WO2016019754A1 - 一种声表面波谐振器型阻抗传感器以及阻抗检测系统 - Google Patents

一种声表面波谐振器型阻抗传感器以及阻抗检测系统 Download PDF

Info

Publication number
WO2016019754A1
WO2016019754A1 PCT/CN2015/081116 CN2015081116W WO2016019754A1 WO 2016019754 A1 WO2016019754 A1 WO 2016019754A1 CN 2015081116 W CN2015081116 W CN 2015081116W WO 2016019754 A1 WO2016019754 A1 WO 2016019754A1
Authority
WO
WIPO (PCT)
Prior art keywords
matching network
sensor
acoustic wave
surface acoustic
wave resonator
Prior art date
Application number
PCT/CN2015/081116
Other languages
English (en)
French (fr)
Inventor
董兰飞
滕学志
陈海军
韦江波
焦清国
Original Assignee
软控股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 软控股份有限公司 filed Critical 软控股份有限公司
Publication of WO2016019754A1 publication Critical patent/WO2016019754A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/54Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using means specified in two or more of groups G01D5/02, G01D5/12, G01D5/26, G01D5/42, and G01D5/48
    • G01D5/56Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using means specified in two or more of groups G01D5/02, G01D5/12, G01D5/26, G01D5/42, and G01D5/48 using electric or magnetic means
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/38Impedance-matching networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/25Constructional features of resonators using surface acoustic waves

Definitions

  • the present invention relates to an impedance sensor, and more particularly to a surface acoustic wave resonator type impedance sensor and a detection system.
  • the wireless sensor must be used for measurement.
  • the surface acoustic wave sensor uses external factors (such as temperature, pressure, magnetic field, electric field, etc.) to affect the sound.
  • the working principle of the passive surface acoustic wave sensor is: First, the radio frequency interrogation unit emits a high frequency interrogation signal, and the signal is directly received by an antenna connected to an interdigital transducer (IDT) on the surface acoustic wave chip, and converted into an electrical signal.
  • IDT interdigital transducer
  • the interdigital transducer converts the electrical signal into a surface acoustic wave propagating on the surface of the piezoelectric crystal. Part of the surface acoustic wave energy is reflected back by the reflective fringes on the propagation path, and then the acoustic signal is converted into an electrical signal by the interdigital transducer. And then sent out by the antenna.
  • the Chinese Patent Application Publication No. CN 102052986 A discloses a wireless passive surface acoustic wave impedance load sensor, as shown in FIG. 1 , including an antenna, an input/output interdigital transducer, and a piezoelectric substrate 2 .
  • a reference reflector 3 an external sensor for measuring the reflection grid 4 and the impedance change, the wireless signal transmitted by the RF interrogation unit is received by the antenna and converted into a surface acoustic wave by the input/output interdigital transducer 1
  • the piezoelectric substrate 2 propagates on the piezoelectric substrate 2 and reaches the reference reflective grating 3 and the reflective grating 4 to generate reflection.
  • the reflective gate 4 is externally connected to the sensor, when the impedance of the external sensor changes, the external electrical condition of the reflective gate 4 changes, and the reflective grating 4 reflection performance will also change.
  • the technical scheme is disadvantageous in that: 1.
  • the reflective grid 4 is connected to an external sensor. Since the reflective grid 4 is disposed on the piezoelectric substrate, the piezoelectric substrate is generally used as a sensing part of the passive surface acoustic wave. Clean, because the surface acoustic wave propagates on the surface of the piezoelectric substrate, dust impurities will affect the surface acoustic wave propagation performance, and ultimately affect the sensor's sensing performance. If the reflective grid 4 is connected to an external sensor, the piezoelectric substrate is clean.
  • the present invention provides a surface acoustic wave resonator type impedance sensor.
  • a surface acoustic wave resonator type impedance sensor comprising a first antenna, a matching network, a reflective grid, and an interdigital transducer, the at least reflective grid, and the interdigital transducer being disposed on a piezoelectric substrate,
  • the matching network includes a best matching network of at least one capacitor and at least one inductor, the best matching network also having an external sensor in parallel, the external sensor being a capacitive or inductive sensor.
  • the best matching network is composed of a first capacitor (C1) and a first inductor (L1) connected in series, and the external sensor is connected in parallel at both ends of the series circuit composed of the best matching network.
  • the best matching network is composed of a first capacitor (C1) and a first inductor (L1) connected in series, and the external sensor is connected in parallel at both ends of the first capacitor (C1).
  • the best matching network is composed of a first capacitor (C1) and a first inductor (L1) connected in series, and the external sensor is connected in parallel at both ends of the first inductor (L1).
  • the external sensor is integrated in the matching network or is connected to the matching network through the wire.
  • the present invention also provides a surface acoustic wave resonator type impedance detecting system including a reader, a signal processing module, and an impedance sensor, and the reader is provided with a second antenna, the impedance sensor comprising a first antenna, a matching network, a reflective grid, and an interdigital transducer, the at least reflective grid, and the interdigital transducer being disposed on a piezoelectric substrate, the matching network comprising A best matching network consisting of at least one capacitor and at least one inductor, the best matching network also having an external sensor in parallel, the external sensor being a capacitive or inductive sensor.
  • the advantages and positive effects of the present invention are: the surface acoustic wave resonator type impedance sensor of the present invention, 1.
  • the structure and arrangement of the piezoelectric substrate are not changed. Therefore, it does not affect the sensor's sensing performance, and the detection accuracy is also improved accordingly.
  • the structure and arrangement of the piezoelectric substrate are not changed, so that the added process steps and the steps of setting pins and the like are not brought about.
  • Hybrid; 3 the external sensor can be integrated in the matching network, the integration is high, further reducing the package structure and reducing the overall volume of the sensor.
  • Embodiment 1 as shown in FIG. 2, the present embodiment provides a surface acoustic wave resonator type impedance sensor, including a first antenna 101, a matching network 102, a reflective gate 103, and an interdigital transducer 104, at least reflecting The gate 103, and the interdigital transducer 104 are disposed on the piezoelectric substrate 105.
  • the matching network 102 includes a best matching network composed of at least one capacitor and at least one inductor, the best matching network also An external sensor is connected in parallel, and the external sensor is a capacitive or inductive sensor.
  • the working principle of the surface acoustic wave resonator type impedance sensor of this embodiment is that the external sensor is a capacitive or inductive sensor, and the capacitive or inductive sensor converts the measured mechanical quantity, such as displacement, pressure, etc. into electricity.
  • the capacitance value of the external sensor or The inductance value changes. Since the external sensor is connected in parallel in the matching network, the impedance of the matching network changes. Therefore, when the first antenna 101 receives the excitation signal and transmits through the matching network, the center frequency changes correspondingly. Therefore, the signal passes through the reflection grid.
  • the center frequency of the signal emitted by the interdigital transducer is also changed accordingly.
  • the change value of the impedance of the external sensor can be analyzed, and the mechanical quantity of the measured object is calculated accordingly. The amount of change.
  • the surface acoustic wave resonator type impedance sensor of the present embodiment passes
  • the external sensor is connected in the matching network, and does not change the structure and arrangement of the piezoelectric substrate, so the sensing performance of the sensor is not affected, and the detection accuracy is also improved accordingly; and the structure and arrangement of the piezoelectric substrate are not changed, so The added process steps and complexity of setting pins, etc.; in addition, the external sensor can be integrated into the matching network with high integration, further reducing the package structure and reducing the overall volume of the sensor.
  • the role of the matching network 102 in the circuit is that, in the passive wireless measurement of the sensor, for example, the reflective gate 103 and the interdigital transducer 104 constitute a resonator, and the resonator needs to be impedanced with the antenna 101. Matching, the excitation signal received by the antenna 101 is sent to the resonator, otherwise it will cause great energy loss, which seriously affects the transmission efficiency and the quality of the signal. Therefore, a matching network is needed between the antenna and the resonator, and the matching network generally consists of an inductor and a capacitor. Parallel composition.
  • the resonator receives the matched excitation signal sent by the matching network, and the interdigital transducer performs electro-acoustic conversion, and the surface acoustic wave is generated to propagate to both sides.
  • the surface acoustic wave encounters the reflection grating, the reflection is generated and superimposed, and the resonance is performed.
  • a standing wave is formed in the cavity.
  • the resonator stores energy when the external signal is excited.
  • the interdigital transducer performs acoustic-electrical conversion to release the resonator response signal.
  • the composition of the resonator is simple, and only one fork finger transducer and one side of the interdigital transducer are respectively provided with a reflection grid, and the space occupied by the piezoelectric substrate is small.
  • Embodiment 2 a circuit schematic diagram of a surface acoustic wave resonator type impedance sensor is given in this embodiment.
  • the best matching network is composed of a first capacitor C1 and a first inductor L1 connected in series, and an external connection.
  • the sensors are connected in parallel across the series of circuits of the best matching network.
  • the external sensor may be connected to the matching network through the wire as shown in FIG. 4, or may be integrated into the matching network as shown in FIG. 5, and adopt an external connection method or an internal integration method according to a specific situation.
  • the tire pressure detection and other detection environment is relatively safe to use environment
  • the external sensor can be integrated into the matching network, the product integration is high, which is beneficial to reduce the package structure and reduce the overall volume of the sensor.
  • the external sensor For detecting the hydraulic condition of some working machines, or the gas pressure condition with high oxidizing property, it is necessary to set the external sensor in the liquid or corrosive gas. In this case, the external sensor needs to be externally connected, and the surface acoustic wave resonator type is not required.
  • the impedance sensor is placed in an environment that is unfavorable to the device, which is beneficial to protect the surface acoustic wave resonator type impedance sensor and prolong its service life.
  • Embodiment 3 provides a circuit schematic diagram of a surface acoustic wave resonator type impedance sensor. Since the external sensor is capacitive or inductive, no matter how it is connected to the matching In the network, the reactance value of the matching network is changed. This embodiment provides another mode of integration. Referring to FIG. 6, the external sensor may also be connected in parallel with the first inductor L1 to change the reactance value of the matching network.
  • the external sensor may also be connected in parallel with the first inductor L1 to change the reactance value of the matching network.
  • the equivalent capacitive reactance of the matching network is C'
  • the equivalent inductance is L'
  • the calculation method of the impedance value Zeq2 of the matching network is:
  • the equivalent circuit model of the universal near resonator of the resonator is shown in Fig. 7.
  • C and L are the dynamic capacitance and inductance respectively due to the elasticity and inertia of the piezoelectric substrate, and R is the dynamic resistance caused by the damping, C0 is The static capacitance of the interdigital transducer, R0 is the lead resistance.
  • the equivalent circuit parameters of the resonator include five parameters R0, R, L, C, and C0.
  • Zeq is the equivalent impedance of the structure composed of the resonator Zeq1 and the matching network Zeq2, that is, the total impedance value of the entire structure, therefore,
  • the characteristic impedance of a common transmission line is 50 ⁇
  • the matching point corresponds to the center frequency of S11, that is, the frequency with the smallest amplitude
  • the reflection coefficient is:
  • a relationship diagram between S11 and frequency f can be obtained from the equations (1 to 5), and the frequency f0 having the smallest amplitude corresponds to the center frequency of S11.
  • the integration of the capacitance or inductance in the external sensor will cause the equivalent value of C1 or L1 to change, affecting the value of Zeq2, and finally affecting the graph of S11.
  • the frequency f0 with the smallest amplitude is the entire resonator structure.
  • the center frequency will change accordingly.
  • the change of the measured mechanical quantity can be calculated according to the characteristics of the external sensor.
  • Embodiment 4 provides a surface acoustic wave resonator type vibration detecting system based on a surface acoustic wave resonator type vibration sensor in Embodiment 3.
  • a reader and a signal processing are provided.
  • a module, and an impedance sensor the reader is provided with a second antenna 201, and the impedance sensor is provided with a first antenna 101, and the two communicate through two antennas.
  • the vibration sensor further includes a matching network 102.
  • the reflective gate 103, and the interdigital transducer 104, at least the reflective gate 103, and the interdigital transducer 104 are disposed on the piezoelectric substrate 105. As shown in FIG.
  • the matching network 102 includes at least one capacitor and at least a best matching network composed of an inductor, the best matching network is also connected with an acceleration detecting circuit, and the acceleration detecting circuit comprises a plurality of parallel branches, and the branches of the best matching network are merged under different accelerations. The number is different.
  • the working principle of the surface acoustic wave resonator type vibration detecting system of this embodiment is that the reader transmits an excitation signal to the impedance sensor through the second antenna 201, and the impedance sensor receives the excitation signal through the first antenna 101, and the impedance sensor is added on the matching network.
  • the external sensor when the mechanical quantity of the object detected by the external sensor changes, causes the capacitance value or the inductance value of the external sensor to change, so the reactance value of the matching network changes, thereby changing the matching network access to the interdigital finger exchange.
  • the center frequency of the energy signal therefore, the center frequency of the signal emitted by the interdigital transducer after the signal is reflected by the reflective grid changes accordingly, and the interdigital transducer 104 transmits the resonated signal to the reader, which will be read by the reader.
  • the signal is sent to the signal processing center for processing, and the center frequency of the current feedback signal is detected. According to the change amount of the center frequency, the reactance change of the matching network can be calculated, and the change of the mechanical quantity can be calculated by using the characteristics of the external sensor.
  • a monitoring platform for monitoring the feedback signal of the impedance sensor is further included, and the monitoring platform receives the information sent by the signal processing module.
  • an alarm device connected to the monitoring platform shown is included. When the acceleration of the vibration sensor exceeds the set threshold, an alarm is given.
  • the external sensor When the mechanical quantity of the measured object reaches a set threshold, the external sensor corresponds to a reactance value.
  • the maximum variation of the central frequency can be calculated and stored, and the signal processing center changes according to the measured resonant frequency. Comparing with the stored frequency value information, the processing result is fed back to the monitoring platform, and the monitoring platform monitors the mechanical quantity change of the object to be measured by the feedback result.
  • the alarm device When the threshold value is exceeded, the alarm device will issue an alarm response, and the alarm mode is adopted.
  • a regular alarm can be used, for example, by using an audible and visual alarm.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • General Physics & Mathematics (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

一种声表面波谐振器型阻抗传感器,该传感器包括第一天线(101)、匹配网络(102)、反射栅(103)、以及叉指换能器(104),至少反射栅(103)、以及叉指换能器(104)设置在压电基片上,该匹配网络(102)包括由至少一个电容(C1)和至少一个电感(L1)组成的最佳匹配网络,该最佳匹配网络还并联有外部传感器,该外部传感器为电容式或者电感式传感器。通过将外部传感器接入匹配网络中,不改变压电基片的结构与布置,因此不影响传感器的感知性能,且不会带来设置引脚等所增加的工艺步骤和复杂度。外部传感器可以集成于匹配网络中,以便减小传感器整体体积。还提供了一种阻抗检测系统,其包括阅读器、信号处理模块以及阻抗传感器。

Description

一种声表面波谐振器型阻抗传感器以及阻抗检测系统 技术领域
本发明涉及一种阻抗传感器,具体地说,是涉及一种声表面波谐振器型阻抗传感器以及检测系统。
背景技术
目前许多特殊场合,传感器和被测单元间的连线通常是无法实现的,必须采用无线传感器来实现测量,声表面波传感器是利用外界因素(如温度,压力,磁场,电场等)会影响声表面波的传输特性而实现传感的一种器件。
无源声表面波传感器的工作原理是:首先,射频询问单元发出高频询问信号,信号被直接与声表面波芯片上的叉指换能器(IDT)相连的天线接收,转换成电信号。叉指换能器将电信号转换成在压电晶体表面传播的声表面波,部分声表面波能量被传播路径上的反射条纹反射回来,再通过叉指换能器将声信号转换成电信号,然后由天线发送出去。
申请公布号为CN 102052986 A的中国专利申请文件,公开一种无线无源声表面波阻抗负载传感器,参见图1所示,包括天线、输入/输出叉指换能器1、压电基片2、参比反射栅3、测量反射栅4和阻抗变化的外接传感器,射频询问单元发射的无线信号经所述天线接收并通过输入/输出叉指换能器1转化为声表面波,在所述压电基片2上传播,到达所述参比反射栅3和测量反射栅4后产生反射,由于反射栅4外接传感器,当外接传感器阻抗变化,使反射栅4外接电学条件发生变化,反射栅4反射性能也会发生变化。该技术方案的不足之处在于:1、将反射栅4与外接传感器连接,由于反射栅4设置在压电基片上,而压电基片作为无源声表面波的感知部分,一般要保持清洁、干净,因为声表面波在压电基片表面传播,灰尘杂质会影响声表面波传播性能,最终影响传感器感知性能,若将反射栅4与外接传感器连接的话,很保证压电基片的洁净度,导致影响传感器感知精度,即便是将传感器压电基片部分采用外壳封装起来,这就需要通过点焊金属引线将反射栅和引脚相连,该引脚再与 外接传感器相连,增添了工艺步骤和复杂度。2、通过引线、引脚和导线连接外接传感器,不利于集成化。
发明内容
本发明为了解决现有声表面波传感器占用体积大的技术问题,提供了一种声表面波谐振器型阻抗传感器。
为了解决上述技术问题,本发明采用以下技术方案予以实现:
一种声表面波谐振器型阻抗传感器,包括第一天线、匹配网络、反射栅、以及叉指换能器,所述至少反射栅、以及叉指换能器设置在压电基片上,所述匹配网络包括由至少一个电容和至少一个电感组成的最佳匹配网络,所述最佳匹配网络还并联有外部传感器,所述外部传感器为电容式或者电感式传感器。
进一步的,所述最佳匹配网络由第一电容(C1)和第一电感(L1)相串联组成,所述外部传感器并联在所述最佳匹配网络组成的串联电路的两端。
进一步的,所述最佳匹配网络由第一电容(C1)和第一电感(L1)相串联组成,所述外部传感器并联在所述第一电容(C1)的两端。
进一步的,所述最佳匹配网络由第一电容(C1)和第一电感(L1)相串联组成,所述外部传感器并联在所述第一电感(L1)的两端。
又进一步的,所述外部传感器集成于匹配网络中或者通过导线外接入匹配网络中。
基于上述的一种声表面波谐振器型阻抗传感器,本发明同时提供了一种声表面波谐振器型阻抗检测系统,包括阅读器、信号处理模块、以及阻抗传感器,所述阅读器上设置有第二天线,所述阻抗传感器包括第一天线、匹配网络、反射栅、以及叉指换能器,所述至少反射栅、以及叉指换能器设置在压电基片上,所述匹配网络包括由至少一个电容和至少一个电感组成的最佳匹配网络,所述最佳匹配网络还并联有外部传感器,所述外部传感器为电容式或者电感式传感器。
与现有技术相比,本发明的优点和积极效果是:本发明的声表面波谐振器型阻抗传感器,1、通过将外部传感器接入匹配网络中,不改变压电基片的结构与布置,因此不会影响传感器的感知性能,检测精确度也相应提高;2、不改变压电基片的结构与布置,因此不会带来设置引脚等所增加的工艺步骤和复 杂度;3、外部传感器可以集成于匹配网络中,集成度高,进一步减少封装结构,减小了传感器整体体积。
结合附图阅读本发明实施方式的详细描述后,本发明的其他特点和优点将变得更加清楚。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例一,参见图2所示,本实施例提供了一种声表面波谐振器型阻抗传感器,包括第一天线101、匹配网络102、反射栅103、以及叉指换能器104,至少反射栅103、以及叉指换能器104设置在压电基片105上,参见图3所示,匹配网络102包括由至少一个电容和至少一个电感组成的最佳匹配网络,该最佳匹配网络还并联有外部传感器,所述外部传感器为电容式或者电感式传感器。本实施例的声表面波谐振器型阻抗传感器的工作原理是:外部传感器为电容式或者电感式传感器,该电容式或者电感式传感器是将被测的机械量,如位移、压力等转换为电容量或者电感量变化的传感器,在本技术方案中,通过在匹配网络上增设外部传感器,当被测对象的机械量(如位移、压力等转换)发生变化时,体现为外部传感器的电容值或者电感值发生变化,由于外部传感器并联在匹配网络中,因此匹配网络的阻抗发生变化,因此第一天线101接收激励信号经过匹配网络传输时,中心频率会发生相应的改变,因此,信号经反射栅反射后由叉指换能器发射出去的信号中心频率也相应改变,通过检测阻抗传感器发出信号的中心频率,即可分析出外部传感器的阻抗的改变值,相应计算出被测对象的机械量的变化量。本实施例的声表面波谐振器型阻抗传感器,通过将 外部传感器连接在匹配网络中,不改变压电基片的结构与布置,因此不会影响传感器的感知性能,检测精确度也相应提高;而且不改变压电基片的结构与布置,因此不会带来设置引脚等所增加的工艺步骤和复杂度;此外,外部传感器可以集成于匹配网络中,集成度高,进一步减少封装结构,减小了传感器整体体积。
需要说明的是,匹配网络102在电路中的作用是,在例如本实施例的传感器无源无线测量中,反射栅103以及叉指换能器104组成谐振器,谐振器需要与天线101进行阻抗匹配,将天线101接收的激励信号发送至谐振器,否则会造成极大的能量损耗,严重影响传输效率和信号的品质,因此在天线和谐振器间需要匹配网络,匹配网络一般由电感和电容并联组成。谐振器接收匹配网络发送的经过匹配的激励信号,叉指换能器进行电-声转换,产生声表面波向两边传播,声表面波遇到反射栅时产生反射,并进行叠加,会在谐振腔内形成驻波。谐振器在外部信号激励时存储能量,当外部激励信号撤出后,叉指换能器进行声-电转换,将谐振器响应信号释放出去。谐振器的组成结构简单,只需采用一个叉指换能器以及叉指换能器的两侧分别设置一个反射栅即可,占用压电基片的空间小。
实施例二,本实施例给出了声表面波谐振器型阻抗传感器的一种电路原理图,参见图4所示,最佳匹配网络由第一电容C1和第一电感L1相串联组成,外接传感器并联在所述最佳匹配网络组成的串联电路的两端。
其中,外部传感器可以如图4所示的通过导线外接入匹配网络中,也可以如图5所示的集成于匹配网络中,采用外接方式或者内接集成的方式根据具体情况而定,对于比如轮胎压力检测等检测环境相对安全的使用环境,将外部传感器集成于匹配网络中即可,产品集成度高,有利于减少封装结构,减小了传感器整体体积。对于检测一些工作机械的液压情况,或者氧化性高的气体压力情况,需要将外部传感器设置于液体中或者腐蚀性气体中,此时需要将外部传感器外接即可,无需将声表面波谐振器型阻抗传感器整体置于对器件不利的使用环境中,有利于保护声表面波谐振器型阻抗传感器,延长其使用寿命。
实施例三,本实施例给出了一种声表面波谐振器型阻抗传感器的一种电路原理图,由于外部传感器为电容式或者电感式,无论其以什么方式接入至匹配 网络中,均会改变匹配网络的电抗值。本实施例给出了另外一种并入方式,参见图6所示,外部传感器还可以只与第一电感L1相并联,以改变匹配网络的电抗值。当然还有其他一些组合方式,均属于本发明的保护范围,再此不一一举例。
该匹配网络的等效容抗为C′,等效感抗L′,匹配网络的阻抗值Zeq2的计算方法为:
Figure PCTCN2015081116-appb-000001
w=2×π×f  (2)
谐振器的通用近谐振器等效电路模型如图7所示,图7中C与L分别为由于压电基片弹性和惯性引起的动态电容和电感,R为阻尼引起的动态电阻,C0为叉指换能器的静态电容,R0为引线电阻。谐振器的等效电路参数包括R0,R,L,C,C0五个参数。
谐振器的阻抗为Zeq1的计算方法为:
Figure PCTCN2015081116-appb-000002
Zeq为谐振器Zeq1和匹配网络Zeq2组成结构的等效阻抗,即为整个结构的总阻抗值,因此,
Zeq=Zeq1+Zeq2  (4)
一般情况下,常用传输线的特性阻抗为50Ω,匹配点对应S11的中心频率,即幅度最小的频率,反射系数为:
Figure PCTCN2015081116-appb-000003
由公式(1~5)可得到S11与频率f的关系图,幅度最小的频率f0对应S11的中心频率。匹配网络中,外接传感器中的电容或电感的并入网络,会导致C1或L1的等效值改变,影响Zeq2的值,最终影响S11的曲线图,幅度最小的频率f0即为整个谐振器结构的中心频率会发生相应的改变,通过测量中心频率的变化,根据外部传感器的特性即可计算出被测机械量的变化。
实施例四,本实施例基于实施例三中的一种声表面波谐振器型振动传感器,提供了一种声表面波谐振器型振动检测系统,参见图8所示,包括阅读器、信号处理模块、以及阻抗传感器,所述阅读器上设置有第二天线201,阻抗传感器上设置有第一天线101,两者通过两个天线进行通信,参见图2所示,振动传感器还包括匹配网络102、反射栅103、以及叉指换能器104,至少反射栅103、以及叉指换能器104设置在压电基片105上,参见图3所示,匹配网络102包括由至少一个电容和至少一个电感组成的最佳匹配网络,该最佳匹配网络还并联有加速度检测电路,加速度检测电路包括若干个相并联的支路,在不同的加速度下并入所述最佳匹配网络的支路个数不同。本实施例的声表面波谐振器型振动检测系统的工作原理是:阅读器通过第二天线201向阻抗传感器发送激励信号,阻抗传感器通过第一天线101接收激励信号,阻抗传感器在匹配网络上增设外部传感器,当外部传感器所检测的对象的机械量发生变化时,会导致该外部传感器的电容值或者电感值发生变化,因此匹配网络的电抗值发生变化,进而改变匹配网络接入至叉指换能器信号的中心频率,因此,信号经反射栅反射后由叉指换能器发射出去的信号中心频率相应改变,叉指换能器104将谐振后的信号发送至阅读器,由阅读器将该信号发送至信号处理中心处理,检测出当前反馈信号的中心频率,根据中心频率的改变量,可以计算出匹配网络的电抗变化,利用外部传感器的特性,即可计算出机械量的变化。
为了实现对被测对象的机械量变化进行监测,还包括用于监控阻抗传感器反馈信号的监控平台,所示监控平台接收信号处理模块发送的信息。此外,还包括与所示监控平台连接的报警装置。当振动传感器的加速度超过设定阈值时,进行报警提示。
当被测对象的机械量变化达到设定阈值时,外部传感器对应一个电抗值,根据匹配网络的结构即可计算出中心频率的最大变化量并存储,信号处理中心根据测得的谐振频率变化,与已储存的频率值信息进行比较处理,将处理结果反馈到监测平台,监测平台对反馈结果被测对象的机械量变化进行监测,当超出阈值时,则报警装置会发出报警响应,报警方式采取常规的报警即可,比如,可以通过采用声光报警。
当然,上述说明并非是对本发明的限制,本发明也并不仅限于上述举例, 本技术领域的普通技术人员在本发明的实质范围内所做出的变化、改型、添加或替换,也应属于本发明的保护范围。

Claims (10)

  1. 一种声表面波谐振器型阻抗传感器,其特征在于,包括第一天线、匹配网络、反射栅、以及叉指换能器,所述至少反射栅、以及叉指换能器设置在压电基片上,所述匹配网络包括由至少一个电容和至少一个电感组成的最佳匹配网络,所述最佳匹配网络还并联有外部传感器,所述外部传感器为电容式或者电感式传感器。
  2. 根据权利要求1所述的声表面波谐振器型阻抗传感器,其特征在于,所述最佳匹配网络由第一电容(C1)和第一电感(L1)相串联组成,所述外部传感器并联在所述最佳匹配网络组成的串联电路的两端。
  3. 根据权利要求1所述的声表面波谐振器型阻抗传感器,其特征在于,所述最佳匹配网络由第一电容(C1)和第一电感(L1)相串联组成,所述外部传感器并联在所述第一电容(C1)的两端。
  4. 根据权利要求1所述的声表面波谐振器型阻抗传感器,其特征在于,所述最佳匹配网络由第一电容(C1)和第一电感(L1)相串联组成,所述外部传感器并联在所述第一电感(L1)的两端。
  5. 根据权利要求1-4任一项所述的声表面波谐振器型阻抗传感器,其特征在于,所述外部传感器集成于匹配网络中或者通过导线外接入匹配网络中。
  6. 一种声表面波谐振器型阻抗检测系统,其特征在于,包括阅读器、信号处理模块、以及阻抗传感器,所述阅读器上设置有第二天线,所述阻抗传感器包括第一天线、匹配网络、反射栅、以及叉指换能器,所述至少反射栅、以及叉指换能器设置在压电基片上,所述匹配网络包括由至少一个电容和至少一个电感组成的最佳匹配网络,所述最佳匹配网络还并联有外部传感器,所述外部传感器为电容式或者电感式传感器。
  7. 根据权利要求6所述的声表面波谐振器型阻抗检测系统,其特征在于,所述最佳匹配网络由第一电容(C1)和第一电感(L1)相串联组成,所述外部传感器并联在所述最佳匹配网络组成的串联电路的两端。
  8. 根据权利要求6所述的声表面波谐振器型阻抗检测系统,其特征在于,所述最佳匹配网络由第一电容(C1)和第一电感(L1)相串联组成,所述外部 传感器并联在所述第一电容(C1)的两端。
  9. 根据权利要求6所述的声表面波谐振器型阻抗检测系统,其特征在于,所述最佳匹配网络由第一电容(C1)和第一电感(L1)相串联组成,所述外部传感器并联在所述第一电感(L1)的两端。
  10. 根据权利要求6-9任一项所述的声表面波谐振器型阻抗检测系统,其特征在于,所述外部传感器集成于匹配网络中或者通过导线外接入匹配网络中。
PCT/CN2015/081116 2014-08-02 2015-06-10 一种声表面波谐振器型阻抗传感器以及阻抗检测系统 WO2016019754A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410376057.1 2014-08-02
CN201410376057.1A CN105318901A (zh) 2014-08-02 2014-08-02 一种声表面波谐振器型阻抗传感器以及阻抗检测系统

Publications (1)

Publication Number Publication Date
WO2016019754A1 true WO2016019754A1 (zh) 2016-02-11

Family

ID=55246794

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/081116 WO2016019754A1 (zh) 2014-08-02 2015-06-10 一种声表面波谐振器型阻抗传感器以及阻抗检测系统

Country Status (2)

Country Link
CN (1) CN105318901A (zh)
WO (1) WO2016019754A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3066591A1 (fr) * 2017-05-19 2018-11-23 Senseor Procede d'optimisation de conception d'un dispositif comprenant des moyens d'interrogation et un capteur passif interrogeable a distance
CN109405887A (zh) * 2018-12-07 2019-03-01 黑龙江东方学院 一种测量扭矩与温度的声表面波传感器及检测方法
CN111749682A (zh) * 2019-03-28 2020-10-09 中国石油天然气股份有限公司 温度传感器
CN113029582A (zh) * 2021-03-10 2021-06-25 南京航空航天大学 基于声表面波标签的航空发动机扭矩检测系统及检测方法
CN117889892A (zh) * 2024-03-14 2024-04-16 浙江龙感科技有限公司成都分公司 一种可变电容微波直驱变频传感器、系统及控制方法
CN117889892B (zh) * 2024-03-14 2024-05-31 浙江龙感科技有限公司成都分公司 一种可变电容微波直驱变频传感器、系统及控制方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106569000A (zh) * 2016-10-08 2017-04-19 中国电力科学研究院 一种对电流进行无线无源检测的系统和方法
CN106526324B (zh) * 2016-11-09 2019-03-19 南方电网科学研究院有限责任公司 容性设备的阻抗特性测试装置
CN106841383B (zh) * 2016-12-27 2019-06-18 华中科技大学 一种集成式阻抗负载声表面波气体传感器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030164713A1 (en) * 2000-03-06 2003-09-04 Siemens Aktiengesellschaft Product having a sensor and a surface acoustic wave element, as well as a method and arrangement for determining a measurement variable, which corresponds to a reactance, by a sensor
CN102052986A (zh) * 2010-11-18 2011-05-11 华中科技大学 无线无源声表面波阻抗负载传感器
CN103324238A (zh) * 2012-02-23 2013-09-25 Mks仪器公司 射频控制系统
CN103414006A (zh) * 2013-08-13 2013-11-27 常州智梭传感科技有限公司 超薄型无源无线声表面波传感器
CN103630233A (zh) * 2013-12-18 2014-03-12 国家电网公司 基于加速度传感器的断路器振动监测系统及其监测方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7053524B2 (en) * 2003-12-09 2006-05-30 P.J. Edmonson Ltd. Surface acoustic wave sensor or identification device with biosensing capability
CN204202629U (zh) * 2014-08-02 2015-03-11 软控股份有限公司 一种声表面波谐振器型阻抗传感器以及阻抗检测系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030164713A1 (en) * 2000-03-06 2003-09-04 Siemens Aktiengesellschaft Product having a sensor and a surface acoustic wave element, as well as a method and arrangement for determining a measurement variable, which corresponds to a reactance, by a sensor
CN102052986A (zh) * 2010-11-18 2011-05-11 华中科技大学 无线无源声表面波阻抗负载传感器
CN103324238A (zh) * 2012-02-23 2013-09-25 Mks仪器公司 射频控制系统
CN103414006A (zh) * 2013-08-13 2013-11-27 常州智梭传感科技有限公司 超薄型无源无线声表面波传感器
CN103630233A (zh) * 2013-12-18 2014-03-12 国家电网公司 基于加速度传感器的断路器振动监测系统及其监测方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3066591A1 (fr) * 2017-05-19 2018-11-23 Senseor Procede d'optimisation de conception d'un dispositif comprenant des moyens d'interrogation et un capteur passif interrogeable a distance
US10345160B2 (en) 2017-05-19 2019-07-09 Senseor Method for optimizing the design of a device comprising interrogation means and a remotely-interrogatable passive sensor
CN109405887A (zh) * 2018-12-07 2019-03-01 黑龙江东方学院 一种测量扭矩与温度的声表面波传感器及检测方法
CN111749682A (zh) * 2019-03-28 2020-10-09 中国石油天然气股份有限公司 温度传感器
CN113029582A (zh) * 2021-03-10 2021-06-25 南京航空航天大学 基于声表面波标签的航空发动机扭矩检测系统及检测方法
CN117889892A (zh) * 2024-03-14 2024-04-16 浙江龙感科技有限公司成都分公司 一种可变电容微波直驱变频传感器、系统及控制方法
CN117889892B (zh) * 2024-03-14 2024-05-31 浙江龙感科技有限公司成都分公司 一种可变电容微波直驱变频传感器、系统及控制方法

Also Published As

Publication number Publication date
CN105318901A (zh) 2016-02-10

Similar Documents

Publication Publication Date Title
WO2016019754A1 (zh) 一种声表面波谐振器型阻抗传感器以及阻抗检测系统
WO2016019755A1 (zh) 声表面波谐振器型振动传感器以及振动检测系统
CN107238431A (zh) 一种无线无源声表面波振动传感器
CN103134606B (zh) 差分式声表面波温度传感器
CN102052986A (zh) 无线无源声表面波阻抗负载传感器
CN102636204B (zh) 自编号声表面波无源无线谐振型传感器
CN204202629U (zh) 一种声表面波谐振器型阻抗传感器以及阻抗检测系统
CN103499024A (zh) 用于输油管道泄漏检测系统的声表面波压力传感器
EP2594930B1 (en) Wireless SAW moisture sensor
US20070028700A1 (en) Acoustic wave torque sensor
CN107907205A (zh) 一种无线无源声表面波振动传感器
CN203132736U (zh) 差分式声表面波温度传感器
CN206862522U (zh) 变电站一次设备用无源无线温度传感器
JP2015145808A (ja) 物理量検出センサモジュールおよび物理量検出システム
US10648868B2 (en) Surface acoustic wave device
CN204202745U (zh) 声表面波谐振器型振动传感器以及振动检测系统
EP3141893B1 (en) System for determining if a deterioration occurs in an interface of a semiconductor die
US8922095B2 (en) Transponder having coupled resonant modes and including a variable load
WO2016019756A1 (zh) 分布式声表面波谐振器及声表面波传感系统
CN208704958U (zh) 一种声表面波传感器的封装装置
CN109194302B (zh) 一种声表面波三换能器双端对谐振器
CN113029420A (zh) 一种基于声表面波技术的嵌入式无线无源螺栓松紧状态监测系统
CN109682493A (zh) 一种双芯片声表面波无源无线测温传感器及其测温方法
CN203571440U (zh) 一种用于输油管道泄漏检测系统的声表面波压力传感器
CN206223334U (zh) 基于瑞利波模式的声表面波双谐振器一体化扭矩传感器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15829368

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15829368

Country of ref document: EP

Kind code of ref document: A1