WO2016021028A1 - Lens sheet inspection method, lens sheet obtained using same, optical waveguide with lens, and electrical wiring board with lens - Google Patents

Lens sheet inspection method, lens sheet obtained using same, optical waveguide with lens, and electrical wiring board with lens Download PDF

Info

Publication number
WO2016021028A1
WO2016021028A1 PCT/JP2014/070916 JP2014070916W WO2016021028A1 WO 2016021028 A1 WO2016021028 A1 WO 2016021028A1 JP 2014070916 W JP2014070916 W JP 2014070916W WO 2016021028 A1 WO2016021028 A1 WO 2016021028A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
inspection light
sheet
plano
lens sheet
Prior art date
Application number
PCT/JP2014/070916
Other languages
French (fr)
Japanese (ja)
Inventor
大地 酒井
黒田 敏裕
忍 栗田
富生 小川
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to PCT/JP2014/070916 priority Critical patent/WO2016021028A1/en
Publication of WO2016021028A1 publication Critical patent/WO2016021028A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for

Definitions

  • the present invention relates to a method for inspecting a lens sheet, a lens sheet obtained thereby, an optical waveguide with a lens, and an electric wiring board with a lens.
  • Patent Document 1 discloses that an optical waveguide film is installed above an IC chip having an optical element on the surface, and optical communication is performed between the IC chip and the optical waveguide film.
  • these optical communication means are positioned with high accuracy.
  • optical communication cannot be performed unless it is mounted, and there is a problem that optical loss (signal intensity) decreases unless light is collected.
  • Patent Document 2 discloses a substrate with a lens in which a microlens (plano-convex lens) is installed on the surface of a transparent substrate.
  • plano-convex lens is required to have high light transmittance and light condensing property (or collimating property), and when it has a plurality of plano-convex lenses, it is required that there is little variation in the above characteristics.
  • a contact type scanning positioning meter, a non-contact type laser positioning meter, or the like may be used.
  • the inspection method as described above has a problem that it takes a lot of time for inspection.
  • An object of the present invention is to solve the above-mentioned problems and to provide an inspection method capable of inspecting each lens of a lens sheet on which a large number of lenses are formed simply and efficiently.
  • the present invention provides the following inventions.
  • (1) A method for inspecting a lens sheet in which a lens is formed on at least a part of the sheet, the step A injecting inspection light into the lens, and an arbitrary direction in the thickness direction of the lens sheet from the bottom surface of the lens
  • Step B of measuring at least one selected from light intensity, size, shape and position ⁇ of the substantial image of the inspection light through the lens at a distance ⁇ , and determining the quality of the lens from the measurement result
  • the method for inspecting the lens sheet wherein the reflecting plate is installed in parallel with the sheet surface.
  • At least two or more position recognition markers are installed at locations other than the lens on the lens sheet, and the relative positional relationship between the positions of the at least two position recognition markers and the imaging position ⁇ is measured.
  • the lens sheet inspection method according to any one of the above, further comprising a step D.
  • the inspection method for the lens sheet wherein the position recognition marker is a reference position for determining an arbitrary distance ⁇ in the thickness direction of the lens sheet.
  • the method further includes a step E of measuring at least one data of the lens R for which at least one data is known, and the step C of determining the quality of the lens is based on the comparison of the measurement data of the step E and the step B.
  • the step A and the step B are the steps in which the inspection light receiving unit is moved in a direction parallel to the sheet surface and the inspection is repeatedly or intermittently performed on a plurality of lenses.
  • the lens sheet inspection method according to any one of the above.
  • the method for inspecting a lens sheet of the present invention it is possible to inspect a large number of lenses (such as microlenses) simply and efficiently.
  • FIG. 1 shows a cross-sectional view of an example of a lens sheet used in the inspection method of the present invention.
  • a plurality of plano-convex lenses 1 are formed on a sheet 4 as lenses.
  • the lens sheet inspection method of the present invention is an inspection method applicable to a lens sheet having a lens formed on at least a part of the sheet.
  • the lens in the present invention is usually a minute lens called a microlens.
  • the shape is usually a plano-convex lens 1
  • the plano-convex lens is usually composed of a curved surface having condensing properties (or collimating properties) in the sheet vertical direction and the other surface in the curved inner direction.
  • a lens having a flat portion (bottom surface) 2 is indicated.
  • a plano-convex lens is broadly defined. To do.
  • the term “substantially flat” refers to a flatness that does not affect the characteristics of the practically opposing lens curved surfaces even if it is finely, partially, or entirely non-flat. For example, it may be convex or concave as long as it does not cause a problem in practice, and fine irregularities may be provided.
  • the shape which has a columnar member and the plano-convex lens part formed on this columnar member as described in an Example may be sufficient.
  • FIG. 3 is a sectional view showing an example of the inspection method of the present invention.
  • the lens sheet is a sheet having one or more convex portions (lens curved surface) on at least one surface (or above the surface) on the sheet. Two or more convex portions (lens curved surfaces) may be arranged, and the sheet may be any member that holds the arrangement thereof. Further, it may be a lens sheet (an embodiment shown in FIG. 2) in which a concave portion is formed on one surface and a convex portion (lens curved surface) is formed in the concave portion. Alternatively, a lens sheet with a built-in lens embedded with a low refractive index layer having a low refractive index may be used.
  • the inspection method of the present invention includes a step A in which inspection light 10 is incident on the plano-convex lens 1; The imaging intensity, the imaging intensity, and the imaging intensity of the inspection light 10 through the plano-convex lens 1 at an arbitrary distance ⁇ in the thickness direction of the lens sheet from the bottom surface 2 of the plano-convex lens 1 and Measuring the shape of the imaging and / or the position ⁇ of the imaging B, A step C for determining the quality of the plano-convex lens 1 from the substantial light intensity and / or image size and / or image shape and / or image position ⁇ measured in step B.
  • the position ⁇ in the present invention indicates the position of image formation in the sheet plane direction, and represents the position in the X and Y directions when the measurement direction of the distance ⁇ is the Z direction with respect to the sheet.
  • Image formation in the present invention refers to an image of light collected through a plano-convex lens, and refers to an image having an arbitrary ratio of intensity with respect to the maximum luminance or the area center luminance in the image.
  • the arbitrary ratio may be 1 to 99%, and 10 to 90% is better because the contour of the image can be clarified, and more preferably 25 to 75%.
  • the substantial imaging measurement in the present invention is a direct measurement of the total light intensity, size, shape, and position ⁇ of the imaging, or an arbitrary region of the imaging (for example, used in actual use). Measurement of light intensity, size, shape, and position ⁇ incident within a light receiving element diameter equivalent to a light receiving element (preferably a circle or a rectangular shape). They are appropriately selected depending on the use and purpose. Of course, they may be used in combination. Details will be described later.
  • the inspection method of the present invention does not directly measure the shape (convex portion) of the lens, but actually inspects the lens by transmitting inspection light, so the lens transmittance (including the sheet transmittance) is also included. ), A refractive index variation, a foreign matter on the lens surface or the back surface (flat portion) of the lens, defects due to scratches, and the like can be detected, so that it is possible to make a good / bad determination with high accuracy.
  • the inspection light source and the inspection light receiving unit can inspect the lens or the lens sheet (the housing provided with the lens) in a non-contact manner in the series of inspection processes, there is an advantage that the fear of adhesion is reduced, and the inspection light receiving unit, and further the inspection light source is inspected without being fixed to the sheet, so that by moving them relatively in the surface direction of the sheet, The lens and lens sheet can be inspected continuously. Therefore, there is an advantage that the inspection time can be shortened.
  • the spot diameter of the inspection light on the bottom surface of the lens is not particularly limited as long as the inspection can be performed, but it is preferable that the spot diameter includes the lens diameter.
  • the positional deviation include a case where the lens is formed with a deviation from a design value, and a case where a deviation of the lens sheet that may occur when measuring a plurality of lenses continuously occurs.
  • the size of the spot diameter is preferably larger than 100% of the lens diameter and not larger than the size including the lens sheet.
  • the size is preferably 150% or more and 100000% or less of the diameter of the lens from the viewpoint of easy control of light uniformity and spread angle, and is 180% or more and 20000% or less. Further, it is more preferable because inspection light can be incident on the substrate and inspection efficiency can be increased.
  • a transparent substrate transparent plate 8
  • the transparent plate 8 may be applied to the sheet surface (flat portion 3), and the lens sheet and the transparent plate 8 may be grounded.
  • the Z direction, X direction, and Y direction of the sheet can be easily defined, inspection is easy, and pass / fail judgment is easy.
  • the lens sheet with the transparent plate 8 can be handled like a thick lens sheet, handling properties are also improved. From the above viewpoint, it is preferable to use a transparent plate 8 having a higher elastic modulus than the lens sheet or a thick transparent plate 8. A transparent plate 8 having a high elastic modulus and a large thickness is more preferable.
  • the inspection light 10 can be made incident through the transparent plate 8, and inspection is performed in a state in which distortion and warping of the sheet 4 are reduced.
  • the transparent plate 8 is preferably a transparent plate 8 having a degree of transparency that does not interfere with the inspection with respect to the inspection light 10 or having a certain transmittance in the plane.
  • at least the inspection light source 6 and the inspection light receiving unit 7 are provided so as to be substantially opposed to each other with the transparent plate 8 and the lens sheet interposed therebetween so as not to touch the lens sheet. Preferably it is.
  • FIG. 4 which is another example of the method for inspecting a lens sheet of the present invention
  • the reflector 9 when the reflector 9 is provided, at least the inspection light source 6 and the reflector 9 in the direction opposite to the lens sheet.
  • the inspection light receiving unit 7 is preferably oriented in a substantially coaxial direction so as not to touch the lens sheet.
  • an optical gap may be provided between the sheet 4 and the reflection plate 9.
  • step A of the present invention as shown in FIG. 4, a reflecting plate 9 is installed above the surface of the sheet 4 opposite to the plano-convex lens 1, and the inspection light 10 is irradiated from the convex surface side and reflected by the reflecting plate 9. Then, the inspection light 10 reflected by the reflecting plate 9 may be incident on the plano-convex lens 1. Accordingly, the inspection light 10 can be incident and received from substantially the same direction with respect to the surface of the sheet 4.
  • the reflector 9 is preferably installed in parallel with the sheet 4. Thereby, since the reflected inspection light 10 can be aligned at a certain angle, it is possible to perform the inspection under the same conditions when inspecting a plurality of plano-convex lenses 1. For this reason, it is possible to determine the quality of each plano-convex lens 1 with high accuracy.
  • the lens sheet has at least two or more position recognition markers 5 at locations other than the plano-convex lens 1, and the positions of the at least two position recognition markers 5 It is good to have the process D which measures the relative positional relationship with the position (beta). Thereby, the deviation from the design value of the lens can be easily measured. Also, in the case of a defective mode in which the condensing position is decentered with respect to the center of the lens diameter by measuring the relative positional relationship between the position of the position recognition marker and the imaging position ⁇ . A pass / fail judgment is possible. For example, when the state in which the image 110 appears as shown in FIG. 5 is regarded as a non-defective product, the state is like the image 113 shown in FIG.
  • the position recognition marker 5 may be a reference position in the thickness direction at an arbitrary distance ⁇ in the thickness direction of the lens sheet, instead of the bottom surface 2 of the lens.
  • the distance ⁇ can be calculated with high accuracy even if the thickness of the lens sheet varies.
  • the inspection light source 6 and the inspection light receiving unit 7 are moved in the horizontal direction with respect to the transparent plate 8 so that the plurality of plano-convex lenses 1 are provided.
  • a constant distance ⁇ can be ensured, but when it is desired to calculate the distance ⁇ with higher accuracy, a plurality of the position recognition markers 5 are arranged in the sheet 4 and the plurality of reference positions are measured to measure the surface. Inspection can be performed in consideration of variations in the thickness direction.
  • the calculation of the reference position may be performed before the process B.
  • the plano-convex lens R is compared with the plano-convex lens R whose light intensity and / or image size and / or image shape and / or image position ⁇ is known.
  • the light intensity and / or the magnitude and / or the shape and / or the imaging of the inspection light through the plano-convex lens R at an arbitrary distance ⁇ in the thickness direction of the lens sheet from the bottom surface It is preferable to further include a step E of measuring the position ⁇ (position with respect to the position recognition marker R provided in the vicinity of the plano-convex lens R).
  • the distance ⁇ of the plano-convex lens R may be the same as or different from the distance ⁇ of the plano-convex lens for determining pass / fail, but if different, the imaged light at the distance ⁇ via the plano-convex lens R is different. Intensity and / or imaging size and / or imaging shape and / or imaging position ⁇ , and the imaging light intensity and / or imaging size at the distance ⁇ of the plano-convex lens for determining pass / fail It is only necessary to obtain a correlation that does not hinder the determination of the quality of the imaging shape and / or the imaging position ⁇ . When the distance ⁇ is the same, it is more preferable because the pass / fail determination can be made by directly comparing the imaging characteristics of the plano-convex lens R and the plano-convex lens for determining pass / fail.
  • step E for example, the difference between the divergence angle of the light source and the inspection light source under actual use conditions, the difference in image size at the diameter and distance ⁇ of the light receiving unit under actual use conditions, Even when there is a difference between the distance from the sheet surface to the light receiving unit under actual use conditions and the distance ⁇ , and there is a positional deviation (particularly in the sheet surface parallel direction) between the inspection light source 6 and the inspection light receiving unit 7,
  • a good / bad determination can be made.
  • the process E may be performed before, during or after the process B.
  • the determination of the quality of the lens may be performed after performing Step E and Step B. It is further preferable to perform at least one time immediately after, during, or immediately after the process B because a more accurate pass / fail determination is possible.
  • the method for inspecting a lens sheet of the present invention may include a step F of measuring the diameter of the plano-convex lens 1.
  • a step F of measuring the diameter of the plano-convex lens 1. it is possible to inspect whether the total amount of the inspection light 10 incident on the plano-convex lens 1 is appropriate.
  • This step is particularly preferably used when the inspection light 10 is incident with a spot diameter larger than the diameter of the plano-convex lens 1. From the above viewpoint, the light intensity within the diameter (diameter) of the plano-convex lens may be measured at this time.
  • the diameter of the plano-convex lens R and / or the light intensity that passes through the diameter is measured, and the quality is determined from the result and the measurement result of the process F.
  • the positional relationship between the inspection light source 6 and the inspection light receiving unit 7 may be defined in the plane direction of the sheet 4.
  • the inspection light 10 enters the plano-convex lens 1 at a certain angle (preferably perpendicular to the plano-convex lens 1). Since the inspection light 10 can be received at a certain angle (preferably in a direction perpendicular to the plano-convex lens 1), a highly accurate inspection can be performed.
  • the relationship between the distance between the plano-convex lens 1 in the process B and the inspection light source 6 and the inspection light receiving unit 7 and the distance between the plano-convex lens R in the process E and the inspection light source 6 and the inspection light receiving unit 7 are constant. It is preferable that the distance is defined, and the positional relationship between the inspection light source 6 and the inspection light receiving unit 7 is also defined in the plane parallel direction of the sheet 4.
  • the positional relationship between the inspection light source 6 and the inspection light receiving unit 7 is not particularly problematic as long as the inspection light 10 can be incident on the plano-convex lens 1 and the inspection light 10 can be received through the plano-convex lens 1.
  • the respective positions are defined so that the brightness of the spot diameter irradiated on the plano-convex lens 1 and the angle of the inspection light 10 are constant within a range that does not hinder the inspection.
  • the positions of the inspection light source 6 and the inspection light receiving unit 7 may be defined using the plano-convex lens 1 to be measured, but more preferably, the plano-convex lens R having a known shape may be used. Preferred (because the plano-convex lens 1 to be measured may have an unfavorable shape).
  • the positional relationship between the inspection light source 6 and the inspection light receiving unit 7 may be fixed. Thereby, it can test
  • the interval between the inspection light source 6 and the sheet 4 and the gap between the inspection light receiving unit 7 and the sheet 4 are sufficiently secured, for example, when measuring the diameter of the plano-convex lens 1 and when measuring the imaging, the sheet Even if the inspection light source position in the direction perpendicular to the surface is different, the variation in the incident angle of the inspection light 10 incident on the plano-convex lens 1 can be reduced.
  • the plurality of plano-convex lenses 1 in which the process A and the process B move at least the inspection light receiving unit 7 in the direction parallel to the surface of the sheet 4 and the inspection light 10 is incident thereon Is repeated continuously or intermittently.
  • Continuous is a method in which a plurality of plano-convex lenses 1 are inspected in order while maintaining the distance ⁇ , and a method in which the sheet 4 is inspected while maintaining the distance ⁇ during step B.
  • Intermittently means a method in which the position recognition marker 5 is recognized, a distance ⁇ is calculated for each position recognition marker 5 and one or a plurality of plano-convex lenses 1 are inspected. Refers to inspection with movement of direction. It is preferable to carry out continuously from the viewpoint of inspection efficiency. Whichever method is used, the process B may be performed in a state in which the distance ⁇ is secured for each plano-convex lens 1.
  • This inspection method can provide a good lens sheet with a function as a lens.
  • a lens array sheet in which a plurality of lenses are arranged is preferable because a function as a lens for each lens is secured.
  • the inspection method of the present invention that can be inspected in consideration of them is particularly useful, and the lens sheet inspected by the inspection method of the present invention has been confirmed to function as a lens, so it can be used without any problem. it can.
  • the organic compound depends on how heat is applied, variation in total calorie, degree of crosslinking at the molecular level, variation in its style, variation in pressure applied to the lens sheet, etc. Density may occur in the density. Density of density tends to cause variations in transmittance and refractive index.
  • a resist pattern for lens formation is formed into a lens by thermal reflow, as in the above, how to apply heat, variation in total heat, degree of crosslinking at the molecular level It is also possible that the density is uneven due to variations in the pattern and the like, or variations in shape due to variations in fluidity and surface tension during thermal reflow.
  • the influence of the developer may be considered.
  • organic compounds used in the lens sheet include polyethylene terephthalate, polybutylene terephthalate, polyester such as polyethylene naphthalate, polyolefin such as polyethylene and polypropylene, polyamide, polycarbonate, polyphenylene ether, polyether sulfide, polyarylate, liquid crystal polymer, Examples include polysulfone, polyethersulfone, polyetheretherketone, polyetherimide, polyamideimide, polyimide, acrylic resin, epoxy resin, phenol resin, and cured products thereof.
  • this inspection method can be inspected by correcting or taking them into account, so it is also useful as an inspection method for those lens sheets. Since the lens sheet inspected by the inspection method of the present invention has been confirmed to function as a lens, it can be used without any problem.
  • the lens sheet as described above can be an optical waveguide with a lens combined with an optical waveguide with a mirror.
  • the optical waveguide is preferably composed of a core pattern through which light propagates and a cladding layer covering the core pattern.
  • the optical path conversion mirror may be provided on the optical axis of the core pattern.
  • each optical path conversion mirror and each lens Since the positional relationship is also confirmed, it is possible to align the lens with respect to any of the optical path conversion mirrors by combining them in a lump, and good characteristics can be obtained.
  • the lens sheet as described above can be an electric wiring board with a lens combined with an electric wiring board.
  • the electric wiring board is particularly preferably an electric wiring board for mounting an optical element on which a light receiving element or a light emitting element is mounted, and the electric wiring for mounting these elements is preferably formed on an insulating substrate.
  • the lens sheet obtained by the inspection method of the present invention is arranged on the insulating substrate opposite to the optical element with the light receiving or emitting surface of the optical element facing the insulating substrate, the light is received or transmitted well through the lens. Can do.
  • the insulating resin between the light emitting / receiving surface and the lens is preferably transparent or has an opening.
  • each light receiving or / and light emitting part and each lens are combined. Since the positional relationship is also confirmed, the lens can be aligned with respect to any light receiving and / or light emitting portion by combining them together, and good characteristics can be obtained.
  • the inspection method of the lens sheet of this invention is demonstrated in detail for every process.
  • the method for inspecting a lens sheet of the present invention includes a step A in which an inspection light 10 is incident on a lens (a plano-convex lens 1 in FIG.
  • the incident direction of the inspection light 10 on the plano-convex lens 1 may be from either the convex side (the side opposite to the flat part 3) or the flat part 3 side.
  • the inspection light 10 may be infrared light, visible light, ultraviolet light, or light having a single wavelength or a plurality of wavelengths as long as it can be received by the inspection light receiving unit 7. It is more preferable to use the wavelength of light that passes through the plano-convex lens 1 because an inspection can be performed in consideration of the wavelength dependence of the refractive index.
  • the input angle of the inspection light 10 to each plano-convex lens 1 is It is good to keep it almost constant. This makes it easy to determine whether the light intensity, size, shape, and position ⁇ of the image formation are good or bad (or easy comparison with the image formation of the plano-convex lens R).
  • the spread angle of the inspection light 10 incident on the plano-convex lens 1 is in a range that does not affect the quality determination, and the plano-convex lens 1 collects light or collimates (functions as a lens). Any spread angle within the range that can be confirmed is acceptable. This is because the inspection method of the present invention can determine whether the light collected by the plano-convex lens 1 is good or bad, so that the inspection light 10 having a divergence angle in a range satisfying the above can be inspected. it can. Further, even in the actual use state, even the plano-convex lens 1 for collimation can be inspected using the condensing inspection light 10.
  • Pass / fail judgment may be made by collimated imaging by solving a plano-convex lens using incident light having an arbitrary divergence angle.
  • the divergence angle (half angle) is preferably greater than 0 ° to 75 °, and more preferably greater than 0 ° to 45 ° from the viewpoint of light collection. From a viewpoint, it is more preferable that the angle is 5 ° to 40 °, and it is most preferable that the angle is 5 ° to 30 ° from the viewpoint of easily obtaining a spot diameter having a uniform intensity.
  • the light incident on the plano-convex lens R or the plano-convex lens 1 may further have a more uniform angular distribution within the above-mentioned angle range.
  • the inspection light 10 is substantially transmitted through the plano-convex lens 1 at an arbitrary distance ⁇ in the thickness direction of the lens sheet from the bottom surface 2 of the lens (plano-convex lens 1).
  • the light intensity of the image and / or the size of the image and / or the shape of the image and / or the position ⁇ of the image are measured.
  • a projection plate is disposed at a position of the distance ⁇ , or the image is obtained as an image by focusing on the distance ⁇ using a camera module or the like.
  • Use of a projection plate or a camera module is preferable because the light intensity, size, position, and position can be obtained as image information. From the viewpoint of easily obtaining the positional relationship between the position recognition marker 5 and imaging, it is best to use a camera module.
  • the arbitrary distance ⁇ may be a distance at which the angle of the inspection light 10 through the plano-convex lens 1 can be confirmed or a distance at which the changing process can be confirmed.
  • the distance may be any of the collected spot, the process of diverging after being collected, or the spot where collimation can be confirmed.
  • one or more distances ⁇ may be set for one plano-convex lens 1, and two or more distances ⁇ may be set.
  • the plano-convex lens 1 can be inspected with higher accuracy.
  • the position of the camera module in the opposite direction to the optical axis of the inspection light by the distance ⁇ can be acquired by moving the focus position and defocusing.
  • Process C In the method for inspecting a lens sheet of the present invention, as the process C, the optical intensity of the image and / or the size of the image and / or the shape of the image and / or the position ⁇ of the image is measured from the plano-convex lens. Judge the quality.
  • the light intensity of image formation through the defective plano-convex lens is smaller than the light intensity of image formation of the other non-defective plano-convex lens 1. Thereby, it can be determined that the defective plano-convex lens is defective. Comparing the light intensity of the image formed by the plano-convex lens R and the light intensity of the image formed by the plano-convex lens 1 to be measured is preferable because it is possible to determine the quality more accurately.
  • the light intensity may be the total light amount, the maximum intensity, the light distribution and its distribution shape, and is appropriately determined depending on the intended use.
  • the size of the image formation becomes small (or large) (for example, when the image formation 111 has a large image formation size as shown in FIG. 6 (non-defective product is shown in FIG. 5)). Thereby, it can be determined that the defective plano-convex lens is defective. It is preferable to compare the image formation size of the plano-convex lens R with the image formation size of the plano-convex lens to be measured because it is possible to determine the quality more accurately.
  • the shape of the image formed through the defective plano-convex lens is such as The shadow is projected in a distorted shape.
  • the defective plano-convex lens is defective (for example, when it has an image 114 having a different image shape as shown in FIG. 9 (the non-defective product is shown in FIG. 5)). It is preferable to compare the shape of the image of the plano-convex lens R with the shape of the image of the plano-convex lens 1 to be measured because it is possible to determine the quality more accurately.
  • a cross section in which the plano-convex lens 1 is shifted from a predetermined position in any one of the lens sheet plane directions, or the center of the diameter of the plano-convex lens 1 is shifted from the most convex portion When there is a defective product such as a plano-convex lens 1 having an irregular shape, the image formation position ⁇ (image formation position in the plane parallel direction of the sheet 4) is different from a predetermined position (for example, as shown in FIG. 8). When the image has an image 113 different from the predetermined position (the non-defective product is shown in FIG. 5)). Thereby, it can be determined that the defective plano-convex lens is defective.
  • the quality of the position ⁇ can also be determined by comparing the image formation center point of a non-defective lens (or lens R) with the point that can be determined as the center of the image formation 113.
  • the shape of the image formed by the plano-convex lens R with the shape of the image formed by the plano-convex lens 1 to be measured because it is possible to determine the quality more accurately.
  • the center of the diameter of the plano-convex lens 1 and the image are formed. Although the center may deviate, the quality can be accurately judged by comparing the imaging positions of the plano-convex lens 1 and the plano-convex lens R to be inspected with the same setup (setting of the inspection light source angle).
  • the image formation As another example of determining the light intensity, size, shape, and position ⁇ of the above-described image formation, there is a method of measuring the light intensity incident within a predetermined range in the image formation. In this case, if the size, shape, or position ⁇ of the image formation is defective, the image formation deviates from the predetermined range. As a result, the intensity of light incident within a predetermined range is reduced, and it can be determined that the light is defective. In other words, pass / fail judgment is performed by indirectly converting the magnitude, shape, and position ⁇ of the image to light intensity. Also in this case, it can be said that the pass / fail judgment is substantially performed by the light intensity of the image formation and / or the size of the image formation or / and the shape of the image formation or / and the position ⁇ of the image formation.
  • the predetermined range described above may be selected as appropriate, for example, a shape having a correlation with the shape of the light receiving portion of the light receiving element when actually used. It may be a range having a certain shape and area such as a circle, an ellipse, and a rectangle. In this way, even if the image size, shape, and position are microscopically deviated within the specified range, the function as a lens (actually usable) can be confirmed. be able to. Further, the position in the predetermined range may be a theoretical imaging position calculated from the position recognition marker 5. In the case of performing the inspection in the predetermined range, it is possible to acquire image formation information by the camera module and measure the luminance within the predetermined range by various image processing.
  • the lens sheet has at least two position recognition markers 5 at a place other than the lens (plano-convex lens 1), and at least two of the position recognition markers 5; It is preferable to further include a step D of measuring a relative position with respect to the imaging position ⁇ .
  • Two position recognition markers 5 may be provided for at least one lens sheet, and two or more for each plano-convex lens. For example, when twelve plano-convex lenses are one unit (product unit) and the lens sheet includes a plurality of units, two or more position recognition markers 5 are provided per unit. This position recognition marker 5 is preferable because it can be used as the position recognition marker 5 when combined with an optical waveguide with a mirror or an electric wiring board.
  • the in-plane angular deviation of the plano-convex lens 1 can also be measured.
  • the position recognition marker 5 is preferably provided at a location other than the plano-convex lens 1, and there is no problem as long as the shape is visible, but it is a convex portion or a concave portion formed on the surface of the lens sheet. Good. Furthermore, it is good to have a fixed height angle
  • the plano-convex lens R whose imaging light intensity and / or imaging size and / or imaging shape and / or imaging position ⁇ is known is described above.
  • the plano-convex lens R at this time is a standard plano-convex lens, which may be a non-defective product or a defective product, and may be a standard for determining a threshold value for determining the quality of a plano-convex lens as a measurement sample. More preferably. Since the light intensity of the imaging and / or the imaging size and / or the imaging shape and / or the imaging position ⁇ of the plano-convex lens R are known, for example, the output of the inspection light 10 from the inspection light source 6 is The above can be taken into account when it is lowered (or raised), or because it is possible to grasp that the positions of the inspection light source 6 and the inspection light receiving unit 7 are shifted in the plane parallel direction, etc.
  • the quality of the measurement sample can be accurately determined.
  • the image formation position ⁇ may be a correlation position with adjacent image formation, or a position based on a position recognition marker arranged on a lens sheet provided with the plano-convex lens R.
  • step C In the inspection method of the present invention, as the step C, the light intensity and / or the image size and / or the image shape and / or the image position of the image formed by the steps E and B substantially.
  • the quality of the lens may be determined from the difference from ⁇ .
  • the lens of the lens to be measured is compared by comparing the threshold value of the imaging light intensity calculated from step E, the upper and lower limits of the imaging size, the imaging shape, and the upper and lower limits of the deviation amount from the imaging position ⁇ . Accurate quality determination can be made.
  • Process F In the inspection method of the present invention, it is better to measure the diameter of the lens (plano-convex lens 1) as step F.
  • the diameter of the plano-convex lens 1 By measuring the diameter of the plano-convex lens 1, it is possible to determine that the plano-convex lens 1 having a diameter larger than the standard value or the plano-convex lens 1 having a smaller diameter is defective.
  • a comparison with the plano-convex lens R is better because a more accurate pass / fail judgment can be made.
  • the inspection light source is a part that outputs inspection light that is incident on the lens.
  • An LED Light Emitting Device
  • a laser a halogen lamp, or the like can be used, and the light from the optical fiber, optical waveguide, light pipe, etc. As long as the light is irradiated at a uniform angle or area that does not hinder the inspection through the slab.
  • an optical system such as a lens or a mirror may be provided as appropriate.
  • the inspection light 10 incident on the lens from the inspection light source is not particularly limited as long as it is a wavelength of light that can be transmitted through the lens (plano-convex lens 1), but from the viewpoint of handling, infrared light, visible light, and ultraviolet light are used. These may be a single wavelength or a plurality of wavelengths.
  • the wavelength of light that is transmitted through the plano-convex lens 1 during actual use is more preferable because the material-dependent transmission loss of the plano-convex lens 1 can be taken into account.
  • the material examples include a plano-convex lens that the organic material has in at least a part on the optical axis and a sheet thereof.
  • the number of light sources, the amount of light, and the position may be appropriately adjusted so that the spot diameter and the spread angle of the light applied to the plano-convex lens 1 are as uniform as possible in the spot portion.
  • the inspection light receiving unit 7 is a part that receives the inspection light 10 emitted from the lens, and a light receiving element, a camera module, or the like is used.
  • the use of a camera module is more preferable because the position of the plano-convex lens 1 and its imaging and position recognition marker 5 can be obtained from image information.
  • an image of the image is acquired through a lens that has a short focal length and can also recognize angular light components. May be.
  • the inspection light source and the inspection light receiving unit need only be substantially coaxially opposed or in the same direction as the light beam.
  • the optical axis is converted by approximately 90 ° between the inspection light source and the inspection light receiving unit. Even if it has such a reflecting mirror, it is possible to determine whether the plano-convex lens 1 is good or bad even in the case of a structure in which the reflecting mirror and the plano-convex lens are fused.
  • the substantially 90 ° refers to an angle at which the reflection mirror can perform regular reflection or total reflection. Note that the case where the incident angle to the reflection mirror is approximately 0 ° and the reflection angle is approximately 0 ° is equivalent to the above-described inspection method using the reflector.
  • an optical path (for example, an optical fiber or an optical waveguide) may be provided between the inspection light source and the inspection light receiving unit within a range that does not hinder the inspection of the plano-convex lens.
  • the transparent plate 8 used in the present embodiment is preferably a plate having transparency capable of transmitting the inspection light 10 and being more rigid than the sheet 4. Since it is more elastic than the sheet 4 or is thick, it is preferable because rigidity is easily obtained. It is more preferable that the transparent plate has higher elasticity and thickness than the sheet 4.
  • Specific materials include glass, quartz, transparent resin, silicon wafer and the like.
  • the transparent resin include polyesters such as polyethylene terephthalate, polybutylene terephthalate and polyethylene naphthalate, polyolefins such as polyethylene and polypropylene, polyamide, polycarbonate, polyphenylene ether, polyether sulfide, polyarylate, liquid crystal polymer, polysulfone and polyethersulfone. , Polyether ether ketone, polyether imide, polyamide imide, polyimide and the like.
  • a releasable adhesive may be applied to them, and the transparent plate 8 and the lens sheet may be bonded together via the adhesive.
  • the transparent plate 8 may be provided with an antireflection film.
  • the thickness of the transparent plate 8 is preferably 50 ⁇ m to 20 mm from the viewpoint of easily obtaining rigidity and easy handling, and is more preferably 100 ⁇ m to 15 mm from the viewpoint of low warpage, from the viewpoint of easily obtaining flatness. 0.5 mm to 10 mm is even better.
  • the reflecting plate 9 used in the present embodiment is not particularly limited as long as it can reflect the inspection light 10 and may have a reflecting film.
  • the reflectance may be constant within a range that does not hinder the inspection within the surface of the sheet 4.
  • a reflective metal film such as Ag, Al, Cu, Au, Ni, Cr, Pt, Ti, Pd, and a laminate or alloy thereof is used.
  • a reflective film may be provided on the surface of the transparent plate 8 opposite to the lens sheet. By providing a reflective film on the surface of the transparent plate 8 opposite to the lens sheet, it is preferable because the distance between the sheet 4 and the reflective plate 9 can be kept constant.
  • the position recognition marker 5 provided on the lens sheet only needs to be provided on a portion other than the lens (plano-convex lens 1).
  • a convex portion protruding from the sheet surface, a concave portion recessed from the sheet surface, or the like is preferable.
  • FIG. 1 shows an example of a convex position recognition marker 5
  • FIG. 2 shows an example of a concave position recognition marker.
  • the shape is not particularly limited, but the shape from the lens sheet vertical direction may be a circle, a rectangle, a star, a cross, a composite shape thereof, or the like.
  • position recognition marker 5 can be used even when the unit is later separated into individual units.
  • an electric wiring board or mirror It functions as a position recognition marker 5 when combined with the attached optical waveguide.
  • the position recognition marker 5 as the reference point of the distance ⁇ or the reference point of the position ⁇ , it is possible to always inspect the imaging at a fixed arbitrary distance ⁇ and calculate the position ⁇ with high accuracy.
  • Example 1 A lens sheet was produced by the following procedure. [Production of resin layer for position recognition marker formation] ⁇ (A) Base polymer; Production of (meth) acrylic polymer (A-1)> 46 parts by mass of propylene glycol monomethyl ether acetate and 23 parts by mass of methyl lactate were weighed in a flask equipped with a stirrer, a cooling pipe, a gas introduction pipe, a dropping funnel, and a thermometer, and stirred while introducing nitrogen gas. .
  • the liquid temperature was raised to 65 ° C., 47 parts by weight of methyl methacrylate, 33 parts by weight of butyl acrylate, 16 parts by weight of 2-hydroxyethyl methacrylate, 14 parts by weight of methacrylic acid, 2,2′-azobis (2,4-dimethylvaleronitrile )
  • a mixture of 3 parts by mass, 46 parts by mass of propylene glycol monomethyl ether acetate and 23 parts by mass of methyl lactate was added dropwise over 3 hours, followed by stirring at 65 ° C. for 3 hours, and further stirring at 95 ° C. for 1 hour.
  • a (meth) acrylic polymer (A-1) solution solid content: 45% by mass
  • the position recognition marker forming resin varnish obtained above is coated on a non-treated surface of a PET film (“Cosmo Shine A4100” manufactured by Toyobo Co., Ltd., thickness 50 ⁇ m) as a support film.
  • a PET film (“Cosmo Shine A4100” manufactured by Toyobo Co., Ltd., thickness 50 ⁇ m) as a support film.
  • -MC manufactured by Hirano Tech Seed Co., Ltd., dried at 100 ° C. for 20 minutes
  • surface-release PET film (“Purex A31” manufactured by Teijin DuPont Films Co., Ltd., thickness 25 ⁇ m) as a protective film.
  • the resin film for sticking and position recognition marker formation was obtained.
  • the thickness of the resin layer (film) for position recognition marker formation can be arbitrarily adjusted by adjusting the gap of the coating machine, and will be described in the examples.
  • the film thickness of the resin layer for position recognition marker formation described in the examples is the film thickness after coating and drying.
  • a polyethylene terephthalate film having a thickness of 16 ⁇ m was used as a support film, and the resin composition solution for forming a lens member obtained above was uniformly applied on the support film using a comma coater, and a hot air convection dryer at 100 ° C. And dried for 3 minutes to remove the solvent and form a lens member-forming resin layer.
  • the thickness of the lens member-forming resin layer (film) used is described in the embodiment.
  • the film thickness of the lens member forming resin layer described in the examples is the film thickness after coating and drying.
  • a polyethylene terephthalate film having a thickness of 25 ⁇ m was further bonded as a protective film on the obtained resin layer for forming a lens member to produce a lens member forming resin layer.
  • the protective film of the 10 ⁇ m-thick position-recognition marker-forming resin layer is peeled off, and a 150 mm ⁇ 150 mm polyimide film (polyimide; Upilex RN (manufactured by Ube Nitto Kasei Co., Ltd.), thickness: 25 ⁇ m) is used as a roll laminator ( Hitachi Chemical Technoplant Co., Ltd., HLM-1500) was used for thermocompression bonding under conditions of a pressure of 0.4 MPa, a temperature of 70 ° C., and a laminating speed of 0.2 m / min.
  • ultraviolet light (wavelength 365 nm) is 0.3 J from the support film side through a negative photomask on which the shape of the position recognition marker is drawn by an ultraviolet exposure machine (model name: EXM-1172, manufactured by Oak Manufacturing Co., Ltd.). / Cm 2 irradiation. The shape and position of the position recognition marker will be described later.
  • the protective film of the resin layer for forming the position recognition marker is peeled off, and the resin layer for forming the lens member having a thickness of 30 ⁇ m obtained above is protected on the exposed resin surface of the resin layer for forming the position recognition marker.
  • the resin surface from which the film was peeled was thermocompression bonded in the same manner as described above.
  • UV light (wavelength 365 nm) is 0.3 J from the support film side through a negative photomask on which the planar shape of the plano-convex lens is drawn by an ultraviolet exposure machine (model name: EXM-1172, manufactured by Oak Manufacturing Co., Ltd.). / Cm 2 irradiation.
  • the shape and position of the plano-convex lens will be described later.
  • the support film was peeled off and etched using a 1.0% by mass aqueous solution of potassium carbonate to form a position recognition marker 5 and a laminate of the position recognition marker and the lens forming member. Then, it heated at 180 degreeC for 1 hour, the lens formation member was dripped, the planoconvex lens 1 was formed, and the lens sheet which consists of an organic compound which has flexibility was produced.
  • the obtained lens sheet includes four plano-convex lenses 1 arranged on a sheet at a pitch of 250 ⁇ m, and a position recognition marker 5 (height 10 ⁇ m) of 100 ⁇ m ⁇ 100 ⁇ m at a position 100 ⁇ m outside the plano-convex lens 1 on both sides.
  • a lens sheet having 10 units at a 5 mm pitch in the plano-convex lens arrangement direction and 10 units at a 5 mm pitch in the direction perpendicular to the arrangement direction of the plano-convex lenses 1 was produced.
  • the design value of the diameter of the bottom surface was 150 ⁇ m (diameter size tolerance ⁇ 2 ⁇ m), and the deviation tolerance from the design value from the position recognition marker was ⁇ 5 ⁇ m.
  • the plano-convex lens 1 is formed on a cylindrical pattern made of the same material as that of the position recognition marker 5. However, in this embodiment, they are treated as a plano-convex lens in which they are integrated and are not shown in the drawing.
  • a quartz glass with a thickness of 3 mm is applied as a transparent plate 8 to the flat surface side of a reference sample that has been confirmed to be a non-defective product in the same shape as the unit obtained above, and at a position that does not interfere with the plano-convex lens R and the position recognition marker. It pressed from the opposite direction to quartz glass using the pressing tool which has an opening part.
  • the inspection light source 6 (wavelength; 850 nm) of the optical tester (product name: OPT-002, manufactured by Synergy Opto Systems Co., Ltd.) and the inspection light receiving unit 7 (CCD) are coaxially opposed, and the inspection light source 6 side is A plano-convex lens R is inserted between the inspection light source 6 and the inspection light receiving unit 7 with the quartz glass surface side, and is fixed to a sample stage movable in the XYZ directions (the sample stage is connected to the inspection light source 6 and the inspection light receiving unit 7). Move independently).
  • the distance (gap) between the inspection light source 6 and the quartz glass was 15 mm, and the inspection light receiving unit 7 was disposed at a position where the lower surface of the position recognition marker 5 (the junction between the position recognition marker 5 and the sheet 4) is in focus.
  • the inspection light source 6 is moved in the plane parallel direction of the lens sheet, and adjusted to a position (center of the spot diameter) where the intensity of light transmitted through the plano-convex lens R is large and insensitive to the displacement of the inspection light source 6 position. did.
  • the inspection light receiving unit 7 is adjusted to a position where the plano-convex lens R can be recognized at the center of the image.
  • the incident light of red light was irradiated from the inspection light receiving unit 6 side, and the size and position of the position recognition marker 5 and the bottom surface of the plano-convex lens R were measured.
  • the inspection light source 6 was turned on, and the total luminance observed by being included in the bottom surface of the plano-convex lens R was measured.
  • the sample stage was moved to the inspection light source 6 side by 100 ⁇ m as the first distance ⁇ to obtain an image of the image.
  • a portion where the intensity of the image is 50% of the maximum intensity is defined as an image formation region.
  • the image formation size was 100 ⁇ m in diameter.
  • the sample stage was further moved to the inspection light source 6 side by 50 ⁇ m to obtain an image of the image.
  • the image size was 80 ⁇ m in diameter.
  • the deviation from the design value of the imaging position ⁇ from the position recognition marker 5 was 0 ⁇ m. There was no distortion of the imaging circle.
  • quartz glass having a thickness of 3 mm is applied as the transparent plate 8 to the flat surface side of the previously formed lens sheet, and an opening is formed at a position that does not interfere with the plano-convex lens 1 and the position recognition marker 5. It pressed from the opposite direction to quartz glass using the holding tool which has.
  • the inspection light source 6 (wavelength; 850 nm) of the optical tester (product name: OPT-002, manufactured by Synergy Opto Systems Co., Ltd.) and the inspection light receiving unit 7 (CCD) are coaxially opposed to each other, and the inspection light source 6 side
  • the plano-convex lens 1 is inserted between the inspection light source 6 and the inspection light receiving unit 7 with the quartz glass surface side, and fixed to the sample stage movable in the XYZ directions (the sample stage is the inspection light source 6 and the inspection light receiving unit 7). Move independently).
  • the lens sheet can be handled integrally with the quartz glass, it can be easily attached to the sample stage.
  • the distance between the inspection light source 6 and the quartz glass was 15 mm, and the inspection light receiving unit 7 was arranged at a position where the lower surface of the position recognition marker 5 was in focus.
  • the positional relationship between the inspection light source 6 and the inspection light receiving unit 7 is fixed at the position where the previous plano-convex lens R is measured, and the inspection light receiving unit 7 (CCD) has a plano-convex lens (4) at the center of the image. The position is adjusted so that it can be recognized.
  • the inspection light source 6 and the inspection light receiving unit 7 are provided with a lens or the like (not shown) for controlling the angle of incident light or acquiring a formed image.
  • the incident light of red light was irradiated from the side of the inspection light receiving unit 7 to measure the size and position of the position recognition marker 5 and the bottom surface of the plano-convex lens (the inspection light source 6 and the inspection light receiving unit 7 are , Position 605 (705) shown in FIG. 3 with respect to the lens sheet).
  • the size of the bottom surface of the lens a diameter in the range of 148 ⁇ m to 152 ⁇ m was good, and the others were bad.
  • the total luminance observed in the bottom surface of the plano-convex lens R measured previously is 100%, and the total luminance observed in the bottom surface of the plano-convex lens to be measured is 95% or higher. Defective.
  • the sample stage is moved to the inspection light source 6 side by 100 ⁇ m as the first distance ⁇ to obtain an image of the image (the inspection light source 6 and the inspection light receiving unit 7 are formed on the lens sheet) (Position 601 (701) shown in FIG. 3).
  • a portion where the intensity of the image is 50% of the maximum intensity is defined as an image formation region.
  • the image formation size was good when the diameter was in the range of 98 to 102 ⁇ m, and the others were bad.
  • the total brightness of the image of the plano-convex lens R at the first distance ⁇ is 100%, the total brightness of the image of the plano-convex lens 1 to be measured is 95% or higher, and the lower is bad.
  • the sample stage was further moved to the inspection light source 6 side by 50 ⁇ m to obtain an image of the image.
  • the image formation size was good when the diameter was in the range of 78 to 82 ⁇ m, and the others were bad.
  • the total brightness of the image of the plano-convex lens R at the second distance ⁇ is set to 100%, the total brightness of the image of the plano-convex lens 1 to be measured is 95% or higher, and the lower is determined to be poor.
  • the deviation from the design value of the imaging position ⁇ from the position recognition marker 5 the deviation amount from the design value is good within ⁇ 5 ⁇ m, and the other is bad.
  • the image with circular distortion was regarded as defective. If there is at least one defective plano-convex lens 1 in the unit, the unit is regarded as defective.
  • the sample stage is sequentially moved (as shown in FIG. 3, the inspection light source 6 and the inspection light receiving unit 7 are sequentially moved to positions 602 (702), 603 (703), and 604 (704)), and 10 rows ⁇ 10 A row of plano-convex lenses 1 (units) was inspected.
  • the inspection could be efficiently performed only by moving the sample stage, acquiring images, and judging.
  • Example 2 A reflection plate 9 was formed by depositing Au of 0.5 ⁇ m on one surface of the quartz glass which is the transparent plate 8 used in Example 1. Next, the flat surface 3 of the lens sheet is applied to the non-deposition surface side of the quartz glass in the same manner as in Example 1, and the quartz glass is used by using a pressing tool having an opening at a position that does not interfere with the plano-convex lens R and the position recognition marker 5. Pressed from the opposite direction to the glass.
  • an inspection light receiving unit (CCD) is placed in the center of the ring illumination of the inspection light source (wavelength: 850 nm) of the optical tester (product name: OPT-002, manufactured by Synergy Opto Systems Co., Ltd.), and inspection is performed.
  • the light source 6 side was set on the convex portion side of the plano-convex lens R.
  • the lens sheet was fixed to a sample stage movable in the XYZ directions (the sample stage is movable independently of the inspection light source and the inspection light receiving unit). At this time, since the lens sheet can be handled integrally with the quartz glass with the reflecting plate 9, it can be easily attached to the sample stage.
  • the distance between the inspection light source 6 and the reflecting plate 9 was 12 mm, and the inspection light receiving unit 7 was disposed at a position where the lower surface of the position recognition marker 5 was in focus.
  • the inspection light source 6 and the inspection light receiving unit 7 are moved in the plane parallel direction of the lens sheet, and the intensity of light transmitted through the plano-convex lens R (light received by the inspection light receiving unit) is large. It adjusted to the position (center of a spot diameter) insensitive to a position shift.
  • the inspection light receiving unit 7 is adjusted to a position where the plano-convex lens R can be recognized at the center of the image.
  • the incident light of red light was irradiated from the inspection light receiving unit 7 side, and the size and position of the position recognition marker 5 and the bottom surface of the plano-convex lens R were measured.
  • the inspection light source 6 was turned on, and the total luminance observed by being included in the bottom surface of the lens R was measured.
  • the sample stage was moved to the inspection light source 6 side by 100 ⁇ m as the first distance ⁇ to obtain an image of the image.
  • a portion where the intensity of the image is 50% of the maximum intensity is defined as an image formation region.
  • the image formation size was 100 ⁇ m in diameter.
  • the sample stage was further moved to the inspection light source 6 side by 50 ⁇ m to obtain an image of the image.
  • the image size was 80 ⁇ m in diameter.
  • the deviation from the design value of the imaging position ⁇ from the position recognition marker 5 was 0 ⁇ m. There was no distortion of the imaging circle.
  • quartz glass with a reflector 9 having a thickness of 3 mm is applied to the flat surface 3 side of the lens sheet, which is a measurement sample produced by the same method as in Example 1, and the planoconvex lens 1 and It pressed from the opposite direction to quartz glass using the pressing tool which has an opening part in the position which does not interfere with the position recognition marker 5.
  • FIG. 1 is a measurement sample produced by the same method as in Example 1, and the planoconvex lens 1 and It pressed from the opposite direction to quartz glass using the pressing tool which has an opening part in the position which does not interfere with the position recognition marker 5.
  • the sample stage is movable independently of the inspection light source and the inspection light receiving unit.
  • the lens sheet can be handled integrally with the quartz glass with a reflecting plate, it can be easily attached to the sample stage.
  • the positional relationship between the inspection light source 6 and the inspection light receiving unit 7 is fixed at the position where the plano-convex lens R is measured, and the plano-convex lens 1 (one unit) is centered on the image by the inspection light receiving unit 7 (CCD). 4 positions) are adjusted to a recognizable position.
  • the core pattern is 4CH (250 ⁇ m pitch), a cladding layer in which the core pattern is embedded, and an optical waveguide with a mirror including four optical path conversion mirrors arranged in the direction perpendicular to the core pattern on the optical axis of the core pattern,
  • the lens sheet (unit) determined as a non-defective product obtained in Example 1 and the optical path conversion mirror are aligned, and a transparent heat having a thickness of 10 ⁇ m is formed so that the flat surface 3 side of the lens sheet becomes an optical waveguide with a mirror.
  • each plano-convex lens 1 and all the optical path conversion mirrors can be satisfactorily aligned, and sequentially through the core pattern, the optical path conversion mirror and the lens, or the lens, the optical path conversion mirror, and Light was able to propagate well through the core pattern sequentially.
  • Example 4 Next, four wirings for mounting optical elements were formed on the FR-4 substrate, and an electric wiring board having four openings (250 ⁇ m pitch) with a diameter of 100 ⁇ m was prepared.
  • the non-defective product obtained in Example 1 The convex surface side of the plano-convex lens 1 through the lens sheet (unit) determined to be 50 ⁇ m thick thermosetting adhesive sheet (with the plano-convex lens portion opened), and the surface opposite to the electrical wiring for mounting the optical element Are combined so that each of the plano-convex lenses 1 and all the openings can be satisfactorily aligned, and a light receiving element having four light receiving parts (250 ⁇ m pitch) is mounted on the electric wiring for mounting the optical element.
  • the present invention it is possible to provide a method capable of simply and efficiently inspecting a lens. Therefore, it can be applied to a wide range of fields such as a microlens array, a lens sheet, an optical waveguide with a lens, an electrical wiring board with a lens, a photoelectric conversion member with a lens, an optical transmission module, an optical transmission line cable, and an optical interconnection.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

The present invention is a method for inspecting a lens sheet having a plano-convex lens formed on at least a portion thereof, said lens sheet inspection method having a step A for causing inspection light to enter the plano-convex lens, a step B for measuring at least one of the substantial image light intensity, image size, image shape, and image position β of the inspection light that has passed through the plano-convex lens at a distance α from the bottom surface of the plano-convex lens in the thickness direction of the lens sheet, and a step C for determining the quality of the plano-convex lens from the at least one of the substantial image light intensity, image size, image shape, and image position β.

Description

レンズシートの検査方法及びそれによって得られるレンズシート、レンズ付き光導波路、並びに、レンズ付き電気配線板LENS SHEET INSPECTING METHOD AND LENS SHEET OBTAINED BY THE METHOD, OPTICAL WAVEGUIDE WITH LENS, AND ELECTRIC WIRING BOARD WITH LENS
 本発明はレンズシートの検査方法及びそれによって得られるレンズシート、レンズ付き光導波路、並びに、レンズ付き電気配線板に関する。 The present invention relates to a method for inspecting a lens sheet, a lens sheet obtained thereby, an optical waveguide with a lens, and an electric wiring board with a lens.
 IC技術やLSI技術において、動作速度や集積度の向上のために、電気配線基板における電気配線の一部を光ファイバや光導波路等の光配線に置き換え、電気信号の代わりに光信号を利用することが行われている。 In IC technology and LSI technology, in order to improve operation speed and integration, a part of the electrical wiring on the electrical wiring board is replaced with optical wiring such as an optical fiber or an optical waveguide, and the optical signal is used instead of the electrical signal. Things have been done.
 例えば、特許文献1には、表面に光学素子を備えたICチップの上方に光導波路フィルムを設置し、これらICチップと光導波路フィルムとの間で光通信を行うことが開示されている。ところが、特許文献1のように光学素子のような光通信手段を備えた基板と光導波路のような光通信手段との間で光通信を行う場合、これら光通信手段同士を高精度に位置決めして実装しないと光通信することができないという問題や、集光しないと光損失(信号強度)が減少してしまう問題がある。 For example, Patent Document 1 discloses that an optical waveguide film is installed above an IC chip having an optical element on the surface, and optical communication is performed between the IC chip and the optical waveguide film. However, when optical communication is performed between a substrate provided with optical communication means such as an optical element and an optical communication means such as an optical waveguide as in Patent Document 1, these optical communication means are positioned with high accuracy. Thus, there is a problem that optical communication cannot be performed unless it is mounted, and there is a problem that optical loss (signal intensity) decreases unless light is collected.
 この問題を解決するために、基板の表面にレンズ(通常、マイクロレンズと呼ばれる。形状は通常平凸レンズ)を設けることが行われている。例えば、特許文献2には、透明基板の表面にマイクロレンズ(平凸レンズ)が設置されたレンズ付き基板が開示されている。 In order to solve this problem, a lens (usually called a microlens. The shape is usually a plano-convex lens) is provided on the surface of the substrate. For example, Patent Document 2 discloses a substrate with a lens in which a microlens (plano-convex lens) is installed on the surface of a transparent substrate.
特開2006-11210号公報JP 2006-11210 A 特開2004-361858号公報JP 2004-361858 A
 このような平凸レンズには、高い光透過性と集光性(又はコリメート性)が求められ、また、複数の平凸レンズを有する場合、上記特性のばらつきが少ないことが求められる。一般的にそれらの検査を行う場合、接触式で行う走査型測位計や、非接触式で行うレーザー測位計等が用いられることがある。
 しかしながら、マイクロレンズは、シート状に数多くの平凸レンズが形成されるため、上記のような検査方式では検査に多くの時間がかかる課題があった。
Such a plano-convex lens is required to have high light transmittance and light condensing property (or collimating property), and when it has a plurality of plano-convex lenses, it is required that there is little variation in the above characteristics. In general, when these inspections are performed, a contact type scanning positioning meter, a non-contact type laser positioning meter, or the like may be used.
However, since many plano-convex lenses are formed in the form of a sheet in the microlens, the inspection method as described above has a problem that it takes a lot of time for inspection.
 本発明は、前記課題を解決し、簡易的に効率良く、数多くのレンズが形成されたレンズシートの各レンズの検査が行える検査方法を提供することを目的とする。 An object of the present invention is to solve the above-mentioned problems and to provide an inspection method capable of inspecting each lens of a lens sheet on which a large number of lenses are formed simply and efficiently.
 本発明は、以下の発明を提供するものである。
(1)シート上の少なくとも一部にレンズが形成されたレンズシートの検査方法であって、前記レンズに検査光を入射する工程A、前記レンズの底面から前記レンズシートの厚さ方向の任意の距離αにおける前記レンズを介した検査光の実質的な結像の、光強度、大きさ、形状及び位置βから選択される少なくとも一つを測定する工程B、前記測定結果からレンズの良否を判定する工程C、を有するレンズシートの検査方法。
The present invention provides the following inventions.
(1) A method for inspecting a lens sheet in which a lens is formed on at least a part of the sheet, the step A injecting inspection light into the lens, and an arbitrary direction in the thickness direction of the lens sheet from the bottom surface of the lens Step B of measuring at least one selected from light intensity, size, shape and position β of the substantial image of the inspection light through the lens at a distance α, and determining the quality of the lens from the measurement result A method for inspecting a lens sheet, comprising the step C.
(2)前記工程Aにおいて、検査光を出力する検査光源と、前記工程Bにおいて検査光を測定する検査光受光部とが、前記レンズシートに非接触で検査を行う前記のレンズシートの検査方法。 (2) The inspection method for the lens sheet, wherein the inspection light source that outputs inspection light in the step A and the inspection light receiving unit that measures the inspection light in the step B inspects the lens sheet in a non-contact manner. .
(3)前記検査光の前記レンズの底面におけるスポット径が、前記レンズの径を内包する大きさである前記のレンズシートの検査方法。
(4)前記工程Aにおいて、検査光を入射する前に、シートの前記レンズが形成された面と反対のシート面に透明基板を設置する前記のいずれかに記載のレンズシートの検査方法。
(3) The inspection method of the lens sheet, wherein a spot diameter of the inspection light on the bottom surface of the lens is a size including the diameter of the lens.
(4) The lens sheet inspection method according to any one of the above, wherein, in the step A, before the inspection light is incident, a transparent substrate is installed on a sheet surface opposite to the surface on which the lens is formed.

(5)前記工程Aにおいて、前記検査光が、前記透明基板を介して入射される前記のレンズシートの検査方法。
(6)前記工程Aにおいて、検査光を入射する前に、前記シートのレンズが形成された面と反対のシート面の上方に反射板を設置し、前記検査光を前記レンズが形成された面側から入射し、前記工程Bにおいて、測定は、前記レンズを介して前記反射板で反射した光を測定するものである前記のいずれかに記載のレンズシートの検査方法。

(5) The said inspection method of the said lens sheet in which the said test | inspection light injects through the said transparent substrate in the said process A.
(6) In the step A, before the inspection light is incident, a reflecting plate is installed above the sheet surface opposite to the surface on which the lens of the sheet is formed, and the inspection light is formed on the surface on which the lens is formed. The method for inspecting a lens sheet according to any one of the above, wherein in the step B, the measurement is performed by measuring light reflected by the reflection plate through the lens.
(7)前記反射板が、前記シート面と平行に設置されてなる前記のレンズシートの検査方法。
(8)前記レンズシート上のレンズ以外の箇所に少なくとも2つ以上の位置認識マーカを設置し、少なくとも2つの前記位置認識マーカの位置と、前記結像の位置βとの相対位置関係を測定する工程Dをさらに有する前記のいずれかに記載のレンズシートの検査方法。
(7) The method for inspecting the lens sheet, wherein the reflecting plate is installed in parallel with the sheet surface.
(8) At least two or more position recognition markers are installed at locations other than the lens on the lens sheet, and the relative positional relationship between the positions of the at least two position recognition markers and the imaging position β is measured. The lens sheet inspection method according to any one of the above, further comprising a step D.
(9)前記位置認識マーカを、前記レンズシートの厚さ方向の任意の距離αを決める基準位置とする前記のレンズシートの検査方法。
(10)前記レンズの底面から前記レンズシートの厚さ方向の任意の距離αにおける前記レンズを介した検査光の実質的な結像の、光強度、大きさ、形状及び位置ρから選択される少なくとも一つのデータが既知のレンズRを対象として、前記の少なくとも一つのデータを測定する工程Eをさらに含み、レンズの良否を判定する工程Cが、前記工程Eと工程Bの測定データの比較から検査対象のレンズの良否を判定するものである前記のいずれかに記載のレンズシートの検査方法。
(9) The inspection method for the lens sheet, wherein the position recognition marker is a reference position for determining an arbitrary distance α in the thickness direction of the lens sheet.
(10) Selected from the light intensity, size, shape and position ρ of the substantial image of the inspection light through the lens at an arbitrary distance α in the thickness direction of the lens sheet from the bottom surface of the lens The method further includes a step E of measuring at least one data of the lens R for which at least one data is known, and the step C of determining the quality of the lens is based on the comparison of the measurement data of the step E and the step B. The method for inspecting a lens sheet according to any one of the above, wherein the quality of the lens to be inspected is determined.
(11)前記レンズの径を測定する工程Fをさらに有する前記のいずれかに記載のレンズシートの検査方法。
(12)前記工程Aにおいて、検査光を出力する検査光源と、前記工程Bにおいて前記検査光を測定する検査光受光部との位置関係が、前記シート平面方向で規定されてなる前記のいずれかに記載のレンズシートの検査方法。
(11) The inspection method for a lens sheet according to any one of the above, further including a step F of measuring the diameter of the lens.
(12) Any of the above, wherein the positional relationship between the inspection light source that outputs inspection light in the step A and the inspection light receiving unit that measures the inspection light in the step B is defined in the sheet plane direction. 2. A method for inspecting a lens sheet according to 1.
(13)前記工程A及び前記工程Bが、少なくとも検査光受光部をシート面に対して平行方向に移動して、複数のレンズに対して検査を連続的又は間欠的に繰り返し行うものである、前記のいずれかに記載のレンズシートの検査方法。
(14)前記のいずれかに記載のレンズシートの検査方法によって、検査されたレンズシート。
(13) The step A and the step B are the steps in which the inspection light receiving unit is moved in a direction parallel to the sheet surface and the inspection is repeatedly or intermittently performed on a plurality of lenses. The lens sheet inspection method according to any one of the above.
(14) A lens sheet inspected by the lens sheet inspection method according to any one of the above.
(15)前記レンズシートのレンズ光軸上の少なくとも一部が、有機化合物からなる前記のレンズシート。
(16)前記レンズシートが、フレキシブル性を有する前記のレンズシート。
(15) The lens sheet described above, wherein at least a part of the lens sheet on the lens optical axis is made of an organic compound.
(16) The lens sheet, wherein the lens sheet has flexibility.
(17)前記のいずれかに記載のレンズシートと、ミラー付き光導波路とが、複合されたレンズ付き光導波路。
(18)前記のいずれかに記載のレンズシートと、電気配線板とが、複合されたレンズ付き電気配線板。
(17) An optical waveguide with a lens in which the lens sheet according to any one of the above and an optical waveguide with a mirror are combined.
(18) An electric wiring board with a lens in which the lens sheet according to any one of the above and an electric wiring board are combined.
 本発明のレンズシートの検査方法によれば、簡易的に効率良く、数多くのレンズ(マイクロレンズ等)の検査が行える。 According to the method for inspecting a lens sheet of the present invention, it is possible to inspect a large number of lenses (such as microlenses) simply and efficiently.
本発明の検査方法に用いられるレンズシートの一例を示す断面図である。It is sectional drawing which shows an example of the lens sheet used for the test | inspection method of this invention. 本発明の検査方法に用いられるレンズシートの別の一例を示す断面図である。It is sectional drawing which shows another example of the lens sheet used for the inspection method of this invention. 本発明の検査方法の一例を示す断面図である。It is sectional drawing which shows an example of the test | inspection method of this invention. 本発明の検査方法の別の一例を示す断面図である。It is sectional drawing which shows another example of the inspection method of this invention. 本発明の検査方法における結像の一例を示す平面図である。It is a top view which shows an example of the image formation in the inspection method of this invention. 本発明の検査方法における結像の別の一例を示す平面図である。It is a top view which shows another example of the imaging in the inspection method of this invention. 本発明の検査方法における結像の別の一例を示す平面図である。It is a top view which shows another example of the imaging in the inspection method of this invention. 本発明の検査方法における結像の別の一例を示す平面図である。It is a top view which shows another example of the imaging in the inspection method of this invention. 本発明の検査方法における結像の別の一例を示す平面図である。It is a top view which shows another example of the imaging in the inspection method of this invention.
 図1に本発明の検査方法に用いられるレンズシートの一例の断面図を示す。図1において、シート4上には、レンズとして、平凸レンズ1が複数形成されている。本発明のレンズシートの検査方法は、シート上の少なくとも一部にレンズが形成されたレンズシートに適用可能な検査方法である。本発明におけるレンズは、通常、マイクロレンズと呼ばれる微小のレンズである。また、その形状は、通常、平凸レンズ1であり、平凸レンズとは、通常、シート垂直方向に集光性(又はコリメート性)を有する曲面と、曲面内側方向のもう一方の面が実質的に平坦な平坦部(底面)2を有するレンズを指す。集光性(又はコリメート性)を有していれば良い観点から、曲面レンズ、非曲面レンズ、フレネルレンズ等の検査が可能であるため、本発明においては、これらも含めて広義に平凸レンズとする。また、前記の「実質的に平坦」とは、微細に、部分的に、又は、全体的にみると非平坦であっても、実用的に対向するレンズ曲面の特性に影響のない程度の平坦性を有することを指し、例えば、実用上問題にならない範囲で凸状や凹状であっても微細な凹凸が設けられていても良い。また、実施例中に記載するような、柱状部材と該柱状部材上に形成された平凸レンズ部分を有する形状であってもよい。 FIG. 1 shows a cross-sectional view of an example of a lens sheet used in the inspection method of the present invention. In FIG. 1, a plurality of plano-convex lenses 1 are formed on a sheet 4 as lenses. The lens sheet inspection method of the present invention is an inspection method applicable to a lens sheet having a lens formed on at least a part of the sheet. The lens in the present invention is usually a minute lens called a microlens. Further, the shape is usually a plano-convex lens 1, and the plano-convex lens is usually composed of a curved surface having condensing properties (or collimating properties) in the sheet vertical direction and the other surface in the curved inner direction. A lens having a flat portion (bottom surface) 2 is indicated. Since it is possible to inspect curved lenses, non-curved lenses, Fresnel lenses, etc. from the viewpoint of having a light condensing property (or collimating property), in the present invention, including these, a plano-convex lens is broadly defined. To do. The term “substantially flat” refers to a flatness that does not affect the characteristics of the practically opposing lens curved surfaces even if it is finely, partially, or entirely non-flat. For example, it may be convex or concave as long as it does not cause a problem in practice, and fine irregularities may be provided. Moreover, the shape which has a columnar member and the plano-convex lens part formed on this columnar member as described in an Example may be sufficient.
 図3は本発明の検査方法の一例を示す断面図である。図3において、レンズシートは、シート上の少なくとも一方の面(又は面に対して上方)に1つ以上の凸部(レンズ曲面)を有するシートである。凸部(レンズ曲面)は2つ以上配置されていても良く、シートはそれらの配列を保持する部材であればよい。また、一方の面に凹部が形成され該凹部内に凸部(レンズ曲面)が形成されたレンズシート(図2に示す態様)であってもよいし、平凸レンズ等のレンズが、そのレンズよりも屈折率の低い低屈折率層で埋設されたレンズ内臓型のレンズシートでもよい。 FIG. 3 is a sectional view showing an example of the inspection method of the present invention. In FIG. 3, the lens sheet is a sheet having one or more convex portions (lens curved surface) on at least one surface (or above the surface) on the sheet. Two or more convex portions (lens curved surfaces) may be arranged, and the sheet may be any member that holds the arrangement thereof. Further, it may be a lens sheet (an embodiment shown in FIG. 2) in which a concave portion is formed on one surface and a convex portion (lens curved surface) is formed in the concave portion. Alternatively, a lens sheet with a built-in lens embedded with a low refractive index layer having a low refractive index may be used.
 本発明のレンズシートの検査方法の一例を図3に示す。
 本発明の検査方法は、平凸レンズ1に検査光10を入射する工程A、
 平凸レンズ1の底面2から前記レンズシートの厚さ方向の任意の距離αにおける前記平凸レンズ1を介した検査光10の実質的な、結像の、光強度及び/又は結像の大きさ及び/又は結像の形状及び/又は結像の位置βを測定する工程B、
 工程Bで測定した実質的な、結像の光強度及び/又は結像の大きさ及び/又は結像の形状及び/又は結像の位置βから平凸レンズ1の良否を判定する工程Cを有する。
 本発明における位置βとは、シート平面方向の結像の位置を示し、距離αの測定方向をシートに対するZ方向としたときのX,Y方向の位置を表す。
An example of the lens sheet inspection method of the present invention is shown in FIG.
The inspection method of the present invention includes a step A in which inspection light 10 is incident on the plano-convex lens 1;
The imaging intensity, the imaging intensity, and the imaging intensity of the inspection light 10 through the plano-convex lens 1 at an arbitrary distance α in the thickness direction of the lens sheet from the bottom surface 2 of the plano-convex lens 1 and Measuring the shape of the imaging and / or the position β of the imaging B,
A step C for determining the quality of the plano-convex lens 1 from the substantial light intensity and / or image size and / or image shape and / or image position β measured in step B. .
The position β in the present invention indicates the position of image formation in the sheet plane direction, and represents the position in the X and Y directions when the measurement direction of the distance α is the Z direction with respect to the sheet.
 レンズシートの厚さ方向の任意の距離αにおける前記平凸レンズ1を介した検査光10の実質的な、結像の光強度及び/又は結像の大きさ及び/又は結像の形状及び/又は結像の位置βで平凸レンズ1の良否が判定を行うことから、平凸レンズ1の透過率(結像の光強度等に依存)や、屈折率(結像の大きさ等に影響)や、曲率(結像の大きさ等に影響)や、形状(結像の大きさや形状等に影響)や、位置(結像の位置等に影響)等のばらつきにかかわらず実質的なレンズの集光又はコリメート機能で評価し、上記ばらつきが平凸レンズ1の機能に悪影響を及ぼす範囲のときに不良判定を行うことができるため、より精度の良い良否判定が可能な検査を行うことができる。 The imaging light intensity and / or the imaging size and / or the imaging shape and / or the imaging light 10 through the plano-convex lens 1 at an arbitrary distance α in the thickness direction of the lens sheet. Since the quality of the plano-convex lens 1 is determined at the image formation position β, the transmittance of the plano-convex lens 1 (depends on the light intensity of the image formation), the refractive index (influence on the size of the image formation), Substantially condensing the lens regardless of variations in curvature (influences on imaging size, etc.), shape (influences on imaging size, shape, etc.), position (influences on imaging position, etc.), etc. Alternatively, since it is possible to perform the defect determination when the evaluation is performed using the collimating function and the variation is in a range in which the function of the plano-convex lens 1 is adversely affected, it is possible to perform an inspection capable of determining the quality with higher accuracy.
 本発明における結像とは、平凸レンズを介して集光した光の像をいい、その像における最大輝度又は面積中心輝度に対して任意の割合の強度を有する像を言う。例えば、一例として、単位面積の最大輝度を100%としたときに、単位面積の50%付近の輝度を有する部分を結像とすることができる。前記任意の割合は1~99%であればよく、10~90%であると結像の輪郭を明確化できるためより良く、25~75%であればさらによい。 Image formation in the present invention refers to an image of light collected through a plano-convex lens, and refers to an image having an arbitrary ratio of intensity with respect to the maximum luminance or the area center luminance in the image. For example, as an example, when the maximum luminance of the unit area is 100%, a portion having a luminance near 50% of the unit area can be imaged. The arbitrary ratio may be 1 to 99%, and 10 to 90% is better because the contour of the image can be clarified, and more preferably 25 to 75%.
 本発明における実質的な結像の測定とは、結像の全光強度や大きさや形状や位置βを直接的に計測したものや、結像のうち任意の領域(例えば実際の使用時に用いられる受光素子の受光部径相当;円や矩形形状が好適)内に入射される光強度や大きさや形状や位置βの計測を言う。それらは用途や目的によって適宜選択される。もちろんそれらは複合して使用されてもよい。詳細は後述する。 The substantial imaging measurement in the present invention is a direct measurement of the total light intensity, size, shape, and position β of the imaging, or an arbitrary region of the imaging (for example, used in actual use). Measurement of light intensity, size, shape, and position β incident within a light receiving element diameter equivalent to a light receiving element (preferably a circle or a rectangular shape). They are appropriately selected depending on the use and purpose. Of course, they may be used in combination. Details will be described later.
 本発明の検査方法は、特に、レンズの形状(凸部)を直接測定する訳ではなく、実際にレンズに検査光を透過させて検査を行うため、レンズの透過率(シートの透過率も含む)、屈折率の変動、レンズ表面やレンズの裏面(平坦部)の異物、傷等による不良なども検出可能であるため、精度の良い良否判定が可能となる。 In particular, the inspection method of the present invention does not directly measure the shape (convex portion) of the lens, but actually inspects the lens by transmitting inspection light, so the lens transmittance (including the sheet transmittance) is also included. ), A refractive index variation, a foreign matter on the lens surface or the back surface (flat portion) of the lens, defects due to scratches, and the like can be detected, so that it is possible to make a good / bad determination with high accuracy.
 また、一連の検査工程は、検査光源及び検査光受光部が、レンズ又はレンズシート(レンズが設けられた筐体)に非接触で検査が行うことができるため、レンズを傷つける懸念や、異物の付着の懸念が低減される利点があり、また検査光受光部、さらには検査光源がシートに対して固定されないで検査が行われるため、それらをシートの面方向に相対的に移動することにより、連続してレンズ及びレンズシートの検査が行える。このため検査時間を短くすることができる利点もある。 In addition, since the inspection light source and the inspection light receiving unit can inspect the lens or the lens sheet (the housing provided with the lens) in a non-contact manner in the series of inspection processes, There is an advantage that the fear of adhesion is reduced, and the inspection light receiving unit, and further the inspection light source is inspected without being fixed to the sheet, so that by moving them relatively in the surface direction of the sheet, The lens and lens sheet can be inspected continuously. Therefore, there is an advantage that the inspection time can be shortened.
 本発明の検査方法における検査光のレンズの底面におけるスポット径は、検査が可能であれば特に限定はないが、レンズの径を内包する大きさであるとよい。これにより、レンズと検査光源とに位置ズレが発生しても、レンズに検査光を入射できるため、良好に検査が行える。位置ズレとは、レンズが設計値からずれて形成されている場合や、連続して複数のレンズを測定する際に発生する可能性のあるレンズシートのずれが発生する場合等が挙げられる。上記の観点からスポット径の大きさは、レンズの径の100%より大きく、レンズシートを内包する大きさ以下であるとよい。また、その大きさはレンズの径の150%以上、100000%以下であると、光の均一性や広がり角を制御しやすい観点から好ましく、180%以上で、20000%以下であると複数のレンズに対して一括して検査光を入射でき、検査効率を上げられるため、さらに好ましい。 In the inspection method of the present invention, the spot diameter of the inspection light on the bottom surface of the lens is not particularly limited as long as the inspection can be performed, but it is preferable that the spot diameter includes the lens diameter. Thereby, even if a positional deviation occurs between the lens and the inspection light source, the inspection light can be incident on the lens, so that the inspection can be performed satisfactorily. Examples of the positional deviation include a case where the lens is formed with a deviation from a design value, and a case where a deviation of the lens sheet that may occur when measuring a plurality of lenses continuously occurs. From the above viewpoint, the size of the spot diameter is preferably larger than 100% of the lens diameter and not larger than the size including the lens sheet. The size is preferably 150% or more and 100000% or less of the diameter of the lens from the viewpoint of easy control of light uniformity and spread angle, and is 180% or more and 20000% or less. Further, it is more preferable because inspection light can be incident on the substrate and inspection efficiency can be increased.
 また、図3に示されるように、本発明の工程Aにおいて、平凸レンズ1の凸面と反対のシート面(平坦部3)に透明基板(透明板8)を設置することが好ましい。より具体的にはシート面(平坦部3)に透明板8をあてがい、レンズシートと透明板8を接地するとよい。これにより、シート4の薄いレンズシートや、フレキシブル性を有するレンズシート等であっても、シート4のゆがみや反りを低減することができる。これにより、シートのZ方向、X方向、Y方向を規定しやすくなり、検査が容易で、良否判定がしやすくなる利点がある。また、透明板8付きのレンズシートとすることによって、厚みのあるレンズシートのように取り扱うこともできるため、ハンドリング性も向上する。上記の観点から、レンズシートよりも高弾性率な透明板8や、厚みの厚い透明板8を用いると良い。高弾性率で厚みの厚い透明板8であるとより好ましい。 In addition, as shown in FIG. 3, it is preferable to install a transparent substrate (transparent plate 8) on the sheet surface (flat portion 3) opposite to the convex surface of the plano-convex lens 1 in the step A of the present invention. More specifically, the transparent plate 8 may be applied to the sheet surface (flat portion 3), and the lens sheet and the transparent plate 8 may be grounded. Thereby, even if it is a thin lens sheet of the sheet | seat 4, a lens sheet | seat etc. which has flexibility, the distortion and curvature of the sheet | seat 4 can be reduced. As a result, there are advantages that the Z direction, X direction, and Y direction of the sheet can be easily defined, inspection is easy, and pass / fail judgment is easy. In addition, since the lens sheet with the transparent plate 8 can be handled like a thick lens sheet, handling properties are also improved. From the above viewpoint, it is preferable to use a transparent plate 8 having a higher elastic modulus than the lens sheet or a thick transparent plate 8. A transparent plate 8 having a high elastic modulus and a large thickness is more preferable.
 また、検査光10に対して透明性を有する透明板8を用いることで、検査光10を、該透明板8を介して入射することもでき、シート4のゆがみや反りを低減した状態で検査が行えるため、好ましい。上記の観点から透明板8は、検査光10に対して検査に支障の無い程度の透明性を有しているか、面内で一定の透過率を有している透明板8であることが好ましい。上記の観点から、図3に示すように、少なくとも検査光源6と、検査光受光部7とは、レンズシートに触れないように透明板8およびレンズシートを挟んでおおよそ対向するように設けられていることが好ましい。 Further, by using the transparent plate 8 having transparency with respect to the inspection light 10, the inspection light 10 can be made incident through the transparent plate 8, and inspection is performed in a state in which distortion and warping of the sheet 4 are reduced. Is preferable. From the above viewpoint, the transparent plate 8 is preferably a transparent plate 8 having a degree of transparency that does not interfere with the inspection with respect to the inspection light 10 or having a certain transmittance in the plane. . From the above viewpoint, as shown in FIG. 3, at least the inspection light source 6 and the inspection light receiving unit 7 are provided so as to be substantially opposed to each other with the transparent plate 8 and the lens sheet interposed therebetween so as not to touch the lens sheet. Preferably it is.
 また、本発明のレンズシートの検査方法の別の一例である図4に示すように、反射板9を有する場合には、反射板9に対してレンズシートと反対方向に、少なくとも検査光源6と、検査光受光部7とが、レンズシートに触れないように略同軸方向に向けられているとよい。反射板9を用いる場合には、シート4と反射板9との間に光学的な間隙を有しているとよい。これにより、平凸レンズ1以外の箇所を透過した検査光10も、反射板9によって反射された後に、平凸レンズ1に入射することができる。 Further, as shown in FIG. 4 which is another example of the method for inspecting a lens sheet of the present invention, when the reflector 9 is provided, at least the inspection light source 6 and the reflector 9 in the direction opposite to the lens sheet. The inspection light receiving unit 7 is preferably oriented in a substantially coaxial direction so as not to touch the lens sheet. When the reflection plate 9 is used, an optical gap may be provided between the sheet 4 and the reflection plate 9. As a result, the inspection light 10 transmitted through a portion other than the plano-convex lens 1 can be incident on the plano-convex lens 1 after being reflected by the reflecting plate 9.
 前記図4の例をより詳述する。本発明の工程Aにおいて、図4に示すように、平凸レンズ1と反対のシート4の面上方に反射板9を設置し、検査光10が、前記凸面側から照射されて反射板9で反射し、反射板9で反射された検査光10が、平凸レンズ1に入射されてもよい。これにより、シート4の面に対して略同一方向から検査光10の入射と、受光を行うことができる。 The example of FIG. 4 will be described in more detail. In step A of the present invention, as shown in FIG. 4, a reflecting plate 9 is installed above the surface of the sheet 4 opposite to the plano-convex lens 1, and the inspection light 10 is irradiated from the convex surface side and reflected by the reflecting plate 9. Then, the inspection light 10 reflected by the reflecting plate 9 may be incident on the plano-convex lens 1. Accordingly, the inspection light 10 can be incident and received from substantially the same direction with respect to the surface of the sheet 4.
 反射板9はシート4と平行に設置されてなるとよい。これにより、反射した検査光10を一定の角度に揃えることができるため、複数の平凸レンズ1の検査を行うときに同一の条件下で行うことができる。このため、それぞれの平凸レンズ1に対して精度のよい良否判定が可能となる。 The reflector 9 is preferably installed in parallel with the sheet 4. Thereby, since the reflected inspection light 10 can be aligned at a certain angle, it is possible to perform the inspection under the same conditions when inspecting a plurality of plano-convex lenses 1. For this reason, it is possible to determine the quality of each plano-convex lens 1 with high accuracy.
 また、レンズシートには、図1及び2に示すように、平凸レンズ1以外の箇所に少なくとも2つ以上の位置認識マーカ5を有し、少なくとも2つの位置認識マーカ5の位置と、結像の位置βとの相対位置関係を測定する工程Dを有していると良い。
 これにより、レンズの設計値からのズレを容易に測定することができる。また、位置認識マーカの位置と結像の位置βとの相対位置関係を測定することによって、集光位置がレンズの径の中心に対して偏心して集光されるような不良モードの場合にも、良否判定が可能である。例えば、図5に示すように結像110が現れる状態を良品としたとき、図8に示す結像113のような状態を指す。
Further, as shown in FIGS. 1 and 2, the lens sheet has at least two or more position recognition markers 5 at locations other than the plano-convex lens 1, and the positions of the at least two position recognition markers 5 It is good to have the process D which measures the relative positional relationship with the position (beta).
Thereby, the deviation from the design value of the lens can be easily measured. Also, in the case of a defective mode in which the condensing position is decentered with respect to the center of the lens diameter by measuring the relative positional relationship between the position of the position recognition marker and the imaging position β. A pass / fail judgment is possible. For example, when the state in which the image 110 appears as shown in FIG. 5 is regarded as a non-defective product, the state is like the image 113 shown in FIG.
 また、上記位置認識マーカ5は、レンズの底面2の代わりに、レンズシートの厚さ方向の任意の距離αの厚さ方向の基準位置とするとよい。これによって、レンズシートの厚みのばらつきが発生しても、距離αの算出が高精度に行える。上述した透明板8が十分に剛直で平坦性良くあてがえている場合には、該透明板8と水平方向に検査光源6と検査光受光部7を移動させることによって、複数の平凸レンズ1に対しても一定の距離αが確保できるが、より高精度に距離αを算出したい場合には、上記位置認識マーカ5をシート4内に複数配置し、該複数の基準位置を測定することによって面内の厚さ方向のばらつきを考慮して検査することができる。
 上記基準位置の算出は、工程Bの前段階で行うとよい。
The position recognition marker 5 may be a reference position in the thickness direction at an arbitrary distance α in the thickness direction of the lens sheet, instead of the bottom surface 2 of the lens. As a result, the distance α can be calculated with high accuracy even if the thickness of the lens sheet varies. When the above-described transparent plate 8 is sufficiently rigid and has a good flatness, the inspection light source 6 and the inspection light receiving unit 7 are moved in the horizontal direction with respect to the transparent plate 8 so that the plurality of plano-convex lenses 1 are provided. A constant distance α can be ensured, but when it is desired to calculate the distance α with higher accuracy, a plurality of the position recognition markers 5 are arranged in the sheet 4 and the plurality of reference positions are measured to measure the surface. Inspection can be performed in consideration of variations in the thickness direction.
The calculation of the reference position may be performed before the process B.
 本発明のレンズシートの検査方法では、光強度及び/又は結像の大きさ及び/又は結像の形状及び/又は結像の位置ρが既知の平凸レンズRに対して、前記平凸レンズRの底面から前記レンズシートの厚さ方向の任意の距離αにおける前記平凸レンズRを介した検査光の結像の光強度及び/又は結像の大きさ及び/又は結像の形状及び/又は結像の位置ρ(平凸レンズRの近傍に設けられた位置認識マーカRに対する位置)を測定する工程Eをさらに有するとよい。
 なお、平凸レンズRの距離αは、良否判定を行う平凸レンズの距離αと同一であっても異なっていてもよいが、異なる場合には、平凸レンズRを介した距離αにおける結像の光強度及び/又は結像の大きさ及び/又は結像の形状及び/又は結像の位置ρと、良否判定を行う平凸レンズの距離αにおける結像の光強度及び/又は結像の大きさ及び/又は結像の形状及び/又は結像の位置βとの良否を判定するに支障のない相関関係を得られていれば良い。距離αが同一である場合には、平凸レンズRと良否を判定する平凸レンズのそれぞれの結像の特性を直接比較することで良否判定ができることから、より好ましい。
In the method for inspecting a lens sheet of the present invention, the plano-convex lens R is compared with the plano-convex lens R whose light intensity and / or image size and / or image shape and / or image position ρ is known. The light intensity and / or the magnitude and / or the shape and / or the imaging of the inspection light through the plano-convex lens R at an arbitrary distance α in the thickness direction of the lens sheet from the bottom surface It is preferable to further include a step E of measuring the position ρ (position with respect to the position recognition marker R provided in the vicinity of the plano-convex lens R).
Note that the distance α of the plano-convex lens R may be the same as or different from the distance α of the plano-convex lens for determining pass / fail, but if different, the imaged light at the distance α via the plano-convex lens R is different. Intensity and / or imaging size and / or imaging shape and / or imaging position ρ, and the imaging light intensity and / or imaging size at the distance α of the plano-convex lens for determining pass / fail It is only necessary to obtain a correlation that does not hinder the determination of the quality of the imaging shape and / or the imaging position β. When the distance α is the same, it is more preferable because the pass / fail determination can be made by directly comparing the imaging characteristics of the plano-convex lens R and the plano-convex lens for determining pass / fail.
 本工程Eを有することによって、例えば、実使用条件での光源の広がり角と検査光源の広がり角の違いや、実使用条件での受光部の径と距離αにおける結像の大きさの違いや、実使用条件でのシート面から受光部までの距離と距離αの違いや、検査光源6と検査光受光部7との位置ズレ(特にシート面平行方向)がある場合にも、工程Eと工程Bとの実質的な、結像の光強度及び/又は結像及び/又は結像の形状及び/又は結像の位置ρとの差異から平凸レンズ1の良否を判定することで、精度のよい良否判定が可能となる。 By having this step E, for example, the difference between the divergence angle of the light source and the inspection light source under actual use conditions, the difference in image size at the diameter and distance α of the light receiving unit under actual use conditions, Even when there is a difference between the distance from the sheet surface to the light receiving unit under actual use conditions and the distance α, and there is a positional deviation (particularly in the sheet surface parallel direction) between the inspection light source 6 and the inspection light receiving unit 7, By determining the quality of the plano-convex lens 1 from the difference from the light intensity of the imaging and / or the imaging and / or imaging shape and / or the imaging position ρ with respect to the process B, A good / bad determination can be made.
 なお、工程Eは、工程Bの前に行っても、途中に行っても、後に行ってもよい。レンズの良否の判定は、工程E及び工程Bを行った後に行えば良い。工程Bの直後又は途中又は直後の少なくとも1回以上行うとより精度のよい良否判定が可能となるためさらによい。 The process E may be performed before, during or after the process B. The determination of the quality of the lens may be performed after performing Step E and Step B. It is further preferable to perform at least one time immediately after, during, or immediately after the process B because a more accurate pass / fail determination is possible.
 本発明のレンズシートの検査方法では、平凸レンズ1の径を測定する工程Fを有するとよい。本工程Fを有することによって平凸レンズ1に入射される検査光10の総量が適正であるかの検査を行える。本工程は、特に、平凸レンズ1の径よりも大きなスポット径で検査光10を入射する場合に用いるとよい。上記の観点から、このとき平凸レンズの径(直径)内の光強度を測定してもよい。また、工程Eにおいても同様に平凸レンズRの径又は/及び該径を透過する光強度を測定し、その結果と工程Fの測定結果から良否を判定するとよい。 The method for inspecting a lens sheet of the present invention may include a step F of measuring the diameter of the plano-convex lens 1. By including this step F, it is possible to inspect whether the total amount of the inspection light 10 incident on the plano-convex lens 1 is appropriate. This step is particularly preferably used when the inspection light 10 is incident with a spot diameter larger than the diameter of the plano-convex lens 1. From the above viewpoint, the light intensity within the diameter (diameter) of the plano-convex lens may be measured at this time. Similarly, in the process E, the diameter of the plano-convex lens R and / or the light intensity that passes through the diameter is measured, and the quality is determined from the result and the measurement result of the process F.
 本発明のレンズシートの検査方法では、検査光源6と検査光受光部7との位置関係が、シート4の平面方向で規定されているとよい。これによって、複数の平凸レンズ1の検査又は複数箇所の平凸レンズ1の検査を行う際に、検査光10を一定の角度(好ましくは平凸レンズ1に対して垂直方向)で平凸レンズ1に入射し、一定の角度(好ましくは平凸レンズ1に対して垂直方向)で検査光10を受光できるため、精度のよい検査が可能となる。また、工程Bにおける平凸レンズ1と、検査光源6及び検査光受光部7との距離と、工程Eにおける平凸レンズRと、検査光源6及び検査光受光部7との距離との関係は一定の距離で規定されているとよく、シート4の面平行方向に対しても上記検査光源6と検査光受光部7との位置関係は規定されているとよい。 In the lens sheet inspection method of the present invention, the positional relationship between the inspection light source 6 and the inspection light receiving unit 7 may be defined in the plane direction of the sheet 4. Thus, when inspecting a plurality of plano-convex lenses 1 or inspecting a plurality of plano-convex lenses 1, the inspection light 10 enters the plano-convex lens 1 at a certain angle (preferably perpendicular to the plano-convex lens 1). Since the inspection light 10 can be received at a certain angle (preferably in a direction perpendicular to the plano-convex lens 1), a highly accurate inspection can be performed. The relationship between the distance between the plano-convex lens 1 in the process B and the inspection light source 6 and the inspection light receiving unit 7 and the distance between the plano-convex lens R in the process E and the inspection light source 6 and the inspection light receiving unit 7 are constant. It is preferable that the distance is defined, and the positional relationship between the inspection light source 6 and the inspection light receiving unit 7 is also defined in the plane parallel direction of the sheet 4.
 検査光源6と検査光受光部7の位置関係は、平凸レンズ1に検査光10を入射でき、平凸レンズ1を介した検査光10を受光できれば特に問題は無いが、シート4の上下にそれぞれ検査光源6と検査光受光部7を配置する場合には、平凸レンズ1に照射されるスポット径の輝度及び検査光10の角度が検査に支障の無い範囲で一定になるようにそれぞれの位置を規定することが好ましく、測定する平凸レンズ1を用いて検査光源6と検査光受光部7の位置を規定してもよいが、より好ましくは形状が既知である平凸レンズRを用いて規定することが好ましい(測定する平凸レンズ1が好ましくない形状である可能性があるため)。 The positional relationship between the inspection light source 6 and the inspection light receiving unit 7 is not particularly problematic as long as the inspection light 10 can be incident on the plano-convex lens 1 and the inspection light 10 can be received through the plano-convex lens 1. When the light source 6 and the inspection light receiving unit 7 are disposed, the respective positions are defined so that the brightness of the spot diameter irradiated on the plano-convex lens 1 and the angle of the inspection light 10 are constant within a range that does not hinder the inspection. Preferably, the positions of the inspection light source 6 and the inspection light receiving unit 7 may be defined using the plano-convex lens 1 to be measured, but more preferably, the plano-convex lens R having a known shape may be used. Preferred (because the plano-convex lens 1 to be measured may have an unfavorable shape).
 また、検査光源6と、検査光受光部7との位置関係は、固定されていてもよい。これにより、検査途中にそれぞれの位置関係がずれることなく検査ができる。このとき検査光源6とシート4の間隔、及び、検査光受光部7とシート4との間隙を十分に確保すると、例えば平凸レンズ1の径を測定するときと、結像を測定するときにシート面に対する垂直方向の検査光源位置が異なっていても、平凸レンズ1に入射される検査光10の入射角の変動分を低減させることができる。 Further, the positional relationship between the inspection light source 6 and the inspection light receiving unit 7 may be fixed. Thereby, it can test | inspect without each positional relationship shifting | deviating in the middle of a test | inspection. At this time, if the interval between the inspection light source 6 and the sheet 4 and the gap between the inspection light receiving unit 7 and the sheet 4 are sufficiently secured, for example, when measuring the diameter of the plano-convex lens 1 and when measuring the imaging, the sheet Even if the inspection light source position in the direction perpendicular to the surface is different, the variation in the incident angle of the inspection light 10 incident on the plano-convex lens 1 can be reduced.
 本発明のレンズシートの検査方法では、工程A及び工程Bが、少なくとも検査光受光部7をシート4の面に対して平行方向に移動し、検査光10が入射されてなる複数の平凸レンズ1に対して連続的又は間欠的に繰り返し行われる。連続的とは、距離αを保持したまま複数の平凸レンズ1を順番に検査していく方法で、シート4に対して工程B時の距離αを保持したまま検査をしていく方法であり、間欠的にとは、位置認識マーカ5を認識して、該位置認識マーカ5ごとに距離αを算出して1つ又は複数の平凸レンズ1を検査していく方法で、シート4に対して垂直方向の移動を伴う検査のことを指す。検査効率の観点から連続的に行うことが好ましい。いずれの方法であっても、各平凸レンズ1に対してそれぞれの距離αが確保された状態で工程Bが行われることよい。 In the lens sheet inspection method of the present invention, the plurality of plano-convex lenses 1 in which the process A and the process B move at least the inspection light receiving unit 7 in the direction parallel to the surface of the sheet 4 and the inspection light 10 is incident thereon. Is repeated continuously or intermittently. Continuous is a method in which a plurality of plano-convex lenses 1 are inspected in order while maintaining the distance α, and a method in which the sheet 4 is inspected while maintaining the distance α during step B. Intermittently means a method in which the position recognition marker 5 is recognized, a distance α is calculated for each position recognition marker 5 and one or a plurality of plano-convex lenses 1 are inspected. Refers to inspection with movement of direction. It is preferable to carry out continuously from the viewpoint of inspection efficiency. Whichever method is used, the process B may be performed in a state in which the distance α is secured for each plano-convex lens 1.
 本検査方法によって、レンズとしての機能が確保された良品のレンズシートを得ることができる。特にレンズが複数配列されたレンズアレイシートであると、それぞれのレンズに対するレンズとしての機能が確保されているため好ましい。 This inspection method can provide a good lens sheet with a function as a lens. In particular, a lens array sheet in which a plurality of lenses are arranged is preferable because a function as a lens for each lens is secured.
 また、レンズの光軸上(シートに対して垂直方向)の少なくとも一部が、製造プロセスにおいて加熱や変形が伴いやすい有機化合物からなるレンズシートの場合、透過率や屈折率等のばらつきが起こる可能性があるため、それらを考慮した検査が可能な本発明の検査方法は特に有用であり、本発明の検査方法によって検査されたレンズシートはレンズとしての機能が確認されているため、問題なく使用できる。 In addition, in the case where a lens sheet is made of an organic compound that is likely to be heated or deformed during the manufacturing process, at least part of the lens on the optical axis (perpendicular to the sheet), variations in transmittance, refractive index, etc. may occur. Therefore, the inspection method of the present invention that can be inspected in consideration of them is particularly useful, and the lens sheet inspected by the inspection method of the present invention has been confirmed to function as a lens, so it can be used without any problem. it can.
 具体的には、凹版や射出成形でレンズを形成する場合、熱の加わり方、トータル熱量のばらつき、分子レベルでの架橋度合いやその様式のばらつき、レンズシートに加わる圧力のばらつき等により、有機化合物の密度に疎密が発生する場合がある。密度の疎密は透過率や屈折率のばらつきになりやすい。また、レンズ形成用のレジストパターンを形成した後に該レジストパターンを熱リフローにてレンズ化するような場合にも、上記と同様に、熱の加わり方、トータル熱量のばらつき、分子レベルでの架橋度合いや様式のばらつき等により密度の疎密が発生する場合や、熱リフロー時の流動性や表面張力のばらつき等による形状のばらつきも考えられる。また、レジストパターンを形成する際に現像液を用いるような場合には、現像液の影響も考えられる。 Specifically, when a lens is formed by intaglio or injection molding, the organic compound depends on how heat is applied, variation in total calorie, degree of crosslinking at the molecular level, variation in its style, variation in pressure applied to the lens sheet, etc. Density may occur in the density. Density of density tends to cause variations in transmittance and refractive index. In addition, when a resist pattern for lens formation is formed into a lens by thermal reflow, as in the above, how to apply heat, variation in total heat, degree of crosslinking at the molecular level It is also possible that the density is uneven due to variations in the pattern and the like, or variations in shape due to variations in fluidity and surface tension during thermal reflow. In addition, when a developer is used when forming a resist pattern, the influence of the developer may be considered.
 レンズシートに用いられる有機化合物の例としては、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル、ポリエチレン、ポリプロピレン等のポリオレフィン、ポリアミド、ポリカーボネート、ポリフェニレンエーテル、ポリエーテルサルファイド、ポリアリレート、液晶ポリマー、ポリスルホン、ポリエーテルスルホン、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリアミドイミド、ポリイミド、アクリル樹脂、エポキシ樹脂、フェノール樹脂などやこれらの硬化物が挙げられる。 Examples of organic compounds used in the lens sheet include polyethylene terephthalate, polybutylene terephthalate, polyester such as polyethylene naphthalate, polyolefin such as polyethylene and polypropylene, polyamide, polycarbonate, polyphenylene ether, polyether sulfide, polyarylate, liquid crystal polymer, Examples include polysulfone, polyethersulfone, polyetheretherketone, polyetherimide, polyamideimide, polyimide, acrylic resin, epoxy resin, phenol resin, and cured products thereof.
 また、反りや変形に伴いやすいフレキシブル性を有するレンズシートとの場合にも、本検査方法によればそれらを矯正または考慮して検査が可能であるため、それらのレンズシートの検査方法としても有用であり、本発明の検査方法によって検査されたレンズシートはレンズとしての機能が確認されているため、問題なく使用できる。 Also, in the case of lens sheets having flexibility that easily accompany warpage and deformation, this inspection method can be inspected by correcting or taking them into account, so it is also useful as an inspection method for those lens sheets. Since the lens sheet inspected by the inspection method of the present invention has been confirmed to function as a lens, it can be used without any problem.
 上述したようなレンズシートは、ミラー付き光導波路と複合されたレンズ付き光導波路とすることができる。光導波路は、光が伝搬するコアパターンと、コアパターンを覆うクラッド層からなるとよい。また、光路変換ミラーは該コアパターンの光軸上に設けられてなるとよい。特に、光路変換ミラーの上方にレンズ(レンズシート)を配置すると、光導波路を伝搬する光が、光路変換ミラー、レンズを経由することで確実に集光又はコリメートできる。さらに、複数のコアパターン及び光路変換ミラーが、一定の間隔で配置されている多芯のミラー付き光導波路と本発明で得られるレンズシートを複合すると、それぞれの光路変換ミラーとそれぞれのレンズとの位置関係も確認できているため、一括して複合することで、いずれの光路変換ミラーに対してもレンズを位置合わせすることがで、良好な特性が得られる。 The lens sheet as described above can be an optical waveguide with a lens combined with an optical waveguide with a mirror. The optical waveguide is preferably composed of a core pattern through which light propagates and a cladding layer covering the core pattern. The optical path conversion mirror may be provided on the optical axis of the core pattern. In particular, when a lens (lens sheet) is disposed above the optical path conversion mirror, light propagating through the optical waveguide can be reliably condensed or collimated through the optical path conversion mirror and the lens. Furthermore, when a plurality of core patterns and optical path conversion mirrors are combined with multi-core mirrored optical waveguides arranged at regular intervals and the lens sheet obtained in the present invention, each optical path conversion mirror and each lens Since the positional relationship is also confirmed, it is possible to align the lens with respect to any of the optical path conversion mirrors by combining them in a lump, and good characteristics can be obtained.
 上述したようなレンズシートは、電気配線板と複合されたレンズ付き電気配線板とすることができる。電気配線板は、特に受光素子や発光素子が搭載される光素子実装用の電気配線板であるとよく、絶縁性の基板上にそれら素子の搭載用電気配線が形成されているとよい。光素子の受光又は発光面を絶縁基板方向に向け、光素子と反対の絶縁基板上に本発明の検査方法によって得られるレンズシートを配置すると、レンズを介して良好に光を受信又は送信することができる。このとき受発光面とレンズの間の絶縁樹脂は透明性を有しているか開口部を有しているとよい。 The lens sheet as described above can be an electric wiring board with a lens combined with an electric wiring board. The electric wiring board is particularly preferably an electric wiring board for mounting an optical element on which a light receiving element or a light emitting element is mounted, and the electric wiring for mounting these elements is preferably formed on an insulating substrate. When the lens sheet obtained by the inspection method of the present invention is arranged on the insulating substrate opposite to the optical element with the light receiving or emitting surface of the optical element facing the insulating substrate, the light is received or transmitted well through the lens. Can do. At this time, the insulating resin between the light emitting / receiving surface and the lens is preferably transparent or has an opening.
 さらに、複数の受光又は/及び発光素子が、一定の間隔で配置及び実装されている電気配線板と、本発明で得られるレンズシートを複合すると、それぞれの受光又は/及び発光部とそれぞれのレンズとの位置関係も確認できているため、一括して複合することで、いずれの受光又は/及び発光部に対してもレンズを位置合わせすることができ、良好な特性が得られる。
 以下に、本発明のレンズシートの検査方法について工程毎に詳細に説明する。
Furthermore, when an electric wiring board in which a plurality of light receiving and / or light emitting elements are arranged and mounted at a predetermined interval and a lens sheet obtained by the present invention are combined, each light receiving or / and light emitting part and each lens are combined. Since the positional relationship is also confirmed, the lens can be aligned with respect to any light receiving and / or light emitting portion by combining them together, and good characteristics can be obtained.
Below, the inspection method of the lens sheet of this invention is demonstrated in detail for every process.
(工程A)
 本発明のレンズシートの検査方法は、工程Aとしてレンズ(図3における平凸レンズ1。以下図3に沿って説明する。)に検査光10を入射する工程Aを有する。工程Aにおいて、平凸レンズ1への検査光10の入射方向は、凸部側(平坦部3と反対側)からでも平坦部3側からでもどちらでもよい。
(Process A)
The method for inspecting a lens sheet of the present invention includes a step A in which an inspection light 10 is incident on a lens (a plano-convex lens 1 in FIG. In step A, the incident direction of the inspection light 10 on the plano-convex lens 1 may be from either the convex side (the side opposite to the flat part 3) or the flat part 3 side.
 検査光10は、赤外光、可視光、紫外光、それらの単一又は複数の波長からなる光であって、検査光受光部7で受光可能な波長であればよく、実際の使用状況における平凸レンズ1を透過する光の波長を用いると、屈折率の波長依存性を考慮した検査が行えるためより好ましい。 The inspection light 10 may be infrared light, visible light, ultraviolet light, or light having a single wavelength or a plurality of wavelengths as long as it can be received by the inspection light receiving unit 7. It is more preferable to use the wavelength of light that passes through the plano-convex lens 1 because an inspection can be performed in consideration of the wavelength dependence of the refractive index.
 複数の平凸レンズ1に対して検査を行う場合や、後述する平凸レンズRへ検査光10を入射する場合には、各々の平凸レンズ1(又は平凸レンズR)への検査光10の入力角度は、ほぼ一定に保つとよい。これにより結像の光強度や大きさや形状や位置βが、良か不良かを判定しやすくなる(又は平凸レンズRの結像との比較がしやすくなる)。 When inspection is performed on a plurality of plano-convex lenses 1 or when inspection light 10 is incident on a plano-convex lens R described later, the input angle of the inspection light 10 to each plano-convex lens 1 (or plano-convex lens R) is It is good to keep it almost constant. This makes it easy to determine whether the light intensity, size, shape, and position β of the image formation are good or bad (or easy comparison with the image formation of the plano-convex lens R).
 平凸レンズ1(又は平凸レンズR)へ入射される検査光10の広がり角は、良否の判定に影響がない範囲であって、それらの平凸レンズ1で集光又はコリメート(レンズとしての機能)が確認できる範囲の広がり角であれば良い。これは本発明の検査方法は、平凸レンズ1によって集光された光の集光度合いの比較によって良否判定が可能であるため、上記を満たす範囲の広がり角を有する検査光10であれば検査ができる。また、実使用状態ではコリメート化するための平凸レンズ1であっても集光可能な検査光10を用いて検査することができる。任意の広がり角を有する入射光を用いて、平凸レンズを解することによってコリメート化された結像で良否の判定を行っても良い。具体的には広がり角(半角)が0°超~75°であるとよく、集光性の観点から0°超~45°であるとよりよく、複数の平凸レンズ1に一括して入射可能な観点から、5°~40°であるとさらによく、均一な強度のスポット径が得られやすい観点から5°~30°であると最もよい。平凸レンズRや平凸レンズ1に入射される光は、上記の角度の範囲でさらに均一な角度分布を有しているとさらに良い。 The spread angle of the inspection light 10 incident on the plano-convex lens 1 (or the plano-convex lens R) is in a range that does not affect the quality determination, and the plano-convex lens 1 collects light or collimates (functions as a lens). Any spread angle within the range that can be confirmed is acceptable. This is because the inspection method of the present invention can determine whether the light collected by the plano-convex lens 1 is good or bad, so that the inspection light 10 having a divergence angle in a range satisfying the above can be inspected. it can. Further, even in the actual use state, even the plano-convex lens 1 for collimation can be inspected using the condensing inspection light 10. Pass / fail judgment may be made by collimated imaging by solving a plano-convex lens using incident light having an arbitrary divergence angle. Specifically, the divergence angle (half angle) is preferably greater than 0 ° to 75 °, and more preferably greater than 0 ° to 45 ° from the viewpoint of light collection. From a viewpoint, it is more preferable that the angle is 5 ° to 40 °, and it is most preferable that the angle is 5 ° to 30 ° from the viewpoint of easily obtaining a spot diameter having a uniform intensity. The light incident on the plano-convex lens R or the plano-convex lens 1 may further have a more uniform angular distribution within the above-mentioned angle range.
(工程B)
 本発明のレンズシートの検査方法は、工程Bとしてレンズ(平凸レンズ1)の底面2からレンズシートの厚さ方向の任意の距離αにおける該平凸レンズ1を介した検査光10の実質的な、結像の光強度及び/又は結像の大きさ及び/又は結像の形状及び/又は結像の位置βを測定する。結像を得る方法としては、例えば距離αの箇所に投影板を配置したり、カメラモジュール等を用いて距離αに焦点をあわせて結像を画像として取得したりすることによってできる。投影板やカメラモジュールを用いると、光強度や大きさや位形状や位置を画像情報等として得られるため好ましい。位置認識マーカ5と結像との位置関係を取得しやすい観点から、さらにカメラモジュールを用いることが最もよい。
(Process B)
In the method for inspecting a lens sheet of the present invention, as the process B, the inspection light 10 is substantially transmitted through the plano-convex lens 1 at an arbitrary distance α in the thickness direction of the lens sheet from the bottom surface 2 of the lens (plano-convex lens 1). The light intensity of the image and / or the size of the image and / or the shape of the image and / or the position β of the image are measured. As a method of obtaining the image, for example, a projection plate is disposed at a position of the distance α, or the image is obtained as an image by focusing on the distance α using a camera module or the like. Use of a projection plate or a camera module is preferable because the light intensity, size, position, and position can be obtained as image information. From the viewpoint of easily obtaining the positional relationship between the position recognition marker 5 and imaging, it is best to use a camera module.
 任意の距離αとは、平凸レンズ1を介した検査光10の角度が変化しているのを確認できる距離又は変化していく過程を確認できる距離であれば良く、集光されていく過程、集光された箇所、集光された後に発散していく過程、又はコリメート化されていることが確認できる箇所、のいずれかの距離であると良い。同一焦点距離の平凸レンズ1の場合には、それぞれの平凸レンズ1に対して良否の判定に支障が出ない範囲で距離αが同一になるように設定するとよく、異なる焦点距離の平凸レンズ1を有する場合には、それぞれに対して距離αを設定しても良い。 The arbitrary distance α may be a distance at which the angle of the inspection light 10 through the plano-convex lens 1 can be confirmed or a distance at which the changing process can be confirmed. The distance may be any of the collected spot, the process of diverging after being collected, or the spot where collimation can be confirmed. In the case of the plano-convex lens 1 having the same focal length, it is preferable to set the distance α to be the same within a range that does not hinder the pass / fail judgment for each plano-convex lens 1. If so, the distance α may be set for each.
 また、距離αは、1つの平凸レンズ1に対して1つ以上設定すれば良く、2つ以上の距離αを設定してもよい。2つ以上の距離αをそれぞれ設定し、それらの結像の光強度や、大きさや、形状や、位置βを測定することによって、より高精度に平凸レンズ1の検査が可能となる。 Further, one or more distances α may be set for one plano-convex lens 1, and two or more distances α may be set. By setting two or more distances α and measuring the light intensity, size, shape, and position β of the image, the plano-convex lens 1 can be inspected with higher accuracy.
 カメラモジュールを用いる場合には、距離αの起点となるレンズの底面2等に焦点を合わせ、基準位置を把握した後に、距離α分、検査光の光軸に対して反対方向にカメラモジュールの位置や焦点位置を移動させ、デフォーカスすることによって距離αにおける結像の画像情報を取得することができる。 When using a camera module, after focusing on the bottom surface 2 of the lens that is the starting point of the distance α and grasping the reference position, the position of the camera module in the opposite direction to the optical axis of the inspection light by the distance α The image information of the image at the distance α can be acquired by moving the focus position and defocusing.
(工程C)
 本発明のレンズシートの検査方法は、工程Cとして、実質的な、結像の光強度及び/又は結像の大きさ及び/又は結像の形状及び/又は結像の位置βから平凸レンズの良否を判定する。
(Process C)
In the method for inspecting a lens sheet of the present invention, as the process C, the optical intensity of the image and / or the size of the image and / or the shape of the image and / or the position β of the image is measured from the plano-convex lens. Judge the quality.
 例えば、平凸レンズ1の所定の透過率よりも低下した不良品の平凸レンズが存在する場合(例えば図7に示すような強度の低い結像112を有する場合(良品は図5とする))、該不良品の平凸レンズを介した結像の光強度は、他の良品である平凸レンズ1の結像の光強度よりも小さくなる。これにより該不良品の平凸レンズが不良であると判断できる。平凸レンズRの結像の光強度と、測定する平凸レンズ1の結像の光強度を比較すると、より正確に良否の判定が可能となるため好ましい。光強度は全光量でも最大強度でも光分布及びその分布形状でもよく、使用用途等によって適宜決定される。 For example, when there is a defective plano-convex lens that is lower than the predetermined transmittance of the plano-convex lens 1 (for example, when it has an image 112 with low intensity as shown in FIG. 7 (non-defective product is shown in FIG. 5)), The light intensity of image formation through the defective plano-convex lens is smaller than the light intensity of image formation of the other non-defective plano-convex lens 1. Thereby, it can be determined that the defective plano-convex lens is defective. Comparing the light intensity of the image formed by the plano-convex lens R and the light intensity of the image formed by the plano-convex lens 1 to be measured is preferable because it is possible to determine the quality more accurately. The light intensity may be the total light amount, the maximum intensity, the light distribution and its distribution shape, and is appropriately determined depending on the intended use.
 別の例としては、平凸レンズの所定の曲率よりも大きく(又は小さく)なった不良品の平凸レンズが存在し、検査光が最も集光する高さよりも距離αがレンズシート側である場合、結像の大きさが小さく(又は大きく)なる(例えば図6に示すような結像の大きさが大きくなる結像111を有する場合(良品は図5とする))。これにより該不良品の平凸レンズが不良であると判断できる。平凸レンズRの結像の大きさと、測定する平凸レンズの結像の大きさを比較すると、より正確に良否の判定が可能となるため好ましい。 As another example, when there is a defective plano-convex lens that is larger (or smaller) than a predetermined curvature of the plano-convex lens, and the distance α is closer to the lens sheet side than the height at which the inspection light is most condensed, The size of the image formation becomes small (or large) (for example, when the image formation 111 has a large image formation size as shown in FIG. 6 (non-defective product is shown in FIG. 5)). Thereby, it can be determined that the defective plano-convex lens is defective. It is preferable to compare the image formation size of the plano-convex lens R with the image formation size of the plano-convex lens to be measured because it is possible to determine the quality more accurately.
 また、別の例としては、平凸レンズの光軸上に異物や傷等がある不良品の平凸レンズが存在する場合、該不良品の平凸レンズを介した結像の形状は、異物や傷の影が投影されたいびつな形状となる。これにより該不良品の平凸レンズが不良であると判断できる(例えば図9に示すような結像の形状が異なる結像114を有する場合(良品は図5とする))。平凸レンズRの結像の形状と、測定する平凸レンズ1の結像の形状を比較すると、より正確に良否の判定が可能となるため好ましい。 As another example, when there is a defective plano-convex lens having foreign matter or scratches on the optical axis of the plano-convex lens, the shape of the image formed through the defective plano-convex lens is such as The shadow is projected in a distorted shape. Thereby, it can be determined that the defective plano-convex lens is defective (for example, when it has an image 114 having a different image shape as shown in FIG. 9 (the non-defective product is shown in FIG. 5)). It is preferable to compare the shape of the image of the plano-convex lens R with the shape of the image of the plano-convex lens 1 to be measured because it is possible to determine the quality more accurately.
 また、別の例としては、平凸レンズ1が所定の位置からレンズシート平面方向のいずれかにずれている場合や、平凸レンズ1の径の中心と、最も凸の部位がずれているような断面形状がいびつな平凸レンズ1のような不良品が存在する場合、結像の位置β(シート4の面平行方向の結像位置)が所定の位置とは異なる(例えば図8に示すような結像の位置が所定の位置とは異なる結像113を有する場合(良品は図5とする))。これにより該不良品の平凸レンズが不良であると判断できる。結像の位置は、例えば、良品であるレンズ(又はレンズR)の結像の中心点と結像113の中心と判断できる点との比較から、その位置βの良否を判断することもできる。 As another example, a cross section in which the plano-convex lens 1 is shifted from a predetermined position in any one of the lens sheet plane directions, or the center of the diameter of the plano-convex lens 1 is shifted from the most convex portion. When there is a defective product such as a plano-convex lens 1 having an irregular shape, the image formation position β (image formation position in the plane parallel direction of the sheet 4) is different from a predetermined position (for example, as shown in FIG. 8). When the image has an image 113 different from the predetermined position (the non-defective product is shown in FIG. 5)). Thereby, it can be determined that the defective plano-convex lens is defective. As for the image formation position, for example, the quality of the position β can also be determined by comparing the image formation center point of a non-defective lens (or lens R) with the point that can be determined as the center of the image formation 113.
 平凸レンズRの結像の形状と、測定する平凸レンズ1の結像の形状を比較すると、より正確に良否の判定が可能となるため好ましい。特に、検査光源の角度設定が良好に行えず、検査光10の平均入射角がレンズシートの法線方向に対して傾斜している場合であると、平凸レンズ1の径の中心と結像の中心とがずれることがあるが、同一セットアップ(検査光源の角度設定)で検査対象とする平凸レンズ1と平凸レンズRとの結像の位置を比較することによって、正確に良否の判定が行える。 It is preferable to compare the shape of the image formed by the plano-convex lens R with the shape of the image formed by the plano-convex lens 1 to be measured because it is possible to determine the quality more accurately. In particular, when the angle of the inspection light source cannot be set satisfactorily and the average incident angle of the inspection light 10 is tilted with respect to the normal direction of the lens sheet, the center of the diameter of the plano-convex lens 1 and the image are formed. Although the center may deviate, the quality can be accurately judged by comparing the imaging positions of the plano-convex lens 1 and the plano-convex lens R to be inspected with the same setup (setting of the inspection light source angle).
 また、上述した結像の光強度や大きさや形状や位置βを判断する別の方法例として、結像のうち、所定の範囲内に入射される光強度を測定する方法がある。この場合、結像の大きさや形状や位置βが不良であると、該所定の範囲から結像が外れてくる。これにより所定の範囲内に入射される光強度が低下して不良と判定することができる。換言すると、結像の大きさや形状や位置βを間接的に光強度に変換して良否の判定が行われることとなる。この場合も実質的に、結像の光強度又は/及び結像の大きさ又は/及び結像の形状又は/及び結像の位置βによって良否の判定が行われているということができる。 As another example of determining the light intensity, size, shape, and position β of the above-described image formation, there is a method of measuring the light intensity incident within a predetermined range in the image formation. In this case, if the size, shape, or position β of the image formation is defective, the image formation deviates from the predetermined range. As a result, the intensity of light incident within a predetermined range is reduced, and it can be determined that the light is defective. In other words, pass / fail judgment is performed by indirectly converting the magnitude, shape, and position β of the image to light intensity. Also in this case, it can be said that the pass / fail judgment is substantially performed by the light intensity of the image formation and / or the size of the image formation or / and the shape of the image formation or / and the position β of the image formation.
 上述の所定の範囲は、適宜選択すればよく、例えば実際に使用されるときの受光素子の受光部の形状と相関のある形状とすればよい。円や楕円や矩形等の一定の形状及び面積を持つ範囲であるとよい。また、このようにすると、指定範囲内で結像の大きさや形状や位置が微視的にずれていてもレンズとしての機能(実際には使用可能)が確認でき、該範囲内では良品とみなすことができる。また、所定の範囲の位置は、さらに位置認識マーカ5から算出された理論的な結像位置であるとよい。
 上記の所定の範囲による検査を行う場合には、カメラモジュールによって結像の情報を取得し、各種画像処理によって所定範囲内の輝度等を測定することによってできる。
The predetermined range described above may be selected as appropriate, for example, a shape having a correlation with the shape of the light receiving portion of the light receiving element when actually used. It may be a range having a certain shape and area such as a circle, an ellipse, and a rectangle. In this way, even if the image size, shape, and position are microscopically deviated within the specified range, the function as a lens (actually usable) can be confirmed. be able to. Further, the position in the predetermined range may be a theoretical imaging position calculated from the position recognition marker 5.
In the case of performing the inspection in the predetermined range, it is possible to acquire image formation information by the camera module and measure the luminance within the predetermined range by various image processing.
(工程D)
 本発明のレンズシートの検査方法では、工程Dとしてレンズシート上のレンズ(平凸レンズ1)以外の箇所に少なくとも2つ以上の位置認識マーカ5を有し、少なくとも2つの前記位置認識マーカ5と、結像の位置βとの相対位置を測定する工程Dをさらに有するとよい。
(Process D)
In the method for inspecting a lens sheet of the present invention, as step D, the lens sheet has at least two position recognition markers 5 at a place other than the lens (plano-convex lens 1), and at least two of the position recognition markers 5; It is preferable to further include a step D of measuring a relative position with respect to the imaging position β.
 位置認識マーカ5は、少なくとも1枚のレンズシートに2つ、1つの平凸レンズにつき2つ以上設けられていてもよい。例えば12個の平凸レンズが1ユニット(製品単位)であって、複数のユニットが配置されたレンズシートである場合には、1ユニットに付き2つ以上の位置認識マーカ5が設けられていると、この位置認識マーカ5をミラー付き光導波路や電気配線板と複合する際の位置認識マーカ5として使用できるため好ましい。 Two position recognition markers 5 may be provided for at least one lens sheet, and two or more for each plano-convex lens. For example, when twelve plano-convex lenses are one unit (product unit) and the lens sheet includes a plurality of units, two or more position recognition markers 5 are provided per unit. This position recognition marker 5 is preferable because it can be used as the position recognition marker 5 when combined with an optical waveguide with a mirror or an electric wiring board.
 2つ以上位置認識マーカ5を有することによって、平凸レンズ1の面内の角度ずれも計測できる。
 位置認識マーカ5は、平凸レンズ1以外の箇所に設けられていることが好ましく、その形状は、視認できる形状であれば問題はないが、レンズシートの表面に形成された凸部又は凹部であるとよい。さらに円柱、多角柱、円錐、多角推、それらの複合形状のように視認しやすいシート平面に対して一定高さの角を有しているとよい。
By having two or more position recognition markers 5, the in-plane angular deviation of the plano-convex lens 1 can also be measured.
The position recognition marker 5 is preferably provided at a location other than the plano-convex lens 1, and there is no problem as long as the shape is visible, but it is a convex portion or a concave portion formed on the surface of the lens sheet. Good. Furthermore, it is good to have a fixed height angle | corner with respect to the sheet | seat plane which is easy to visually recognize like a cylinder, a polygonal column, a cone, polygonal guess, and those composite shape.
(工程E)
 本発明の検査方法では、工程Eとして結像の光強度及び/又は結像の大きさ及び/又は結像の形状及び/又は結像の位置ρが既知の平凸レンズRに対して、前記平凸レンズRの底面から前記レンズシートの厚さ方向の任意の距離αにおける前記平凸レンズRを介した検査光の結像の光強度及び/又は結像の大きさ及び/又は結像の形状及び/又は結像の位置ρを測定するとよい。
(Process E)
In the inspection method of the present invention, as the process E, the plano-convex lens R whose imaging light intensity and / or imaging size and / or imaging shape and / or imaging position ρ is known is described above. The light intensity and / or the size and / or the shape of the imaging of the inspection light through the plano-convex lens R at an arbitrary distance α in the thickness direction of the lens sheet from the bottom surface of the convex lens R and / or Alternatively, the imaging position ρ may be measured.
 この時の平凸レンズRは、基準となる平凸レンズであり、良品でも不良品でも構わなく、測定サンプルである平凸レンズの良否を判定する閾値を決定するための基準であればよいが、良品であるとより好ましい。平凸レンズRを結像の光強度及び/又は結像の大きさ及び/又は結像の形状及び/又は結像の位置ρが既知であるため、例えば検査光源6からの検査光10の出力が低下(又は上昇)している場合や、検査光源6と検査光受光部7の位置が面平行方向にずれてセットされていること等を把握することができるため、上記を考慮することができ、測定サンプルの良否判定を正確に行える。結像の位置ρは、隣接する結像との相関位置でもよく、平凸レンズRが設けられたレンズシートに配置された位置認識マーカを基準とした位置であるとよい。これにより、例えば、画像処理を用いて測定サンプルにおける位置認識マーカ5とその結像位置を測定する際に、該処理上で誤差(例えば校正ずれ等)が発生しても、結像の位置ρを測定することによって、該誤差をキャンセルアウトし、精度の良い良否判定を行うことができる。 The plano-convex lens R at this time is a standard plano-convex lens, which may be a non-defective product or a defective product, and may be a standard for determining a threshold value for determining the quality of a plano-convex lens as a measurement sample. More preferably. Since the light intensity of the imaging and / or the imaging size and / or the imaging shape and / or the imaging position ρ of the plano-convex lens R are known, for example, the output of the inspection light 10 from the inspection light source 6 is The above can be taken into account when it is lowered (or raised), or because it is possible to grasp that the positions of the inspection light source 6 and the inspection light receiving unit 7 are shifted in the plane parallel direction, etc. The quality of the measurement sample can be accurately determined. The image formation position ρ may be a correlation position with adjacent image formation, or a position based on a position recognition marker arranged on a lens sheet provided with the plano-convex lens R. Thereby, for example, when the position recognition marker 5 in the measurement sample and its imaging position are measured using image processing, even if an error (for example, calibration deviation) occurs in the processing, the imaging position ρ By measuring the error, it is possible to cancel out the error and perform a quality determination with high accuracy.
(工程Cの別態様)
 本発明の検査方法では、工程Cとして、前記工程Eと工程Bとの実質的な、結像の光強度及び/又は結像の大きさ及び/又は結像の形状及び/又は結像の位置ρとの差異からレンズの良否を判定するとよい。
 工程Eから算出された結像の光強度の閾値や、結像の大きさの上下限、結像の形状、結像の位置ρとのずれ量の上下限を比較することで測定するレンズの正確な良否の判定を行うことができる。
(Another aspect of step C)
In the inspection method of the present invention, as the step C, the light intensity and / or the image size and / or the image shape and / or the image position of the image formed by the steps E and B substantially. The quality of the lens may be determined from the difference from ρ.
The lens of the lens to be measured is compared by comparing the threshold value of the imaging light intensity calculated from step E, the upper and lower limits of the imaging size, the imaging shape, and the upper and lower limits of the deviation amount from the imaging position ρ. Accurate quality determination can be made.
(工程F)
 本発明の検査方法では、工程Fとしてレンズ(平凸レンズ1)の径を測定するとさらによい。平凸レンズ1の径を測定することによって、規格値よりも大きい径の平凸レンズ1や小さい径の平凸レンズ1を不良と判定することができる。平凸レンズRとの比較を行うとより精度の高い良否判定が行えるためさらに良い。
(Process F)
In the inspection method of the present invention, it is better to measure the diameter of the lens (plano-convex lens 1) as step F. By measuring the diameter of the plano-convex lens 1, it is possible to determine that the plano-convex lens 1 having a diameter larger than the standard value or the plano-convex lens 1 having a smaller diameter is defective. A comparison with the plano-convex lens R is better because a more accurate pass / fail judgment can be made.
 次に、本発明の検査方法に用いられる各部材について詳細に説明する。 Next, each member used in the inspection method of the present invention will be described in detail.
 検査光源はレンズに入射される検査光を出力する部位であり、LED(Light Emitting Device)や、レーザー、ハロゲンランプ等を用いることができ、それらからの光を光ファイバや光導波路やライトパイプ等を介して検査に支障の無い程度の均一な角度や、面積で照射されるものであればよい。上記を達成するために適宜レンズやミラー等の光学系を具備していても良い。 The inspection light source is a part that outputs inspection light that is incident on the lens. An LED (Light Emitting Device), a laser, a halogen lamp, or the like can be used, and the light from the optical fiber, optical waveguide, light pipe, etc. As long as the light is irradiated at a uniform angle or area that does not hinder the inspection through the slab. In order to achieve the above, an optical system such as a lens or a mirror may be provided as appropriate.
 検査光源からレンズに入射される検査光10は、レンズ(平凸レンズ1)を透過し得る光の波長であれば特に限定はないが、取り扱い性の観点から赤外光、可視光、紫外光が好適であり、それらの単一波長でも、複数の波長でもよい。実際の使用時に平凸レンズ1を透過させる光の波長であると、平凸レンズ1の材料依存の透過損失も加味できるためより好ましい。特に波長によって透過率が変化する材料である場合は実際の使用時に平凸レンズ1を透過させる光の波長であるとよい。上記の材料の例としては、有機材料が光軸上の少なくとも一部に有する平凸レンズ及びそのシートが挙げられる。
 また、平凸レンズ1に照射される光のスポット径や広がり角度が、スポット部分の光分布をできるだけ均一になるように、光源の数、光量、位置は適宜調整されるとよい。
The inspection light 10 incident on the lens from the inspection light source is not particularly limited as long as it is a wavelength of light that can be transmitted through the lens (plano-convex lens 1), but from the viewpoint of handling, infrared light, visible light, and ultraviolet light are used. These may be a single wavelength or a plurality of wavelengths. The wavelength of light that is transmitted through the plano-convex lens 1 during actual use is more preferable because the material-dependent transmission loss of the plano-convex lens 1 can be taken into account. In particular, in the case of a material whose transmittance varies depending on the wavelength, it is preferable that the wavelength of the light transmitted through the plano-convex lens 1 during actual use. Examples of the material include a plano-convex lens that the organic material has in at least a part on the optical axis and a sheet thereof.
In addition, the number of light sources, the amount of light, and the position may be appropriately adjusted so that the spot diameter and the spread angle of the light applied to the plano-convex lens 1 are as uniform as possible in the spot portion.
 検査光受光部7はレンズから出射される検査光10を受光する部位であり、受光素子やカメラモジュール等が用いられる。カメラモジュールを用いると、画像情報で平凸レンズ1及びその結像、位置認識マーカ5の位置を得ることができるためより好ましい。カメラモジュールを用いる場合であり、平凸レンズを介した光の集光又は発散を測定する場合には、焦点距離の短く、角度のある光成分も認識できるレンズを介して結像の画像を取得しても良い。 The inspection light receiving unit 7 is a part that receives the inspection light 10 emitted from the lens, and a light receiving element, a camera module, or the like is used. The use of a camera module is more preferable because the position of the plano-convex lens 1 and its imaging and position recognition marker 5 can be obtained from image information. When using a camera module to measure light collection or divergence through a plano-convex lens, an image of the image is acquired through a lens that has a short focal length and can also recognize angular light components. May be.
 また、検査光源と検査光受光部は、光線的に略同軸対向又は略同軸同方向を向いていれば良く、検査光源と検査光受光部との間には、例えば光軸を略90°変換するような反射ミラーを有していても、反射ミラーと平凸レンズが融合した構造体の場合であっても平凸レンズ1の良否判定を行える。上記略90°とは、反射ミラーが正反射又は全反射可能な角度を指す。なお、反射ミラーへの入射角が略0°で反射角が略0°の場合が、上述した反射板を用いた検査方法と等価である。また、平凸レンズの検査に支障のない範囲で検査光源と検査光受光部との間に光路(例えば光ファイバや光導波路等)を具備させても良い。 In addition, the inspection light source and the inspection light receiving unit need only be substantially coaxially opposed or in the same direction as the light beam. For example, the optical axis is converted by approximately 90 ° between the inspection light source and the inspection light receiving unit. Even if it has such a reflecting mirror, it is possible to determine whether the plano-convex lens 1 is good or bad even in the case of a structure in which the reflecting mirror and the plano-convex lens are fused. The substantially 90 ° refers to an angle at which the reflection mirror can perform regular reflection or total reflection. Note that the case where the incident angle to the reflection mirror is approximately 0 ° and the reflection angle is approximately 0 ° is equivalent to the above-described inspection method using the reflector. In addition, an optical path (for example, an optical fiber or an optical waveguide) may be provided between the inspection light source and the inspection light receiving unit within a range that does not hinder the inspection of the plano-convex lens.
 本実施例に使用される透明板8とは、検査光10を透過し得る透明性を有し、シート4よりも剛性がある板であるとよい。シート4よりも高弾性であるか、厚みの厚いものであると剛性が得られやすいため好ましい。シート4よりも高弾性かつ厚みの厚い透明板であるとより好ましい。 The transparent plate 8 used in the present embodiment is preferably a plate having transparency capable of transmitting the inspection light 10 and being more rigid than the sheet 4. Since it is more elastic than the sheet 4 or is thick, it is preferable because rigidity is easily obtained. It is more preferable that the transparent plate has higher elasticity and thickness than the sheet 4.
 具体的な材質としては、ガラス、石英、透明樹脂、シリコンウエハ等が挙げられる。透明樹脂としては、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル、ポリエチレン、ポリプロピレン等のポリオレフィン、ポリアミド、ポリカーボネート、ポリフェニレンエーテル、ポリエーテルサルファイド、ポリアリレート、液晶ポリマー、ポリスルホン、ポリエーテルスルホン、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリアミドイミド、ポリイミドなどが挙げられる。また、それらに再剥離性の接着剤が塗布され、該接着剤を介して透明板8とレンズシートとを貼り合わせてもよい。また、透明板8には反射防止膜を備えていてもよい。 Specific materials include glass, quartz, transparent resin, silicon wafer and the like. Examples of the transparent resin include polyesters such as polyethylene terephthalate, polybutylene terephthalate and polyethylene naphthalate, polyolefins such as polyethylene and polypropylene, polyamide, polycarbonate, polyphenylene ether, polyether sulfide, polyarylate, liquid crystal polymer, polysulfone and polyethersulfone. , Polyether ether ketone, polyether imide, polyamide imide, polyimide and the like. Moreover, a releasable adhesive may be applied to them, and the transparent plate 8 and the lens sheet may be bonded together via the adhesive. The transparent plate 8 may be provided with an antireflection film.
 透明板8の厚みは、剛性を得やすい観点及びハンドリングが容易である観点から50μm~20mmであるとよく、低反りの観点から100μm~15mmであるとよりよく、より平坦性を得やすい観点から0.5mm~10mmがさらによい。 The thickness of the transparent plate 8 is preferably 50 μm to 20 mm from the viewpoint of easily obtaining rigidity and easy handling, and is more preferably 100 μm to 15 mm from the viewpoint of low warpage, from the viewpoint of easily obtaining flatness. 0.5 mm to 10 mm is even better.
 本実施例に使用される反射板9とは、検査光10を反射可能であれば特に限定はなく、反射膜を有すればよい。その反射率は、シート4面内で検査に支障の無い範囲で一定であれば良い。反射膜は、Ag、Al、Cu、Au、Ni、Cr、Pt、Ti、Pd及びそれらの積層体や合金等の反射金属膜等が用いられる。図4に示すように、上述した透明板8のレンズシートと反対の面に反射膜が備えられていてもよい。透明板8のレンズシートと反対の面に反射膜を具備することによって、シート4と反射板9との間の距離を一定に保持できるため好ましい。 The reflecting plate 9 used in the present embodiment is not particularly limited as long as it can reflect the inspection light 10 and may have a reflecting film. The reflectance may be constant within a range that does not hinder the inspection within the surface of the sheet 4. As the reflective film, a reflective metal film such as Ag, Al, Cu, Au, Ni, Cr, Pt, Ti, Pd, and a laminate or alloy thereof is used. As shown in FIG. 4, a reflective film may be provided on the surface of the transparent plate 8 opposite to the lens sheet. By providing a reflective film on the surface of the transparent plate 8 opposite to the lens sheet, it is preferable because the distance between the sheet 4 and the reflective plate 9 can be kept constant.
 レンズシートに設けられる位置認識マーカ5はレンズ(平凸レンズ1)以外の部分に設けられていればよく、例えばシート表面よりも突出した凸部や、シート表面よりも陥没した凹部等が好適である。図1に凸部状の位置認識マーカ5の一例を、図2に凹部状の位置認識マーカの一例をそれぞれ示す。また、その形状は特に限定はないが、レンズシート垂直方向からの形状が円、矩形、星、十字、それらの複合形状等であればよい。位置認識マーカ5は1つのレンズシートに2つ以上設けられていると、平凸レンズ1の位置が規定できる。複数の平凸レンズ1からなるユニットごとに2つ以上の位置認識マーカ5を備えていると、後にユニットごとに個片化した場合にも位置認識マーカ5が使用でき、例えば、電気配線板やミラー付き光導波路と複合する際の位置認識マーカ5として機能する。 The position recognition marker 5 provided on the lens sheet only needs to be provided on a portion other than the lens (plano-convex lens 1). For example, a convex portion protruding from the sheet surface, a concave portion recessed from the sheet surface, or the like is preferable. . FIG. 1 shows an example of a convex position recognition marker 5 and FIG. 2 shows an example of a concave position recognition marker. Further, the shape is not particularly limited, but the shape from the lens sheet vertical direction may be a circle, a rectangle, a star, a cross, a composite shape thereof, or the like. When two or more position recognition markers 5 are provided on one lens sheet, the position of the plano-convex lens 1 can be defined. If two or more position recognition markers 5 are provided for each unit composed of a plurality of plano-convex lenses 1, the position recognition marker 5 can be used even when the unit is later separated into individual units. For example, an electric wiring board or mirror It functions as a position recognition marker 5 when combined with the attached optical waveguide.
 位置認識マーカ5は、距離αの基準点又は位置βの基準点とすることで、常に一定の任意の距離αにおける結像の検査や、位置βの高精度な位置の算出が可能となる。 By using the position recognition marker 5 as the reference point of the distance α or the reference point of the position β, it is possible to always inspect the imaging at a fixed arbitrary distance α and calculate the position β with high accuracy.
 以下、本発明を実施例によりさらに詳細に説明するが、本発明はその要旨を越えない限り、以下の実施例に限定されない。
 実施例1
 次の手順により、レンズシートを作製した。
[位置認識マーカ形成用樹脂層の作製]
<(A)ベースポリマー;(メタ)アクリルポリマー(A-1)の作製>
 撹拌機、冷却管、ガス導入管、滴下ろうと、及び温度計を備えたフラスコに、プロピレングリコールモノメチルエーテルアセテート46質量部及び乳酸メチル23質量部を秤量し、窒素ガスを導入しながら撹拌を行った。液温を65℃に上昇させ、メチルメタクリレート47質量部、ブチルアクリレート33質量部、2-ヒドロキシエチルメタクリレート16質量部、メタクリル酸14質量部、2,2′-アゾビス(2,4-ジメチルバレロニトリル)3質量部、プロピレングリコールモノメチルエーテルアセテート46質量部、及び乳酸メチル23質量部の混合物を3時間かけて滴下後、65℃で3時間撹拌し、さらに95℃で1時間撹拌を続けて、(メタ)アクリルポリマー(A-1)溶液(固形分45質量%)を得た。
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to a following example, unless the summary is exceeded.
Example 1
A lens sheet was produced by the following procedure.
[Production of resin layer for position recognition marker formation]
<(A) Base polymer; Production of (meth) acrylic polymer (A-1)>
46 parts by mass of propylene glycol monomethyl ether acetate and 23 parts by mass of methyl lactate were weighed in a flask equipped with a stirrer, a cooling pipe, a gas introduction pipe, a dropping funnel, and a thermometer, and stirred while introducing nitrogen gas. . The liquid temperature was raised to 65 ° C., 47 parts by weight of methyl methacrylate, 33 parts by weight of butyl acrylate, 16 parts by weight of 2-hydroxyethyl methacrylate, 14 parts by weight of methacrylic acid, 2,2′-azobis (2,4-dimethylvaleronitrile ) A mixture of 3 parts by mass, 46 parts by mass of propylene glycol monomethyl ether acetate and 23 parts by mass of methyl lactate was added dropwise over 3 hours, followed by stirring at 65 ° C. for 3 hours, and further stirring at 95 ° C. for 1 hour. A (meth) acrylic polymer (A-1) solution (solid content: 45% by mass) was obtained.
(重量平均分子量の測定)
 (A-1)の重量平均分子量(標準ポリスチレン換算)をGPC(東ソー(株)製「SD-8022」、「DP-8020」、及び「RI-8020」)を用いて測定した結果、3.9×10であった。なお、カラムは日立化成(株)製「Gelpack GL-A150-S」及び「Gelpack GL-A160-S」を使用した。溶離液としてはテトラヒドロフランを用い、サンプル濃度0.5mg/mlとし、溶出速度を1ml/分として測定した。
(Measurement of weight average molecular weight)
As a result of measuring the weight average molecular weight (in terms of standard polystyrene) of (A-1) using GPC (“SD-8022”, “DP-8020”, and “RI-8020” manufactured by Tosoh Corporation), It was 9 × 10 4 . As the column, “Gelpack GL-A150-S” and “Gelpack GL-A160-S” manufactured by Hitachi Chemical Co., Ltd. were used. Tetrahydrofuran was used as the eluent, the sample concentration was 0.5 mg / ml, and the elution rate was 1 ml / min.
(酸価の測定)
 A-1の酸価を測定した結果、79mgKOH/gであった。なお、酸価はA-1溶液を中和するのに要した0.1mol/L水酸化カリウム水溶液量から算出した。このとき、指示薬として添加したフェノールフタレインが無色からピンク色に変色した点を中和点とした。
(Measurement of acid value)
As a result of measuring the acid value of A-1, it was 79 mgKOH / g. The acid value was calculated from the amount of 0.1 mol / L potassium hydroxide aqueous solution required to neutralize the A-1 solution. At this time, the point at which the phenolphthalein added as an indicator changed color from colorless to pink was defined as the neutralization point.
<位置認識マーカ形成用樹脂ワニスの調合>
 (A)ベースポリマーとして、前記A-1溶液(固形分45質量%)84質量部(固形分38質量部)、(B)光硬化成分として、ポリエステル骨格を有するウレタン(メタ)アクリレート(新中村化学工業(株)製「U-200AX」)33質量部、及びポリプロピレングリコール骨格を有するウレタン(メタ)アクリレート(新中村化学工業(株)製「UA-4200」)15質量部、(C)熱硬化成分として、ヘキサメチレンジイソシアネートのイソシアヌレート型三量体をメチルエチルケトンオキシムで保護した多官能ブロックイソシアネート溶液(固形分75質量%)(住化バイエルウレタン(株)製「スミジュールBL3175」)20質量部(固形分15質量部)、(D)光重合開始剤として、1-[4-(2-ヒドロキシエトキシ)フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン(チバ・ジャパン(株)製「イルガキュア2959」)1質量部、ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキシド(チバ・ジャパン(株)製「イルガキュア819」)1質量部、及び希釈用有機溶剤としてプロピレングリコールモノメチルエーテルアセテート23質量部を攪拌しながら混合した。孔径2μmのポリフロンフィルタ(アドバンテック東洋(株)製「PF020」)を用いて加圧濾過後、減圧脱泡し、位置認識マーカ形成用樹脂ワニスを得た。
<Preparation of resin varnish for position recognition marker formation>
(A) As a base polymer, 84 parts by mass of the A-1 solution (solid content 45% by mass) (solid content 38 parts by mass), (B) Urethane (meth) acrylate having a polyester skeleton as a photocuring component (Shin Nakamura) 33 parts by mass of “U-200AX” manufactured by Chemical Industry Co., Ltd., and 15 parts by mass of urethane (meth) acrylate having a polypropylene glycol skeleton (“UA-4200” manufactured by Shin-Nakamura Chemical Co., Ltd.), (C) heat As a curing component, 20 parts by mass of a polyfunctional block isocyanate solution (solid content: 75% by mass) obtained by protecting an isocyanurate type trimer of hexamethylene diisocyanate with methyl ethyl ketone oxime (“Sumijour BL3175” manufactured by Sumika Bayer Urethane Co., Ltd.) (Solid content 15 parts by mass), (D) 1- [4- (2-hydroxyethyl) as a photopolymerization initiator Xyl) phenyl] -2-hydroxy-2-methyl-1-propan-1-one (“Irgacure 2959” manufactured by Ciba Japan KK), bis (2,4,6-trimethylbenzoyl) phenylphosphine 1 part by mass of oxide (“Irgacure 819” manufactured by Ciba Japan Co., Ltd.) and 23 parts by mass of propylene glycol monomethyl ether acetate as an organic solvent for dilution were mixed with stirring. After pressure filtration using a polyflon filter having a pore diameter of 2 μm (“PF020” manufactured by Advantech Toyo Co., Ltd.), degassing was performed under reduced pressure to obtain a resin varnish for forming a position recognition marker.
<位置認識マーカ形成用樹脂層(フィルム)の作製>
 上記で得られた位置認識マーカ形成用樹脂ワニスを、支持フィルムであるPETフィルム(東洋紡績(株)製「コスモシャインA4100」、厚み50μm)の非処理面上に、塗工機(マルチコーターTM-MC、(株)ヒラノテクシード製)を用いて塗布し、100℃で20分乾燥後、保護フィルムとして表面離型処理PETフィルム(帝人デュポンフィルム(株)製「ピューレックスA31」、厚み25μm)を貼付け、位置認識マーカ形成用樹脂フィルムを得た。
 位置認識マーカ形成用樹脂層(フィルム)の厚みは、塗工機のギャップを調節することで任意に調整可能であり、実施例中に記載する。実施例中に記載する位置認識マーカ形成用樹脂層の膜厚は塗工乾燥後の膜厚とする。
<Preparation of Resin Layer (Film) for Position Recognition Marker Formation>
The position recognition marker forming resin varnish obtained above is coated on a non-treated surface of a PET film (“Cosmo Shine A4100” manufactured by Toyobo Co., Ltd., thickness 50 μm) as a support film. -MC, manufactured by Hirano Tech Seed Co., Ltd., dried at 100 ° C. for 20 minutes, and surface-release PET film (“Purex A31” manufactured by Teijin DuPont Films Co., Ltd., thickness 25 μm) as a protective film. The resin film for sticking and position recognition marker formation was obtained.
The thickness of the resin layer (film) for position recognition marker formation can be arbitrarily adjusted by adjusting the gap of the coating machine, and will be described in the examples. The film thickness of the resin layer for position recognition marker formation described in the examples is the film thickness after coating and drying.
<レンズ部材形成用樹脂層(フィルム)の作製>
 撹拌機、還流冷却機、不活性ガス導入口及び温度計を備えたフラスコに、プロピレングリコールモノメチルエーテルアセテート190質量部を仕込み、窒素ガス雰囲気下で80℃に昇温し、反応温度を80℃に保ちながら、メタクリル酸10質量部、メタクリル酸n-ブチル1質量部、メタクリル酸ベンジル74質量部、メタクリル酸2-ヒドロキシエチル15質量部、及び2,2′-アゾビス(イソブチロニトリル)2.5質量部を4時間かけて均一に滴下した。滴下終了後、80℃で6時間撹拌を続け、重量平均分子量が約30,000のバインダポリマー(a)の溶液(固形分35質量%)を得た。
 次に、バインダポリマー(a)の溶液(固形分35質量%)200質量部(固形分:70質量部)に、2,2-ビス(4-(ジ(メタ)アクリロキシポリエトキシ)フェニル)プロパン8質量部、β-ヒドロキシエチル-β′-(メタ)アクリロイルオキシエチル-o-フタレート22質量部、2-(o-クロロフェニル)-4,5-ジフェニルイミダゾール二量体2.1質量部、N,N′-テトラエチル-4,4′-ジアミノベンゾフェノン0.33質量部、メルカプトベンゾイミダゾール0.25質量部、(3‐メタクリロイルプロピル)トリメトキシシラン8質量部、メチルエチルケトン30質量部を加えて攪拌機を用いて15分間混合し、レンズ部材形成用樹脂組成物溶液を作製した。
<Preparation of lens member-forming resin layer (film)>
A flask equipped with a stirrer, reflux condenser, inert gas inlet and thermometer was charged with 190 parts by mass of propylene glycol monomethyl ether acetate, heated to 80 ° C. in a nitrogen gas atmosphere, and the reaction temperature was raised to 80 ° C. 1. While maintaining, 10 parts by weight of methacrylic acid, 1 part by weight of n-butyl methacrylate, 74 parts by weight of benzyl methacrylate, 15 parts by weight of 2-hydroxyethyl methacrylate, and 2,2′-azobis (isobutyronitrile) 5 parts by mass were uniformly dropped over 4 hours. After completion of the dropping, stirring was continued at 80 ° C. for 6 hours to obtain a binder polymer (a) solution (solid content: 35% by mass) having a weight average molecular weight of about 30,000.
Next, 2,2-bis (4- (di (meth) acryloxypolyethoxy) phenyl) was added to 200 parts by mass (solid content: 70 parts by mass) of the binder polymer (a) solution (solid content 35% by mass). 8 parts by mass of propane, 22 parts by mass of β-hydroxyethyl-β ′-(meth) acryloyloxyethyl-o-phthalate, 2.1 parts by mass of 2- (o-chlorophenyl) -4,5-diphenylimidazole dimer, Add 0.33 parts by mass of N, N'-tetraethyl-4,4'-diaminobenzophenone, 0.25 parts by mass of mercaptobenzimidazole, 8 parts by mass of (3-methacryloylpropyl) trimethoxysilane and 30 parts by mass of methyl ethyl ketone. Was mixed for 15 minutes to prepare a lens member-forming resin composition solution.
 支持フィルムとして厚さ16μmのポリエチレンテレフタレートフィルムを使用し、上記で得られたレンズ部材形成用樹脂組成物溶液を支持フィルム上にコンマコーターを用いて均一に塗布し、100℃の熱風対流式乾燥機で3分間乾燥して溶剤を除去し、レンズ部材形成用樹脂層を形成した。本実施例では使用したレンズ部材形成用樹脂層(フィルム)の厚みに付いては、実施例中に記載する。実施例中に記載するレンズ部材形成用樹脂層の膜厚は塗工乾燥後の膜厚とする。
 次いで、得られたレンズ部材形成用樹脂層の上に、さらに、25μmの厚さのポリエチレンテレフタレートフィルムを、保護フィルムとして貼り合わせて、レンズ部材形成用樹脂層を作製した。
A polyethylene terephthalate film having a thickness of 16 μm was used as a support film, and the resin composition solution for forming a lens member obtained above was uniformly applied on the support film using a comma coater, and a hot air convection dryer at 100 ° C. And dried for 3 minutes to remove the solvent and form a lens member-forming resin layer. In this embodiment, the thickness of the lens member-forming resin layer (film) used is described in the embodiment. The film thickness of the lens member forming resin layer described in the examples is the film thickness after coating and drying.
Next, a polyethylene terephthalate film having a thickness of 25 μm was further bonded as a protective film on the obtained resin layer for forming a lens member to produce a lens member forming resin layer.
<レンズシートの作製>
 10μm厚みの位置認識マーカ形成用樹脂層の保護フィルムを剥離し、シートとしての150mm×150mmのポリイミドフィルム(ポリイミド;ユーピレックスRN(宇部日東化成(株)製)、厚み;25μm)に、ロールラミネータ(日立化成テクノプラント(株)製、HLM-1500)を用い圧力0.4MPa、温度70℃、ラミネート速度0.2m/minの条件で加熱圧着した。
<Production of lens sheet>
The protective film of the 10 μm-thick position-recognition marker-forming resin layer is peeled off, and a 150 mm × 150 mm polyimide film (polyimide; Upilex RN (manufactured by Ube Nitto Kasei Co., Ltd.), thickness: 25 μm) is used as a roll laminator ( Hitachi Chemical Technoplant Co., Ltd., HLM-1500) was used for thermocompression bonding under conditions of a pressure of 0.4 MPa, a temperature of 70 ° C., and a laminating speed of 0.2 m / min.
 次いで位置認識マーカの形状が描画されたネガ型フォトマスクを介して支持フィルム側から紫外線露光機(機種名:EXM-1172、株式会社オーク製作所製)により、紫外線を(波長365nm)を0.3J/cm照射した。位置認識マーカの形状や位置は後述する。
 次に、位置認識マーカ形成用樹脂層の保護フィルムを剥離し、露わになった位置認識マーカ形成用樹脂層の樹脂面に、上記で得られた30μm厚みのレンズ部材形成用樹脂層の保護フィルムを剥離した樹脂面を上記と同様の方法で加熱圧着した。
Next, ultraviolet light (wavelength 365 nm) is 0.3 J from the support film side through a negative photomask on which the shape of the position recognition marker is drawn by an ultraviolet exposure machine (model name: EXM-1172, manufactured by Oak Manufacturing Co., Ltd.). / Cm 2 irradiation. The shape and position of the position recognition marker will be described later.
Next, the protective film of the resin layer for forming the position recognition marker is peeled off, and the resin layer for forming the lens member having a thickness of 30 μm obtained above is protected on the exposed resin surface of the resin layer for forming the position recognition marker. The resin surface from which the film was peeled was thermocompression bonded in the same manner as described above.
 次いで平凸レンズの平面形状が描画されたネガ型フォトマスクを介して支持フィルム側から紫外線露光機(機種名:EXM-1172、株式会社オーク製作所製)により、紫外線を(波長365nm)を0.3J/cm照射した。平凸レンズの形状や位置は後述する。その後、支持フィルムを剥離し、現像液1.0質量%の炭酸カリウム水溶液を用いてエッチングして、位置認識マーカ5と、位置認識マーカとレンズ形成用部材の積層体とを形成した。その後、180℃1時間加熱し、レンズ形成用部材を熱だれさせて平凸レンズ1を形成し、フレキシブル性を有する有機化合物からなるレンズシートを作製した。 Next, UV light (wavelength 365 nm) is 0.3 J from the support film side through a negative photomask on which the planar shape of the plano-convex lens is drawn by an ultraviolet exposure machine (model name: EXM-1172, manufactured by Oak Manufacturing Co., Ltd.). / Cm 2 irradiation. The shape and position of the plano-convex lens will be described later. Thereafter, the support film was peeled off and etched using a 1.0% by mass aqueous solution of potassium carbonate to form a position recognition marker 5 and a laminate of the position recognition marker and the lens forming member. Then, it heated at 180 degreeC for 1 hour, the lens formation member was dripped, the planoconvex lens 1 was formed, and the lens sheet which consists of an organic compound which has flexibility was produced.
 得られたレンズシートは、シート上に250μmピッチで4つ配列した平凸レンズ1と、両脇の平凸レンズ1の外側100μmの位置に100μm×100μmの位置認識マーカ5(高さ10μm)を具備するユニット(図5参照)を、平凸レンズ配列方向に5mmピッチで10ユニット、平凸レンズ1の配列方向と垂直方向に5mmピッチで10ユニット有するレンズシートを作製した。なお、底面の直径の設計値が150μm(径の大きさの許容値±2μm)で、位置認識マーカからの設計値からのズレ許容値を±5μmとした。
 なお、平凸レンズ1は位置認識マーカ5と同一材料からなる円柱状のパターン上に形成されているが、本実施例では、それらが一体となる平凸レンズとして扱い図中には図示しない。
The obtained lens sheet includes four plano-convex lenses 1 arranged on a sheet at a pitch of 250 μm, and a position recognition marker 5 (height 10 μm) of 100 μm × 100 μm at a position 100 μm outside the plano-convex lens 1 on both sides. A lens sheet having 10 units at a 5 mm pitch in the plano-convex lens arrangement direction and 10 units at a 5 mm pitch in the direction perpendicular to the arrangement direction of the plano-convex lenses 1 was produced. The design value of the diameter of the bottom surface was 150 μm (diameter size tolerance ± 2 μm), and the deviation tolerance from the design value from the position recognition marker was ± 5 μm.
The plano-convex lens 1 is formed on a cylindrical pattern made of the same material as that of the position recognition marker 5. However, in this embodiment, they are treated as a plano-convex lens in which they are integrated and are not shown in the drawing.
[基準サンプルの測定]
 上記で得られたユニットと同様の形状で、良品と確認されている基準サンプルの平坦面側に透明板8として厚さ3mmの石英ガラスをあてがい、平凸レンズR及び位置認識マーカに干渉しない位置に開口部を有する押さえ具を用いて石英ガラスと反対方向から押さえた。
[Measurement of reference sample]
A quartz glass with a thickness of 3 mm is applied as a transparent plate 8 to the flat surface side of a reference sample that has been confirmed to be a non-defective product in the same shape as the unit obtained above, and at a position that does not interfere with the plano-convex lens R and the position recognition marker. It pressed from the opposite direction to quartz glass using the pressing tool which has an opening part.
 次に、光テスタ(製品名;OPT-002、シナジーオプトシステムズ株式会社製)の検査光源6(波長;850nm)と検査光受光部7(CCD)とを同軸対向させて、検査光源6側を石英ガラス面側にして平凸レンズRを検査光源6と検査光受光部7との間に挿入し、XYZ方向に可動するサンプルステージに固定した(サンプルステージは検査光源6及び検査光受光部7とは独立して可動する)。検査光源6と石英ガラスとの距離(間隙)は15mmとし、検査光受光部7は、位置認識マーカ5の下面(位置認識マーカ5とシート4の接合部)に焦点が合う位置に配置した。次に、検査光源6をレンズシートの平面平行方向に移動させ、平凸レンズRを透過する光の強度が大きく、検査光源6位置のずれに対しても鈍感な位置(スポット径の中心)に調整した。なお、検査光受光部7は、画像中心に平凸レンズRが認識できる位置に調整した。
 次に、検査光受光部6側から赤色光の落射照明光を照射して、位置認識マーカ5と、平凸レンズRの底面の大きさ及び位置を測定した。次いで、次に検査光源6を点灯し平凸レンズRの底面に内包されて観測される総輝度を測定した。
Next, the inspection light source 6 (wavelength; 850 nm) of the optical tester (product name: OPT-002, manufactured by Synergy Opto Systems Co., Ltd.) and the inspection light receiving unit 7 (CCD) are coaxially opposed, and the inspection light source 6 side is A plano-convex lens R is inserted between the inspection light source 6 and the inspection light receiving unit 7 with the quartz glass surface side, and is fixed to a sample stage movable in the XYZ directions (the sample stage is connected to the inspection light source 6 and the inspection light receiving unit 7). Move independently). The distance (gap) between the inspection light source 6 and the quartz glass was 15 mm, and the inspection light receiving unit 7 was disposed at a position where the lower surface of the position recognition marker 5 (the junction between the position recognition marker 5 and the sheet 4) is in focus. Next, the inspection light source 6 is moved in the plane parallel direction of the lens sheet, and adjusted to a position (center of the spot diameter) where the intensity of light transmitted through the plano-convex lens R is large and insensitive to the displacement of the inspection light source 6 position. did. The inspection light receiving unit 7 is adjusted to a position where the plano-convex lens R can be recognized at the center of the image.
Next, the incident light of red light was irradiated from the inspection light receiving unit 6 side, and the size and position of the position recognition marker 5 and the bottom surface of the plano-convex lens R were measured. Next, the inspection light source 6 was turned on, and the total luminance observed by being included in the bottom surface of the plano-convex lens R was measured.
 次に検査光源6を点灯した状態で第1の距離αとしてサンプルステージを検査光源6側に100μm移動させて結像の画像を取得した。結像の画像のうち最大強度の50%の強度になる部分を結像の領域とした。結果、結像の大きさは直径が100μmであった。第2の距離αとしてサンプルステージを検査光源6側にさらに50μm移動させて結像の画像を取得した。結果、結像の大きさは直径が80μmであった。位置認識マーカ5からの結像位置ρの設計値からのずれは、0μmであった。結像の円のゆがみもなかった。 Next, with the inspection light source 6 turned on, the sample stage was moved to the inspection light source 6 side by 100 μm as the first distance α to obtain an image of the image. A portion where the intensity of the image is 50% of the maximum intensity is defined as an image formation region. As a result, the image formation size was 100 μm in diameter. As the second distance α, the sample stage was further moved to the inspection light source 6 side by 50 μm to obtain an image of the image. As a result, the image size was 80 μm in diameter. The deviation from the design value of the imaging position ρ from the position recognition marker 5 was 0 μm. There was no distortion of the imaging circle.
[測定サンプルの設置]
 次に、先に形成したレンズシートの平坦面側に上記の基準サンプルと同様に透明板8として厚さ3mmの石英ガラスをあてがい、平凸レンズ1及び位置認識マーカ5に干渉しない位置に開口部を有する押さえ具を用いて石英ガラスと反対方向から押さえた。
 次に、光テスタ(製品名;OPT-002、シナジーオプトシステムズ(株)製)の検査光源6(波長;850nm)と検査光受光部7(CCD)とを同軸対向させて、検査光源6側を石英ガラス面側にして平凸レンズ1を検査光源6と検査光受光部7との間に挿入し、XYZ方向に可動するサンプルステージに固定した(サンプルステージは検査光源6及び検査光受光部7とは独立して可動する)。このときレンズシートは石英ガラスと一体としてハンドリングできるため、容易にサンプルステージへの取り付けが可能であった。また、検査光源6と石英ガラスとの距離は15mmとし、検査光受光部7は、位置認識マーカ5の下面に焦点が合う位置に配置した。このとき検査光源6と検査光受光部7の位置関係は先の平凸レンズRを測定した位置に固定しており、検査光受光部7(CCD)で画像中心に一つのユニットの平凸レンズ(4箇所)が認識できる位置に調整している。なお、検査光源6及び検査光受光部7には、入射光の角度制御のためや、結像画像を取得するためのレンズ等が具備されているものを用いた(図示しない)。
[Installation of measurement sample]
Next, quartz glass having a thickness of 3 mm is applied as the transparent plate 8 to the flat surface side of the previously formed lens sheet, and an opening is formed at a position that does not interfere with the plano-convex lens 1 and the position recognition marker 5. It pressed from the opposite direction to quartz glass using the holding tool which has.
Next, the inspection light source 6 (wavelength; 850 nm) of the optical tester (product name: OPT-002, manufactured by Synergy Opto Systems Co., Ltd.) and the inspection light receiving unit 7 (CCD) are coaxially opposed to each other, and the inspection light source 6 side The plano-convex lens 1 is inserted between the inspection light source 6 and the inspection light receiving unit 7 with the quartz glass surface side, and fixed to the sample stage movable in the XYZ directions (the sample stage is the inspection light source 6 and the inspection light receiving unit 7). Move independently). At this time, since the lens sheet can be handled integrally with the quartz glass, it can be easily attached to the sample stage. Further, the distance between the inspection light source 6 and the quartz glass was 15 mm, and the inspection light receiving unit 7 was arranged at a position where the lower surface of the position recognition marker 5 was in focus. At this time, the positional relationship between the inspection light source 6 and the inspection light receiving unit 7 is fixed at the position where the previous plano-convex lens R is measured, and the inspection light receiving unit 7 (CCD) has a plano-convex lens (4) at the center of the image. The position is adjusted so that it can be recognized. Note that the inspection light source 6 and the inspection light receiving unit 7 are provided with a lens or the like (not shown) for controlling the angle of incident light or acquiring a formed image.
 [測定サンプルの測定]
 次に、検査光受光部7側から赤色光の落射照明光を照射して、位置認識マーカ5と、平凸レンズの底面の大きさ及び位置を測定した(検査光源6及び検査光受光部7は、レンズシートに対して図3に示す605(705)の位置)。レンズの底面の大きさは直径が148μm~152μmの範囲を良とし、それ以外を不良とした。また、先に測定した平凸レンズRの底面に内包されて観測される総輝度を100%とし、測定する平凸レンズの底面に内包されて観測される総輝度が95%以上を良、それ以下を不良とした。
[Measurement of measurement sample]
Next, the incident light of red light was irradiated from the side of the inspection light receiving unit 7 to measure the size and position of the position recognition marker 5 and the bottom surface of the plano-convex lens (the inspection light source 6 and the inspection light receiving unit 7 are , Position 605 (705) shown in FIG. 3 with respect to the lens sheet). Regarding the size of the bottom surface of the lens, a diameter in the range of 148 μm to 152 μm was good, and the others were bad. Further, the total luminance observed in the bottom surface of the plano-convex lens R measured previously is 100%, and the total luminance observed in the bottom surface of the plano-convex lens to be measured is 95% or higher. Defective.
 次に検査光源6を点灯した状態で第1の距離αとしてサンプルステージを検査光源6側に100μm移動させて結像の画像を取得した(検査光源6及び検査光受光部7は、レンズシートに対して図3に示す601(701)の位置)。結像の画像のうち最大強度の50%の強度になる部分を結像の領域とした。結果、結像の大きさは直径が98~102μmの範囲を良とし、それ以外を不良とした。また、第1の距離αのときの平凸レンズRの結像の総輝度を100%とし、測定する平凸レンズ1の結像の総輝度が95%以上を良、それ以下を不良とした。第2の距離αとしてサンプルステージを検査光源6側にさらに50μm移動させて結像の画像を取得した。結果、結像の大きさは直径が78~82μmの範囲を良とし、それ以外を不良とした。また、第2の距離αのときの平凸レンズRの結像の総輝度を100%とし、測定する平凸レンズ1の結像の総輝度が95%以上を良、それ以下を不良とした。位置認識マーカ5からの結像位置βの設計値からのずれは、設計値からのズレ量が±5μm以内を良とし、それ以外を不良とした。また、結像の円ゆがみがあるものは不良とした。なお、ユニット中で1つでも不良の平凸レンズ1がある場合はそのユニットを不良とした。 Next, with the inspection light source 6 turned on, the sample stage is moved to the inspection light source 6 side by 100 μm as the first distance α to obtain an image of the image (the inspection light source 6 and the inspection light receiving unit 7 are formed on the lens sheet) (Position 601 (701) shown in FIG. 3). A portion where the intensity of the image is 50% of the maximum intensity is defined as an image formation region. As a result, the image formation size was good when the diameter was in the range of 98 to 102 μm, and the others were bad. Further, the total brightness of the image of the plano-convex lens R at the first distance α is 100%, the total brightness of the image of the plano-convex lens 1 to be measured is 95% or higher, and the lower is bad. As the second distance α, the sample stage was further moved to the inspection light source 6 side by 50 μm to obtain an image of the image. As a result, the image formation size was good when the diameter was in the range of 78 to 82 μm, and the others were bad. Further, the total brightness of the image of the plano-convex lens R at the second distance α is set to 100%, the total brightness of the image of the plano-convex lens 1 to be measured is 95% or higher, and the lower is determined to be poor. Regarding the deviation from the design value of the imaging position β from the position recognition marker 5, the deviation amount from the design value is good within ± 5 μm, and the other is bad. Also, the image with circular distortion was regarded as defective. If there is at least one defective plano-convex lens 1 in the unit, the unit is regarded as defective.
[測定サンプルの連続測定]
 次に、隣接するユニットを測定するために、レンズシートのシート面4に対して検査光源6を平行方向610(検査光受光部も同一方向710)に相対的に移動させるようにサンプルステージを移動させた。その後、上記の[測定サンプルの測定]と同様の方法で、平凸レンズ1(ユニット)の検査を行った。
[Continuous measurement of measurement sample]
Next, in order to measure adjacent units, the sample stage is moved so that the inspection light source 6 is moved relative to the sheet surface 4 of the lens sheet in the parallel direction 610 (the inspection light receiving unit is also in the same direction 710). I let you. Thereafter, the plano-convex lens 1 (unit) was inspected by the same method as in [Measurement of measurement sample].
 その後サンプルステージを順次移動(図3に示すように602(702),603(703),604(704)の位置に順次検査光源6と検査光受光部7とを移動)させて10行×10列の平凸レンズ1(ユニットの)検査を行った。検査はサンプルステージの移動、画像の取得、判定のみで効率的に行えた。 Thereafter, the sample stage is sequentially moved (as shown in FIG. 3, the inspection light source 6 and the inspection light receiving unit 7 are sequentially moved to positions 602 (702), 603 (703), and 604 (704)), and 10 rows × 10 A row of plano-convex lenses 1 (units) was inspected. The inspection could be efficiently performed only by moving the sample stage, acquiring images, and judging.
 実施例2
 実施例1で用いた透明板8である石英ガラスの一方の面に反射板9としてAuを0.5μm蒸着して形成した。
 次に、上記石英ガラスの非蒸着面側に実施例1と同様にレンズシートの平坦面3をあてがい、平凸レンズR及び位置認識マーカ5に干渉しない位置に開口部を有する押さえ具を用いて石英ガラスと反対方向から押さえた。
Example 2
A reflection plate 9 was formed by depositing Au of 0.5 μm on one surface of the quartz glass which is the transparent plate 8 used in Example 1.
Next, the flat surface 3 of the lens sheet is applied to the non-deposition surface side of the quartz glass in the same manner as in Example 1, and the quartz glass is used by using a pressing tool having an opening at a position that does not interfere with the plano-convex lens R and the position recognition marker 5. Pressed from the opposite direction to the glass.
[基準サンプルの測定]
 次に、光テスタ(製品名;OPT-002、シナジーオプトシステムズ(株)製)の検査光源(波長;850nm)のリング照明とその中心に検査光受光部(CCD)とを配置させて、検査光源6側を平凸レンズRの凸部側にセットした。レンズシートはXYZ方向に可動するサンプルステージに固定した(サンプルステージは検査光源及び検査光受光部とは独立して可動する)。このときレンズシートは反射板9付きの石英ガラスと一体としてハンドリングできるため、容易にサンプルステージへの取り付けが可能であった。また、検査光源6と反射板9までの距離は12mmとし、検査光受光部7は、位置認識マーカ5の下面に焦点が合う位置に配置した。次に、検査光源6及び検査光受光部7をレンズシートの平面平行方向に移動させ、平凸レンズRを透過する光(検査光受光部に受光される光)の強度が大きく、検査光源6の位置のずれに対しても鈍感な位置(スポット径の中心)に調整した。なお、検査光受光部7は、画像中心に平凸レンズRが認識できる位置に調整した。次に、検査光受光部7側から赤色光の落射照明光を照射して、位置認識マーカ5と、平凸レンズRの底面の大きさ及び位置を測定した。次いで、検査光源6を点灯しレンズRの底面に内包されて観測される総輝度を測定した。
[Measurement of reference sample]
Next, an inspection light receiving unit (CCD) is placed in the center of the ring illumination of the inspection light source (wavelength: 850 nm) of the optical tester (product name: OPT-002, manufactured by Synergy Opto Systems Co., Ltd.), and inspection is performed. The light source 6 side was set on the convex portion side of the plano-convex lens R. The lens sheet was fixed to a sample stage movable in the XYZ directions (the sample stage is movable independently of the inspection light source and the inspection light receiving unit). At this time, since the lens sheet can be handled integrally with the quartz glass with the reflecting plate 9, it can be easily attached to the sample stage. The distance between the inspection light source 6 and the reflecting plate 9 was 12 mm, and the inspection light receiving unit 7 was disposed at a position where the lower surface of the position recognition marker 5 was in focus. Next, the inspection light source 6 and the inspection light receiving unit 7 are moved in the plane parallel direction of the lens sheet, and the intensity of light transmitted through the plano-convex lens R (light received by the inspection light receiving unit) is large. It adjusted to the position (center of a spot diameter) insensitive to a position shift. The inspection light receiving unit 7 is adjusted to a position where the plano-convex lens R can be recognized at the center of the image. Next, the incident light of red light was irradiated from the inspection light receiving unit 7 side, and the size and position of the position recognition marker 5 and the bottom surface of the plano-convex lens R were measured. Next, the inspection light source 6 was turned on, and the total luminance observed by being included in the bottom surface of the lens R was measured.
 次に検査光源6を点灯した状態で第1の距離αとしてサンプルステージを検査光源6側に100μm移動させて結像の画像を取得した。結像の画像のうち最大強度の50%の強度になる部分を結像の領域とした。結果、結像の大きさは直径が100μmであった。第2の距離αとしてサンプルステージを検査光源6側にさらに50μm移動させて結像の画像を取得した。結果、結像の大きさは直径が80μmであった。位置認識マーカ5からの結像位置ρの設計値からのずれは、0μmであった。結像の円のゆがみもなかった。 Next, with the inspection light source 6 turned on, the sample stage was moved to the inspection light source 6 side by 100 μm as the first distance α to obtain an image of the image. A portion where the intensity of the image is 50% of the maximum intensity is defined as an image formation region. As a result, the image formation size was 100 μm in diameter. As the second distance α, the sample stage was further moved to the inspection light source 6 side by 50 μm to obtain an image of the image. As a result, the image size was 80 μm in diameter. The deviation from the design value of the imaging position ρ from the position recognition marker 5 was 0 μm. There was no distortion of the imaging circle.
[測定サンプルの設置]
 次に、実施例1と同様の方法で作製した測定サンプルであるレンズシートの平坦面3側に上記の基準サンプルと同様に厚さ3mmの反射板9付きの石英ガラスをあてがい、平凸レンズ1及び位置認識マーカ5に干渉しない位置に開口部を有する押さえ具を用いて石英ガラスと反対方向から押さえた。
[Installation of measurement sample]
Next, quartz glass with a reflector 9 having a thickness of 3 mm is applied to the flat surface 3 side of the lens sheet, which is a measurement sample produced by the same method as in Example 1, and the planoconvex lens 1 and It pressed from the opposite direction to quartz glass using the pressing tool which has an opening part in the position which does not interfere with the position recognition marker 5. FIG.
 次に、上記と同様の方法でXYZ方向に可動するサンプルステージに固定した(サンプルステージは検査光源及び検査光受光部とは独立して可動する)。このときレンズシートは反射板付きの石英ガラスと一体としてハンドリングできるため、容易にサンプルステージへの取り付けが可能であった。このとき検査光源6と検査光受光部7の位置関係は先の平凸レンズRを測定した位置に固定しており、検査光受光部7(CCD)で画像中心に一つのユニットの平凸レンズ1(4箇所)が認識できる位置に調整している。 Next, it was fixed to the sample stage movable in the XYZ directions by the same method as described above (the sample stage is movable independently of the inspection light source and the inspection light receiving unit). At this time, since the lens sheet can be handled integrally with the quartz glass with a reflecting plate, it can be easily attached to the sample stage. At this time, the positional relationship between the inspection light source 6 and the inspection light receiving unit 7 is fixed at the position where the plano-convex lens R is measured, and the plano-convex lens 1 (one unit) is centered on the image by the inspection light receiving unit 7 (CCD). 4 positions) are adjusted to a recognizable position.
[基準サンプルの測定]
 実施例1及び上記と同様の方法及び判定基準でレンズシートの検査を行った。その結果、良品判定が可能であった。検査はサンプルステージの移動、画像の取得、判定のみで効率的に行えた。
[Measurement of reference sample]
The lens sheet was inspected by the same method and criteria as in Example 1 and above. As a result, non-defective product determination was possible. The inspection could be efficiently performed only by moving the sample stage, acquiring images, and judging.
実施例3
 次に、コアパターンが4CH(250μmピッチ)、コアパターンを埋設するクラッド層、コアパターンの光軸上にコアパターンと垂直方向に配列した4つの光路変換ミラーを備えるミラー付き光導波路を準備し、実施例1で得られた良品と判定されたレンズシート(ユニット)と、光路変換ミラーとを位置合わせしてレンズシートの平坦面3側をミラー付き光導波路になるように10μm厚みの透明な熱硬化接着シートを介して複合したところ、それぞれの平凸レンズ1と全ての光路変換ミラーとは良好に位置合わせでき、コアパターン、光路変換ミラー及びレンズを順次介して、又は、レンズ、光路変換ミラー及びコアパターンを順次介して、良好に光の伝搬が行えた。
Example 3
Next, the core pattern is 4CH (250 μm pitch), a cladding layer in which the core pattern is embedded, and an optical waveguide with a mirror including four optical path conversion mirrors arranged in the direction perpendicular to the core pattern on the optical axis of the core pattern, The lens sheet (unit) determined as a non-defective product obtained in Example 1 and the optical path conversion mirror are aligned, and a transparent heat having a thickness of 10 μm is formed so that the flat surface 3 side of the lens sheet becomes an optical waveguide with a mirror. When combined through a cured adhesive sheet, each plano-convex lens 1 and all the optical path conversion mirrors can be satisfactorily aligned, and sequentially through the core pattern, the optical path conversion mirror and the lens, or the lens, the optical path conversion mirror, and Light was able to propagate well through the core pattern sequentially.
実施例4
 次に、FR-4基板上に4つの光素子実装用の電気配線が形成され、直径100μmの4つの開口部(250μmピッチ)を有する電気配線板を準備し、実施例1で得られた良品と判定されたレンズシート(ユニット)と、50μm厚みの熱硬化接着シート(平凸レンズ部が開口されている)を介して平凸レンズ1の凸面側と、光素子実装用の電気配線と反対の面が対向するように複合したところ、それぞれの平凸レンズ1と全ての開口部とは良好に位置合わせでき、光素子実装用の電気配線に4つの受光部(250μmピッチ)を有する受光素子を実装したところ、4箇所とも平凸レンズ、開口部を順次介し、受光素子へ良好に光の伝搬ができた。次に光素子実装用の電気配線に4つの発光部(250μmピッチ)を有する発光素子を実装したところ、4箇所とも発光素子からの光が、開口部、平凸レンズ1を順次介して良好に光の伝搬が行えた。
Example 4
Next, four wirings for mounting optical elements were formed on the FR-4 substrate, and an electric wiring board having four openings (250 μm pitch) with a diameter of 100 μm was prepared. The non-defective product obtained in Example 1 The convex surface side of the plano-convex lens 1 through the lens sheet (unit) determined to be 50 μm thick thermosetting adhesive sheet (with the plano-convex lens portion opened), and the surface opposite to the electrical wiring for mounting the optical element Are combined so that each of the plano-convex lenses 1 and all the openings can be satisfactorily aligned, and a light receiving element having four light receiving parts (250 μm pitch) is mounted on the electric wiring for mounting the optical element. However, light was able to propagate well to the light receiving element through the plano-convex lens and the opening at all four locations. Next, when the light emitting element having four light emitting portions (250 μm pitch) is mounted on the electric wiring for mounting the optical element, the light from the light emitting element is satisfactorily transmitted through the opening and the plano-convex lens 1 at all four locations. Was able to propagate.
 本発明により、簡易的に効率良くレンズの検査が行える方法を提供できる。このため、マイクロレンズアレイ、レンズシート、レンズ付き光導波路、レンズ付き電気配線板、レンズ付き光電変換部材、光伝送モジュール、光伝送路ケーブル、光インターコネクションなどの幅広い分野に適用可能である。 According to the present invention, it is possible to provide a method capable of simply and efficiently inspecting a lens. Therefore, it can be applied to a wide range of fields such as a microlens array, a lens sheet, an optical waveguide with a lens, an electrical wiring board with a lens, a photoelectric conversion member with a lens, an optical transmission module, an optical transmission line cable, and an optical interconnection.
1 平凸レンズ
2 平凸レンズの底面
3 平坦部
4 シート
5 位置認識マーカ
6 検査光源
601,602,603,604,604 検査光源の結像測定時の位置
605 検査光源の距離αの起点測定時の位置
7 検査光受光部
701,702,703,704,704 検査光受光部の結像測定時の位置
705 検査光受光部の距離αの起点測定時の位置
8 透明板
9 反射板
10 検査光
110 結像
111,112,113,114 結像(不良モード例)
115 結像位置(距離α)
DESCRIPTION OF SYMBOLS 1 Plano-convex lens 2 Plane-convex lens bottom face 3 Flat part 4 Sheet 5 Position recognition marker 6 Inspection light source 601, 602, 603, 604, 604 Position at the time of image formation measurement of inspection light source 605 Position at the time of starting measurement of the distance α of the inspection light source 7 Inspection light receiving unit 701, 702, 703, 704, 704 Position 705 at the time of imaging measurement of the inspection light receiving unit 8 Position at the time of starting measurement of the distance α of the inspection light receiving unit 8 Transparent plate 9 Reflecting plate 10 Inspection light 110 Connection Images 111, 112, 113, 114 Imaging (example of defective mode)
115 Imaging position (distance α)

Claims (18)

  1.  シート上の少なくとも一部にレンズが形成されたレンズシートの検査方法であって、
     前記レンズに検査光を入射する工程A、
     前記レンズの底面から前記レンズシートの厚さ方向の任意の距離αにおける前記レンズを介した検査光の実質的な結像の、光強度、大きさ、形状及び位置βから選択される少なくとも一つを測定する工程B、
     前記測定結果からレンズの良否を判定する工程C、
    を有するレンズシートの検査方法。
    A method for inspecting a lens sheet in which a lens is formed on at least a part of the sheet,
    Step A for injecting inspection light into the lens,
    At least one selected from light intensity, size, shape, and position β of substantial imaging of the inspection light through the lens at an arbitrary distance α in the thickness direction of the lens sheet from the bottom surface of the lens Measuring step B,
    Step C for determining the quality of the lens from the measurement result,
    A method for inspecting a lens sheet.
  2.  前記工程Aにおいて、検査光を出力する検査光源と、前記工程Bにおいて検査光を測定する検査光受光部とが、前記レンズシートに非接触で検査を行う請求項1に記載のレンズシートの検査方法。 The inspection of the lens sheet according to claim 1, wherein the inspection light source that outputs inspection light in the step A and the inspection light receiving unit that measures the inspection light in the step B inspects the lens sheet in a non-contact manner. Method.
  3.  前記検査光の前記レンズの底面におけるスポット径が、前記レンズの径を内包する大きさである請求項1又は2に記載のレンズシートの検査方法。 3. The method for inspecting a lens sheet according to claim 1, wherein a spot diameter of the inspection light on a bottom surface of the lens is a size including the diameter of the lens.
  4.  前記工程Aにおいて、検査光を入射する前に、シートの前記レンズが形成された面と反対のシート面に透明基板を設置する請求項1~3のいずれかに記載のレンズシートの検査方法。 The method for inspecting a lens sheet according to any one of claims 1 to 3, wherein, in the step A, a transparent substrate is installed on a sheet surface opposite to a surface on which the lens is formed before the inspection light is incident.
  5.  前記工程Aにおいて、前記検査光が、前記透明基板を介して入射される請求項4に記載のレンズシートの検査方法。 The method for inspecting a lens sheet according to claim 4, wherein, in the step A, the inspection light is incident through the transparent substrate.
  6.  前記工程Aにおいて、検査光を入射する前に、前記シートのレンズが形成された面と反対のシート面の上方に反射板を設置し、前記検査光を前記レンズが形成された面側から入射し、
     前記工程Bにおいて、測定は、前記レンズを介して前記反射板で反射した光を測定するものである請求項1~5のいずれかに記載のレンズシートの検査方法。
    In the step A, before entering the inspection light, a reflecting plate is installed above the sheet surface opposite to the surface on which the lens of the sheet is formed, and the inspection light is incident from the surface side on which the lens is formed. And
    6. The method for inspecting a lens sheet according to claim 1, wherein in the step B, the measurement is to measure light reflected by the reflecting plate through the lens.
  7.  前記反射板が、前記シート面と平行に設置されてなる請求項6に記載のレンズシートの検査方法。 The method for inspecting a lens sheet according to claim 6, wherein the reflecting plate is installed in parallel with the sheet surface.
  8.  前記レンズシート上のレンズ以外の箇所に少なくとも2つ以上の位置認識マーカを設置し、少なくとも2つの前記位置認識マーカの位置と、前記結像の位置βとの相対位置関係を測定する工程Dをさらに有する請求項1~7のいずれかに記載のレンズシートの検査方法。 A step D in which at least two or more position recognition markers are installed at locations other than the lens on the lens sheet, and the relative positional relationship between the positions of the at least two position recognition markers and the imaging position β is measured; The lens sheet inspection method according to claim 1, further comprising:
  9.  前記位置認識マーカを、前記レンズシートの厚さ方向の任意の距離αを決める基準位置とする請求項8に記載のレンズシートの検査方法。 The lens sheet inspection method according to claim 8, wherein the position recognition marker is a reference position for determining an arbitrary distance α in the thickness direction of the lens sheet.
  10.  前記レンズの底面から前記レンズシートの厚さ方向の任意の距離αにおける前記レンズを介した検査光の実質的な結像の、光強度、大きさ、形状及び位置ρから選択される少なくとも一つのデータが既知のレンズRを対象として、前記の少なくとも一つのデータを測定する工程Eをさらに含み、
     レンズの良否を判定する工程Cが、前記工程Eと工程Bの測定データの比較から検査対象のレンズの良否を判定するものである請求項1~9のいずれかに記載のレンズシートの検査方法。
    At least one selected from light intensity, size, shape, and position ρ of substantial imaging of the inspection light through the lens at an arbitrary distance α in the thickness direction of the lens sheet from the bottom surface of the lens Further comprising a step E of measuring at least one of the data for a lens R whose data is known;
    The method for inspecting a lens sheet according to any one of claims 1 to 9, wherein the step C for determining the quality of the lens determines the quality of the lens to be inspected from a comparison of the measurement data in the steps E and B. .
  11.  前記レンズの径を測定する工程Fをさらに有する請求項1~10のいずれかに記載のレンズシートの検査方法。 The method for inspecting a lens sheet according to any one of claims 1 to 10, further comprising a step F of measuring a diameter of the lens.
  12.  前記工程Aにおいて、検査光を出力する検査光源と、前記工程Bにおいて前記検査光を測定する検査光受光部との位置関係が、前記シート平面方向で規定されてなる請求項1~11のいずれかに記載のレンズシートの検査方法。 12. The positional relationship between an inspection light source that outputs inspection light in the step A and an inspection light receiving unit that measures the inspection light in the step B is defined in the sheet plane direction. A method for inspecting a lens sheet according to claim 1.
  13.  前記工程A及び前記工程Bが、少なくとも検査光受光部をシート面に対して平行方向に移動して、複数のレンズに対して検査を連続的又は間欠的に繰り返し行うものである、請求項1~12のいずれかに記載のレンズシートの検査方法。 2. The process A and the process B are performed by continuously or intermittently inspecting a plurality of lenses by moving at least the inspection light receiving unit in a direction parallel to the sheet surface. The method for inspecting a lens sheet according to any one of items 1 to 12.
  14.  前記請求項1~13のいずれかに記載のレンズシートの検査方法によって、検査されたレンズシート。 A lens sheet inspected by the lens sheet inspection method according to any one of claims 1 to 13.
  15.  前記レンズシートのレンズ光軸上の少なくとも一部が、有機化合物からなる請求項14に記載のレンズシート。 The lens sheet according to claim 14, wherein at least a part of the lens sheet on the lens optical axis is made of an organic compound.
  16.  前記レンズシートが、フレキシブル性を有する請求項14又は15に記載のレンズシート。 The lens sheet according to claim 14 or 15, wherein the lens sheet has flexibility.
  17.  前記請求項14~16のいずれかに記載のレンズシートと、ミラー付き光導波路とが、複合されたレンズ付き光導波路。 An optical waveguide with a lens, wherein the lens sheet according to any one of claims 14 to 16 and an optical waveguide with a mirror are combined.
  18.  前記請求項14~16のいずれかに記載のレンズシートと、電気配線板とが、複合されたレンズ付き電気配線板。 An electric wiring board with a lens, wherein the lens sheet according to any one of claims 14 to 16 and an electric wiring board are combined.
PCT/JP2014/070916 2014-08-07 2014-08-07 Lens sheet inspection method, lens sheet obtained using same, optical waveguide with lens, and electrical wiring board with lens WO2016021028A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/070916 WO2016021028A1 (en) 2014-08-07 2014-08-07 Lens sheet inspection method, lens sheet obtained using same, optical waveguide with lens, and electrical wiring board with lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/070916 WO2016021028A1 (en) 2014-08-07 2014-08-07 Lens sheet inspection method, lens sheet obtained using same, optical waveguide with lens, and electrical wiring board with lens

Publications (1)

Publication Number Publication Date
WO2016021028A1 true WO2016021028A1 (en) 2016-02-11

Family

ID=55263334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/070916 WO2016021028A1 (en) 2014-08-07 2014-08-07 Lens sheet inspection method, lens sheet obtained using same, optical waveguide with lens, and electrical wiring board with lens

Country Status (1)

Country Link
WO (1) WO2016021028A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05149824A (en) * 1991-11-27 1993-06-15 Sharp Corp Inspecting apparatus of microlens array
JPH11304647A (en) * 1998-04-17 1999-11-05 Asahi Optical Co Ltd Lens inspecting method and device
JP2004093460A (en) * 2002-09-02 2004-03-25 Olympus Corp Lens inspection method
JP2006098389A (en) * 2004-09-02 2006-04-13 Pentax Corp Method and apparatus for measuring transmittance of finite-system optical element
WO2011129068A1 (en) * 2010-04-13 2011-10-20 コニカミノルタオプト株式会社 Eccentric amount measuring method
JP2012029004A (en) * 2010-07-22 2012-02-09 Casio Comput Co Ltd Image generating device, image generating program, and image generating method
WO2012023430A1 (en) * 2010-08-17 2012-02-23 住友ベークライト株式会社 Optical waveguide module and electronic device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05149824A (en) * 1991-11-27 1993-06-15 Sharp Corp Inspecting apparatus of microlens array
JPH11304647A (en) * 1998-04-17 1999-11-05 Asahi Optical Co Ltd Lens inspecting method and device
JP2004093460A (en) * 2002-09-02 2004-03-25 Olympus Corp Lens inspection method
JP2006098389A (en) * 2004-09-02 2006-04-13 Pentax Corp Method and apparatus for measuring transmittance of finite-system optical element
WO2011129068A1 (en) * 2010-04-13 2011-10-20 コニカミノルタオプト株式会社 Eccentric amount measuring method
JP2012029004A (en) * 2010-07-22 2012-02-09 Casio Comput Co Ltd Image generating device, image generating program, and image generating method
WO2012023430A1 (en) * 2010-08-17 2012-02-23 住友ベークライト株式会社 Optical waveguide module and electronic device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MASAHARU HIRANO ET AL.: "Ryosan Shokei Lens no Hinshitsu Kensa ni Taio suru LD Kanshokei", KIKAI TO KOGU, vol. 47, no. 12, 1 December 2003 (2003-12-01), pages 41 - 43 *

Similar Documents

Publication Publication Date Title
CN101813640B (en) Apparatus for detecting particles on a glass surface and method thereof
KR101174081B1 (en) Plane substrate auto-test system and the method thereof
US7725024B2 (en) Optimizing use and performance of optical systems implemented with telecentric on-axis dark field illumination
US7414423B2 (en) Wafer-level test module for testing image sensor chips, the related test method and fabrication
US7998779B2 (en) Solid-state imaging device and method of fabricating solid-state imaging device
CN104792344A (en) Detector, imprint apparatus, and article manufacturing method
CN104765248A (en) Imprint apparatus, imprint method and method of manufacturing article
KR20080036909A (en) Optical module and optical sensor using the same and method for manufacturing thereof
TWI451073B (en) Measuring the optical system and the use of its brightness meter, color brightness meter and color meter
TW201310626A (en) Method for manufacturing passive optical components, and devices comprising the same
CN101210806A (en) Laser emission axis and mechanical base level coaxiality measuring method based on secondary light source
CN111158158B (en) Spectrometer optical system and semiconductor inspection device
CN105424600A (en) Telecentric bright field and annular dark field seamlessly fused illumination
KR20090133097A (en) System and method for inspection of semiconductor packages
US11249032B2 (en) Methods and apparatus for detecting surface defects on glass sheets
US9897552B2 (en) Optical transformation module and optical measurement system, and method of manufacturing a semiconductor device using optical transformation module and optical measurement system
TWI660207B (en) Image projection apparatus ,corresponding system and method of shaping a beam of illumination
WO2016021028A1 (en) Lens sheet inspection method, lens sheet obtained using same, optical waveguide with lens, and electrical wiring board with lens
WO2015020064A1 (en) Lens member manufacturing method, lens member, curved surface shape pattern manufacturing method, and resin film for forming curved surface shape pattern
CN110658196A (en) Defect detection device and defect detection method
US11016034B2 (en) Optical scattering measurement method and apparatus using micro lens matrix
US9718234B2 (en) Imprint lithography apparatus and device manufacturing method therefor
JP2011214976A (en) Die inspection device, die inspection method, anti-glare product haze prediction method, and anti-glare product reflected image definition prediction method
JP5241343B2 (en) Microstructure transfer device
US7380949B2 (en) Light modulator device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14899147

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14899147

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP