WO2016018106A1 - Method for manufacturing inorganic electrolyte membrane having improved compactness, composition for manufacturing inorganic electrolyte membrane, and inorganic electrolyte membrane manufactured using same - Google Patents

Method for manufacturing inorganic electrolyte membrane having improved compactness, composition for manufacturing inorganic electrolyte membrane, and inorganic electrolyte membrane manufactured using same Download PDF

Info

Publication number
WO2016018106A1
WO2016018106A1 PCT/KR2015/008007 KR2015008007W WO2016018106A1 WO 2016018106 A1 WO2016018106 A1 WO 2016018106A1 KR 2015008007 W KR2015008007 W KR 2015008007W WO 2016018106 A1 WO2016018106 A1 WO 2016018106A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte membrane
inorganic
inorganic electrolyte
dispersant
green sheet
Prior art date
Application number
PCT/KR2015/008007
Other languages
French (fr)
Korean (ko)
Inventor
윤기열
신동오
최광욱
최현
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201580031706.7A priority Critical patent/CN106463749B/en
Priority to EP15827823.4A priority patent/EP3142179B1/en
Priority to US15/317,279 priority patent/US10658691B2/en
Priority claimed from KR1020150107779A external-priority patent/KR101809789B1/en
Publication of WO2016018106A1 publication Critical patent/WO2016018106A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for preparing an inorganic electrolyte membrane having improved densities, a composition for preparing an inorganic electrolyte membrane, and an inorganic electrolyte membrane prepared through the same.
  • the inorganic particles may be dispersed in a binder and a solvent, the solution may be formed by using various coating methods, and then the binder may be removed through high temperature baking to obtain an inorganic thin film having excellent density.
  • the density of the inorganic thin film is determined according to the dispersion degree of the inorganic particles and the content of the binder.
  • the temperature to be fired may be adjusted according to the size of the primary particles of the inorganic particles. For example, when inorganic particles are used in nano-sized particles, there is an advantage that the firing temperature can be lowered.
  • a solid oxide fuel cell may be used as a field that may be applied using the above method.
  • Fuel cell is a device that converts chemical energy of fuel directly into electrical energy through electrochemical reaction, and has the advantage of reducing fuel consumption and greenhouse gas emission because it has higher energy conversion efficiency than general heat engine.
  • the solid oxide fuel cell system uses an inorganic electrolyte membrane having high ion conductivity at high temperature.
  • inorganic electrolyte of SOFC it is difficult to manufacture and maintain the stack of fuel cell with high ion conductivity at high driving temperature (800 ⁇ 1,000 °C).
  • Ceria (CeO2) -based materials have relatively higher ionic conductivity than zirconia (ZrO2) electrolytes used in existing SOFCs. Therefore, much research has been conducted as alternative materials for solid electrolytes in medium and low temperature solid oxide fuel cells. have.
  • Y2O3 yttria
  • the high ion conduction characteristics can reduce the operating temperature, which can increase the long-term life of the stack and increase the flexibility of material selection of the entire system. It has many advantages both in terms of cost and economics.
  • the present invention uses dense and high ion conductivity using Gadolinium doped Ceria (hereinafter referred to as GDC). It is an object to provide a method for producing an inorganic electrolyte membrane having a.
  • the present invention (a) primary inorganic particles (primary particle: ⁇ 50nm), a dispersant, a solvent, and then mixed by dispersing the primary inorganic particles using a hydrodynamic diameter (DLS (dynamic light scattering) of 120 to 230nm) Preparing a dispersion of secondary inorganic particles having secondary particles; (b) adding and mixing a binder with the secondary inorganic particle dispersion; (c) coating a mixed solution of the secondary inorganic particle dispersion and a binder, followed by drying to prepare a green sheet; And (d) calcining the green sheet to form an electrolyte membrane.
  • the present invention is the primary inorganic particles (primary particle: ⁇ 50nm) is dispersed, the dispersion liquid of secondary inorganic particles (secondary particles) having a hydrodynamic diameter (dynamic dynamic scattering) using 120 to 230nm DLS (dynamic light scattering) and It provides a composition for preparing an inorganic electrolyte membrane comprising a binder.
  • the present invention also provides a green sheet prepared by coating and drying the composition for preparing an inorganic electrolyte membrane.
  • the present invention provides an inorganic electrolyte membrane prepared by firing the green sheet.
  • the present invention also provides a solid oxide fuel cell including an inorganic electrolyte membrane.
  • the energy required to disperse the inorganic particles is reduced, and the inorganic electrolyte membrane layer having excellent density and high density can be formed to prevent energization of the air layer and the fuel layer, and to prevent nonuniformity and cracking phenomenon.
  • Cell has the advantage of improving the reproducibility during manufacturing.
  • 1 is a photograph taken with an electron microscope of the surface of the inorganic electrolyte membrane according to an embodiment of the present invention.
  • FIG. 3 is a photograph taken with an electron microscope of the surface of the inorganic electrolyte membrane according to another comparative example of the present invention.
  • an inorganic electrolyte membrane of the present invention In the method of preparing an inorganic electrolyte membrane of the present invention, (a) primary inorganic particles ( ⁇ 50 nm), a dispersant and a solvent are mixed, and then the primary inorganic particles are dispersed to obtain DLS (dynamic light scattering) of 120 to 230 nm. Preparing a dispersion of secondary inorganic particles having a used hydrodynamic diameter; (b) adding and mixing a binder with the secondary inorganic particle dispersion; (c) coating a mixed solution of the secondary inorganic particle dispersion and a binder, followed by drying to prepare a green sheet; And (d) baking the green sheet to form an electrolyte membrane.
  • DLS dynamic light scattering
  • the inorganic electrolyte production method of the present invention it is possible to provide an inorganic electrolyte membrane which can form an inorganic electrolyte membrane layer having excellent densities and high densities, thereby preventing nonuniformity and cracking.
  • the density refers to the ratio (porosity of less than 2%) of the real tissue in the inorganic membrane, which can be obtained by various methods, for example, it is preferable to measure by using the Archimedes density measurement method, It is not necessarily limited thereto.
  • the present invention (a) primary inorganic particles (primary particle: ⁇ 50nm), a dispersant, a solvent, and then dispersed by dispersing the primary inorganic particles using a hydrodynamic diameter (DLS) of 120 to 230nm (dynamic light scattering) preparing a dispersion of secondary inorganic particles having a hydrodynamic diameter.
  • primary inorganic particles primary particle: ⁇ 50nm
  • dispersant a solvent
  • the dispersant may use a cationic dispersant, preferably an acrylate copolymer or a polyurethane-based dispersant.
  • the dispersant may include 9 parts by weight based on SOP (Solids on pigment) based on 100 parts by weight of the inorganic particles, 12 or 15 parts by weight, preferably 10 to 20 parts by weight based on 100 parts by weight of the inorganic particles. It may be included as a wealth, but is not necessarily limited thereto.
  • the amount of the dispersant is less than 10 parts by weight based on 100 parts by weight of the inorganic particles, there is a problem that a dispersion layer of less than 10 nm is formed on the surface of the secondary inorganic particles, thereby making it difficult to disperse substantially. It can be a problem due to the effect of stress.
  • the primary inorganic particles are composed of GDC (Gadolium dopoed ceria), LDC (lanthanumlanthan ceria), LSGM (strontium and magnesium dopoed lanthanum gallate), YSZ (Yittrium doped zirconia) and ScSZr (Sc-stabilized zirconia) Any one or more selected from the group may be used, and preferably, gadolinium doped ceria (GDC) may be used.
  • GDC gadolinium doped ceria
  • the GDC was formed in a secondary structure, and the primary inorganic particles introduced before dispersion were those having a particle size of 50 nm or less, and the particle size was measured by a microscopic microscope such as TEM or SEM.
  • the solvent is composed of Alcohol, Propylene Glycol Methyl Ether (PGME), Propylene Glycol Methyl Ethyl Acetate (PGMEA), Methyl Ethyl Ketone (MEK), Methyl isobutyl ketone (MIBK), Toluene, Terpineol, DMF, and DMSO Any one or more selected from the group can be used.
  • the solvent is preferably included in 50 to 90 parts by weight based on 100 parts by weight of inorganic particles.
  • the primary inorganic particles (primary particle: ⁇ 50nm), a dispersant, a solvent is mixed and then dispersed, hydrodynamic diameter (Dy dynamic) using dynamic light scattering (DLS) of 120 to 230nm
  • DLS dynamic light scattering
  • the hydrodynamic diameter may be defined as a diameter obtained when converting the ratio of the area of the pipe and the circumference wetted by the fluid in a pipe having a non-circular cross section into a circle, and the dynamic light scattering analysis method ( dynamic light scattering (DLS).
  • DLS dynamic light scattering
  • the dispersion method may be a high pressure homogenizer, bead mills, bead shaking, ball mills, and the like, which are dispersible by shear force. Can be distributed by bead shaking.
  • the hydrodynamic diameter of the secondary inorganic particles in the dispersion may be 120 to 230 nm, preferably 150 to 230 nm, more preferably 180 to 230 nm.
  • the present invention includes the step of mixing by adding a binder to the secondary inorganic particle dispersion (b).
  • the binder is used as a binder with inorganic particles, and is used to maintain sheet form and to secure processability for film formation. In addition, as in Solvent, it is required to bind in as little amount as possible to impart adhesion and have easy processability.
  • the binder used in the present invention there are acrylate-based, urethane-based, and cellulose-based binders, which are polymers that can be removed at 500 ° C. or lower, and preferably an acrylate-based compound can be used.
  • the binder may be included in an amount of 2.5 to 5 parts by weight based on 100 parts by weight of the secondary inorganic particle dispersion, but is not limited thereto.
  • a plasticizer may be further added as necessary.
  • the plasticizer is not particularly limited as long as it is commonly used in the art.
  • step b) may be a high pressure homogenizer, bead mills, bead shaking, ball mills, etc., which are dispersible by shear force. Preferably, it may be dispersed by bead shaking.
  • the present invention includes (c) coating the mixed solution of the inorganic particle dispersion and the binder, followed by drying to prepare a green sheet.
  • Coating of the mixed solution of the dispersion and the binder may be a comma coating, blade coating, DIE coating, LIP coating method, it is preferable to produce a green sheet by a comma coating. It is preferable to dry after coating for 10 minutes or more.
  • the green chic dried as described above may have a surface roughness of 0.8 ⁇ m or less as a Ra value of the centerline average roughness.
  • the green seek dried as described above may have a gloss of 10GU (60 °) or more, or 20GU (85 °) or more.
  • the present invention includes the step of (d) firing the green sheet to form an electrolyte membrane.
  • the firing is preferably carried out for at least 1 hour at a temperature of 1300 to 1600 °C.
  • the present invention is the primary inorganic particles (primary particle: ⁇ 50nm) is dispersed, the dispersion liquid of secondary inorganic particles (secondary particles) having a hydrodynamic diameter (dynamic dynamic scattering) using 120 to 230nm DLS (dynamic light scattering) and It provides a composition for preparing an inorganic electrolyte membrane comprising a binder.
  • the dispersant may use a cationic dispersant, preferably an acrylate copolymer or a polyurethane-based dispersant.
  • the dispersant may include 9 parts by weight based on SOP (Solids on pigment) based on 100 parts by weight of the inorganic particles, 12 or 15 parts by weight, preferably 10 to 20 parts by weight based on 100 parts by weight of the inorganic particles. It may be included as a wealth, but is not necessarily limited thereto.
  • the amount of the dispersant is less than 10 parts by weight based on 100 parts by weight of the inorganic particles, there is a problem that a dispersion layer of less than 10 nm is formed on the surface of the secondary inorganic particles, thereby making it difficult to disperse substantially. It can be a problem due to the effect of stress.
  • the primary inorganic particles are GDC (Gadolium dopoed ceria), LDC (lanthanumlanthan ceria), LSGM (strontium and magnesium dopoed lanthanum
  • GDC gallate
  • YSZ Yittrium doped zirconia
  • ScSZr Sc-stabilized zirconia
  • the GDC was formed in a secondary structure, and the primary inorganic particles introduced before dispersion were those having a particle size of 50 nm or less, and the particle size was measured by a microscopic microscope such as TEM or SEM.
  • the solvent is composed of Alcohol, Propylene Glycol Methyl Ether (PGME), Propylene Glycol Methyl Ethyl Acetate (PGMEA), Methyl Ethyl Ketone (MEK), Methyl isobutyl ketone (MIBK), Toluene, Terpineol, DMF, and DMSO Any one or more selected from the group can be used.
  • the solvent is preferably included in 50 to 90 parts by weight based on 100 parts by weight of inorganic particles.
  • the binder is used as a binder with the inorganic particles, and is intended to maintain sheet form and ensure processability for film formation.
  • Solvent it is required to bind in as little amount as possible to impart adhesion and have easy processability.
  • the binder used in the present invention there are acrylate-based, urethane-based, and cellulose-based binders, which are polymers that can be removed at 500 ° C. or lower, and preferably an acrylate-based compound can be used.
  • the binder may be included in an amount of 2.5 to 5 parts by weight based on 100 parts by weight of the secondary inorganic particle dispersion, but is not limited thereto.
  • the present invention provides a green sheet prepared by coating and drying the composition for preparing the inorganic electrolyte membrane.
  • the green sheet may be prepared by coating the composition for preparing the inorganic electrolyte membrane, and the coating may be a comma coating, a blade coating, a DIE coating, a LIP coating method, and preferably a comma coating. It is preferable to dry after coating for 10 minutes or more.
  • the green chic dried as described above may have a surface roughness of 0.8 ⁇ m or less as a Ra value of the centerline average roughness.
  • the green seek dried as described above may have a gloss of 10GU (60 °) or more, or 20GU (85 °) or more.
  • the present invention provides an inorganic electrolyte membrane prepared by firing the green sheet.
  • Firing of the green sheet can be used without particular limitation as long as it is a conventional method used in the art.
  • the present invention provides a solid oxide fuel cell including the inorganic electrolyte membrane.
  • GDC Powder Rhodia, UHSA grade, primary particle size: ⁇ 30nm
  • dispersant BYK-112, Solid contents: 60) per 100 parts by weight of inorganic particles %)
  • 2.1g (20 based on SOP) was mixed with 4.2g of Toluene, and then Ball (3 mm ZrO2) was placed in a container, followed by dispersion for 24 and 72 hours.
  • Binder SOKEN, LRRS001
  • a plasticizer Aldrich, Dibutyl phthalate (DBP)
  • SOP 20 100 g
  • dispersant BYK-112, Solid contents: 60%
  • BYK-112 Solid contents: 60%
  • the completed slurry was confirmed dispersibility by particle size measurement using DLS.
  • Binder SOKEN, LRRS001
  • plasticizer Aldrich, Dibutyl phthalate (DBP)
  • the dispersions prepared in Comparative Examples and Examples were measured for secondary particle size (hydrodynamic diameter size) using dynamic light scattering (DLS) before adding binder and plasticizer.
  • DLS dynamic light scattering
  • the size was measured from the dispersion obtained in the above example, which is shown in Table 1.
  • the dispersion prepared in Examples is reduced in size with increasing amount of dispersant. It can be seen that the steric stabilization resulting from the dispersant reduces the size of the particles of GDC and improves dispersibility.
  • Comparative Example 4 of Table 1 a dispersion having a particle size of 210 nm or less could be prepared according to the dispersion method, but in this case, the dispersibility was excessively high, which acted as a high stress on the cell during firing, resulting in poor stability. The problem of breaking a cell may occur.
  • the dispersions prepared in Comparative Examples and Examples were coated on a PET double-sided film, coated with a film casting equipment to a thickness of 10 ⁇ m, and the solvent was evaporated at a temperature of 80 degrees to prepare a coated film in a dried state. Gloss was measured using a glossmeter (BYK-Gardner, AG-4446).
  • the dispersion prepared in Examples may change in glossiness as the dispersant is added. It can be seen that the steric stabilization resulting from the dispersant reduces the size of the particles of GDC and improves dispersibility.
  • the coated film was then measured using an optical profiler meter.
  • the roughness of the surface was measured from the film coated with the dispersion obtained in the above example, which is shown in Table 3.
  • the dispersion prepared in Example can be seen that the roughness of the surface is low as the dispersant is added. It can be seen that the steric stabilization resulting from the dispersant reduces the size of the particles of GDC and improves dispersibility.
  • FIGS. 1 to 3 Observation of the cross-section and the surface of the module of the prepared electrolyte membrane with an electron microscope (Hitachi, TM-1000) is shown in FIGS. 1 to 3, respectively.
  • both a high density and a wide domain size can be confirmed through the surface photograph, as shown in FIG.
  • the electrolyte layer of Comparative Example 2 may observe nonuniformity and cracking caused by deterioration of particle dispersibility.
  • Comparative Example 3 was observed after the low-temperature firing (1400 °C), uniformity as shown in Figure 3 fall and cracks. This confirmed the same aspect as the sample of FIG.
  • the sample of Comparative Example 4 confirmed the excellent dispersibility by using a bead mill, but it was confirmed that the cell breaks as the stress increases in the cell due to too high dispersibility after firing.
  • the production of the cell is a cathode (Lanthanum strontium cobalt ferrite (LSCF) Cathode, LG chem.), The cathode [(NiO, ⁇ 200 nm, JT Baker), carbon black (N990, Columbian), GDC (ULSA, Rhodia) )] And the electrolyte membrane prepared in Experimental Example 4 were used.
  • LSCF Longum strontium cobalt ferrite
  • the output of the prepared cell was measured at 600 ° C. and is shown in Table 4 below.
  • the cell manufactured using the electrolyte membrane of Example 1 it was found that the open circuit voltage (OCV) was 1.099 V and the Max PD was 1.480 W / cm 2 .
  • the cell manufactured using the electrolyte membrane of Comparative Example 1 had an OCV of 1.095 V and a Max PD of 1.291 W / cm 2 , indicating that the cell performance was lower than that of Example 1. Therefore, when using the battery using the electrolyte membrane prepared according to the present invention, it was found that there is an advantage that the cell performance such as Max PD is significantly increased.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Fuel Cell (AREA)

Abstract

The present invention relates to a method for manufacturing an inorganic electrolyte membrane and a composition for manufacturing the inorganic electrolyte membrane, the method comprising: (a) a step for mixing primary inorganic particles (having a size of < 50 nm), a dispersant and a solvent and dispersing the primary particles to manufacture a dispersion of secondary inorganic particles having a hydrodynamic diameter using dynamic lighting scattering (DLS) of 120 to 230 nm; (b) a step for adding a binder to the particle dispersion to be mixed; (c) a step for coating and drying the mixed solution of the particle dispersion and the binder to manufacture a green sheet; and (d) a step for firing the green sheet to form an electrolyte membrane.

Description

치밀도가 향상된 무기 전해질막의 제조방법, 이를 위한 무기 전해질막 제조용 조성물 및 이를 통해 제조된 무기 전해질막Preparation method of inorganic electrolyte membrane with improved density, composition for preparing inorganic electrolyte membrane and inorganic electrolyte membrane prepared through the same
본 발명은 치밀도가 향상된 무기 전해질막의 제조방법, 이를 위한 무기 전해질막 제조용 조성물 및 이를 통해 제조된 무기 전해질막에 관한 것이다.The present invention relates to a method for preparing an inorganic electrolyte membrane having improved densities, a composition for preparing an inorganic electrolyte membrane, and an inorganic electrolyte membrane prepared through the same.
박막의 무기물층을 형성하는 방법으로 무기물 입자를 사용하는 방법들이 제안되고 있다. 예를 들어 무기 입자를 바인더와 용매에 분산하고 상기 용액을 다양한 코팅법을 이용하여 박막을 형성한 후, 고온 소성을 통하여 바인더를 제거하여 치밀도가 우수한 무기박막을 얻을 수 있다. 상기 방법을 이용함에 있어 무기입자의 분산 정도와 바인더의 함량에 따라 무기박막의 치밀도가 정해지게 된다. 또한 무기입자의 일차입자의 크기에 따라 소성되는 온도를 조절할 수도 있다. 예를 들어 무기입자를 나노크기의 입자를 사용하는 경우 소성 온도를 낮출 수 있다는 장점이 있다.Methods of using inorganic particles as a method of forming the inorganic layer of the thin film have been proposed. For example, the inorganic particles may be dispersed in a binder and a solvent, the solution may be formed by using various coating methods, and then the binder may be removed through high temperature baking to obtain an inorganic thin film having excellent density. In using the method, the density of the inorganic thin film is determined according to the dispersion degree of the inorganic particles and the content of the binder. In addition, the temperature to be fired may be adjusted according to the size of the primary particles of the inorganic particles. For example, when inorganic particles are used in nano-sized particles, there is an advantage that the firing temperature can be lowered.
상기의 방법을 이용하여 적용될 수 있는 분야로 고체 산화물 연료전지(Solid Oxide Fuel Cell, SOFC)를 들 수 있다.A solid oxide fuel cell (SOFC) may be used as a field that may be applied using the above method.
연료전지는 전기화학반응을 통하여 연료의 화학 에너지를 전기 에너지로 직접 변환시키는 장치로서 일반적인 열기관에 비하여 높은 에너지 변환 효율이 가지고 있기 때문에 연료 소비와 온실가스 배출을 감소 시킬 수 있는 장점을 가지고 있다. 연료전지 중에서도 고체 산화물연료전지 방식은 고온에서 이온전도도가 높은 무기 전해질막을 사용한다. 현재 세계적으로 SOFC에 대한 연구 개발을 지속적으로 추진한 결과, 현재 가장 진보된 형태의 경우 100kW급 발전 시스템의 실증 시험 단계에 이르러 있으며, 다른 종류의 SOFC도 체계적인 연구 개발이 수행되고 있다. 하지만 SOFC의 무기전해질의 경우, 높은 구동온도(800~1,000℃)에서 높은 이온 전도성을 가지고 연료전지의 스택을 제작하고, 유지하는데 많은 어려움이 따른다. 따라서 연료전지의 제작 및 운전비용의 절감을 위해서 구동온도가 낮은 중·저온(600~800℃)에서 우수한 이온 전도성을 보이는 전해질 물질 개발이 필요하다. 세리아(ceria, CeO2)계 소재는 기존 SOFC에 사용되는 지르코니아(zirconia, ZrO2) 전해질보다 상대적으로 높은 이온 전도성을 띠고 있어 중·저온형 고체산화물 연료전지의 고체 전해질의 대체 재료로 많은 연구가 이루어지고 있다. 또한 기존의 이트리아(yttria, Y2O3)계 소재와 비교해서도, 높은 이온 전도 특성을 보이므로 작동온도를 낮출 수 있으며 이로 인한 스택의 장기수명 증가 효과 및 전체 시스템의 소재선택의 유연성 증대 효과를 기대할 수 있고 경제적 면에서도 많은 이점을 가진다.Fuel cell is a device that converts chemical energy of fuel directly into electrical energy through electrochemical reaction, and has the advantage of reducing fuel consumption and greenhouse gas emission because it has higher energy conversion efficiency than general heat engine. Among the fuel cells, the solid oxide fuel cell system uses an inorganic electrolyte membrane having high ion conductivity at high temperature. As a result of the continuous research and development of SOFC in the world, the most advanced type is now at the stage of demonstration test of the 100kW power generation system, and other types of SOFC are being systematically researched and developed. However, in the case of inorganic electrolyte of SOFC, it is difficult to manufacture and maintain the stack of fuel cell with high ion conductivity at high driving temperature (800 ~ 1,000 ℃). Therefore, in order to reduce fuel cell manufacturing and operation costs, it is necessary to develop an electrolyte material that exhibits excellent ion conductivity at low and medium temperatures (600 to 800 ° C.) at low operating temperatures. Ceria (CeO2) -based materials have relatively higher ionic conductivity than zirconia (ZrO2) electrolytes used in existing SOFCs. Therefore, much research has been conducted as alternative materials for solid electrolytes in medium and low temperature solid oxide fuel cells. have. In addition, compared to the existing yttria (Y2O3) materials, the high ion conduction characteristics can reduce the operating temperature, which can increase the long-term life of the stack and increase the flexibility of material selection of the entire system. It has many advantages both in terms of cost and economics.
본 발명은 650℃∼700℃의 중온에서 높은 효율로 구동할 수 있는 고체 산화물 연료전지(Solid Oxide Fuel Cell, SOFC)를 개발하기 위하여, Gadolinium doped Ceria(이하 GDC)를 이용하여 치밀하고 높은 이온 전도도를 갖는 무기 전해질막의 제조방법을 제공하는 것을 목적으로 한다.In order to develop a solid oxide fuel cell (SOFC) capable of driving at high temperatures at a medium temperature of 650 ° C to 700 ° C, the present invention uses dense and high ion conductivity using Gadolinium doped Ceria (hereinafter referred to as GDC). It is an object to provide a method for producing an inorganic electrolyte membrane having a.
상기의 목적을 달성하기 위하여, In order to achieve the above object,
본 발명은 (a) 일차무기입자(primary particle: <50nm), 분산제, 용매를 혼합한 후, 상기 일차무기입자를 분산하여 120 내지 230nm의 DLS(dynamic light scattering)를 이용한 수력학적 지름(hydrodynamic diameter)을 갖는 이차무기입자(secondary particle)의 분산액을 제조하는 단계; (b) 상기 이차무기입자 분산액에 바인더를 첨가하여 혼합하는 단계; (c) 상기 이차무기입자 분산액과 바인더의 혼합용액을 코팅한 후, 건조하여 그린시트(Green Sheet)를 제조하는 단계; 및 (d) 상기 그린시트를 소성하여 전해질막을 형성하는 단계를 포함하는 무기 전해질막의 제조방법을 제공한다. The present invention (a) primary inorganic particles (primary particle: <50nm), a dispersant, a solvent, and then mixed by dispersing the primary inorganic particles using a hydrodynamic diameter (DLS (dynamic light scattering) of 120 to 230nm) Preparing a dispersion of secondary inorganic particles having secondary particles; (b) adding and mixing a binder with the secondary inorganic particle dispersion; (c) coating a mixed solution of the secondary inorganic particle dispersion and a binder, followed by drying to prepare a green sheet; And (d) calcining the green sheet to form an electrolyte membrane.
또한, 본 발명은 일차무기입자(primary particle: <50nm)가 분산되어, 120 내지 230nm의 DLS(dynamic light scattering)를 이용한 수력학적 지름(hydrodynamic diameter)을 갖는 이차무기입자 (secondary particle)의 분산액 및 바인더를 포함하는 무기 전해질막 제조용 조성물을 제공한다.In addition, the present invention is the primary inorganic particles (primary particle: <50nm) is dispersed, the dispersion liquid of secondary inorganic particles (secondary particles) having a hydrodynamic diameter (dynamic dynamic scattering) using 120 to 230nm DLS (dynamic light scattering) and It provides a composition for preparing an inorganic electrolyte membrane comprising a binder.
또한, 본 발명은 무기 전해질막 제조용 조성물을 코팅 및 건조하여 제조된 그린시트를 제공한다.The present invention also provides a green sheet prepared by coating and drying the composition for preparing an inorganic electrolyte membrane.
또한, 본 발명은 상기 그린시트를 소성하여 제조된 무기 전해질막을 제공한다.In addition, the present invention provides an inorganic electrolyte membrane prepared by firing the green sheet.
또한, 본 발명은 무기 전해질막을 포함하는 고체산화물 연료전지를 제공한다. The present invention also provides a solid oxide fuel cell including an inorganic electrolyte membrane.
본 발명의 무기 전해질막의 제조방법에 따르면, According to the method for producing an inorganic electrolyte membrane of the present invention,
무기입자의 분산에 소요되는 에너지가 감소하고, 우수한 치밀도 및 높은 밀도를 가진 무기 전해질막층을 형성하여, 공기층과 연료층의 통전을 방지할 수 있으며, 불균일성 및 갈라짐 현상을 방지할 수 있어 셀(Cell) 제조시 재현성을 높일 수 있다는 장점이 있다. The energy required to disperse the inorganic particles is reduced, and the inorganic electrolyte membrane layer having excellent density and high density can be formed to prevent energization of the air layer and the fuel layer, and to prevent nonuniformity and cracking phenomenon. Cell) has the advantage of improving the reproducibility during manufacturing.
도 1은 본 발명의 일 실시예에 따른 무기 전해질막의 표면을 전자현미경으로 촬영한 사진이다.1 is a photograph taken with an electron microscope of the surface of the inorganic electrolyte membrane according to an embodiment of the present invention.
도 2는 본 발명의 일 비교예에 따른 무기 전해질막의 표면을 전자현미경으로 촬영한 사진이다.2 is a photograph taken with an electron microscope of the surface of the inorganic electrolyte membrane according to a comparative example of the present invention.
도 3은 본 발명의 또 다른 비교예에 따른 무기 전해질막의 표면을 전자현미경으로 촬영한 사진이다. 3 is a photograph taken with an electron microscope of the surface of the inorganic electrolyte membrane according to another comparative example of the present invention.
이하 본 발명의 무기 전해질막 및 이의 제조방법에 대하여 상세하게 설명한다.Hereinafter, the inorganic electrolyte membrane of the present invention and a manufacturing method thereof will be described in detail.
본 발명의 무기 전해질막 제조방법은, (a) 일차무기입자(primary particle: <50nm), 분산제, 용매를 혼합한 후, 상기 일차무기입자를 분산하여 120 내지 230nm의 DLS(dynamic light scattering)를 이용한 수력학적 지름(hydrodynamic diameter)을 갖는 이차무기입자(secondary particle)의 분산액을 제조하는 단계; (b) 상기 이차무기입자 분산액에 바인더를 첨가하여 혼합하는 단계; (c) 상기 이차무기입자 분산액과 바인더의 혼합용액을 코팅한 후, 건조하여 그린시트(Green Sheet)를 제조하는 단계; 및 (d) 상기 그린시트를 소성하여 전해질막을 형성하는 단계를 포함한다.In the method of preparing an inorganic electrolyte membrane of the present invention, (a) primary inorganic particles (<50 nm), a dispersant and a solvent are mixed, and then the primary inorganic particles are dispersed to obtain DLS (dynamic light scattering) of 120 to 230 nm. Preparing a dispersion of secondary inorganic particles having a used hydrodynamic diameter; (b) adding and mixing a binder with the secondary inorganic particle dispersion; (c) coating a mixed solution of the secondary inorganic particle dispersion and a binder, followed by drying to prepare a green sheet; And (d) baking the green sheet to form an electrolyte membrane.
본 발명의 무기 전해질 제조방법에 의하면, 우수한 치밀도 및 높은 밀도를 가진 무기 전해질막층을 형성하여, 불균일성 및 갈라짐 현상을 방지할 수 있는 무기 전해질막을 제공할 수 있다. 여기서 치밀도라 함은 무기질막에서 실질조직이 차지하는 비율(2% 이하의 기공도)을 의미하는 것으로서, 여러 가지 방법으로 구할 수 있으며, 그 일예로 Archimedes 밀도 측정방법을 이용하여 측정하는 것이 바람직하나, 반드시 이에 한정되는 것은 아니다.According to the inorganic electrolyte production method of the present invention, it is possible to provide an inorganic electrolyte membrane which can form an inorganic electrolyte membrane layer having excellent densities and high densities, thereby preventing nonuniformity and cracking. Here, the density refers to the ratio (porosity of less than 2%) of the real tissue in the inorganic membrane, which can be obtained by various methods, for example, it is preferable to measure by using the Archimedes density measurement method, It is not necessarily limited thereto.
먼저, 본 발명은 (a) 일차무기입자(primary particle: <50nm), 분산제, 용매를 혼합한 후, 상기 일차무기입자를 분산하여 120 내지 230nm의 DLS(dynamic light scattering)를 이용한 수력학적 지름(hydrodynamic diameter)을 갖는 이차무기입자(secondary particle)의 분산액을 제조하는 단계를 포함한다.First, the present invention (a) primary inorganic particles (primary particle: <50nm), a dispersant, a solvent, and then dispersed by dispersing the primary inorganic particles using a hydrodynamic diameter (DLS) of 120 to 230nm (dynamic light scattering) preparing a dispersion of secondary inorganic particles having a hydrodynamic diameter.
먼저, 본 발명에 있어서, 상기 분산제는 양이온계 분산제를 사용할 수 있으며, 바람직하게는 아크릴레이트 공중합체 또는 폴리우레탄 계열의 분산제를 사용할 수 있다. 상기 분산제는 SOP(Solids on pigment) 기준으로 상기 무기입자 100 중량부에 대하여 9 중량부가 포함될 수도 있고, 12 또는 15 중량부로 포함될 수도 있으나, 바람직하게는 상기 무기입자 100 중량부에 대하여 10 내지 20 중량부로 포함될 수도 있고, 반드시 이에 한정되는 것은 아니다. 상기 분산제의 포함량이 무기입자 100 중량부에 대하여 10 중량부 미만이면 이차무기입자의 표면에 10nm 미만의 분산제층이 형성되어 실질적으로 분산이 어려워지는 문제점이 있고, 20 중량부 초과이면 소결과정에 스트레스(stress)에 의한 영향을 미쳐 문제가 될 수 있다. First, in the present invention, the dispersant may use a cationic dispersant, preferably an acrylate copolymer or a polyurethane-based dispersant. The dispersant may include 9 parts by weight based on SOP (Solids on pigment) based on 100 parts by weight of the inorganic particles, 12 or 15 parts by weight, preferably 10 to 20 parts by weight based on 100 parts by weight of the inorganic particles. It may be included as a wealth, but is not necessarily limited thereto. If the amount of the dispersant is less than 10 parts by weight based on 100 parts by weight of the inorganic particles, there is a problem that a dispersion layer of less than 10 nm is formed on the surface of the secondary inorganic particles, thereby making it difficult to disperse substantially. It can be a problem due to the effect of stress.
본 발명에 있어서, 상기 일차무기입자로는 GDC(Gadolium dopoed ceria), LDC(lanthanumlanthan ceria), LSGM(strontium and magnesium dopoed lanthanum gallate), YSZ(Yittrium doped zirconia) 및 ScSZr(Sc-stabilized zirconia) 로 이루어진 군에서 선택되는 어느 하나 이상을 사용할 수 있으며, 바람직하게는 GDC (gadolinium doped ceria)를 사용할 수 있다. 상기 GDC는 이차구조로 형성되었으며, 최초 투입되는 분산 전의 일차무기입자는 50nm 이하의 입자크기를 갖는 것으로, 상기 입자크기는 TEM이나 SEM과 같은 마이크로현미경으로 측정한 값이다. In the present invention, the primary inorganic particles are composed of GDC (Gadolium dopoed ceria), LDC (lanthanumlanthan ceria), LSGM (strontium and magnesium dopoed lanthanum gallate), YSZ (Yittrium doped zirconia) and ScSZr (Sc-stabilized zirconia) Any one or more selected from the group may be used, and preferably, gadolinium doped ceria (GDC) may be used. The GDC was formed in a secondary structure, and the primary inorganic particles introduced before dispersion were those having a particle size of 50 nm or less, and the particle size was measured by a microscopic microscope such as TEM or SEM.
본 발명에 있어서, 상기 용매는 Alcohol, PGME(Propylene Glycol Methyl Ether), PGMEA(Propylene Glycol Methyl Ethyl Acetate), MEK(Methyl Ethyl Ketone), MIBK(methyl isobutyl ketone), Toluene, Terpineol, DMF 및 DMSO 로 이루어지는 군에서 선택되는 어느 하나 이상인 것을 사용할 수 있다. 상기 용매는 무기입자 100 중량부에 대하여 50 내지 90 중량부로 포함되는 것이 바람직하다.In the present invention, the solvent is composed of Alcohol, Propylene Glycol Methyl Ether (PGME), Propylene Glycol Methyl Ethyl Acetate (PGMEA), Methyl Ethyl Ketone (MEK), Methyl isobutyl ketone (MIBK), Toluene, Terpineol, DMF, and DMSO Any one or more selected from the group can be used. The solvent is preferably included in 50 to 90 parts by weight based on 100 parts by weight of inorganic particles.
상기 a) 단계에서, 상기 일차무기입자(primary particle: <50nm), 분산제, 용매를 혼합한 후, 이를 분산하여, 120 내지 230nm의 DLS(dynamic light scattering)를 이용한 수력학적 지름(hydrodynamic diameter)을 갖는 이차무기입자(secondary particle)의 분산액을 제조한다. 본 발명에 있어서, 일차무기입자 및 이차무기입자의 크기가 상기 범위를 만족할 때, 높은 치밀도의 무기입자를 갖는 전해질막을 제조할 수 있다.In the step a), the primary inorganic particles (primary particle: <50nm), a dispersant, a solvent is mixed and then dispersed, hydrodynamic diameter (Dy dynamic) using dynamic light scattering (DLS) of 120 to 230nm A dispersion of secondary inorganic particles having is prepared. In the present invention, when the sizes of the primary inorganic particles and the secondary inorganic particles satisfy the above range, an electrolyte membrane having high density inorganic particles can be produced.
상기 수력학적 지름(hydrodynamic diameter)이라 함은, 원이 아닌 단면을 가지는 배관에서 유체에 의해 젖게 되는 둘레와 실제 배관의 면적의 비율을 원으로 환산 시 얻어지는 지름으로 정의될 수 있으며, 동적광산란분석법 (dynamic light scattering, DLS)를 이용하여 측정할 수 있다.The hydrodynamic diameter may be defined as a diameter obtained when converting the ratio of the area of the pipe and the circumference wetted by the fluid in a pipe having a non-circular cross section into a circle, and the dynamic light scattering analysis method ( dynamic light scattering (DLS).
상기 분산의 방법은 shear force로 분산 가능한 방법인 고압 호모지나이져 (high pressure homogenizer), 비드 밀링 (bead mills), 비드 쉐이킹 (Bead Shaking), 볼 밀링 (ball mills) 등을 사용할 수 있으며, 바람직하게는 비드 쉐이킹(Bead Shaking)으로 분산할 수 있다. The dispersion method may be a high pressure homogenizer, bead mills, bead shaking, ball mills, and the like, which are dispersible by shear force. Can be distributed by bead shaking.
상기 분산에 의하여, 상기 분산액 중의 이차무기입자(secondary particle)의 수력학적 지름(hydrodynamic diameter)이 120 내지 230nm, 바람직하게는 150 내지 230nm, 더욱 바람직하게는 180 내지 230nm이 될 수 있다.By the dispersion, the hydrodynamic diameter of the secondary inorganic particles in the dispersion may be 120 to 230 nm, preferably 150 to 230 nm, more preferably 180 to 230 nm.
본 발명은 (b) 상기 이차무기입자 분산액에 바인더를 첨가하여 혼합하는 단계를 포함한다. The present invention includes the step of mixing by adding a binder to the secondary inorganic particle dispersion (b).
상기 바인더는 무기입자와의 결착제로서 사용되며, 시트(Sheet) 형태 유지와 막 형성을 위한 공정성 확보에 있다. 또한, Solvent와 마찬가지로 부착력을 부여하여 용이한 공정성을 갖도록 가능한 적은 양으로 결착시킬 것이 요구된다. 본 발명에서 사용되는 바인더로는 500℃ 이하에서 제거 가능한 고분자인 아크릴레이트계, 우레탄계, 셀룰로오스계의 바인더가 있으며, 바람직하게는 아크릴레이트 계열의 화합물을 사용할 수 있다. 본 발명에 있어서, 상기 바인더의 포함량은 이차무기입자 분산액 100 중량부를 기준으로 2.5 내지 5 중량부로 포함될 수 있으나, 이에 한정되는 것은 아니다. The binder is used as a binder with inorganic particles, and is used to maintain sheet form and to secure processability for film formation. In addition, as in Solvent, it is required to bind in as little amount as possible to impart adhesion and have easy processability. As the binder used in the present invention, there are acrylate-based, urethane-based, and cellulose-based binders, which are polymers that can be removed at 500 ° C. or lower, and preferably an acrylate-based compound can be used. In the present invention, the binder may be included in an amount of 2.5 to 5 parts by weight based on 100 parts by weight of the secondary inorganic particle dispersion, but is not limited thereto.
또한, 상기 b) 단계에서는 필요에 따라 가소제를 더 첨가할 수 있다. 상기 가소제로는 당업계에서 통상적으로 사용하는 것이라면 특별한 제한은 없다.In addition, in step b), a plasticizer may be further added as necessary. The plasticizer is not particularly limited as long as it is commonly used in the art.
상기 b) 단계의 혼합은 shear force로 분산 가능한 방법인 고압 호모지나이져 (high pressure homogenizer), 비드 밀링 (bead mills), 비드 쉐이킹 (Bead Shaking), 볼 밀링 (ball mills) 등을 사용할 수 있으며, 바람직하게는 비드 쉐이킹(Bead Shaking)으로 분산할 수 있다. The mixing of step b) may be a high pressure homogenizer, bead mills, bead shaking, ball mills, etc., which are dispersible by shear force. Preferably, it may be dispersed by bead shaking.
본 발명은 (c) 상기 무기입자 분산액과 바인더의 혼합용액을 코팅한 후, 건조하여 그린시트(Green Sheet)를 제조하는 단계를 포함한다. 상기 분산액과 바인더의 혼합용액의 코팅은 콤마 코팅, 블레이드 코팅, DIE 코팅, LIP 코팅 방법으로 할 수 있으며, 바람직하게는 콤마 코팅으로 그린 시트를 제조할 수 있다. 코팅 후 건조는 10분 이상 건조하는 것이 바람직하다.The present invention includes (c) coating the mixed solution of the inorganic particle dispersion and the binder, followed by drying to prepare a green sheet. Coating of the mixed solution of the dispersion and the binder may be a comma coating, blade coating, DIE coating, LIP coating method, it is preferable to produce a green sheet by a comma coating. It is preferable to dry after coating for 10 minutes or more.
상기와 같이 건조된 그린시크는 표면의 거칠기가 중심선 평균 거칠기인 Ra 값으로 0.8 um 이하일 수 있다.The green chic dried as described above may have a surface roughness of 0.8 μm or less as a Ra value of the centerline average roughness.
또한, 상기와 같이 건조된 그린시크는 광택도가 10GU (60°) 이상 일 수 있으며, 또는 20GU (85°) 이상 일 수 있다.In addition, the green seek dried as described above may have a gloss of 10GU (60 °) or more, or 20GU (85 °) or more.
본 발명은 (d) 상기 그린시트를 소성하여 전해질막을 형성하는 단계를 포함한다.The present invention includes the step of (d) firing the green sheet to form an electrolyte membrane.
상기 소성은 1300 내지 1600 ℃의 온도에서 1 시간 이상 소성하는 것이 바람직하다. The firing is preferably carried out for at least 1 hour at a temperature of 1300 to 1600 ℃.
또한, 본 발명은 일차무기입자(primary particle: <50nm)가 분산되어, 120 내지 230nm의 DLS(dynamic light scattering)를 이용한 수력학적 지름(hydrodynamic diameter)을 갖는 이차무기입자 (secondary particle)의 분산액 및 바인더를 포함하는 무기 전해질막 제조용 조성물을 제공한다.In addition, the present invention is the primary inorganic particles (primary particle: <50nm) is dispersed, the dispersion liquid of secondary inorganic particles (secondary particles) having a hydrodynamic diameter (dynamic dynamic scattering) using 120 to 230nm DLS (dynamic light scattering) and It provides a composition for preparing an inorganic electrolyte membrane comprising a binder.
먼저, 본 발명에 있어서, 상기 분산제는 양이온계 분산제를 사용할 수 있으며, 바람직하게는 아크릴레이트 공중합체 또는 폴리우레탄 계열의 분산제를 사용할 수 있다. 상기 분산제는 SOP(Solids on pigment) 기준으로 상기 무기입자 100 중량부에 대하여 9 중량부가 포함될 수도 있고, 12 또는 15 중량부로 포함될 수도 있으나, 바람직하게는 상기 무기입자 100 중량부에 대하여 10 내지 20 중량부로 포함될 수도 있고, 반드시 이에 한정되는 것은 아니다. 상기 분산제의 포함량이 무기입자 100 중량부에 대하여 10 중량부 미만이면 이차무기입자의 표면에 10nm 미만의 분산제층이 형성되어 실질적으로 분산이 어려워지는 문제점이 있고, 20 중량부 초과이면 소결과정에 스트레스(stress)에 의한 영향을 미쳐 문제가 될 수 있다. First, in the present invention, the dispersant may use a cationic dispersant, preferably an acrylate copolymer or a polyurethane-based dispersant. The dispersant may include 9 parts by weight based on SOP (Solids on pigment) based on 100 parts by weight of the inorganic particles, 12 or 15 parts by weight, preferably 10 to 20 parts by weight based on 100 parts by weight of the inorganic particles. It may be included as a wealth, but is not necessarily limited thereto. If the amount of the dispersant is less than 10 parts by weight based on 100 parts by weight of the inorganic particles, there is a problem that a dispersion layer of less than 10 nm is formed on the surface of the secondary inorganic particles, thereby making it difficult to disperse substantially. It can be a problem due to the effect of stress.
본 발명에 있어서, 상기 일차무기입자로는 GDC(Gadolium dopoed ceria), LDC(lanthanumlanthan ceria), LSGM(strontium and magnesium dopoed lanthanumIn the present invention, the primary inorganic particles are GDC (Gadolium dopoed ceria), LDC (lanthanumlanthan ceria), LSGM (strontium and magnesium dopoed lanthanum
gallate), YSZ(Yittrium doped zirconia) 및 ScSZr(Sc-stabilized zirconia) 로 이루어진 군에서 선택되는 어느 하나 이상을 사용할 수 있으며, 바람직하게는 GDC (gadolinium doped ceria)를 사용할 수 있다. 상기 GDC는 이차구조로 형성되었으며, 최초 투입되는 분산 전의 일차무기입자는 50nm 이하의 입자크기를 갖는 것으로, 상기 입자크기는 TEM이나 SEM과 같은 마이크로현미경으로 측정한 값이다. gallate), YSZ (Yittrium doped zirconia) and ScSZr (Sc-stabilized zirconia) may be used at least one selected from the group, preferably GDC (gadolinium doped ceria) can be used. The GDC was formed in a secondary structure, and the primary inorganic particles introduced before dispersion were those having a particle size of 50 nm or less, and the particle size was measured by a microscopic microscope such as TEM or SEM.
본 발명에 있어서, 상기 용매는 Alcohol, PGME(Propylene Glycol Methyl Ether), PGMEA(Propylene Glycol Methyl Ethyl Acetate), MEK(Methyl Ethyl Ketone), MIBK(methyl isobutyl ketone), Toluene, Terpineol, DMF 및 DMSO 로 이루어지는 군에서 선택되는 어느 하나 이상인 것을 사용할 수 있다. 상기 용매는 무기입자 100 중량부에 대하여 50 내지 90 중량부로 포함되는 것이 바람직하다.In the present invention, the solvent is composed of Alcohol, Propylene Glycol Methyl Ether (PGME), Propylene Glycol Methyl Ethyl Acetate (PGMEA), Methyl Ethyl Ketone (MEK), Methyl isobutyl ketone (MIBK), Toluene, Terpineol, DMF, and DMSO Any one or more selected from the group can be used. The solvent is preferably included in 50 to 90 parts by weight based on 100 parts by weight of inorganic particles.
본 발명에 있어서, 상기 바인더는 무기입자와의 결착제로서 사용되며, 시트(Sheet) 형태 유지와 막 형성을 위한 공정성 확보에 있다. 또한, Solvent와 마찬가지로 부착력을 부여하여 용이한 공정성을 갖도록 가능한 적은 양으로 결착시킬 것이 요구된다. 본 발명에서 사용되는 바인더로는 500℃ 이하에서 제거 가능한 고분자인 아크릴레이트계, 우레탄계, 셀룰로오스계의 바인더가 있으며, 바람직하게는 아크릴레이트 계열의 화합물을 사용할 수 있다. 본 발명에 있어서, 상기 바인더의 포함량은 이차무기입자 분산액 100 중량부를 기준으로 2.5 내지 5 중량부로 포함될 수 있으나, 이에 한정되는 것은 아니다. In the present invention, the binder is used as a binder with the inorganic particles, and is intended to maintain sheet form and ensure processability for film formation. In addition, as in Solvent, it is required to bind in as little amount as possible to impart adhesion and have easy processability. As the binder used in the present invention, there are acrylate-based, urethane-based, and cellulose-based binders, which are polymers that can be removed at 500 ° C. or lower, and preferably an acrylate-based compound can be used. In the present invention, the binder may be included in an amount of 2.5 to 5 parts by weight based on 100 parts by weight of the secondary inorganic particle dispersion, but is not limited thereto.
본 발명은 상기 무기 전해질막 제조용 조성물을 코팅 및 건조하여 제조된 그린시트를 제공한다. The present invention provides a green sheet prepared by coating and drying the composition for preparing the inorganic electrolyte membrane.
상기 그린시트는 상기 무기 전해질막 제조용 조성물을 코팅하여 제조할 수 있으며, 상기 코팅은 콤마 코팅, 블레이드 코팅, DIE 코팅, LIP 코팅 방법으로 할 수 있으며, 바람직하게는 콤마 코팅을 사용할 수 있다. 코팅 후 건조는 10분 이상 건조하는 것이 바람직하다.The green sheet may be prepared by coating the composition for preparing the inorganic electrolyte membrane, and the coating may be a comma coating, a blade coating, a DIE coating, a LIP coating method, and preferably a comma coating. It is preferable to dry after coating for 10 minutes or more.
상기와 같이 건조된 그린시크는 표면의 거칠기가 중심선 평균 거칠기인 Ra 값으로 0.8 um 이하일 수 있다.The green chic dried as described above may have a surface roughness of 0.8 μm or less as a Ra value of the centerline average roughness.
또한, 상기와 같이 건조된 그린시크는 광택도가 10GU (60°) 이상 일 수 있으며, 또는 20GU (85°) 이상 일 수 있다.In addition, the green seek dried as described above may have a gloss of 10GU (60 °) or more, or 20GU (85 °) or more.
본 발명은 상기 그린시트를 소성하여 제조된 무기 전해질막을 제공한다. The present invention provides an inorganic electrolyte membrane prepared by firing the green sheet.
상기 그린시트의 소성은 당업계에서 사용하는 통상적인 방법이라면 특별한 제한 없이 사용할 수 있다.Firing of the green sheet can be used without particular limitation as long as it is a conventional method used in the art.
또한, 본 발명은 상기 무기 전해질막을 포함하는 고체산화물 연료전지를 제공한다.In addition, the present invention provides a solid oxide fuel cell including the inorganic electrolyte membrane.
이하 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변경 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.Hereinafter, preferred examples are provided to help the understanding of the present invention, but the following examples are merely for exemplifying the present invention, and various changes and modifications within the scope and spirit of the present invention are apparent to those skilled in the art. It goes without saying that changes and modifications belong to the appended claims.
실시예Example
무기입자 분산액과 바인더의 혼합액의 제조 Preparation of Mixed Liquid of Inorganic Particle Dispersion and Binder
[실시예 1] Example 1
30 ml 부피의 Vial 에 1차무기입자로 GDC Powder (Rhodia 社, UHSA grade, primary particle size: ~30nm) 6.4g과 무기입자 100 중량부에 대하여 20 중량부의 분산제(BYK-112, Solid contents: 60%) 2.1g (SOP 기준으로 20)을 Toluene 4.2g과 함께 혼합한 후 Ball (3 mm ZrO2)을 용기에 넣은 후, 24, 72시간 동안 분산을 실시하였다. 추가적으로 분산액에 추가적으로 Binder (SOKEN사, LRRS001) 2.5g과 가소제 (Aldrich社,Dibutyl phthalate (DBP)) 0.1g을 첨가한 후 72시간 동안 혼합하는 과정을 거쳐 Slurry를 완성하였다.6.4 g of GDC Powder (Rhodia, UHSA grade, primary particle size: ~ 30nm) as a primary inorganic particle in 30 ml volume and 20 parts by weight of dispersant (BYK-112, Solid contents: 60) per 100 parts by weight of inorganic particles %) 2.1g (20 based on SOP) was mixed with 4.2g of Toluene, and then Ball (3 mm ZrO2) was placed in a container, followed by dispersion for 24 and 72 hours. In addition, 2.5 g of Binder (SOKEN, LRRS001) and 0.1 g of a plasticizer (Aldrich, Dibutyl phthalate (DBP)) were added to the dispersion, followed by mixing for 72 hours to complete the slurry.
[실시예 2] Example 2
무기입자 100 중량부에 대하여 10 중량부의 분산제(BYK-112, Solid contents: 60%) 1.2g (SOP 10)과 Toluene 4.9g을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 제조하였다.10 parts by weight of the dispersant (BYK-112, Solid contents: 60%) 1.2g (SOP 10) and Toluene 4.9g was prepared in the same manner as in Example 1 with respect to 100 parts by weight of inorganic particles.
[실시예 3] Example 3
무기입자 100 중량부에 대하여 20 중량부의 분산제(BYK-163, Solid contents: 45%) 2.8g (SOP 20)과 Toluene 3.5g을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 제조하였다.It was prepared in the same manner as in Example 1 except that 20 parts by weight of dispersant (BYK-163, Solid contents: 45%) of 2.8 g (SOP 20) and Toluene 3.5g were used.
[실시예 4] Example 4
무기입자 100 중량부에 대하여 10 중량부의 분산제(BYK-163, Solid contents: 45%) 1.4g (SOP 10)과 Toluene 4.9 g을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 제조하였다.10 parts by weight of the dispersant (BYK-163, Solid contents: 45%) 1.4g (SOP 10) and Toluene 4.9 g was prepared in the same manner as in Example 1 except for 100 parts by weight of the inorganic particles.
[비교예 1] Comparative Example 1
30 ml 부피의 Vial 에 1차무기입자로 GDC Powder (Rodia社, UHSA grade, primary particle size: ~30nm) 6.4g과 무기입자 100 중량부에 대하여 5 중량부의 분산제(BYK-112, Solid contents: 60%) 0.55 g (SOP 5)을 Toluene 5.75g과 혼합 후 Ball (3 mm ZrO2)을 용기에 넣은 후, 24, 72시간 동안 분산을 실시하였다. 완성된 Slurry는 DLS을 이용한 입도 측정으로 분산성을 확인하였다. 분산액에 추가적으로 Binder (SOKEN사, LRRS001)와 가소제 (Aldrich社, Dibutyl phthalate (DBP))를 첨가한 후 72시간 동안 혼합하는 과정을 거쳐 Slurry를 완성하였다.6.4 g of GDC Powder (Rodia, UHSA grade, primary particle size: ~ 30nm) as primary inorganic particles in 30 ml volume and 5 parts by weight of dispersant (BYK-112, Solid contents: 60) based on 100 parts by weight of inorganic particles %) After mixing 0.55 g (SOP 5) with 5.75 g of toluene, Ball (3 mm ZrO2) was placed in a container, and then dispersed for 24 and 72 hours. The completed slurry was confirmed dispersibility by particle size measurement using DLS. After adding Binder (SOKEN, LRRS001) and plasticizer (Aldrich, Dibutyl phthalate (DBP)) to the dispersion, Slurry was completed by mixing for 72 hours.
[비교예 2] Comparative Example 2
30 ml 부피의 Vial 에 1차무기입자로 GDC Powder (Rodia社, UHSA grade: <50nm) 6.4g과 무기입자 100 중량부에 대하여 5 중량부의 분산제(BYK-163, Solid contents: 45%) 0.7 g (SOP 5)을 Toluene 5.75g과 혼합 후 Ball (3 mm ZrO2)을 용기에 넣은 후, 24,72시간 동안 분산을 실시하였다. 완성된 Slurry는 DLS을 이용한 입도 측정으로 분산성을 확인하였다. 분산액에 추가적으로 Binder (SOKEN사, LRRS001)와 가소제 (Aldrich社, Dibutyl phthalate (DBP))를 첨가한 후 72시간 동안 혼합하는 과정을 거쳐 Slurry를 완성하였다.0.7 g of dispersant (BYK-163, Solid contents: 45%) of 6.4 g of GDC Powder (Rodia, UHSA grade: <50 nm) and 100 parts by weight of inorganic particles as primary inorganic particles in a 30 ml volume. After mixing (SOP 5) with 5.75 g of Toluene, Ball (3 mm ZrO 2) was placed in a container, and dispersion was performed for 24,72 hours. The completed slurry was confirmed dispersibility by particle size measurement using DLS. After adding Binder (SOKEN, LRRS001) and plasticizer (Aldrich, Dibutyl phthalate (DBP)) to the dispersion, Slurry was completed by mixing for 72 hours.
[비교예 3] Comparative Example 3
30 ml 부피의 Vial 에 일차입자의 평균 크기가 200 nm인 입자인 GDC Powder (Rodia社, ULSA grade) 6.4g과 무기입자 100 중량부에 대하여 10 중량부의 분산제(BYK-112, Solid contents: 60%) 1.2g (SOP 10)을 Toluene 5.75g과 혼합 후 Ball (3 mm ZrO2)을 용기에 넣은 후, 24, 72시간 동안 분산을 실시하였다. 완성된 Slurry는 DLS을 이용한 입도 측정으로 분산성을 확인하였다. 분산액에 추가적으로 Binder (SOKEN사, LRRS001)와 가소제 (Aldrich社,Dibutyl phthalate (DBP))를 첨가한 후 72시간 동안 혼합하는 과정을 거쳐 Slurry를 완성하였다.10 parts by weight of dispersant (BYK-112, Solid contents: 60%) for 6.4 g of GDC Powder (Rosa, ULSA grade), which is an average particle size of 200 nm in a 30 ml volume, and 100 parts by weight of inorganic particles. ) 1.2g (SOP 10) was mixed with 5.75g of Toluene, Ball (3 mm ZrO2) was placed in a container, and dispersion was performed for 24 and 72 hours. The completed slurry was confirmed dispersibility by particle size measurement using DLS. After adding Binder (SOKEN, LRRS001) and plasticizer (Aldrich, Dibutyl phthalate (DBP)) to the dispersion, Slurry was completed by mixing for 72 hours.
[비교예 4] [Comparative Example 4]
1000 ml 부피의 Bead mill 용기에 GDC Powder (Rodia社, UHSA grade) 640 g과 무기입자 100 중량부에 대하여 10 중량부의 분산제(BYK-112, Solid contents:60%) 120g (SOP 20)을 Toluene 575 g과 혼합 후 Ball (0.2 mm ZrO2)을 용기에 넣은 후, 1 시간 동안 분산을 실시하였다. 완성된 Slurry는 DLS을 이용한 입도 측정으로 분산성을 확인하였다. 분산액에 추가적으로 Binder (SOKEN사, LRRS001)와 가소제 (Aldrich社,Dibutyl phthalate (DBP))를 첨가한 후 72시간 동안 혼합하는 과정을 거쳐 Slurry를 완성하였다.Toluene 575 in a 1000 ml bead mill container with 120 g (SOP 20) of 640 g of GDC Powder (Rodia, UHSA grade) and 10 parts by weight of dispersant (BYK-112, Solid contents: 60%) per 100 parts by weight of inorganic particles. After mixing with the ball (0.2 mm ZrO2) was put in a container, and then dispersed for 1 hour. The completed slurry was confirmed dispersibility by particle size measurement using DLS. After adding Binder (SOKEN, LRRS001) and plasticizer (Aldrich, Dibutyl phthalate (DBP)) to the dispersion, Slurry was completed by mixing for 72 hours.
[비교예 5] [Comparative Example 5]
30 ml 부피의 Vial 에 1차무기입자로 GDC Powder (Rodia社, UHSA grade, primary particle size: ~30nm) 6.4g과 무기입자 100 중량부에 대하여 10 중량부의 분산제 (BYK-111, 음이온계 분산제, Solid contents: 95%) 1.28 g (SOP 20)을 Toluene 5.75g과 혼합 후 Ball (3 mm ZrO2)을 용기에 넣은 후, 24, 72시간 동안 분산을 실시하였다. 완성된 Slurry는 DLS을 이용한 입도 측정으로 분산성을 확인하였다.6.4 g of GDC Powder (Rodia, UHSA grade, primary particle size: ~ 30nm) as a primary inorganic particle in 30 ml volume and 10 parts by weight of dispersant (BYK-111, anionic dispersant, Solid contents: 95%) 1.28 g (SOP 20) was mixed with 5.75 g of toluene, Ball (3 mm ZrO2) was placed in a container, and dispersion was performed for 24 and 72 hours. The completed slurry was confirmed dispersibility by particle size measurement using DLS.
실험예 Experimental Example
상기 실시예 및 비교예에서 제조한 무기입자 분산액과 바인더의 혼합액에 대하여, 다음과 같이 측정하였다.About the mixed liquid of the inorganic particle dispersion liquid and binder which were manufactured by the said Example and the comparative example, it measured as follows.
실험예 1: 분산액 hydrodynamic diameter 측정Experimental Example 1 Measurement of Dispersion Hydrodynamic Diameter
비교예 및 실시예에서 제조된 분산액을 Binder와 가소제 투입전에 DLS(dynamic light scattering)를 이용하여 이차입자 크기(hydrodynamic diameter 크기)를 측정하였다.The dispersions prepared in Comparative Examples and Examples were measured for secondary particle size (hydrodynamic diameter size) using dynamic light scattering (DLS) before adding binder and plasticizer.
표 1
구분 Bead Shaking, DLS[nm]
24 hr 72 hr
실시예 1 213 168
실시예 2 221 174
실시예 3 181 155
실시예 4 180 165
비교예 1 234 230
비교예 2 514 1542
비교예 3 270 235
비교예 4 113
비교예 5 653 1000 이상
Table 1
division Bead Shaking, DLS [nm]
24 hr 72 hr
Example 1 213 168
Example 2 221 174
Example 3 181 155
Example 4 180 165
Comparative Example 1 234 230
Comparative Example 2 514 1542
Comparative Example 3 270 235
Comparative Example 4 113
Comparative Example 5 653 More than 1000
상기 실시예에서 얻어진 분산액으로부터 크기를 측정하였고, 이를 표 1에 나타내었다.The size was measured from the dispersion obtained in the above example, which is shown in Table 1.
표 1을 참조하면 실시예에서 제조된 분산액은 분산제의 양의 증가에 따라 크기가 감소함을 알 수 있다. 이로부터 분산제로부터 기인된 steric stabilization에 의해 GDC의 입자의 크기가 감소하며 분산성이 향상됨을 알 수 있다.Referring to Table 1, it can be seen that the dispersion prepared in Examples is reduced in size with increasing amount of dispersant. It can be seen that the steric stabilization resulting from the dispersant reduces the size of the particles of GDC and improves dispersibility.
또한, 분산제의 양이 너무 적은 비교예 1 내지 3와, 음이온계 분산제를 사용한 비교예 5는, 분산 특성이 좋지 않아, GDC의 입자의 크기가 지나치게 커지는 것을 알 수 있었다. In addition, Comparative Examples 1 to 3 in which the amount of the dispersant was too small and Comparative Example 5 using the anionic dispersant had poor dispersion characteristics, and it was found that the size of the particles of the GDC became too large.
또한 표 1의 비교예 4에서 분산방법에 따라 이차입자의 크기가 210nm 이하인 분산액을 제조할 수 있었으나, 이 경우 분산성이 지나치게 높아 소성시에 셀(cell)에 높은 스트레스로 작용하여 안정성이 떨어지며, 셀(cell)이 깨지는 문제가 발생할 수 있다.In addition, in Comparative Example 4 of Table 1, a dispersion having a particle size of 210 nm or less could be prepared according to the dispersion method, but in this case, the dispersibility was excessively high, which acted as a high stress on the cell during firing, resulting in poor stability. The problem of breaking a cell may occur.
실험예 2: PET film 코팅을 통한 분산액의 광택도 측정Experimental Example 2: Glossiness measurement of the dispersion by PET film coating
비교예 및 실시예에서 제조된 분산액을 PET 양면 필름 위에 올려서 film casting 장비를 이용하여 10um의 두께로 코팅한 후 80도의 온도에서 용매를 증발시켜 건조된 상태의 코팅 필름을 제조하였다. 이를 광택계(BYK-Gardner社 제품, AG-4446)를 이용하여 광택을 측정하였다. The dispersions prepared in Comparative Examples and Examples were coated on a PET double-sided film, coated with a film casting equipment to a thickness of 10 μm, and the solvent was evaporated at a temperature of 80 degrees to prepare a coated film in a dried state. Gloss was measured using a glossmeter (BYK-Gardner, AG-4446).
표 2
구분 Glossmeter [GU]
60° 85°
실시예 1 134 97
실시예 2 20 74
비교예 1 6 18
TABLE 2
division Glossmeter [GU]
60 ° 85 °
Example 1 134 97
Example 2 20 74
Comparative Example 1 6 18
상기 실시예에서 얻어진 분산액으로 코팅된 필름으로부터 광택도를 측정하였고, 이를 표 2에 나타내었다.Glossiness was measured from the film coated with the dispersion obtained in the above example, which is shown in Table 2.
표 2을 참조하면 실시예에서 제조된 분산액은 분산제를 첨가함에 따라 광택도가 변화함을 알 수 있다. 이로부터 분산제로부터 기인된 steric stabilization에 의해 GDC의 입자의 크기가 감소하며 분산성이 향상됨을 알 수 있다.Referring to Table 2, it can be seen that the dispersion prepared in Examples may change in glossiness as the dispersant is added. It can be seen that the steric stabilization resulting from the dispersant reduces the size of the particles of GDC and improves dispersibility.
실험예 3: PET film 코팅을 통한 분산액의 optical profiler 측정Experimental Example 3: Optical profiler measurement of the dispersion by PET film coating
비교예 및 실시예에서 제조된 분산액을 실험예 2와 동일한 방법으로 필름에 코팅을 하였다.The dispersions prepared in Comparative Examples and Examples were coated on a film in the same manner as in Experimental Example 2.
이 후 코팅된 필름을 optical profiler 측정기를 이용하여 측정을 실시했다The coated film was then measured using an optical profiler meter.
상기 실시예에서 얻어진 분산액으로 코팅된 필름으로부터 표면의 거칠기(roughness)를 측정하였고, 이를 표 3에 나타내었다.The roughness of the surface was measured from the film coated with the dispersion obtained in the above example, which is shown in Table 3.
표 3
구분 Optical profiler
Ra[um] Rt[um]
실시예 1 0.45 25.92
실시예 2 0.66 28.19
실시예 4 0.61 38.25
비교예 1 0.82 28.13
비교예 2 0.9 38.54
TABLE 3
division Optical profiler
Ra [um] Rt [um]
Example 1 0.45 25.92
Example 2 0.66 28.19
Example 4 0.61 38.25
Comparative Example 1 0.82 28.13
Comparative Example 2 0.9 38.54
상기 표 3을 참조하면, 실시예에서 제조된 분산액은 분산제를 첨가함에 따라 표면의 roughness가 낮음을 알 수 있다. 이로부터 분산제로부터 기인된 steric stabilization에 의해 GDC의 입자의 크기가 감소하며 분산성이 향상됨을 알 수 있다.Referring to Table 3, the dispersion prepared in Example can be seen that the roughness of the surface is low as the dispersant is added. It can be seen that the steric stabilization resulting from the dispersant reduces the size of the particles of GDC and improves dispersibility.
실험예 4: 소결을 통한 전해질막의 치밀도의 측정Experimental Example 4: Measurement of Density of Electrolyte Membrane by Sintering
비교예 및 실시예에서 제조된 분산액을 실험예 2와 동일한 방법으로 필름에 코팅을 하였다. 이 후, 이를 1500℃에서 소결한 후, 전해질막을 제조하였다. The dispersions prepared in Comparative Examples and Examples were coated on a film in the same manner as in Experimental Example 2. Thereafter, it was sintered at 1500 ° C., and an electrolyte membrane was prepared.
상기 제조된 전해질막의 모듈의 단면과 표면을 전자현미경 (Hitachi 사, TM-1000)으로 관찰한 것을 각각 도 1 내지 도 3에 나타내었다.Observation of the cross-section and the surface of the module of the prepared electrolyte membrane with an electron microscope (Hitachi, TM-1000) is shown in FIGS. 1 to 3, respectively.
실시예 1 및 실시예 3의 전해질층은 모두, 도 1과 같이 높은 치밀도와 넓은 도메인 사이즈를 표면사진을 통해 확인할 수 있다.As for the electrolyte layer of Example 1 and Example 3, both a high density and a wide domain size can be confirmed through the surface photograph, as shown in FIG.
이와 달리 비교예 2의 전해질층은 도 2와 같이, 입자의 분산성의 저하에 따른 불균일성 및 갈라짐 현상을 관찰할 수 있다.On the contrary, as shown in FIG. 2, the electrolyte layer of Comparative Example 2 may observe nonuniformity and cracking caused by deterioration of particle dispersibility.
또한, 비교예 3의 sample은 저온 소성 후 (1400℃), 도 3과 같이 균일도가 떨어지고 균열이 생김을 관찰하였다. 이는 도 2의 샘플과 동일한 양상임을 확인하였다. 비교예 4의 sample은 bead mill을 이용하여 우수한 분산성을 확인하였으나, 소성 후 지나치게 높은 분산성에 따른 Cell에 stress가 높아짐에 따라 Cell이 깨지는 것을 확인하였다.In addition, the sample of Comparative Example 3 was observed after the low-temperature firing (1400 ℃), uniformity as shown in Figure 3 fall and cracks. This confirmed the same aspect as the sample of FIG. The sample of Comparative Example 4 confirmed the excellent dispersibility by using a bead mill, but it was confirmed that the cell breaks as the stress increases in the cell due to too high dispersibility after firing.
실험예 5: 전해질막을 이용한 셀 성능의 측정Experimental Example 5: Measurement of Cell Performance Using Electrolyte Membrane
상기 셀의 제조는 양극 (Lanthanum strontium cobalt ferrite (LSCF) Cathode, LG chem.), 음극 [(NiO, ~200 nm, J.T. Baker社), Carbon black (N990, Columbian社), GDC (ULSA, Rhodia社)] 및 상기 실험예 4에서 제조한 전해질막을 이용하였다. The production of the cell is a cathode (Lanthanum strontium cobalt ferrite (LSCF) Cathode, LG chem.), The cathode [(NiO, ~ 200 nm, JT Baker), carbon black (N990, Columbian), GDC (ULSA, Rhodia) )] And the electrolyte membrane prepared in Experimental Example 4 were used.
구체적으로, 상기 NiO 음극 층 위에 상기 실험예 4에서 제조한 전해질막층을 적층한 후, 1500℃에서 소결하고, 이후 상기 LSCF 양극을 적층한 후, 1000℃에서 소결하여 Cell을 완성하였다.Specifically, after stacking the electrolyte membrane layer prepared in Experimental Example 4 on the NiO cathode layer, and sintered at 1500 ℃, after laminating the LSCF anode, and then sintered at 1000 ℃ to complete the cell.
상기 제조된 셀의 출력을 600℃에서 측정하여 하기 표 4에 나타내었다.The output of the prepared cell was measured at 600 ° C. and is shown in Table 4 below.
표 4
비교예 1 실시예 1
OCV (V) 1.095 1.099
Max Power Density (W/cm2) 1.291 1.480
Power Density @0.5A/cm2 (W/cm2) 0.439 0.453
Table 4
Comparative Example 1 Example 1
OCV (V) 1.095 1.099
Max Power Density (W / cm 2 ) 1.291 1.480
Power Density @ 0.5A / cm2 (W / cm 2 ) 0.439 0.453
실시예 1의 전해질막을 이용하여 제조된 셀의 경우 개로 전압(open circuit voltage, OCV)가 1.099 V이고, Max P.D 가 1.480 W/cm2인 것을 알 수 있었다. 이에 대하여, 비교예 1의 전해질막을 이용하여 제조된 셀의 경우 OCV가 1.095 V이고, Max P.D 가 1.291 W/cm2로 실시예 1에 비하여 셀 성능이 떨어지는 것을 알 수 있었다. 따라서, 본 발명에 의하여 제조된 전해질막을 사용한 전지를 사용하는 경우, Max P.D 와 같은 셀 성능이 현저하게 상승한다는 장점이 있다는 것을 알 수 있었다.In the case of the cell manufactured using the electrolyte membrane of Example 1, it was found that the open circuit voltage (OCV) was 1.099 V and the Max PD was 1.480 W / cm 2 . In contrast, the cell manufactured using the electrolyte membrane of Comparative Example 1 had an OCV of 1.095 V and a Max PD of 1.291 W / cm 2 , indicating that the cell performance was lower than that of Example 1. Therefore, when using the battery using the electrolyte membrane prepared according to the present invention, it was found that there is an advantage that the cell performance such as Max PD is significantly increased.

Claims (30)

  1. (a) 일차무기입자(primary particle: <50nm), 분산제, 용매를 혼합한 후, 상기 일차무기입자를 분산하여 120 내지 230nm의 DLS(dynamic light scattering)를 이용한 수력학적 지름(hydrodynamic diameter)을 갖는 이차무기입자(secondary particle)의 분산액을 제조하는 단계;(a) after mixing primary inorganic particles (<50 nm), dispersant, and solvent, the primary inorganic particles are dispersed to have a hydrodynamic diameter using dynamic light scattering (DLS) of 120 to 230 nm. Preparing a dispersion of secondary inorganic particles;
    (b) 상기 이차무기입자 분산액에 바인더를 첨가하여 혼합하는 단계;(b) adding and mixing a binder with the secondary inorganic particle dispersion;
    (c) 상기 이차무기입자 분산액과 바인더의 혼합용액을 코팅한 후, 건조하여 그린시트(Green Sheet)를 제조하는 단계; 및 (c) coating a mixed solution of the secondary inorganic particle dispersion and a binder, followed by drying to prepare a green sheet; And
    (d) 상기 그린시트를 소성하여 전해질막을 형성하는 단계를 포함하는 무기 전해질막의 제조방법.(d) firing the green sheet to form an electrolyte membrane.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 분산제는 양이온계 분산제인 것을 특징으로 하는 무기 전해질막의 제조방법.The dispersant is a method of producing an inorganic electrolyte membrane, characterized in that the cationic dispersant.
  3. 청구항 1에 있어서,The method according to claim 1,
    상기 분산제는 아크릴레이트 공중합체 또는 폴리우레탄 계열의 분산제인 것을 특징으로 하는 무기 전해질막의 제조방법.The dispersant is a method for producing an inorganic electrolyte membrane, characterized in that the acrylate copolymer or polyurethane-based dispersant.
  4. 청구항 1에 있어서,The method according to claim 1,
    상기 분산제는 SOP(Solids on pigment) 기준으로 상기 일차무기입자 100 중량부에 대하여 10 내지 20 중량부로 포함되는 것을 특징으로 하는 무기 전해질막의 제조방법.The dispersing agent is a method for producing an inorganic electrolyte membrane, characterized in that it comprises 10 to 20 parts by weight based on 100 parts by weight of the primary inorganic particles on a solids on pigment (SOP) basis.
  5. 청구항 1에 있어서,The method according to claim 1,
    상기 일차무기입자는 GDC (gadolinium doped ceria) 인 것을 특징으로 하는 무기 전해질막의 제조방법.The primary inorganic particle is a manufacturing method of an inorganic electrolyte membrane, characterized in that GDC (gadolinium doped ceria).
  6. 청구항 1에 있어서,The method according to claim 1,
    상기 분산 전의 일차무기입자의 입자크기는 TEM 또는 SEM으로 측정한 지름이 50nm 미만인 것을 특징으로 하는 무기 전해질막의 제조방법.The particle size of the primary inorganic particles before the dispersion is a method for producing an inorganic electrolyte membrane, characterized in that the diameter measured by TEM or SEM less than 50nm.
  7. 청구항 1에 있어서,The method according to claim 1,
    상기 용매는 Alcohol, PGME(Propylene Glycol Methyl Ether), PGMEA(Propylene Glycol Methyl Ethyl Acetate), MEK(Methyl Ethyl Ketone) MIBK(methyl isobutyl ketone), Toluene, Terpineol, DMF 및 DMSO 로 이루어지는 군에서 선택되는 어느 하나 이상인 것을 특징으로 하는 무기 전해질막의 제조방법.The solvent is any one selected from the group consisting of Alcohol, Propylene Glycol Methyl Ether (PGME), Propylene Glycol Methyl Ethyl Acetate (PGMEA), Methyl Ethyl Ketone (MEK), Toluene, Terpineol, DMF and DMSO Method for producing an inorganic electrolyte membrane, characterized in that above.
  8. 청구항 1에 있어서,The method according to claim 1,
    상기 용매는 일차무기입자 100 중량부에 대하여 80 내지 90 중량부로 포함되는 것을 특징으로 하는 무기 전해질막의 제조방법.The solvent is a method for producing an inorganic electrolyte membrane, characterized in that it comprises 80 to 90 parts by weight based on 100 parts by weight of the primary inorganic particles.
  9. 청구항 1에 있어서,The method according to claim 1,
    상기 바인더는 아크릴레이트계열 바인더, 우레탄계열 바인더 및 셀룰로오스계열 바인더로 이루어지는 군에서 선택되는 어느 하나 이상인 것을 특징으로 하는 무기 전해질막의 제조방법.The binder is any one or more selected from the group consisting of an acrylate-based binder, a urethane-based binder and a cellulose-based binder.
  10. 청구항 1에 있어서,The method according to claim 1,
    상기 a) 단계의 분산은 비드 쉐이킹(Bead Shaking)으로 분산하는 것을 특징으로 하는 무기 전해질막의 제조방법.Dispersion of step a) is a method for producing an inorganic electrolyte membrane, characterized in that the dispersion by bead shaking (Bead Shaking).
  11. 청구항 1에 있어서,The method according to claim 1,
    상기 b) 단계의 혼합은 비드 쉐이킹(Bead Shaking)으로 혼합하는 것을 특징으로 하는 무기 전해질막의 제조방법.The mixing of the step b) is a method for producing an inorganic electrolyte membrane, characterized in that mixing by bead shaking (Bead Shaking).
  12. 청구항 1에 있어서,The method according to claim 1,
    상기 c) 단계에서 제조된 그린시트의 표면의 거칠기가 Ra 값으로 0.8 um 이하인 것을 특징으로 하는 무기 전해질막의 제조방법.The surface roughness of the green sheet prepared in step c) is a method for producing an inorganic electrolyte membrane, characterized in that the Ra value 0.8 um or less.
  13. 청구항 1에 있어서,The method according to claim 1,
    상기 c) 단계에서 제조된 그린시트의 광택도가 10GU (60°) 이상인 것을 특징으로 하는 무기 전해질막의 제조방법.Method for producing an inorganic electrolyte membrane, characterized in that the gloss of the green sheet prepared in step c) is 10GU (60 °) or more.
  14. 청구항 1에 있어서,The method according to claim 1,
    상기 c) 단계에서 제조된 그린시트의 광택도가 20GU (85°) 이상인 것을 특징으로 하는 무기 전해질막의 제조방법.Method for producing an inorganic electrolyte membrane, characterized in that the glossiness of the green sheet prepared in step c) is 20GU (85 °) or more.
  15. 청구항 1에 있어서,The method according to claim 1,
    상기 b) 단계에서, 가소제를 더 첨가하는 것을 특징으로 하는 무기 전해질막의 제조방법.In the step b), a method for producing an inorganic electrolyte membrane, characterized in that further adding a plasticizer.
  16. 일차무기입자(primary particle: <50nm)가 분산되어, 120 내지 230nm의 DLS(dynamic light scattering)를 이용한 수력학적 지름(hydrodynamic diameter)을 갖는 이차무기입자 (secondary particle)의 분산액 및 바인더를 포함하는 무기 전해질막 제조용 조성물.Inorganic particles containing dispersions and binders of secondary inorganic particles having a hydrodynamic diameter using primary light particles (<50 nm) dispersed and 120 to 230 nm of dynamic light scattering (DLS). Electrolytic membrane production composition.
  17. 청구항 16에 있어서,The method according to claim 16,
    상기 분산액은 분산제 및 용매를 포함하는 것을 특징으로 하는 무기 전해질막 제조용 조성물.The dispersion liquid is an inorganic electrolyte membrane production composition comprising a dispersant and a solvent.
  18. 청구항 17에 있어서,The method according to claim 17,
    상기 분산제는 양이온계 분산제인 것을 특징으로 하는 무기 전해질막 제조용 조성물.The dispersant is a composition for preparing an inorganic electrolyte membrane, characterized in that the cationic dispersant.
  19. 청구항 17에 있어서,The method according to claim 17,
    상기 분산제는 아크릴레이트 공중합체 또는 폴리우레탄 계열의 분산제인 것을 특징으로 하는 무기 전해질막 제조용 조성물.The dispersant is an inorganic electrolyte membrane production composition, characterized in that the acrylate copolymer or polyurethane-based dispersant.
  20. 청구항 17에 있어서,The method according to claim 17,
    상기 분산제는 SOP(Solids on pigment) 기준으로 상기 일차무기입자 100 중량부에 대하여 10 내지 20 중량부로 포함되는 것을 특징으로 하는 무기 전해질막 제조용 조성물.The dispersant is an inorganic electrolyte membrane production composition, characterized in that it comprises 10 to 20 parts by weight based on 100 parts by weight of the primary inorganic particles on a solids on pigment (SOP) basis.
  21. 청구항 16에 있어서,The method according to claim 16,
    상기 일차무기입자는 GDC (gadolinium doped ceria) 인 것을 특징으로 하는 무기 전해질막 제조용 조성물.The primary inorganic particle is a composition for preparing an inorganic electrolyte membrane, characterized in that GDC (gadolinium doped ceria).
  22. 청구항 17에 있어서,The method according to claim 17,
    상기 용매는 Alcohol, PGME(Propylene Glycol Methyl Ether), PGMEA(Propylene Glycol Methyl Ethyl Acetate), MEK(Methyl Ethyl Ketone) MIBK(methyl isobutyl ketone), Toluene, Terpineol, DMF 및 DMSO 로 이루어지는 군에서 선택되는 어느 하나 이상인 것을 특징으로 하는 무기 전해질막 제조용 조성물.The solvent is any one selected from the group consisting of Alcohol, Propylene Glycol Methyl Ether (PGME), Propylene Glycol Methyl Ethyl Acetate (PGMEA), Methyl Ethyl Ketone (MEK), Toluene, Terpineol, DMF and DMSO The composition for inorganic electrolyte membrane manufacture characterized by the above.
  23. 청구항 17에 있어서,The method according to claim 17,
    상기 용매는 일차무기입자 100 중량부에 대하여 80 내지 90 중량부로 포함되는 것을 특징으로 하는 무기 전해질막 제조용 조성물.The solvent is 80 to 90 parts by weight based on 100 parts by weight of the primary inorganic particles composition for producing an inorganic electrolyte membrane, characterized in that.
  24. 청구항 16에 있어서,The method according to claim 16,
    상기 바인더는 아크릴레이트계열 바인더, 우레탄계열 바인더 및 셀룰로오스계열 바인더로 이루어지는 군에서 선택되는 어느 하나 이상인 것을 특징으로 하는 무기 전해질막 제조용 조성물.The binder is any one or more selected from the group consisting of an acrylate-based binder, a urethane-based binder and a cellulose-based binder, the composition for preparing an inorganic electrolyte membrane.
  25. 청구항 16의 무기 전해질막 제조용 조성물을 코팅 및 건조하여 제조된 그린시트.A green sheet prepared by coating and drying the composition for preparing an inorganic electrolyte membrane of claim 16.
  26. 청구항 25에 있어서,The method according to claim 25,
    상기 그린시트의 표면의 거칠기가 Ra 값으로 0.8 um 이하인 것을 특징으로 하는 그린시트.Green sheet, characterized in that the roughness of the surface of the green sheet is less than 0.8um in the Ra value.
  27. 청구항 25에 있어서,The method according to claim 25,
    상기 그린시트의 광택도가 10GU (60°) 이상인 것을 특징으로 하는 그린시트.Green sheet, characterized in that the gloss of the green sheet is 10GU (60 °) or more.
  28. 청구항 25에 있어서,The method according to claim 25,
    상기 그린시트의 광택도가 20GU (85°) 이상인 것을 특징으로 하는 그린시트.The green sheet, characterized in that the glossiness of the green sheet is 20GU (85 °) or more.
  29. 청구항 25의 그린시트를 소성하여 제조된 무기 전해질막.An inorganic electrolyte membrane prepared by firing the green sheet of claim 25.
  30. 청구항 29의 무기 전해질막을 포함하는 고체산화물 연료전지.A solid oxide fuel cell comprising the inorganic electrolyte membrane of claim 29.
PCT/KR2015/008007 2014-07-30 2015-07-30 Method for manufacturing inorganic electrolyte membrane having improved compactness, composition for manufacturing inorganic electrolyte membrane, and inorganic electrolyte membrane manufactured using same WO2016018106A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580031706.7A CN106463749B (en) 2014-07-30 2015-07-30 The improved inorganic electrolyte membrane manufacturing method of consistency, the composition for manufacturing the film and the film manufactured using the composition
EP15827823.4A EP3142179B1 (en) 2014-07-30 2015-07-30 Method for manufacturing inorganic electrolyte membrane having improved compactness, composition for manufacturing inorganic electrolyte membrane, and inorganic electrolyte membrane manufactured using same
US15/317,279 US10658691B2 (en) 2014-07-30 2015-07-30 Method for manufacturing inorganic electrolyte membrane having improved compactness, composition for manufacturing inorganic electrolyte membrane, and inorganic electrolyte membrane manufactured using same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20140097501 2014-07-30
KR10-2014-0097501 2014-07-30
KR10-2015-0107779 2015-07-30
KR1020150107779A KR101809789B1 (en) 2014-07-30 2015-07-30 A Manufacturing Method for Inorganic Electrolyte Membrane Having an Improvement of Compactness, A composition for the Inorganic Electrolyte Membrane and An Inorganic Electrolyte Membrane Manufactured by the Same

Publications (1)

Publication Number Publication Date
WO2016018106A1 true WO2016018106A1 (en) 2016-02-04

Family

ID=55217885

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/008007 WO2016018106A1 (en) 2014-07-30 2015-07-30 Method for manufacturing inorganic electrolyte membrane having improved compactness, composition for manufacturing inorganic electrolyte membrane, and inorganic electrolyte membrane manufactured using same

Country Status (1)

Country Link
WO (1) WO2016018106A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210036354A1 (en) * 2018-04-17 2021-02-04 Mitsui Mining & Smelting Co., Ltd. Solid electrolyte assembly having intermediate layer

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5955392A (en) * 1994-11-09 1999-09-21 Ngk Insulators, Ltd. Zirconia ceramic green sheet
JP3690967B2 (en) * 2000-06-29 2005-08-31 株式会社日本触媒 Slurry for forming solid electrolyte membrane and solid electrolyte membrane using the same
KR20070023002A (en) * 2005-08-23 2007-02-28 주식회사 동진쎄미켐 COMPOSITION FOR FORMING MgO THIN FILM
KR20080074996A (en) * 2005-12-21 2008-08-13 도카이 카본 가부시키가이샤 Separator material for solid polymer electrolyte fuel cell and process for producing the same
US20120231368A1 (en) * 2009-10-23 2012-09-13 Nippon Shokubai Co., Ltd. Process for production of scandia-stabilized zirconia sheet, scandia-stabilized zirconia sheet obtained by the process, and scandia-stabilized zirconia sintered powder
KR20140053635A (en) * 2012-10-26 2014-05-08 한국과학기술연구원 Manufacturing method of green sheet, ceramic slurry for manufacturing green sheet, and green sheet with high dencity and toughness
KR20140073957A (en) * 2012-12-07 2014-06-17 주식회사 엘지화학 Separator for secondary battery comprising dual porous coating layers of inorganic particles with different average particle diameter, secondary battery comprising the same, and method for preparing the separator

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5955392A (en) * 1994-11-09 1999-09-21 Ngk Insulators, Ltd. Zirconia ceramic green sheet
JP3690967B2 (en) * 2000-06-29 2005-08-31 株式会社日本触媒 Slurry for forming solid electrolyte membrane and solid electrolyte membrane using the same
KR20070023002A (en) * 2005-08-23 2007-02-28 주식회사 동진쎄미켐 COMPOSITION FOR FORMING MgO THIN FILM
KR20080074996A (en) * 2005-12-21 2008-08-13 도카이 카본 가부시키가이샤 Separator material for solid polymer electrolyte fuel cell and process for producing the same
US20120231368A1 (en) * 2009-10-23 2012-09-13 Nippon Shokubai Co., Ltd. Process for production of scandia-stabilized zirconia sheet, scandia-stabilized zirconia sheet obtained by the process, and scandia-stabilized zirconia sintered powder
KR20140053635A (en) * 2012-10-26 2014-05-08 한국과학기술연구원 Manufacturing method of green sheet, ceramic slurry for manufacturing green sheet, and green sheet with high dencity and toughness
KR20140073957A (en) * 2012-12-07 2014-06-17 주식회사 엘지화학 Separator for secondary battery comprising dual porous coating layers of inorganic particles with different average particle diameter, secondary battery comprising the same, and method for preparing the separator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210036354A1 (en) * 2018-04-17 2021-02-04 Mitsui Mining & Smelting Co., Ltd. Solid electrolyte assembly having intermediate layer

Similar Documents

Publication Publication Date Title
TWI700856B (en) Electrolyte forming process
WO2016144067A1 (en) Method for manufacturing electrode, electrode manufactured by same, electrode structure including electrode, fuel cell or metal-air secondary battery, battery module including cell or battery, and composition for manufacturing electrode
Le et al. Fabrication and evaluation of anode and thin Y2O3-stabilized ZrO2 film by co-tape casting and co-firing technique
KR20140085431A (en) Composite anode for a solid oxide fuel cell with improved mechanical integrity and increased efficiency
WO2015016599A1 (en) Solid oxide fuel cell and method for manufacturing same
WO2017003109A1 (en) Method for manufacturing electrolyte membrane for solid oxide fuel cell, electrolyte membrane for solid oxide fuel cell, solid oxide fuel cell, and fuel cell module
WO2016032100A1 (en) Single-phase perovskite-based solid electrolyte, solid oxide fuel cell comprising same, and method for manufacturing same
WO2015046977A1 (en) Method for manufacturing fuel electrode support for solid oxide fuel cell and fuel electrode support for solid oxide fuel cell
KR20130123189A (en) Anode support for solid oxide fuel cell and manufacturing method thereof, and solid oxide fuel cell including the anode support
JP2009016109A (en) Cell for solid oxide fuel battery, and solid oxide fuel battery
WO2020167005A1 (en) Solid oxide fuel cell including mixed conduction functional layer with nanoporous structure, and method for manufacturing same
WO2016200206A1 (en) Cathode composition, cathode and fuel cell including same
WO2017048047A1 (en) Electrode slurry of solid oxide fuel cell, green sheet for electrode of solid oxide fuel cell, electrode of solid oxide fuel cell, and method for manufacturing solid oxide fuel cell and electrode of solid oxide fuel cell
Baron et al. Dual ionic conductive membrane for molten carbonate fuel cell
JP2007073336A (en) Solid oxide fuel cell
KR101809789B1 (en) A Manufacturing Method for Inorganic Electrolyte Membrane Having an Improvement of Compactness, A composition for the Inorganic Electrolyte Membrane and An Inorganic Electrolyte Membrane Manufactured by the Same
WO2024150916A1 (en) Zirconia electrolyte for solid oxide electrolysis cell, and preparation method therefor
WO2016018106A1 (en) Method for manufacturing inorganic electrolyte membrane having improved compactness, composition for manufacturing inorganic electrolyte membrane, and inorganic electrolyte membrane manufactured using same
JP6546137B2 (en) Sealing green sheet
WO2016072768A1 (en) Inorganic oxide particle and electrolyte including sintered body thereof
WO2017034163A1 (en) Flat plate-shaped solid oxide fuel cell and cell module comprising same
WO2016190699A1 (en) Oxide particles, cathode including same, and fuel cell including same
WO2015050409A1 (en) Method for manufacturing anode support of solid oxide fuel cell, and anode support of solid oxide fuel cell
WO2015016565A1 (en) Electrolyte containing inorganic oxide powder and sintered bodies thereof
WO2017034334A1 (en) Solid oxide fuel cell manufacturing method, solid oxide fuel cell and cell module comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15827823

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015827823

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15317279

Country of ref document: US

Ref document number: 2015827823

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE