WO2016019647A1 - Cellule photovoltaïque à énergie solaire et dispositif intégré de production de puissance à cheminée à courant thermique d'énergie solaire - Google Patents

Cellule photovoltaïque à énergie solaire et dispositif intégré de production de puissance à cheminée à courant thermique d'énergie solaire Download PDF

Info

Publication number
WO2016019647A1
WO2016019647A1 PCT/CN2014/090724 CN2014090724W WO2016019647A1 WO 2016019647 A1 WO2016019647 A1 WO 2016019647A1 CN 2014090724 W CN2014090724 W CN 2014090724W WO 2016019647 A1 WO2016019647 A1 WO 2016019647A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
solar
solar energy
shed
collecting shed
Prior art date
Application number
PCT/CN2014/090724
Other languages
English (en)
Chinese (zh)
Inventor
陶文铨
何雅玲
丰镇平
曹军骥
黄明华
陈磊
Original Assignee
西安交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安交通大学 filed Critical 西安交通大学
Publication of WO2016019647A1 publication Critical patent/WO2016019647A1/fr

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S10/00PV power plants; Combinations of PV energy systems with other systems for the generation of electric power
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/052Cooling means directly associated or integrated with the PV cell, e.g. integrated Peltier elements for active cooling or heat sinks directly associated with the PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the invention belongs to the field of new energy utilization, and particularly relates to a solar photovoltaic and solar hot air chimney power generation integrated device capable of efficiently utilizing solar energy.
  • the basic principle of solar hot air chimney power generation is to use solar energy to heat the air in the heat collecting shed to generate a temperature difference, which causes the air density to change and cause convection, so that the hot air flows out of the chimney, so the air heating is more severe, the density difference is larger, and the chimney is more High, the higher the airflow speed, the greater the power generation; the existing hot air chimney power generation various arrangements have a poor heating effect on the airflow, resulting in low power generation efficiency, generally 1-3%, resulting in all so far There is still no hot air chimney power station in the world that has been operating stably for a long time.
  • the 50kW pilot power station built near Mansana Stoudemire in Spain has a solar collector with a diameter of 240m, a solar tower with a height of 195m and a diameter of 10m. After 36 months of successful operation between 1982 and 1986, the tower was blown down in a strong wind and has not been rebuilt so far (Hu Liye, Solar Tower Thermal Air Power Station. Energy Technology, 2006, Vol. 26, Supplement, 91-93); Ten years ago, it was said that New South Wales in southern Australia had to build a 1000-meter-high hot gas chimney power station, but so far no news has been built, which may be related to low power generation efficiency.
  • the object of the present invention is to solve the problems existing in the prior art and to provide an integrated device that simultaneously utilizes solar photovoltaic, solar hot air chimney power generation technology to improve overall power generation efficiency.
  • the technical solution adopted by the present invention comprises: a bottom surface of a heat collecting shed and a heat collecting shed top cover disposed on a bottom surface of the heat collecting shed, and a gap between the edge of the collecting hood top cover and the bottom surface of the heat collecting shed There is a gap, and a chimney is arranged on the top cover of the collecting shed, a power generating fan is arranged in the outlet of the collecting shed or the chimney, and a solar photovoltaic panel is placed on the top cover of the collecting shed.
  • the solar photovoltaic panel covers the edge of the collector roof; the solar photovoltaic panel covers the entire collector roof; the solar photovoltaic panel has a heat-reducing element fin on the back; The bottom of the collecting shed and the bottom of the collecting shed cover the ground at 360°; the bottom of the collecting shed and the bottom of the collecting shed cover the ground at an angle less than 360°; The circumferential direction is closely connected or divided into fan-shaped areas with a spacing.
  • the invention replaces the glass of the heat collecting shed top cover of the current hot air flow chimney power generating device with part or all of the photovoltaic panel with the heat-reinforcing element on the back side and the like, and the airflow in the greenhouse can cool the photovoltaic cell board, so that the power generation efficiency is high.
  • the bottom surface of the panel can heat the airflow to form a hot airflow to generate electricity, so that the overall efficiency of the entire device is improved.
  • the photovoltaic cell is effectively cooled, and its power generation efficiency can be significantly increased;
  • the land can be effectively utilized, and the photovoltaic panels on the top side of the heat collecting shed receive solar energy to generate electric energy, and the top surface of the collecting shed is the heat dissipating surface of the photovoltaic cell. Heating the airflow in the heat collecting shed.
  • One area of land is used by both solar photovoltaic and hot gas chimneys;
  • the invention can effectively improve the power generation efficiency of the solar panel, improve the efficiency and reliability of the power device based on the principle of the solar hot air flow, and has the advantages of high energy utilization efficiency and simple structure.
  • Figure 1 is a schematic view showing the entire structure of the present invention.
  • the present invention includes a bottom surface 1 of a heat collecting shed and a heat collecting shed top cover 3 disposed above the bottom surface 1 of the heat collecting shed.
  • a gap is left between the edge of the heat collecting shed top cover 3 and the bottom surface 1 of the heat collecting shed, and
  • a chimney 4 is arranged on the collecting shed top cover 3, and a power generating fan 5 is arranged in the collecting shed outlet or the chimney 4, and a solar photovoltaic panel is placed on the edge of the collecting shed top cover 3 or the entire collecting shed top cover 3 2.
  • the heat-reducing element fins 6 are provided on the back of the solar photovoltaic panel 2.
  • the heat collecting shed top cover 3 and the heat collecting shed bottom surface 1 of the present invention cover the ground at an angle of 360° or less, and the heat collecting shed top cover 3 is closely connected in a circumferential direction or divided into strips with a spacing. Area to facilitate the cleaning of the surface of the solar panel.
  • the invention uses the solar photovoltaic panel 2 with fins 6 on the collector roof 3 to utilize its heat dissipation to heat the airflow entering the heat collecting shed, while improving the solar photovoltaic and hot gas power generation efficiency.
  • the solar radiation passes through the transparent collector roof 3 and is absorbed by the heat absorption layer on the bottom surface of the heat collecting shed.
  • the heat collecting shed can well block the long-wave radiation emitted from the ground.
  • the air entering the shed is heated by the bottom surface of the heat collecting shed.
  • the temperature of the air inside and outside the collecting shed is different, and the density difference causes convection.
  • the hot air continuously enters the chimney 4 in the middle of the collecting shed.
  • the cold air outside the shed enters the heat collecting through the surrounding gap.
  • the shed thus forms a continuous flow of air in the heat collecting shed into the chimney in the radial direction, and the ascending airflow in the chimney 4 drives the power generating fan 5 to rotate, thereby driving the generator to generate electricity.
  • the solar photovoltaic panel 2 is placed on the top cover 3 of the heat collecting shed to generate a photovoltaic effect under the illumination to generate a voltage, which converts the solar energy into electrical energy.
  • a large amount of thermal energy generated by the solar photovoltaic panel 2 is used to heat the heat collecting.
  • the airflow in the shed forms a hot air stream to generate electricity. Since the airflow in the heat collecting shed absorbs the heat energy of the solar photovoltaic panel 2, cooling it also increases the efficiency of solar photovoltaic power generation.
  • the solar photovoltaic cell power generation is 1000W ⁇ m -2 when the solar irradiation intensity is 1000W ⁇ m -2
  • the solar panel temperature can be reduced by about 10 ° C or more, so that the solar panel power generation efficiency is significantly improved; at the same time, the hot gas power generation efficiency is also improved, so that the entire device
  • the power generation is two orders of magnitude higher than the maximum power (50 kW) of a pure hot gas chimney power plant.
  • the chimney Since the amount of heat generated by the hot gas is small compared with the amount of photovoltaic power generation, even if no power generating fan is installed in the chimney or greenhouse, the chimney only functions as a tissue airflow, and the photovoltaic cell generates more electricity than the general photovoltaic panel in the same area. The amount of electricity generated has increased significantly.
  • the technology comprehensively utilizes the characteristics of solar photovoltaic and solar hot air chimney power generation, improves solar energy utilization rate, is green and environmentally friendly, saves land, and has reliable and stable equipment, long service life, simple installation and maintenance, and conforms to the trend of new energy development.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Photovoltaic Devices (AREA)

Abstract

L'invention concerne une cellule photovoltaïque à énergie solaire et un dispositif intégré de production de puissance à cheminée à courant thermique d'énergie solaire. Un panneau de cellules photovoltaïques à énergie solaire est utilisé pour remplacer partiellement ou complètement le verre de la couverture supérieure d'un abri de collecteur de chaleur d'un dispositif de puissance à courant thermique d'énergie solaire existant, de sorte que l'écoulement d'air dans l'abri puisse refroidir la surface arrière du panneau de cellules photovoltaïques et que l'efficacité de production de puissance du panneau de cellules soit améliorée ; pendant ce temps, la chaleur dissipée depuis la surface arrière du panneau de cellules peut être utilisée pour chauffer l'écoulement d'air entrant dans l'abri de collecteur de chaleur. De cette manière, la cellule photovoltaïque peut être efficacement refroidie et l'efficacité de production de puissance de la cellule est considérablement améliorée ; en même temps, l'écoulement d'air dans l'abri de collecteur de chaleur peut être chauffé et des courants thermique sont formés pour la production de puissance, de sorte que l'efficacité de tout le dispositif de puissance soit améliorée. Étant donné que l'énergie solaire est efficacement utilisée, le diamètre de l'abri de collecteur de chaleur peut être réduit dans une certaine mesure, et l'espace au sol est réduit.
PCT/CN2014/090724 2014-08-07 2014-11-10 Cellule photovoltaïque à énergie solaire et dispositif intégré de production de puissance à cheminée à courant thermique d'énergie solaire WO2016019647A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410386833.6A CN104181937A (zh) 2014-08-07 2014-08-07 一种太阳能光伏、太阳能热气流烟囱发电集成装置
CN201410386833.6 2014-08-07

Publications (1)

Publication Number Publication Date
WO2016019647A1 true WO2016019647A1 (fr) 2016-02-11

Family

ID=51963073

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/090724 WO2016019647A1 (fr) 2014-08-07 2014-11-10 Cellule photovoltaïque à énergie solaire et dispositif intégré de production de puissance à cheminée à courant thermique d'énergie solaire

Country Status (2)

Country Link
CN (1) CN104181937A (fr)
WO (1) WO2016019647A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106655455A (zh) * 2017-03-09 2017-05-10 青岛海汇德电气有限公司 一种景观雨棚以及移动充电系统
GR20180100304A (el) * 2018-07-10 2020-03-18 Χρηστος Δημητριου Παπαγεωργιου Υβριδικος σταθμος θερμοκηπιου φωτοβολταϊκων ηλιακης καμιναδας
CN112978830A (zh) * 2021-04-15 2021-06-18 中国科学院电工研究所 一种双被动太阳能水处理系统
CN113079899A (zh) * 2021-03-29 2021-07-09 四川云辰园林科技有限公司 一种基于双玻组件的温室光热光伏联用装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104863390B (zh) * 2015-05-06 2017-03-01 戚荣生 可自动除雪的太阳能气流发电阳光大棚
CN104904523A (zh) * 2015-05-12 2015-09-16 张一熙 一种具有自对流功能的新型全天候温室大棚系统
WO2016193807A1 (fr) * 2015-06-03 2016-12-08 Böer Karl W Dispositif pour réduire la température d'un panneau photovoltaïque solaire
CN105071766A (zh) * 2015-07-24 2015-11-18 重庆理工大学 一种聚光光伏电池空冷散热系统
CN105156275B (zh) * 2015-09-15 2018-08-10 戚荣生 太阳能热气流垂直轴发电的静音进气道
CN107860092A (zh) * 2017-11-03 2018-03-30 河海大学常州校区 一种集中式太阳能大型地面停车场降温通风发电联产系统
CN113757032A (zh) * 2021-09-27 2021-12-07 焦云飞 一种基于光照受热和地表风汇聚的阵列式风力发电装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1830061A2 (fr) * 2006-02-22 2007-09-05 Jonas Villarrubia Ruiz Générateur de courant électrique, utilisisant l'ascension d'air chaud
CN202176465U (zh) * 2011-03-04 2012-03-28 南京清洁可再生能源研究设计院 高聚光太阳能热气流风光耦合塔发电系统
CN102878019A (zh) * 2012-09-17 2013-01-16 太原科技大学 太阳能热风风力发电结合光伏发电结构及降温控制方法
CN102913390A (zh) * 2012-10-08 2013-02-06 太原科技大学 太阳能热风风力发电结合光伏发电结构及变风道控制方法
CN103233868A (zh) * 2013-04-10 2013-08-07 西安交通大学 一种低温太阳能和旋转风能综合利用装置
CN103629061A (zh) * 2013-12-17 2014-03-12 张瑞明 太阳能光伏、热气流综合利用发电装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8095245B1 (en) * 2009-07-29 2012-01-10 Lockheed Martin Corporation Thermal energy dispatch system
CN102852744A (zh) * 2012-09-25 2013-01-02 上海理工大学 一种农业生产与太阳能热风发电系统结合的方法
CN102852743A (zh) * 2012-09-25 2013-01-02 上海理工大学 一种结合相变蓄热技术的太阳能热风发电系统
CN203257618U (zh) * 2013-05-22 2013-10-30 河海大学 屋顶复合发电装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1830061A2 (fr) * 2006-02-22 2007-09-05 Jonas Villarrubia Ruiz Générateur de courant électrique, utilisisant l'ascension d'air chaud
CN202176465U (zh) * 2011-03-04 2012-03-28 南京清洁可再生能源研究设计院 高聚光太阳能热气流风光耦合塔发电系统
CN102878019A (zh) * 2012-09-17 2013-01-16 太原科技大学 太阳能热风风力发电结合光伏发电结构及降温控制方法
CN102913390A (zh) * 2012-10-08 2013-02-06 太原科技大学 太阳能热风风力发电结合光伏发电结构及变风道控制方法
CN103233868A (zh) * 2013-04-10 2013-08-07 西安交通大学 一种低温太阳能和旋转风能综合利用装置
CN103629061A (zh) * 2013-12-17 2014-03-12 张瑞明 太阳能光伏、热气流综合利用发电装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106655455A (zh) * 2017-03-09 2017-05-10 青岛海汇德电气有限公司 一种景观雨棚以及移动充电系统
GR20180100304A (el) * 2018-07-10 2020-03-18 Χρηστος Δημητριου Παπαγεωργιου Υβριδικος σταθμος θερμοκηπιου φωτοβολταϊκων ηλιακης καμιναδας
CN113079899A (zh) * 2021-03-29 2021-07-09 四川云辰园林科技有限公司 一种基于双玻组件的温室光热光伏联用装置
CN112978830A (zh) * 2021-04-15 2021-06-18 中国科学院电工研究所 一种双被动太阳能水处理系统

Also Published As

Publication number Publication date
CN104181937A (zh) 2014-12-03

Similar Documents

Publication Publication Date Title
WO2016019647A1 (fr) Cellule photovoltaïque à énergie solaire et dispositif intégré de production de puissance à cheminée à courant thermique d'énergie solaire
Dwivedi et al. Advanced cooling techniques of PV modules: A state of art
Amelia et al. Cooling on photovoltaic panel using forced air convection induced by DC fan
CN103187893B (zh) 光伏逆变装置的冷却结构以及冷却方式
WO2016045170A1 (fr) Procédé pour améliorer le rendement de production d'électricité d'une cellule solaire photovoltaïque
KR101600554B1 (ko) 태양광 발전시스템의 태양전지모듈 냉각장치
CN104747386B (zh) 风力发电机组变频器冷却降温装置
KR20130077305A (ko) 태양광 모듈의 냉각장치
CN206274516U (zh) 一种风冷散热降温光伏电池组件
CN105813436B (zh) 户外led显示屏散热用光伏驱动型蒸发冷却节能装置
JP2005083327A (ja) 複合発電装置
JP2014159903A (ja) 循環式太陽熱発電装置
EP2246914A1 (fr) Une unité pour convertir l'énergie solaire et / ou d'énergie thermique en énergie électrique
CN205265612U (zh) 控温型太阳能发电装置
CN103939295A (zh) 风力发电机组变频器的节能冷却降温系统
CN105674763A (zh) 一种太阳能冷却塔
CN207621890U (zh) 一种外包裹柔性太阳能电池的路灯
CN207052406U (zh) 一种环保型自散热变压器
CN105071766A (zh) 一种聚光光伏电池空冷散热系统
CN206274643U (zh) 一种便于安装散热降温装置的光伏电池组件结构
CN204201743U (zh) 便于电池板散热的太阳能路灯
CN104641546A (zh) 气冷热电发电装置及使用气冷热电发电装置的太阳热能发电装置
Rajagopal et al. Cooling Techniques for Performance Improvement of PV Systems
CN108448942B (zh) 一种低温环境日照取热发电装置
CN219918879U (zh) 一种散热良好的太阳能板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14899337

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 27/07/2017)

122 Ep: pct application non-entry in european phase

Ref document number: 14899337

Country of ref document: EP

Kind code of ref document: A1