を示す。
Examples of the aspartic acid residue or aspartic imide residue according to R 5 include one or more selected from the substituent group consisting of the following general formula (4), general formula (5), and general formula (6). Residue.
Figure JPOXMLDOC01-appb-C000024
Here, in the formula, R 9 , R 10 , R 11 , CX-CY have the same meaning as described above, R 12 represents a hydroxyl group and / or —N (R 13 ) CONH (R 14 ), R 13 and R 14 may be the same or different and represents a linear, branched or cyclic alkyl group having a carbon number (C1 to C8) which may be substituted with a tertiary amino group.
 該R13及びR14における三級アミノ基で置換されていても良い炭素数(C1~C8)の直鎖状、分岐鎖状又は環状のアルキル基とは、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、イソブチル基、sec-ブチル基、t-ブチル基、1-メチルブチル基、2-メチルブチル基、ネオペンチル基、シクロヘキシル基等が挙げられ、好ましくはイソプロピル基、シクロへキシル基が挙げられる。
 該三級アミノ基で置換されていても良い炭素数(C1~C8)の直鎖状、分岐鎖状又は環状のアルキル基としては、例えば、2-ジメチルアミノエチル基、3-ジメチルアミノプロピル基、5-ジメチルアミノペンチル基、6-ジメチルアミノヘキシル基等が挙げられる。該R13及びR14として好ましくは、エチル基、イソプロピル基、シクロへキシル基、3-ジメチルアミノプロピル基が挙げられる。
Examples of the linear, branched or cyclic alkyl group having a carbon number (C1 to C8) which may be substituted with a tertiary amino group in R 13 and R 14 include, for example, a methyl group, an ethyl group, n -Propyl group, isopropyl group, isobutyl group, sec-butyl group, t-butyl group, 1-methylbutyl group, 2-methylbutyl group, neopentyl group, cyclohexyl group, etc., preferably isopropyl group, cyclohexyl group Can be mentioned.
Examples of the linear, branched or cyclic alkyl group having a carbon number (C1 to C8) which may be substituted with the tertiary amino group include, for example, 2-dimethylaminoethyl group, 3-dimethylaminopropyl group , 5-dimethylaminopentyl group, 6-dimethylaminohexyl group and the like. Preferred examples of R 13 and R 14 include an ethyl group, an isopropyl group, a cyclohexyl group, and a 3-dimethylaminopropyl group.
 前記R12が水酸基である場合、カルボン酸の態様を示す。また、そのカルボン酸の任意の塩態様であっても良い。
 前記R12は水酸基及び/又は-N(R13)CONH(R14)であるが、水酸基のみである場合、水酸基及び-N(R13)CONH(R14)が共存する場合、若しくは-N(R13)CONH(R14)のみである場合の態様を取り得る。水酸基と-N(R13)CONH(R14)の存在比率は任意に設定されて良い。
When R 12 is a hydroxyl group, it represents a carboxylic acid embodiment. Moreover, the arbitrary salt aspect of the carboxylic acid may be sufficient.
R 12 is a hydroxyl group and / or —N (R 13 ) CONH (R 14 ), but when it is only a hydroxyl group, a hydroxyl group and —N (R 13 ) CONH (R 14 ) coexist, or —N The mode in the case of only (R 13 ) CONH (R 14 ) can be taken. The abundance ratio of the hydroxyl group to —N (R 13 ) CONH (R 14 ) may be arbitrarily set.
 前記一般式(1)におけるRは、水酸基及び/又は-N(R)CONH(R)を示す。ここで、R及びRは同一でも異なってもいても良く、三級アミノ基で置換されていても良い炭素数(C1~C8)の直鎖状、分岐鎖状又は環状のアルキル基である。
 該R及びRにおける三級アミノ基で置換されていても良い炭素数(C1~C8)の直鎖状、分岐鎖状又は環状のアルキル基とは、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、イソブチル基、sec-ブチル基、t-ブチル基、1-メチルブチル基、2-メチルブチル基、ネオペンチル基、シクロヘキシル基等が挙げられ、好ましくはイソプロピル基、シクロへキシル基が挙げられる。
 該三級アミノ基で置換されていても良い炭素数(C1~C8)の直鎖状、分岐鎖状又は環状のアルキル基としては、例えば、2-ジメチルアミノエチル基、3-ジメチルアミノプロピル基、5-ジメチルアミノペンチル基、6-ジメチルアミノヘキシル基等が挙げられる。該R13及びR14として好ましくは、エチル基、イソプロピル基、シクロへキシル基、3-ジメチルアミノプロピル基が挙げられる。
R 6 in the general formula (1) represents a hydroxyl group and / or —N (R 7 ) CONH (R 8 ). Here, R 7 and R 8 may be the same or different, and may be a linear, branched or cyclic alkyl group having a carbon number (C1 to C8) which may be substituted with a tertiary amino group. is there.
The linear, branched or cyclic alkyl group having a carbon number (C1 to C8) which may be substituted with a tertiary amino group in R 7 and R 8 is, for example, a methyl group, an ethyl group, n -Propyl group, isopropyl group, isobutyl group, sec-butyl group, t-butyl group, 1-methylbutyl group, 2-methylbutyl group, neopentyl group, cyclohexyl group, etc., preferably isopropyl group, cyclohexyl group Can be mentioned.
Examples of the linear, branched or cyclic alkyl group having a carbon number (C1 to C8) which may be substituted with the tertiary amino group include, for example, 2-dimethylaminoethyl group, 3-dimethylaminopropyl group , 5-dimethylaminopentyl group, 6-dimethylaminohexyl group and the like. Preferred examples of R 13 and R 14 include an ethyl group, an isopropyl group, a cyclohexyl group, and a 3-dimethylaminopropyl group.
 前記Rが水酸基である場合、当該核酸代謝拮抗剤結合ポリアミノ酸誘導体の側鎖カルボキシ基がカルボン酸の態様を示す。また、そのカルボン酸の任意の塩態様であっても良い。
 前記Rは水酸基及び/又は-N(R)CONH(R)であるが、水酸基のみである場合、水酸基及び-N(R)CONH(R)が共存する場合、若しくは-N(R)CONH(R)のみである場合の態様を取り得る。水酸基と-N(R)CONH(R)の存在比率は任意に設定されていて良い。
When R 6 is a hydroxyl group, the side chain carboxy group of the nucleic acid antimetabolite-binding polyamino acid derivative is in the form of a carboxylic acid. Moreover, the arbitrary salt aspect of the carboxylic acid may be sufficient.
R 6 is a hydroxyl group and / or —N (R 7 ) CONH (R 8 ), but when it is only a hydroxyl group, a hydroxyl group and —N (R 7 ) CONH (R 8 ) coexist, or —N An embodiment in which only (R 7 ) CONH (R 8 ) is present can be employed. The abundance ratio between the hydroxyl group and —N (R 7 ) CONH (R 8 ) may be arbitrarily set.
 一般式(1)において、ポリアミノ酸誘導体の構成単位の各含量を示すa、b、c、d、e、f、g、h及びiは、それぞれ独立に0~200の整数を示す。当該ポリアミノ酸誘導体は、前記Rが結合したアミノ酸構成単位、前記Rが結合したアミノ酸構成単位、前記Rが結合したアミノ酸構成単位、前記Rが結合したアミノ酸構成単位及び側鎖カルボキシ基が分子内環化型のアミノ酸構成単位が存在するが、これらの各アミノ酸構成単位は、それぞれ任意の順番でランダムな配列で重合した構造である。すなわち、側鎖カルボキシ基にR、R、R、Rが結合したアミノ酸構成単位並びに側鎖カルボン酸が分子内環化構造をとるアミノ酸構成単位が、局在化した配列の態様であっても良く、それぞれの構成単位に規則性がないランダム配列で構成されたポリマー構造であっても良く、つまり、その側鎖修飾体の配列順序において特に規則性のない配列である。
 更に、該ポリアミノ酸の構成単位の総重合数である(a+b+c+d+e+f+g+h+i)は3~250の整数である。好ましくは該総重合数は5~200である。該総重合数の平均値は3~250であり、好ましくは5~200である。
In the general formula (1), a, b, c, d, e, f, g, h, and i indicating the contents of the constituent units of the polyamino acid derivative each independently represent an integer of 0 to 200. The polyamino acid derivative includes an amino acid structural unit to which R 3 is bonded, an amino acid structural unit to which R 4 is bonded, an amino acid structural unit to which R 5 is bonded, an amino acid structural unit to which R 6 is bonded, and a side chain carboxy group. However, there are intramolecular cyclized amino acid structural units, and each of these amino acid structural units has a structure polymerized in a random sequence in an arbitrary order. That is, the amino acid structural unit in which R 3 , R 4 , R 5 , and R 6 are bonded to the side chain carboxy group and the amino acid structural unit in which the side chain carboxylic acid has an intramolecular cyclized structure are localized in the form of a sequence. It may be a polymer structure composed of a random sequence having no regularity in each constituent unit, that is, a sequence having no particular regularity in the sequence of the side chain modifications.
Further, (a + b + c + d + e + f + g + h + i), which is the total number of polymerized constituent units of the polyamino acid, is an integer of 3 to 250. Preferably, the total polymerization number is 5 to 200. The average value of the total number of polymerizations is 3 to 250, preferably 5 to 200.
 ここで、ポリエチレングリコールセグメントであるRが結合した総構成単位数である(a+b)は1~95の整数である。該(a+b)の平均値も1~95である。すなわち、ポリエチレングリコールセグメントのRが結合したポリアミノ酸構成単位は必須構成であり、該ポリアミノ酸誘導体において、少なくとも1ユニット以上のポリエチレングリコールセグメントを具備する。当該ポリアミノ酸誘導体において、Rであるポリエチレングリコールセグメントは、2ユニット以上結合していることが好ましく、80ユニット以下であることが好ましい。すなわち、該(a+b)は2~80の整数であることが好ましく、該(a+b)の平均値も2~80であることが好ましい。 Here, (a + b), which is the total number of structural units to which R 3 which is a polyethylene glycol segment is bonded, is an integer of 1 to 95. The average value of (a + b) is also 1 to 95. That is, the polyamino acid constituent unit to which R 3 of the polyethylene glycol segment is bonded is an essential constituent, and the polyamino acid derivative has at least one unit of polyethylene glycol segment. In the polyamino acid derivative, the polyethylene glycol segment as R 3 is preferably bonded to 2 units or more, and preferably 80 units or less. That is, (a + b) is preferably an integer of 2 to 80, and the average value of (a + b) is also preferably 2 to 80.
 また、核酸代謝拮抗剤の結合残基であるRが結合した総構成単位数である(c+d)は、1~175の整数である。該(c+d)の平均値も1~175である。すなわち、核酸代謝拮抗剤結合残基であるRが結合したポリアミノ酸構成単位は必須構成であり、該ポリアミノ酸誘導体において、少なくとも1ユニット以上の核酸代謝拮抗剤結合残基を具備する。当該ポリアミノ酸誘導体において、Rである核酸代謝拮抗剤結合残基は、5ユニット以上結合していることが好ましく、120ユニット以下であることが好ましい。すなわち、該(c+d)は5~120の整数であることが好ましく、該(c+d)の平均値も5~120であることが好ましい。 Further, the total number of structural units (c + d) to which R 4 which is a binding residue of the nucleic acid antimetabolite is bonded is an integer of 1 to 175. The average value of (c + d) is also 1 to 175. That is, the polyamino acid constituent unit to which R 4 which is a nucleic acid antimetabolite binding residue is bound is an essential constituent, and the polyamino acid derivative has at least one unit of nucleic acid antimetabolite binding residue. In the polyamino acid derivative, the nucleic acid antimetabolite binding residue that is R 4 is preferably 5 units or more, and preferably 120 units or less. That is, the (c + d) is preferably an integer of 5 to 120, and the average value of the (c + d) is also preferably 5 to 120.
 一般式(1)において、R及びRが結合したアミノ酸構成単位及び側鎖カルボキシ基が分子内環化したアミノ酸構成単位は、任意の構成である。特に、R及びRが結合したアミノ酸構成単位は、前記X及びXが「結合」である場合は、通常、R及びRが結合したアミノ酸構成単位は存在しないため、前記e、f及びgはそれぞれ0となる。 In the general formula (1), the amino acid structural unit to which R 5 and R 6 are bonded and the amino acid structural unit in which the side chain carboxy group is cyclized in the molecule are arbitrary. In particular, since the amino acid structural unit R 5 and R 6 are bonded, when the X 1 and X 2 are "binding", which usually amino acid building units R 5 and R 6 is attached is not present, the e , F, and g are each 0.
 一般式(1)で表される核酸代謝拮抗剤結合ポリアミノ酸誘導体の総分子量は、20キロダルトン以上で200キロダルトン以下である。好ましくは20キロダルトン以上で180キロダルトン以下であり、より好ましくは20キロダルトン以上で160キロダルトン以下である。 The total molecular weight of the nucleic acid antimetabolite-binding polyamino acid derivative represented by the general formula (1) is 20 kilodaltons or more and 200 kilodaltons or less. It is preferably 20 kilodaltons or more and 180 kilodaltons or less, more preferably 20 kilodaltons or more and 160 kilodaltons or less.
 この総分子量の算出方法は、前述と同義であり、その構成部分の各構成分子量を合算した計算値を当該「ポリアミノ酸誘導体の分子量」として採用する。すなわち、(1)ポリアミノ酸主鎖の分子量、(2)ポリエチレングリコールセグメントの分子量にその結合数を乗じたポリエチレングリコールセグメントの総分子量、(3)核酸代謝拮抗剤の結合残基分子量にその結合数を乗じた核酸代謝拮抗剤の総分子量、(4)任意のポリエチレングリコールセグメントの結合基残基分子量にその結合数を乗じた該結合基の総分子量、並びに(5)任意の核酸代謝拮抗剤の結合基残基分子量にその結合数を乗じた該結合基の総分子量、を合算した計算値を当該分子量とする。
 当該ポリアミノ酸誘導体の分子量は、キロダルトン単位での精度による分子量規定が求められるものである。したがって、前記各構成部分の分析方法は、当該ポリアミノ酸誘導体のキロダルトン単位での分子量測定において、十分な精度の分析方法であれば特に限定されるものではなく、様々な分析方法を適宜選択して良い。
The method for calculating the total molecular weight is the same as described above, and a calculated value obtained by adding the constituent molecular weights of the constituent parts is adopted as the “molecular weight of the polyamino acid derivative”. That is, (1) the molecular weight of the polyamino acid main chain, (2) the total molecular weight of the polyethylene glycol segment obtained by multiplying the molecular weight of the polyethylene glycol segment by the number of bonds, and (3) the number of bonds in the molecular weight of the binding residue of the nucleic acid antimetabolite. (4) the total molecular weight of the binding group obtained by multiplying the binding group residue molecular weight of any polyethylene glycol segment by the number of bonds, and (5) the total molecular weight of the nucleic acid metabolism antagonist The calculated value obtained by adding the total molecular weight of the linking group obtained by multiplying the linking group residue molecular weight by the number of bonds is defined as the molecular weight.
The molecular weight of the polyamino acid derivative is required to be regulated by the accuracy in kilodalton units. Therefore, the analysis method for each component is not particularly limited as long as it is a sufficiently accurate analysis method for measuring the molecular weight of the polyamino acid derivative in kilodalton units, and various analysis methods are appropriately selected. Good.
 また、一般式(1)のRに係るポリエチレングリコールセグメントは、セグメントあたりの平均分子量は200ダルトン~500キロダルトンである。好ましくは500ダルトン~100キロダルトン、より好ましくは1キロダルトン~50キロダルトンである。
 該ポリエチレングリコールセグメントの分子量とは、ポリエチレングリコール標準品を基準とした、GPC法により測定されるピークトップ分子量である。一般式(1)において、Rを具備するアミノ酸構成単位数(a+b)が1~95であることから、Rに係るポリエチレングリコールセグメントの総分子量は、400ダルトン~180キロダルトンであり、好ましくは1キロダルトン~150キロダルトンであり、より好ましくは2キロダルトン~130キロダルトンである。
Further, the polyethylene glycol segment according to R 3 in the general formula (1) has an average molecular weight per segment of 200 daltons to 500 kilodaltons. Preferably, it is 500 to 100 kilodaltons, more preferably 1 to 50 kilodaltons.
The molecular weight of the polyethylene glycol segment is a peak top molecular weight measured by a GPC method based on a polyethylene glycol standard product. In the general formula (1), since the number of amino acid structural units (a + b) having R 3 is 1 to 95, the total molecular weight of the polyethylene glycol segment according to R 3 is 400 to 180 kilodaltons, preferably Is 1 to 150 kilodaltons, more preferably 2 to 130 kilodaltons.
 一般式(1)の核酸代謝拮抗剤結合ポリアミノ酸誘導体は、該ポリアミノ酸誘導体におけるポリエチレングリコールセグメントの質量含有率が、30質量%以上90質量%以下であることを特徴とする。該ポリエチレングリコールセグメントの質量含有率は、前述と同義であり、該ポリアミノ酸誘導体の総分子量に対する、ポリエチレングリコールセグメントの総分子量の含有比率により算出することができる。
 前記ポリエチレングリコールセグメントの質量分子量は、30質量%以上90質量%以下であり、35質量%以上85質量%以下であることが好ましい。
The nucleic acid antimetabolite-binding polyamino acid derivative of the general formula (1) is characterized in that the mass content of the polyethylene glycol segment in the polyamino acid derivative is 30% by mass or more and 90% by mass or less. The mass content of the polyethylene glycol segment is as defined above, and can be calculated from the content ratio of the total molecular weight of the polyethylene glycol segment to the total molecular weight of the polyamino acid derivative.
The polyethylene glycol segment has a mass molecular weight of 30% by mass to 90% by mass, and preferably 35% by mass to 85% by mass.
 一般式(1)におけるRの核酸代謝拮抗剤結合残基は、該核酸代謝拮抗剤の結合モル当量による質量含有量において2~60質量%であることが好ましい。より好ましくは5~50質量%であり、最も好ましくは5~40質量%である。
 核酸代謝拮抗剤の含有率が2質量%より少ないと、核酸代謝拮抗剤の有効量を確保するために当該ポリアミノ酸誘導体の総投与量が多くなり、投与利便性が低下するため好ましくない。一方、核酸代謝拮抗剤の含有率が60質量%より多い場合、骨髄抑制が強く発現する傾向がある。投与利便性を確保し、十分な薬効と副作用の低減を達成するために、核酸代謝拮抗剤の含有量を設定することが好ましい。
 該ポリアミノ酸誘導体における核酸代謝拮抗剤の質量含有率は、前述の該ポリアミノ酸誘導体の分子量に対する、前記(3)核酸代謝拮抗剤の総分子量の含有比率により算出することができる。核酸代謝拮抗剤の含有量のより好ましい範囲は、5質量%以上で50質量%以下である。核酸代謝拮抗剤含量が5質量%以上で40質量%以下であることが特に好ましい。
The nucleic acid antimetabolite binding residue of R 4 in the general formula (1) is preferably 2 to 60% by mass in terms of mass content based on the binding molar equivalent of the nucleic acid antimetabolite. More preferably, it is 5 to 50% by mass, and most preferably 5 to 40% by mass.
If the content of the nucleic acid antimetabolite is less than 2% by mass, the total dose of the polyamino acid derivative is increased in order to ensure an effective amount of the nucleic acid antimetabolite, which is not preferable. On the other hand, when the content of the nucleic acid antimetabolite is more than 60% by mass, myelosuppression tends to be strongly developed. It is preferable to set the content of the nucleic acid antimetabolite in order to ensure administration convenience and achieve sufficient drug efficacy and side effect reduction.
The mass content of the nucleic acid antimetabolite in the polyamino acid derivative can be calculated from the content ratio of the total molecular weight of the nucleic acid antimetabolite (3) to the molecular weight of the polyamino acid derivative. A more preferable range of the content of the nucleic acid antimetabolite is 5% by mass or more and 50% by mass or less. It is particularly preferable that the content of the nucleic acid antimetabolite is 5% by mass or more and 40% by mass or less.
 一般式(1)の核酸代謝拮抗剤結合ポリアミノ酸誘導体は、該ポリアミノ酸誘導体の水溶液において、会合性を示さない物性であることが好ましい。当該ポリアミノ酸誘導体の水溶液中における会合性の有無は前述と同義であり、1mg/mLの当該水溶液をレーザー光散乱光度計にて計測し、光散乱強度により規定することができる。すなわち、光散乱強度がトルエンの光散乱強度に対する相対強度として5倍以下であれば良く、3倍以下となるポリアミノ酸誘導体がより好ましい。
 レーザー光散乱光度計による光散乱強度の測定方法は前述と同義である。
The nucleic acid antimetabolite-binding polyamino acid derivative of the general formula (1) preferably has a physical property that does not show associative properties in an aqueous solution of the polyamino acid derivative. Whether or not the polyamino acid derivative is associated in an aqueous solution has the same meaning as described above, and 1 mg / mL of the aqueous solution can be measured with a laser light scattering photometer and defined by the light scattering intensity. That is, the light scattering intensity may be 5 times or less as a relative intensity with respect to the light scattering intensity of toluene, and a polyamino acid derivative that is 3 times or less is more preferable.
The method of measuring the light scattering intensity with a laser light scattering photometer is as defined above.
 次に、本発明の核酸代謝拮抗剤結合ポリアミノ酸誘導体の製造方法について説明する。
 本発明の該ポリアミノ酸誘導体は、アスパラギン酸及び/又はグルタミン酸の側鎖カルボキシ基に、ポリエチレングリコールセグメント及び核酸代謝拮抗剤を結合させたアスパラギン酸誘導体構成単位及び/又はグルタミン酸誘導体構成単位を含むポリアミノ酸誘導体である。
 当該ポリアミノ酸誘導体の製造方法としては、各アミノ酸構成単位を順次重合させて当該ポリアミノ酸誘導体を製造しても良い。また別法として、複数の側鎖が遊離のカルボン酸であるアスパラギン酸及び/又はグルタミン酸を含むポリアミノ酸のポリマー主鎖を構築し、その後、該遊離カルボン酸側鎖に対し、ポリエチレングリコールセグメント及び核酸代謝拮抗剤を化学結合させる方法を挙げることができる。当該製造方法としては、該ポリエチレングリコールセグメント導入量及び該核酸代謝拮抗剤の結合量を制御しやすいことから、後者の方法が好ましい。
Next, a method for producing the nucleic acid antimetabolite-binding polyamino acid derivative of the present invention will be described.
The polyamino acid derivative of the present invention is a polyamino acid comprising an aspartic acid derivative constituent unit and / or a glutamic acid derivative constituent unit in which a polyethylene glycol segment and a nucleic acid antimetabolite are bound to a side chain carboxy group of aspartic acid and / or glutamic acid. Is a derivative.
As a method for producing the polyamino acid derivative, the polyamino acid derivative may be produced by sequentially polymerizing each amino acid structural unit. As another method, a polymer main chain of a polyamino acid containing aspartic acid and / or glutamic acid in which a plurality of side chains are free carboxylic acids is constructed, and then a polyethylene glycol segment and a nucleic acid are added to the free carboxylic acid side chains. Examples thereof include a method of chemically binding an antimetabolite. As the production method, the latter method is preferred because the amount of polyethylene glycol segment introduced and the amount of binding of the nucleic acid antimetabolite are easily controlled.
 例えば、L-アスパラギン酸-N-カルボン酸無水物を開環重合させて、ポリアスパラギン酸を得る。これに、ポリエチレングリコールセグメントを含む化合物及び核酸代謝拮抗剤を反応させることにより、本発明に係るポリアミノ酸誘導体を製造することができる。ポリエチレングリコールセグメント及び/又は核酸代謝拮抗剤の結合において、任意の結合基を用いる場合、該結合基を具備したポリエチレングリコールセグメント及び/又は核酸代謝拮抗剤を調製し、これをポリアスパラギン酸に反応させることにより、結合基を用いた本発明に係るポリアミノ酸誘導体を製造することができる。該反応終了後、任意に精製工程を施しても良く、医薬品として適用することができるポリエチレングリコールセグメント及び核酸代謝拮抗剤を側鎖カルボキシ基に導入したポリアスパラギン酸誘導体を製造することができる。 For example, L-aspartic acid-N-carboxylic acid anhydride is subjected to ring-opening polymerization to obtain polyaspartic acid. The polyamino acid derivative according to the present invention can be produced by reacting this with a compound containing a polyethylene glycol segment and a nucleic acid antimetabolite. When an arbitrary linking group is used in the binding of the polyethylene glycol segment and / or the nucleic acid antimetabolite, the polyethylene glycol segment and / or the nucleic acid antimetabolite having the linking group is prepared and reacted with polyaspartic acid. Thus, the polyamino acid derivative according to the present invention using a linking group can be produced. After completion of the reaction, a purification step may be optionally performed, and a polyaspartic acid derivative in which a polyethylene glycol segment and a nucleic acid antimetabolite that can be applied as pharmaceuticals are introduced into a side chain carboxy group can be produced.
 本発明の核酸代謝拮抗剤結合ポリアミノ酸誘導体は、生体内に投与後、核酸代謝拮抗剤を徐々に遊離する性質を有し、該核酸代謝拮抗剤を有効成分とする医薬としての用途を有する。 The nucleic acid antimetabolite-binding polyamino acid derivative of the present invention has a property of gradually releasing a nucleic acid antimetabolite after administration into a living body, and has a use as a pharmaceutical comprising the nucleic acid antimetabolite as an active ingredient.
 本発明の核酸代謝拮抗剤結合ポリアミノ酸誘導体の医薬品としての用途は、該核酸代謝拮抗剤により治療効果を奏する疾病であれば特に限定されるものではない。例えば、悪性腫瘍、ウイルス疾患等の治療に用いられる医薬に適する。特に好ましくは、悪性腫瘍の治療用医薬である。悪性腫瘍としては、非小細胞肺癌、膵臓癌、胃癌、結腸癌、直腸癌、乳癌、卵巣癌、膀胱癌、AIDS関連カポジ肉腫等を挙げることができる。 The use of the nucleic acid antimetabolite-binding polyamino acid derivative of the present invention as a pharmaceutical is not particularly limited as long as it is a disease having a therapeutic effect by the nucleic acid antimetabolite. For example, it is suitable for pharmaceuticals used for the treatment of malignant tumors, viral diseases and the like. Particularly preferred is a medicament for the treatment of malignant tumors. Examples of malignant tumors include non-small cell lung cancer, pancreatic cancer, gastric cancer, colon cancer, rectal cancer, breast cancer, ovarian cancer, bladder cancer, AIDS-related Kaposi's sarcoma and the like.
 本発明の核酸代謝拮抗剤結合ポリアミノ酸誘導体を含む医薬は、医薬品として通常容認される他の添加剤を有していても良い。該添加剤としては、賦形剤、増量剤、充填剤、結合剤、湿潤剤、崩壊剤、潤滑剤、界面活性剤、分散剤、緩衝剤、保存剤、溶解補助剤、防腐剤、矯味矯臭剤、無痛化剤、安定化剤及び等張化剤等が挙げられる。 The medicament containing the nucleic acid antimetabolite-binding polyamino acid derivative of the present invention may have other additives usually accepted as pharmaceuticals. Such additives include excipients, extenders, fillers, binders, wetting agents, disintegrants, lubricants, surfactants, dispersants, buffers, preservatives, solubilizers, preservatives, flavoring agents. Agents, soothing agents, stabilizers, tonicity agents and the like.
 本発明の核酸代謝拮抗剤結合ポリアミノ酸誘導体を含む医薬は、治療用の医薬品製剤として調製されても良い。該製剤としては、経口、注射、直腸内投与、門脈内投与、臓器の灌流液に混合、患部臓器への局所投与等いずれの投与方法でも可能であるが、好ましくは非経口的投与であり、より好ましくは注射による静脈内投与、動脈内投与又は患部臓器への局所投与である。 The medicament containing the nucleic acid antimetabolite-binding polyamino acid derivative of the present invention may be prepared as a therapeutic pharmaceutical preparation. The preparation can be administered by any method such as oral, injection, intrarectal administration, intraportal administration, mixing with organ perfusate, and local administration to the affected organ, preferably parenteral administration. More preferably, intravenous administration by injection, intraarterial administration, or local administration to an affected organ.
 本発明の核酸代謝拮抗剤結合ポリアミノ酸誘導体を含む医薬の投与量は、病状、投与方法、患者の状態、年齢、体重等により異なるが、通常、核酸代謝拮抗剤換算で体表面積1mあたり1mg~5,000mg、好ましくは10mg~2,000mgであり、これを1日1回又は数回に分けて投与しても良い。又、この投与は連日行なうこともできるが、数日から数ヶ月の間をおいて反復投与を行なっても良い。必要に応じて前記以外の投与方法、投与量、投与スケジュールを用いることができる。 The dosage of the pharmaceutical containing the nucleic acid antimetabolite-binding polyamino acid derivative of the present invention varies depending on the disease state, administration method, patient state, age, weight, etc., but is usually 1 mg per 1 m 2 of body surface area in terms of nucleic acid antimetabolite. 5,000 mg, preferably 10 mg to 2,000 mg, which may be administered once or divided into several times a day. Moreover, although this administration can be performed every day, repeated administration may be performed after several days to several months. As needed, administration methods, dosages, and administration schedules other than those described above can be used.
 以下、本発明を実施例により更に説明する。ただし、本発明がこれらの実施例に限定されるものではない。
 実施例及び比較例の「ポリアミノ酸誘導体の分子量」は、以下の計算式により算出した。
[ポリアミノ酸誘導体分子量]=[主鎖ポリアミノ酸ユニット分子量×重合数、あるいは主鎖ポリアミノ酸の末端に結合しているポリエチレングリコールセグメント分子量+主鎖ポリアミノ酸ユニット分子量×重合数]+[(ポリエチレングリコールセグメント+ポリエチレングリコールの結合基残基)分子量×結合数]+[核酸代謝拮抗剤残基分子量×結合数]+[核酸代謝拮抗剤の結合基残基分子量×結合数]
 本実施例において「ポリエチレングリコールセグメント」はポリエチレングリコールセグメントに結合基であるプロピレンアミノ基が一体となったポリエチレングリコールセグメント化合物を用いており、これらを合算してポリエチレングリコールセグメント分子量とした。
 したがって、本実施例の「ポリアミノ酸誘導体の分子量」は、主要構成である、主鎖ポリアミノ酸セグメントの分子量、(ポリエチレングリコールセグメント+該結合基残基)の総分子量及び核酸代謝拮抗剤の総分子量、並びに任意の核酸代謝拮抗剤の結合基残基の総分子量を足し合わせた計算値を用いた。
The present invention will be further described below with reference to examples. However, the present invention is not limited to these examples.
The “molecular weight of the polyamino acid derivative” in Examples and Comparative Examples was calculated by the following calculation formula.
[Polyamino acid derivative molecular weight] = [molecular weight of main chain polyamino acid unit × polymerization number, or molecular weight of polyethylene glycol segment bonded to terminal of main chain polyamino acid + molecular weight of main chain polyamino acid unit × polymerization number] + [(polyethylene glycol) Segment + polyethylene glycol binding group residue) molecular weight x number of bonds] + [nucleic acid antimetabolite residue molecular weight x number of bonds] + [nucleic acid antimetabolite binding group residue molecular weight x number of bonds]
In this example, “polyethylene glycol segment” uses a polyethylene glycol segment compound in which a propyleneamino group as a bonding group is integrated with a polyethylene glycol segment, and these are combined to obtain a polyethylene glycol segment molecular weight.
Therefore, the “molecular weight of the polyamino acid derivative” in this example is the main component, that is, the molecular weight of the main chain polyamino acid segment, the total molecular weight of (polyethylene glycol segment + the binding group residue), and the total molecular weight of the nucleic acid antimetabolite. , As well as the calculated total value of the total molecular weight of the binding group residues of any nucleic acid antimetabolite.
 なお、主鎖ポリアミノ酸の重合数は、ポリエチレングリコールセグメント及び核酸代謝拮抗剤を導入する前のポリアミノ酸誘導体前駆体化合物を、H-NMR分析することにより、その積分値から算出した。 The number of polymerizations of the main chain polyamino acid was calculated from its integral value by 1 H-NMR analysis of the polyamino acid derivative precursor compound before the introduction of the polyethylene glycol segment and the nucleic acid antimetabolite.
 ポリエチレングリコールセグメントの分子量は、導入反応前のポリエチレングリコールセグメント化合物において、ポリエチレングリコール標準物質を基準としたGPC分析における、ピークトップ分子量を採用した。 As the molecular weight of the polyethylene glycol segment, the peak top molecular weight in the GPC analysis based on the polyethylene glycol standard substance in the polyethylene glycol segment compound before the introduction reaction was adopted.
 ポリエチレングリコールセグメントの結合数は、ポリアミノ酸誘導体前駆体化合物とポリエチレングリコールセグメント化合物の結合反応において、ポリエチレングリコールセグメント化合物の仕込み量に対する、該反応における消費率から算出した。 The number of bonds of the polyethylene glycol segment was calculated from the consumption rate in the reaction relative to the charged amount of the polyethylene glycol segment compound in the coupling reaction of the polyamino acid derivative precursor compound and the polyethylene glycol segment compound.
 ポリエチレングリコール化合物の消費量は、以下の分析により得られた数値を用いて算出した。
 ポリアミノ酸誘導体前駆体化合物とポリエチレングリコールセグメント化合物及び核酸代謝拮抗剤の、反応開始前(ジイソプロピルカルボジイミド添加前)の反応液10μLを1%リン酸90μLで希釈し、HPLC(使用カラム:Superdex 75 10/300 GL、GEヘルスケア社製、検出器:RI)にて分析した。この時のポリエチレングリコールセグメント化合物に相当するピーク面積をAsとし、反応終了時の反応液10μLを、1%リン酸90μLで希釈しHPLCにて分析したときのポリエチレングリコール化合物に相当するピーク面積をAtとした。そして、以下の式によりポリエチレングリコールセグメントの消費率を算出した。
[ポリエチレングリコールセグメント化合物の消費率]=1-At/As
The consumption amount of the polyethylene glycol compound was calculated using numerical values obtained by the following analysis.
10 μL of the reaction solution of the polyamino acid derivative precursor compound, the polyethylene glycol segment compound and the nucleic acid antimetabolite before the start of the reaction (before addition of diisopropylcarbodiimide) was diluted with 90 μL of 1% phosphoric acid, and HPLC (use column: Superdex 75 10 / 300 GL, manufactured by GE Healthcare, detector: RI). The peak area corresponding to the polyethylene glycol segment compound at this time is As, and 10 μL of the reaction solution at the end of the reaction is diluted with 90 μL of 1% phosphoric acid, and the peak area corresponding to the polyethylene glycol compound when analyzed by HPLC is At. It was. And the consumption rate of the polyethylene glycol segment was computed with the following formula | equation.
[Consumption rate of polyethylene glycol segment compound] = 1-At / As
 核酸代謝拮抗剤の結合数は、得られた実施例及び比較例のポリアミノ酸誘導体を10mgを精秤し、アセトニトリル1mLを加えて溶解し、1mol/L水酸化ナトリウム水溶液1mLを加えて混合し、30分間撹拌することで加水分解した。この加水分解溶液に、1mol/L塩酸1mLを加え、水/アセトニトリル混液(1:1)を加えて正確に10mLとした。この溶液を、HPLCを用いて遊離する核酸代謝拮抗剤を定量分析することにより算出した。 The number of binding of the nucleic acid antimetabolite is 10 mg of the polyamino acid derivatives of the obtained Examples and Comparative Examples, precisely dissolved in 1 mL of acetonitrile, mixed with 1 mL of 1 mol / L sodium hydroxide aqueous solution, It hydrolyzed by stirring for 30 minutes. To this hydrolyzed solution, 1 mL of 1 mol / L hydrochloric acid was added, and a water / acetonitrile mixture (1: 1) was added to make exactly 10 mL. This solution was calculated by quantitative analysis of the released nucleic acid antimetabolite using HPLC.
 実施例及び比較例の「ポリエチレングリコールセグメントの含有率」は、以下の計算式で算出した。
「ポリエチレングリコールセグメント含有率」(%)=「ポリエチレングリコールセグメント総分子量」/「ポリアミノ酸誘導体分子量」×100
 該「ポリエチレングリコールセグメント総分子量」は、前記ポリエチレングリコールセグメントの分子量に前記ポリエチレングリコールセグメントの結合数を乗じて算出した数値を用いた。
 該「ポリアミノ酸誘導体分子量」は、前記の各構成部分の分子量の総和により算出した数値を用いた。
“Polyethylene glycol segment content” in Examples and Comparative Examples was calculated by the following calculation formula.
“Polyethylene glycol segment content” (%) = “polyethylene glycol segment total molecular weight” / “polyamino acid derivative molecular weight” × 100
As the “total molecular weight of the polyethylene glycol segment”, a value calculated by multiplying the molecular weight of the polyethylene glycol segment by the number of bonds of the polyethylene glycol segment was used.
As the “polyamino acid derivative molecular weight”, a numerical value calculated from the sum of the molecular weights of the respective constituent parts was used.
 実施例及び比較例のポリアミノ酸誘導体の散乱強度測定は、大塚電子社製ダイナミック光散乱光度計DLS-8000DL(測定温度25℃、測定角度:90°、波長:632.8nm、NDフィルター:5%、PH1:OPEN、PH2:SLIT)にて行った。
 散乱強度測定の測定サンプルは、ポリアミノ酸誘導体濃度1mg/mLになるように5%ブドウ糖注射液を加え、氷冷下にて超音波を3分間照射し調製した溶液を用いた。
 光散乱強度の測定に用いるトルエン(純正化学社製、特級)は、0.2μmメンブレンフィルターで3回濾過した後に使用した。
 前記光散乱強度計により測定されたトルエン標準液の光散乱強度は、12,934cpsであった。
The scattering intensity of the polyamino acid derivatives of Examples and Comparative Examples was measured by a dynamic light scattering photometer DLS-8000DL (measurement temperature 25 ° C., measurement angle: 90 °, wavelength: 632.8 nm, ND filter: 5%, manufactured by Otsuka Electronics Co., Ltd.) , PH1: OPEN, PH2: SLIT).
As a measurement sample for the measurement of scattering intensity, a solution prepared by adding 5% glucose injection so as to have a polyamino acid derivative concentration of 1 mg / mL and irradiating with ultrasound for 3 minutes under ice cooling was used.
Toluene (manufactured by Junsei Co., Ltd., special grade) used for measurement of light scattering intensity was used after being filtered three times with a 0.2 μm membrane filter.
The light scattering intensity of the toluene standard solution measured by the light scattering intensity meter was 12,934 cps.
 実施例及び比較例のポリアミノ酸誘導体の、測定サンプル溶液中における会合分子数は以下の計算式で算出した。
[会合分子数]=[SEC-MALS測定分子量]/[ポリアミノ酸誘導体分子量]
 なお、SEC-MALS測定分子量は、Wyatt Technology社製DAWN EOS(光散乱検出器)及びOptilab rEX(RI検出器)にて行い、dn/dcはポリエチレングリコールの値(0.135)を用い算出した。
使用カラム:Superdex 200 Increase 10/300 GL、GEヘルスケア社製
 測定サンプルは、ポリアミノ酸誘導体濃度1mg/mLになるように5%ブドウ糖注射液を加え、氷冷下にて超音波を3分間照射し調製した溶液を用いた。
The number of associated molecules in the measurement sample solution of the polyamino acid derivatives of Examples and Comparative Examples was calculated by the following calculation formula.
[Number of associated molecules] = [SEC-MALS measured molecular weight] / [Polyamino acid derivative molecular weight]
The molecular weight measured by SEC-MALS was measured using DAWN EOS (light scattering detector) and Optilab rEX (RI detector) manufactured by Wyatt Technology, and dn / dc was calculated using the value of polyethylene glycol (0.135). .
Column used: Superdex 200 Increase 10/300 GL, manufactured by GE Healthcare Inc. For the measurement sample, 5% glucose injection solution was added so that the polyamino acid derivative concentration was 1 mg / mL, and ultrasound was irradiated for 3 minutes under ice cooling. The prepared solution was used.
 実施例及び比較例のポリアミノ酸誘導体を、ポリエチレングリコール標準物質を基準としたGPC分析におけるピークトップ分子量を測定した。該GPC分析におけるピークトップ分子量は、以下の分析により算出した。
 実施例及び比較例のポリアミノ酸誘導体25mgを、0.05mmol/Lクエン酸緩衝液(pH3.5)/アセトニトリル混液(9:1)に溶解し、HPLC(使用カラム:shodex GF510A-4E、昭和電工製、検出器:RI)にて分析した。この時のピーク頂点の保持時間と、ポリエチレングリコール標準物質を分析した時の保持時間を比較することにより、実施例及び比較例のポリアミノ酸誘導体のポリエチレングリコール標準物質を基準としたGPC分析におけるピークトップ分子量を算出した。
For the polyamino acid derivatives of Examples and Comparative Examples, the peak top molecular weight in GPC analysis based on a polyethylene glycol standard was measured. The peak top molecular weight in the GPC analysis was calculated by the following analysis.
25 mg of polyamino acid derivatives of Examples and Comparative Examples were dissolved in 0.05 mmol / L citrate buffer (pH 3.5) / acetonitrile mixture (9: 1), and HPLC (column used: shodex GF510A-4E, Showa Denko Manufactured, detector: RI). By comparing the retention time of the peak apex at this time with the retention time when the polyethylene glycol standard was analyzed, the peak top in the GPC analysis based on the polyethylene glycol standard of the polyamino acid derivatives of the examples and comparative examples Molecular weight was calculated.
[合成例1] 平均重合数89のポリアスパラギン酸の合成(化合物1)
 n-ブチルアミン(東京化成製、99.2mg)をDMSO(202mL)に溶解後、γ-ベンジル-L-アスパラギン酸-N-カルボン酸無水物(BLA-NCA,33.8g、99.9当量)を加え、30℃にて一夜攪拌した。反応液を、エタノール(750mL)及びジイソプロピルエーテル(3200mL)の混合溶媒中に1時間かけて滴下し、室温にて3時間攪拌した。沈析物を濾取後、真空乾燥し固形物(22.6g)を得た。
 この固形物(21.8g)にジメチルイミダゾリジノン(DMI)(400mL)を加え、80℃にて溶解後、65℃にて無水酢酸1mLを加えた。3時間攪拌後、反応液を酢酸エチル(1.1L)及びジイソプロピルエーテル(10L)の混合溶液中に1時間かけて滴下し、室温にて1時間攪拌した。沈析物を濾取後、真空乾燥し固形物(23.2g)を得た。
 この固形物(23.0g)にアセトニトリル(200mL)及び0.2規定の水酸化ナトリウム水溶液(700mL)を添加し、室温にて一夜攪拌した。反応後、減圧濃縮にてアセトニトリルを除去後、酢酸エチル(700mL)を用い濃縮液を3回洗浄した。水層を減圧濃縮後、Dowex 50W(ダウケミカル社製、プロトン型、40mL)のカラムに通塔、溶出し、凍結乾燥を行い、化合物1(13.0g)を得た。
H-NMR(400MHz、DO、NaOD、ppm):0.7(n-ブチルアミン末端CH、3H、積分値3.00)、4.2-4.6(アスパラギン酸αCH、1H、積分値89.2)
 n-ブチルアミンとアスパラギン酸の積分値から算出されたモル比から、重合数は89と算出された。したがって、化合物1の分子量は、10キロダルトンであった。
[Synthesis Example 1] Synthesis of polyaspartic acid having an average polymerization number of 89 (Compound 1)
n-Butylamine (manufactured by Tokyo Chemical Industry, 99.2 mg) was dissolved in DMSO (202 mL) and then γ-benzyl-L-aspartic acid-N-carboxylic acid anhydride (BLA-NCA, 33.8 g, 99.9 equivalents). And stirred at 30 ° C. overnight. The reaction solution was dropped into a mixed solvent of ethanol (750 mL) and diisopropyl ether (3200 mL) over 1 hour and stirred at room temperature for 3 hours. The precipitate was collected by filtration and dried in vacuo to obtain a solid (22.6 g).
Dimethylimidazolidinone (DMI) (400 mL) was added to the solid (21.8 g), dissolved at 80 ° C., and 1 mL of acetic anhydride was added at 65 ° C. After stirring for 3 hours, the reaction solution was dropped into a mixed solution of ethyl acetate (1.1 L) and diisopropyl ether (10 L) over 1 hour and stirred at room temperature for 1 hour. The precipitate was collected by filtration and dried in vacuo to obtain a solid (23.2 g).
Acetonitrile (200 mL) and 0.2 N aqueous sodium hydroxide solution (700 mL) were added to the solid (23.0 g), and the mixture was stirred overnight at room temperature. After the reaction, acetonitrile was removed by concentration under reduced pressure, and the concentrated solution was washed three times with ethyl acetate (700 mL). The aqueous layer was concentrated under reduced pressure, passed through a column of Dowex 50W (Dow Chemical Co., proton type, 40 mL), eluted and freeze-dried to obtain Compound 1 (13.0 g).
1 H-NMR (400 MHz, D 2 O, NaOD, ppm): 0.7 (n-butylamine-terminated CH 3 , 3H, integrated value 3.00), 4.2-4.6 (aspartic acid αCH, 1H, Integration value 89.2)
From the molar ratio calculated from the integral value of n-butylamine and aspartic acid, the polymerization number was calculated to be 89. Therefore, the molecular weight of Compound 1 was 10 kilodaltons.
[合成例2] 平均重合数22のポリアスパラギン酸の合成(化合物2)
 合成例1記載の方法に準じ、n-ブチルアミンに対してBLA-NCAを22.5当量用いることにより、標記化合物2を得た。
H-NMR(400MHz、DO、NaOD、ppm):0.7(n-ブチルアミン末端CH、3H、積分値3.00)、4.2-4.6(アスパラギン酸αCH、1H、積分値22.4)
 n-ブチルアミンとアスパラギン酸の積分値から算出されたモル比から、重合数は22と算出された。したがって、化合物2の分子量は、2.6キロダルトンであった。
[Synthesis Example 2] Synthesis of polyaspartic acid having an average polymerization number of 22 (Compound 2)
The title compound 2 was obtained by using 22.5 equivalents of BLA-NCA to n-butylamine according to the method described in Synthesis Example 1.
1 H-NMR (400 MHz, D 2 O, NaOD, ppm): 0.7 (n-butylamine-terminated CH 3 , 3H, integrated value 3.00), 4.2-4.6 (aspartic acid αCH, 1H, Integration value 22.4)
From the molar ratio calculated from the integrated value of n-butylamine and aspartic acid, the polymerization number was calculated to be 22. Therefore, the molecular weight of Compound 2 was 2.6 kilodaltons.
[合成例3] 平均重合数60のポリアスパラギン酸の合成(化合物3)
 合成例1記載の方法に準じ、n-ブチルアミンに対してBLA-NCAを67.4当量用いることにより、標記化合物3を得た。
H-NMR(400MHz、DO、NaOD、ppm):0.7(n-ブチルアミン末端CH、3H、積分値3.00)、4.2-4.6(アスパラギン酸αCH、1H、積分値60.4)
 n-ブチルアミンとアスパラギン酸の積分値から算出されたモル比から、重合数は60と算出された。したがって、化合物3の分子量は、7.0キロダルトンであった。
[Synthesis Example 3] Synthesis of polyaspartic acid having an average polymerization number of 60 (compound 3)
The title compound 3 was obtained by using 67.4 equivalents of BLA-NCA based on n-butylamine according to the method described in Synthesis Example 1.
1 H-NMR (400 MHz, D 2 O, NaOD, ppm): 0.7 (n-butylamine-terminated CH 3 , 3H, integrated value 3.00), 4.2-4.6 (aspartic acid αCH, 1H, Integration value 60.4)
From the molar ratio calculated from the integrated value of n-butylamine and aspartic acid, the polymerization number was calculated to be 60. Therefore, the molecular weight of Compound 3 was 7.0 kilodalton.
[合成例4] 平均重合数110のポリアスパラギン酸の合成(化合物4)
 合成例1記載の方法に準じ、n-ブチルアミンに対してBLA-NCAを135当量用いることにより、標記化合物4を得た。
H-NMR(400MHz、DO、NaOD、ppm):0.7(n-ブチルアミン末端CH、3H、積分値3.00)、4.2-4.6(アスパラギン酸αCH、1H、積分値109.8)
 n-ブチルアミンとアスパラギン酸の積分値から算出されたモル比から、重合数は110と算出された。したがって、化合物4の分子量は、13キロダルトンであった。
Synthesis Example 4 Synthesis of polyaspartic acid having an average polymerization number of 110 (Compound 4)
According to the method described in Synthesis Example 1, 135 equivalents of BLA-NCA was used with respect to n-butylamine to obtain the title compound 4.
1 H-NMR (400 MHz, D 2 O, NaOD, ppm): 0.7 (n-butylamine-terminated CH 3 , 3H, integrated value 3.00), 4.2-4.6 (aspartic acid αCH, 1H, Integration value 109.8)
From the molar ratio calculated from the integrated value of n-butylamine and aspartic acid, the polymerization number was calculated to be 110. Therefore, the molecular weight of Compound 4 was 13 kilodaltons.
[合成例5] アスパラギン酸-1-アラニンメチルエステル-4-ゲムシタビンアミドの合成(化合物5)
 N-(t-ブトキシカルボニル)アスパラギン酸-4-ベンジルエステル(15.0g)と、L-アラニンメチルエステル(6.5g)をDMF(160mL)に溶解後、1-エチル-3-[3-(ジメチルアミノ)プロピル]カルボジイミド(WSCD)塩酸塩(13.3g)、1-ヒドロキシベンゾトリアゾール(HOBt)(8.53g),トリエチルアミン(6.5mL)を加え、氷浴下にて4時間撹拌した。反応液に水を加え、酢酸エチルにて抽出し、5%クエン酸水溶液,飽和炭酸水素ナトリウム水溶液及び飽和食塩水で洗浄した。硫酸マグネシウムで乾燥後、減圧下、酢酸エチルを留去し真空乾燥して油状物(13.9g)得た。
 この油状物(13.9g)をメタノール(350mL)に溶解し、10%パラジウム炭素(水分含有量50%)(1.39g)を加えた後、系内を水素置換し、室温にて3時間攪拌した。10%パラジウム炭素を濾過し、メタノール(50mL)で洗浄後、減圧下、メタノールを留去し真空乾燥して油状物(10.6g)を得た。
 この油状物とゲムシタビン(3.0g、SCINO PHARM社製)を、DMF(56mL)に溶解後、HOBt(2.1g)、WSCD塩酸塩(3.3g)を加え、0℃から室温に昇温させ、一夜撹拌した。反応液に精製水を加え、酢酸エチル(170mL)を用いて抽出した。有機層を、飽和食塩水を用いて2回洗浄し、硫酸ナトリウムを用いて乾燥させた。減圧濃縮にて酢酸エチルを除去後、シリカゲルカラムクロマトグラフィーによる精製を行い、真空乾燥後、油状物(3.9g)を得た。
 この油状物を酢酸エチル(41mL)に溶解させ、4規定の塩酸-酢酸エチル溶液(31mL)を加え、室温にて2時間攪拌した。反応液に酢酸エチル(80mL)及びn-ヘキサン(20mL)の混合溶媒を加え、沈析物を濾取し、真空乾燥させ、化合物5(2.99g)を得た。
H-NMR(400MHz,DMSO-d6,ppm):1.20(d,3H)、2.95-3.10(m,2H)、3.63(s,3H)、3.67(dd,1H)、3.90-4.02(m,5H)、4.18-4.31(m,3H)、6.18(dd,1H)、7.22(d,1H)、8.25(s,2H)、8.92(d,1H)、11.3(br,1H)
[Synthesis Example 5] Synthesis of aspartic acid-1-alanine methyl ester-4-gemcitabine amide (Compound 5)
After dissolving N- (t-butoxycarbonyl) aspartic acid-4-benzyl ester (15.0 g) and L-alanine methyl ester (6.5 g) in DMF (160 mL), 1-ethyl-3- [3- (Dimethylamino) propyl] carbodiimide (WSCD) hydrochloride (13.3 g), 1-hydroxybenzotriazole (HOBt) (8.53 g), triethylamine (6.5 mL) were added, and the mixture was stirred for 4 hours in an ice bath. . Water was added to the reaction solution, extracted with ethyl acetate, and washed with 5% aqueous citric acid solution, saturated aqueous sodium hydrogen carbonate solution and saturated brine. After drying over magnesium sulfate, ethyl acetate was distilled off under reduced pressure, followed by vacuum drying to obtain an oil (13.9 g).
This oil (13.9 g) was dissolved in methanol (350 mL), 10% palladium carbon (moisture content 50%) (1.39 g) was added, and the system was replaced with hydrogen, followed by 3 hours at room temperature. Stir. 10% Palladium carbon was filtered and washed with methanol (50 mL), and then the methanol was distilled off under reduced pressure, followed by vacuum drying to obtain an oil (10.6 g).
This oil and gemcitabine (3.0 g, manufactured by SCINO PHARM) were dissolved in DMF (56 mL), then HOBt (2.1 g) and WSCD hydrochloride (3.3 g) were added, and the temperature was raised from 0 ° C. to room temperature. And stirred overnight. Purified water was added to the reaction mixture, and the mixture was extracted with ethyl acetate (170 mL). The organic layer was washed twice with saturated brine and dried over sodium sulfate. After removing ethyl acetate by concentration under reduced pressure, purification by silica gel column chromatography was performed, followed by vacuum drying to obtain an oily substance (3.9 g).
This oil was dissolved in ethyl acetate (41 mL), 4N hydrochloric acid-ethyl acetate solution (31 mL) was added, and the mixture was stirred at room temperature for 2 hr. A mixed solvent of ethyl acetate (80 mL) and n-hexane (20 mL) was added to the reaction mixture, and the precipitate was collected by filtration and dried in vacuo to give compound 5 (2.99 g).
1 H-NMR (400 MHz, DMSO-d6, ppm): 1.20 (d, 3H), 2.95-3.10 (m, 2H), 3.63 (s, 3H), 3.67 (dd , 1H), 3.90-4.02 (m, 5H), 4.18-4.31 (m, 3H), 6.18 (dd, 1H), 7.22 (d, 1H), 8. 25 (s, 2H), 8.92 (d, 1H), 11.3 (br, 1H)
[合成例6] アスパラギン酸-1-ロイシンメチルエステル-4-ゲムシタビンアミドの合成(化合物6)
 N-(t-ブトキシカルボニル)-L-アスパラギン酸-4-ベンジル(渡辺化学工業社製、4.9g)及びL-ロイシン-メチルエステル塩酸塩(国産化学社製、2.7g)をDMF(75mL)に溶解後、HOBt(2.8g)、ジイソプロピルエチルアミン(2.6mL)、WSCD塩酸塩(4.3g)を加え、0℃にて2時間攪拌した。反応液に精製水を加え、酢酸エチル(250mL)を用いて抽出した。有機層を飽和重曹水、飽和食塩水を用いて洗浄し、硫酸ナトリウムを用いて乾燥させた。減圧濃縮にて酢酸エチルを除去後、シリカゲルカラムクロマトグラフィーによる精製を行い、真空乾燥後、油状物(6.8g)を得た。
 この油状物をメタノール(150mL)に溶解後、10%(w/w)パラジウム炭素を加え、水素雰囲気化で2時間攪拌した。反応液を濾過後、濾液を真空乾燥し、油状物(5.37g)を得た。
 この油状物とゲムシタビン(3.0g、SCINO PHARM社製)をDMF(57mL)に溶解後、HOBt(2.1g)、WSCD塩酸塩(3.3g)を加え、0℃から室温に昇温させ、一夜撹拌した。反応液に精製水を加え、酢酸エチル(170mL)を用いて抽出した。有機層を、飽和食塩水を用いて2回洗浄し、硫酸ナトリウムを用いて乾燥させた。減圧濃縮にて酢酸エチルを除去後、シリカゲルカラムクロマトグラフィーによる精製を行い、真空乾燥後、油状物(4.9g)を得た。
 この油状物を酢酸エチル(44mL)に溶解させ、4規定の塩酸酢酸エチル溶液(33mL)を加え、室温にて2時間攪拌した。反応液に酢酸エチル(80mL)及びn-ヘキサン(20mL)の混合溶媒を加え、沈析物を濾取し、真空乾燥させ、化合物6(3.62g)を得た。
H-NMR(400MHz,DMSO-d6,ppm):0.89(dd,6H)、1.49-1.71(m,3H)、2.97-3.17(m,4H)、3.63(s,3H)、3.66(dd,1H)、3.80-3.93(m,2H)、4.10-4.28(m,4H)、6.18(dd,1H)、7.22(d,1H)、8.32(s,2H)、8.91(d,1H)、11.3(br,1H)
[Synthesis Example 6] Synthesis of aspartic acid-1-leucine methyl ester-4-gemcitabine amide (Compound 6)
N- (t-butoxycarbonyl) -L-aspartate-4-benzyl (4.9 g manufactured by Watanabe Chemical Co., Ltd.) and L-leucine-methyl ester hydrochloride (2.7 g manufactured by Kokusan Chemical Co., Ltd.) were combined with DMF ( 75 mL), HOBt (2.8 g), diisopropylethylamine (2.6 mL), and WSCD hydrochloride (4.3 g) were added, and the mixture was stirred at 0 ° C. for 2 hours. Purified water was added to the reaction mixture, and the mixture was extracted with ethyl acetate (250 mL). The organic layer was washed with saturated aqueous sodium hydrogen carbonate and saturated brine, and dried over sodium sulfate. After removing ethyl acetate by concentration under reduced pressure, purification by silica gel column chromatography was performed, followed by vacuum drying to obtain an oily substance (6.8 g).
This oil was dissolved in methanol (150 mL), 10% (w / w) palladium on carbon was added, and the mixture was stirred under a hydrogen atmosphere for 2 hr. The reaction solution was filtered, and the filtrate was vacuum-dried to obtain an oil (5.37 g).
This oil and gemcitabine (3.0 g, manufactured by SCINO PHARM) were dissolved in DMF (57 mL), HOBt (2.1 g) and WSCD hydrochloride (3.3 g) were added, and the temperature was raised from 0 ° C. to room temperature. And stirred overnight. Purified water was added to the reaction mixture, and the mixture was extracted with ethyl acetate (170 mL). The organic layer was washed twice with saturated brine and dried over sodium sulfate. After removing ethyl acetate by concentration under reduced pressure, purification by silica gel column chromatography was performed, followed by vacuum drying to obtain an oily substance (4.9 g).
This oil was dissolved in ethyl acetate (44 mL), 4N ethyl acetate solution (33 mL) was added, and the mixture was stirred at room temperature for 2 hr. A mixed solvent of ethyl acetate (80 mL) and n-hexane (20 mL) was added to the reaction mixture, and the precipitate was collected by filtration and dried in vacuo to give compound 6 (3.62 g).
1 H-NMR (400 MHz, DMSO-d6, ppm): 0.89 (dd, 6H), 1.49-1.71 (m, 3H), 2.97-3.17 (m, 4H), 3 .63 (s, 3H), 3.66 (dd, 1H), 3.80-3.93 (m, 2H), 4.10-4.28 (m, 4H), 6.18 (dd, 1H) ), 7.22 (d, 1H), 8.32 (s, 2H), 8.91 (d, 1H), 11.3 (br, 1H)
[合成例7] ポリエチレングリコール-ポリアスパラギン酸ブロック共重合体(ポリエチレングリコール分子量12キロダルトン、ポリアスパラギン酸重合数67)の合成(化合物7)
 片末端メトキシ基及び片末端3-アミノプロピル基のポリエチレングリコール(SUNBRIGHT MEPA-12T、日油社製、平均分子量12キロダルトン、10.0g)をDMSO(200mL)に溶解後、γ-ベンジル-L-アスパラギン酸-N-カルボン酸無水物(BLA-NCA,22.3g、107.7当量)を加え、32.5℃にて一夜攪拌した。反応液を、エタノール(400mL)及びジイソプロピルエーテル(1600mL)の混合溶媒中に1時間かけて滴下し、室温にて30分攪拌した。沈析物を濾取後、真空乾燥し固形物(24.1g)を得た。
 この固形物(23.0g)にアセトニトリル(460mL)を加え、35℃にて溶解後、無水酢酸0.8mLを加えた。3時間攪拌後、23℃に降温し、0.2規定の水酸化ナトリウム水溶液(540mL)を添加し、3時間攪拌した。反応後、減圧濃縮にてアセトニトリルを除去後、酢酸エチル(690mL)を用い濃縮液を3回洗浄した。水層を減圧濃縮後、1N水酸化ナトリウム水溶液にて溶解液のpHを約10に調整し、食塩(57.5g)を加えた。分配吸着樹脂カラム、続いてDowex 50W(ダウケミカル社製、プロトン型、40mL)のカラムに通塔、溶出し、凍結乾燥を行い、化合物7(13.2g)を得た。
 化合物7は、0.1N水酸化カリウムを用いた滴定法により、アスパラギン酸の重合数は66.9と算出した。したがって、化合物7の分子量は20キロダルトンであった。
[Synthesis Example 7] Synthesis of polyethylene glycol-polyaspartic acid block copolymer (polyethylene glycol molecular weight 12 kilodalton, polyaspartic acid polymerization number 67) (compound 7)
After dissolving polyethylene glycol having one end methoxy group and one end 3-aminopropyl group (SUNBRIGHT MEPA-12T, NOF Corporation, average molecular weight 12 kilodalton, 10.0 g) in DMSO (200 mL), γ-benzyl-L -Aspartic acid-N-carboxylic anhydride (BLA-NCA, 22.3 g, 107.7 equivalents) was added and stirred at 32.5 ° C. overnight. The reaction solution was dropped into a mixed solvent of ethanol (400 mL) and diisopropyl ether (1600 mL) over 1 hour and stirred at room temperature for 30 minutes. The precipitate was collected by filtration and dried in vacuo to obtain a solid (24.1 g).
Acetonitrile (460 mL) was added to the solid (23.0 g), dissolved at 35 ° C., and then 0.8 mL of acetic anhydride was added. After stirring for 3 hours, the temperature was lowered to 23 ° C., 0.2N aqueous sodium hydroxide solution (540 mL) was added, and the mixture was stirred for 3 hours. After the reaction, acetonitrile was removed by concentration under reduced pressure, and the concentrated solution was washed three times with ethyl acetate (690 mL). The aqueous layer was concentrated under reduced pressure, the pH of the solution was adjusted to about 10 with 1N aqueous sodium hydroxide solution, and sodium chloride (57.5 g) was added. It was passed through a partition adsorption resin column followed by a column of Dowex 50W (manufactured by Dow Chemical Co., proton type, 40 mL), eluted and freeze-dried to obtain Compound 7 (13.2 g).
In Compound 7, the polymerization number of aspartic acid was calculated to be 66.9 by a titration method using 0.1N potassium hydroxide. Therefore, the molecular weight of Compound 7 was 20 kilodaltons.
[実施例1] 一般式(1)においてa+b+c+d+e+f+g+h+iの平均値=89、a+bの平均値=3.6、c+dの平均値=41、e+f=0、g+h+i=44.4、R=n-ブチル基、R=アセチル基、R=ゲムシタビン結合残基、R=水酸基、R15=メチル基、nの平均値=272、X=-(CH-NH-基、X=結合、X=メチレン基の化合物の合成
 合成例1で得られた化合物1(分子量10キロダルトン、3.8g)と、片末端メトキシ基及び片末端3-アミノプロピル基のポリエチレングリコール化合物(SUNBRIGHT MEPA-12T、日油社製、平均分子量12キロダルトン、15.7g)とゲムシタビン(6.9g、SCINO PHARM社製)を、DMF(375mL)に35℃にて溶解し、25℃にて1-ヒドロキシベンゾトリアゾール(HOBt)(4.9g)、ジイソプロピルカルボジイミド(DIPCI)(10.3mL)を加えて、一夜撹拌した。反応液をエタノール(1.5L)及びジイソプロピルエーテル(6L)の混合溶媒中に30分かけて滴下し、室温にて30分攪拌した。沈析物を濾取してエタノール/ジイソプロピルエーテル(1/4(v/v)、1.5L)で洗浄した。得られた沈析物をアセトニトリル(720mL)に溶解後、精製水(128mL)及びイオン交換樹脂(ダウケミカル製ダウエックス50(H)、160mL)を加えた。30分攪拌後、濾過し、濾液を減圧濃縮後、凍結乾燥を行い、実施例1の標記化合物(22.2g)を得た。
Example 1 In the general formula (1), the average value of a + b + c + d + e + f + g + h + i = 89, the average value of a + b = 3.6, the average value of c + d = 41, e + f = 0, g + h + i = 44.4, R 1 = n-butyl Group, R 2 = acetyl group, R 4 = gemcitabine binding residue, R 6 = hydroxyl group, R 15 = methyl group, average value of n = 272, X 1 = — (CH 2 ) 3 —NH— group, X 2 = Synthesis of Compound with X 3 = Methylene Group Compound 1 obtained in Synthesis Example 1 (molecular weight: 10 kilodalton, 3.8 g) and polyethylene glycol compound having one end methoxy group and one end 3-aminopropyl group ( SUNBRIGHT MEPA-12T, manufactured by NOF Corporation, average molecular weight 12 kilodalton, 15.7 g) and gemcitabine (6.9 g, manufactured by SCINO PHARM) were combined with DMF (3 And dissolved at 35 ° C. in 5 mL), 1-hydroxybenzotriazole at 25 ℃ (HOBt) (4.9g), was added diisopropylcarbodiimide (DIPCI) (10.3mL), and stirred overnight. The reaction solution was dropped into a mixed solvent of ethanol (1.5 L) and diisopropyl ether (6 L) over 30 minutes and stirred at room temperature for 30 minutes. The precipitate was collected by filtration and washed with ethanol / diisopropyl ether (1/4 (v / v), 1.5 L). The obtained precipitate was dissolved in acetonitrile (720 mL), and purified water (128 mL) and an ion exchange resin (Dow Chemical Dowex 50 (H + ), 160 mL) were added. After stirring for 30 minutes, the mixture was filtered, and the filtrate was concentrated under reduced pressure and lyophilized to obtain the title compound of Example 1 (22.2 g).
 実施例1の化合物をアルカリ加水分解後、遊離したゲムシタビンを高速液体クロマトグラフィー(HPLC)にて定量することにより、本化合物におけるゲムシタビン含有量を求めた。その結果、実施例1におけるゲムシタビン含有量は17.1%(w/w)であった。したがって、ポリアミノ酸主鎖であるアスパラギン酸重合数89に対する結合率は46.0%と算出された。
 この結果、実施例1のゲムシタビン総分子量は11キロダルトンであった。
After alkaline hydrolysis of the compound of Example 1, the released gemcitabine was quantified by high performance liquid chromatography (HPLC) to determine the gemcitabine content in this compound. As a result, the gemcitabine content in Example 1 was 17.1% (w / w). Therefore, the binding rate to the aspartic acid polymerization number 89, which is the polyamino acid main chain, was calculated to be 46.0%.
As a result, the total molecular weight of gemcitabine in Example 1 was 11 kilodaltons.
 実施例1のポリエチレングリコール化合物の結合量は、ポリエチレングリコール化合物の仕込当量及びポリエチレングリコール化合物の消費率より3.6分子であった。したがって、総ポリエチレングリコールセグメント分子量は43キロダルトンであった。
 なお、本反応における主鎖アスパラギン酸誘導体に対するポリエチレングリコールセグメント化合物の仕込当量=3.6当量であり、ポリエチレングリコールセグメント化合物の消費率=1であった。
The binding amount of the polyethylene glycol compound of Example 1 was 3.6 molecules from the charged equivalent of the polyethylene glycol compound and the consumption rate of the polyethylene glycol compound. Therefore, the total polyethylene glycol segment molecular weight was 43 kilodaltons.
In addition, the feed equivalent of the polyethylene glycol segment compound with respect to the main-chain aspartic acid derivative in this reaction = 3.6 equivalent, and the consumption rate of the polyethylene glycol segment compound = 1.
 上記の主鎖ポリアスパラギン酸分子量、結合ゲムシタビン総分子量及び結合ポリエチレングリコールセグメント分子量から、実施例1のポリアミノ酸誘導体の分子量は、64キロダルトンと算出された。
 また、ポリエチレングリコールセグメント含有量は、67質量%と算出された。
 また、実施例1のポリアミノ酸誘導体の会合度をレーザー光散乱強度により測定したところ、光散乱強度は23,505cpsであった。したがって、トルエンの光散乱強度との相対比率は1.82倍であった。また、SEC-MALS測定分子量は104,300であり、会合分子数は1.6であった。
 また、実施例1のポリアミノ酸誘導体の、ポリエチレングリコール標準物質を基準としたGPC分析におけるピークトップ分子量は40,955であった。
From the main chain polyaspartic acid molecular weight, the combined gemcitabine total molecular weight, and the combined polyethylene glycol segment molecular weight, the molecular weight of the polyamino acid derivative of Example 1 was calculated to be 64 kilodaltons.
The polyethylene glycol segment content was calculated to be 67% by mass.
Further, the degree of association of the polyamino acid derivative of Example 1 was measured by the laser light scattering intensity. As a result, the light scattering intensity was 23,505 cps. Therefore, the relative ratio with the light scattering intensity of toluene was 1.82. The molecular weight measured by SEC-MALS was 104,300, and the number of associated molecules was 1.6.
Moreover, the peak top molecular weight of the polyamino acid derivative of Example 1 in GPC analysis based on polyethylene glycol standard was 40,955.
[実施例2] 一般式(1)において、a+b+c+d+e+f+g+h+iの平均値=89、a+bの平均値=8.3、c+dの平均値=39.6、e+f=0、g+h+i=41.1、R=n-ブチル基、R=アセチル基、R=ゲムシタビン結合残基、R=水酸基、R15=メチル基、nの平均値=114、X=-(CH-NH-基、X=結合、X=メチレン基の化合物の合成
 合成例1で得られた化合物1(分子量10キロダルトン、0.47g)と片末端メトキシ基及び片末端3-アミノプロピル基のポリエチレングリコール(SUNBRIGHT MEPA-50H、日油社製、平均分子量5キロダルトン、2.04g)とゲムシタビン(0.86g、SCINO PHARM社製)をDMF(48mL)に35℃にて溶解し、20℃にてHOBt(0.61g)、DIPCI(1.3mL)を加えて、一夜撹拌した。反応液を、外液精製水にて透析し、その後、外液アセトニトリルにて透析し、内液を凍結乾燥して実施例2に係る標記化合物(2.62g)を得た。
[Example 2] In the general formula (1), the average value of a + b + c + d + e + f + g + h + i = 89, the average value of a + b = 8.3, the average value of c + d = 39.6, e + f = 0, g + h + i = 41.1, R 1 = n-butyl group, R 2 = acetyl group, R 4 = gemcitabine binding residue, R 6 = hydroxyl group, R 15 = methyl group, average value of n = 114, X 1 = — (CH 2 ) 3 —NH— group , X 2 = bond, X 3 = synthesis of compound of methylene group Compound 1 obtained in Synthesis Example 1 (molecular weight 10 kilodalton, 0.47 g) and polyethylene glycol having one end methoxy group and one end 3-aminopropyl group (SUNBRIGHT MEPA-50H, manufactured by NOF Corporation, average molecular weight 5 kilodalton, 2.04 g) and gemcitabine (0.86 g, manufactured by SCINO PHARM) were combined with DMF (48 And dissolved at 35 ° C. in L), HOBt (0.61g) at 20 ° C., adding DIPCI (1.3 mL), and stirred overnight. The reaction solution was dialyzed against purified outer solution water, then dialyzed against outer solution acetonitrile, and the inner solution was lyophilized to obtain the title compound (2.62 g) according to Example 2.
 実施例2の化合物をアルカリ加水分解後、遊離したゲムシタビンを高速液体クロマトグラフィー(HPLC)にて定量することにより、本化合物のゲムシタビン含有量を求めた。その結果、実施例2におけるゲムシタビン含有量は17.0%(w/w)であった。したがって、ポリアミノ酸主鎖であるアスパラギン酸重合数89に対する結合率は44.5%であった。
 この結果、実施例2のゲムシタビン総分子量は10キロダルトンであった。
After alkaline hydrolysis of the compound of Example 2, the released gemcitabine was quantified by high performance liquid chromatography (HPLC) to determine the gemcitabine content of this compound. As a result, the gemcitabine content in Example 2 was 17.0% (w / w). Therefore, the binding rate to the polyamino acid main chain aspartic acid polymerization number 89 was 44.5%.
As a result, the total molecular weight of gemcitabine in Example 2 was 10 kilodaltons.
 実施例2のポリエチレングリコール化合物の結合量は、ポリエチレングリコール化合物の仕込当量及びポリエチレングリコール化合物の消費率より8.3分子であった。したがって、総ポリエチレングリコールセグメント分子量は42キロダルトンと算出された。
 なお、実施例2において、主鎖アスパラギン酸誘導体に対するポリエチレングリコールセグメント化合物の仕込当量=8.9当量であり、ポリエチレングリコールセグメント化合物の消費率=0.93であった。
The binding amount of the polyethylene glycol compound of Example 2 was 8.3 molecules from the charged equivalent of the polyethylene glycol compound and the consumption rate of the polyethylene glycol compound. Therefore, the total polyethylene glycol segment molecular weight was calculated to be 42 kilodaltons.
In Example 2, the feed equivalent of the polyethylene glycol segment compound to the main chain aspartic acid derivative was 8.9 equivalents, and the consumption rate of the polyethylene glycol segment compound was 0.93.
 上記の主鎖ポリアスパラギン酸分子量、結合ゲムシタビン総分子量及び結合ポリエチレングリコールセグメント分子量から、実施例2のポリアミノ酸誘導体の分子量は、62キロダルトンと算出された。
 また、ポリエチレングリコールセグメント含有量は、67質量%と算出された。
 また、実施例2のポリアミノ酸誘導体の会合度をレーザー光散乱強度により測定したところ、光散乱強度は7,430cpsであった。したがって、トルエンの光散乱強度との相対比率は0.57倍であった。また、SEC-MALS測定分子量は74,150であり、会合分子数は1.2であった。
From the main chain polyaspartic acid molecular weight, the combined gemcitabine total molecular weight, and the combined polyethylene glycol segment molecular weight, the molecular weight of the polyamino acid derivative of Example 2 was calculated to be 62 kilodaltons.
The polyethylene glycol segment content was calculated to be 67% by mass.
Further, the degree of association of the polyamino acid derivative of Example 2 was measured by the laser light scattering intensity. As a result, the light scattering intensity was 7,430 cps. Therefore, the relative ratio with the light scattering intensity of toluene was 0.57 times. Further, the molecular weight measured by SEC-MALS was 74,150, and the number of associated molecules was 1.2.
[実施例3] 一般式(1)においてa+b+c+d+e+f+g+h+iの平均値=60、a+bの平均値=3.0、c+dの平均値=23.0、e+f=0、g+h+i=34.0、R=n-ブチル基、R=アセチル基、R=ゲムシタビン結合残基、R=水酸基、R15=メチル基、nの平均値=272、X=-(CH-NH-基、X=結合、X=メチレン基の化合物の合成
 合成例3で得られた化合物3(分子量7.0キロダルトン、0.37g)と片末端メトキシ基及び片末端3-アミノプロピル基のポリエチレングリコール(SUNBRIGHT MEPA-12T、日油社製、平均分子量12キロダルトン、1.92g)とゲムシタビン(0.67g、SCINO PHARM社製)をDMF(35mL)に35℃にて溶解し、20℃にてHOBt(0.48g)、DIPCI(1.0mL)を加えて、一夜撹拌した。反応液を酢酸エチル(105mL)及びジイソプロピルエーテル(0.9L)の混合溶媒中に30分かけて滴下し、室温にて1時間攪拌した。沈析物を濾取して酢酸エチル/ジイソプロピルエーテル(1/9(v/v)、0.5L)で洗浄した。得られた沈析物を精製水(50mL)に溶解後、イオン交換樹脂(ダウケミカル製ダウエックス50(H)、12mL)を加えた。20分攪拌後、濾過し、凍結乾燥を行い、実施例3に係る標記化合物(2.38g)を得た。
Example 3 In the general formula (1), the average value of a + b + c + d + e + f + g + h + i = 60, the average value of a + b = 3.0, the average value of c + d = 23.0, e + f = 0, g + h + i = 34.0, R 1 = n -Butyl group, R 2 = acetyl group, R 4 = gemcitabine binding residue, R 6 = hydroxyl group, R 15 = methyl group, average value of n = 272, X 1 =-(CH 2 ) 3 -NH- group, Synthesis of Compound with X 2 = Bond, X 3 = Methylene Group Compound 3 obtained in Synthesis Example 3 (molecular weight 7.0 kilodalton, 0.37 g), polyethylene having one end methoxy group and one end 3-aminopropyl group Glycol (SUNBRIGHT MEPA-12T, NOF Corporation, average molecular weight 12 kilodalton, 1.92 g) and gemcitabine (0.67 g, SCINO PHARM) DMF (3 And dissolved at 35 ° C. in mL), HOBt (0.48g) at 20 ° C., adding DIPCI (1.0 mL), and stirred overnight. The reaction solution was dropped into a mixed solvent of ethyl acetate (105 mL) and diisopropyl ether (0.9 L) over 30 minutes, and stirred at room temperature for 1 hour. The precipitate was collected by filtration and washed with ethyl acetate / diisopropyl ether (1/9 (v / v), 0.5 L). The obtained precipitate was dissolved in purified water (50 mL), and then an ion exchange resin (Dow Chemical Dowex 50 (H + ), 12 mL) was added. After stirring for 20 minutes, the mixture was filtered and freeze-dried to obtain the title compound (2.38 g) according to Example 3.
 実施例3の化合物をアルカリ加水分解後、遊離したゲムシタビンを高速液体クロマトグラフィー(HPLC)にて定量することにより、本化合物のゲムシタビン含有量を求めた。その結果、実施例3におけるゲムシタビン含有量は12.5%(w/w)であった。したがって、ポリアミノ酸主鎖であるアスパラギン酸重合数60に対する結合率は38.3%であった。
 この結果、実施例3のゲムシタビン総分子量は6.0キロダルトンであった。
After alkaline hydrolysis of the compound of Example 3, the released gemcitabine was quantified by high performance liquid chromatography (HPLC) to determine the gemcitabine content of this compound. As a result, the gemcitabine content in Example 3 was 12.5% (w / w). Therefore, the binding rate to the polyamino acid main chain aspartic acid polymerization number 60 was 38.3%.
As a result, the total molecular weight of gemcitabine in Example 3 was 6.0 kilodaltons.
 実施例3のポリエチレングリコール化合物の結合量は、ポリエチレングリコール化合物の仕込当量及びポリエチレングリコール化合物の消費率より3.0分子であった。したがって、総ポリエチレングリコールセグメント分子量は36キロダルトンと算出された。
 なお、主鎖アスパラギン酸誘導体に対するポリエチレングリコール化合物の仕込当量=3.0当量であり、ポリエチレングリコール化合物の消費率=1であった。
The binding amount of the polyethylene glycol compound of Example 3 was 3.0 molecules from the charged equivalent of the polyethylene glycol compound and the consumption rate of the polyethylene glycol compound. Therefore, the total polyethylene glycol segment molecular weight was calculated to be 36 kilodaltons.
In addition, the feed equivalent of the polyethylene glycol compound with respect to the main chain aspartic acid derivative = 3.0 equivalent, and the consumption rate of the polyethylene glycol compound = 1.
 上記の主鎖ポリアスパラギン酸分子量、結合ゲムシタビン総分子量及び結合ポリエチレングリコールセグメント分子量から、実施例3のポリアミノ酸誘導体の分子量は、49キロダルトンと算出された。
 また、ポリエチレングリコールセグメント含有量は、73質量%と算出された。
 また、実施例3のポリアミノ酸誘導体の会合度をレーザー光散乱強度により測定したところ、光散乱強度は10,270cpsであった。したがって、トルエンの光散乱強度との相対比率は0.79倍であった。また、SEC-MALS測定分子量は102,500であり、会合分子数は2.1であった。
 また、実施例3のポリアミノ酸誘導体の、ポリエチレングリコール標準物質を基準としたGPC分析におけるピークトップ分子量は42,642であった。
From the main chain polyaspartic acid molecular weight, the combined gemcitabine total molecular weight, and the combined polyethylene glycol segment molecular weight, the molecular weight of the polyamino acid derivative of Example 3 was calculated to be 49 kilodaltons.
The polyethylene glycol segment content was calculated to be 73% by mass.
Further, the degree of association of the polyamino acid derivative of Example 3 was measured by the laser light scattering intensity, whereby the light scattering intensity was 10,270 cps. Therefore, the relative ratio with the light scattering intensity of toluene was 0.79 times. Further, the molecular weight measured by SEC-MALS was 102,500, and the number of associated molecules was 2.1.
Moreover, the peak top molecular weight in GPC analysis of the polyamino acid derivative of Example 3 on the basis of the polyethylene glycol standard substance was 42,642.
[実施例4] 一般式(1)においてa+b+c+d+e+f+g+h+iの平均値=110、a+bの平均値=5.5、c+dの平均値=44、e+f=0、g+h+i=60.5、R=n-ブチル基、R=アセチル基、R=ゲムシタビン結合残基、R=水酸基、R15=メチル基、nの平均値=272、X=-(CH-NH-基、X=結合、X=メチレン基の化合物の合成
 合成例4で得られた化合物4(分子量13キロダルトン、0.50g)と片末端メトキシ基及び片末端3-アミノプロピル基のポリエチレングリコール(SUNBRIGHT MEPA-12T、日油社製、平均分子量12キロダルトン、2.6g)とゲムシタビン(0.92g、SCINO PHARM社製)をDMF(50mL)に35℃にて溶解し、20℃にてHOBt(0.65g)、DIPCI(2.0mL)を加えて、一夜撹拌した。反応液をエタノール(0.2L)及びジイソプロピルエーテル(0.8L)の混合溶媒中に30分かけて滴下し、室温にて1時間攪拌した。沈析物を濾取してエタノール/ジイソプロピルエーテル(1/4(v/v)、0.2L)で洗浄した。得られた沈析物をアセトニトリル(90mL)に溶解後、精製水(15mL)及びイオン交換樹脂(ダウケミカル製ダウエックス50(H)、30mL)を加えた。1時間攪拌後、濾過し、濾液を減圧濃縮後、凍結乾燥を行い、実施例4に係る標記化合物(3.01g)を得た。
Example 4 In the general formula (1), the average value of a + b + c + d + e + f + g + h + i = 110, the average value of a + b = 5.5, the average value of c + d = 44, e + f = 0, g + h + i = 60.5, R 1 = n-butyl Group, R 2 = acetyl group, R 4 = gemcitabine binding residue, R 6 = hydroxyl group, R 15 = methyl group, average value of n = 272, X 1 = — (CH 2 ) 3 —NH— group, X 2 = Synthesis of Compound with X 3 = Methylene Group Compound 4 obtained in Synthesis Example 4 (molecular weight: 13 kilodalton, 0.50 g) and polyethylene glycol having one terminal methoxy group and one terminal 3-aminopropyl group (SUNBRIGHT MEPA) -12T, NOF Corporation, average molecular weight 12 kilodalton, 2.6 g) and gemcitabine (0.92 g, SCINO PHARM) DMF (50 mL) And dissolved at 35 ° C. in, HOBt (0.65 g) at 20 ° C., adding DIPCI (2.0 mL), and stirred overnight. The reaction solution was dropped into a mixed solvent of ethanol (0.2 L) and diisopropyl ether (0.8 L) over 30 minutes and stirred at room temperature for 1 hour. The precipitate was collected by filtration and washed with ethanol / diisopropyl ether (1/4 (v / v), 0.2 L). The obtained precipitate was dissolved in acetonitrile (90 mL), and purified water (15 mL) and an ion exchange resin (Dow Chemical Dowex 50 (H + ), 30 mL) were added. After stirring for 1 hour, the mixture was filtered, and the filtrate was concentrated under reduced pressure and lyophilized to obtain the title compound (3.01 g) according to Example 4.
 実施例4の化合物をアルカリ加水分解後、遊離したゲムシタビンを高速液体クロマトグラフィー(HPLC)にて定量することにより、本化合物のゲムシタビン含有量を求めた。その結果、実施例4におけるゲムシタビン含有量は12.9%(w/w)であった。したがって、ポリアミノ酸主鎖であるアスパラギン酸重合数110に対する結合率は44.0%であった。
 この結果、実施例4のゲムシタビン総分子量は13キロダルトンであった。
After alkaline hydrolysis of the compound of Example 4, the released gemcitabine was quantified by high performance liquid chromatography (HPLC) to determine the gemcitabine content of this compound. As a result, the gemcitabine content in Example 4 was 12.9% (w / w). Therefore, the binding rate to the aspartic acid polymerization number 110 which is the polyamino acid main chain was 44.0%.
As a result, the total molecular weight of gemcitabine in Example 4 was 13 kilodaltons.
 ポリエチレングリコール化合物の結合量は、ポリエチレングリコール化合物の仕込当量及びポリエチレングリコール化合物の消費率より5.5分子であった。したがって、総ポリエチレングリコールセグメント分子量は66キロダルトンと算出された。
 なお、主鎖アスパラギン酸誘導体に対するポリエチレングリコール化合物の仕込当量=5.5当量であり、ポリエチレングリコール化合物の消費率=1であった。
The binding amount of the polyethylene glycol compound was 5.5 molecules from the charged equivalent of the polyethylene glycol compound and the consumption rate of the polyethylene glycol compound. Therefore, the total polyethylene glycol segment molecular weight was calculated to be 66 kilodaltons.
In addition, the feed equivalent of the polyethylene glycol compound with respect to the main chain aspartic acid derivative = 5.5 equivalent, and the consumption rate of the polyethylene glycol compound = 1.
 上記の主鎖ポリアスパラギン酸分子量、結合ゲムシタビン総分子量及び結合ポリエチレングリコールセグメント分子量から、実施例4のポリアミノ酸誘導体の分子量は、91キロダルトンと算出された。
 また、ポリエチレングリコールセグメント含有量は、72質量%と算出された。
 また、実施例4のポリアミノ酸誘導体の会合度をレーザー光散乱強度により測定したところ、光散乱強度は11,215cpsであった。したがって、トルエンの光散乱強度との相対比率は0.87倍であった。また、SEC-MALS測定分子量は112,200であり、会合分子数は1.2であった。
 また、実施例4のポリアミノ酸誘導体の、ポリエチレングリコール標準物質を基準としたGPC分析におけるピークトップ分子量は58,443であった。
From the main chain polyaspartic acid molecular weight, the combined gemcitabine total molecular weight, and the combined polyethylene glycol segment molecular weight, the molecular weight of the polyamino acid derivative of Example 4 was calculated to be 91 kilodaltons.
The polyethylene glycol segment content was calculated to be 72% by mass.
Further, when the degree of association of the polyamino acid derivative of Example 4 was measured by the laser light scattering intensity, the light scattering intensity was 11,215 cps. Therefore, the relative ratio with the light scattering intensity of toluene was 0.87 times. The molecular weight measured by SEC-MALS was 112,200, and the number of associated molecules was 1.2.
Moreover, the peak top molecular weight of the polyamino acid derivative of Example 4 in the GPC analysis based on the polyethylene glycol standard substance was 58,443.
[実施例5] 一般式(1)においてa+b+c+d+e+f+g+h+iの平均値=89、a+bの平均値=3.6、c+dの平均値=45、e+f=0、g+h+i=40.4、R=n-ブチル基、R=アセチル基、R=ゲムシタビン結合残基、R=水酸基、R15=メチル基、nの平均値=113、X=-(CH-NH-基、X=結合、X=メチレン基の化合物の合成
 合成例1で得られた化合物1(分子量10キロダルトン、0.5g)と片末端メトキシ基及び片末端3-アミノプロピル基のポリエチレングリコール(SUNBRIGHT MEPA-50H、日油社製、平均分子量5キロダルトン、0.870g)とゲムシタビン(0.915g、SCINO PHARM社製)をDMF(50mL)に35℃にて溶解し、20℃にてHOBt(0.646g)、DIPCI(2.04mL)を加えて、一夜撹拌した。反応液をエタノール(0.2L)及びジイソプロピルエーテル(0.8L)の混合溶媒中に15分かけて滴下し、室温にて30分攪拌した。沈析物を濾取してエタノール/ジイソプロピルエーテル(1/4(v/v)、0.2L)で洗浄した。得られた沈析物をアセトニトリル(90mL)に溶解後、精製水(16mL)及びイオン交換樹脂(ダウケミカル製ダウエックス50(H)、20mL)を加えた。1時間攪拌後、濾過し、濾液を減圧濃縮後、凍結乾燥を行い、実施例5に係る化合物(1.38g)を得た。
Example 5 In the general formula (1), the average value of a + b + c + d + e + f + g + h + i = 89, the average value of a + b = 3.6, the average value of c + d = 45, e + f = 0, g + h + i = 40.4, R 1 = n-butyl Group, R 2 = acetyl group, R 4 = gemcitabine binding residue, R 6 = hydroxyl group, R 15 = methyl group, average value of n = 113, X 1 = — (CH 2 ) 3 —NH— group, X 2 = Synthesis of Compound with X 3 = Methylene Group Compound 1 obtained in Synthesis Example 1 (molecular weight 10 kilodalton, 0.5 g) and polyethylene glycol having one terminal methoxy group and one terminal 3-aminopropyl group (SUNBRIGHT MEPA) -50H, NOF Corporation, average molecular weight 5 kilodalton, 0.870 g) and gemcitabine (0.915 g, SCINO PHARM) DMF (50 mL) And dissolved at 35 ° C. in, HOBt (0.646 g) at 20 ° C., adding DIPCI (2.04 mL), and stirred overnight. The reaction solution was dropped into a mixed solvent of ethanol (0.2 L) and diisopropyl ether (0.8 L) over 15 minutes, and stirred at room temperature for 30 minutes. The precipitate was collected by filtration and washed with ethanol / diisopropyl ether (1/4 (v / v), 0.2 L). The obtained precipitate was dissolved in acetonitrile (90 mL), and purified water (16 mL) and an ion exchange resin (Dow Chemical Dowex 50 (H + ), 20 mL) were added. After stirring for 1 hour, the mixture was filtered, and the filtrate was concentrated under reduced pressure and lyophilized to obtain the compound according to Example 5 (1.38 g).
 実施例5の化合物をアルカリ加水分解後、遊離したゲムシタビンを高速液体クロマトグラフィー(HPLC)にて定量することにより、本化合物のゲムシタビン含有量を求めた。その結果、実施例5におけるゲムシタビン含有量は、27.9%(w/w)であった。したがって、ポリアミノ酸主鎖であるアスパラギン酸重合数89に対する結合率は50.6%であった。
 この結果、実施例5のゲムシタビン総分子量は12キロダルトンであった。
After alkaline hydrolysis of the compound of Example 5, the released gemcitabine was quantified by high performance liquid chromatography (HPLC) to determine the gemcitabine content of this compound. As a result, the gemcitabine content in Example 5 was 27.9% (w / w). Therefore, the binding rate with respect to 89 aspartic acid polymerization number which is a polyamino acid main chain was 50.6%.
As a result, the total molecular weight of gemcitabine in Example 5 was 12 kilodaltons.
 ポリエチレングリコール化合物の結合量は、ポリエチレングリコール化合物の仕込当量及びポリエチレングリコール化合物の消費率より3.6分子であった。したがって、総ポリエチレングリコールセグメント分子量は18キロダルトンと算出された。
 なお、主鎖アスパラギン酸誘導体に対するポリエチレングリコール化合物の仕込当量=3.6当量であり、ポリエチレングリコール化合物の消費率=1であった。
The binding amount of the polyethylene glycol compound was 3.6 molecules from the charged equivalent of the polyethylene glycol compound and the consumption rate of the polyethylene glycol compound. Therefore, the total polyethylene glycol segment molecular weight was calculated to be 18 kilodaltons.
The feed equivalent of the polyethylene glycol compound to the main chain aspartic acid derivative was 3.6 equivalents, and the consumption rate of the polyethylene glycol compound was 1.
 上記の主鎖ポリアスパラギン酸分子量、結合ゲムシタビン総分子量及び結合ポリエチレングリコールセグメント分子量から、実施例5のポリアミノ酸誘導体の分子量は、42キロダルトンと算出された。
 また、ポリエチレングリコールセグメント含有量は、43質量%と算出された。
 また、実施例5のポリアミノ酸誘導体の会合度をレーザー光散乱強度により測定したところ、光散乱強度は35,280cpsであった。したがって、トルエンの光散乱強度との相対比率は2.73倍であった。また、SEC-MALS測定分子量は347,200であり、会合分子数は8.4であった。
From the main chain polyaspartate molecular weight, the combined gemcitabine total molecular weight, and the combined polyethylene glycol segment molecular weight, the molecular weight of the polyamino acid derivative of Example 5 was calculated to be 42 kilodaltons.
The polyethylene glycol segment content was calculated to be 43% by mass.
Further, the degree of association of the polyamino acid derivative of Example 5 was measured by the laser light scattering intensity. As a result, the light scattering intensity was 35,280 cps. Therefore, the relative ratio with the light scattering intensity of toluene was 2.73 times. Further, the molecular weight measured by SEC-MALS was 347,200, and the number of associated molecules was 8.4.
[実施例6] 一般式(1)においてa+b+c+d+e+f+g+h+iの平均値=89、a+bの平均値=24.0、c+dの平均値=27.5、e+f=0、g+h+i=37.5、R=n-ブチル基、R=アセチル基、R=ゲムシタビン結合残基、R=水酸基、R及びR10=水素原子、R11=アラニンメチルエステル基、R12=水酸基、R15=メチル基、nの平均値=45、X=-(CH-NH-基、X=メチレン基の化合物の合成
 合成例1で得られた化合物1(分子量10キロダルトン、0.53g)と片末端メトキシ基及び片末端3-アミノプロピル基のポリエチレングリコール(SUNBRIGHT MEPA-20H、日油社製、平均分子量2キロダルトン、2.47g)をDMF(50mL)に35℃にて溶解し、20℃にてHOBt(0.68g)及びDIPCI(1.4mL)を加えて3.5時間攪拌した。3.5時間後、合成例5で得られた化合物5(1.1g)とジイソプロピルエチルアミン(0.4mL)を加えて、一夜撹拌した。反応液をジイソプロピルエーテル(1.5L)に30分かけて滴下し、室温にて1時間攪拌した。沈析物を濾取してジイソプロピルエーテル(0.5L)で洗浄した。得られた沈析物を精製水(50mL)に溶解後、イオン交換樹脂(ダウケミカル製ダウエックス50(H)、20mL)を加えた。20分攪拌後、濾過し、凍結乾燥を行い、実施例6に係る標記化合物(3.55g)を得た。
[Example 6] In general formula (1), the average value of a + b + c + d + e + f + g + h + i = 89, the average value of a + b = 24.0, the average value of c + d = 27.5, e + f = 0, g + h + i = 37.5, R 1 = n -Butyl group, R 2 = acetyl group, R 4 = gemcitabine binding residue, R 6 = hydroxyl group, R 9 and R 10 = hydrogen atom, R 11 = alanine methyl ester group, R 12 = hydroxyl group, R 15 = methyl group , Average value of n = 45, synthesis of compound of X 1 = — (CH 2 ) 3 —NH— group, X 3 = methylene group Compound 1 obtained in Synthesis Example 1 (molecular weight 10 kilodalton, 0.53 g) And polyethylene glycol having one end methoxy group and one end 3-aminopropyl group (SUNBRIGHT MEPA-20H, manufactured by NOF Corporation, average molecular weight 2 kilodaltons, 2.47 g) It melt | dissolved in MF (50 mL) at 35 degreeC, HOBt (0.68g) and DIPCI (1.4mL) were added at 20 degreeC, and it stirred for 3.5 hours. After 3.5 hours, Compound 5 (1.1 g) obtained in Synthesis Example 5 and diisopropylethylamine (0.4 mL) were added and stirred overnight. The reaction solution was added dropwise to diisopropyl ether (1.5 L) over 30 minutes and stirred at room temperature for 1 hour. The precipitate was collected by filtration and washed with diisopropyl ether (0.5 L). The resulting precipitate was dissolved in purified water (50 mL), and then an ion exchange resin (Dow Chemical Dowex 50 (H + ), 20 mL) was added. After stirring for 20 minutes, the mixture was filtered and freeze-dried to obtain the title compound (3.55 g) according to Example 6.
 実施例6の化合物をアルカリ加水分解後、遊離したゲムシタビンを高速液体クロマトグラフィー(HPLC)にて定量することにより、本化合物のゲムシタビン含有量を求めた。その結果、実施例6におけるゲムシタビン含有量は、10.1%(w/w)であった。したがって、ポリアミノ酸主鎖であるアスパラギン酸重合数89に対する結合率は30.1%であった。
 この結果、実施例6のゲムシタビン総分子量は7.1キロダルトンであった。
After alkaline hydrolysis of the compound of Example 6, the gemcitabine released was quantified by high performance liquid chromatography (HPLC) to determine the gemcitabine content of this compound. As a result, the gemcitabine content in Example 6 was 10.1% (w / w). Therefore, the binding ratio to the polyamino acid main chain aspartic acid polymerization number 89 was 30.1%.
As a result, the total molecular weight of gemcitabine in Example 6 was 7.1 kilodalton.
 ポリエチレングリコール化合物の結合量は、ポリエチレングリコール化合物の仕込当量及びポリエチレングリコール化合物の消費率より24分子であった。したがって、総ポリエチレングリコールセグメント分子量は48キロダルトンと算出された。
 なお、主鎖アスパラギン酸誘導体に対するポリエチレングリコール化合物の仕込当量=24当量であり、ポリエチレングリコール化合物の消費率=1であった。
The binding amount of the polyethylene glycol compound was 24 molecules based on the charged equivalent of the polyethylene glycol compound and the consumption rate of the polyethylene glycol compound. Therefore, the total polyethylene glycol segment molecular weight was calculated to be 48 kilodaltons.
The feed equivalent of the polyethylene glycol compound to the main chain aspartic acid derivative was 24 equivalents, and the consumption rate of the polyethylene glycol compound was 1.
 上記の主鎖ポリアスパラギン酸分子量、結合ゲムシタビン総分子量及び結合ポリエチレングリコールセグメント分子量から、実施例6のポリアミノ酸誘導体の分子量は、70キロダルトンと算出された。
 また、ポリエチレングリコールセグメント含有量は、68質量%と算出された。
 また、実施例5のポリアミノ酸誘導体の会合度をレーザー光散乱強度により測定したところ、光散乱強度は6,025cpsであった。したがって、トルエンの光散乱強度との相対比率は0.47倍であった。また、SEC-MALS測定分子量は64,790であり、会合分子数は0.9であった。
From the main chain polyaspartic acid molecular weight, the combined gemcitabine total molecular weight, and the combined polyethylene glycol segment molecular weight, the molecular weight of the polyamino acid derivative of Example 6 was calculated to be 70 kilodaltons.
The polyethylene glycol segment content was calculated to be 68% by mass.
Further, when the association degree of the polyamino acid derivative of Example 5 was measured by the laser light scattering intensity, the light scattering intensity was 6,025 cps. Therefore, the relative ratio with the light scattering intensity of toluene was 0.47 times. The molecular weight measured by SEC-MALS was 64,790, and the number of associated molecules was 0.9.
[実施例7] 一般式(1)においてa+b+c+d+e+f+g+h+iの平均値=89、a+bの平均値=24.0、c+dの平均値=18.7、e+f=0、g+h+i=46.3、R=n-ブチル基、R=アセチル基、R=ゲムシタビン結合残基、R=水酸基、R及びR10=水素原子、R11=ロイシンメチルエステル基、R12=水酸基、R15=メチル基、nの平均値=45、X=-(CH-NH-基、X=メチレン基の化合物の合成
 合成例1で得られた化合物1(分子量10キロダルトン、0.56g)と片末端メトキシ基及び片末端3-アミノプロピル基のポリエチレングリコール(SUNBRIGHT MEPA-20H、日油社製、平均分子量2キロダルトン、2.64g)をDMF(50mL)に35℃にて溶解し、20℃にてHOBt(0.73g)及びDIPCI(1.5mL)を加えて4時間攪拌した。4時間後、反応液に合成例6で得られた化合物6(1.3g)とジイソプロピルエチルアミン(0.4mL)を加えて、一夜撹拌した。反応液を酢酸エチル(150mL)及びジイソプロピルエーテル(1.4L)の混合溶媒中に30分かけて滴下し、室温にて1時間攪拌した。沈析物を濾取して酢酸エチル/ジイソプロピルエーテル(1/9(v/v)、0.5L)で洗浄した。得られた沈析物を精製水(50mL)に溶解後、イオン交換樹脂(ダウケミカル製ダウエックス50(H)、20mL)を加えた。20分攪拌後、濾過し、凍結乾燥を行い、実施例7に係る標記化合物(3.73g)を得た。
[Example 7] In general formula (1), the average value of a + b + c + d + e + f + g + h + i = 89, the average value of a + b = 24.0, the average value of c + d = 18.7, e + f = 0, g + h + i = 46.3, R 1 = n -Butyl group, R 2 = acetyl group, R 4 = gemcitabine binding residue, R 6 = hydroxyl group, R 9 and R 10 = hydrogen atom, R 11 = leucine methyl ester group, R 12 = hydroxyl group, R 15 = methyl group , Average value of n = 45, synthesis of compound of X 1 = — (CH 2 ) 3 —NH— group, X 3 = methylene group Compound 1 obtained in Synthesis Example 1 (molecular weight 10 kilodalton, 0.56 g) And polyethylene glycol having one end methoxy group and one end 3-aminopropyl group (SUNBRIGHT MEPA-20H, manufactured by NOF Corporation, average molecular weight 2 kilodaltons, 2.64 g) It melt | dissolved in MF (50 mL) at 35 degreeC, HOBt (0.73 g) and DIPCI (1.5 mL) were added at 20 degreeC, and it stirred for 4 hours. After 4 hours, Compound 6 (1.3 g) obtained in Synthesis Example 6 and diisopropylethylamine (0.4 mL) were added to the reaction solution, and the mixture was stirred overnight. The reaction solution was dropped into a mixed solvent of ethyl acetate (150 mL) and diisopropyl ether (1.4 L) over 30 minutes, and stirred at room temperature for 1 hour. The precipitate was collected by filtration and washed with ethyl acetate / diisopropyl ether (1/9 (v / v), 0.5 L). The resulting precipitate was dissolved in purified water (50 mL), and then an ion exchange resin (Dow Chemical Dowex 50 (H + ), 20 mL) was added. After stirring for 20 minutes, the mixture was filtered and freeze-dried to obtain the title compound according to Example 7 (3.73 g).
 実施例7の化合物をアルカリ加水分解後、遊離したゲムシタビンを高速液体クロマトグラフィー(HPLC)にて定量することにより、本化合物のゲムシタビン含有量を求めた。その結果、実施例7におけるゲムシタビン含有量は、7.3%(w/w)であった。したがって、ポリアミノ酸主鎖であるアスパラギン酸重合数89に対する結合率は21.0%であった。
 この結果、実施例7のゲムシタビン総分子量は4.9キロダルトンであった。
After alkaline hydrolysis of the compound of Example 7, the released gemcitabine was quantified by high performance liquid chromatography (HPLC) to determine the gemcitabine content of this compound. As a result, the gemcitabine content in Example 7 was 7.3% (w / w). Therefore, the binding rate with respect to 89 aspartic acid polymerization number which is a polyamino acid main chain was 21.0%.
As a result, the total molecular weight of gemcitabine in Example 7 was 4.9 kilodaltons.
 ポリエチレングリコール化合物の結合量は、ポリエチレングリコール化合物の仕込当量及びポリエチレングリコール化合物の消費率より24分子であった。したがって、総ポリエチレングリコールセグメント分子量は48キロダルトンと算出された。
 なお、主鎖アスパラギン酸誘導体に対するポリエチレングリコール化合物の仕込当量=24当量であり、ポリエチレングリコール化合物の消費率=1であった。
The binding amount of the polyethylene glycol compound was 24 molecules based on the charged equivalent of the polyethylene glycol compound and the consumption rate of the polyethylene glycol compound. Therefore, the total polyethylene glycol segment molecular weight was calculated to be 48 kilodaltons.
The feed equivalent of the polyethylene glycol compound to the main chain aspartic acid derivative was 24 equivalents, and the consumption rate of the polyethylene glycol compound was 1.
 上記の主鎖ポリアスパラギン酸分子量、結合ゲムシタビン総分子量、結合ポリエチレングリコールセグメント分子量及びアスパラギン酸ユニット残基の総分子量から、実施例7のポリアミノ酸誘導体の分子量は、69キロダルトンと算出された。
 また、ポリエチレングリコールセグメント含有量は、70質量%と算出された。
 また、実施例7のポリアミノ酸誘導体の会合度をレーザー光散乱強度により測定したところ、光散乱強度は5,740cpsであった。したがって、トルエンの光散乱強度との相対比率は0.44倍であった。また、SEC-MALS測定分子量は64,630であり、会合分子数は0.9であった。
From the main chain polyaspartic acid molecular weight, the combined gemcitabine total molecular weight, the combined polyethylene glycol segment molecular weight and the total molecular weight of the aspartic acid unit residue, the molecular weight of the polyamino acid derivative of Example 7 was calculated to be 69 kilodaltons.
The polyethylene glycol segment content was calculated to be 70% by mass.
Further, the degree of association of the polyamino acid derivative of Example 7 was measured by the laser light scattering intensity. As a result, the light scattering intensity was 5,740 cps. Therefore, the relative ratio with the light scattering intensity of toluene was 0.44 times. The molecular weight measured by SEC-MALS was 64,630 and the number of associated molecules was 0.9.
[実施例8] 一般式(1)においてa+b+c+d+e+f+g+h+iの平均値=89、a+bの平均値=34.0、c+dの平均値=10.9、e+f=0、g+h+i=44.4、R=n-ブチル基、R=アセチル基、R=CP-4126結合残基、R=水酸基、R15=メチル基、nの平均値=45、X=-(CH-NH-基、X=結合、X=メチレン基の化合物の合成
 合成例1で得られた化合物1(分子量10キロダルトン、0.58g)と片末端メトキシ基及び片末端3-アミノプロピル基のポリエチレングリコール(SUNBRIGHT MEPA-20H、日油株式会社製、平均分子量2キロダルトン、1.97g)とGemcitabine 5’-elaidate(CP-4126、0.45g、MedKoo Biosciences社製)をDMF(53mL)に35℃にて溶解し、25℃にてHOBt(0.845g)、DIPCI(0.75mL)を加えて、一夜撹拌した。反応液をジイソプロピルエーテル(1060mL)の混合溶媒中に30分かけて滴下し、室温にて30分攪拌した。沈析物を濾取してジイソプロピルエーテル(50mL)で洗浄した。得られた沈析物を精製水(53mL)に溶解後、イオン交換樹脂(ダウケミカル製ダウエックス50(H)、25mL)を加えた。30分攪拌後、濾過し、濾液を減圧濃縮後、凍結乾燥を行い、実施例8に係る標記化合物(4.79g)を得た。
[Example 8] In the general formula (1), the average value of a + b + c + d + e + f + g + h + i = 89, the average value of a + b = 34.0, the average value of c + d = 10.9, e + f = 0, g + h + i = 44.4, R 1 = n -Butyl group, R 2 = acetyl group, R 4 = CP-4126 binding residue, R 6 = hydroxyl group, R 15 = methyl group, average value of n = 45, X 1 =-(CH 2 ) 3 -NH- Synthesis of a compound having a group, X 2 = bond, X 3 = methylene group Compound 1 obtained in Synthesis Example 1 (molecular weight: 10 kilodalton, 0.58 g) and polyethylene having one end methoxy group and one end 3-aminopropyl group Glycol (SUNBRIGHT MEPA-20H, manufactured by NOF Corporation, average molecular weight 2 kilodaltons, 1.97 g) and Gemcitabine 5′-elaidate (CP-4126, 0.45 g (manufactured by MedKoo Biosciences) was dissolved in DMF (53 mL) at 35 ° C., HOBt (0.845 g) and DIPCI (0.75 mL) were added at 25 ° C., and the mixture was stirred overnight. The reaction solution was dropped into a mixed solvent of diisopropyl ether (1060 mL) over 30 minutes and stirred at room temperature for 30 minutes. The precipitate was collected by filtration and washed with diisopropyl ether (50 mL). The obtained precipitate was dissolved in purified water (53 mL), and an ion exchange resin (Dow Chemical Dowex 50 (H + ), 25 mL) was added. After stirring for 30 minutes, the mixture was filtered, and the filtrate was concentrated under reduced pressure and lyophilized to obtain the title compound (4.79 g) according to Example 8.
 実施例8の化合物をアルカリ加水分解後、遊離したゲムシタビンを高速液体クロマトグラフィー(HPLC)にて定量することにより、本化合物のゲムシタビン含有量を求めた。その結果、実施例8におけるゲムシタビン含有量は、3.5%(w/w)であった。したがって、ポリアミノ酸主鎖であるアスパラギン酸重合数89に対する結合率は12.3%であった。
 この結果、実施例8のゲムシタビン総分子量は2.9キロダルトンであった。
After alkaline hydrolysis of the compound of Example 8, the released gemcitabine was quantified by high performance liquid chromatography (HPLC) to determine the gemcitabine content of this compound. As a result, the gemcitabine content in Example 8 was 3.5% (w / w). Therefore, the binding rate to the polyamino acid main chain aspartic acid polymerization number 89 was 12.3%.
As a result, the total molecular weight of gemcitabine in Example 8 was 2.9 kilodaltons.
 ポリエチレングリコール化合物の結合量は、ポリエチレングリコール化合物の仕込当量及びポリエチレングリコール化合物の消費率より34.0分子であった。その結果、総ポリエチレングリコールセグメント分子量は68キロダルトンと算出された。
 なお、主鎖アスパラギン酸誘導体に対するポリエチレングリコール化合物の仕込当量=37当量であり、ポリエチレングリコール化合物の消費率=0.92であった。
The binding amount of the polyethylene glycol compound was 34.0 molecules from the charged equivalent of the polyethylene glycol compound and the consumption rate of the polyethylene glycol compound. As a result, the total polyethylene glycol segment molecular weight was calculated to be 68 kilodaltons.
The charged equivalent of the polyethylene glycol compound to the main chain aspartic acid derivative was 37 equivalents, and the consumption rate of the polyethylene glycol compound was 0.92.
 上記の主鎖ポリアスパラギン酸分子量、結合ゲムシタビン総分子量及び結合ポリエチレングリコールセグメント分子量から、実施例8のポリアミノ酸誘導体の分子量は、83キロダルトンと算出された。
 また、ポリエチレングリコールセグメント含有量は、82質量%と算出された。
 また、実施例8のポリアミノ酸誘導体の会合度をレーザー光散乱強度により測定したところ、光散乱強度は20,545cpsであった。したがって、トルエンの光散乱強度との相対比率は1.59倍であった。また、SEC-MALS測定分子量は252,800であり、会合分子数は3.1であった。
From the main chain polyaspartic acid molecular weight, the combined gemcitabine total molecular weight, and the combined polyethylene glycol segment molecular weight, the molecular weight of the polyamino acid derivative of Example 8 was calculated to be 83 kilodaltons.
The polyethylene glycol segment content was calculated to be 82% by mass.
Further, the association degree of the polyamino acid derivative of Example 8 was measured by the laser light scattering intensity, whereby the light scattering intensity was 20,545 cps. Therefore, the relative ratio with the light scattering intensity of toluene was 1.59 times. Further, the molecular weight measured by SEC-MALS was 252,800, and the number of associated molecules was 3.1.
[実施例9] 一般式(1)においてa+b+c+d+e+f+g+h+iの平均値=67、a+bの平均値=3.5、c+dの平均値=36.5、e+f=0、g+h+i=27、R=ポリエチレングリコールセグメント、R=アセチル基、R=ゲムシタビン結合残基、R=水酸基、R15=メチル基、nの平均値=272、X=-(CH-NH-基、X=結合、X=メチレン基の化合物の合成
 合成例7で得られた化合物7(分子量20キロダルトン、11.0g)と、片末端メトキシ基及び片末端3-アミノプロピル基のポリエチレングリコール化合物(SUNBRIGHT MEPA-12T、日油社製、平均分子量12キロダルトン、23.4g)とゲムシタビン塩酸塩(8.9g、SCINO PHARM社製)を、DMF(317mL)に35℃にて溶解し、20℃にて1-ヒドロキシベンゾトリアゾール(HOBt)(6.3g)、ジイソプロピルカルボジイミド(DIPCI)(11.5mL)を加えて、一夜撹拌した。反応液をエタノール(1.3L)及びジイソプロピルエーテル(5.1L)の混合溶媒中に40分かけて滴下し、室温にて30分攪拌した。沈析物を濾取して酢酸エチル(486mL)で洗浄した。得られた沈析物を精製水(395mL)に溶解後、精製水(9mL)及びイオン交換樹脂(ダウケミカル製ダウエックス50(H)、113mL)を加えた。40分攪拌後、濾過し、凍結乾燥を行い、実施例9の標記化合物(37.8g)を得た。
[Example 9] In general formula (1), average value of a + b + c + d + e + f + g + h + i = 67, average value of a + b = 3.5, average value of c + d = 36.5, e + f = 0, g + h + i = 27, R 1 = polyethylene glycol segment R 2 = acetyl group, R 4 = gemcitabine binding residue, R 6 = hydroxyl group, R 15 = methyl group, average value of n = 272, X 1 = — (CH 2 ) 3 —NH— group, X 2 = Bond, Synthesis of Compound with X 3 = Methylene Group Compound 7 obtained in Synthesis Example 7 (molecular weight 20 kilodalton, 11.0 g) and polyethylene glycol compound (SUNBRIGHT with one end methoxy group and one end 3-aminopropyl group) MEPA-12T, manufactured by NOF Corporation, average molecular weight 12 kilodalton, 23.4 g) and gemcitabine hydrochloride (8.9 g, SCINO P ARM) was dissolved in DMF (317 mL) at 35 ° C., and 1-hydroxybenzotriazole (HOBt) (6.3 g) and diisopropylcarbodiimide (DIPCI) (11.5 mL) were added at 20 ° C. Stir overnight. The reaction solution was dropped into a mixed solvent of ethanol (1.3 L) and diisopropyl ether (5.1 L) over 40 minutes and stirred at room temperature for 30 minutes. The precipitate was collected by filtration and washed with ethyl acetate (486 mL). The resulting precipitate was dissolved in purified water (395 mL), and purified water (9 mL) and an ion exchange resin (Dow Chemical Dowex 50 (H + ), 113 mL) were added. After stirring for 40 minutes, the mixture was filtered and lyophilized to obtain the title compound of Example 9 (37.8 g).
 実施例9の化合物をアルカリ加水分解後、遊離したゲムシタビンを高速液体クロマトグラフィー(HPLC)にて定量することにより、本化合物におけるゲムシタビン含有量を求めた。その結果、実施例9におけるゲムシタビン含有量は13.6%(w/w)であった。したがって、化合物7のポリアスパラギン酸重合数67に対する結合率は54.4%と算出された。
 この結果、実施例9のゲムシタビン総分子量は9.6キロダルトンであった。
After alkaline hydrolysis of the compound of Example 9, the gemcitabine released was quantified by high performance liquid chromatography (HPLC) to determine the gemcitabine content in this compound. As a result, the gemcitabine content in Example 9 was 13.6% (w / w). Therefore, the binding rate of compound 7 to the polyaspartic acid polymerization number 67 was calculated to be 54.4%.
As a result, the total molecular weight of gemcitabine in Example 9 was 9.6 kilodaltons.
 実施例9のポリエチレングリコール化合物の結合量は、ポリエチレングリコール化合物の仕込当量及びポリエチレングリコール化合物の消費率より3.5分子であった。したがって、総ポリエチレングリコールセグメント分子量は42キロダルトンであった。
 なお、本反応における化合物7に対するポリエチレングリコールセグメント化合物の仕込当量=3.5当量であり、ポリエチレングリコールセグメント化合物の消費率=1であった。
The binding amount of the polyethylene glycol compound of Example 9 was 3.5 molecules from the charged equivalent of the polyethylene glycol compound and the consumption rate of the polyethylene glycol compound. Therefore, the total polyethylene glycol segment molecular weight was 42 kilodaltons.
In addition, the preparation equivalent of the polyethylene glycol segment compound with respect to the compound 7 in this reaction = 3.5 equivalent, and the consumption rate of the polyethylene glycol segment compound = 1.
 上記の化合物9の分子量、結合ゲムシタビン総分子量及び結合ポリエチレングリコールセグメント分子量から、実施例9のポリアミノ酸誘導体の分子量は、71キロダルトンと算出された。
 また、ポリエチレングリコールセグメント含有量は、77質量%と算出された。
 また、実施例9のポリアミノ酸誘導体の会合度をレーザー光散乱強度により測定したところ、光散乱強度は17,715cpsであった。したがって、トルエンの光散乱強度との相対比率は1.37倍であった。また、SEC-MALS測定分子量は83,470であり、会合分子数は1.2であった。
 また、実施例9のポリアミノ酸誘導体の、ポリエチレングリコール標準物質を基準としたGPC分析におけるピークトップ分子量は52,341であった。
From the molecular weight of Compound 9, the combined gemcitabine total molecular weight, and the combined polyethylene glycol segment molecular weight, the molecular weight of the polyamino acid derivative of Example 9 was calculated to be 71 kilodaltons.
The polyethylene glycol segment content was calculated as 77% by mass.
Further, the degree of association of the polyamino acid derivative of Example 9 was measured by the laser light scattering intensity, whereby the light scattering intensity was 17,715 cps. Therefore, the relative ratio with the light scattering intensity of toluene was 1.37 times. Further, the molecular weight measured by SEC-MALS was 83,470, and the number of associated molecules was 1.2.
Moreover, the peak top molecular weight in GPC analysis of the polyamino acid derivative of Example 9 based on the polyethylene glycol standard substance was 52,341.
[比較例1] 一般式(1)においてa+b+c+d+e+f+g+h+iの平均値=22、a+bの平均値=4.4、c+dの平均値=9.2、e+f=0、g+h+i=8.4、R=n-ブチル基、R=アセチル基、R=ゲムシタビン結合残基、R=水酸基、R15=メチル基、nの平均値=45、X=-(CH-NH-基、X=結合、X=メチレン基の化合物の合成
 合成例2で得られた化合物2(分子量2.6キロダルトン、0.56g)と片末端メトキシ基及び片末端3-アミノプロピル基のポリエチレングリコール(SUNBRIGHT MEPA-20H、日油社製、平均分子量2キロダルトン、1.94g)とゲムシタビン(1.0g、SCINO PHARM社製)をDMF(50mL)に35℃にて溶解し、20℃にてHOBt(0.72g)、DIPCI(1.5mL)を加えて、一夜撹拌した。反応液を酢酸エチル(150mL)及びジイソプロピルエーテル(1.4L)の混合溶媒中に30分かけて滴下し、室温にて1時間攪拌した。沈析物を濾取して酢酸エチル/ジイソプロピルエーテル(1/9(v/v)、0.5L)で洗浄した。得られた沈析物を精製水(50mL)に溶解後、イオン交換樹脂(ダウケミカル製ダウエックス50(H)、12mL)を加えた。20分攪拌後、濾過し、凍結乾燥を行い、比較例1に係る標記化合物(2.65g)を得た。
[Comparative Example 1] In the general formula (1), the average value of a + b + c + d + e + f + g + h + i = 22, the average value of a + b = 4.4, the average value of c + d = 9.2, e + f = 0, g + h + i = 8.4, R 1 = n -Butyl group, R 2 = acetyl group, R 4 = gemcitabine binding residue, R 6 = hydroxyl group, R 15 = methyl group, average value of n = 45, X 1 =-(CH 2 ) 3 -NH- group, Synthesis of compound of X 2 = bond, X 3 = methylene group Compound 2 obtained in Synthesis Example 2 (molecular weight 2.6 kilodalton, 0.56 g) and polyethylene having one end methoxy group and one end 3-aminopropyl group Glycol (SUNBRIGHT MEPA-20H, manufactured by NOF Corporation, average molecular weight 2 kilodalton, 1.94 g) and gemcitabine (1.0 g, manufactured by SCINO PHARM) in DMF (50 mL) Was dissolved at 5 ℃, HOBt (0.72g) at 20 ° C., adding DIPCI (1.5 mL), and stirred overnight. The reaction solution was dropped into a mixed solvent of ethyl acetate (150 mL) and diisopropyl ether (1.4 L) over 30 minutes, and stirred at room temperature for 1 hour. The precipitate was collected by filtration and washed with ethyl acetate / diisopropyl ether (1/9 (v / v), 0.5 L). The obtained precipitate was dissolved in purified water (50 mL), and then an ion exchange resin (Dow Chemical Dowex 50 (H + ), 12 mL) was added. After stirring for 20 minutes, the mixture was filtered and freeze-dried to obtain the title compound (2.65 g) according to Comparative Example 1.
 比較例1の化合物をアルカリ加水分解後、遊離したゲムシタビンを高速液体クロマトグラフィー(HPLC)にて定量することにより、本化合物のゲムシタビン含有量を求めた。その結果、比較例1におけるゲムシタビン含有量は、17.6%(w/w)であった。したがって、ポリアミノ酸主鎖であるアスパラギン酸重合数22に対する結合率は38.2%であった。
 この結果、比較例1のゲムシタビン総分子量は2.2キロダルトンであった。
After alkaline hydrolysis of the compound of Comparative Example 1, the released gemcitabine was quantified by high performance liquid chromatography (HPLC) to determine the gemcitabine content of this compound. As a result, the gemcitabine content in Comparative Example 1 was 17.6% (w / w). Therefore, the binding rate with respect to the aspartic acid polymerization number 22 as the polyamino acid main chain was 38.2%.
As a result, the total molecular weight of gemcitabine in Comparative Example 1 was 2.2 kilodalton.
 ポリエチレングリコール化合物の結合量は、ポリエチレングリコール化合物の仕込当量及びポリエチレングリコール化合物の消費率より4.4分子であった。その結果、総ポリエチレングリコールセグメント分子量は8.8キロダルトンと算出された。
 なお、主鎖アスパラギン酸誘導体に対するポリエチレングリコール化合物の仕込当量=4.4当量であり、ポリエチレングリコール化合物の消費率=1であった。
The binding amount of the polyethylene glycol compound was 4.4 molecules from the charged equivalent of the polyethylene glycol compound and the consumption rate of the polyethylene glycol compound. As a result, the total polyethylene glycol segment molecular weight was calculated to be 8.8 kilodaltons.
In addition, the feed equivalent of the polyethylene glycol compound to the main chain aspartic acid derivative = 4.4 equivalent, and the consumption rate of the polyethylene glycol compound = 1.
 上記の主鎖ポリアスパラギン酸分子量、結合ゲムシタビン総分子量及び結合ポリエチレングリコールセグメント分子量から、比較例1のポリアミノ酸誘導体の分子量は、14キロダルトンと算出された。
 また、ポリエチレングリコールセグメント含有量は、64質量%と算出された。
 また、比較例1のポリアミノ酸誘導体の会合度をレーザー光散乱強度により測定したところ、光散乱強度は3,030cpsであった。したがって、トルエンの光散乱強度との相対比率は0.23倍であった。また、SEC-MALS測定分子量は17,810であり、会合分子数は1.3であった。
 また、比較例1のポリアミノ酸誘導体の、ポリエチレングリコール標準物質を基準としたGPC分析におけるピークトップ分子量は8,162であった。
From the main chain polyaspartic acid molecular weight, the combined gemcitabine total molecular weight, and the combined polyethylene glycol segment molecular weight, the molecular weight of the polyamino acid derivative of Comparative Example 1 was calculated to be 14 kilodaltons.
The polyethylene glycol segment content was calculated to be 64% by mass.
Further, the degree of association of the polyamino acid derivative of Comparative Example 1 was measured by the laser light scattering intensity. The light scattering intensity was 3,030 cps. Therefore, the relative ratio with the light scattering intensity of toluene was 0.23 times. The SEC-MALS measurement molecular weight was 17,810, and the number of associated molecules was 1.3.
Moreover, the peak top molecular weight of the polyamino acid derivative of Comparative Example 1 in the GPC analysis based on the polyethylene glycol standard substance was 8,162.
[比較例2] 一般式(1)においてa+b+c+d+e+f+g+h+iの平均値=89、a+bの平均値=3.6、c+dの平均値=49、e+f=0、g+h+i=36.4、R=n-ブチル基、R=アセチル基、R=ゲムシタビン結合残基、R=水酸基、R15=メチル基、nの平均値=45、X=-(CH-NH-基、X=結合、X=メチレン基の化合物の合成
 合成例1で得られた化合物1(分子量10キロダルトン、0.50g)と片末端メトキシ基及び片末端3-アミノプロピル基のポリエチレングリコール(SUNBRIGHT MEPA-20H、日油社製、平均分子量2キロダルトン、0.35g)とゲムシタビン(0.915g、SCINO PHARM社製)をDMF(50mL)に35℃にて溶解し、20℃にてHOBt(0.65g)、DIPCI(2.0mL)を加えて、一夜撹拌した。反応液をエタノール(0.2L)及びジイソプロピルエーテル(0.8L)の混合溶媒中に15分かけて滴下し、室温にて30分攪拌した。沈析物を濾取してエタノール/ジイソプロピルエーテル(1/4(v/v)、0.2L)で洗浄した。得られた沈析物をアセトニトリル(90mL)に溶解後、精製水(16mL)及びイオン交換樹脂(ダウケミカル製ダウエックス50(H)、20mL)を加えた。30分攪拌後、濾過し、濾液を減圧濃縮後、凍結乾燥を行い、比較例2に係る標記化合物(0.89g)を得た。
Comparative Example 2 In general formula (1), the average value of a + b + c + d + e + f + g + h + i = 89, the average value of a + b = 3.6, the average value of c + d = 49, e + f = 0, g + h + i = 36.4, R 1 = n-butyl Group, R 2 = acetyl group, R 4 = gemcitabine binding residue, R 6 = hydroxyl group, R 15 = methyl group, average value of n = 45, X 1 = — (CH 2 ) 3 —NH— group, X 2 = Synthesis of compound of X 3 = methylene group Compound 1 obtained in Synthesis Example 1 (molecular weight: 10 kilodalton, 0.50 g) and polyethylene glycol having one terminal methoxy group and one terminal 3-aminopropyl group (SUNBRIGHT MEPA) -20H, NOF Corporation, average molecular weight 2 kilodaltons, 0.35 g) and gemcitabine (0.915 g, SCINO PHARM) DMF (50 mL) Was dissolved at 35 ℃, HOBt (0.65g) at 20 ° C., adding DIPCI (2.0 mL), and stirred overnight. The reaction solution was dropped into a mixed solvent of ethanol (0.2 L) and diisopropyl ether (0.8 L) over 15 minutes, and stirred at room temperature for 30 minutes. The precipitate was collected by filtration and washed with ethanol / diisopropyl ether (1/4 (v / v), 0.2 L). The obtained precipitate was dissolved in acetonitrile (90 mL), and purified water (16 mL) and an ion exchange resin (Dow Chemical Dowex 50 (H + ), 20 mL) were added. After stirring for 30 minutes, the mixture was filtered, and the filtrate was concentrated under reduced pressure and lyophilized to obtain the title compound (0.89 g) according to Comparative Example 2.
 比較例2の化合物をアルカリ加水分解後、遊離したゲムシタビンを高速液体クロマトグラフィー(HPLC)にて定量することにより、本化合物のゲムシタビン含有量を求めた。その結果、比較例1におけるゲムシタビン含有量は、41.5%(w/w)であった。したがって、ポリアミノ酸主鎖であるアスパラギン酸重合数89に対する結合率は55.1%であった。
 この結果、比較例2のゲムシタビン総分子量は13キロダルトンであった。
After alkaline hydrolysis of the compound of Comparative Example 2, the released gemcitabine was quantified by high performance liquid chromatography (HPLC) to determine the gemcitabine content of this compound. As a result, the gemcitabine content in Comparative Example 1 was 41.5% (w / w). Accordingly, the binding rate to the polyamino acid main chain aspartic acid polymerization number 89 was 55.1%.
As a result, the total molecular weight of gemcitabine in Comparative Example 2 was 13 kilodaltons.
 ポリエチレングリコール化合物の結合量は、ポリエチレングリコール化合物の仕込当量及びポリエチレングリコール化合物の消費率より3.6分子であった。したがって、総ポリエチレングリコールセグメント分子量は7.2キロダルトンと算出された。
 なお、主鎖アスパラギン酸誘導体に対するポリエチレングリコール化合物の仕込当量=3.6当量であり、ポリエチレングリコール化合物の消費率=1であった。
The binding amount of the polyethylene glycol compound was 3.6 molecules from the charged equivalent of the polyethylene glycol compound and the consumption rate of the polyethylene glycol compound. Therefore, the total polyethylene glycol segment molecular weight was calculated to be 7.2 kilodaltons.
The feed equivalent of the polyethylene glycol compound to the main chain aspartic acid derivative was 3.6 equivalents, and the consumption rate of the polyethylene glycol compound was 1.
 上記の主鎖ポリアスパラギン酸分子量、結合ゲムシタビン総分子量及び結合ポリエチレングリコールセグメント分子量から、比較例2のポリアミノ酸誘導体の分子量は、30キロダルトンと算出された。
 また、ポリエチレングリコールセグメント含有量は、24質量%と算出された。
 また、比較例2のポリアミノ酸誘導体の会合度をレーザー光散乱強度により測定したところ、光散乱強度は205,765cpsであった。したがって、トルエンの光散乱強度との相対比率は15.91倍であった。また、SEC-MALS測定分子量は1,520,000であり、会合分子数は50.1であった。
From the main chain polyaspartic acid molecular weight, the combined gemcitabine total molecular weight, and the combined polyethylene glycol segment molecular weight, the molecular weight of the polyamino acid derivative of Comparative Example 2 was calculated to be 30 kilodaltons.
The polyethylene glycol segment content was calculated to be 24% by mass.
Further, the degree of association of the polyamino acid derivative of Comparative Example 2 was measured by laser light scattering intensity. As a result, the light scattering intensity was 205,765 cps. Therefore, the relative ratio with the light scattering intensity of toluene was 15.91 times. Further, the molecular weight measured by SEC-MALS was 1,520,000, and the number of associated molecules was 50.1.
[試験例1] 非担癌マウスに対する血液毒性評価
 実施例1~6及び比較例1,2の化合物、並びに対照薬として塩酸ゲムシタビンを用いて、非担癌マウス(ICR系マウス(Crlj:CD-1))に対する血液毒性評価試験を実施した。
 実施例1~6及び比較例1,2の化合物は5%ブドウ糖注射液に溶解し、対照薬である塩酸ゲムシタビンは生理食塩液溶液として、実施例1~6及び比較例1,2の化合物並びに塩酸ゲムシタビンはゲムシタビン換算で40mg/kgで、また、比較例2はゲムシタビン換算20mg/kgの投与量で各々静脈内に単回投与した。また、溶媒(5%ブドウ糖注射液、あるいは生理食塩液、10mL/kg)を投与した群を設定し、実施例1~6及び比較例1,2の化合物に対しては5%ブドウ糖注射液投与群を,塩酸ゲムシタビンに対しは生理食塩液投与群をそれぞれ対照群とした。
 投与後7日に採血し、網状赤血球数を血球分析装置(XT-2000iV)により測定した。投与後7日における溶媒対照群に対する各化合物投与群の、網状赤血球数の相対値を算出した。その結果を表1に示した。
[Test Example 1] Hematological toxicity evaluation for non-cancer-bearing mice Using the compounds of Examples 1 to 6 and Comparative Examples 1 and 2 and gemcitabine hydrochloride as a control drug, non-tumor-bearing mice (ICR mice (Crlj: CD- A blood toxicity evaluation test for 1)) was conducted.
The compounds of Examples 1 to 6 and Comparative Examples 1 and 2 were dissolved in a 5% glucose injection solution, and gemcitabine hydrochloride as a control drug was used as a physiological saline solution, and the compounds of Examples 1 to 6 and Comparative Examples 1 and 2 and Gemcitabine hydrochloride was 40 mg / kg in terms of gemcitabine, and Comparative Example 2 was administered once intravenously at a dose of 20 mg / kg in terms of gemcitabine. In addition, a group to which a solvent (5% glucose injection solution or physiological saline, 10 mL / kg) was administered was set, and 5% glucose injection solution was administered to the compounds of Examples 1 to 6 and Comparative Examples 1 and 2. For the group, and for gemcitabine hydrochloride, the physiological saline administration group was the control group.
Seven days after administration, blood was collected, and the reticulocyte count was measured with a blood cell analyzer (XT-2000iV). On the 7th day after administration, the relative value of the reticulocyte count of each compound administration group relative to the solvent control group was calculated. The results are shown in Table 1.
[表1]
Figure JPOXMLDOC01-appb-I000025
[Table 1]
Figure JPOXMLDOC01-appb-I000025
 この結果、比較例2の化合物は投与量が低いにも関わらず、対照薬である塩酸ゲムシタビンと比較して、網状赤血球数を著しく低下させており、血液毒性の発現が認められた。この現象は、投与7日後であっても、網状赤血球数の回復が遅延していることを示し、血液毒性の遷延化現象であると考えられる。これに対し、本発明の実施例1~6に係る化合物は、網状赤血球数の低下が確認されておらず、投与後7日時点において、血液毒性が認められていないことが示された。塩酸ゲムシタビンは、臨床使用において、血液毒性が主たる副作用である。したがって、実施例1~6に係る化合物は、血液毒性を遷延化させず、早い回復性を示したと考察される。 As a result, although the dose of the compound of Comparative Example 2 was low, the reticulocyte count was remarkably reduced as compared with gemcitabine hydrochloride as a control drug, and hematologic toxicity was observed. This phenomenon indicates that the recovery of the reticulocyte count is delayed even 7 days after administration, and is considered to be a prolongation of blood toxicity. In contrast, in the compounds according to Examples 1 to 6 of the present invention, no decrease in the number of reticulocytes was confirmed, indicating that no hematological toxicity was observed at 7 days after administration. Gemcitabine hydrochloride is a major side effect of hematological toxicity in clinical use. Therefore, it is considered that the compounds according to Examples 1 to 6 did not prolong hematologic toxicity and showed rapid recovery.
[試験例2]ヒト膵がん移植ヌードマウスに対する抗腫瘍効果試験
 実施例1~6及び9並びに比較例1,2の化合物の抗腫瘍効果試験を実施した。
 ヌードマウス皮下で継代したヒト膵がんAsPC-1の腫瘍塊を、約3mm角のブロックにし、套管針を用いてヌードマウスの背側部皮下に移植した。腫瘍移植後平均腫瘍体積が300mm以上になった時点で、実施例1~6及び9の化合物を5%ブドウ糖注射液に溶解し、ゲムシタビン換算量として40mg/kgで投与した。また、比較例1及び2を5%ブドウ糖注射液に溶解し、比較例1をゲムシタビン換算量として40mg/kg、比較例2はゲムシタビン換算量として20mg/kgで投与した。対照薬として塩酸ゲムシタビンを生理食塩液に溶解し、40mg/kgで投与した。各化合物及び対照薬は、3日間隔で4回、尾静脈内に投与した。
 投与開始日及び評価日(投与開始後16日目または14日目)の腫瘍体積から相対腫瘍体積を求め、抗腫瘍効果の指標とした。なお、腫瘍体積は、腫瘍の長径(L:mm)及び短径(W:mm)を計測して、(L×W)/2の計算式にて算出した。試験は4回に分けて行った。結果を表2、3、4及び5に示した。
[Test Example 2] Antitumor effect test on nude mice transplanted with human pancreatic cancer Antitumor effect tests of the compounds of Examples 1 to 6 and 9 and Comparative Examples 1 and 2 were performed.
A tumor mass of human pancreatic cancer AsPC-1 subcultured subcutaneously in nude mice was made into blocks of about 3 mm square and transplanted subcutaneously on the dorsal side of nude mice using a trocar. When the average tumor volume after tumor transplantation reached 300 mm 3 or more, the compounds of Examples 1 to 6 and 9 were dissolved in 5% glucose injection and administered at a dose of 40 mg / kg in terms of gemcitabine. Further, Comparative Examples 1 and 2 were dissolved in a 5% glucose injection solution, and Comparative Example 1 was administered at 40 mg / kg in terms of gemcitabine, and Comparative Example 2 was administered at 20 mg / kg in terms of gemcitabine. As a control drug, gemcitabine hydrochloride was dissolved in physiological saline and administered at 40 mg / kg. Each compound and control drug was administered into the tail vein 4 times at 3 day intervals.
The relative tumor volume was determined from the tumor volume on the administration start date and the evaluation date (16th day or 14th day after the start of administration) and used as an index of the antitumor effect. The tumor volume was calculated by the formula (L × W 2 ) / 2 by measuring the major axis (L: mm) and minor axis (W: mm) of the tumor. The test was divided into four parts. The results are shown in Tables 2, 3, 4 and 5.
[表2]
Figure JPOXMLDOC01-appb-I000026
[Table 2]
Figure JPOXMLDOC01-appb-I000026
[表3]
Figure JPOXMLDOC01-appb-I000027
[Table 3]
Figure JPOXMLDOC01-appb-I000027
[表4] 
Figure JPOXMLDOC01-appb-I000028
[Table 4]
Figure JPOXMLDOC01-appb-I000028
[表5]
Figure JPOXMLDOC01-appb-I000029
[Table 5]
Figure JPOXMLDOC01-appb-I000029
 この結果、比較例1の化合物は、対照薬と比較して抗腫瘍効果に有意差はなかった。これに対し、本発明の化合物は対照薬と比較して、強力な抗腫瘍効果を示すと共にその効果持続性が認められた。この理由として、比較例1の化合物は、本発明の化合物に比べ血中滞留性が悪く、対照薬より強力な抗腫瘍効果を示すために必要な薬剤濃度を維持できなかったことが考えられる。低分子量の化合物は腎臓等による排泄が亢進されることが知られている。比較例1の化合物は、分子量が14キロダルトンであり、本発明の化合物と比較し分子量が低い。本発明の実施例1~6及び9に係る化合物は、適正範囲の分子量に制御したことにより血中滞留性が上がり、薬効を示すのに十分な薬剤濃度を維持させたため、対照薬より強力な抗腫瘍効果を示したと考察される。 As a result, the compound of Comparative Example 1 was not significantly different in antitumor effect compared to the control drug. On the other hand, the compound of the present invention showed a strong antitumor effect and sustained its effect as compared with the control drug. This is probably because the compound of Comparative Example 1 was poor in blood retention compared to the compound of the present invention, and could not maintain the drug concentration required to exhibit a stronger antitumor effect than the control drug. Low molecular weight compounds are known to be excreted by the kidney and the like. The compound of Comparative Example 1 has a molecular weight of 14 kilodaltons and is lower in molecular weight than the compound of the present invention. The compounds according to Examples 1 to 6 and 9 of the present invention are more potent than the control drug because the retention in the blood is increased by controlling the molecular weight within an appropriate range, and the drug concentration sufficient to show the drug effect is maintained. It is considered that it showed an antitumor effect.

Claims (11)

  1. 複数単位のアスパラギン酸誘導体及び/又はグルタミン酸誘導体を含有するポリアミノ酸誘導体であって、その側鎖カルボキシ基に、ポリエチレングリコールセグメント及び核酸代謝拮抗剤が、直接又は結合基を介して結合しており、該ポリアミノ酸誘導体の分子量が20キロダルトン以上で200キロダルトン以下であり、該ポリアミノ酸誘導体におけるポリエチレングリコールセグメントの質量含有率が30質量%以上90質量%以下である、核酸代謝拮抗剤結合ポリアミノ酸誘導体。 A polyamino acid derivative containing a plurality of units of an aspartic acid derivative and / or a glutamic acid derivative, wherein a polyethylene glycol segment and a nucleic acid antimetabolite are bound to the side chain carboxy group directly or via a binding group; The nucleic acid antimetabolite-binding polyamino acid, wherein the polyamino acid derivative has a molecular weight of 20 kilodaltons or more and 200 kilodaltons or less, and a mass content of polyethylene glycol segment in the polyamino acid derivative is 30 mass% or more and 90 mass% or less Derivative.
  2. 前記ポリエチレングリコールセグメントが2~80ユニット結合している請求項1に記載の核酸代謝拮抗剤結合ポリアミノ酸誘導体。 2. The nucleic acid antimetabolite-binding polyamino acid derivative according to claim 1, wherein the polyethylene glycol segment is bound by 2 to 80 units.
  3. 前記核酸代謝拮抗剤がアミノ基を有する核酸代謝拮抗剤であり、該核酸代謝拮抗剤はアミノ基でアミド結合を介して結合している請求項1又は2に記載の核酸代謝拮抗剤結合ポリアミノ酸誘導体。 The nucleic acid antimetabolite-binding polyamino acid according to claim 1 or 2, wherein the nucleic acid antimetabolite is a nucleic acid antimetabolite having an amino group, and the nucleic acid antimetabolite is bound via an amide bond at the amino group. Derivative.
  4. 前記核酸代謝拮抗剤の質量含有率が、2質量%以上60質量%以下である請求項1~3の何れか一項に記載の核酸代謝拮抗剤結合ポリアミノ酸誘導体。 The nucleic acid antimetabolite-binding polyamino acid derivative according to any one of claims 1 to 3, wherein the nucleic acid antimetabolite has a mass content of 2% by mass or more and 60% by mass or less.
  5. 前記核酸代謝拮抗剤結合ポリアミノ酸誘導体が一般式(1)
    Figure JPOXMLDOC01-appb-C000001
    [式中、Rは水素原子、炭素数(C1~C8)のアルキル基及びポリエチレングリコールセグメントからなる群から選択される基であり、Rは水素原子、炭素数(C1~C8)のアシル基及び炭素数(C1~C8)のアルコキシカルボニル基からなる群から選択される基を示し、Rはポリエチレングリコールセグメントを示し、Rは核酸代謝拮抗剤結合残基を示し、Rはアスパラギン酸結合残基及び/又はアスパラギン酸イミド結合残基を示し、Rは水酸基及び/又は-N(R)CONH(R)を示し、該R及び該Rは同一でも異なってもいてもよく、三級アミノ基で置換されていても良い炭素数(C1~C8)の直鎖状、分岐鎖状又は環状のアルキル基を示し、X及びXは結合基であり、Xはメチレン基又はエチレン基であり、a、b、c、d、e、f、g、h及びiはそれぞれ独立して0~200の整数を示し、ポリアミノ酸誘導体の総重合数である(a+b+c+d+e+f+g+h+i)は3~250であり、(a+b)は1~95であり、(c+d)は1~175であり、前記Rが結合したアミノ酸単位、前記Rが結合したアミノ酸単位、前記Rが結合したアミノ酸単位、前記Rが結合したアミノ酸単位及び側鎖カルボキシ基が分子内環化型のアミノ酸単位が、それぞれ独立してランダムな配列である]で示される請求項1~4の何れか一項に記載の核酸代謝拮抗剤結合ポリアミノ酸誘導体。
    The nucleic acid antimetabolite-binding polyamino acid derivative has the general formula (1)
    Figure JPOXMLDOC01-appb-C000001
    [Wherein, R 1 represents a hydrogen atom, a group selected from the group consisting of alkyl groups and polyethylene glycol segments of carbon atoms (C1 ~ C8), acyl R 2 is a hydrogen atom, the number of carbon atoms (C1 ~ C8) A group selected from the group consisting of a group and a C1-C8 alkoxycarbonyl group, R 3 represents a polyethylene glycol segment, R 4 represents a nucleic acid antimetabolite binding residue, and R 5 represents an asparagine An acid bond residue and / or an aspartate imide bond residue, R 6 represents a hydroxyl group and / or —N (R 7 ) CONH (R 8 ), and R 7 and R 8 may be the same or different. A linear, branched or cyclic alkyl group having a carbon number (C1 to C8) which may be substituted with a tertiary amino group, wherein X 1 and X 2 are linking groups; 3 is methylene A, b, c, d, e, f, g, h and i each independently represents an integer of 0 to 200, and the total polymerization number of the polyamino acid derivative (a + b + c + d + e + f + g + h + i) is 3 to 250, (a + b) is 1 to 95, and (c + d) is 1 to 175. The amino acid unit to which R 3 is bonded, the amino acid unit to which R 4 is bonded, and the R 5 are bonded to each other The amino acid unit, the amino acid unit to which R 6 is bonded, and the amino acid unit in which the side-chain carboxy group is an intramolecular cyclization type are each independently a random sequence]. A nucleic acid antimetabolite-binding polyamino acid derivative according to 1.
  6. は、下記一般式(2)又は一般式(3)
    Figure JPOXMLDOC01-appb-C000002
    [式中、R、R10はそれぞれ独立して水素原子又は炭素数(C1~C8)のアルキル基を示し、R11は水素原子、置換基を有していても良い炭素数(C1~C20)の直鎖状、分岐鎖状又は環状のアルキル基、置換基を有していても良い炭素数(C1~C20)の直鎖状、分岐鎖状又は環状のアラルキル基、置換基を有していても良い芳香族基及びカルボキシ基が保護されたアミノ酸結合残基からなる群から選択される1種以上の基を示し、CX-CYはCH-CH若しくはZ配置のC=C(二重結合)を示す]である請求項5に記載の核酸代謝拮抗剤結合ポリアミノ酸誘導体。
    X 2 represents the following general formula (2) or general formula (3)
    Figure JPOXMLDOC01-appb-C000002
    [Wherein R 9 and R 10 each independently represents a hydrogen atom or an alkyl group having from 1 to 8 carbon atoms (C1 to C8), and R 11 represents a hydrogen atom or an optionally substituted carbon number (C1 to C8). A linear, branched or cyclic alkyl group of C20), an optionally substituted linear (C1-C20) linear, branched or cyclic aralkyl group, and a substituent. One or more groups selected from the group consisting of an amino acid-bonded residue in which an aromatic group and a carboxy group may be protected, and CX—CY represents C═C (two The nucleic acid antimetabolite-binding polyamino acid derivative according to claim 5, wherein
  7. が下記一般式(4)、一般式(5)及び一般式(6)
    Figure JPOXMLDOC01-appb-C000003
    [式中、R、R10、R11、CX-CYは前記と同じ意味を示し、R12は水酸基及び/又は-N(R13)CONH(R14)を示し、R13、R14は同一でも異なっていてもよく、三級アミノ基で置換されていても良い炭素数(C1~C8)の直鎖状、分岐鎖状又は環状のアルキル基を示す]からなる置換基群から選ばれる1種以上の基である請求項5又は6に記載の核酸代謝拮抗剤結合ポリアミノ酸誘導体。
    R 5 represents the following general formula (4), general formula (5), and general formula (6).
    Figure JPOXMLDOC01-appb-C000003
    [Wherein R 9 , R 10 , R 11 and CX-CY have the same meaning as described above, R 12 represents a hydroxyl group and / or —N (R 13 ) CONH (R 14 ), and R 13 , R 14 May be the same or different and represents a linear, branched or cyclic alkyl group having a carbon number (C1 to C8) which may be substituted with a tertiary amino group]. The nucleic acid antimetabolite-binding polyamino acid derivative according to claim 5 or 6, wherein the polyamino acid derivative is one or more kinds of groups.
  8. のポリエチレングリコールセグメントが、下記一般式(7)
    Figure JPOXMLDOC01-appb-C000004
    [式中、R15は水素原子又は置換基を有していても良い炭素数(C1~C8)の直鎖状、分岐鎖状又は環状のアルキル基を示し、nは5~2,500の整数を示す]である請求項5~7の何れか一項に記載の核酸代謝拮抗剤結合ポリアミノ酸誘導体。
    The polyethylene glycol segment of R 3 is represented by the following general formula (7)
    Figure JPOXMLDOC01-appb-C000004
    [In the formula, R 15 represents a hydrogen atom or a linear, branched or cyclic alkyl group having a carbon number (C1 to C8) which may have a substituent, and n is 5 to 2,500. The nucleic acid antimetabolite-binding polyamino acid derivative according to any one of claims 5 to 7, which represents an integer.
  9. 核酸代謝拮抗剤が式(8):
    Figure JPOXMLDOC01-appb-C000005
    [式中、-Rfは、式(9):
    Figure JPOXMLDOC01-appb-C000006
    の置換基群より選ばれる基を示し、R16は水素原子又は脂肪酸エステルのアシル基を示す]で表される、いずれか1種以上の核酸代謝拮抗剤である、請求項1~8の何れか一項に記載の核酸代謝拮抗剤結合ポリアミノ酸誘導体。
    The nucleic acid metabolism antagonist is represented by the formula (8):
    Figure JPOXMLDOC01-appb-C000005
    [Wherein, -Rf represents the formula (9):
    Figure JPOXMLDOC01-appb-C000006
    Any one or more nucleic acid metabolism antagonists represented by: R 16 represents a hydrogen atom or an acyl group of a fatty acid ester]. The nucleic acid antimetabolite-binding polyamino acid derivative according to claim 1.
  10. 核酸代謝拮抗剤が式(10):
    Figure JPOXMLDOC01-appb-C000007
    [式中、-Rfは、式(11):
    Figure JPOXMLDOC01-appb-C000008
    の置換基群より選ばれる基を示し、R16は水素原子又は脂肪酸エステルのアシル基を示す]で表される請求項1~9の何れか一項に記載の核酸代謝拮抗剤結合ポリアミノ酸誘導体。
    The nucleic acid metabolism antagonist is represented by the formula (10):
    Figure JPOXMLDOC01-appb-C000007
    [Wherein, -Rf represents the formula (11):
    Figure JPOXMLDOC01-appb-C000008
    A nucleic acid antimetabolite-binding polyamino acid derivative according to any one of claims 1 to 9, wherein R 16 represents a hydrogen atom or an acyl group of a fatty acid ester]. .
  11. 請求項1~10の何れか一項に記載の核酸代謝拮抗剤結合ポリアミノ酸誘導体を含有する医薬。 A medicament comprising the nucleic acid antimetabolite-binding polyamino acid derivative according to any one of claims 1 to 10.
PCT/JP2015/070785 2014-08-04 2015-07-22 Polyamino acid derivative in which nucleic acid antimetabolites are bonded WO2016021407A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-158863 2014-08-04
JP2014158863A JP2017160125A (en) 2014-08-04 2014-08-04 Polyamino acid derivative to which amino acid metabolism antagonist is bonded

Publications (1)

Publication Number Publication Date
WO2016021407A1 true WO2016021407A1 (en) 2016-02-11

Family

ID=55263679

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/070785 WO2016021407A1 (en) 2014-08-04 2015-07-22 Polyamino acid derivative in which nucleic acid antimetabolites are bonded

Country Status (2)

Country Link
JP (1) JP2017160125A (en)
WO (1) WO2016021407A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016136641A1 (en) * 2015-02-23 2016-09-01 日本化薬株式会社 Block copolymer conjugate of physiologically active substance
WO2017119272A1 (en) * 2016-01-08 2017-07-13 日本化薬株式会社 Polymer derivative of macrolide immunosuppressant
WO2023199723A1 (en) * 2022-04-14 2023-10-19 国立研究開発法人量子科学技術研究開発機構 Single-polymer particles, active molecular complex, method for producing single-polymer particles, method for measuring tumor size, method for measuring fine structure within tumor, method for imaging biological tissue, drug delivery system, and contrast agent kit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006120914A1 (en) * 2005-05-11 2006-11-16 Nippon Kayaku Kabushiki Kaisha Polymeric derivative of cytidine metabolic antagonist
WO2008056596A1 (en) * 2006-11-06 2008-05-15 Nippon Kayaku Kabushiki Kaisha Polymeric derivative of nucleic acid metabolic antagonist
WO2012067138A1 (en) * 2010-11-17 2012-05-24 日本化薬株式会社 Novel polymer derivative of cytidine metabolism antagonist

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006120914A1 (en) * 2005-05-11 2006-11-16 Nippon Kayaku Kabushiki Kaisha Polymeric derivative of cytidine metabolic antagonist
WO2008056596A1 (en) * 2006-11-06 2008-05-15 Nippon Kayaku Kabushiki Kaisha Polymeric derivative of nucleic acid metabolic antagonist
WO2012067138A1 (en) * 2010-11-17 2012-05-24 日本化薬株式会社 Novel polymer derivative of cytidine metabolism antagonist

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KUMIKO KATO ET AL.: "Evaluation of Block Copolymer Micelle Medicinal Products", PHARMACEUTICAL AND MEDICAL DEVICE REGULATORY SCIENCE, vol. 44, no. 12, 2013, pages 968 - 975 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016136641A1 (en) * 2015-02-23 2016-09-01 日本化薬株式会社 Block copolymer conjugate of physiologically active substance
US10357573B2 (en) 2015-02-23 2019-07-23 Nippon Kayaku Kabushiki Kaisha Block copolymer conjugate of physiologically active substance
WO2017119272A1 (en) * 2016-01-08 2017-07-13 日本化薬株式会社 Polymer derivative of macrolide immunosuppressant
US10945997B2 (en) 2016-01-08 2021-03-16 Nippon Kayaku Kabushiki Kaisha Polymer derivative of macrolide immunosuppressant
WO2023199723A1 (en) * 2022-04-14 2023-10-19 国立研究開発法人量子科学技術研究開発機構 Single-polymer particles, active molecular complex, method for producing single-polymer particles, method for measuring tumor size, method for measuring fine structure within tumor, method for imaging biological tissue, drug delivery system, and contrast agent kit

Also Published As

Publication number Publication date
JP2017160125A (en) 2017-09-14

Similar Documents

Publication Publication Date Title
JP5544357B2 (en) Polymer conjugate of a physiologically active substance having a hydroxyl group
JP5249016B2 (en) Taxane polymer conjugates
EP2042195A1 (en) Polymer conjugate of combretastatin
JP5856069B2 (en) Polymer derivatives of novel cytidine antimetabolites
EP2070971B1 (en) Compound of resorcinol derivative with polymer
JP6742982B2 (en) Block copolymer with bioactive substance
WO2016021407A1 (en) Polyamino acid derivative in which nucleic acid antimetabolites are bonded
JP6640736B2 (en) Hyperbranched compounds bound with nucleic acid antimetabolites
WO2018025699A1 (en) Active-targeting-type polymer derivative, composition containing said polymer derivative, and uses of said polymer derivative and said composition
JP6851977B2 (en) Polymer derivatives of macrolide immunosuppressants
JP6924191B2 (en) New polymer derivatives and new polymer derivative imaging probes using them
JP6830907B2 (en) Polymer derivatives of macrolide immunosuppressants

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15828967

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15828967

Country of ref document: EP

Kind code of ref document: A1