WO2016019430A1 - Breathing training device - Google Patents

Breathing training device Download PDF

Info

Publication number
WO2016019430A1
WO2016019430A1 PCT/AU2015/050434 AU2015050434W WO2016019430A1 WO 2016019430 A1 WO2016019430 A1 WO 2016019430A1 AU 2015050434 W AU2015050434 W AU 2015050434W WO 2016019430 A1 WO2016019430 A1 WO 2016019430A1
Authority
WO
WIPO (PCT)
Prior art keywords
subject
feedback
attachment member
abdomen
training device
Prior art date
Application number
PCT/AU2015/050434
Other languages
French (fr)
Inventor
Samuel James
Original Assignee
Queensland University Of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2014903008A external-priority patent/AU2014903008A0/en
Application filed by Queensland University Of Technology filed Critical Queensland University Of Technology
Priority to US15/501,439 priority Critical patent/US20170225031A1/en
Priority to AU2015299756A priority patent/AU2015299756A1/en
Publication of WO2016019430A1 publication Critical patent/WO2016019430A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B23/00Exercising apparatus specially adapted for particular parts of the body
    • A63B23/18Exercising apparatus specially adapted for particular parts of the body for improving respiratory function
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B21/00Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
    • A63B21/02Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices using resilient force-resisters
    • A63B21/028Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices using resilient force-resisters made of material having high internal friction, e.g. rubber, steel wool, intended to be compressed
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B21/00Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
    • A63B21/02Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices using resilient force-resisters
    • A63B21/055Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices using resilient force-resisters extension element type
    • A63B21/0552Elastic ropes or bands
    • A63B21/0557Details of attachments, e.g. clips or clamps
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B21/00Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
    • A63B21/40Interfaces with the user related to strength training; Details thereof
    • A63B21/4001Arrangements for attaching the exercising apparatus to the user's body, e.g. belts, shoes or gloves specially adapted therefor
    • A63B21/4009Arrangements for attaching the exercising apparatus to the user's body, e.g. belts, shoes or gloves specially adapted therefor to the waist
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B21/00Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
    • A63B21/40Interfaces with the user related to strength training; Details thereof
    • A63B21/4023Interfaces with the user related to strength training; Details thereof the user operating the resistance directly, without additional interface
    • A63B21/4025Resistance devices worn on the user's body
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B69/00Training appliances or apparatus for special sports
    • A63B69/0057Means for physically limiting movements of body parts
    • A63B69/0059Means for physically limiting movements of body parts worn by the user
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B71/00Games or sports accessories not covered in groups A63B1/00 - A63B69/00
    • A63B71/06Indicating or scoring devices for games or players, or for other sports activities
    • A63B71/0619Displays, user interfaces and indicating devices, specially adapted for sport equipment, e.g. display mounted on treadmills
    • A63B71/0622Visual, audio or audio-visual systems for entertaining, instructing or motivating the user
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B71/00Games or sports accessories not covered in groups A63B1/00 - A63B69/00
    • A63B71/06Indicating or scoring devices for games or players, or for other sports activities
    • A63B71/0619Displays, user interfaces and indicating devices, specially adapted for sport equipment, e.g. display mounted on treadmills
    • A63B71/0622Visual, audio or audio-visual systems for entertaining, instructing or motivating the user
    • A63B2071/0625Emitting sound, noise or music
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B71/00Games or sports accessories not covered in groups A63B1/00 - A63B69/00
    • A63B71/06Indicating or scoring devices for games or players, or for other sports activities
    • A63B71/0619Displays, user interfaces and indicating devices, specially adapted for sport equipment, e.g. display mounted on treadmills
    • A63B2071/0655Tactile feedback
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2209/00Characteristics of used materials
    • A63B2209/10Characteristics of used materials with adhesive type surfaces, i.e. hook and loop-type fastener

Definitions

  • the present invention relates to a breathing training device, for example, for use in diaphragmatic breathing training, such as in sporting, exercise, musical, medical applications, or the like.
  • diaphragmatic breathing is important in improving performance, for example, in activities such as swimming, yoga, singing, and other aerobic activities.
  • diaphragmatic breathing is encouraged for patients with certain conditions in order to ease symptoms and/or prevent respiratory complications, such as patients suffering from asthma, chronic obstructive pulmonary disorder (COPD), cystic fibrosis, sleep disorders, and patients who have undergone abdominal or thoracic surgery.
  • COPD chronic obstructive pulmonary disorder
  • cystic fibrosis cystic fibrosis
  • sleep disorders sleep disorders
  • patients who have undergone abdominal or thoracic surgery a obstructive pulmonary disorder
  • diaphragmatic breathing can be difficult to master, and typically subjects require significant practice and feedback from a physiotherapist or occupational therapist.
  • US-6,162, 183 describes a system to monitor respiration activity of a user and provide appropriate feedback to the user includes a respiration feedback monitor sized and configured to be worn by the user.
  • respiration activity is measured with components including a retractable cord coupled to an optical distance measurement device.
  • Feedback is typically provided using vibrations of certain duration and repetition.
  • the system operates under various user selectable operational modes. Each operational mode is associated with particular respiration feedback criteria used to determine appropriate feedback for the user.
  • the respiration feedback criteria is related to respiration rate levels and respiration depth associated with respiration activity level measured for the user. Distribution plots such as histograms associated with respiration measurement contribute to aspects of the feedback criteria and help establish other aspects of appropriate feedback.
  • the depicted embodiment includes a computer interface allowing respiration data recorded by the respiration feedback monitor to be sent to a computer system.
  • the computer system is also used to adjust and download desired operational modes into the respiration feedback monitor.
  • WO-2002/069801 relates to an indicating apparatus including a strap, for being worn by a user, with a variable condition that changes during the inspiration condition and generates electrical output indicative of the variable condition.
  • a signalling device of the indicating apparatus produces a tactile vocalization signal in response to the electrical output generated during the expiration phase and produces a tactile pause signal in response to the electrical output generated during the inspiration phase.
  • the vocalization and pause signals prompts the user to properly synchronise speaking with the expiration phases and pauses in speaking with the inspiration phases.
  • US-2007/0203433 describes a wearable relaxation inducing apparatus comprising either a harness or a garment made of elastically flexible fabric tightly worn on the torso; electromechanical sensors attached to the fabric translating the breathing movements of a wearer into electric signals representing breathing rate and depth; electrically operated transducers attached to the fabric providing tactile feedback to the body about breathing; and electronic circuitry for processing the electrical signals produced by the electromechanical sensors and for operating the transducers at selected adjustable sequences and rates.
  • US-2011/0230311 relates to a pair of adjustable belts adapted to encircle the human torso provides training in proper breath control techniques while singing. Mating fasteners at the free ends of each belt releasably secure the free ends together so that each belt forms a closed loop.
  • a method includes securing the belts around the middle of the torso, expanding the first belt, having the person inhale with the intercostals and lateral muscles to expand the ribcage and fastening the first belt into the expanded position around the torso, in a horizontal line at the breastbone.
  • the top belt is placed around the subject at the middle of the chest fastening at the breastbone and the bottom belt is placed around the subject angling upward from the lower back, to fasten also at the breastbone.
  • a final step may be to have the person maintain pressure on both straps while singing.
  • GB-504,852 describes an apparatus for promoting correct breathing comprising a frame, for example of springy metal in the form of a flattened cylindrical shell, which is strapped to the abdomen to cause the inner and outer sides to move toward and away from one another during breathing.
  • the side carries a gong and the side a hammer on a stem, which hammer co-operates with a finger to strike the gong at each breath.
  • the present invention seeks to ameliorate one or more of the problems associated with the prior art and/or provide a workable alternative.
  • the present invention seeks to provide a breathing training device for a subject, the device including:
  • attachment member at least partially extending around the subject, wherein the attachment member and the feedback member cooperate to mechanically provide discrete tactile feedback to the subject when the abdomen reaches a predetermined level of expansion.
  • the feedback member is resilient and movable from a first configuration at rest, to a second configuration under the influence of the abdomen reaching the predetermined level of expansion, wherein the feedback member provides the discrete tactile feedback to the subject upon transition from the first configuration to the second configuration.
  • the feedback member includes an elongate body which:
  • a) in the first configuration is substantially convex along an axis of elongation; and, b) in the second configuration the convex portion is at least partially flattened along at least part of a length of the convex portion, wherein the transition includes a discrete mechanical snap.
  • attachment member and the feedback member cooperate to mechanically provide discrete tactile feedback to the subject when the abdomen reaches multiple predetermined levels of expansion.
  • the feedback member includes at least one notch.
  • the attachment member is adjustable.
  • the attachment member is at least partially elastic.
  • the feedback member includes at least one aperture for coupling the feedback member to the attachment member.
  • a material composition of the feedback member at least partially determines the predetermined level.
  • a thickness of the feedback member at least partially determines the predetermined level.
  • the attachment member includes at least one of:
  • the at least one feedback member includes any one of:
  • the feedback member includes a body in communication with protrusions on the attachment member, wherein the attachment member is deformed by expansion of the abdomen, to move the protrusions relative to at least a portion of the body and thereby provide the discrete tactile feedback.
  • the feedback member includes a body including a button, the button being overlayed by the attachment member, wherein the attachment member is deformed by expansion of the abdomen to thereby depress the button at the predetermined level.
  • the feedback member includes at least two at least semi-rigid portions hingeably attached and substantially coplanar in the first configuration, and wherein in the second configuration the two portions are angularly offset.
  • the feedback member includes a biased assembly in communication with the attachment member, wherein the attachment member is deformed by expansion of the abdomen opposing the biased assembly, and the biased assembly is released at the predetermined level.
  • the feedback member includes a biased assembly in communication with the attachment member, wherein the attachment member is released by the biased assembly during expansion of the abdomen, and wherein the biased assembly stops releasing the attachment member at the predetermined level.
  • the device typically includes a counter configured to count a number of expansions of the abdomen.
  • the device typically includes a processing system.
  • the present invention seeks to provide a breathing training device for a subject, the device including: a) at least one feedback member positioned in contact with the subject's abdomen near the subject's diaphragm; and,
  • attachment member at least partially extending around the subject, wherein the attachment member and the feedback member cooperate to mechanically provide discrete tactile feedback to the subject when the abdomen reaches a predetermined level of contraction.
  • the present invention seeks to provide a method of performing breathing training on a subject, the method including:
  • a breathing training device on the subject including:
  • attachment member at least partially extending around the subject, wherein the attachment member and the feedback member cooperate to mechanically provide discrete tactile feedback to the subject when the abdomen reaches a predetermined level of expansion;
  • the method includes having the subject repeatedly inhale and exhale.
  • the method is performed during at least one of:
  • the method is for at least one of:
  • Figure 1 A is a schematic diagram of a perspective view of a first example of a breathing training device
  • Figure IB is a schematic diagram of the breathing training device of Figure 1A in a first configuration
  • Figure 1C is a schematic diagram of the breathing training device of Figure 1A in a second configuration
  • Figure ID is a schematic diagram of an example of a feedback member of the device of Figure 1A;
  • Figure 2 is a schematic diagram of a further example of a breathing training device
  • Figure 3 is a schematic diagram of a further example of a breathing training device
  • Figure 4A is a schematic diagram of a further example of a breathing training device
  • Figure 4B is a schematic diagram of a second configuration of the breathing training device of Figure 4 A;
  • Figure 5 is a schematic diagram of a further example of a breathing training device
  • Figure 6 is a schematic diagram of a further example of a breathing training device.
  • Figure 7 is a schematic diagram of a further example of a breathing training device.
  • the breathing training device 100 includes a feedback member 110 positioned in contact with the subject's abdomen near the subject's diaphragm, and an attachment member 120 extending around the subject S.
  • the attachment member 120 extends around the subject S, as shown, this is not essential and in other examples the attachment member 120 may extend at least partially around the subject S, and this will be discussed further below.
  • “near the subject's diaphragm” includes any suitable positioning of the feedback member 110 which can be sufficiently influenced by movement of the diaphragm, and typically will include positioning in any location below the subject's ribcage and above the subject's hips but more typically will be substantially adjacent the subject's waist.
  • the attachment member 120 and the feedback member 110 cooperate to mechanically provide discrete tactile feedback to the subject S when the abdomen reaches a predetermined level of expansion, as shown in Figures IB and 1C.
  • the "predetermined level of expansion” refers to any suitable level of descent and/or ascent of the diaphragm, where 'descent' typically relates to a level of contraction of the diaphragm and 'ascent' typically relates to a level of relaxation of the diaphragm.
  • the predetermined level of expansion may include a predetermined level reached during inhalation, and/or a predetermined level reached during exhalation, of the subject.
  • the predetermined level of expansion will typically differ depending on a range of factors, such as the intended use of the device 100, the size of the user, or the like. For example, when training elite athletes, it may be desirable to have a predetermined level representing a greater degree of expansion and hence inhalation, than when using this for a medical respiratory rehabilitation patient. Additionally, smaller individuals will typically have a smaller absolute amount of expansion for full inhalation that larger people. Accordingly, the predetermined level of explanation is typically determined on a case-by-case basis, and may be determined at least partially based on a subject's minimum and maximum levels of expansion.
  • This arrangement is particularly beneficial as it provides discrete feedback to the subject S regarding their diaphragmatic breathing technique, and in particular on both the subject's depth of breath and use of the diaphragm.
  • the attachment member 120 and feedback member 110 cooperate to mechanically provide the feedback, this ensures that the device is easy to use and inexpensive to manufacture.
  • the device 100 is suitable for use in a wide variety of environments, such in a swimming pool. This is in contrast to other devices which may include complex sensors and circuits that cannot be submersed in water, and hence cannot provide diaphragmatic training while swimming.
  • the device 100 may be utilised while an athlete or swimmer trains in a variety of environments, and at a low manufacturing cost.
  • a method of performing breathing training on a subject S includes providing the breathing training device 100 on the subject S, and having the subject S inhale and/or exhale until the discrete tactile feedback is provided. More typically, the method includes having the subject S repeatedly inhale and exhale. This is particularly advantageous as repeated training with the device 100 can enhance improvement in the subject's S diaphragmatic breathing. Wider variations of the method are possible according to any of the examples of the device 100 described herein, for example, the method may include the having the subject inhale and/or exhale until discrete tactile feedback is provided at multiple predetermined levels, such as during both inhalation and exhalation.
  • the method is performed during swimming, yoga, singing, and/or any other aerobic exercise, and this can be particularly beneficial as it allows the subject to practice and enhance their breathing during particular activities/exercise. Additionally or alternatively, the method may be for treatment, rehabilitation and/or recovery, such as for the treatment of asthma, chronic obstructive pulmonary disease, cystic fibrosis, and/or sleep disorders, and/or rehabilitation following torso or abdominal surgery, or the like.
  • the feedback member 110 is resilient and movable from a first configuration at rest, to a second configuration under the influence of the abdomen reaching the predetermined level of expansion.
  • the feedback member provides the discrete tactile feedback to the subject S upon transition from the first configuration to the second configuration.
  • Figures IB and 1C in which the device 100 is shown in Figure IB in the first configuration at rest, and in Figure 1C in the second configuration.
  • mechanical cooperation of the attachment member 120 and feedback member 1 10 may be achieved in any suitable manner, and further examples are provided below.
  • the feedback member 110 includes an elongate body which in the first configuration is substantially convex along an axis of elongation, as shown in Figure 1A and IB.
  • the convex portion is at least partially flattened along at least part of a length of the convex portion, such that the transition includes a discrete mechanical snap.
  • the term 'snap' refers to a short sharp mechanical bend in the feedback member 110, which may or may not be accompanied by an audible tone.
  • the first and second configurations may be provided in any other suitable manner.
  • the feedback member 110 may include at least two at least semi-rigid portions hingeably attached and which are substantially coplanar in the first configuration, and in the second configuration the two portions are angularly offset, such that the transition between configurations provides the discrete tactile feedback.
  • the feedback member 110 may be arranged in any other suitable manner.
  • the feedback member 1 10 includes a body in communication with one or more protrusions on the attachment member 120, wherein the attachment member 120 is deformed by expansion of the abdomen, to move the protrusions relative to at least a portion of the body and thereby provide the discrete tactile feedback.
  • This arrangement may be particularly beneficial in providing feedback at multiple levels of expansion of the abdomen in the event multiple protrusions are included, and this will be discussed further below.
  • the feedback member 110 may include a body including a button, where the button is overlaid by the attachment member 120.
  • the attachment member is deformed by expansion of the abdomen to depress the button at the predetermined level.
  • the feedback member 110 includes a biased assembly in communication with the attachment member 120, wherein the attachment member is deformed by expansion of the abdomen opposing the biased assembly, and releasing the biased assembly at the predetermined level.
  • any suitable number of feedback members may be included, for example, two feedback members or four feedback members.
  • the feedback members may be supported in contact with a front of and behind the abdomen, namely the subject's back and front, and in the latter arrangement the feedback members may be supported in contact with the front, the behind and on each side of the subject's abdomen.
  • this allows for additional feedback regarding the subject's diaphragmatic breathing technique about the abdomen.
  • a material composition of the feedback member 110 may at least partially determine the predetermined level. For example, a higher rigidity and/or grade and/or lower flexibility of the material composition of the feedback member 110 may raise the predetermined level of expansion of the abdomen at which the transition occurs. Similarly a lower rigidity and/or grade and/or higher flexibility of material composition may lower the predetermined level.
  • the subject S may stage their breathing training by progressing from weaker grades of, for example, plastic feedback members which provide little resistance, to higher grades of plastic which provide resistance training.
  • the feedback member 110 is substantially composed of rubber, natural rubber, silicon, plastic, such as polyurethane, and/or the like, and it will be appreciated from the following that any material suitable for undergoing repeated elastic deformation could be used.
  • the feedback member 110 is at least partially composed of a material at least partially resistant to ultraviolet (UV) radiation, water, and/or chlorine, such that the feedback member 110 substantially maintains its mechanical properties in the event of repeated and/or continuous exposure of the device 100 to particular weather conditions, sunlight, submersion in a swimming pool, or the like.
  • the attachment member 120 may include any suitable arrangement, such as a belt and/or a strap.
  • any references to "belt” or “strap” made herein could also refer to any other suitable attachment member 120.
  • the attachment member 120 may be composed of any suitable material, such as, a woven fabric, and/or a substantially inelastic material, or could be at least partially elastic, elasticated material, or the like as will be described in more detail below.
  • the attachment member 120 is at least partially composed of rubber, natural rubber, and/or silicone and/or may include rubber/silicon protrusions on an inner surface of the attachment member 120. These materials can be particularly beneficial in minimising slippage of the device 100 relative to the subject S while in use.
  • the feedback member 110 may include similar material and/ or protrusions.
  • the attachment member 120 may be composed of an at least partially breathable material, which can be advantageous particularly in situations where the subject S experiences excessive perspiration.
  • the attachment member 120 and/or the feedback member 110 may be composed of a unique stretch fabric in order to deliver desired loading profiles, for example, in order to set a desired predetermined level of expansion.
  • the device 100 remains in a desired positioned on the subject S due to the material composition of the attachment member 120 and/or feedback member 110, as described above. Additionally and/or alternatively, the fit of the attachment member 120 about the subject's abdomen at least partially allows the device 100 to remain in the desired position, for example, the attachment member 120 may extend about the subject's abdomen using a moderately tight or firm fit.
  • the feedback member 110 includes a notch 113, however any number of zero or more notches may be included in alternative examples.
  • the notch 113 allows the feedback member 110 to be correctly positioned relative to the subject's abdomen, for example, such that the notch is aligned substantially with the centre of the abdomen, or the like.
  • the feedback member 110 may include visual indicia indicative of relative positioning of the device 100 and on the subject's abdomen.
  • the notch 113 may provide a portion of weakness in the feedback member 110 such that the discrete mechanical snap during the transition occurs substantially inline with the notch 113.
  • the feedback member 110 may include a line or portion of weakness substantially in a centre of the feedback member 110, which is formed as a result of a reduced thickness in the feedback member 110, or a material of reduced strength, relative to the remaining feedback member 110, or the like.
  • the line or portion of weakness may be included in any suitable position on the feedback member 110.
  • the device 100 may provide the discrete tactile feedback at multiple predetermined levels of expansion.
  • the attachment member 120 and the feedback member 110 may cooperate to mechanically provide discrete tactile feedback to the subject when the abdomen reaches multiple predetermined levels of expansion.
  • This could include, for example, tactile feedback being provided during inhalation when the abdomen reaches a predetermined level of expansion, and again during exhalation when the abdomen reaches a predetermined level of contraction.
  • predetermined level of contraction could also be used to refer to a defined degree of expansion, typically less than the predetermined level of expansion, such that discrete tactile feedback is provided to the subject S when the abdomen reaches a predetermined level of contraction.
  • multiple predetermined levels may be achieved in any suitable manner, for example, by composing the feedback member 110 of a material(s) suitable to provide feedback at multiple levels, and/or by including multiple portions of weakness which transition at different levels of expansion/contraction.
  • the feedback member 110 is supported by the attachment member 120 by providing the attachment member 120 through apertures 111, 112.1, 112.2 proximal to ends of the feedback member 110.
  • This is particularly beneficial, as it allows the attachment member 120 to comprise a single strap with releasable fastener, such as a hook and loop fastener, an adjustable clip, and the like, which can be threaded through the apertures 111, 112.1, 112.2 and attached to itself and in correspondence with the size of the subject S about their abdomen.
  • the attachment member 120 may support the feedback member 110 in any suitable manner near the abdomen, including being attached, coupled or adhered to the feedback member 110, or the like.
  • the feedback member 110 includes three apertures 111, 112.1, 112.2, where one first aperture 111 is proximal to a first end of the feedback member 110 and two second apertures 112.1, 112.2 are proximal to a second end of the feedback member 110.
  • the attachment member 120 may be fixedly attached about the second apertures and in use may be extended around the subject S, through the first aperture 111, and releasably fastened. This is particularly beneficial as the attachment member 120 remains attached to at least the second apertures 112.1, 112.2 when the device 100 is not in use, and therefore minimises the risk the attachment member 120 will be lost, misplaced, damaged, or the like.
  • the attachment member 120 may also be achieved by fixedly attaching the attachment member 120 through an aperture proximal to an end, and about the end itself.
  • the feedback member 110 may include any suitable number of aperture 111, 112.1, 112.2 for attaching the attachment member 120 thereto, such as one or more apertures.
  • the device 100 may be any suitable size, depending upon the size and shape of the subject S. In some examples, different sizes of device 100 and/or devices 100 of different resistance offering different predetermined levels may be provided according to a subject's size, shape and ability. Moreover, the device 100 may be used by adults and/or children and thus may be sized and shaped accordingly.
  • the attachment member 120 is adjustable.
  • the attachment member 120 may be adjusted to fit around the subject's abdomen.
  • the attachment member 120 may be adjusted, for example, to suit the subject's size, or alternatively to suit their ability.
  • the attachment member 120 may be adjusted to be firm fitting such that the predetermined level is lower relative to an arrangement where the attachment member 120 is adjusted to include more slack.
  • an increased slackness in the attachment member 120 absorbs an increased amount of the abdomen expansion before expansion of the abdomen begins to act on the feedback member 110, thus increasing the predetermined level of expansion for discrete tactile feedback.
  • the attachment member 120 may be gradually loosened as a subject's diaphragmatic respiratory ability increases.
  • different sized attachment members 120 may be provided with the device 100 in order to accommodate different sized subjects, and/or subjects with different respiratory abilities.
  • the attachment member 120 may be elastic.
  • the elasticity of the attachment member 120 will act to absorb at least some of the expansion of the abdomen of the subject S, thus at least partially increasing the predetermined level of expansion at which feedback is provided.
  • variation in the elasticity of the attachment member 120 provides for variation in the predetermined level.
  • different attachment members 120 of differing elasticity may be provided in order to accommodate a range of breathing abilities.
  • the feedback member 110 is typically about 150 to 450 mm in length, more typically about 200 to 400 mm in length and most typically about 300 mm in length. Additionally, a perpendicular height of the convex portion of the feedback member 110 is typically about 50 to 150 mm, more typically about 80 to 120 mm and most typically about 90 or 100 mm. Furthermore, a depth of the convexity of the feedback member 110 relative to its peripheral edges is typically about 10 to 30 mm, more typically about 15 to 25 mm, and most typically about 20 mm.
  • the device includes a counter configured to count a number of expansions of the abdomen. This is advantageous, as it allows the subject S to track their progress and training.
  • a subject S may be prescribed a program including a predetermined number of breaths.
  • the device 200 includes an at least semi-rigid body 210 and a belt 220 for supporting the body 210 in contact with the abdomen and near the diaphragm.
  • the belt 220 is coupled to the rigid body using apertures in peripheral portions of the body 210.
  • the feedback member of the device 200 includes the body 210 in communication with protrusions 215 on the belt 220.
  • the belt 220 deforms outwardly, moving the belt 220 relative to the apertures in the body 210, which in turn causes one or more protrusions 215 to move through, and/or abut, the apertures.
  • the relative movement of the protrusions 215 through the apertures causes discrete, tactile feedback, as the height of the protrusions 215 is larger than a width of the apertures.
  • movement of the protrusions 215 to abut against the apertures may cause the feedback.
  • the belt 220 returns inwardly, thus moving the protrusions 215 relative to the apertures in the body 210 in an opposite direction.
  • This arrangement is beneficial as multiple protrusions 215 can provide discrete feedback at a number of predetermined levels of expansion, thus allowing the subject to progress to higher levels of resistance without adjusting the device 200.
  • the breathing training device 300 includes a body 310 and a belt 320 for supporting the body 310 in contact with the subject's abdomen and near the diaphragm.
  • a feedback member of the device 300 includes a button 315 provided on the body 310, the button 315 being overlaid by the belt.
  • the belt 320 is deformed by expansion of the abdomen to thereby depress the button at a predetermined level of expansion of the abdomen and hence provide discrete, tactile feedback. As the subject subsequently exhales, slack in the belt 320 increases thus allowing the button to release.
  • the predetermined level will be dependent upon the resilience of the belt 310 and/or the degree of firmness with which the belt 320 is fitted about the subject's abdomen, and the relative force required to depress the button 315. Hence these variables may be varied according to a subject's size, requirements, training progress, and the like.
  • the device 400 includes a belt 420 to be worn by the subject, and a feedback member comprising two at least semi-rigid portions 410.1, 410.2 which are hingeably attached.
  • the portions 410.1, 410.2 are substantially coplanar.
  • the belt 420 is urged outwardly until a predetermined level of expansion of the abdomen is reached, in which the first configuration transitions to a second configuration where the two portions 410.1, 410.2 are angularly offset, as shown in Figure 5B.
  • This transition provides discrete, mechanical feedback to the subject in the form of a sudden movement, or 'snap', through the hinge 425, which may or may not be accompanied by an audible sound.
  • the two portions 410.1, 410.2 return to the first configuration.
  • the device 500 includes a body 510 and a belt 520 for supporting the body 510 in contact with the abdomen and near the diaphragm.
  • the device 500 includes a feedback member comprising a biased assembly 515 in communication with the belt 520.
  • the belt 520 is deformed by expansion of the abdomen in a direction opposing the biased assembly 515.
  • the biased assembly 515 is at least partially released, thus suddenly introducing slack into the belt 520 which in turn provides discrete tactile feedback to the subject at the predetermined level.
  • the biased assembly 515 is operable to draw in the belt 520 about the abdomen ready for the next diaphragmatic inhalation.
  • a body 510 is shown in this example for supporting the biased assembly 515, in other examples the body 510 may not be necessary and instead the biased assembly may be near the abdomen.
  • this arrangement may be beneficial in providing a simple mechanism for adjusting the predetermined level, or level of resistance of the device 500, by adjusting the level at which the biased assembly 515 releases.
  • the belt 520 is released by the biased assembly 515 during expansion of the abdomen.
  • the biased assembly 515 suddenly stops releasing the belt 520, which in turn provides discrete tactile feedback to the subject at the predetermined level.
  • the biased assembly 515 is operable to draw in the belt 520 about the abdomen ready for the next diaphragmatic inhalation.
  • the biased assembly 515 may be adjustable in order to alter the predetermined level, for example, by altering the point at which the biased assembly 515 stops releasing the belt 520. This is particularly advantageous as it allows the predetermined level to be adjusted, for example, as the subject improves their diaphragmatic inhalation.
  • the device 500 may include multiple stopping points, such that the discrete tactile feedback is provided to the subject at multiple predetermined levels of expansion.
  • the breathing training device 600 includes a feedback member 610 for positioning in contact with the subject's abdomen near the subject's diaphragm, and attachment members 620.1, 620.2.
  • the attachment members 620.1, 620.2 and the feedback member 610 cooperate to mechanically provide discrete tactile feedback to the subject S when the abdomen reaches a predetermined level of expansion.
  • Figure 7 includes a feedback member 710 for positioning in contact with the subject's abdomen near the subject's diaphragm, and an attachment member 720, as discussed in any one of the examples above.
  • the attachment members 620.1, 620.2, 720 extend only partially around the subject S.
  • the attachment members 620.1, 620.2 grip partially around either side of the subject's abdomen in order to cooperate with the feedback member 610 to provide the discrete tactile feedback when the abdomen reaches the predetermined level.
  • attachment members 620.1, 620.2 are shown as separate members extending from opposing ends of the feedback member 610, it will be appreciated that the attachment members 620.1, 620.2 may be attached or integrally formed, with the feedback member 610 coupled thereto, for example, using apertures, adhesives, or the like, as described above.
  • ends of the attachment member 720 are attached to respective ends of the feedback member 710 such that in use the attachment member 720 extends partially around the subject.
  • the attachment member 720 of this example may include any suitable arrangement, such as a belt, strap, or any other example described above.
  • the breathing training device may include one or more sensors adapted to monitor the number of expansions of the abdomen, where the sensors are coupled to an electronic processing device, such as a processing system.
  • an electronic processing device such as a processing system.
  • the processing system may be formed from any suitably programmed processing system, such as a suitably programmed microcontroller, microprocessor, microchip processor, logic gate configuration, firmware optionally associated with implementing logic such as an FPGA (Field Programmable Gate Array), or any other electronic device, system or arrangement capable of interacting with the breathing training device.
  • the processing system may be mounted or coupled to the breathing training device, or alternatively may be remote from the breathing training device and signals acquired from the sensors using wired or wireless communication.
  • the breathing training device and/or processing system may further include and/or be coupled to an output for presenting the indicator to the user, such as a display.
  • the output may indicate to the subject any suitable indicator, such as a number of diaphragmatic breaths remaining in a breathing training session, the number of predetermined levels reached in this session or as a cumulative total, that the prescribed number of breaths has been reached, or the like.
  • a remote processing system in communication with the processing system may include a smartphone, remote server, cloud-based application, or other computer system, which receives signals transferred from the processing system indicating which breathing training activities have been performed, for maintaining breathing training logs for a particular subject.
  • the processing system may also receive prescribed breathing training activities from the remote processing system via signals which are then stored in memory until the next time the subject performs breathing training. For example, after performing a first variation of the breathing training a predetermined number of times, a second variation of the breathing training, such as more repetitions, or a more difficult training activity, may be sent to the processing system from the remote processing system.
  • the signals may be transferred remotely using any suitable method, such as using the Internet, USB, Ethernet, wireless, Bluetooth, mobile network, or the like.
  • each of the above described examples may be include any one or more of the features described herein.
  • a breathing training device 100, 200, 300, 400, 500, 600, 700 which provides a subject with discrete tactile feedback on their diaphragmatic breathing, which in turn facilitates simple, easy and cost-effective diaphragmatic breathing training.

Abstract

A breathing training device for a subject, the device including at least one feedback member positioned in contact with the subject's abdomen near the subject's diaphragm; and, an attachment member at least partially extending around the subject, wherein the attachment member and the feedback member cooperate to mechanically provide discrete tactile feedback to the subject when the abdomen reaches a predetermined level of expansion.

Description

BREATHING TRAINING DEVICE Background of the Invention
[0001] The present invention relates to a breathing training device, for example, for use in diaphragmatic breathing training, such as in sporting, exercise, musical, medical applications, or the like.
Description of the Prior Art
[0002] The reference in this specification to any prior publication (or information derived from it), or to any matter which is known, is not, and should not be taken as an acknowledgment or admission or any form of suggestion that the prior publication (or information derived from it) or known matter forms part of the common general knowledge in the field of endeavour to which this specification relates.
[0003] In the sporting and musical industries, it is generally acknowledged that diaphragmatic breathing is important in improving performance, for example, in activities such as swimming, yoga, singing, and other aerobic activities. In addition, diaphragmatic breathing is encouraged for patients with certain conditions in order to ease symptoms and/or prevent respiratory complications, such as patients suffering from asthma, chronic obstructive pulmonary disorder (COPD), cystic fibrosis, sleep disorders, and patients who have undergone abdominal or thoracic surgery. However, diaphragmatic breathing can be difficult to master, and typically subjects require significant practice and feedback from a physiotherapist or occupational therapist.
[0004] Whilst some devices are known which attempt to assess and/or enhance a subject's diaphragmatic breathing, these devices suffer from a number of drawbacks. For example, devices such as air restrictors and spirometers measure the capability of the subject's lungs via either the amount of air the subject can blow and/or how fast the subject can blow. However, there is no evaluation of breathing technique, merely breathing capacity. In fact, without proper guidance on breathing technique, use of such devices can cement poor habits and even worsen breathing technique. [0005] Other known devices include compression garments or bands. These devices are typically worn around the chest and lower ribcage, thus providing resistance to the intercostal muscles of a subject. However, this type of restriction also provides little guidance on diaphragmatic breathing technique.
[0006] US-6,162, 183 describes a system to monitor respiration activity of a user and provide appropriate feedback to the user includes a respiration feedback monitor sized and configured to be worn by the user. In the depicted embodiment, respiration activity is measured with components including a retractable cord coupled to an optical distance measurement device. Feedback is typically provided using vibrations of certain duration and repetition. The system operates under various user selectable operational modes. Each operational mode is associated with particular respiration feedback criteria used to determine appropriate feedback for the user. The respiration feedback criteria is related to respiration rate levels and respiration depth associated with respiration activity level measured for the user. Distribution plots such as histograms associated with respiration measurement contribute to aspects of the feedback criteria and help establish other aspects of appropriate feedback. The depicted embodiment includes a computer interface allowing respiration data recorded by the respiration feedback monitor to be sent to a computer system. The computer system is also used to adjust and download desired operational modes into the respiration feedback monitor.
[0007] WO-2002/069801 relates to an indicating apparatus including a strap, for being worn by a user, with a variable condition that changes during the inspiration condition and generates electrical output indicative of the variable condition. A signalling device of the indicating apparatus produces a tactile vocalization signal in response to the electrical output generated during the expiration phase and produces a tactile pause signal in response to the electrical output generated during the inspiration phase. The vocalization and pause signals prompts the user to properly synchronise speaking with the expiration phases and pauses in speaking with the inspiration phases.
[0008] US-2007/0203433 describes a wearable relaxation inducing apparatus comprising either a harness or a garment made of elastically flexible fabric tightly worn on the torso; electromechanical sensors attached to the fabric translating the breathing movements of a wearer into electric signals representing breathing rate and depth; electrically operated transducers attached to the fabric providing tactile feedback to the body about breathing; and electronic circuitry for processing the electrical signals produced by the electromechanical sensors and for operating the transducers at selected adjustable sequences and rates.
[0009] US-2011/0230311 relates to a pair of adjustable belts adapted to encircle the human torso provides training in proper breath control techniques while singing. Mating fasteners at the free ends of each belt releasably secure the free ends together so that each belt forms a closed loop. A method includes securing the belts around the middle of the torso, expanding the first belt, having the person inhale with the intercostals and lateral muscles to expand the ribcage and fastening the first belt into the expanded position around the torso, in a horizontal line at the breastbone. In one embodiment, the top belt is placed around the subject at the middle of the chest fastening at the breastbone and the bottom belt is placed around the subject angling upward from the lower back, to fasten also at the breastbone. A final step may be to have the person maintain pressure on both straps while singing.
[0010] GB-504,852 describes an apparatus for promoting correct breathing comprising a frame, for example of springy metal in the form of a flattened cylindrical shell, which is strapped to the abdomen to cause the inner and outer sides to move toward and away from one another during breathing. The side carries a gong and the side a hammer on a stem, which hammer co-operates with a finger to strike the gong at each breath.
Summary of the Present Invention
[0011] The present invention seeks to ameliorate one or more of the problems associated with the prior art and/or provide a workable alternative.
[0012] In a first broad form the present invention seeks to provide a breathing training device for a subject, the device including:
a) at least one feedback member positioned in contact with the subject's abdomen near the subject's diaphragm; and,
b) an attachment member at least partially extending around the subject, wherein the attachment member and the feedback member cooperate to mechanically provide discrete tactile feedback to the subject when the abdomen reaches a predetermined level of expansion.
[0013] Typically the feedback member is resilient and movable from a first configuration at rest, to a second configuration under the influence of the abdomen reaching the predetermined level of expansion, wherein the feedback member provides the discrete tactile feedback to the subject upon transition from the first configuration to the second configuration.
[0014] Typically the feedback member includes an elongate body which:
a) in the first configuration is substantially convex along an axis of elongation; and, b) in the second configuration the convex portion is at least partially flattened along at least part of a length of the convex portion, wherein the transition includes a discrete mechanical snap.
[0015] Typically the attachment member and the feedback member cooperate to mechanically provide discrete tactile feedback to the subject when the abdomen reaches multiple predetermined levels of expansion.
[0016] Typically the feedback member includes at least one notch.
[0017] Typically the attachment member is adjustable.
[0018] Typically the attachment member is at least partially elastic.
[0019] Typically the feedback member includes at least one aperture for coupling the feedback member to the attachment member.
[0020] Typically a material composition of the feedback member at least partially determines the predetermined level.
[0021] Typically a thickness of the feedback member at least partially determines the predetermined level.
[0022] Typically the attachment member includes at least one of:
a) a belt; and, b) a strap.
[0023] Typically the at least one feedback member includes any one of:
a) two feedback members; and,
b) four feedback members.
[0024] Typically the feedback member includes a body in communication with protrusions on the attachment member, wherein the attachment member is deformed by expansion of the abdomen, to move the protrusions relative to at least a portion of the body and thereby provide the discrete tactile feedback.
[0025] Typically the feedback member includes a body including a button, the button being overlayed by the attachment member, wherein the attachment member is deformed by expansion of the abdomen to thereby depress the button at the predetermined level.
[0026] Typically the feedback member includes at least two at least semi-rigid portions hingeably attached and substantially coplanar in the first configuration, and wherein in the second configuration the two portions are angularly offset.
[0027] Typically the feedback member includes a biased assembly in communication with the attachment member, wherein the attachment member is deformed by expansion of the abdomen opposing the biased assembly, and the biased assembly is released at the predetermined level.
[0028] Typically the feedback member includes a biased assembly in communication with the attachment member, wherein the attachment member is released by the biased assembly during expansion of the abdomen, and wherein the biased assembly stops releasing the attachment member at the predetermined level.
[0029] Typically the device includes a counter configured to count a number of expansions of the abdomen.
[0030] Typically the device includes a processing system.
[0031] In a second broad form the present invention seeks to provide a breathing training device for a subject, the device including: a) at least one feedback member positioned in contact with the subject's abdomen near the subject's diaphragm; and,
b) an attachment member at least partially extending around the subject, wherein the attachment member and the feedback member cooperate to mechanically provide discrete tactile feedback to the subject when the abdomen reaches a predetermined level of contraction.
[0032] In a third broad form the present invention seeks to provide a method of performing breathing training on a subject, the method including:
a) providing a breathing training device on the subject, the device including:
i) at least one feedback member positioned in contact with the subject's abdomen near the subject's diaphragm; and,
ii) an attachment member at least partially extending around the subject, wherein the attachment member and the feedback member cooperate to mechanically provide discrete tactile feedback to the subject when the abdomen reaches a predetermined level of expansion; and,
b) having the subject at least one of inhale and exhale, at least until the discrete tactile feedback is provided.
[0033] Typically the method includes having the subject repeatedly inhale and exhale.
[0034] Typically the method is performed during at least one of:
a) swimming;
b) singing;
c) yoga; and,
d) aerobic exercise.
[0035] Typically the method is for at least one of:
a) treatment of at least one of:
i) asthma;
ii) chronic obstructive pulmonary disease;
iii) cystic fibrosis; and,
iv) sleep disorders; and, b) rehabilitation following torso or abdominal surgery. Brief Description of the Drawings
[0036] An example of the present invention will now be described with reference to the accompanying drawings, in which: -
[0037] Figure 1 A is a schematic diagram of a perspective view of a first example of a breathing training device;
[0038] Figure IB is a schematic diagram of the breathing training device of Figure 1A in a first configuration;
[0039] Figure 1C is a schematic diagram of the breathing training device of Figure 1A in a second configuration;
[0040] Figure ID is a schematic diagram of an example of a feedback member of the device of Figure 1A;
[0041] Figure 2 is a schematic diagram of a further example of a breathing training device;
[0042] Figure 3 is a schematic diagram of a further example of a breathing training device;
[0043] Figure 4A is a schematic diagram of a further example of a breathing training device;
[0044] Figure 4B is a schematic diagram of a second configuration of the breathing training device of Figure 4 A;
[0045] Figure 5 is a schematic diagram of a further example of a breathing training device;
[0046] Figure 6 is a schematic diagram of a further example of a breathing training device; and,
[0047] Figure 7 is a schematic diagram of a further example of a breathing training device.
Detailed Description of the Preferred Embodiments
[0048] An example of a breathing training device will now be described with reference to Figures 1A to ID.
[0049] In this example, the breathing training device 100 includes a feedback member 110 positioned in contact with the subject's abdomen near the subject's diaphragm, and an attachment member 120 extending around the subject S. In this regard, whilst in the preferred embodiment the attachment member 120 extends around the subject S, as shown, this is not essential and in other examples the attachment member 120 may extend at least partially around the subject S, and this will be discussed further below.
[0050] In addition, "near the subject's diaphragm" includes any suitable positioning of the feedback member 110 which can be sufficiently influenced by movement of the diaphragm, and typically will include positioning in any location below the subject's ribcage and above the subject's hips but more typically will be substantially adjacent the subject's waist.
[0051] In this regard, the attachment member 120 and the feedback member 110 cooperate to mechanically provide discrete tactile feedback to the subject S when the abdomen reaches a predetermined level of expansion, as shown in Figures IB and 1C. The "predetermined level of expansion" refers to any suitable level of descent and/or ascent of the diaphragm, where 'descent' typically relates to a level of contraction of the diaphragm and 'ascent' typically relates to a level of relaxation of the diaphragm. As will be appreciated, when the subject's diaphragm contracts, it descends which increases the volume of the lungs, creating a vacuum that draws air in, thus expanding the abdomen, and when the diaphragm relaxes, natural pressure causes the diaphragm to ascend, decreasing lungs volume and expelling the expired air. In this regard, the predetermined level of expansion may include a predetermined level reached during inhalation, and/or a predetermined level reached during exhalation, of the subject.
[0052] The predetermined level of expansion will typically differ depending on a range of factors, such as the intended use of the device 100, the size of the user, or the like. For example, when training elite athletes, it may be desirable to have a predetermined level representing a greater degree of expansion and hence inhalation, than when using this for a medical respiratory rehabilitation patient. Additionally, smaller individuals will typically have a smaller absolute amount of expansion for full inhalation that larger people. Accordingly, the predetermined level of explanation is typically determined on a case-by-case basis, and may be determined at least partially based on a subject's minimum and maximum levels of expansion.
[0053] This arrangement is particularly beneficial as it provides discrete feedback to the subject S regarding their diaphragmatic breathing technique, and in particular on both the subject's depth of breath and use of the diaphragm. [0054] Moreover, as the attachment member 120 and feedback member 110 cooperate to mechanically provide the feedback, this ensures that the device is easy to use and inexpensive to manufacture. In addition, it ensures that the device 100 is suitable for use in a wide variety of environments, such in a swimming pool. This is in contrast to other devices which may include complex sensors and circuits that cannot be submersed in water, and hence cannot provide diaphragmatic training while swimming. Similar problems also exist for other athletes and/or people who exercise in particularly wet, cold, and/or humid weather conditions, or excessively sweat during training and/or exercise. Thus, the device 100 may be utilised while an athlete or swimmer trains in a variety of environments, and at a low manufacturing cost.
[0055] Thus, in one example, a method of performing breathing training on a subject S includes providing the breathing training device 100 on the subject S, and having the subject S inhale and/or exhale until the discrete tactile feedback is provided. More typically, the method includes having the subject S repeatedly inhale and exhale. This is particularly advantageous as repeated training with the device 100 can enhance improvement in the subject's S diaphragmatic breathing. Wider variations of the method are possible according to any of the examples of the device 100 described herein, for example, the method may include the having the subject inhale and/or exhale until discrete tactile feedback is provided at multiple predetermined levels, such as during both inhalation and exhalation.
[0056] In some examples, the method is performed during swimming, yoga, singing, and/or any other aerobic exercise, and this can be particularly beneficial as it allows the subject to practice and enhance their breathing during particular activities/exercise. Additionally or alternatively, the method may be for treatment, rehabilitation and/or recovery, such as for the treatment of asthma, chronic obstructive pulmonary disease, cystic fibrosis, and/or sleep disorders, and/or rehabilitation following torso or abdominal surgery, or the like.
[0057] A number of further features will now be described.
[0058] In this example, the feedback member 110 is resilient and movable from a first configuration at rest, to a second configuration under the influence of the abdomen reaching the predetermined level of expansion. In this regard, the feedback member provides the discrete tactile feedback to the subject S upon transition from the first configuration to the second configuration. This is also highlighted in Figures IB and 1C in which the device 100 is shown in Figure IB in the first configuration at rest, and in Figure 1C in the second configuration. However, it will be appreciated that mechanical cooperation of the attachment member 120 and feedback member 1 10 may be achieved in any suitable manner, and further examples are provided below.
[0059] Also, in this particular example, the feedback member 110 includes an elongate body which in the first configuration is substantially convex along an axis of elongation, as shown in Figure 1A and IB. In the second configuration, as shown in Figure 1C, the convex portion is at least partially flattened along at least part of a length of the convex portion, such that the transition includes a discrete mechanical snap. In this regard, the term 'snap' refers to a short sharp mechanical bend in the feedback member 110, which may or may not be accompanied by an audible tone.
[0060] Alternatively, the first and second configurations may be provided in any other suitable manner. For example, the feedback member 110 may include at least two at least semi-rigid portions hingeably attached and which are substantially coplanar in the first configuration, and in the second configuration the two portions are angularly offset, such that the transition between configurations provides the discrete tactile feedback.
[0061] In other examples the feedback member 110 may be arranged in any other suitable manner. In one example, the feedback member 1 10 includes a body in communication with one or more protrusions on the attachment member 120, wherein the attachment member 120 is deformed by expansion of the abdomen, to move the protrusions relative to at least a portion of the body and thereby provide the discrete tactile feedback. This arrangement may be particularly beneficial in providing feedback at multiple levels of expansion of the abdomen in the event multiple protrusions are included, and this will be discussed further below.
[0062] Alternatively, the feedback member 110 may include a body including a button, where the button is overlaid by the attachment member 120. In this regard, the attachment member is deformed by expansion of the abdomen to depress the button at the predetermined level. In an alternative example, the feedback member 110 includes a biased assembly in communication with the attachment member 120, wherein the attachment member is deformed by expansion of the abdomen opposing the biased assembly, and releasing the biased assembly at the predetermined level.
[0063] In any event, each of these alternative examples will be discussed in more detail below.
[0064] Whilst the example of Figures 1A to ID shows a single feedback member 110, it will be appreciated that any suitable number of feedback members may be included, for example, two feedback members or four feedback members. For example, in the former arrangement, the feedback members may be supported in contact with a front of and behind the abdomen, namely the subject's back and front, and in the latter arrangement the feedback members may be supported in contact with the front, the behind and on each side of the subject's abdomen. Thus, this allows for additional feedback regarding the subject's diaphragmatic breathing technique about the abdomen.
[0065] In one example, a material composition of the feedback member 110 may at least partially determine the predetermined level. For example, a higher rigidity and/or grade and/or lower flexibility of the material composition of the feedback member 110 may raise the predetermined level of expansion of the abdomen at which the transition occurs. Similarly a lower rigidity and/or grade and/or higher flexibility of material composition may lower the predetermined level. In this regard, the subject S may stage their breathing training by progressing from weaker grades of, for example, plastic feedback members which provide little resistance, to higher grades of plastic which provide resistance training.
[0066] In one example, the feedback member 110 is substantially composed of rubber, natural rubber, silicon, plastic, such as polyurethane, and/or the like, and it will be appreciated from the following that any material suitable for undergoing repeated elastic deformation could be used. In one example, the feedback member 110 is at least partially composed of a material at least partially resistant to ultraviolet (UV) radiation, water, and/or chlorine, such that the feedback member 110 substantially maintains its mechanical properties in the event of repeated and/or continuous exposure of the device 100 to particular weather conditions, sunlight, submersion in a swimming pool, or the like. [0067] In addition, the attachment member 120 may include any suitable arrangement, such as a belt and/or a strap. In this regard, any references to "belt" or "strap" made herein could also refer to any other suitable attachment member 120. Furthermore, the attachment member 120 may be composed of any suitable material, such as, a woven fabric, and/or a substantially inelastic material, or could be at least partially elastic, elasticated material, or the like as will be described in more detail below. In one example, the attachment member 120 is at least partially composed of rubber, natural rubber, and/or silicone and/or may include rubber/silicon protrusions on an inner surface of the attachment member 120. These materials can be particularly beneficial in minimising slippage of the device 100 relative to the subject S while in use. Additionally and/or alternatively, the feedback member 110 may include similar material and/ or protrusions. In a further example, the attachment member 120 may be composed of an at least partially breathable material, which can be advantageous particularly in situations where the subject S experiences excessive perspiration.
[0068] In one example, the attachment member 120 and/or the feedback member 110 may be composed of a unique stretch fabric in order to deliver desired loading profiles, for example, in order to set a desired predetermined level of expansion.
[0069] In some examples, the device 100 remains in a desired positioned on the subject S due to the material composition of the attachment member 120 and/or feedback member 110, as described above. Additionally and/or alternatively, the fit of the attachment member 120 about the subject's abdomen at least partially allows the device 100 to remain in the desired position, for example, the attachment member 120 may extend about the subject's abdomen using a moderately tight or firm fit.
[0070] In this example, the feedback member 110 includes a notch 113, however any number of zero or more notches may be included in alternative examples. In this regard, the notch 113 allows the feedback member 110 to be correctly positioned relative to the subject's abdomen, for example, such that the notch is aligned substantially with the centre of the abdomen, or the like. However, this is not essential and in other examples the feedback member 110 may include visual indicia indicative of relative positioning of the device 100 and on the subject's abdomen. [0071] Additionally or alternatively, the notch 113 may provide a portion of weakness in the feedback member 110 such that the discrete mechanical snap during the transition occurs substantially inline with the notch 113. However, as will be appreciated this may be achieved in other suitable manners, such as a variable thickness, variable material composition, or the like, in the feedback member 100. For example, the feedback member 110 may include a line or portion of weakness substantially in a centre of the feedback member 110, which is formed as a result of a reduced thickness in the feedback member 110, or a material of reduced strength, relative to the remaining feedback member 110, or the like. In other examples, the line or portion of weakness may be included in any suitable position on the feedback member 110.
[0072] In one example, the device 100 may provide the discrete tactile feedback at multiple predetermined levels of expansion. For example, the attachment member 120 and the feedback member 110 may cooperate to mechanically provide discrete tactile feedback to the subject when the abdomen reaches multiple predetermined levels of expansion. This could include, for example, tactile feedback being provided during inhalation when the abdomen reaches a predetermined level of expansion, and again during exhalation when the abdomen reaches a predetermined level of contraction. In this regard, the term "predetermined level of contraction" could also be used to refer to a defined degree of expansion, typically less than the predetermined level of expansion, such that discrete tactile feedback is provided to the subject S when the abdomen reaches a predetermined level of contraction.
[0073] Such an arrangement is particularly advantageous as it ensures that the subject S achieves an ideal level of both diaphragmatic inhalation and exhalation. In any event, multiple predetermined levels may be achieved in any suitable manner, for example, by composing the feedback member 110 of a material(s) suitable to provide feedback at multiple levels, and/or by including multiple portions of weakness which transition at different levels of expansion/contraction.
[0074] In this example, the feedback member 110 is supported by the attachment member 120 by providing the attachment member 120 through apertures 111, 112.1, 112.2 proximal to ends of the feedback member 110. This is particularly beneficial, as it allows the attachment member 120 to comprise a single strap with releasable fastener, such as a hook and loop fastener, an adjustable clip, and the like, which can be threaded through the apertures 111, 112.1, 112.2 and attached to itself and in correspondence with the size of the subject S about their abdomen. However, the attachment member 120 may support the feedback member 110 in any suitable manner near the abdomen, including being attached, coupled or adhered to the feedback member 110, or the like.
[0075] In this particular example, the feedback member 110 includes three apertures 111, 112.1, 112.2, where one first aperture 111 is proximal to a first end of the feedback member 110 and two second apertures 112.1, 112.2 are proximal to a second end of the feedback member 110. In this regard, the attachment member 120 may be fixedly attached about the second apertures and in use may be extended around the subject S, through the first aperture 111, and releasably fastened. This is particularly beneficial as the attachment member 120 remains attached to at least the second apertures 112.1, 112.2 when the device 100 is not in use, and therefore minimises the risk the attachment member 120 will be lost, misplaced, damaged, or the like. It will be appreciated that this may also be achieved by fixedly attaching the attachment member 120 through an aperture proximal to an end, and about the end itself. In any event, in alternative examples, the feedback member 110 may include any suitable number of aperture 111, 112.1, 112.2 for attaching the attachment member 120 thereto, such as one or more apertures.
[0076] The device 100 may be any suitable size, depending upon the size and shape of the subject S. In some examples, different sizes of device 100 and/or devices 100 of different resistance offering different predetermined levels may be provided according to a subject's size, shape and ability. Moreover, the device 100 may be used by adults and/or children and thus may be sized and shaped accordingly.
[0077] In one example, the attachment member 120 is adjustable. In this regard, the attachment member 120 may be adjusted to fit around the subject's abdomen. In this regard, the attachment member 120 may be adjusted, for example, to suit the subject's size, or alternatively to suit their ability. For example, the attachment member 120 may be adjusted to be firm fitting such that the predetermined level is lower relative to an arrangement where the attachment member 120 is adjusted to include more slack. In this respect, an increased slackness in the attachment member 120 absorbs an increased amount of the abdomen expansion before expansion of the abdomen begins to act on the feedback member 110, thus increasing the predetermined level of expansion for discrete tactile feedback. Thus, the attachment member 120 may be gradually loosened as a subject's diaphragmatic respiratory ability increases. In a further example, different sized attachment members 120 may be provided with the device 100 in order to accommodate different sized subjects, and/or subjects with different respiratory abilities.
[0078] Additionally or alternatively, the attachment member 120 may be elastic. In this regard, the elasticity of the attachment member 120 will act to absorb at least some of the expansion of the abdomen of the subject S, thus at least partially increasing the predetermined level of expansion at which feedback is provided. Thus, it will be appreciated that variation in the elasticity of the attachment member 120 provides for variation in the predetermined level. Hence, different attachment members 120 of differing elasticity may be provided in order to accommodate a range of breathing abilities.
[0079] In one particular example, the feedback member 110 is typically about 150 to 450 mm in length, more typically about 200 to 400 mm in length and most typically about 300 mm in length. Additionally, a perpendicular height of the convex portion of the feedback member 110 is typically about 50 to 150 mm, more typically about 80 to 120 mm and most typically about 90 or 100 mm. Furthermore, a depth of the convexity of the feedback member 110 relative to its peripheral edges is typically about 10 to 30 mm, more typically about 15 to 25 mm, and most typically about 20 mm.
[0080] In one example, the device includes a counter configured to count a number of expansions of the abdomen. This is advantageous, as it allows the subject S to track their progress and training. In some examples, a subject S may be prescribed a program including a predetermined number of breaths.
[0081] A further example of a breathing training device for a subject will now be described with reference to Figure 2.
[0082] In this example, the device 200 includes an at least semi-rigid body 210 and a belt 220 for supporting the body 210 in contact with the abdomen and near the diaphragm. In this regard, the belt 220 is coupled to the rigid body using apertures in peripheral portions of the body 210. The feedback member of the device 200 includes the body 210 in communication with protrusions 215 on the belt 220.
[0083] Thus, in use, as the subject diaphragmatically inhales the belt 220 deforms outwardly, moving the belt 220 relative to the apertures in the body 210, which in turn causes one or more protrusions 215 to move through, and/or abut, the apertures. In this regard, the relative movement of the protrusions 215 through the apertures causes discrete, tactile feedback, as the height of the protrusions 215 is larger than a width of the apertures. Alternatively, movement of the protrusions 215 to abut against the apertures may cause the feedback. As the subject subsequently exhales, the belt 220 returns inwardly, thus moving the protrusions 215 relative to the apertures in the body 210 in an opposite direction.
[0084] This arrangement is beneficial as multiple protrusions 215 can provide discrete feedback at a number of predetermined levels of expansion, thus allowing the subject to progress to higher levels of resistance without adjusting the device 200.
[0085] A further example of a breathing training device for a subject will now be described with reference to Figure 3.
[0086] In this example, the breathing training device 300 includes a body 310 and a belt 320 for supporting the body 310 in contact with the subject's abdomen and near the diaphragm. A feedback member of the device 300 includes a button 315 provided on the body 310, the button 315 being overlaid by the belt. In use, the belt 320 is deformed by expansion of the abdomen to thereby depress the button at a predetermined level of expansion of the abdomen and hence provide discrete, tactile feedback. As the subject subsequently exhales, slack in the belt 320 increases thus allowing the button to release.
[0087] Thus, the predetermined level will be dependent upon the resilience of the belt 310 and/or the degree of firmness with which the belt 320 is fitted about the subject's abdomen, and the relative force required to depress the button 315. Hence these variables may be varied according to a subject's size, requirements, training progress, and the like.
[0088] A further example of a breathing training device for a subject will now be described with reference to Figures 4 A and 4B. [0089] In this example, the device 400 includes a belt 420 to be worn by the subject, and a feedback member comprising two at least semi-rigid portions 410.1, 410.2 which are hingeably attached. In a first configuration, shown in Figure 5 A, the portions 410.1, 410.2 are substantially coplanar.
[0090] In use, as the subject diaphragmatically inhales, the belt 420 is urged outwardly until a predetermined level of expansion of the abdomen is reached, in which the first configuration transitions to a second configuration where the two portions 410.1, 410.2 are angularly offset, as shown in Figure 5B. This transition provides discrete, mechanical feedback to the subject in the form of a sudden movement, or 'snap', through the hinge 425, which may or may not be accompanied by an audible sound. As the subject subsequently exhales, the two portions 410.1, 410.2 return to the first configuration.
[0091] Whilst this example shows a single hinge 425, it will be appreciated that more than two portions 410.1, 410.2 may be included in the device 400, which are coupled via two or more hinges 425.
[0092] A further example of a breathing training device for a subject will now be described with reference to Figure 5.
[0093] In this example, the device 500 includes a body 510 and a belt 520 for supporting the body 510 in contact with the abdomen and near the diaphragm. In addition, the device 500 includes a feedback member comprising a biased assembly 515 in communication with the belt 520.
[0094] In use, the belt 520 is deformed by expansion of the abdomen in a direction opposing the biased assembly 515. Thus, at a predetermined level of expansion of the abdomen, the biased assembly 515 is at least partially released, thus suddenly introducing slack into the belt 520 which in turn provides discrete tactile feedback to the subject at the predetermined level. As the subject begins to exhale, the biased assembly 515 is operable to draw in the belt 520 about the abdomen ready for the next diaphragmatic inhalation. As will be appreciated, whilst a body 510 is shown in this example for supporting the biased assembly 515, in other examples the body 510 may not be necessary and instead the biased assembly may be near the abdomen. [0095] Thus, this arrangement may be beneficial in providing a simple mechanism for adjusting the predetermined level, or level of resistance of the device 500, by adjusting the level at which the biased assembly 515 releases.
[0096] In an alternative arrangement, the belt 520 is released by the biased assembly 515 during expansion of the abdomen. At the predetermined level of expansion, the biased assembly 515 suddenly stops releasing the belt 520, which in turn provides discrete tactile feedback to the subject at the predetermined level. As the subject begins to exhale, the biased assembly 515 is operable to draw in the belt 520 about the abdomen ready for the next diaphragmatic inhalation. Optionally, the biased assembly 515 may be adjustable in order to alter the predetermined level, for example, by altering the point at which the biased assembly 515 stops releasing the belt 520. This is particularly advantageous as it allows the predetermined level to be adjusted, for example, as the subject improves their diaphragmatic inhalation. As a further option, the device 500 may include multiple stopping points, such that the discrete tactile feedback is provided to the subject at multiple predetermined levels of expansion.
[0097] Further examples of a breathing training device for a subject will now be described with reference to Figure 6 and Figure 7.
[0098] In Figure 6, the breathing training device 600 includes a feedback member 610 for positioning in contact with the subject's abdomen near the subject's diaphragm, and attachment members 620.1, 620.2. As discussed in any one of the examples above, the attachment members 620.1, 620.2 and the feedback member 610 cooperate to mechanically provide discrete tactile feedback to the subject S when the abdomen reaches a predetermined level of expansion. Similarly, in Figure 7 includes a feedback member 710 for positioning in contact with the subject's abdomen near the subject's diaphragm, and an attachment member 720, as discussed in any one of the examples above.
[0099] In particular, in the examples of Figures 6 and 7, the attachment members 620.1, 620.2, 720 extend only partially around the subject S. This is achieved in Figure 6 by including two attachment members 620.1, 620.1 extending from respective ends of the feedback member 610, where the attachment members 620.1, 620.2 are composed of an at least semi-rigid material, such as plastic, aluminium, or the like. In this respect the attachment members 620.1, 620.2 grip partially around either side of the subject's abdomen in order to cooperate with the feedback member 610 to provide the discrete tactile feedback when the abdomen reaches the predetermined level. Whilst in this example, the attachment members 620.1, 620.2 are shown as separate members extending from opposing ends of the feedback member 610, it will be appreciated that the attachment members 620.1, 620.2 may be attached or integrally formed, with the feedback member 610 coupled thereto, for example, using apertures, adhesives, or the like, as described above.
[0100] In Figure 7, ends of the attachment member 720 are attached to respective ends of the feedback member 710 such that in use the attachment member 720 extends partially around the subject. Thus, the attachment member 720 of this example may include any suitable arrangement, such as a belt, strap, or any other example described above.
[0101] In any event, whilst the abovementioned examples may discuss the tactile feedback provided during inhalation and/or expansion, it will be appreciated that the examples may additionally or alternatively provide the tactile feedback during exhalation and/or contraction, as previously discussed.
[0102] In a further example, the breathing training device may include one or more sensors adapted to monitor the number of expansions of the abdomen, where the sensors are coupled to an electronic processing device, such as a processing system. Accordingly, it will be appreciated that the processing system may be formed from any suitably programmed processing system, such as a suitably programmed microcontroller, microprocessor, microchip processor, logic gate configuration, firmware optionally associated with implementing logic such as an FPGA (Field Programmable Gate Array), or any other electronic device, system or arrangement capable of interacting with the breathing training device. Thus, the processing system may be mounted or coupled to the breathing training device, or alternatively may be remote from the breathing training device and signals acquired from the sensors using wired or wireless communication.
[0103] As discussed above, the breathing training device and/or processing system may further include and/or be coupled to an output for presenting the indicator to the user, such as a display. Thus, the output may indicate to the subject any suitable indicator, such as a number of diaphragmatic breaths remaining in a breathing training session, the number of predetermined levels reached in this session or as a cumulative total, that the prescribed number of breaths has been reached, or the like.
[0104] Wider variations on the abovementioned arrangement are possible, including remote and/or cloud processing. For example, a remote processing system in communication with the processing system may include a smartphone, remote server, cloud-based application, or other computer system, which receives signals transferred from the processing system indicating which breathing training activities have been performed, for maintaining breathing training logs for a particular subject. The processing system may also receive prescribed breathing training activities from the remote processing system via signals which are then stored in memory until the next time the subject performs breathing training. For example, after performing a first variation of the breathing training a predetermined number of times, a second variation of the breathing training, such as more repetitions, or a more difficult training activity, may be sent to the processing system from the remote processing system. In this respect, the signals may be transferred remotely using any suitable method, such as using the Internet, USB, Ethernet, wireless, Bluetooth, mobile network, or the like.
[0105] In any event, each of the above described examples may be include any one or more of the features described herein. Thus, the above describes a breathing training device 100, 200, 300, 400, 500, 600, 700 which provides a subject with discrete tactile feedback on their diaphragmatic breathing, which in turn facilitates simple, easy and cost-effective diaphragmatic breathing training.
[0106] Throughout this specification and claims which follow, unless the context requires otherwise, the word "comprise", and variations such as "comprises" or "comprising", will be understood to imply the inclusion of a stated integer or group of integers or steps but not the exclusion of any other integer or group of integers.
[0107] Persons skilled in the art will appreciate that numerous variations and modifications will become apparent. All such variations and modifications which become apparent to persons skilled in the art, should be considered to fall within the spirit and scope that the invention broadly appearing before described. Thus, for example, it will be appreciated that features from different examples above may be used interchangeably where appropriate.

Claims

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:
1) A breathing training device for a subject, the device including:
a) at least one feedback member positioned in contact with the subject's abdomen near the subject's diaphragm; and,
b) an attachment member at least partially extending around the subject, wherein the attachment member and the feedback member cooperate to mechanically provide discrete tactile feedback to the subject when the abdomen reaches a predetermined level of expansion.
2) A breathing training device according to claim 1, wherein the feedback member is resilient and movable from a first configuration at rest, to a second configuration under the influence of the abdomen reaching the predetermined level of expansion, wherein the feedback member provides the discrete tactile feedback to the subject upon transition from the first configuration to the second configuration.
3) A breathing training device according to claim 2, wherein the feedback member includes an elongate body which:
a) in the first configuration is substantially convex along an axis of elongation; and, b) in the second configuration the convex portion is at least partially flattened along at least part of a length of the convex portion, wherein the transition includes a discrete mechanical snap.
4) A breathing training device according to any one of claims 1 to 3, wherein the attachment member and the feedback member cooperate to mechanically provide discrete tactile feedback to the subject when the abdomen reaches multiple predetermined levels of expansion.
5) A breathing training device according to any one of claims 1 to 4, wherein the feedback member includes at least one notch.
6) A breathing training device according to any one of claims 1 to 5, wherein the attachment member is adjustable.
7) A breathing training device according to any one of claims 1 to 6, wherein the attachment member is at least partially elastic. 8) A breathing training device according to any one of claims 1 to 7, wherein the feedback member includes at least one aperture for coupling the feedback member to the attachment member.
9) A breathing training device according to any one of the claims 1 to 8, wherein a material composition of the feedback member at least partially determines the predetermined level.
10) A breathing training device according to any one of claims 1 to 9, wherein a thickness of the feedback member at least partially determines the predetermined level.
11) A breathing training device according to any one of claims 1 to 10, wherein the attachment member includes at least one of:
a) a belt; and,
b) a strap.
12) A breathing training device according to any one of claims 1 to 11, wherein the at least one feedback member includes any one of:
a) two feedback members; and,
b) four feedback members.
13) A breathing training device according to claim 1, wherein the feedback member includes a body in communication with protrusions on the attachment member, wherein the attachment member is deformed by expansion of the abdomen, to move the protrusions relative to at least a portion of the body and thereby provide the discrete tactile feedback.
14) A breathing training device according to claim 1, wherein the feedback member includes a body including a button, the button being overlayed by the attachment member, wherein the attachment member is deformed by expansion of the abdomen to thereby depress the button at the predetermined level.
15) A breathing device according to claim 2, wherein the feedback member includes at least two at least semi-rigid portions hingeably attached and substantially coplanar in the first configuration, and wherein in the second configuration the two portions are angularly offset.
16) A breathing device according to claim 1, wherein the feedback member includes a biased assembly in communication with the attachment member, wherein the attachment member is deformed by expansion of the abdomen opposing the biased assembly, and the biased assembly is released at the predetermined level. 17) A breathing device according to claim 1, wherein the feedback member includes a biased assembly in communication with the attachment member, wherein the attachment member is released by the biased assembly during expansion of the abdomen, and wherein the biased assembly stops releasing the attachment member at the predetermined level.
18) A breathing training device according to any one of claims 1 to 17, wherein the device includes a counter configured to count a number of expansions of the abdomen.
19) A breathing training device according to any one of claim 1 to 18, wherein the device includes a processing system.
20) A breathing training device for a subject, the device including:
a) at least one feedback member positioned in contact with the subject's abdomen near the subject's diaphragm; and,
b) an attachment member at least partially extending around the subject, wherein the attachment member and the feedback member cooperate to mechanically provide discrete tactile feedback to the subject when the abdomen reaches a predetermined level of contraction.
21) A method of performing breathing training on a subject, the method including:
a) providing a breathing training device on the subject, the device including:
i) at least one feedback member positioned in contact with the subject's abdomen near the subject's diaphragm; and,
ii) an attachment member at least partially extending around the subject, wherein the attachment member and the feedback member cooperate to mechanically provide discrete tactile feedback to the subject when the abdomen reaches a predetermined level of expansion; and,
b) having the subject at least one of inhale and exhale, at least until the discrete tactile feedback is provided.
22) A method according to claim 21, the method including having the subject repeatedly inhale and exhale.
23) A method according to claim 21 or claim 22, wherein the method is performed during at least one of:
a) swimming;
b) singing; c) yoga; and,
d) aerobic exercise.
24) A method according to any one of claims 21 to 23, wherein the method is for at least one a) treatment of at least one of:
i) asthma;
ii) chronic obstructive pulmonary disease;
iii) cystic fibrosis; and,
iv) sleep disorders; and,
b) rehabilitation following torso or abdominal surgery.
PCT/AU2015/050434 2014-08-04 2015-08-03 Breathing training device WO2016019430A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/501,439 US20170225031A1 (en) 2014-08-04 2015-08-03 Breathing Training Device
AU2015299756A AU2015299756A1 (en) 2014-08-04 2015-08-03 Breathing training device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AU2014903008 2014-08-04
AU2014903008A AU2014903008A0 (en) 2014-08-04 Breathing training device

Publications (1)

Publication Number Publication Date
WO2016019430A1 true WO2016019430A1 (en) 2016-02-11

Family

ID=55262925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AU2015/050434 WO2016019430A1 (en) 2014-08-04 2015-08-03 Breathing training device

Country Status (3)

Country Link
US (1) US20170225031A1 (en)
AU (1) AU2015299756A1 (en)
WO (1) WO2016019430A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112842316B (en) * 2021-01-06 2024-02-06 中国人民解放军陆军军医大学第二附属医院 Respiration gate control device
WO2023060300A1 (en) * 2021-10-11 2023-04-20 Bhm Ip Pty. Ltd. Apparatus for spinal segmentation

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4595196A (en) * 1983-10-13 1986-06-17 Muchisky Thomas P Incentive spirometer
US20020123692A1 (en) * 2001-03-02 2002-09-05 Opher Pail Apparatus and methods for indicating respiratory phases to improve speech/breathing synchronization
US20080142004A1 (en) * 2006-12-14 2008-06-19 Wasnick Michael S Deep breathing training device
WO2009138358A1 (en) * 2008-05-13 2009-11-19 Robert Spjuth A harness
US20120043920A1 (en) * 2009-05-05 2012-02-23 Koninklijke Philips Electronics N.V. System and method for operating an exoskeleton adapted to encircle an object of interest
US20130218041A1 (en) * 2011-11-29 2013-08-22 Kevin Liou Belly-type breath auxiliary device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4595196A (en) * 1983-10-13 1986-06-17 Muchisky Thomas P Incentive spirometer
US20020123692A1 (en) * 2001-03-02 2002-09-05 Opher Pail Apparatus and methods for indicating respiratory phases to improve speech/breathing synchronization
US20080142004A1 (en) * 2006-12-14 2008-06-19 Wasnick Michael S Deep breathing training device
WO2009138358A1 (en) * 2008-05-13 2009-11-19 Robert Spjuth A harness
US20120043920A1 (en) * 2009-05-05 2012-02-23 Koninklijke Philips Electronics N.V. System and method for operating an exoskeleton adapted to encircle an object of interest
US20130218041A1 (en) * 2011-11-29 2013-08-22 Kevin Liou Belly-type breath auxiliary device

Also Published As

Publication number Publication date
AU2015299756A1 (en) 2017-03-23
US20170225031A1 (en) 2017-08-10

Similar Documents

Publication Publication Date Title
US11172850B2 (en) System and method to monitor, guide, and evaluate breathing, utilizing posture and diaphragm sensor signals
US9364701B2 (en) Device and methods for accessory chest muscle development
US20140073970A1 (en) Physiological Condition Monitor
US6561987B2 (en) Apparatus and methods for indicating respiratory phases to improve speech/breathing synchronization
US20150374280A1 (en) Belt for guiding the activation of the core muscles
US20220087575A1 (en) System and method to monitor, guide, and evaluate breathing
US20170036063A1 (en) Exercise devices and methods with retractable cords
US20110183827A1 (en) Abdominal Muscle Sculpting and Exercise Device
US20080142004A1 (en) Deep breathing training device
KR20130080500A (en) Biofeedback electronic lumbar stabilizer
WO2014128331A1 (en) Respiratory exercising device and method
US20170225031A1 (en) Breathing Training Device
US20080146957A1 (en) Deep breathing training device
US11395938B2 (en) Respiratory training system
US20110230311A1 (en) Apparatus and method for proper breath control for singing
Yoon et al. Effect of push up plus on sling and stable surface on muscle activity and lung function in adults with forward head posture
CN213030638U (en) Breathing mode correction instrument
KR101118024B1 (en) Waist support for control abdominal breathing
US20190374366A1 (en) Belt with internal distraction
WO2020170108A1 (en) A medical device for the exercise of a user's respiratory functions and non-therapeutic monitoring and data collection method
JP6748994B2 (en) Exercise equipment using a ball
EP2296767A1 (en) A harness
JP2016043083A (en) Air bag, pressurizing belt and pressurizer therewith
CN214633794U (en) Vocal music auxiliary exercise device
KR102462178B1 (en) Chest Respiratory Training And Chiropractic Device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15830697

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2015299756

Country of ref document: AU

Date of ref document: 20150803

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15830697

Country of ref document: EP

Kind code of ref document: A1