WO2016019784A1 - Shark fin antenna assemblies - Google Patents

Shark fin antenna assemblies Download PDF

Info

Publication number
WO2016019784A1
WO2016019784A1 PCT/CN2015/083853 CN2015083853W WO2016019784A1 WO 2016019784 A1 WO2016019784 A1 WO 2016019784A1 CN 2015083853 W CN2015083853 W CN 2015083853W WO 2016019784 A1 WO2016019784 A1 WO 2016019784A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
circuit board
printed circuit
operable
antenna assembly
Prior art date
Application number
PCT/CN2015/083853
Other languages
French (fr)
Inventor
Ye Yang
Ayman Duzdar
Zusheng FENG
Original Assignee
Laird Technologies (Shanghai) Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Laird Technologies (Shanghai) Co., Ltd. filed Critical Laird Technologies (Shanghai) Co., Ltd.
Publication of WO2016019784A1 publication Critical patent/WO2016019784A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/30Combinations of separate antenna units operating in different wavebands and connected to a common feeder system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/1207Supports; Mounting means for fastening a rigid aerial element
    • H01Q1/1214Supports; Mounting means for fastening a rigid aerial element through a wall
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • H01Q1/325Adaptation for use in or on road or rail vehicles characterised by the location of the antenna on the vehicle
    • H01Q1/3275Adaptation for use in or on road or rail vehicles characterised by the location of the antenna on the vehicle mounted on a horizontal surface of the vehicle, e.g. on roof, hood, trunk
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting antenna units or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/42Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength

Definitions

  • the present disclosure generally relates to shark fin antenna assemblies.
  • Multiband antenna assembles are also commonly used in the automotive industry.
  • a multiband antenna assembly typically includes multiple antennas to cover and operate at multiple frequency ranges.
  • a printed circuit board (PCB) having radiating antenna elements is a typical component of the multiband antenna assembly.
  • Automotive antennas may be installed or mounted on a vehicle surface, such as the roof, trunk, or hood of the vehicle to help ensure that the antennas have unobstructed views overhead or toward the zenith.
  • the antenna may be connected (e.g., via a coaxial cable, etc. ) to one or more electronic devices (e.g., a radio receiver, a touchscreen display, navigation device, cellular phone, etc. ) inside the passenger compartment of the vehicle, such that the multiband antenna assembly is operable for transmitting and/or receiving signals to/from the electronic device (s) inside the vehicle.
  • electronic devices e.g., a radio receiver, a touchscreen display, navigation device, cellular phone, etc.
  • a shark fin antenna assembly for installation to a vehicle body wall.
  • the shark fin antenna assembly includes a chassis and a radome having a shark-fin configuration.
  • the radome is coupled to the chassis such that an interior enclosure is collectively defined by the radome and the chassis.
  • a first antenna is within the interior enclosure.
  • the first antenna may be configured to be operable with AM/FM/DABIII/DMB frequencies.
  • the first antenna may include a printed circuit board having a first side and an opposing second side, and traces along the first and second sides of the printed circuit board.
  • the traces along the first side of the printed circuit board may be configured to be operable with frequencies from 535 kilohertz to 1605 kilohertz and with frequencies from 88 megahertz to 108 megahertz.
  • the traces along the second side of the printed circuit board may be operable with frequencies from 174 megahertz to 240 MHz
  • FIG. 1 is an exploded perspective view of an example embodiment of an antenna assembly including at least one or more aspects of the present disclosure
  • FIG. 2 is a perspective view of the antenna assembly shown in FIG. 1 after being assembled together where the cover or radome is not shown, and illustrating a first side of the AM/FM/DABIII/DMB antenna that is configured to be operable with AM/FM frequencies;
  • FIG. 3 is a perspective view of the antenna assembly shown in FIG. 2, and illustrating the opposite second side of the AM/FM/DABIII/DMB antenna that is configured to be operable with DABIII/DMB frequencies;
  • FIG. 4 is an exploded perspective view of another example embodiment of an antenna assembly including at least one or more aspects of the present disclosure
  • FIG. 5 is a perspective view of the antenna assembly shown in FIG. 4 after being assembled together where the cover or radome is not shown, and illustrating a first side of the AM/FM/DABIII/DMB antenna that is configured to be operable with AM/FM frequencies;
  • FIG. 6 is a perspective view of the antenna assembly shown in FIG. 5, and illustrating the opposite second side of the AM/FM/DABIII/DMB antenna that is configured to be operable with DABIII/DMB frequencies;
  • FIG. 7 illustrates a first side of an AM/FM/DABIII/DMB antenna that may be used with the antenna assemblies shown in FIGS. 1 through 6, where the first side is operable with AM/FM frequencies and the dimensions are provided for purpose of illustration only;
  • FIG. 8 illustrates a second or opposite side of the AM/FM/DABIII/DMB antenna shown in FIG. 7, where the second side is operable with DABIII/DMB frequencies and the dimensions are provided for purpose of illustration only;
  • FIG. 9 is a perspective view showing a shark-fin style radome or cover that may be positioned over an AM/FM/DABIII/DMB antenna according to exemplary embodiments;
  • FIG. 10 is a graph of simulated and measured return loss in decibels (dB) versus frequency in Megahertz (MHz) for the AM/FM/DABIII/DMB antenna shown in FIGS. 7 and 8 on a one-meter diameter generally circular ground plane;
  • FIG. 11 is a graph of simulated and measured passive antenna gain in decibels at FM frequencies of 88 MHz and 108 MHz for the AM/FM/DABIII/DMB antenna shown in FIGS. 7 and 8 on a one-meter diameter generally circular ground plane;
  • FIG. 12 is a graph of simulated and measured passive antenna gain in decibels at DABIII/DMB frequencies of 174 MHz and 240 MHz for the AM/FM/DABIII/DMB antenna shown in FIGS. 7 and 8 on a one-meter diameter generally circular ground plane;
  • FIG. 13 is a graph of active antenna gain in decibels at the FM frequencies of 88 MHz and 108 MHz and at the DABIII/DMB frequencies of 174 MHz and 240 MHz measured for the AM/FM/DABIII/DMB antenna shown in FIGS. 7 and 8 on a one-meter diameter generally circular ground plane.
  • the inventors hereof recognized a need for small or compact shark fin antenna assemblies that are operable over or configured for use with multiple frequency bands, including AM (amplitude modulation) , FM (frequency modulation) , DAB (digital audio broadcasting) , and DMB (digital multimedia broadcasting) .
  • vehicle antennas operable for receiving receive AM/FM/DABIII/DMB signals are whip-style antennas or glass antennas, such as windshield or review window antennas.
  • the inventors developed and disclose herein exemplary embodiments of multiband vehicular antenna assemblies or systems that include AM/FM/DABIII/DMB antennas integrated or included in a shark fin antenna style.
  • the AM/FM/DABIII/DMB antennas have good electrical antenna performance (e.g., better than some existing antennas, etc. ) and does not require a complicated manufacturing process, which allows for a lower product cost.
  • a multiband vehicular shark fin antenna assembly includes an antenna configured for receiving AM/FM/DABIII/DMB signals.
  • the antenna comprises antenna elements (e.g., electrically-conductive traces, etc. ) on or along the first and second or opposite sides of a substrate or board (e.g., printed circuit board (PCB) material comprising FR4 composite material, etc. ) .
  • antenna elements e.g., electrically-conductive traces, etc.
  • electrically-conductive traces e.g., copper, etc.
  • the electrically-conductive traces on or along the PCB’s first side may be electrically connected or interconnected to the electrically-conductive traces on or along the PCB’s second side, e.g., by plated thru-holes or vias, etc.
  • the electrically-conductive traces on or along the PCB’s first side are configured for AM/FM frequencies, e.g., the AM frequency band from 535 kilohertz (kHz) to 1605 kHz and the FM frequency band from 88 MHz to 108 MHz.
  • the electrically-conductive traces on or along the second side e.g., FIG. 8, etc.
  • DABIII/DMB frequencies e.g., the DABIII frequency band from 174 MHz to 240 MHz and the DMB frequency band from 174 MHz to 216 MHz.
  • the electrically-conductive traces on or along the first and second PCB sides may be used simultaneously for the respective AM/FM frequencies and the DABIII/DMB frequencies.
  • a multiband vehicular antenna assembly includes one or more additional antennas operable within one or more frequency bands different than the AM/FM/DABIII/DMB frequency bands.
  • a multiband vehicular shark fin antenna assembly may be configured for use as a multiple input multiple output (MIMO) antenna assembly operable in the AM/FM/DABIII/DMB frequency bands via the AM/FM/DABIII/DMB antenna (e.g., 108, 208, etc. ) disclosed herein and operable in one or more other frequency bands associated with, e.g., cellular communications, Wi-Fi, DSRC (Dedicated Short Range Communication) , satellite signals, terrestrial signals, etc.
  • MIMO multiple input multiple output
  • a multiband vehicular shark fin antenna assembly may include one or more antennas operable as MIMO LTE (Long Term Evolution) cellular antennas.
  • a multiband vehicular shark fin antenna assembly may include one or more satellite antennas, such as a patch antenna operable with satellite digital audio radio services (SDARS) (e.g., Sirius XM Satellite Radio, etc. ) , a satellite navigation patch antenna operable with global positioning system (GPS) or global navigation satellite system (GLONASS) , etc.
  • SDARS satellite digital audio radio services
  • GPS global positioning system
  • GLONASS global navigation satellite system
  • FIGS. 1, 2, and 3 illustrate an example embodiment of an antenna assembly 100 including at least one or more aspects of the present disclosure.
  • the antenna assembly 100 includes a chassis 104 (or base) and first, second, third, and fourth antennas 108, 112, 114, and 118.
  • the antennas 108, 112, 114, 118 are supported by or atop the chassis 104 and configured to be positioned within an interior enclosure defined generally between the chassis 104 and a radome 156.
  • the first antenna 108 is a vertical monopole antenna configured for use with AM, FM, DABIII, and DMB frequencies (e.g., configured for receiving desired AM, FM, DABIII, and DMB signals, etc. ) .
  • the first antenna 108 includes, is defined by, etc. a first printed circuit board 116 (broadly, a substrate or board) .
  • the PCB 116 may comprise FR4 composite material, which includes woven fiberglass cloth with an epoxy resin binder that is flame resistant.
  • the first PCB 116 is coupled to another or second printed circuit board 120.
  • the first PCB 116 is generally perpendicular to the second PCB 120.
  • the second PCB 120 is coupled to the chassis 104 by mechanical fasteners 124.
  • the first PCB 116 may be coupled to the second PCB 120 by solder, etc.
  • FIGS. 7 and 8 show soldering areas 122 of the first PCB 116 at which solder may be applied to solder the first PCB 116 to the second PCB 120.
  • the first PCB 116 may include tab portions that extend downwardly and interconnect with corresponding slots or openings of the PCB 120 to further help position and/or couple the first PCB 116 on and/or to the second PCB 120.
  • FIG. 9 illustrates an example radome 456 under which is positioned a chassis 404 and a PCB 420.
  • the PCB 420 includes slots 425 that may receive tab portions of an AM/FM/DABIII/DMB PCB antenna (not shown) as disclosed herein.
  • FIGS. 7 and 8 illustrate first and second opposite sides 321, 323 of an exemplary embodiment of an AM/FM/DABIII/DMB antenna 308 that may be used with the antenna assemblies 100 (FIGS. 1-3) and/or antenna assembly 200 (FIGS. 4-6) .
  • the first side 321 (FIG. 7) is operable with AM/FM frequencies.
  • the second side 323 (FIG. 8) is operable with DABIII/DMB frequencies.
  • the length and width dimensions of 55 millimeters (mm) are provided for purpose of illustration only, as the antenna 308 may be configured differently (e.g., larger, smaller, shaped differently, with a different layout of traces, etc. ) in other embodiments.
  • Electrically-conductive traces 328 are provided along the first and second sides 321, 323 of a first PCB 316.
  • the electrically-conductive traces 328 along the PCB’s first side 321 may be proximity coupled to the electrically-conductive traces 328 along the PCB’s second side 323.
  • the electrically-conductive traces 328 along the PCB’s first side 321 may be electrically connected or interconnected to the electrically-conductive traces 328 along the PCB’s second side 323, e.g., by plated thru-holes or vias, etc.
  • traces on the respective first and second PCB sides may be electrically connected by one or more interconnects, e.g., solder within a thru-hole, etc.
  • the trace 330 may be soldered to the second PCB 320 for electrically connecting the trace 330 (and thus other traces 328) to the PCB 320.
  • end portions of the traces 328 may curve around or extend through the first PCB 316 (at locations toward side edge portions of the first PCB 316) and thereby interconnect corresponding traces 328 on the opposing sides 321, 323 of the first PCB 316.
  • the traces 328 define a continuous electrical path generally coiling around at least part of the AM/FM/DABIII/DMB antenna 308.
  • the traces 328 may define an inductively loaded portion of the AM/FM/DABIII/DMB antenna 308 along the front and back sides 321, 323 of the PCB 316.
  • the electrically-conductive traces 328 are operable for inductively loading the AM/FM/DABIII/DMB antenna 308.
  • the electrically-conductive traces 328 along the PCB’s first side 321 (FIG. 7) are configured for AM/FM frequencies, e.g., the AM frequency band from 535 kilohertz (kHz) to 1605 kHz and the FM frequency band from 88 MHz to 108 MHz.
  • DABIII/DMB frequencies e.g., the DABIII frequency band from 174 MHz to 240 MHz and the DMB frequency band from 174 MHz to 216 MHz.
  • the electrically-conductive traces 328 along both sides 321, 323 of the PCB 316 may be used simultaneously for the respective AM/FM frequencies and the DABIII/DMB frequencies.
  • the traces 328 may be etched along the PCB 316.
  • the traces 328 on the first side 321 of the PCB 316 include or define a first meandering portion 333 disposed generally between two vertical traces 330, 335 and below a top horizontal trace 337.
  • the first meandering portion 333 includes thirty-one generally parallel straight horizontal portions 339 and fifteen bending portions or points 341, 343 between generally upper and lower pairs of the generally parallel straight portions 339.
  • the top and bottom traces of the first meandering portion 333 are electrically connected to the vertical traces 330, 335, respectively.
  • the traces 328 on the first side 321 have an overall length of about 1589.94 millimeters with a height of 48 millimeters and width of 50 millimeters.
  • the traces 328 on the second side 323 of the PCB 316 include or define a second meandering portion 345 disposed above a bottom horizontal trace 347.
  • the second meandering portion 345 includes twelve generally parallel straight horizontal portions 349, six bending portions or points 351 along the right, and five bending portions or points 353 along the left.
  • the bending portions 351, 353 are between generally upper and lower pairs of the generally parallel straight portions 349.
  • the bottom trace of the second meandering portion 345 is electrically connected to the vertical trace 355.
  • the trace 355 is electrically connected to the bottom horizontal trace 347.
  • the trace 347 is electrically connected to the vertical trace 331, which is electrically connected by solder 329 to the vertical trace 330 on the opposite side of the PCB 316.
  • the top trace of the second meandering portion 345 has a first end connected to a bending portion 351 and a second end that is not electrically connected to another trace.
  • the second meandering portion 345 on the PCB’s second side 323 is substantially similar or identical to the upper part of the first second meandering portion 333 on the PCB’s first side 321, which upper part includes the upper twelve generally parallel straight horizontal portions 339, upper six bending portions or points 341, and upper five bending portions or points 343.
  • the traces 328 on the second side 323 have an overall length of about 674.46 millimeters with a height of 45 millimeters and width of 50 millimeters.
  • the trace 330 extends downwardly from the top trace of the first meandering portion 333 to a soldering area 322, to thereby be soldered to the PCB 320 for electrically connecting the traces 328 to the PCB 320.
  • Alternative embodiments may include other means for electrically connecting the traces 328 to the PCB 320.
  • a coupling wire may be used to electrically connect the AM/FM/DABIII/DMB antenna 308 to the PCB 320.
  • the coupling wire may connect through the PCB 320 (e.g., via a solder connection, etc. ) to the lower trace on the PCB 316.
  • one or more upper traces on the PCB 316 may be electrically connected (e.g., via a solder connection, etc. ) to an electrically-conductive structure or element (e.g., top load element or plate, etc. ) that helps define a capacitively loaded portion of the AM/FM antenna 308.
  • an electrically-conductive structure or element e.g., top load element or plate, etc.
  • the traces 328 of the PCB 316 are not electrically connected to a top load element or plate, and the traces 328 are operable with AM/FM/DABIII/DMB frequencies.
  • an AM/FM/DABIII/DMB antenna may also include a clip (e.g., electrically-conductive spring clip, etc. ) coupled to or within an upper portion of the antenna.
  • the clip may be constructed from a suitable electrically conductive material (e.g., metal, etc. ) and is configured to engage an inner electrically-conductive portion within the radome (e.g., an insert or top load plate inserted into the cover, etc. ) when the cover is positioned over the antenna assembly.
  • the clip may operate to establish electrical contact between the AM/FM/DABIII/DMB antenna and the inner electrically-conductive portion within the radome.
  • the clip is generally C-shaped and defines a generally English-language letter C shape.
  • antenna assemblies can have clips with other suitable shapes or no clips at all.
  • the antenna 108 is configured or tuned to be operable at frequencies within the AM frequency band, FM frequency band, DABIII frequency band, and DMB frequency band.
  • the antenna 108 may be configured to be resonant across the AM, FM, DABIII, DMB frequency bands or across only portions of one of these bands.
  • the antenna 108 may be tuned as desired for operation at desired frequency bands by, for example, adjusting size and/or number and/or orientation and/or type of the traces 128 provided along the first and second sides 121, 123 of the PCB 116, etc.
  • the antenna 108 could be tuned (or retuned) , as desired, to Japanese FM frequencies (e.g., including frequencies between about 76 MHz and about 93 MHz, etc. ) , DAB-VHF-III (e.g., including frequencies between about 174 MHz and about 240 MHz, etc. ) , other similar VHF bands, other frequency bands, etc.
  • Japanese FM frequencies e.g., including frequencies between about 76 MHz and about 93 MHz, etc.
  • DAB-VHF-III e.g., including frequencies between about 174 MHz and about 240 MHz, etc.
  • other similar VHF bands e.g., other frequency bands, etc.
  • a multiband vehicular shark fin antenna assembly may include only the AM/FM/DABIII/DMB antenna 108 as described above. In other exemplary embodiments, a multiband vehicular shark fin antenna assembly may include the AM/FM/DABIII/DMB antenna 108 and one or more other antennas operable within one or more frequency bands different than the AM, FM, DABIII, and DMB frequency bands.
  • the multiband vehicular shark fin antenna assembly 100 includes second, third and fourth antennas 112, 114, and 118.
  • the second antenna 112 is operable with satellite navigation signals (e.g., global positioning system (GPS) , global navigation satellite system (GLONASS) , etc. ) .
  • the third and fourth antennas 114 and 118 are operable with cellular signals (e.g., Long Term Evolution (LTE) , etc. ) .
  • LTE Long Term Evolution
  • the second antenna 112 comprises a patch antenna coupled to a third PCB 113.
  • the PCB 113 is coupled to the chassis 104 by mechanical fasteners 124 at a location toward a forward portion of the chassis 104 between the third antenna 114 and the first antenna 108.
  • the second antenna 112 may be operable at one or more desired frequencies including, for example, GPS frequencies or GLONASS frequencies, etc.
  • the second antenna 112 may also be tuned as desired for operation at desired frequency bands by, for example, changing dielectric materials, changing sizes of metal plating, etc. used in connection with the second antenna 112, etc.
  • the third and fourth antennas 114, 118 comprise primary and secondary cellular antennas, respectively.
  • the third and fourth antennas 114 and 118 may also be referred to as front and back antennas 114, 118 as the third antenna 114 is located at or closer to the front of the antenna assembly 100 than the fourth antenna 118, and the fourth antenna 118 is located at or closer to the back of the antenna assembly 100 than the third antenna 114.
  • the primary or front cellular antenna 114 is configured to be operable for both receiving and transmitting communication signals within one or more cellular frequency bands (e.g., LTE, etc. ) .
  • the secondary or back cellular antenna 118 is configured to be operable for receiving (but not transmitting) communication signals within one or more cellular frequency bands (e.g., LTE, etc. ) .
  • the third and fourth antennas 114, 118 may instead comprise secondary and primary cellular antennas, respectively.
  • the third or front antenna 114 would be operable for receiving (but not transmitting) communication signals within one or more cellular frequency bands (e.g., LTE, etc. ) .
  • the fourth or back antenna 118 would be operable for both receiving and transmitting communication signals within one or more cellular frequency bands (e.g., LTE, etc. ) .
  • the front and back cellular antennas 114, 118 are positioned relatively close to each other, but the antenna assembly 100 may be configured such that sufficient de-correlation (e.g., a correlation less than about 25 percent, etc. ) and sufficiently low coupling exists despite the close spacing of the cellular antennas 114, 118.
  • the antenna assembly 100 may be configured such there is at least about 15 decibels of isolation between the cellular antennas 114, 118.
  • Exemplary embodiments include MIMO cellular antennas 114, 118 that comprise inverted-F antennas (IFAs) .
  • Other exemplary embodiments may comprise one or more cellular antennas 114, 118 configured differently, such as a monopole antenna, an inverted L antenna (ILA) , a planar inverted F antenna (PIFA) , a stamped mast antenna (e.g., stamped and bent sheet metal, etc. ) , an antenna made of different materials and/or via different manufacturing processes, etc.
  • the third and fourth cellular antennas 114, 118 are connected to and supported by respective third and fourth PCBs 115, 119.
  • the third and fourth cellular antennas 114, 118 may have one or more bent or formed tabs at the bottom, which may provide areas for soldering to the respective PCB 115 and 119.
  • the third and fourth cellular antennas 114, 118 may also include downwardly extending projections that may be at least partially received within corresponding openings in the PCB 115 and 119, respectively, for example, to make electrical connection to a PCB component on the opposite side of the PCB.
  • other embodiments may include other means for soldering or connecting the third cellular antenna 114 to the PCB 115.
  • the PCBs 115 and 119 are supported by the chassis or body 104.
  • the PCBs 115 and 119 are mechanically fastened via fasteners (e.g., screws, etc. ) to the chassis 104.
  • each antenna 114, 118 includes a slot or opening 157, 159, respectively.
  • Clips e.g., electrically-conductive spring clips, etc.
  • the clips may be coupled to or within the slot 157 and. /or 159.
  • the clips may be constructed from a suitable electrically conductive material (e.g., metal, etc. ) and be configured to engage an inner electrically-conductive portion within the radome 156 (e.g., an insert or top load plate inserted into the cover, etc. ) when the cover is positioned over the antenna assembly 100.
  • the clips may operate to establish electrical contact between the cellular antenna 114, 118 and the inner electrically-conductive portion within the radome 156.
  • the clips are generally C-shaped and define a generally English-language letter C shape.
  • antenna assemblies can have clips with other suitable shapes or no clips at all.
  • An electrical connector may be used for coupling the antenna assembly 100 or 200 to a suitable communication link (e.g., a coaxial cable, etc. ) in a mobile platform or vehicle (e.g., through an opening in the chassis 104 aligned with an opening in a roof of a car, etc. ) .
  • the PCBs may receive signal inputs from the respective antennas, process the signal inputs, and transmit the processed signal inputs to the suitable communication link.
  • one or more PCBs may process signal inputs to be transmitted via or through the one or more respective antennas.
  • the electrical connector may be an ISO (International Standards Organization) standard electrical connector or a Fakra connector attached to one or more of the PCBs.
  • a coaxial cable may be relatively easily connected to the electrical connector and used for communicating signals received by the antennas to devices in the vehicle.
  • the use of standard ISO electrical connectors or Fakra connectors may allow for reduced costs as compared to those antenna installations that require a customized design and tooling for the electrical connection between the antenna assembly and cable.
  • the pluggable electrical connections between the communication link and the antenna assembly’s electrical connector may be accomplished by the installer without the installer having to complexly route wiring or cabling through the vehicle body wall. Accordingly, the pluggable electrical connection may be easily accomplished without requiring any particular technical and/or skilled operations on the part of the installer.
  • Alternative embodiments may include using other types of electrical connectors and communication links (e.g., pig tail connections, etc. ) besides standard ISO electrical connectors, Fakra connectors, and coaxial cables.
  • the radome 156 is a shark fin-style radome having a length of 220 millimeters, a height of 69.5 millimeters, a maximum width of about 66 millimeters, and a minimum width (near the top) of 12.6 millimeters.
  • the radome 156 can substantially seal the components of the antenna assembly within the radome 156 thereby protecting the components against ingress of contaminants (e.g., dust, moisture, etc. ) into an interior enclosure of the radome 156.
  • the radome 156 can provide an aesthetically pleasing appearance to the antenna assembly 100, and can be configured (e.g., sized, shaped, constructed, etc. ) with an aerodynamic configuration.
  • the radome 156 has an aesthetically pleasing, aerodynamic shark-fin configuration.
  • antenna assemblies may include radomes having configurations different than illustrated herein, for example, having configurations other than shark-fin configurations, etc.
  • the radome 156 may also be formed from a wide range of materials, such as, for example, polymers, urethanes, plastic materials (e.g., polycarbonate blends, Polycarbonate-Acrylnitril-Butadien-Styrol-Copolymer (PC/ABS) blend, etc. ) , glass-reinforced plastic materials, synthetic resin materials, thermoplastic materials (e.g., GE Plastics XP4034 Resin, etc. ) , etc. within the scope of the present disclosure.
  • plastic materials e.g., polycarbonate blends, Polycarbonate-Acrylnitril-Butadien-Styrol-Copolymer (PC/ABS) blend, etc.
  • the radome 156 is configured to fit over the first, second, third, and fourth antennas 108, 112, 114, and 118 and their respective PCBs 120, 113, 115, and 119.
  • the radome 156 is configured to be secured to the chassis 104.
  • the chassis 104 is configured to couple to a vehicle body wall, e.g., a roof of a car, etc.
  • the radome 156 may secure to the chassis 104 via any suitable operation, for example, a snap fit connection, mechanical fasteners (e.g., screws, other fastening devices, etc. ) , ultrasonic welding, solvent welding, heat staking, latching, bayonet connections, hook connections, integrated fastening features, etc.
  • the radome 156 may be secured to the chassis by screws 168.
  • the radome 156 may connect directly to a vehicle body wall within the scope of the present disclosure.
  • the chassis 104 may be formed from materials similar to those used to form the radome 156.
  • the material of the chassis 104 may be formed from one or more alloys, e.g., zinc alloy, etc.
  • the chassis 104 may be formed from plastic, injection molded from polymer, steel, and other materials (including composites) by a suitable forming process, for example, a die cast process, etc. within the scope of the present disclosure.
  • the antenna assembly 100 also includes a fastener member 172 (e.g., threaded mounting bolt having a hexagonal head, etc. ) , a first retention component 176 (e.g., retaining clip, etc. ) , and a second retention component 180 (e.g., an insulator clip, etc. ) .
  • the fastener member 172 and retention members 176, 180 may be used to mount the antenna assembly to an automobile roof, hood, trunk (e.g., with an unobstructed view overhead or toward the zenith, etc. ) where the mounting surface of the automobile acts as a ground plane for the antenna assembly 100 and improves reception of signals.
  • the relatively large size of the ground plane e.g., a car roof, etc.
  • the large size of the ground plane would not be considered negligible compared to the operating wavelength of the AM/FM/DABIII/DMB antenna 108.
  • the first retaining component 176 includes legs, and the second retaining component 180 includes tapered faces.
  • the legs of the first retaining component 176 are configured to make contact with the corresponding tapered faces of the second retaining component 180.
  • the first and second retaining components 176, 180 also include aligned openings through which passes the fastener member 172 to be threadedly connected to a threaded opening in the chassis 104.
  • the fastener member 172 and retaining components 176, 180 allow the antenna assembly 100 to be installed and fixedly mounted to a vehicle body wall.
  • the fastener member 172 and retaining components 176, 180 may first be assembled onto the chassis 104 before the antenna installation onto the vehicle. Then, the antenna assembly 100 may be positioned (from the external side of the vehicle) relative to a mounting hole in the vehicle body wall such that the fastener member 172 and retaining components 176, 180 are inserted into the mounting hole (e.g., pulled downward through the mounting hole, etc. ) .
  • the chassis 104 is then disposed along the external side of the vehicle body wall.
  • the fastener 172 is accessible from inside the vehicle. In this stage of the installation process, the antenna assembly 100 may thus be held in place relative to the vehicle body wall in a first installed position.
  • first retaining component 176 When the first retaining component 176 is compressively moved generally towards the mounting hole by driving the fastener member 172 in a direction generally towards the antenna base 104, the legs of first retaining component 176 may deform and expand generally outwardly relative to the mounting hole against the interior compartment side of the vehicle body wall, thereby securing the antenna assembly 100 to the vehicle body wall in a second, operational installed position.
  • This installation process is but one example way to install the antenna assembly 100 to a vehicle.
  • Alternative mechanisms, processes, and means may also be used for installing an antenna assembly (e.g., antenna assembly 100, etc. ) to a vehicle in exemplary embodiments.
  • the antenna assembly 100 includes a sealing member 184 (e.g., an O-ring, a resiliently compressible elastomeric or foam gasket, a PORON microcellular urethane foam gasket, etc. ) that will be positioned between the chassis 104 and the roof of a car (or other mounting surface) .
  • the sealing member 184 may substantial seal the chassis 104 against the roof and substantially seal the mounting hole in the roof.
  • the antenna assembly 100 also includes a sealing member 188 (e.g., an O-ring, a resiliently compressible elastomeric or foam gasket, caulk, adhesives, other suitable packing or sealing members, etc. ) that is positioned between the radome 156 and the chassis 104 for substantially sealing the radome 156 against the chassis 104.
  • the sealing member 188 may be at least partially seated within a groove defined along or by the chassis 104.
  • the antenna assembly 100 may also include one or more gaskets (not shown) coupled to a bottom of the chassis 104.
  • the gaskets may help ensure that the chassis 104 will be grounded to a vehicle roof and also allows the antenna assembly 100 to be used with different roof curvatures.
  • the gaskets may include electrically-conductive fingers (e.g., metallic or metal spring fingers, etc. ) .
  • the gaskets comprise fingerstock gaskets from Laird Technologies.
  • FIGS. 4, 5, and 6 illustrates another example embodiment of an antenna assembly 200 including at least one or more aspects of the present disclosure.
  • the antenna assembly 200 includes a radome, housing, or cover 256 positionable over the first, second, third, and fourth antennas 208, 212, 214, and 218.
  • the antenna assembly 200 may include components and features similar to or identical to the corresponding components or features of the antenna assembly 100 shown in FIGS. 1, 2, and 3.
  • the radome 256 and the first, second, third, and fourth antennas 208, 212, 214, and 218 may be similar or identical to the radome 156 and the first, second, third, and fourth antennas 108, 112, 114, and 118.
  • the second antenna 212 e.g., satellite navigation patch antenna operable with GPS or GLONASS signals, etc.
  • the first antenna 208 e.g., AM/FM/DABIII/DMB antenna, etc.
  • the fourth antenna 218 e.g., LTE MIMO cellular antenna, etc.
  • FIGS. 10 through 13 provide analysis results simulated for the AM/FM/DABIII/DMB antenna 108 and also measured for a prototype of the AM/FM/DABIII/DMB antenna 108 shown in FIGS. 7 and 8. These analysis results shown in FIGS. 10 through 13 are provided only for purposes of illustration and not for purposes of limitation. Generally, these results show that the antenna assembly has good AM/FM/DABIII, DMB performance even with its relatively small or compact overall size and narrow profile as compared to some existing shark fin antennas. In alternative embodiments, the antenna assembly may be configured differently and have different operational or performance parameters than what is shown in FIGS. 10 through 13.
  • FIG. 10 is a graph of simulated and measured return loss in decibels (dB) versus frequency in Megahertz (MHz) for the AM/FM/DABIII/DMB antenna 108 on a one-meter diameter generally circular ground plane.
  • FIG. 11 is a graph of simulated and measured passive antenna gain in decibels at FM frequencies of 88 MHz and 108 MHz for the AM/FM/DABIII/DMB antenna 108 on a one-meter diameter generally circular ground plane.
  • FIG. 12 is a graph of simulated and measured passive antenna gain in decibels at DABIII/DMB frequencies of 174 MHz and 240 MHz for the AM/FM/DABIII/DMB antenna 108 on a one-meter diameter generally circular ground plane.
  • FIG. 10 is a graph of simulated and measured return loss in decibels (dB) versus frequency in Megahertz (MHz) for the AM/FM/DABIII/DMB antenna 108 on a one-meter diameter generally circular ground plane.
  • FIG. 11 is
  • 13 is a graph of active antenna gain in decibels at the FM frequencies of 88 MHz and 108 MHz and at the DABIII/DMB frequencies of 174 MHz and 240 MHz measured for the AM/FM/DABIII/DMB antenna 108 on a one-meter diameter generally circular ground plane.
  • a multiband vehicular shark fin antenna assembly includes only a single AM/FM/DABIII/DMB antenna (e.g., AM/FM/DABIII/DMB antenna 108, etc. ) without any other antennas.
  • a multiband vehicular shark fin antenna assembly (e.g., 100, 200, etc. ) includes the AM/FM/DABIII/DMB antenna 108 in addition to one or more other antennas (e.g., 112, 114, 118, 212, 214, 218, etc. ) .
  • other antennas includes satellite navigation antennas (e.g., GPS patch antenna, GLONASS patch antenna, etc. ) and/or SDARS antennas (e.g., patch antenna, etc. ) .
  • a satellite navigation patch antenna may be stacked on top of or positioned adjacent or side-by side with a SDARS patch antenna.
  • exemplary embodiments of antenna assemblies may be configured for use as multiband multiple input multiple output (MIMO) antenna assemblies operable in the AM/FM/DABIII/DMB frequency bands via an antenna (e.g., 108, etc. ) disclosed herein and operable in one or more other frequency bands associated with, e.g., cellular communications, Wi-Fi, DSRC (Dedicated Short Range Communication) , satellite signals, terrestrial signals, etc.
  • MIMO multiband multiple input multiple output
  • exemplary embodiments of antenna assemblies may be operable in the AM, FM, DABIII, DMB frequency bands, and one or more or any combination (or all) of the following frequency bands: global positioning system (GPS) , global navigation satellite system (GLONASS) , Doppler Orbitography and Radio-positioning Integrated by Satellite (DORIS) , BeiDou Navigation Satellite System (BDS) , satellite digital audio radio services (SDARS) (e.g., Sirius XM Satellite Radio, etc.
  • GPS global positioning system
  • GLONASS global navigation satellite system
  • DORIS Doppler Orbitography and Radio-positioning Integrated by Satellite
  • BDS BeiDou Navigation Satellite System
  • SDARS satellite digital audio radio services
  • exemplary embodiments are disclosed herein of multiband vehicular shark fin antenna assemblies that may provide one or more (but not necessarily any or all) of the following advantages or benefits as compared to some existing multiband vehicular antenna assemblies.
  • exemplary embodiments may have a better appearance or styling (e.g., an aesthetically pleasing, aerodynamic shark-fin configuration, etc. ) and/or may be narrower and smaller size and shape.
  • Exemplary embodiments may have good electrical performance, such as shown in FIGS. 10 through 13.
  • the AM/FM/DABIII/DMB antenna may be a relatively low cost part and/or that may be manufactured via a relatively low cost and not overly complicated process.
  • various antenna assemblies e.g., 100, 200, etc.
  • various antenna assemblies may be mounted to a wide range of supporting structures, including stationary platforms and mobile platforms.
  • an antenna assembly e.g., 100, 200, etc.
  • an antenna assembly could be mounted to supporting structure of a bus, train, aircraft, bicycle, motor cycle, boat, among other mobile platforms. Accordingly, the specific references to motor vehicles or automobiles herein should not be construed as limiting the scope of the present disclosure to any specific type of supporting structure or environment.
  • Example embodiments are provided so that this disclosure will be thorough, and will fully convey the scope to those who are skilled in the art. Numerous specific details are set forth such as examples of specific components, devices, and methods, to provide a thorough understanding of embodiments of the present disclosure. It will be apparent to those skilled in the art that specific details need not be employed, that example embodiments may be embodied in many different forms, and that neither should be construed to limit the scope of the disclosure. In some example embodiments, well-known processes, well-known device structures, and well-known technologies are not described in detail.
  • parameter X may have a range of values from about A to about Z.
  • disclosure of two or more ranges of values for a parameter subsume all possible combination of ranges for the value that might be claimed using endpoints of the disclosed ranges.
  • parameter X is exemplified herein to have values in the range of 1 –10, or 2 –9, or 3 –8, it is also envisioned that Parameter X may have other ranges of values including 1 –9, 1 –8, 1 –3, 1 -2, 2 –10, 2 –8, 2 –3, 3 –10, and 3 –9.
  • first, second, third, etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms may be only used to distinguish one element, component, region, layer or section from another region, layer or section. Terms such as “first, ” “second, ” and other numerical terms when used herein do not imply a sequence or order unless clearly indicated by the context. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the example embodiments.
  • Spatially relative terms such as “inner, ” “outer, ” “beneath, ” “below, ” “lower, ” “above, ” “upper” and the like, may be used herein for ease of description to describe one element or feature’s relationship to another element (s) or feature (s) as illustrated in the figures.
  • Spatially relative terms may be intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “below” or “beneath” other elements or features would then be oriented “above” the other elements or features.
  • the example term “below” can encompass both an orientation of above and below.
  • the device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.

Abstract

Disclosed are exemplary embodiments of shark fin antenna assemblies. In an exemplary embodiment, a shark fin antenna assembly for installation to a vehicle body wall is disclosed. The shark fin antenna assembly includes a chassis and a radome having a shark-fin configuration. The radome is coupled to the chassis such that an interior enclosure is collectively defined by the radome and the chassis. A first antenna is within the interior enclosure. The first antenna may be configured to be operable with AM/FM/DABIII/DMB frequencies.

Description

SHARK FIN ANTENNA ASSEMBLIES
CROSS-REFERENCE TO RELATED APPLICATION
This application is a PCT International Application of Chinese Invention Patent Application No. 201410389413.3 filed August 8, 2014. The entire disclosure of the above application is incorporated herein by reference.
FIELD
The present disclosure generally relates to shark fin antenna assemblies.
BACKGROUND
This section provides background information related to the present disclosure which is not necessarily prior art.
Different types of antennas are used in the automotive industry, including AM/FM radio antennas, satellite digital audio radio service antenna (SDARS) , cellular phone antennas, satellite navigation antennas, etc. Multiband antenna assembles are also commonly used in the automotive industry. A multiband antenna assembly typically includes multiple antennas to cover and operate at multiple frequency ranges. A printed circuit board (PCB) having radiating antenna elements is a typical component of the multiband antenna assembly.
Automotive antennas may be installed or mounted on a vehicle surface, such as the roof, trunk, or hood of the vehicle to help ensure that the antennas have unobstructed views overhead or toward the zenith. The antenna may be connected (e.g., via a coaxial cable, etc. ) to one or more electronic devices (e.g., a radio receiver, a touchscreen display, navigation device, cellular phone, etc. ) inside the passenger compartment of the vehicle, such that the multiband antenna assembly is operable for transmitting and/or receiving signals to/from the electronic device (s) inside the vehicle.
SUMMARY
This section provides a general summary of the disclosure, and is not a comprehensive disclosure of its full scope or all of its features.
According to various aspects, exemplary embodiments are disclosed of shark fin antenna assemblies. In an exemplary embodiment, a shark fin antenna assembly for installation to a vehicle body wall is disclosed. The shark fin antenna assembly includes a chassis and a radome having a shark-fin configuration. The radome is coupled to the chassis such that an interior enclosure is collectively defined by the radome and the chassis. A first antenna is within the interior enclosure. The first antenna may be configured to be operable with AM/FM/DABIII/DMB frequencies. The first antenna may include a printed circuit board having a first side and an opposing second side, and traces along the first and second sides of the printed circuit board. The traces along the first side of the printed circuit board may be configured to be operable with frequencies from 535 kilohertz to 1605 kilohertz and with frequencies from 88 megahertz to 108 megahertz. The traces along the second side of the printed circuit board may configured to be operable with frequencies from 174 megahertz to 240 MHz
Further areas of applicability will become apparent from the description provided herein. The description and specific examples in this summary are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
DRAWINGS
The drawings described herein are for illustrative purposes only of selected embodiments and not all possible implementations, and are not intended to limit the scope of the present disclosure.
FIG. 1 is an exploded perspective view of an example embodiment of an antenna assembly including at least one or more aspects of the present disclosure;
FIG. 2 is a perspective view of the antenna assembly shown in FIG. 1 after being assembled together where the cover or radome is not shown, and illustrating a first side of the AM/FM/DABIII/DMB antenna that is configured to be operable with AM/FM frequencies;
FIG. 3 is a perspective view of the antenna assembly shown in FIG. 2, and illustrating the opposite second side of the AM/FM/DABIII/DMB antenna that is configured to be operable with DABIII/DMB frequencies;
FIG. 4 is an exploded perspective view of another example embodiment of an antenna assembly including at least one or more aspects of the present disclosure;
FIG. 5 is a perspective view of the antenna assembly shown in FIG. 4 after being assembled together where the cover or radome is not shown, and illustrating a first side of the AM/FM/DABIII/DMB antenna that is configured to be operable with AM/FM frequencies;
FIG. 6 is a perspective view of the antenna assembly shown in FIG. 5, and illustrating the opposite second side of the AM/FM/DABIII/DMB antenna that is configured to be operable with DABIII/DMB frequencies;
FIG. 7 illustrates a first side of an AM/FM/DABIII/DMB antenna that may be used with the antenna assemblies shown in FIGS. 1 through 6, where the first side is operable with AM/FM frequencies and the dimensions are provided for purpose of illustration only;
FIG. 8 illustrates a second or opposite side of the AM/FM/DABIII/DMB antenna shown in FIG. 7, where the second side is operable with DABIII/DMB frequencies and the dimensions are provided for purpose of illustration only;
FIG. 9 is a perspective view showing a shark-fin style radome or cover that may be positioned over an AM/FM/DABIII/DMB antenna according to exemplary embodiments;
FIG. 10 is a graph of simulated and measured return loss in decibels (dB) versus frequency in Megahertz (MHz) for the AM/FM/DABIII/DMB antenna shown in FIGS. 7 and 8 on a one-meter diameter generally circular ground plane;
FIG. 11 is a graph of simulated and measured passive antenna gain in decibels at FM frequencies of 88 MHz and 108 MHz for the AM/FM/DABIII/DMB antenna shown in FIGS. 7 and 8 on a one-meter diameter generally circular ground plane;
FIG. 12 is a graph of simulated and measured passive antenna gain in decibels at DABIII/DMB frequencies of 174 MHz and 240 MHz for the AM/FM/DABIII/DMB antenna shown in FIGS. 7 and 8 on a one-meter diameter generally circular ground plane; and
FIG. 13 is a graph of active antenna gain in decibels at the FM frequencies of 88 MHz and 108 MHz and at the DABIII/DMB frequencies of 174 MHz and 240 MHz measured for the AM/FM/DABIII/DMB antenna shown in FIGS. 7 and 8 on a one-meter diameter generally circular ground plane.
Corresponding reference numerals indicate corresponding parts throughout the several views of the drawings.
DETAILED DESCRIPTION
Example embodiments will now be described more fully with reference to the accompanying drawings.
The inventors hereof recognized a need for small or compact shark fin antenna assemblies that are operable over or configured for use with multiple frequency bands, including AM (amplitude modulation) , FM (frequency modulation) , DAB (digital audio broadcasting) , and DMB (digital multimedia broadcasting) . Currently, vehicle antennas operable for receiving receive AM/FM/DABIII/DMB signals are whip-style antennas or glass antennas, such as windshield or review window antennas. After recognizing the above, the inventors developed and disclose herein exemplary embodiments of multiband vehicular antenna assemblies or systems that include AM/FM/DABIII/DMB antennas integrated or included in a shark fin antenna style. In such exemplary embodiments, the AM/FM/DABIII/DMB antennas have good electrical antenna performance (e.g., better than some existing antennas, etc. ) and does not require a complicated manufacturing process, which allows for a lower product cost.
In exemplary embodiments, a multiband vehicular shark fin antenna assembly includes an antenna configured for receiving AM/FM/DABIII/DMB signals. The antenna comprises antenna elements (e.g., electrically-conductive traces, etc. ) on or along the first and second or opposite sides of a substrate or board (e.g., printed circuit board (PCB) material comprising FR4 composite material, etc. ) . As disclosed herein, electrically-conductive traces (e.g., copper, etc. ) are on or along the first and second or opposite sides of a PCB. The electrically-conductive traces on or along the PCB’s first side may be electrically connected or interconnected to the electrically-conductive traces on or along the PCB’s second side, e.g., by plated thru-holes or vias, etc. The electrically-conductive traces on or along the PCB’s first side (e.g., FIG. 7, etc. ) are configured for AM/FM frequencies, e.g., the AM frequency band from 535 kilohertz (kHz) to 1605 kHz and the FM frequency band from 88 MHz to 108 MHz. The electrically-conductive traces on or along the second side (e.g., FIG. 8, etc. ) are configured for DABIII/DMB frequencies, e.g., the DABIII frequency band from 174 MHz to 240 MHz and the DMB frequency band from 174 MHz to 216 MHz. The electrically-conductive traces on or along the first and second PCB sides may be used simultaneously for the respective AM/FM frequencies and the DABIII/DMB frequencies.
In some exemplary embodiments, a multiband vehicular antenna assembly includes one or more additional antennas operable within one or more frequency bands different than the AM/FM/DABIII/DMB frequency bands. For example, a multiband vehicular shark fin antenna assembly may be configured for use as a multiple input multiple output (MIMO) antenna assembly operable in the AM/FM/DABIII/DMB frequency bands via the AM/FM/DABIII/DMB antenna (e.g., 108, 208, etc. ) disclosed herein and operable in one or more other frequency bands associated with, e.g., cellular communications, Wi-Fi, DSRC (Dedicated Short Range Communication) , satellite signals, terrestrial signals, etc. For example, a multiband vehicular shark fin antenna assembly may include one or more antennas operable as MIMO LTE (Long Term Evolution) cellular antennas. Additionally, or alternatively, a multiband vehicular shark fin antenna assembly may include one or more satellite antennas, such as a patch antenna operable with satellite digital audio radio services (SDARS) (e.g., Sirius XM Satellite Radio, etc. ) , a satellite navigation patch antenna operable with global positioning system (GPS) or global navigation satellite system (GLONASS) , etc.
With reference now to the drawings, FIGS. 1, 2, and 3 illustrate an example embodiment of an antenna assembly 100 including at least one or more aspects of the present disclosure. As shown, the antenna assembly 100 includes a chassis 104 (or base) and first, second, third, and  fourth antennas  108, 112, 114, and 118. As shown in FIGS. 2 and 3, the  antennas  108, 112, 114, 118 are supported by or atop the chassis 104 and configured to be positioned within an interior enclosure defined generally between the chassis 104 and a radome 156.
The first antenna 108 is a vertical monopole antenna configured for use with AM, FM, DABIII, and DMB frequencies (e.g., configured for receiving desired AM, FM, DABIII, and DMB signals, etc. ) . In this exemplary embodiment, the first antenna 108 includes, is defined by, etc. a first printed circuit board 116 (broadly, a substrate or board) . By way of example, the PCB 116 may comprise FR4 composite material, which includes woven fiberglass cloth with an epoxy resin binder that is flame resistant.
The first PCB 116 is coupled to another or second printed circuit board 120. The first PCB 116 is generally perpendicular to the second PCB 120. The second PCB 120 is coupled to the chassis 104 by mechanical fasteners 124. The first PCB 116 may be coupled to the second PCB 120 by solder, etc. For example, FIGS. 7 and 8 show soldering areas 122 of the first  PCB 116 at which solder may be applied to solder the first PCB 116 to the second PCB 120. Other suitable couplings may be used as desired. In addition, the first PCB 116 may include tab portions that extend downwardly and interconnect with corresponding slots or openings of the PCB 120 to further help position and/or couple the first PCB 116 on and/or to the second PCB 120. For example, FIG. 9 illustrates an example radome 456 under which is positioned a chassis 404 and a PCB 420. As shown, the PCB 420 includes slots 425 that may receive tab portions of an AM/FM/DABIII/DMB PCB antenna (not shown) as disclosed herein.
FIGS. 7 and 8 illustrate first and second  opposite sides  321, 323 of an exemplary embodiment of an AM/FM/DABIII/DMB antenna 308 that may be used with the antenna assemblies 100 (FIGS. 1-3) and/or antenna assembly 200 (FIGS. 4-6) . The first side 321 (FIG. 7) is operable with AM/FM frequencies. The second side 323 (FIG. 8) is operable with DABIII/DMB frequencies. The length and width dimensions of 55 millimeters (mm) are provided for purpose of illustration only, as the antenna 308 may be configured differently (e.g., larger, smaller, shaped differently, with a different layout of traces, etc. ) in other embodiments.
Electrically-conductive traces 328 (broadly, electrical conductors or antenna elements) are provided along the first and  second sides  321, 323 of a first PCB 316. The electrically-conductive traces 328 along the PCB’s first side 321 may be proximity coupled to the electrically-conductive traces 328 along the PCB’s second side 323. Alternatively, the electrically-conductive traces 328 along the PCB’s first side 321 may be electrically connected or interconnected to the electrically-conductive traces 328 along the PCB’s second side 323, e.g., by plated thru-holes or vias, etc. For example, traces on the respective first and second PCB sides may be electrically connected by one or more interconnects, e.g., solder within a thru-hole, etc.
The trace 330 may be soldered to the second PCB 320 for electrically connecting the trace 330 (and thus other traces 328) to the PCB 320. In alternative exemplary embodiments, end portions of the traces 328 may curve around or extend through the first PCB 316 (at locations toward side edge portions of the first PCB 316) and thereby interconnect corresponding traces 328 on the opposing  sides  321, 323 of the first PCB 316. In such alternative embodiments, the traces 328 define a continuous electrical path generally coiling around at least part of the AM/FM/DABIII/DMB antenna 308.
The traces 328 may define an inductively loaded portion of the AM/FM/DABIII/DMB antenna 308 along the front and  back sides  321, 323 of the PCB 316. In  operation, the electrically-conductive traces 328 are operable for inductively loading the AM/FM/DABIII/DMB antenna 308. The electrically-conductive traces 328 along the PCB’s first side 321 (FIG. 7) are configured for AM/FM frequencies, e.g., the AM frequency band from 535 kilohertz (kHz) to 1605 kHz and the FM frequency band from 88 MHz to 108 MHz. The electrically-conductive traces 328 along the PCB’s second side 323 (FIG. 8) are configured for DABIII/DMB frequencies, e.g., the DABIII frequency band from 174 MHz to 240 MHz and the DMB frequency band from 174 MHz to 216 MHz. The electrically-conductive traces 328 along both  sides  321, 323 of the PCB 316 may be used simultaneously for the respective AM/FM frequencies and the DABIII/DMB frequencies.
The traces 328 (e.g., copper, etc. ) may be etched along the PCB 316. In the illustrated embodiment of FIG. 7, the traces 328 on the first side 321 of the PCB 316 include or define a first meandering portion 333 disposed generally between two  vertical traces  330, 335 and below a top horizontal trace 337. The first meandering portion 333 includes thirty-one generally parallel straight horizontal portions 339 and fifteen bending portions or points 341, 343 between generally upper and lower pairs of the generally parallel straight portions 339. The top and bottom traces of the first meandering portion 333 are electrically connected to the  vertical traces  330, 335, respectively. By way of example only, the traces 328 on the first side 321 have an overall length of about 1589.94 millimeters with a height of 48 millimeters and width of 50 millimeters.
In the illustrated embodiment of FIG. 8, the traces 328 on the second side 323 of the PCB 316 include or define a second meandering portion 345 disposed above a bottom horizontal trace 347. The second meandering portion 345 includes twelve generally parallel straight horizontal portions 349, six bending portions or points 351 along the right, and five bending portions or points 353 along the left. The bending  portions  351, 353 are between generally upper and lower pairs of the generally parallel straight portions 349. The bottom trace of the second meandering portion 345 is electrically connected to the vertical trace 355. In turn, the trace 355 is electrically connected to the bottom horizontal trace 347. The trace 347 is electrically connected to the vertical trace 331, which is electrically connected by solder 329 to the vertical trace 330 on the opposite side of the PCB 316. The top trace of the second meandering portion 345 has a first end connected to a bending portion 351 and a second end that is not electrically connected to another trace. In one exemplary embodiment, the second  meandering portion 345 on the PCB’s second side 323 is substantially similar or identical to the upper part of the first second meandering portion 333 on the PCB’s first side 321, which upper part includes the upper twelve generally parallel straight horizontal portions 339, upper six bending portions or points 341, and upper five bending portions or points 343. By way of example only, the traces 328 on the second side 323 have an overall length of about 674.46 millimeters with a height of 45 millimeters and width of 50 millimeters.
With continued reference to FIG. 7, the trace 330 extends downwardly from the top trace of the first meandering portion 333 to a soldering area 322, to thereby be soldered to the PCB 320 for electrically connecting the traces 328 to the PCB 320. Alternative embodiments may include other means for electrically connecting the traces 328 to the PCB 320. For example, a coupling wire may be used to electrically connect the AM/FM/DABIII/DMB antenna 308 to the PCB 320. The coupling wire may connect through the PCB 320 (e.g., via a solder connection, etc. ) to the lower trace on the PCB 316. In alternative embodiments, one or more upper traces on the PCB 316 may be electrically connected (e.g., via a solder connection, etc. ) to an electrically-conductive structure or element (e.g., top load element or plate, etc. ) that helps define a capacitively loaded portion of the AM/FM antenna 308. But in the illustrated embodiments, the traces 328 of the PCB 316 are not electrically connected to a top load element or plate, and the traces 328 are operable with AM/FM/DABIII/DMB frequencies.
In some embodiments, an AM/FM/DABIII/DMB antenna may also include a clip (e.g., electrically-conductive spring clip, etc. ) coupled to or within an upper portion of the antenna. The clip may be constructed from a suitable electrically conductive material (e.g., metal, etc. ) and is configured to engage an inner electrically-conductive portion within the radome (e.g., an insert or top load plate inserted into the cover, etc. ) when the cover is positioned over the antenna assembly. As such, the clip may operate to establish electrical contact between the AM/FM/DABIII/DMB antenna and the inner electrically-conductive portion within the radome. In an exemplary embodiment, the clip is generally C-shaped and defines a generally English-language letter C shape. In other example embodiments, antenna assemblies can have clips with other suitable shapes or no clips at all.
With reference back to FIGS. 1 to 3, the antenna 108 is configured or tuned to be operable at frequencies within the AM frequency band, FM frequency band, DABIII frequency band, and DMB frequency band. In some embodiments, the antenna 108 may be  configured to be resonant across the AM, FM, DABIII, DMB frequency bands or across only portions of one of these bands. The antenna 108 may be tuned as desired for operation at desired frequency bands by, for example, adjusting size and/or number and/or orientation and/or type of the traces 128 provided along the first and  second sides  121, 123 of the PCB 116, etc. For example, the antenna 108 could be tuned (or retuned) , as desired, to Japanese FM frequencies (e.g., including frequencies between about 76 MHz and about 93 MHz, etc. ) , DAB-VHF-III (e.g., including frequencies between about 174 MHz and about 240 MHz, etc. ) , other similar VHF bands, other frequency bands, etc.
In some exemplary embodiments, a multiband vehicular shark fin antenna assembly may include only the AM/FM/DABIII/DMB antenna 108 as described above. In other exemplary embodiments, a multiband vehicular shark fin antenna assembly may include the AM/FM/DABIII/DMB antenna 108 and one or more other antennas operable within one or more frequency bands different than the AM, FM, DABIII, and DMB frequency bands.
For the illustrated embodiment shown in FIGS. 1, 2, and 3, the multiband vehicular shark fin antenna assembly 100 includes second, third and  fourth antennas  112, 114, and 118. In this example, the second antenna 112 is operable with satellite navigation signals (e.g., global positioning system (GPS) , global navigation satellite system (GLONASS) , etc. ) . The third and  fourth antennas  114 and 118 are operable with cellular signals (e.g., Long Term Evolution (LTE) , etc. ) .
As shown in FIGS. 1 and 2, the second antenna 112 comprises a patch antenna coupled to a third PCB 113. The PCB 113 is coupled to the chassis 104 by mechanical fasteners 124 at a location toward a forward portion of the chassis 104 between the third antenna 114 and the first antenna 108. The second antenna 112 may be operable at one or more desired frequencies including, for example, GPS frequencies or GLONASS frequencies, etc. And, the second antenna 112 may also be tuned as desired for operation at desired frequency bands by, for example, changing dielectric materials, changing sizes of metal plating, etc. used in connection with the second antenna 112, etc.
In this exemplary embodiment, the third and  fourth antennas  114, 118 comprise primary and secondary cellular antennas, respectively. The third and  fourth antennas  114 and 118 may also be referred to as front and  back antennas  114, 118 as the third antenna 114 is located at or closer to the front of the antenna assembly 100 than the fourth antenna 118, and  the fourth antenna 118 is located at or closer to the back of the antenna assembly 100 than the third antenna 114.
The primary or front cellular antenna 114 is configured to be operable for both receiving and transmitting communication signals within one or more cellular frequency bands (e.g., LTE, etc. ) . The secondary or back cellular antenna 118 is configured to be operable for receiving (but not transmitting) communication signals within one or more cellular frequency bands (e.g., LTE, etc. ) . In alternative exemplary embodiments, the third and  fourth antennas  114, 118 may instead comprise secondary and primary cellular antennas, respectively. In which case, the third or front antenna 114 would be operable for receiving (but not transmitting) communication signals within one or more cellular frequency bands (e.g., LTE, etc. ) . And, the fourth or back antenna 118 would be operable for both receiving and transmitting communication signals within one or more cellular frequency bands (e.g., LTE, etc. ) .
By way of example, the front and back  cellular antennas  114, 118 are positioned relatively close to each other, but the antenna assembly 100 may be configured such that sufficient de-correlation (e.g., a correlation less than about 25 percent, etc. ) and sufficiently low coupling exists despite the close spacing of the  cellular antennas  114, 118. By way of example, the antenna assembly 100 may be configured such there is at least about 15 decibels of isolation between the  cellular antennas  114, 118.
Exemplary embodiments include MIMO  cellular antennas  114, 118 that comprise inverted-F antennas (IFAs) . Other exemplary embodiments may comprise one or more  cellular antennas  114, 118 configured differently, such as a monopole antenna, an inverted L antenna (ILA) , a planar inverted F antenna (PIFA) , a stamped mast antenna (e.g., stamped and bent sheet metal, etc. ) , an antenna made of different materials and/or via different manufacturing processes, etc.
The third and fourth  cellular antennas  114, 118 are connected to and supported by respective third and  fourth PCBs  115, 119. For example, the third and fourth  cellular antennas  114, 118 may have one or more bent or formed tabs at the bottom, which may provide areas for soldering to the  respective PCB  115 and 119. The third and fourth  cellular antennas  114, 118 may also include downwardly extending projections that may be at least partially received within corresponding openings in the  PCB  115 and 119, respectively, for example, to make electrical connection to a PCB component on the opposite side of the PCB.  Alternatively, other embodiments may include other means for soldering or connecting the third cellular antenna 114 to the PCB 115.
As shown in FIGS. 2 and 3, the  PCBs  115 and 119 are supported by the chassis or body 104. In this example embodiment, the  PCBs  115 and 119 are mechanically fastened via fasteners (e.g., screws, etc. ) to the chassis 104.
An upper portion of each  antenna  114, 118 includes a slot or  opening  157, 159, respectively. Clips (e.g., electrically-conductive spring clips, etc. ) may be coupled to or within the slot 157 and. /or 159. The clips may be constructed from a suitable electrically conductive material (e.g., metal, etc. ) and be configured to engage an inner electrically-conductive portion within the radome 156 (e.g., an insert or top load plate inserted into the cover, etc. ) when the cover is positioned over the antenna assembly 100. As such, the clips may operate to establish electrical contact between the  cellular antenna  114, 118 and the inner electrically-conductive portion within the radome 156. In an exemplary embodiment, the clips are generally C-shaped and define a generally English-language letter C shape. In other example embodiments, antenna assemblies can have clips with other suitable shapes or no clips at all.
An electrical connector (not shown) may be used for coupling the  antenna assembly  100 or 200 to a suitable communication link (e.g., a coaxial cable, etc. ) in a mobile platform or vehicle (e.g., through an opening in the chassis 104 aligned with an opening in a roof of a car, etc. ) . In this exemplary way, the PCBs may receive signal inputs from the respective antennas, process the signal inputs, and transmit the processed signal inputs to the suitable communication link. Alternatively, or in addition, one or more PCBs may process signal inputs to be transmitted via or through the one or more respective antennas. The electrical connector may be an ISO (International Standards Organization) standard electrical connector or a Fakra connector attached to one or more of the PCBs. A coaxial cable (or other suitable communication link) may be relatively easily connected to the electrical connector and used for communicating signals received by the antennas to devices in the vehicle. In such embodiments, the use of standard ISO electrical connectors or Fakra connectors may allow for reduced costs as compared to those antenna installations that require a customized design and tooling for the electrical connection between the antenna assembly and cable. In addition, the pluggable electrical connections between the communication link and the antenna assembly’s electrical connector may be accomplished by the installer without the installer having to complexly route wiring or  cabling through the vehicle body wall. Accordingly, the pluggable electrical connection may be easily accomplished without requiring any particular technical and/or skilled operations on the part of the installer. Alternative embodiments may include using other types of electrical connectors and communication links (e.g., pig tail connections, etc. ) besides standard ISO electrical connectors, Fakra connectors, and coaxial cables.
In an exemplary embodiment, the radome 156 is a shark fin-style radome having a length of 220 millimeters, a height of 69.5 millimeters, a maximum width of about 66 millimeters, and a minimum width (near the top) of 12.6 millimeters. The radome 156 can substantially seal the components of the antenna assembly within the radome 156 thereby protecting the components against ingress of contaminants (e.g., dust, moisture, etc. ) into an interior enclosure of the radome 156. In addition, the radome 156 can provide an aesthetically pleasing appearance to the antenna assembly 100, and can be configured (e.g., sized, shaped, constructed, etc. ) with an aerodynamic configuration. In the illustrated embodiment, for example, the radome 156 has an aesthetically pleasing, aerodynamic shark-fin configuration. In other example embodiments, however, antenna assemblies may include radomes having configurations different than illustrated herein, for example, having configurations other than shark-fin configurations, etc. The radome 156 may also be formed from a wide range of materials, such as, for example, polymers, urethanes, plastic materials (e.g., polycarbonate blends, Polycarbonate-Acrylnitril-Butadien-Styrol-Copolymer (PC/ABS) blend, etc. ) , glass-reinforced plastic materials, synthetic resin materials, thermoplastic materials (e.g., GE Plastics
Figure PCTCN2015083853-appb-000001
XP4034 Resin, etc. ) , etc. within the scope of the present disclosure.
The radome 156 is configured to fit over the first, second, third, and  fourth antennas  108, 112, 114, and 118 and their  respective PCBs  120, 113, 115, and 119. The radome 156 is configured to be secured to the chassis 104. And, the chassis 104 is configured to couple to a vehicle body wall, e.g., a roof of a car, etc. The radome 156 may secure to the chassis 104 via any suitable operation, for example, a snap fit connection, mechanical fasteners (e.g., screws, other fastening devices, etc. ) , ultrasonic welding, solvent welding, heat staking, latching, bayonet connections, hook connections, integrated fastening features, etc. In the illustrated embodiment shown in FIG. 1, the radome 156 may be secured to the chassis by screws 168. Alternatively, the radome 156 may connect directly to a vehicle body wall within the scope of the present disclosure.
The chassis 104 may be formed from materials similar to those used to form the radome 156. For example, the material of the chassis 104 may be formed from one or more alloys, e.g., zinc alloy, etc. Alternatively, the chassis 104 may be formed from plastic, injection molded from polymer, steel, and other materials (including composites) by a suitable forming process, for example, a die cast process, etc. within the scope of the present disclosure.
The antenna assembly 100 also includes a fastener member 172 (e.g., threaded mounting bolt having a hexagonal head, etc. ) , a first retention component 176 (e.g., retaining clip, etc. ) , and a second retention component 180 (e.g., an insulator clip, etc. ) . The fastener member 172 and  retention members  176, 180 may be used to mount the antenna assembly to an automobile roof, hood, trunk (e.g., with an unobstructed view overhead or toward the zenith, etc. ) where the mounting surface of the automobile acts as a ground plane for the antenna assembly 100 and improves reception of signals. The relatively large size of the ground plane (e.g., a car roof, etc. ) improves reception of radio signals having generally lower frequencies. And, the large size of the ground plane would not be considered negligible compared to the operating wavelength of the AM/FM/DABIII/DMB antenna 108.
The first retaining component 176 includes legs, and the second retaining component 180 includes tapered faces. The legs of the first retaining component 176 are configured to make contact with the corresponding tapered faces of the second retaining component 180. The first and second retaining  components  176, 180 also include aligned openings through which passes the fastener member 172 to be threadedly connected to a threaded opening in the chassis 104.
The fastener member 172 and retaining  components  176, 180 allow the antenna assembly 100 to be installed and fixedly mounted to a vehicle body wall. The fastener member 172 and retaining  components  176, 180 may first be assembled onto the chassis 104 before the antenna installation onto the vehicle. Then, the antenna assembly 100 may be positioned (from the external side of the vehicle) relative to a mounting hole in the vehicle body wall such that the fastener member 172 and retaining  components  176, 180 are inserted into the mounting hole (e.g., pulled downward through the mounting hole, etc. ) . The chassis 104 is then disposed along the external side of the vehicle body wall. The fastener 172 is accessible from inside the vehicle. In this stage of the installation process, the antenna assembly 100 may thus be held in place relative to the vehicle body wall in a first installed position.
When the first retaining component 176 is compressively moved generally towards the mounting hole by driving the fastener member 172 in a direction generally towards the antenna base 104, the legs of first retaining component 176 may deform and expand generally outwardly relative to the mounting hole against the interior compartment side of the vehicle body wall, thereby securing the antenna assembly 100 to the vehicle body wall in a second, operational installed position. This installation process is but one example way to install the antenna assembly 100 to a vehicle. Alternative mechanisms, processes, and means may also be used for installing an antenna assembly (e.g., antenna assembly 100, etc. ) to a vehicle in exemplary embodiments.
The antenna assembly 100 includes a sealing member 184 (e.g., an O-ring, a resiliently compressible elastomeric or foam gasket, a PORON microcellular urethane foam gasket, etc. ) that will be positioned between the chassis 104 and the roof of a car (or other mounting surface) . The sealing member 184 may substantial seal the chassis 104 against the roof and substantially seal the mounting hole in the roof. The antenna assembly 100 also includes a sealing member 188 (e.g., an O-ring, a resiliently compressible elastomeric or foam gasket, caulk, adhesives, other suitable packing or sealing members, etc. ) that is positioned between the radome 156 and the chassis 104 for substantially sealing the radome 156 against the chassis 104. In this example, the sealing member 188 may be at least partially seated within a groove defined along or by the chassis 104.
The antenna assembly 100 may also include one or more gaskets (not shown) coupled to a bottom of the chassis 104. In operation, the gaskets may help ensure that the chassis 104 will be grounded to a vehicle roof and also allows the antenna assembly 100 to be used with different roof curvatures. The gaskets may include electrically-conductive fingers (e.g., metallic or metal spring fingers, etc. ) . In an exemplary embodiment, the gaskets comprise fingerstock gaskets from Laird Technologies.
FIGS. 4, 5, and 6 illustrates another example embodiment of an antenna assembly 200 including at least one or more aspects of the present disclosure. As shown, the antenna assembly 200 includes a radome, housing, or cover 256 positionable over the first, second, third, and  fourth antennas  208, 212, 214, and 218. The antenna assembly 200 may include components and features similar to or identical to the corresponding components or features of the antenna assembly 100 shown in FIGS. 1, 2, and 3. For example, the radome 256  and the first, second, third, and  fourth antennas  208, 212, 214, and 218 may be similar or identical to the radome 156 and the first, second, third, and  fourth antennas  108, 112, 114, and 118. But for the antenna assembly 200, the second antenna 212 (e.g., satellite navigation patch antenna operable with GPS or GLONASS signals, etc. ) is disposed generally between the first antenna 208 (e.g., AM/FM/DABIII/DMB antenna, etc. ) and the fourth antenna 218 (e.g., LTE MIMO cellular antenna, etc. )
FIGS. 10 through 13 provide analysis results simulated for the AM/FM/DABIII/DMB antenna 108 and also measured for a prototype of the AM/FM/DABIII/DMB antenna 108 shown in FIGS. 7 and 8. These analysis results shown in FIGS. 10 through 13 are provided only for purposes of illustration and not for purposes of limitation. Generally, these results show that the antenna assembly has good AM/FM/DABIII, DMB performance even with its relatively small or compact overall size and narrow profile as compared to some existing shark fin antennas. In alternative embodiments, the antenna assembly may be configured differently and have different operational or performance parameters than what is shown in FIGS. 10 through 13.
FIG. 10 is a graph of simulated and measured return loss in decibels (dB) versus frequency in Megahertz (MHz) for the AM/FM/DABIII/DMB antenna 108 on a one-meter diameter generally circular ground plane. FIG. 11 is a graph of simulated and measured passive antenna gain in decibels at FM frequencies of 88 MHz and 108 MHz for the AM/FM/DABIII/DMB antenna 108 on a one-meter diameter generally circular ground plane. FIG. 12 is a graph of simulated and measured passive antenna gain in decibels at DABIII/DMB frequencies of 174 MHz and 240 MHz for the AM/FM/DABIII/DMB antenna 108 on a one-meter diameter generally circular ground plane. FIG. 13 is a graph of active antenna gain in decibels at the FM frequencies of 88 MHz and 108 MHz and at the DABIII/DMB frequencies of 174 MHz and 240 MHz measured for the AM/FM/DABIII/DMB antenna 108 on a one-meter diameter generally circular ground plane.
In some exemplary embodiments, a multiband vehicular shark fin antenna assembly includes only a single AM/FM/DABIII/DMB antenna (e.g., AM/FM/DABIII/DMB antenna 108, etc. ) without any other antennas. In other exemplary embodiments, a multiband vehicular shark fin antenna assembly (e.g., 100, 200, etc. ) includes the AM/FM/DABIII/DMB antenna 108 in addition to one or more other antennas (e.g., 112, 114, 118, 212, 214, 218, etc. ) .  Examples of other antennas includes satellite navigation antennas (e.g., GPS patch antenna, GLONASS patch antenna, etc. ) and/or SDARS antennas (e.g., patch antenna, etc. ) . In some embodiments, a satellite navigation patch antenna may be stacked on top of or positioned adjacent or side-by side with a SDARS patch antenna.
By way of further example, exemplary embodiments of antenna assemblies may be configured for use as multiband multiple input multiple output (MIMO) antenna assemblies operable in the AM/FM/DABIII/DMB frequency bands via an antenna (e.g., 108, etc. ) disclosed herein and operable in one or more other frequency bands associated with, e.g., cellular communications, Wi-Fi, DSRC (Dedicated Short Range Communication) , satellite signals, terrestrial signals, etc. For example, exemplary embodiments of antenna assemblies may be operable in the AM, FM, DABIII, DMB frequency bands, and one or more or any combination (or all) of the following frequency bands: global positioning system (GPS) , global navigation satellite system (GLONASS) , Doppler Orbitography and Radio-positioning Integrated by Satellite (DORIS) , BeiDou Navigation Satellite System (BDS) , satellite digital audio radio services (SDARS) (e.g., Sirius XM Satellite Radio, etc. ) , AMPS, GSM850, GSM900, PCS, GSM1800, GSM1900, AWS, UMTS, digital audio broadcasting (DAB) -VHF-III, DAB-L, Long Term Evolution (e.g., 4G, 3G, other LTE generation, B17 (LTE) , LTE (700 MHz) , etc. ) , Wi-Fi, Wi-Max, PCS, EBS (Educational Broadband Services) , BRS (Broadband Radio Services) , WCS (Broadband Wireless Communication Services/Internet Services) , cellular frequency bandwidth (s) associated with or unique to a particular one or more geographic regions or countries, one or more frequency bandwidth (s) from Table 1 and/or Table 2 below, etc.
TABLE 1
Figure PCTCN2015083853-appb-000002
TABLE 2
Figure PCTCN2015083853-appb-000003
Accordingly, exemplary embodiments are disclosed herein of multiband vehicular shark fin antenna assemblies that may provide one or more (but not necessarily any or all) of the following advantages or benefits as compared to some existing multiband vehicular  antenna assemblies. For example, exemplary embodiments may have a better appearance or styling (e.g., an aesthetically pleasing, aerodynamic shark-fin configuration, etc. ) and/or may be narrower and smaller size and shape. Exemplary embodiments may have good electrical performance, such as shown in FIGS. 10 through 13. In exemplary embodiments, the AM/FM/DABIII/DMB antenna may be a relatively low cost part and/or that may be manufactured via a relatively low cost and not overly complicated process.
In addition, various antenna assemblies (e.g., 100, 200, etc. ) disclosed herein may be mounted to a wide range of supporting structures, including stationary platforms and mobile platforms. For example, an antenna assembly (e.g., 100, 200, etc. ) disclosed herein could be mounted to supporting structure of a bus, train, aircraft, bicycle, motor cycle, boat, among other mobile platforms. Accordingly, the specific references to motor vehicles or automobiles herein should not be construed as limiting the scope of the present disclosure to any specific type of supporting structure or environment.
Example embodiments are provided so that this disclosure will be thorough, and will fully convey the scope to those who are skilled in the art. Numerous specific details are set forth such as examples of specific components, devices, and methods, to provide a thorough understanding of embodiments of the present disclosure. It will be apparent to those skilled in the art that specific details need not be employed, that example embodiments may be embodied in many different forms, and that neither should be construed to limit the scope of the disclosure. In some example embodiments, well-known processes, well-known device structures, and well-known technologies are not described in detail. In addition, advantages and improvements that may be achieved with one or more exemplary embodiments of the present disclosure are provided for purpose of illustration only and do not limit the scope of the present disclosure, as exemplary embodiments disclosed herein may provide all or none of the above mentioned advantages and improvements and still fall within the scope of the present disclosure.
Specific dimensions, specific materials, and/or specific shapes disclosed herein are example in nature and do not limit the scope of the present disclosure. The disclosure herein of particular values and particular ranges of values for given parameters are not exclusive of other values and ranges of values that may be useful in one or more of the examples disclosed herein. Moreover, it is envisioned that any two particular values for a specific parameter stated herein may define the endpoints of a range of values that may be suitable for the given parameter  (i.e., the disclosure of a first value and a second value for a given parameter can be interpreted as disclosing that any value between the first and second values could also be employed for the given parameter) . For example, if Parameter X is exemplified herein to have value A and also exemplified to have value Z, it is envisioned that parameter X may have a range of values from about A to about Z. Similarly, it is envisioned that disclosure of two or more ranges of values for a parameter (whether such ranges are nested, overlapping or distinct) subsume all possible combination of ranges for the value that might be claimed using endpoints of the disclosed ranges. For example, if parameter X is exemplified herein to have values in the range of 1 –10, or 2 –9, or 3 –8, it is also envisioned that Parameter X may have other ranges of values including 1 –9, 1 –8, 1 –3, 1 -2, 2 –10, 2 –8, 2 –3, 3 –10, and 3 –9.
The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting. As used herein, the singular forms “a,” “an, ” and “the” may be intended to include the plural forms as well, unless the context clearly indicates otherwise. The terms “comprises, ” “comprising, ” “including, ” and “having, ” are inclusive and therefore specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. The method steps, processes, and operations described herein are not to be construed as necessarily requiring their performance in the particular order discussed or illustrated, unless specifically identified as an order of performance. It is also to be understood that additional or alternative steps may be employed.
When an element or layer is referred to as being “on, ” “engaged to, ” “connected to, ” or “coupled to” another element or layer, it may be directly on, engaged, connected or coupled to the other element or layer, or intervening elements or layers may be present. In contrast, when an element is referred to as being “directly on, ” “directly engaged to, ” “directly connected to, ” or “directly coupled to” another element or layer, there may be no intervening elements or layers present. Other words used to describe the relationship between elements should be interpreted in a like fashion (e.g., “between” versus “directly between, ” “adjacent” versus “directly adjacent, ” etc. ) . As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
The term “about” when applied to values indicates that the calculation or the measurement allows some slight imprecision in the value (with some approach to exactness in the value; approximately or reasonably close to the value; nearly) . If, for some reason, the imprecision provided by “about” is not otherwise understood in the art with this ordinary meaning, then “about” as used herein indicates at least variations that may arise from ordinary methods of measuring or using such parameters. For example, the terms “generally, ” “about, ” and “substantially, ” may be used herein to mean within manufacturing tolerances.
Although the terms first, second, third, etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms may be only used to distinguish one element, component, region, layer or section from another region, layer or section. Terms such as “first, ” “second, ” and other numerical terms when used herein do not imply a sequence or order unless clearly indicated by the context. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the example embodiments.
Spatially relative terms, such as “inner, ” “outer, ” “beneath, ” “below, ” “lower, ” “above, ” “upper” and the like, may be used herein for ease of description to describe one element or feature’s relationship to another element (s) or feature (s) as illustrated in the figures. Spatially relative terms may be intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “below” or “beneath” other elements or features would then be oriented “above” the other elements or features. Thus, the example term “below” can encompass both an orientation of above and below. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
The foregoing description of the embodiments has been provided for purposes of illustration and description. It is not intended to be exhaustive or to limit the disclosure. Individual elements, intended or stated uses, or features of a particular embodiment are generally not limited to that particular embodiment, but, where applicable, are interchangeable and can be used in a selected embodiment, even if not specifically shown or described. The same may also  be varied in many ways. Such variations are not to be regarded as a departure from the disclosure, and all such modifications are intended to be included within the scope of the disclosure.

Claims (20)

  1. A shark fin antenna assembly for installation to a vehicle body wall, the shark fin antenna assembly comprising:
    a chassis;
    a radome having a shark-fin configuration, the radome coupled to the chassis such that an interior enclosure is collectively defined by the radome and the chassis; and
    a first antenna within the interior enclosure, the first antenna configured to be operable with AM/FM/DABIII/DMB frequencies.
  2. The shark fin antenna assembly of claim 1, wherein the first antenna comprises:
    a printed circuit board having a first side and an opposing second side; and
    electrical conductors along the first and second sides of the printed circuit board.
  3. The shark fin antenna assembly of claim 2, wherein:
    the electrical conductors along the first side of the printed circuit board are configured to be operable with frequencies with the AM/FM frequencies; and
    the electrical conductors along the second side of the printed circuit board are configured to be operable with DABIII/DMB frequencies.
  4. The shark fin antenna assembly of claim 2 or 3, wherein the electrical conductors comprise traces along the first and second sides of the printed circuit board.
  5. The shark fin antenna assembly of claim 4, wherein:
    the traces along the first side of the printed circuit board are configured to be operable with frequencies within an AM frequency band and frequencies within a FM frequency band, and the traces along the second side of the printed circuit board are configured to be operable with frequencies within a DABIII frequency band and frequencies within a DMB frequency band; and/or
    the traces along the first side of the printed circuit board are configured to be operable with frequencies from 535 kilohertz to 1605 kilohertz and from 88 megahertz to 108 megahertz, and the traces along the second side of the printed circuit board are configured to be operable with frequencies from 174 megahertz to 240 MHz.
  6. The shark fin antenna assembly of claim 2 or 3, wherein:
    the electrical conductors comprise traces along the first and second sides of the printed circuit board;
    the traces along the first side include or define a first meandering portion; and
    the traces along the second side include or define a second meandering portion.
  7. The shark fin antenna assembly of claim 6, wherein:
    the first meandering portion includes thirty-one parallel straight horizontal portions and fifteen bending portions between upper and lower pairs of the parallel straight portions; and/or
    the second meandering portion including twelve parallel straight horizontal portions, six bending portions along one side of the second meandering portion, and five bending portions along an opposite side of the second meandering portion, the bending portions between upper and lower pairs of the parallel straight portions.
  8. The shark fin antenna assembly of claim 6 or 7, wherein a vertical trace along the first side extends downwardly from a top trace of the first meandering portion and is soldered to a second printed circuit board for electrically connecting the traces to the second printed circuit board.
  9. The shark fin antenna assembly of claim 6, 7, or 8, wherein:
    a bottom trace of the second meandering portion is electrically connected to a vertical trace along the second side of the printed circuit board, which is electrically connected to a bottom horizontal trace along the second side of the printed circuit board; and
    the bottom horizontal trace is electrically connected to another vertical trace along the second side of the printed circuit board.
  10. The shark fin antenna assembly of any one of the preceding claims, wherein the shark fin antenna assembly is configured to be installed and fixedly mounted to a vehicle body wall after being inserted into a mounting hole in the vehicle body wall from an external side of the vehicle and nipped from the interior compartment side.
  11. The shark fin antenna assembly of any one of the preceding claims, further comprising at least one antenna operable within one or more frequency bands different than AM/FM/DABIII/DMB bands, wherein the at least one antenna is within the interior enclosure.
  12. The shark fin antenna assembly of any one of claims 1 to 10, further comprising:
    a second antenna within the interior enclosure and configured to be operable for receiving satellite signals; and/or
    a third antenna within the interior enclosure and configured to be operable for receiving and transmitting cellular signals.
  13. The shark fin antenna assembly of claim 12, further comprising a fourth antenna within the interior enclosure and configured to be operable for receiving, but not transmitting, cellular signals.
  14. The shark fin antenna assembly of any one of claims 1 to 10, further comprising:
    a patch antenna within the interior enclosure and configured to be operable for receiving satellite navigation signals;
    a primary cellular antenna within the interior enclosure and configured to be operable for receiving and transmitting cellular signals; and
    a secondary cellular antenna within the interior enclosure and configured to be operable for receiving, but not transmitting, cellular signals.
  15. The shark fin antenna assembly of claim 14, wherein:
    the patch antenna is between the first antenna and the primary cellular antenna, and the first antenna is between the patch antenna and the secondary cellular antenna; or
    the patch antenna is between the first antenna and the secondary cellular antenna, and the first antenna is between the patch antenna and the primary cellular antenna.
  16. The shark fin antenna assembly of any one of the preceding claims, wherein the first antenna comprises a printed circuit board having a first side and an opposing second side and traces along the first and second sides of the printed circuit board, the traces along the first side of the printed circuit board are configured to be operable with frequencies from 535 kilohertz to 1605 kilohertz and with frequencies from 88 megahertz to 108 megahertz, and the traces along the second side of the printed circuit board are configured to be operable with frequencies from 174 megahertz to 240 MHz; and
    wherein:
    the radome has a length of  220 millimeters, a height of 69.5 millimeters, a maximum width of 66 millimeters, and a minimum width of 12.6 millimeters; and/or
    the printed circuit board has a height of 55 millimeters and a length of 55 millimeters; and/or
    the traces along the first side include or define a first meandering portion and have an overall length of at least 674 millimeters, a height of 45 millimeters, and width of 50 millimeters; and/or
    the traces along the second side include or define a second meandering portion and have an overall length of at least 1589 millimeters, a height of 48 millimeters, and width of 50 millimeters.
  17. A shark fin antenna assembly comprising:
    a printed circuit board having a first side and an opposing second side; and
    traces along the first and second sides of the printed circuit board;
    wherein:
    the traces along the first side of the printed circuit board are configured to be operable with frequencies from 535 kilohertz to 1605 kilohertz and with frequencies from 88 megahertz to 108 megahertz, and
    the traces along the second side of the printed circuit board are configured to be operable with frequencies from 174 megahertz to 240 MHz
  18. The shark fin antenna assembly of claim 17, further comprising:
    a chassis; and
    a radome having a shark-fin configuration, the radome coupled to the chassis such that an interior enclosure is collectively defined by the radome and the chassis;
    wherein the printed circuit board and the traces are within the interior enclosure.
  19. The shark fin antenna assembly of claim 18, wherein:
    the shark fin antenna assembly further comprises at least one satellite antenna within the interior enclosure and configured to be operable for receiving satellite signals; and/or
    the shark fin antenna assembly further comprises at least one cellular antenna within the interior enclosure and configured to be operable for receiving and transmitting cellular signals; and/or
    the traces along the first side include or define a first meandering portion; and/or
    the traces along the second side include or define a second meandering portion.
  20. The shark fin antenna assembly of claim 17, 18, or 19, wherein the shark fin antenna assembly is configured to be installed and fixedly mounted to a vehicle body wall after being inserted into a mounting hole in the vehicle body wall from an external side of the vehicle and nipped from the interior compartment side.
PCT/CN2015/083853 2014-08-08 2015-07-13 Shark fin antenna assemblies WO2016019784A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410389413.3 2014-08-08
CN201410389413.3A CN105375104B (en) 2014-08-08 2014-08-08 Shark fins antenna module

Publications (1)

Publication Number Publication Date
WO2016019784A1 true WO2016019784A1 (en) 2016-02-11

Family

ID=55263118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/083853 WO2016019784A1 (en) 2014-08-08 2015-07-13 Shark fin antenna assemblies

Country Status (2)

Country Link
CN (1) CN105375104B (en)
WO (1) WO2016019784A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD803196S1 (en) 2015-09-25 2017-11-21 Taoglas Group Holdings Limited Dual fin antenna
CN108777373A (en) * 2018-04-27 2018-11-09 北京航威大洋微波科技有限公司 A kind of multifrequency car antenna
CN110299605A (en) * 2019-07-04 2019-10-01 常州柯特瓦电子有限公司 The vehicle-mounted shark fins antenna of combined type
GB2584104A (en) * 2019-05-21 2020-11-25 Siemens Mobility Ltd Multiband antenna system and train
CN113690579A (en) * 2016-02-19 2021-11-23 株式会社友华 Antenna device
WO2024002436A1 (en) * 2022-07-01 2024-01-04 Continental Automotive Technologies GmbH Antenna module and motor vehicle
DE102022005059A1 (en) 2022-07-01 2024-01-04 Continental Automotive Technologies GmbH Antenna module and motor vehicle

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6839340B2 (en) * 2016-07-21 2021-03-10 ミツミ電機株式会社 Antenna mounting parts and antenna device
EP3285332B1 (en) * 2016-08-19 2019-04-03 Swisscom AG Antenna system
CN106252892B (en) * 2016-09-21 2023-06-13 赫思曼汽车通讯设备(上海)有限公司 Antenna device
CN114530698A (en) * 2016-12-06 2022-05-24 株式会社友华 Antenna device
CN110326165B (en) * 2017-02-23 2021-10-15 株式会社友华 Antenna device
JP6546712B1 (en) * 2017-12-20 2019-07-17 株式会社ヨコオ Automotive antenna device
CN109473779A (en) * 2018-12-11 2019-03-15 汽-大众汽车有限公司 A kind of vehicle-mounted LTE antenna
US11688947B2 (en) 2019-06-28 2023-06-27 RLSmith Holdings LLC Radio frequency connectors, omni-directional WiFi antennas, omni-directional dual antennas for universal mobile telecommunications service, and related devices, systems, methods, and assemblies
US11245205B1 (en) 2020-09-10 2022-02-08 Integrity Microwave, LLC Mobile multi-frequency RF antenna array with elevated GPS devices, systems, and methods

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050054305A (en) * 2003-12-04 2005-06-10 엘지전자 주식회사 Multi-band antenna for wlan
CN101682107A (en) * 2007-05-10 2010-03-24 高级汽车天线公司 Vehicle mirror antenna assembly
CN102468529A (en) * 2010-11-18 2012-05-23 上海汽车集团股份有限公司 Multifunctional integrated antenna
EP2518827A1 (en) * 2011-04-27 2012-10-31 Infac Elecs Co., Ltd. Dual band antenna for vehicle
CN204167472U (en) * 2014-08-08 2015-02-18 莱尔德电子材料(上海)有限公司 Shark fins antenna module

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203039091U (en) * 2013-01-16 2013-07-03 昆山骅盛电子有限公司 Plate type antenna structure
CN203205527U (en) * 2013-03-15 2013-09-18 苏州中兴山一电子有限公司 Multifunctional antenna
CN203300796U (en) * 2013-05-17 2013-11-20 卜放 Shark fin antenna

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050054305A (en) * 2003-12-04 2005-06-10 엘지전자 주식회사 Multi-band antenna for wlan
CN101682107A (en) * 2007-05-10 2010-03-24 高级汽车天线公司 Vehicle mirror antenna assembly
CN102468529A (en) * 2010-11-18 2012-05-23 上海汽车集团股份有限公司 Multifunctional integrated antenna
EP2518827A1 (en) * 2011-04-27 2012-10-31 Infac Elecs Co., Ltd. Dual band antenna for vehicle
CN204167472U (en) * 2014-08-08 2015-02-18 莱尔德电子材料(上海)有限公司 Shark fins antenna module

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD803196S1 (en) 2015-09-25 2017-11-21 Taoglas Group Holdings Limited Dual fin antenna
CN113690579A (en) * 2016-02-19 2021-11-23 株式会社友华 Antenna device
CN108777373A (en) * 2018-04-27 2018-11-09 北京航威大洋微波科技有限公司 A kind of multifrequency car antenna
CN108777373B (en) * 2018-04-27 2023-12-22 北京航威大洋微波科技有限公司 Multi-frequency vehicle-mounted antenna
GB2584104A (en) * 2019-05-21 2020-11-25 Siemens Mobility Ltd Multiband antenna system and train
CN110299605A (en) * 2019-07-04 2019-10-01 常州柯特瓦电子有限公司 The vehicle-mounted shark fins antenna of combined type
WO2024002436A1 (en) * 2022-07-01 2024-01-04 Continental Automotive Technologies GmbH Antenna module and motor vehicle
DE102022005059A1 (en) 2022-07-01 2024-01-04 Continental Automotive Technologies GmbH Antenna module and motor vehicle

Also Published As

Publication number Publication date
CN105375104A (en) 2016-03-02
CN105375104B (en) 2018-05-25

Similar Documents

Publication Publication Date Title
WO2016019784A1 (en) Shark fin antenna assemblies
US20160064807A1 (en) Multiband Vehicular Antenna Assemblies
US8537062B1 (en) Low-profile antenna assemblies
US9270019B2 (en) Multiband MIMO vehicular antenna assemblies with DSRC capabilities
US8519897B2 (en) Low-profile antenna assembly
US9793602B2 (en) Multiband MIMO vehicular antenna assemblies
KR101814301B1 (en) Multiband vehicular antenna assemblies
EP2122747B1 (en) Mobile wideband antennas
CN107834211B (en) Vehicle antenna assembly and radome assembly for vehicle antenna assembly
US20100277379A1 (en) Interchangeable slidably mountable fins for antenna assemblies
US10096893B2 (en) Patch antennas
EP2792020A1 (en) Multiband mimo antenna assemblies operable with lte frequencies
US10862187B2 (en) Vehicular antenna assemblies
CN204167472U (en) Shark fins antenna module
US11271293B2 (en) Antenna device
CN104282990A (en) Vehicle-mounted antenna assembly
CN204103036U (en) Car antenna assembly
US10916836B2 (en) Vehicular antenna assembly including GNSS antenna and SDARS antenna with reflector
WO2019204203A1 (en) Patch antennas with dielectric resonator probes and vehicular antenna assemblies including the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15829355

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15829355

Country of ref document: EP

Kind code of ref document: A1