WO2016019603A1 - 多基色液晶显示器及其驱动方法 - Google Patents

多基色液晶显示器及其驱动方法 Download PDF

Info

Publication number
WO2016019603A1
WO2016019603A1 PCT/CN2014/084871 CN2014084871W WO2016019603A1 WO 2016019603 A1 WO2016019603 A1 WO 2016019603A1 CN 2014084871 W CN2014084871 W CN 2014084871W WO 2016019603 A1 WO2016019603 A1 WO 2016019603A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
liquid crystal
red
cyan
crystal display
Prior art date
Application number
PCT/CN2014/084871
Other languages
English (en)
French (fr)
Inventor
樊勇
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US14/390,760 priority Critical patent/US9384702B2/en
Publication of WO2016019603A1 publication Critical patent/WO2016019603A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3607Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals for displaying colours or for displaying grey scales with a specific pixel layout, e.g. using sub-pixels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133621Illuminating devices providing coloured light
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • G09G3/3413Details of control of colour illumination sources
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0271Adjustment of the gradation levels within the range of the gradation scale, e.g. by redistribution or clipping
    • G09G2320/0276Adjustment of the gradation levels within the range of the gradation scale, e.g. by redistribution or clipping for the purpose of adaptation to the characteristics of a display device, i.e. gamma correction
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0666Adjustment of display parameters for control of colour parameters, e.g. colour temperature
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2340/00Aspects of display data processing
    • G09G2340/06Colour space transformation

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a multi-primary liquid crystal display and a driving method thereof.
  • LCD Liquid crystal display
  • PDA personal digital assistant
  • digital camera computer screen or laptop screen.
  • liquid crystal displays which include a casing, a liquid crystal panel disposed in the casing, and a backlight module disposed in the casing.
  • the structure of a common liquid crystal panel is composed of a color filter (CF), a thin film transistor array substrate (TFT Array Substrate), and a liquid crystal layer disposed between the two substrates (
  • the liquid crystal layer is constructed by controlling the rotation of the liquid crystal molecules of the liquid crystal layer by applying a driving voltage on the two glass substrates, and refracting the light provided by the backlight module to generate an image.
  • the backlight module is divided into a side-in type backlight module and a direct-type backlight module according to different incident positions of the light source.
  • the direct type backlight module is provided with a light source such as a cathode fluorescent lamp (CCFL) or a light emitting diode (LED) disposed behind the liquid crystal panel, and the light is uniformized by the diffusion plate to form a surface light source.
  • CCFL cathode fluorescent lamp
  • LED light emitting diode
  • the side-lit backlight module has a backlight LED strip (Light Bar) disposed at the edge of the back panel behind the liquid crystal panel, and the light emitted by the LED strip is from the side of the light guide plate (LGP). The light surface enters the light guide plate, is reflected and diffused, and is emitted from the light exit surface of the light guide plate, and then passes through the optical film group to form a surface light source to be supplied to the liquid crystal panel.
  • LGP light guide plate
  • liquid crystal displays are moving toward high resolution and high color gamut.
  • the main way to achieve a high color gamut in the prior art is to use an LED packaged by a blue light-emitting chip and a red and green phosphor, in combination with increasing the thickness of the color filter.
  • the LCD with a conventional LED packaged with Yttrium Aluminum Garnet (YAG) phosphor as the backlight has a NTSC color gamut of only 62%, which is far from covering all the colors of natural objects. Pointer's gamut; even higher colors made by improving backlights and color filters
  • the liquid crystal display of the domain has an NTSC color gamut of 92%, and it cannot completely cover all object colors in nature.
  • Field Sequential Color (FSC) liquid crystal display can further widen the color gamut.
  • the existing field-sequential liquid crystal display rapidly displays the red, green and blue image information on the liquid crystal display panel in a time-sharing manner, and synthesizes the color picture by using the visual persistence characteristic of the human eye, that is, divides one picture into several sub-colors.
  • sub-pictures such as red, green, and blue are displayed in sequence, and the human eye vision is retained, and the three primary colors are accumulated and combined on the retina by time color mixing to present a color picture.
  • the color gamut of the existing field sequential liquid crystal display still cannot completely cover all the object colors in nature.
  • the object of the present invention is to provide a multi-primary color liquid crystal display capable of multi-primary color display, greatly widening the color gamut of the liquid crystal display, substantially achieving full coverage of all object colors in nature, and improving the display quality and competitiveness of the liquid crystal display.
  • Another object of the present invention is to provide a driving method for a multi-primary color liquid crystal display, which realizes multi-primary color display by two color fields, thereby greatly widening the color gamut of the liquid crystal display, and substantially achieving full coverage of all object colors in nature.
  • the present invention first provides a multi-primary color liquid crystal display comprising an LED backlight and a liquid crystal display panel located above the LED backlight;
  • the LED backlight includes a plurality of red, green, blue, and cyan LEDs
  • the liquid crystal display panel includes a CF substrate, the CF substrate includes a plurality of red, green, and blue filters, and each of the red, green, and blue filters respectively corresponds to a sub-pixel, the green and blue
  • the transmission spectrum of the filter includes the wavelength range of cyan light emitted by the cyan LED.
  • the multi-primary liquid crystal display displays a whole image by a combination of first and second color fields; when the first color field is used, the red, green, and blue LEDs are turned on, and the red, green, and blue colors are filtered.
  • the light of the slice is red light R, green light G, and blue light B, respectively, forming a first sub-frame of the entire image; when the second color field is used, the red and cyan LEDs are turned on, through the red, green,
  • the light of the blue filter is red light R, first cyan light C1, and second cyan light C2, respectively, constituting the second sub-frame of the entire image.
  • the red LED emits a red light having a wavelength range of 620-660 nm and a half-peak width of 25-40 nm;
  • the green LED emits a green light having a wavelength range of 520-540 nm and a half-peak width of 20-40 nm;
  • the blue LED emits blue light having a wavelength range of 435-460 nm and a half-peak width of 15-25 nm;
  • the cyan LED emits a cyan light having a wavelength range of 490-520 nm and a half-peak width thereof. It is 20-40 nm.
  • the green filter has a penetration spectrum of 460-630 nm; the blue filter has a transmission spectrum of 400-530 nm.
  • the red LED emits a red light having a wavelength of 632 nm and a half-peak width of 32 nm; the green LED emits a green light having a wavelength of 539 nm and a half-peak width of 25 nm; and the blue LED emits a blue light wavelength of 450 nm, the half-peak width is 18 nm; the cyan light emitted by the cyan LED has a wavelength of 509 nm, and its half-peak width is 26 nm; the first cyan light C1 and the second cyan that pass through the green and blue filters
  • the wavelength of the light C2 is 510 nm and 505 nm, respectively.
  • the red light R of the first color field and the red light R of the second color field each occupy half of the red light required for the entire image.
  • the first cyan light C1 and the second cyan light C2 have different grayscale values, and the entire image is displayed by red, green, blue, first cyan, and second cyan five primary colors.
  • the first cyan light C1 and the second cyan light C2 have the same grayscale value, and the entire image is displayed by red, green, blue, and cyan.
  • the liquid crystal display panel further includes a TFT substrate disposed under the CF substrate and a liquid crystal layer disposed between the TFT substrate and the CF substrate.
  • the invention also provides a driving method of a multi-primary color liquid crystal display, comprising the following steps:
  • Step 1 Input the R, G, and B signals to be displayed in the entire image
  • Step 2 converting the R, G, and B signals into a R, G, B, C1, and C2 color space by performing chroma conversion
  • Step 3 Perform gray scale correction on the R, G, B, C1, and C2 signals to obtain gray scale signals of the corrected R', G', B', C1', and C2';
  • Step 4 outputting the gray scale signals of R', G', B' as the first color field
  • Step 5 Output the gray scale signals of R', C1', and C2' as the second color field.
  • the gray scale signal of R' in the step 4 is the same as the gray scale signal of the gray scale signal of R' in the step 5.
  • a multi-primary color liquid crystal display of the present invention when displaying a first color field, the red, green, and blue LEDs are turned on, and light passing through the red, green, and blue filters They are red light R, green light G, and blue light B respectively; when the second color field is displayed, the red and cyan LEDs are turned on, and the light transmitted through the red, green, and blue filters is red light R, respectively.
  • a cyan light C1 and a second cyan light C2 enable multi-primary color display, greatly widen the color gamut of the liquid crystal display, and substantially achieve full coverage of all object colors in the natural environment, thereby improving the display quality and competitiveness of the liquid crystal display.
  • the driving method of the multi-primary color liquid crystal display of the invention realizes multi-primary color display by two color fields by converting, correcting and outputting the R, G, and B signals in sequence, thereby greatly widening the color gamut of the liquid crystal display, and basically realizes Full coverage of all object colors in nature.
  • 1 is a color gamut diagram of a conventional liquid crystal display
  • FIG. 2 is a schematic view of a multi-primary liquid crystal display of the present invention
  • FIG. 3 is a schematic view showing a first color field of a multi-primary liquid crystal display of the present invention.
  • FIG. 4 is a schematic view showing a second color field of the multi-primary liquid crystal display of the present invention.
  • FIG. 5 is a spectrum diagram of four color LEDs of R, G, B, and C of the multi-primary liquid crystal display of the present invention.
  • FIG. 6 is a frequency spectrum diagram of a CF substrate of a multi-primary color liquid crystal display of the present invention.
  • FIG. 7 is a backlight spectrum diagram of a first color field and a second color field of a multi-primary liquid crystal display according to the present invention.
  • FIG. 9 is a color gamut comparison diagram of a multi-primary liquid crystal display of the present invention and a conventional liquid crystal display;
  • FIG. 10 is a comparison diagram of transmittance of a multi-primary liquid crystal display of the present invention and a conventional liquid crystal display;
  • FIG. 11 is a flow chart showing a driving method of a multi-primary liquid crystal display of the present invention.
  • the present invention first provides a multi-primary liquid crystal display.
  • Multi-primary color The liquid crystal display includes an LED backlight 1 and a liquid crystal display panel 3 located above the LED backlight 1.
  • the LED backlight 1 includes a plurality of red LEDs 11, green LEDs 12, blue LEDs 13, and cyan LEDs 14.
  • the plurality of red LEDs 11, green LEDs 12, blue LEDs 13, and cyan LEDs 14 are alternately arranged.
  • the red LED 11 emits a red light having a wavelength range of 620-660 nm and a full width at half maximum (FWHM) of 25-40 nm;
  • the green LED 12 emits a green wavelength range of 520. - 540 nm, the half-peak width is 20-40 nm;
  • the blue LED 13 emits blue light having a wavelength range of 435-460 nm and a half-peak width of 15-25 nm;
  • the cyan LED 14 emits a cyan light having a wavelength range of 490 -520nm, its half-peak width is 20-40nm.
  • the embodiment adopted by the present invention is that the red LED emits a red light having a wavelength of 632 nm and a half-peak width of 32 nm; and the green LED 12 emits a green light having a wavelength of 539 nm.
  • the half-peak width is 25 nm; the blue LED 13 emits a blue light having a wavelength of 450 nm and a half-peak width of 18 nm; and the cyan LED 14 emits a cyan light having a wavelength of 509 nm and a half-peak width of 26 nm.
  • the liquid crystal display panel 3 includes a CF substrate 33, a TFT substrate 31 disposed under the CF substrate 33, and a liquid crystal layer 35 disposed between the TFT substrate 31 and the CF substrate 33.
  • the CF substrate 33 includes a plurality of red filters 331 , green filters 333 , and blue filters 335 .
  • Each of the red, green, and blue filters 331 , 333 , and 335 respectively corresponds to one sub-pixel.
  • the plurality of red, green, and blue filters 331, 333, and 335 may be arranged in any order. It should be noted that the penetration spectrum of the green and blue filters 333 and 335 includes the wavelength range of the cyan light emitted by the cyan LED 14 to ensure that the cyan light emitted by the cyan LED 14 can penetrate. Specifically, as shown in FIG.
  • the green filter 333 has a penetration spectrum of 460-630 nm, and the blue filter 335 has a penetration spectrum of 400-530 nm, which all include the cyan LED 14
  • the cyan light emitted has a wavelength range of 490-520 nm.
  • the multi-primary liquid crystal display displays the entire image by a combination of the first and second color fields.
  • the red, green, and blue LEDs 11, 12, and 13 are turned on, and the cyan LED 14 is turned off.
  • the backlight spectrum of the first color field is as shown in FIG.
  • the respective sub-pixels corresponding to the red, green, and blue filters 331, 333, and 335 are turned on, and the light transmitted through the red, green, and blue filters 331, 333, and 335 are respectively red light R and green light G.
  • the blue light B constitutes the first sub-frame of the whole image; as shown in FIG.
  • the red and cyan LEDs 11, 14 are turned on, and the green and blue LEDs 12, 13 are turned off.
  • the backlight spectrum of the second color field is as shown in FIG. 7 simultaneously with the red, green, and blue filters 331, 333, and 335.
  • the corresponding sub-pixels are turned on, and the light transmitted through the red, green, and blue filters 331, 333, and 335 is red light R, first cyan light C1, and second cyan light C2, respectively, to form the whole frame.
  • the second sub-frame of the image is
  • the red light R of the first color field and the red light R of the second color field each occupy half of the red light required for the entire image.
  • the grayscale values of the first cyan light C1 and the second cyan light C2 may be calculated according to an algorithm.
  • the calculated grayscale values of the first cyan light C1 and the second cyan light C2 are different, and the whole image is composed of red, green, blue, first cyan, and Two cyan five primary colors display.
  • the gray scale values of the first cyan light C1 and the second cyan light C2 are set to be different, and the cyan light emitted by the cyan LED 14 passes through.
  • the first cyan light C1 has a wavelength of 510 nm and a half-peak width of 26 nm
  • the second cyan light C2 has a wavelength of 505 nm and a half-peak width thereof. 25nm. It can be seen that, relative to the cyan light emitted by the cyan LED 14 having a wavelength of 509 nm, the wavelength of the spectrum appears to move left and right, and two cyan color spots are generated, and the color gamut is widened, as shown in FIG. When the entire image is displayed by red, green, blue, first cyan, and second cyan five primary colors, the color gamut of the multi-primary liquid crystal display can reach 136%, which substantially covers the range of all object colors in nature.
  • the calculated first cyan light C1 and the second cyan light C2 have the same grayscale value, and the entire image is displayed by the red, green, blue, and cyan primary colors. As shown in FIG. 9, when the entire image is displayed by four primary colors of red, green, blue, and cyan, the color gamut of the multi-primary liquid crystal display is 128%, which is smaller than the color gamut of 136% of the five primary colors. It can be seen that with the appropriate algorithm, the first cyan light C1 and the second cyan light C2 can be fully utilized to widen the color gamut of the liquid crystal display.
  • the multi-primary liquid crystal display of the present invention can not only broaden the color gamut, but also improve the light transmittance. As shown in FIG. 10, the multi-primary liquid crystal display of the present invention displays light penetration in the first color field. The rate of light transmittance at 7.70% and the display of the second color field was 8.71%, which was greater than the light transmittance of 7.30% of the existing products.
  • the present invention further provides a driving method for a multi-primary liquid crystal display, comprising the following steps:
  • Step 1 Input the R, G, and B signals to be displayed in the entire image
  • Step 2 converting the R, G, and B signals into a R, G, B, C1, and C2 color space by performing chroma conversion
  • Step 3 Perform gray scale correction on the R, G, B, C1, and C2 signals to obtain the corrected R', Gray scale signals of G', B', C1', C2';
  • Step 4 outputting the gray scale signals of R', G', B' as the first color field
  • Step 5 Output the gray scale signals of R', C1', and C2' as the second color field.
  • step 2 the R, G, and B signals are chroma-transformed into R, G, B, C1, and C2 color spaces by using the following relationship:
  • R, G, B, C1, and C2 respectively represent signals of various colors
  • X, Y, and Z respectively represent color values in the CIE1931 standard chromaticity diagram corresponding to each signal.
  • the matrix B 3 in the formula (1) can be obtained by using the white point when the highest gray level is turned on. ⁇ 5 parameters.
  • the equations (2) and (3) are the relational expressions of C1 and C2 and R, G, and B, respectively, and can be obtained by the technique of converting R, G, and B to R, G, B, and C.
  • Equation (2) By substituting equations (2) and (3) into equation (1), R, G, B, C1, and C2 can be uniquely solved.
  • the step 3 is to solve the color shift problem caused by the liquid crystal response speed, and the grayscale correction value is determined by querying a preset over driving table, and then the R, G, B, C1, and C2 signals are performed. Corresponding gray scale correction, the corrected gray scale signals of R', G', B', C1', C2' are obtained.
  • the gray scale signal of R' in the step 4 is the same as the gray scale signal of the gray scale signal of R' in the step 5.
  • the multi-primary color liquid crystal display of the present invention displays the first color field.
  • the red, green, and blue LEDs are turned on, and the light passing through the red, green, and blue filters is red light R, green light G, and blue light B; respectively; when the second color field is displayed, the red, cyan
  • the LED is turned on, and the light transmitted through the red, green, and blue filters is red light R, first cyan light C1, and second cyan light C2, thereby enabling multi-primary color display and greatly widening the color gamut of the liquid crystal display. It basically realizes the full coverage of all object colors in nature, improving the display quality and competitiveness of liquid crystal displays.
  • the driving method of the multi-primary color liquid crystal display of the invention realizes multi-primary color display by two color fields by converting, correcting and outputting the R, G, and B signals in sequence, thereby greatly widening the color gamut of the liquid crystal display, and basically realizes Full coverage of all object colors in nature.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

一种多基色液晶显示器及其驱动方法。该多基色液晶显示器包括LED背光源(1)及液晶显示面板(3);LED背光源(1)包括数个红色、绿色、蓝色、青色LED(11、12、13、14);液晶显示面板(3)包括一CF基板(33),该CF基板(33)包括数个红色、绿色、蓝色滤光片(331、333、335)。第一色场时,所述红色、绿色、蓝色LED(11、12、13)开启,透过所述红色、绿色、蓝色滤光片(331、333、335)的光分别为红光R、绿光G、蓝光B;第二色场时,所述红色、青色LED(11、14)开启,透过所述红色、绿色、蓝色滤光片(331、333、335)的光分别为红光R、第一青色光C1、第二青色光C2,能基本实现自然界所有物体色的全覆盖。

Description

多基色液晶显示器及其驱动方法 技术领域
本发明涉及显示技术领域,尤其涉及一种多基色液晶显示器及其驱动方法。
背景技术
液晶显示器(Liquid Crystal Display,LCD)具有机身薄、省电、无辐射等众多优点,得到了广泛的应用。如:液晶电视、移动电话、个人数字助理(PDA)、数字相机、计算机屏幕或笔记本电脑屏幕等。
现有市场上的液晶显示器大部分为背光型液晶显示器,其包括壳体、设于壳体内的液晶面板及设于壳体内的背光模组(Backlight Module)。
目前常见的液晶面板的结构是由一彩色滤光片基板(Color Filter,CF)、一薄膜晶体管阵列基板(Thin Film Transistor Array Substrate,TFT Array Substrate)、以及一配置于两基板间的液晶层(Liquid Crystal Layer)所构成,其工作原理是通过在两片玻璃基板上施加驱动电压来控制液晶层的液晶分子的旋转,将背光模组提供的光线折射出来产生图像。
背光模组依照光源入射位置的不同分成侧入式背光模组与直下式背光模组两种。直下式背光模组是将发光光源例如阴极萤光灯管(Cold Cathode Fluorescent Lamp,CCFL)或发光二极管(Light Emitting Diode,LED)设置在液晶面板后方,光线经扩散板均匀化后形成面光源提供给液晶面板。而侧入式背光模组是将背光源LED灯条(Light Bar)设于液晶面板侧后方的背板边缘处,LED灯条发出的光线从导光板(Light Guide Plate,LGP)一侧的入光面进入导光板,经反射和扩散后从导光板出光面射出,再经由光学膜片组,以形成面光源提供给液晶面板。
随着显示技术的进步,液晶显示器朝着高解析度、高色域的方向发展。现有技术中实现高色域的主要方式是采用由蓝色发光芯片与红色、绿色荧光粉封装的LED,配合增加彩色滤光片厚度的方式实现。如图1所示,采用传统的封装钇铝石榴石(Yttrium Aluminum Garnet,YAG)荧光粉的LED作为背光源的液晶显示器,其NTSC色域仅为62%,远不能覆盖自然界所有物体色的色域范围(Pointer’s gamut);即使通过改善背光源与彩色滤光片制得的较高色 域的液晶显示器,其NTSC色域达92%,也无法完全覆盖自然界的所有物体色。
场时序(Field Sequential Color,FSC)液晶显示器,能够进一步拓宽色域。现有的场时序液晶显示器通过快速的把红、绿、蓝三色图像信息分时显示在液晶显示面板上,利用人眼的视觉暂留特性合成彩色画面,即把一幅画面分成若干子色场,依次显示红色、绿色、蓝色等子画面,通过人眼视觉暂留,在视网膜上利用时间混色法将三基色累加、合并,从而呈现出彩色画面。但现有的场时序液晶显示器的色域仍不能完全覆盖自然界的所有物体色。
发明内容
本发明的目的在于提供一种多基色液晶显示器,能够进行多基色显示,大幅拓宽液晶显示器的色域,基本实现自然界所有物体色的全覆盖,提高液晶显示器的显示品质与竞争力。
本发明的目的还在于提供一种多基色液晶显示器的驱动方法,实现由两个色场来进行多基色显示,从而大幅拓宽液晶显示器的色域,基本实现自然界所有物体色的全覆盖。
为实现上述目的,本发明首先提供一种多基色液晶显示器,包括LED背光源、及位于该LED背光源上方的液晶显示面板;所述LED背光源包括数个红色、绿色、蓝色、青色LED;所述液晶显示面板包括一CF基板,该CF基板包括数个红色、绿色、蓝色滤光片,每一红色、绿色、蓝色滤光片分别对应一子像素,所述绿色、蓝色滤光片的穿透频谱包含所述青色LED所发出的青色光的波长范围。
该多基色液晶显示器通过第一、第二色场的组合来显示整幅图像;第一色场时,所述红色、绿色、蓝色LED开启,透过所述红色、绿色、蓝色滤光片的光分别为红光R、绿光G、蓝光B,构成所述整幅图像的第一子帧;第二色场时,所述红色、青色LED开启,透过所述红色、绿色、蓝色滤光片的光分别为红光R、第一青色光C1、第二青色光C2,构成所述整幅图像的第二子帧。
所述红色LED所发出的红光波长范围为620-660nm,其半高峰宽为25-40nm;所述绿色LED所发出的绿光波长范围为520-540nm,其半高峰宽为20-40nm;所述蓝色LED所发出的蓝光波长范围为435-460nm,其半高峰宽为15-25nm;所述青色LED所发出的青色光波长范围为490-520nm,其半高峰宽 为20-40nm。
所述绿色滤光片的穿透频谱为460-630nm;所述蓝色滤光片的穿透频谱为400-530nm。
所述红色LED所发出的红光波长为632nm,其半高峰宽为32nm;所述绿色LED所发出的绿光波长为539nm,其半高峰宽为25nm;所述蓝色LED所发出蓝光波长为450nm,其半高峰宽为18nm;所述青色LED所发出的青色光波长为509nm,其半高峰宽为26nm;透过所述绿色、蓝色滤光片的第一青色光C1、第二青色光C2的波长分别为510nm、505nm。
所述第一色场的红光R与第二色场的红光R各占所述整幅图像所需红光的一半。
所述第一青色光C1、与第二青色光C2的灰阶值不同,所述整幅图像由红、绿、蓝、第一青色、第二青色五基色显示。
所述第一青色光C1、与第二青色光C2的灰阶值相同,所述整幅图像由红、绿、蓝、青四基色显示。
所述液晶显示面板还包括一设于所述CF基板下方的TFT基板、及配置于所述TFT基板与CF基板之间的液晶层。
本发明还提供一种多基色液晶显示器的驱动方法,包括如下步骤:
步骤1、输入整幅图像所要显示的R、G、B信号;
步骤2、将所述R、G、B信号进行色度变换转换至R、G、B、C1、C2色空间;
步骤3、对R、G、B、C1、C2信号进行灰阶修正,得到修正后的R’、G’、B’、C1’、C2’的灰阶信号;
步骤4、将R’、G’、B’的灰阶信号输出为第一色场;
步骤5、将R’、C1’、C2’的灰阶信号输出为第二色场。
所述步骤4中R’的灰阶信号与步骤5中R’的灰阶信号的灰阶值相同。
本发明的有益效果:本发明的一种多基色液晶显示器,在显示第一色场时,所述红色、绿色、蓝色LED开启,透过所述红色、绿色、蓝色滤光片的光分别为红光R、绿光G、蓝光B;显示第二色场时,所述红色、青色LED开启,透过所述红色、绿色、蓝色滤光片的光分别为红光R、第一青色光C1、第二青色光C2,因而能够进行多基色显示,大幅拓宽液晶显示器的色域,基本实现自然界所有物体色的全覆盖,提高液晶显示器的显示品质与竞争力。本发明的多基色液晶显示器的驱动方法,通过依次对R、G、B信号进行转换、修正、输出,实现由两个色场来进行多基色显示,从而大幅拓宽液晶显示器的色域,基本实现自然界所有物体色的全覆盖。
为了能更进一步了解本发明的特征以及技术内容,请参阅以下有关本发明的详细说明与附图,然而附图仅提供参考与说明用,并非用来对本发明加以限制。
附图说明
下面结合附图,通过对本发明的具体实施方式详细描述,将使本发明的技术方案及其它有益效果显而易见。
附图中,
图1为现有液晶显示器的色域图;
图2为本发明多基色液晶显示器的示意图;
图3为本发明多基色液晶显示器显示第一色场的示意图;
图4为本发明多基色液晶显示器显示第二色场的示意图;
图5为本发明多基色液晶显示器的R、G、B、C四色LED的光谱图;
图6为本发明多基色液晶显示器的CF基板的频谱图;
图7为本发明多基色液晶显示器的第一色场、第二色场的背光光谱图;
图8为本发明多基色液晶显示器的第二色场显示的C1光、C2光的光谱图;
图9为本发明多基色液晶显示器与现有液晶显示器的色域对比图;
图10为本发明多基色液晶显示器与现有液晶显示器的穿透率对比图;
图11为本发明多基色液晶显示器的驱动方法的流程图。
具体实施方式
为更进一步阐述本发明所采取的技术手段及其效果,以下结合本发明的优选实施例及其附图进行详细描述。
请参阅图2至图4,本发明首先提供一种多基色液晶显示器。该多基色 液晶显示器包括LED背光源1、及位于该LED背光源1上方的液晶显示面板3。
所述LED背光源1包括数个红色LED11、绿色LED12、蓝色LED13、青色LED14。该数个红色LED11、绿色LED12、蓝色LED13、青色LED14交替排列。
具体的,所述红色LED11所发出的红光波长范围为620-660nm,其半高峰宽(Full Width at Half Maximum,FWHM)为25-40nm;所述绿色LED12所发出的绿光波长范围为520-540nm,其半高峰宽为20-40nm;所述蓝色LED13所发出的蓝光波长范围为435-460nm,其半高峰宽为15-25nm;所述青色LED14所发出的青色光波长范围为490-520nm,其半高峰宽为20-40nm。
进一步的,如图5所示,本发明所采用的实施例为所述红色LED11所发出的红光波长为632nm,其半高峰宽为32nm;所述绿色LED12所发出的绿光波长为539nm,其半高峰宽为25nm;所述蓝色LED13所发出的蓝光波长为450nm,其半高峰宽为18nm;所述青色LED14所发出的青色光波长为509nm,其半高峰宽为26nm。
所述液晶显示面板3包括一CF基板33、一设于所述CF基板33下方的TFT基板31、及配置于所述TFT基板31与CF基板33之间的液晶层35。
所述CF基板33包括数个红色滤光片331、绿色滤光片333、蓝色滤光片335,每一红色、绿色、蓝色滤光片331、333、335分别对应一子像素。所述数个红色、绿色、蓝色滤光片331、333、335可按照任意顺序进行排列。特别需要说明的是,所述绿色、蓝色滤光片333、335的穿透频谱包含所述青色LED14所发出的青色光的波长范围,以保证所述青色LED14发出的青色光能够穿透,具体的,如图6所示,所述绿色滤光片333的穿透频谱为460-630nm、所述蓝色滤光片335的穿透频谱为400-530nm,均包含了所述青色LED14所发出的青色光的波长范围490-520nm。
该多基色液晶显示器通过第一、第二色场的组合来显示整幅图像。如图3所示,显示第一色场时,所述红色、绿色、蓝色LED11、12、13开启,青色LED14关闭,该第一色场的背光光谱如图7所示,同时与所述红色、绿色、蓝色滤光片331、333、335对应的各个子像素开启,透过所述红色、绿色、蓝色滤光片331、333、335的光分别为红光R、绿光G、蓝光B,构成所述整幅图像的第一子帧;如图4所示,显示第二色场时,所述红色、青色LED11、14开启,所述绿色、蓝色LED12、13关闭,该第二色场的背光光谱如图7所示,同时与所述红色、绿色、蓝色滤光片331、333、335 对应的各个子像素开启,透过所述红色、绿色、蓝色滤光片331、333、335的光分别为红光R、第一青色光C1、第二青色光C2,构成所述整幅图像的第二子帧。
进一步的,所述第一色场的红光R与第二色场的红光R各占所述整幅图像所需红光的一半。
所述第一青色光C1、与第二青色光C2的灰阶值可根据演算法计算得出。
若采取RGB到RGBC1C2五基色演算法,则计算得出的第一青色光C1、与第二青色光C2的灰阶值不同,所述整幅图像由红、绿、蓝、第一青色、第二青色五基色显示。具体的,如图8所示,在本发明采用的实施例中,将第一青色光C1、与第二青色光C2的灰阶值设置为不同,则所述青色LED14所发出的青色光经过所述绿色、蓝色滤光片333、335滤光后,形成的第一青色光C1的波长为510nm、其半高峰宽为26nm,第二青色光C2的波长为505nm、其半高峰宽为25nm。由此可见,相对于所述青色LED14所发出的波长为509nm的青色光,光谱的波长出现了左右移动,产生了两个青色光色点,拓宽了色域,如图9所示,当所述整幅图像由红、绿、蓝、第一青色、第二青色五基色显示时,该多基色液晶显示器的色域可达到136%,基本覆盖了自然界的所有物体色的范围。
若采取RGB到RGBC四基色演算法,则计算得出的第一青色光C1、与第二青色光C2的灰阶值相同,所述整幅图像由红、绿、蓝、青四基色显示。如图9所示,当所述整幅图像由红、绿、蓝、青色四基色显示时,该多基色液晶显示器的色域为128%,小于五基色显示的136%的色域。由此可见,搭配适当的演算法,可以充分利用第一青色光C1、第二青色光C2来拓宽液晶显示显示器的色域。
值得一提的是,本发明的多基色液晶显示器不仅可以拓宽色域,还能提高光线穿透率,如图10所示,本发明的多基色液晶显示器显示第一色场时的光线穿透率为7.70%、显示第二色场时的光线穿透率为8.71%,均大于现有产品7.30%的光线穿透率。
请参阅图11,同时参阅图3、图4,在该多基色液晶显示器的基础上,本发明还提供一种多基色液晶显示器的驱动方法,包括如下步骤:
步骤1、输入整幅图像所要显示的R、G、B信号;
步骤2、将所述R、G、B信号进行色度变换转换至R、G、B、C1、C2色空间;
步骤3、对R、G、B、C1、C2信号进行灰阶修正,得到修正后的R’、 G’、B’、C1’、C2’的灰阶信号;
步骤4、将R’、G’、B’的灰阶信号输出为第一色场;
步骤5、将R’、C1’、C2’的灰阶信号输出为第二色场。
具体的,所述步骤2采用以下关系式将所述R、G、B信号进行色度变换转换至R、G、B、C1、C2色空间:
Figure PCTCN2014084871-appb-000001
Figure PCTCN2014084871-appb-000002
Figure PCTCN2014084871-appb-000003
其中,R、G、B、C1、C2分别代表各种颜色的信号,X、Y、Z分别代表对应各信号的CIE1931标准色度图中的彩色值。
针对(1)式,将第一、第二色场的三个子像素完全开启(如8bit液晶显示面板,三个子像素完全开启即最高灰阶开启,为255灰阶)时,设置该第一、第二色场进行时序颜色叠加后形成的白光色度为目标色度(如X=0.28,Y=0.29),可利用最高灰阶开启时的白点得到该(1)式中的矩阵B3×5参数。
(2)式、(3)式分别为C1、C2与R、G、B的关系式,可利用现有的R、G、B转换至R、G、B、C的技术得到。
将(2)式、(3)式代入(1)式即可唯一解出R、G、B、C1、C2。
所述步骤3是为了解决由于液晶响应速度而导致的色偏问题,通过查询预设的加速驱动(Over Driving)表来确定灰阶修正值,然后对R、G、B、C1、C2信号进行相应的灰阶修正,得到修正后的R’、G’、B’、C1’、C2’的灰阶信号。
所述步骤4中R’的灰阶信号与步骤5中R’的灰阶信号的灰阶值相同。
综上所述,本发明的一种多基色液晶显示器,在显示第一色场时,所 述红色、绿色、蓝色LED开启,透过所述红色、绿色、蓝色滤光片的光分别为红光R、绿光G、蓝光B;显示第二色场时,所述红色、青色LED开启,透过所述红色、绿色、蓝色滤光片的光分别为红光R、第一青色光C1、第二青色光C2,因而能够进行多基色显示,大幅拓宽液晶显示器的色域,基本实现自然界所有物体色的全覆盖,提高液晶显示器的显示品质与竞争力。本发明的多基色液晶显示器的驱动方法,通过依次对R、G、B信号进行转换、修正、输出,实现由两个色场来进行多基色显示,从而大幅拓宽液晶显示器的色域,基本实现自然界所有物体色的全覆盖。
以上所述,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形都应属于本发明权利要求的保护范围。

Claims (11)

  1. 一种多基色液晶显示器,包括LED背光源、及位于该LED背光源上方的液晶显示面板;所述LED背光源包括数个红色、绿色、蓝色、青色LED;所述液晶显示面板包括一CF基板,该CF基板包括数个红色、绿色、蓝色滤光片,每一红色、绿色、蓝色滤光片分别对应一子像素,所述绿色、蓝色滤光片的穿透频谱包含所述青色LED所发出的青色光的波长范围;
    该多基色液晶显示器通过第一、第二色场的组合来显示整幅图像;第一色场时,所述红色、绿色、蓝色LED开启,透过所述红色、绿色、蓝色滤光片的光分别为红光R、绿光G、蓝光B,构成所述整幅图像的第一子帧;第二色场时,所述红色、青色LED开启,透过所述红色、绿色、蓝色滤光片的光分别为红光R、第一青色光C1、第二青色光C2,构成所述整幅图像的第二子帧。
  2. 如权利要求1所述的多基色液晶显示器,其中,所述红色LED所发出的红光波长范围为620-660nm,其半高峰宽为25-40nm;所述绿色LED所发出的绿光波长范围为520-540nm,其半高峰宽为20-40nm;所述蓝色LED所发出的蓝光波长范围为435-460nm,其半高峰宽为15-25nm;所述青色LED所发出的青色光波长范围为490-520nm,其半高峰宽为20-40nm。
  3. 如权利要求1所述的多基色液晶显示器,其中,所述绿色滤光片的穿透频谱为460-630nm;所述蓝色滤光片的穿透频谱为400-530nm。
  4. 如权利要求2所述的多基色液晶显示器,其中,所述红色LED所发出的红光波长为632nm,其半高峰宽为32nm;所述绿色LED所发出的绿光波长为539nm,其半高峰宽为25nm;所述蓝色LED所发出的蓝光波长为450nm,其半高峰宽为18nm;所述青色LED所发出的青色光波长为509nm,其半高峰宽为26nm;透过所述绿色、蓝色滤光片的第一青色光C1、第二青色光C2的波长分别为510nm、505nm。
  5. 如权利要求1所述的多基色液晶显示器,其中,所述第一色场的红光R与第二色场的红光R各占所述整幅图像所需红光的一半。
  6. 如权利要求1所述的多基色液晶显示器,其中,所述第一青色光C1、与第二青色光C2的灰阶值不同,所述整幅图像由红、绿、蓝、第一青色、第二青色五基色显示。
  7. 如权利要求1所述的多基色液晶显示器,其中,所述第一青色光C1、与第二青色光C2的灰阶值相同,所述整幅图像由红、绿、蓝、青四基 色显示。
  8. 如权利要求1所述的多基色液晶显示器,其中,所述液晶显示面板还包括一设于所述CF基板下方的TFT基板、及配置于所述TFT基板与CF基板之间的液晶层。
  9. 一种多基色液晶显示器的驱动方法,包括如下步骤:
    步骤1、输入整幅图像所要显示的R、G、B信号;
    步骤2、将所述R、G、B信号进行色度变换转换至R、G、B、C1、C2色空间;
    步骤3、对R、G、B、C1、C2信号进行灰阶修正,得到修正后的R’、G’、B’、C1’、C2’的灰阶信号;
    步骤4、将R’、G’、B’的灰阶信号输出为第一色场;
    步骤5、将R’、C1’、C2’的灰阶信号输出为第二色场。
  10. 如权利要求9所述的多基色液晶显示器的驱动方法,其中,所述步骤4中R’的灰阶信号与步骤5中R’的灰阶信号的灰阶值相同。
  11. 一种多基色液晶显示器的驱动方法,包括如下步骤:
    步骤1、输入整幅图像所要显示的R、G、B信号;
    步骤2、将所述R、G、B信号进行色度变换转换至R、G、B、C1、C2色空间;
    步骤3、对R、G、B、C1、C2信号进行灰阶修正,得到修正后的R’、G’、B’、C1’、C2’的灰阶信号;
    步骤4、将R’、G’、B’的灰阶信号输出为第一色场;
    步骤5、将R’、C1’、C2’的灰阶信号输出为第二色场;
    其中,所述步骤4中R’的灰阶信号与步骤5中R’的灰阶信号的灰阶值相同。
PCT/CN2014/084871 2014-08-08 2014-08-21 多基色液晶显示器及其驱动方法 WO2016019603A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/390,760 US9384702B2 (en) 2014-08-08 2014-08-21 Multiple primary colors liquid crystal display and driving method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410391271.4 2014-08-08
CN201410391271.4A CN104111552B (zh) 2014-08-08 2014-08-08 多基色液晶显示器及其驱动方法

Publications (1)

Publication Number Publication Date
WO2016019603A1 true WO2016019603A1 (zh) 2016-02-11

Family

ID=51708392

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/084871 WO2016019603A1 (zh) 2014-08-08 2014-08-21 多基色液晶显示器及其驱动方法

Country Status (3)

Country Link
US (1) US9384702B2 (zh)
CN (1) CN104111552B (zh)
WO (1) WO2016019603A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11364910B1 (en) 2021-08-26 2022-06-21 Motional Ad Llc Emergency vehicle detection system and method

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101621820B1 (ko) * 2014-12-29 2016-05-17 삼성전자 주식회사 광원, 광원을 포함하는 백라이트 유닛 및 액정 표시 장치
CN104464679B (zh) * 2014-12-31 2017-01-18 深圳市华星光电技术有限公司 液晶显示器及其驱动方法
CN105609058B (zh) * 2016-01-04 2018-09-04 京东方科技集团股份有限公司 背光源及显示装置
CN105572954A (zh) * 2016-02-19 2016-05-11 深圳市华星光电技术有限公司 液晶显示面板以及其制造方法
CN205487282U (zh) * 2016-04-06 2016-08-17 北京京东方光电科技有限公司 显示模组、显示装置
KR102302401B1 (ko) * 2017-03-21 2021-09-17 삼성디스플레이 주식회사 광루미네선스 장치, 이의 제조 방법 및 이를 포함하는 표시 장치
TWI628787B (zh) * 2017-06-06 2018-07-01 友達光電股份有限公司 畫素結構
CN109426027B (zh) * 2017-08-30 2021-10-08 群创光电股份有限公司 显示装置
US10642091B2 (en) * 2018-02-05 2020-05-05 Radiant Choice Limited Displays
CN211786494U (zh) * 2019-12-27 2020-10-27 深圳Tcl数字技术有限公司 一种背光模组及液晶显示器
KR20230143227A (ko) * 2022-04-01 2023-10-12 삼성디스플레이 주식회사 표시 장치
CN115691404B (zh) * 2022-10-31 2024-07-12 东莞阿尔泰显示技术有限公司 一种多色域模式led显示屏的显示方法
CN116705824A (zh) * 2023-06-29 2023-09-05 厦门天马微电子有限公司 显示面板和显示装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6115016A (en) * 1997-07-30 2000-09-05 Fujitsu Limited Liquid crystal displaying apparatus and displaying control method therefor
CN1697012A (zh) * 2004-05-12 2005-11-16 精工爱普生株式会社 显示装置及电子设备
CN101036083A (zh) * 2004-10-06 2007-09-12 索尼株式会社 彩色液晶显示装置
CN101211042A (zh) * 2006-12-28 2008-07-02 Lg.菲利浦Lcd株式会社 液晶显示器件及其驱动方法
CN101599251A (zh) * 2008-06-05 2009-12-09 乐金显示有限公司 液晶显示器及其驱动方法
US20100283801A1 (en) * 2009-05-05 2010-11-11 Chunghwa Picture Tubes, Ltd. Color sequential control method and field sequential color display using the same
CN101910916A (zh) * 2008-03-03 2010-12-08 夏普株式会社 液晶显示装置
CN102768828A (zh) * 2011-05-02 2012-11-07 佳能株式会社 液晶显示设备及其控制方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005507507A (ja) * 2001-10-31 2005-03-17 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 干渉カラーフィルタを用いたバックライト付ディスプレイ
JP4413672B2 (ja) * 2003-03-31 2010-02-10 シャープ株式会社 面照明装置及びそれを用いた液晶表示装置
KR100943273B1 (ko) * 2003-05-07 2010-02-23 삼성전자주식회사 4-컬러 변환 방법 및 그 장치와 이를 이용한 유기전계발광표시장치
WO2006026354A2 (en) * 2004-08-25 2006-03-09 Newport Imaging Corporation Apparatus for multiple camera devices and method of operating same
CN100478746C (zh) * 2005-05-13 2009-04-15 陈国平 一种场序方式彩色液晶显示器
US8128272B2 (en) * 2005-06-07 2012-03-06 Oree, Inc. Illumination apparatus
JP2007108615A (ja) * 2005-09-13 2007-04-26 Seiko Epson Corp 電気光学装置、電気光学装置の駆動方法、および電子機器
WO2008096472A1 (ja) * 2007-02-05 2008-08-14 Sharp Kabushiki Kaisha 液晶表示装置及びその製造方法
CN101377904B (zh) * 2007-08-31 2011-12-14 群康科技(深圳)有限公司 液晶显示装置及其驱动方法
US8860751B2 (en) * 2009-09-01 2014-10-14 Entertainment Experience Llc Method for producing a color image and imaging device employing same
KR102003022B1 (ko) * 2012-11-27 2019-07-24 삼성디스플레이 주식회사 입체 영상 표시 장치 및 그 구동 방법

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6115016A (en) * 1997-07-30 2000-09-05 Fujitsu Limited Liquid crystal displaying apparatus and displaying control method therefor
CN1697012A (zh) * 2004-05-12 2005-11-16 精工爱普生株式会社 显示装置及电子设备
CN101036083A (zh) * 2004-10-06 2007-09-12 索尼株式会社 彩色液晶显示装置
CN101211042A (zh) * 2006-12-28 2008-07-02 Lg.菲利浦Lcd株式会社 液晶显示器件及其驱动方法
CN101910916A (zh) * 2008-03-03 2010-12-08 夏普株式会社 液晶显示装置
CN101599251A (zh) * 2008-06-05 2009-12-09 乐金显示有限公司 液晶显示器及其驱动方法
US20100283801A1 (en) * 2009-05-05 2010-11-11 Chunghwa Picture Tubes, Ltd. Color sequential control method and field sequential color display using the same
CN102768828A (zh) * 2011-05-02 2012-11-07 佳能株式会社 液晶显示设备及其控制方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11364910B1 (en) 2021-08-26 2022-06-21 Motional Ad Llc Emergency vehicle detection system and method

Also Published As

Publication number Publication date
CN104111552B (zh) 2017-02-01
US20160042703A1 (en) 2016-02-11
US9384702B2 (en) 2016-07-05
CN104111552A (zh) 2014-10-22

Similar Documents

Publication Publication Date Title
WO2016019603A1 (zh) 多基色液晶显示器及其驱动方法
WO2018113612A1 (zh) 液晶显示器件
WO2018113616A1 (zh) 液晶显示器件
US7952662B2 (en) Transflective display device
CN101529320B (zh) 显示装置
US20170153516A1 (en) Pixel structure and liquid crystal display panel
US8054408B2 (en) Liquid crystal display
WO2016026181A1 (zh) 彩色液晶显示模组结构及其背光模组
US10203545B2 (en) Display panels and polarizers thereof
CN103447247B (zh) 适用于背光模组的荧光粉光学膜片的筛选方法及背光模组
US8289479B2 (en) Liquid crystal display comprising red, green, blue, and yellow color filters having chromaticity on a CIE1931 chromaticity diagram
JP2005283891A (ja) 液晶表示装置
WO2016090719A1 (zh) 场色序法液晶显示装置及其驱动方法
US8421966B2 (en) Liquid crystal display comprising red, green, blue, and yellow sub-pixels having chromaticity on a CIE1931 chromaticity diagram wherein the sub-pixels have different areas
TWI454795B (zh) 液晶顯示裝置
CN101477789B (zh) 显示器及其显示面板与彩色滤光片
TW201027141A (en) Display device and display panel and color filter thereof
WO2019119585A1 (zh) 显示装置的驱动方法及显示装置
TWI426498B (zh) 顯示器及顯示器之顏色調整方法
US9201182B2 (en) Display panel and color filter thereof
KR101683874B1 (ko) 표시장치
WO2011092915A1 (ja) 表示装置
CN103995391A (zh) 一种液晶显示器及其制造方法
TW201527850A (zh) 顯示面板與顯示器
CN107561781B (zh) 显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14390760

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14899282

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14899282

Country of ref document: EP

Kind code of ref document: A1