WO2016018203A1 - Unité bloc d'entraînement d'essieu de véhicule - Google Patents

Unité bloc d'entraînement d'essieu de véhicule Download PDF

Info

Publication number
WO2016018203A1
WO2016018203A1 PCT/US2014/048360 US2014048360W WO2016018203A1 WO 2016018203 A1 WO2016018203 A1 WO 2016018203A1 US 2014048360 W US2014048360 W US 2014048360W WO 2016018203 A1 WO2016018203 A1 WO 2016018203A1
Authority
WO
WIPO (PCT)
Prior art keywords
coupler
actuator
differential
carrier
assembly
Prior art date
Application number
PCT/US2014/048360
Other languages
English (en)
Inventor
Jason J. WOZNIAK
Kevin P. HORAK
Matthew R. SCHMALENBERG
Original Assignee
Gkn Driveline North America, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gkn Driveline North America, Inc. filed Critical Gkn Driveline North America, Inc.
Priority to PCT/US2014/048360 priority Critical patent/WO2016018203A1/fr
Publication of WO2016018203A1 publication Critical patent/WO2016018203A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/34Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles
    • B60K17/348Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having differential means for driving one set of wheels, e.g. the front, at one speed and the other set, e.g. the rear, at a different speed
    • B60K17/35Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having differential means for driving one set of wheels, e.g. the front, at one speed and the other set, e.g. the rear, at a different speed including arrangements for suppressing or influencing the power transfer, e.g. viscous clutches
    • B60K17/3515Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having differential means for driving one set of wheels, e.g. the front, at one speed and the other set, e.g. the rear, at a different speed including arrangements for suppressing or influencing the power transfer, e.g. viscous clutches with a clutch adjacent to traction wheel, e.g. automatic wheel hub
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/20Arrangements for suppressing or influencing the differential action, e.g. locking devices
    • F16H48/24Arrangements for suppressing or influencing the differential action, e.g. locking devices using positive clutches or brakes

Definitions

  • the present disclosure relates generally to a vehicle drivetrain and more particularly to a final drive unit for a vehicle.
  • Automotive drivetrains transmit torque from a vehicle's engine to its wheels.
  • Automotive drivetrains conventionally include a differential assembly equipped between sideshafts of a front axle, between sideshafts of a rear axle, or between sideshafts of both axles. Each axle typically includes a left sideshaft and a right sideshaft.
  • the differential assembly allows wheels on one sideshaft to spin faster or slower than wheels on the other sideshaft. This occurs, for instance, when an automobile is turning a corner.
  • the differential assembly also apportions driven torque between the sideshafts.
  • All-wheel drive (A WD) drivetrains conventionally include an additional differential assembly between its front and rear axles to perform similar functions—this is frequently referred to as a center differential.
  • some automotive drivetrains are equipped with disconnect capabilities in which disconnected components are no longer driven to transmit torque between them when torque transmission is not needed.
  • the front wheels may be positively driven and the rear wheels selectively driven when all-wheel drive performance is desired.
  • a vehicle final drive unit (FDU) assembly includes a differential and a torque distribution device.
  • the differential includes a differential case and a differential gear set carried within the differential case.
  • the torque distribution device transfers torque between the differential gear set and a side shaft of the vehicle, and may include a clutch and an actuator assembly.
  • the actuator assembly includes an actuator and a coupler driven by the actuator. The coupler is selectively moved by the actuator to a first position wherein the side shaft is disconnected from the differential and not actively driven, a second position wherein the side shaft is coupled to the differential gear set, a third position wherein the side shaft is coupled to the differential case and a fourth position wherein the coupler actuates the clutch to couple the side shaft to the differential gear set.
  • a vehicle FDU assembly includes a differential including a differential case and a differential gear set carried within said differential case, and a torque distribution device transferring torque between the differential gear set and a side shaft of the vehicle.
  • the torque distribution device may include a clutch and an actuator assembly, where the actuator assembly includes an actuator and a coupler driven by the actuator.
  • the coupler is selectively moved by the actuator to multiple positions wherein in one position of the coupler the side shaft is disconnected from the differential and in another position of the coupler the side shaft is coupled to the differential gear set.
  • the actuator is coupled to the coupler to positively drive the coupler in opposed directions as the actuator moves in opposed directions. This may improve control of the coupler as it is moved back-and-forth among its positions.
  • FIG. 1 is a schematic depiction of a vehicle drivetrain system
  • FIG. 2 is a cross-sectional view of a differential that may be used in the drivetrain system of FIG. 1 ;
  • FIG. 3 is a cross-sectional view of a portion of the differential of FIG. 2 showing an actuator and coupler in a first position
  • FIG. 4 is a cross-sectional view of a portion of the differential showing an actuator and coupler in a second position
  • FIG. 5 is a cross-sectional view of a portion of the differential showing an actuator and coupler in a third position
  • FIGS. 6 and 7 are cross-sectional views of a portion of the actuator and coupler shown in two different positions.
  • FIGS. 8-10 are perspective plan views of a ball-ramp actuator shown in three different positions.
  • FIG. 1 illustrates a vehicle drivetrain assembly 10 such as one suitable for an automobile.
  • the drivetrain assembly 10 has a transversely mounted engine 12 the power from which is transmitted via a transmission 14, and a plurality of shafts 16, 18, 20, 22 and corresponding articulating torque transfer joints, which are illustrated as constant velocity joints 24.
  • constant velocity joints 24 other types of joints may be used, such as, but not limited to universal, tripod, cardan, double cardan, and plunging constant velocity joints.
  • the shafts 16, 18, 20, 22, and joints 24 may be used to transmit torque from both a primary power transfer unit (PTU) 26 and the transmission 14 to a plurality of wheels 28.
  • PTU primary power transfer unit
  • the engine 12 may be coupled to the transmission 14 through an engine crankshaft (not shown) that is fixed to a transmission input shaft (not shown) to provide torque to the transmission 14.
  • the torque may be transmitted through a series of gears within the transmission 14 and ultimately to a transmission output shaft 30.
  • the engine may also be coupled to the transmission through an electric motor, such as in a hybrid vehicle, and other vehicle drive configurations are possible.
  • the transmission 14 may be coupled directly to the PTU 26, or a differential 32 may be utilized between the transmission 14 and the PTU 26 — this may depend on the architecture and position of the transmission 14.
  • the PTU 26 may be rotatably connected to the transmission output shaft 30 through an input shaft 34.
  • the first front shaft 16 is generally configured to extend from the transmission 14, which may include the differential 32, or it may be positioned within the input shaft 34 to extend exteriorly from one end of the PTU 26.
  • the second front shaft 18 may extend from an opposite end at a front output side 36 of the PTU 26.
  • the PTU 26 may include an output to transmit torque to a rear drive unit (RDU) 38 to drive the rear wheels 28 through a propeller shaft 40.
  • the RDU 38 may include an input 42, a first output 44 configured to transmit torque to one of the wheels 28 through the first rear shaft 20, and a second output 46 configured to transmit torque to another wheel 28 through the second rear shaft 22.
  • the vehicle drivetrain 10 is merely an example and the RDU 38 is not limited to any particular drivetrain arrangement. Indeed, the RDU 38 may be employed in other, alternative drivetrain arrangements.
  • the RDU 38 may be installed and utilized as a final drive unit (FDU) in the front or rear, and can hence be used with a front differential or a rear differential in a vehicle drivetrain.
  • FDU final drive unit
  • the RDU 38 constitutes a side-shaft disconnect device since it is capable of disconnecting torque transfer at either of the rear shafts 20, 22.
  • the RDU 38 can make up one part of a larger all wheel drive (A WD) disconnect system that may include other disconnect devices at other locations in the accompanying vehicle drivetrain and driveline. These types of AWD disconnect systems are employed for fuel efficiency gains and other improvements. But of course the RDU 38 need not necessarily be part of an AWD disconnect system and can be used for other functionality and other purposes in a particular vehicle drivetrain.
  • FIG. 2 illustrates a cross section through the RDU 38.
  • the RDU 38 includes an axle case 50 that may include first and second case members 52, 54 that may be discrete pieces mounted together in assembly.
  • An axle cover 55 may be connected to the axle case 50 and may enclose at least part of the RDU 38.
  • the first rear shaft 20 may extend through the cover 55 and the second rear shaft 22 may extend through the second axle case member 54.
  • the first and second rear shafts 20, 22 may be journalled for rotation by suitable bearings 57. As will be set forth in more detail later, the first rear shaft is selectively coupled to the differential 32 in different manners by the RDU 38.
  • a differential gear set 60 is rotatably arranged and supported.
  • the differential gear set 60 generally includes two pinion gears 62, 64 that are rotatably arranged on a pinion shaft 66.
  • the pinion shaft 66 has an axis that forms a rotational axis 67 for the pinion gears 62, 64.
  • First and second differential side gears 68, 70 are arranged around a rotational axis 71 so as to be rotatable relative to the differential case 59.
  • the rotational axis for the pinion gears 62, 64 intersects the rotational axis for the differential side gears 68, 70 within the differential case 59.
  • the propeller shaft or drive shaft 40 (FIG.
  • the driving gear 74 may be any suitable drive gear, such as, for example, one of a hypoid, spiral bevel, or helical gear, and is shown as being annular.
  • a torque distribution device is located within the axle case 50 and engages the differential gear set 60. More specifically, the torque distribution device will connect one of the differential side gears 68, 70 with one of the rear side shafts 20, 22.
  • the torque distribution device can function to transfer torque to the first and second rear side shafts 20, 22 for accommodating various automotive driving situations such as cornering, reducing drag, and increasing tractive effort.
  • the functionality is typically managed by an electronic control unit (ECU) or another type of controller.
  • ECU electronice control unit
  • the torque distribution device can have different designs and constructions depending upon, among other possible influences, the design and construction of the RDU in which the torque distribution device is installed.
  • the torque distribution device includes a clutch mechanism 75 with a friction plate pack 76 containing a varying number of clutch plates depending on the required torque transfer.
  • the plate pack 76 may be, and as shown is, located in a larger radial diameter section of the differential case 59. This section is larger and has a greater diametric extent than an opposite side of the differential case 59 because the section accommodates the drive ring gear 74 which is typically mounted at an outside of the differential case 59 and has a larger diameter than most, if not all, portions of the differential case 59.
  • the overall diameter of the plate pack 76 can be maximized, if desired, and hence the associated transmitted torque can also be maximized— these enhancements may be beneficial in some applications.
  • the clutch mechanism 75 and actuator may be located at the opposite side of the differential, as desired.
  • the clutch mechanism 75 in this embodiment includes a clutch reaction member 78, clutch outer carrier 80 and a clutch hub or inner carrier 82.
  • the clutch reaction member 78 may include a radially extending end plate 84 on one side (e.g. an axially facing end) of the clutch plate pack 76, and a stub shaft 86 to which the side gear 68 is connected via a splined connection.
  • the stub shaft 86 may extend into an opening 88 in and be supported by the second axle case member 54.
  • a recess 90 in the clutch reaction member 78 may receive a bearing 57 that journals for rotation one end of the side shaft 20.
  • a bearing 92 may also be received between the first axle case member 52 and the end plate 84.
  • the outer clutch carrier 80 may be annular, generally cylindrical, coupled to the end plate 84 and disposed surrounding the clutch plate pack 76.
  • the inner clutch carrier 82 may be annular, disposed radially inwardly from the clutch plate pack 76 and coupled to the side shaft 20 for rotation with the side shaft 20, such as by a splined connection or any other means of fixing two components together.
  • the inner clutch carrier 82 and side shaft 20 may also be combined into a single piece.
  • an actuator assembly 100 is coupled to the differential case 59.
  • the actuator assembly 100 is shown diagrammatically in FIG. 2, and FIGS. 3-5 show the assembly 100 and RDU 38 with fragments of surrounding components to illustrate just one possible arrangement and to facilitate discussion of the RDU 38.
  • the actuator assembly 100 includes an actuator plate 102 and two reaction collars 104, 106 that are located on opposite sides of the actuator plate 102.
  • the plate 102 and/or collars 104, 106 are configured with one or more ball ramp tracks 107 that cooperate with one or more balls 108 and/or a ball cage (not shown).
  • the actuator plate 102 and collars 104, 106 may be annular and disposed surrounding the side shaft 20 and between the clutch plate pack 76 and the cover 55.
  • the actuator assembly 100 can also include an electric motor drive 109 that rotates the actuator plate 102, or can include another mechanism and/or technique known to skilled artisans for imparting rotation to the actuator plate 102.
  • an electric motor drive 109 that rotates the actuator plate 102
  • the actuator plate 102 is driven axially relative to the cover 55 and clutch plate pack 76 due to the engagement of the balls 108 within ball tracks 107, which have a varying axial depth and are formed within one or both of the actuator plate 102 and the collars 104, 106.
  • the reaction collars 104, 106 may be fixed to the cover 55, or to another suitable component as desired.
  • the reaction collars 104, 106 do not rotate and do not move linearly in operation, and instead, provide reaction surfaces for axial movement of the actuator plate 102 as it is rotated.
  • the actuator plate 102 may be positively driven in opposed directions between multiple axial positions.
  • the actuator plate is connected to a coupler 1 16 that controls the interconnection of the side shaft 20 with the differential 32. Movement of the actuator plate 102 moves the coupler 116 to control the interaction between the differential 32 and side shaft 20.
  • the coupler may include opposed shoulders 115, 117 engaged by the actuator plate 102 to move the coupler 116 axially, back and forth, as the actuator plate 102 is driven in opposed directions.
  • One shoulder 1 15 may be defined by a retainer 1 19 held on the coupler 1 16 by a clip 121 and the other shoulder 1 17 may be defined by a surface of the coupler 116.
  • Bearings 123 may be provided between the shoulders 1 15, 1 17, and the actuator plate 102 to facilitate relative rotation between the plate 102 and coupler 1 16.
  • the coupler 1 16 may be connected to the outer carrier 80 for co-rotation with the outer carrier, and hence, with the stub shaft 86 and side gear 68.
  • the coupler 1 16 may be selectively coupled to one or both of the inner carrier 82 and the differential case 59 when the coupler 116 is driven by the actuator assembly 100.
  • the coupler 116 is generally annular and includes an axially extending wall 118 and a radially inwardly extending flange 120.
  • One or more direct mechanical engagement regions may be provided between the coupler and adjacent components to selectively couple the components and the coupler.
  • the coupler includes three separate engagement regions with a first region adapted to engage a portion of the outer carrier, a second region adapted to engage a portion of the inner carrier and a third region adapted to engage a portion of the differential case or a component fixed to the differential case.
  • the engagement regions includes splines.
  • One or more splines 122 are provided along an inside surface of the wall 118 to engage complementary splines 124 on the outer carrier 80 to permit relative axial movement of these components as they co-rotate.
  • the flange 120 may include one or more splines 126 arranged to selectively engage complementary splines 128 on the inner carrier 82.
  • the splines 128 on the inner carrier 82 may include a gap 130 in which the splines 126 of the flange 120 may be received in at least one position of the coupler 116 so that the coupler 116 and inner carrier 82 do not rotate together.
  • the wall 118 may include a separate spline region 132 adapted to selectively engage splines 134 on the differential case 59 or on a connector 136 that is carried by or otherwise connected to the differential case 59.
  • the connector 136 includes a generally cylindrical axial portion 138 that overlies and is connected by splines to a portion of the differential case 59 and an annular radial region 140 adjacent to the clutch end plate 84.
  • the radial region 140 includes the splined end 134 located adjacent to the coupler 116.
  • Suitable bearings may be provided adjacent to the connector 136, such as bearing 92 between the connector 136 and the clutch end plate 84, and bearing 144 overlying the axial portion 138 to journal for rotation the connector 136 and the second axle case member 54.
  • the illustrated and described coupler 116, connector 136 and other components may be formed and arranged differently while still performing the same or similar functions.
  • FIGS. 3-5 illustrate different positions of the coupler 116, which provide different operating characteristics for the vehicle.
  • the coupler 116 is in a first position. In the first position, the coupler 116 is engaged with both the inner carrier 82 (via splines 126 and 128) and with the differential case 59, via the connector 136 (and splines 132 and 134).
  • the side shaft 20 is coupled directly to the differential case 50 and this essentially provides a locked differential and the system effectively behaves like it has a solid rear axle, which may be useful or desirable in off-road driving conditions.
  • the inner carrier 82 also is coupled to the outer carrier 80 via splines 122 and 124. The coupler 116 does not engage the clutch 75 in this position and the clutch 75 is not actuated so overheating or other issues that may occur in the clutch do not effect vehicle operation in this position.
  • the coupler 116 is in a second position wherein the coupler 116 engages both the inner and outer carriers 80, 82 via splines 122, 124 and 126, 128, while splines 132 and 134 are not engaged with each other.
  • This couples the side shaft 20 to the side gear 68 in the differential 32, and provides an open differential.
  • This may also be useful or desirable in certain off-road driving conditions as the rear axle is "locked" to the front axle in a manner similar to a vehicle with a transfer case having a locking center differential.
  • the coupler 116 does not engage the clutch 75 in this position, and the clutch 75 is not actuated so overheating or other issues that may occur in the clutch do not effect vehicle operation in this position.
  • the coupler 116 is in a third position wherein the coupler 116 is not coupled to either the inner carrier 82 or the differential case 59. That is, splines 126 are in gap 130 and not engaged with splines 128, and splines 132 and 134 also are not engaged.
  • This position also provides an open differential and in this position, the side shaft 20 is not positively driven.
  • This position may be called the disconnected position because the side shaft is essentially disconnected from the differential and is not positively driven.
  • the front wheels of a four wheel vehicle would be positively driven and the rear wheels would not, providing a front-wheel drive vehicle operating mode.
  • the coupler 116 may also be moved to a fourth position wherein the coupler 116 engages and actuates the clutch 75.
  • the side shaft 20 is coupled to the side gear 68 via the clutch 75.
  • the amount of torque that can be driven to the rear wheels is limited by the operational characteristics of the clutch 75, which characteristics may include, but are not limited to, the thermal capacity of the clutch.
  • the clutch plate pack 76 can overheat, causing the clutch 75 to slip interfering with or preventing operation as an all-wheel drive system. The vehicle would unintentionally become two-wheel drive in this situation.
  • the unavailable all-wheel drive vehicle operation may be a problem in certain situations, such as when operating the vehicle in off-road conditions wherein loss of torque to one or more wheels is undesirable.
  • the coupler 116 can move to, for example, the first position or second position, shown in FIGS. 3 and 4. Choice between the first and second position may be based on whether a locked or open differential is needed or desired. This decision and the attendant movement of the coupler 1 16 could be commanded by an operator of the vehicle, or by an electronic controller using feedback from various vehicle sensors to determine a preferred operating mode. Further, some systems lack a position wherein the differential is locked and open differential operation may be undesirable in certain situations, such as more extreme off-road driving.
  • a brake controller to brake a spinning wheel in order to transfer torque to a non or less spinning wheel can be inefficient in some implementations and limits the amount of effective torque because the torque at the clutch pack is split between the brakes and the non or less spinning wheel.
  • the coupler 116 can be positively moved and positioned in any of the noted positions by the actuator 100, which provides controlled, two-way axial displacement of the coupler 1 16 on command.
  • the system need not rely entirely on a biasing mechanism (e.g. a spring) to provide movement in one direction as a positively driven system can more easily provide feedback that a particular position has been achieved, and can provide more force for engagement of the components in the different coupler positions.
  • the actuator assembly 100 may include a biasing member 150 that drives the actuator plate 102 to one position, to drive the coupler 116 to a corresponding position, should power to the actuator assembly 100 be interrupted or lost (e.g. loss of electrical power to a motor that rotates the actuator plate).
  • a biasing member 150 that drives the actuator plate 102 to one position, to drive the coupler 116 to a corresponding position, should power to the actuator assembly 100 be interrupted or lost (e.g. loss of electrical power to a motor that rotates the actuator plate).
  • one or more biasing members 150 are disposed within pockets 152 defined between opposed stop surfaces 154, 156.
  • One of the stop surfaces 154 is defined on the actuator plate 102 and hence, moves within the pocket 152 when the actuator plate 102 rotates.
  • the other stop surface 156 is defined in an adjacent reaction collar 104 or 106 and hence, is stationary relative to the actuator plate 102. Accordingly, when the actuator plate 102 is rotated, the gap between the two stop surfaces 154, 156 increases or decreases, as shown by comparison of FIGS. 8-10, depending upon the direction of rotation of the actuator plate 102.
  • the springs 150 may be compressed when the actuator plate 102 is rotated in one direction, and allowed to expand when the actuator plate 102 is rotated in the opposite direction.
  • the spring or springs 150 bias the actuator plate 102 to a rotary position wherein the coupler 116 is in its third position and the side shaft 20 is not positively driven for rotation (e.g. by a motor or other actuator instead of by a biasing member or other passive member).
  • the springs 150 are compressed when the actuator plate 102 is rotated to move the coupler 116 to the first position, wherein the differential is locked.
  • the springs 150 will displace the actuator plate 102 to move the coupler 116 from its first position, and in at least some implementations, to the third or disconnected position.
  • the system may also be arranged so that the actuator plate 102 is rotated to the third position if power to the motor is lost when the coupler is in the fourth position in which the clutch 75 is engaged.
  • the system could be configured in other ways and the examples noted herein are intended to be illustrative and not limiting.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Retarders (AREA)
  • Arrangement And Driving Of Transmission Devices (AREA)

Abstract

La présente invention concerne une unité bloc d'entraînement d'essieu de véhicule comprenant un différentiel et un dispositif de distribution de couple. Le différentiel comprend un carter (59) de différentiel et un ensemble engrenage différentiel supporté à l'intérieur du carter de différentiel. Le dispositif de distribution de couple transfère le couple entre l'ensemble engrenage différentiel et un arbre latéral du véhicule, et peut comprendre un embrayage (75) et un ensemble actionneur (100). L'ensemble actionneur comprend un actionneur et un coupleur (116) entraîné par l'actionneur. Le coupleur est déplacé de manière sélective par l'actionneur à une première position dans laquelle l'arbre latéral est désaccouplé du différentiel et n'est pas entraîné de façon active, à une deuxième position dans laquelle l'arbre latéral est couplé à l'ensemble engrenage différentiel, à une troisième position dans laquelle l'arbre latéral est couplé au carter de différentiel, et à une quatrième position dans laquelle le coupleur actionne l'embrayage pour coupler l'arbre latéral à l'ensemble engrenage différentiel.
PCT/US2014/048360 2014-07-28 2014-07-28 Unité bloc d'entraînement d'essieu de véhicule WO2016018203A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/US2014/048360 WO2016018203A1 (fr) 2014-07-28 2014-07-28 Unité bloc d'entraînement d'essieu de véhicule

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2014/048360 WO2016018203A1 (fr) 2014-07-28 2014-07-28 Unité bloc d'entraînement d'essieu de véhicule

Publications (1)

Publication Number Publication Date
WO2016018203A1 true WO2016018203A1 (fr) 2016-02-04

Family

ID=51352815

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2014/048360 WO2016018203A1 (fr) 2014-07-28 2014-07-28 Unité bloc d'entraînement d'essieu de véhicule

Country Status (1)

Country Link
WO (1) WO2016018203A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016221819A1 (de) * 2016-11-08 2018-05-09 Zf Friedrichshafen Ag Getriebeanordnung für ein Fahrzeug und Fahrzeug mit der Getriebeanordnung
DE102018217979A1 (de) * 2018-10-22 2020-04-23 Zf Friedrichshafen Ag Sperrvorrichtung für ein Differenzialgetriebe sowie Differenzialgetriebe mit der Sperrvorrichtung
US11065957B2 (en) 2016-05-25 2021-07-20 Aisin Seiki Kabushiki Kaisha Drive power connecting/disconnecting device
DE102020131899A1 (de) 2020-12-02 2022-06-02 Bayerische Motoren Werke Aktiengesellschaft Achsgetriebeeinrichtung für ein Kraftfahrzeug, Kraftfahrzeug und Betriebsverfahren
DE102022129620A1 (de) 2022-11-09 2024-05-16 Gkn Automotive Limited Differentialanordnung und Elektroantrieb mit einer solchen Differentialanordnung

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5713446A (en) * 1996-08-20 1998-02-03 Eaton Corporation Low inertia ball ramp actuator
US6460677B1 (en) * 2000-11-28 2002-10-08 Spicer Technology, Inc. Dual ball ramp actuator for locking differential
US20030126935A1 (en) * 2001-12-06 2003-07-10 Klaus Matzschker Actuating mechanism for axial setting purposes, having a double function
US20030199359A1 (en) * 2002-03-22 2003-10-23 Adrian Tucker-Peake Differential gear
US20130303326A1 (en) * 2012-05-14 2013-11-14 American Axle & Manufacturing, Inc. Disconnectable Driveline For All-Wheel Drive Vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5713446A (en) * 1996-08-20 1998-02-03 Eaton Corporation Low inertia ball ramp actuator
US6460677B1 (en) * 2000-11-28 2002-10-08 Spicer Technology, Inc. Dual ball ramp actuator for locking differential
US20030126935A1 (en) * 2001-12-06 2003-07-10 Klaus Matzschker Actuating mechanism for axial setting purposes, having a double function
US20030199359A1 (en) * 2002-03-22 2003-10-23 Adrian Tucker-Peake Differential gear
US20130303326A1 (en) * 2012-05-14 2013-11-14 American Axle & Manufacturing, Inc. Disconnectable Driveline For All-Wheel Drive Vehicle

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11065957B2 (en) 2016-05-25 2021-07-20 Aisin Seiki Kabushiki Kaisha Drive power connecting/disconnecting device
DE102016221819A1 (de) * 2016-11-08 2018-05-09 Zf Friedrichshafen Ag Getriebeanordnung für ein Fahrzeug und Fahrzeug mit der Getriebeanordnung
DE102018217979A1 (de) * 2018-10-22 2020-04-23 Zf Friedrichshafen Ag Sperrvorrichtung für ein Differenzialgetriebe sowie Differenzialgetriebe mit der Sperrvorrichtung
DE102020131899A1 (de) 2020-12-02 2022-06-02 Bayerische Motoren Werke Aktiengesellschaft Achsgetriebeeinrichtung für ein Kraftfahrzeug, Kraftfahrzeug und Betriebsverfahren
DE102022129620A1 (de) 2022-11-09 2024-05-16 Gkn Automotive Limited Differentialanordnung und Elektroantrieb mit einer solchen Differentialanordnung

Similar Documents

Publication Publication Date Title
KR102162436B1 (ko) 차량 차동장치 차단 조립체
US6827663B2 (en) Differential gear
US7390278B2 (en) Torque-coupling device for front-wheel-drive transaxle unit
US5839328A (en) Differential having dual modulating clutches
US8597150B1 (en) Disconnectable driveline for all-wheel drive vehicle
US8316738B2 (en) Compact transfer case with beveloid gearset
US10047801B2 (en) Integrated pinion shaft and CV joint assembly for vehicular drivelines
US9784355B1 (en) Axle disconnect and differential lock combination
US8771129B2 (en) Two-mode passive limited slip differential
CN104670011A (zh) 具有密封的滚珠坡道离合器操作装置单元的转矩传递机构
WO2016018203A1 (fr) Unité bloc d'entraînement d'essieu de véhicule
US10197144B2 (en) Drive unit with torque vectoring and an axle disconnect and reconnect mechanism
US7975796B2 (en) Reduced friction differential disconnect for a motor vehicle
JP2019536957A (ja) パワーブーストおよびトルクベクタリングを有する駆動ユニットアセンブリ
EP2440809A1 (fr) Accouplement à cannelures à angle faible pour unités de transmission de puissance
CN113752807A (zh) 具有嵌套轴的电动车辆动力系组件
US9248738B2 (en) Power transfer unit for AWD vehicles having integrated joint assembly
US10406915B2 (en) Rear drive unit clutch assembly
WO2010144304A1 (fr) Unité de transfert de puissance avec arbre de sortie ayant un ensemble raccord intégré
US11148527B2 (en) Bearing assembly including a retaining ring and driveshaft assembly including a retaining ring
EP3657035B1 (fr) Joint et ensemble embrayage
WO2014024042A2 (fr) Dispositif de désolidarisation de différentiel de couple électronique de transmission intégrale
US20190128395A1 (en) Differential Assembly With Bearing Assemblies
CN118003803A (zh) 驱动轴装置和包括所述驱动轴装置的车辆
GB2347470A (en) Active differential with modulating clutches having plates connected to a drive via a bell housing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14750896

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14750896

Country of ref document: EP

Kind code of ref document: A1