WO2016018097A1 - Naphtha and methanol mixed catalytic cracking reaction process - Google Patents

Naphtha and methanol mixed catalytic cracking reaction process Download PDF

Info

Publication number
WO2016018097A1
WO2016018097A1 PCT/KR2015/007989 KR2015007989W WO2016018097A1 WO 2016018097 A1 WO2016018097 A1 WO 2016018097A1 KR 2015007989 W KR2015007989 W KR 2015007989W WO 2016018097 A1 WO2016018097 A1 WO 2016018097A1
Authority
WO
WIPO (PCT)
Prior art keywords
naphtha
methanol
reaction
reactor
methane
Prior art date
Application number
PCT/KR2015/007989
Other languages
French (fr)
Korean (ko)
Inventor
강나영
박용기
최원춘
김대진
서휘민
박선영
오주형
강신철
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150106710A external-priority patent/KR101803406B1/en
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Priority to EP15826774.0A priority Critical patent/EP3176242B1/en
Priority to US15/501,006 priority patent/US10131850B2/en
Priority to JP2017526029A priority patent/JP6343400B2/en
Priority to CN201580052123.2A priority patent/CN106715656A/en
Publication of WO2016018097A1 publication Critical patent/WO2016018097A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/14Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts
    • C10G11/18Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts according to the "fluidised-bed" technique
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/40Ethylene production

Definitions

  • the present invention relates to a method for producing hard lepin, such as ethylene, propylene, through a naphtha and methanol mixed catalytic reaction process for performing a co-decomposition reaction of naphtha and methanol using a circulating fluidized bed reaction.
  • hard lepin such as ethylene, propylene
  • Hard lepine such as ethylene and propylene
  • Hard lepine is produced by the high temperature pyrolysis process of more than 800 of naphtha mostly in the basic raw materials of the petrochemical industry, and because of the endothermic reaction, a large amount of energy is used.
  • the naphtha cracker's competitiveness is falling due to the increase in the weight of natural gas crackers in which ethylene is selectively produced, and the development of Sinulpin manufacturing technology capable of selectively producing propylene is required.
  • MTO Methanol To Olef in
  • the pyrolysis reaction that produces light olefins in naphtha is an endothermic reaction
  • the MTO reaction that produces light lepine in methanol is an exothermic reaction, which generates a large amount of heat.
  • the ⁇ 0 process was developed by U0P in the US and DICP in China, and is in operation for commercial production.
  • An object of the present invention is to provide a method for the combined catalytic cracking reaction of naphtha and methane, which is performed due to the high rate of methanol decomposition. It is to provide a method for minimizing the generation of saturated hydrocarbons and improving the yield of hard lepine.
  • the naphtha is fed from the bottom of the half hopper to a position of 0 3 ⁇ 4 to 5 3 ⁇ 4 of the length of the full lash, and the methane is
  • a method for producing hard lephine by a mixed reaction reaction of naphtha and methanol which performs a simultaneous decomposition reaction of naphtha and methanol using a circulating fluidized bed half vessel including a half container, a stripper, and a regenerator.
  • the naphtha is supplied from 0 3 ⁇ 4 to 5% of the total half-length of the reaction vessel from the bottom of the semi-container
  • the methane is supplied from 10% to 80% of the total reactor length from the bottom of the semi-unggi Characterized by a hard to provide a method for improving the pin yield.
  • the catalytic cracking reaction process according to the present invention uses a circulating fluidized bed reaction reactor 1, reactor replacement paper (rule 26) By dissolving naphtha methane at the same time by different naphtha and methanol input positions, it is possible to minimize heat consumption by minimizing energy consumption and to minimize energy consumption. The production of light saturated hydrocarbons can be suppressed to improve light olefin yield.
  • Figure 1 is a schematic diagram showing an example of the circulating fluidized bed bed used in the catalytic cracking process reaction according to the present invention
  • Figure 4 is a graph showing the yield of the light olefin after performing the process of Examples 1 to 4, Comparative Example 1 and Comparative Example 2 according to the present invention
  • Circulating fluidized bed reactors including reactors, strippers and regenerators, shall be used as replacement papers (Art. 26).
  • Art. 26 In the catalytic cracking reaction process of naphtha and methanol, which performs the simultaneous reaction of naphtha and methane.
  • the naphtha is fed from the bottom of the half vessel to 0 3 ⁇ 4 to 5% of the total half vessel length and the methanol is from the bottom of the reactor
  • a catalytic cracking reaction process comprising feeding to a 10% to 80% position.
  • FIG. 1 shows an example of a circulating fluidized bed semi-container for carrying out a mixed catalytic cracking process of naphtha and methane.
  • the conventionally proposed techniques propose only concepts for realizing thermal increase to increase energy efficiency in the simultaneous decomposition of naphtha and methane, which have significantly different reaction rates and heats of reaction.
  • this concept alone is unsatisfactory, and accurate contact time control according to reaction reaction speed is essential.
  • a circulating fluidized bed anti-tanker was applied, and the position of the hydrocarbon and the methane was adjusted to more precisely control the contact time of naphtha and methanol to a desired time.
  • Hard paper such as ethylene and propylene in the decomposition reaction of naphtha and methanol (Article 26 of the Rule)
  • the pin is an intermediate product, and if the contact time is short, the decomposition does not occur smoothly. If the contact time is too long, the coarseness is intensified to obtain an unwanted product. Therefore, it is very important to precisely control the contact time between the reactant and the catalyst.
  • the decomposition rate of methanol is more than 10 times faster than the decomposition rate of naphtha, which is a hydrocarbon
  • the residence time of methanol becomes too long, and thus, the hard saturated hydrocarbons such as methane, ethane, and propane And there is a problem that the amount of BTX production increases.
  • the circulating fluidized bed reactor 100 used in the catalytic cracking reaction process according to the present invention preferably includes a reaction vessel 10, a stripper 20, and a regenerator 30 as a specific example. .
  • the reactor 10 is a specific example. It may be a vertical tube (r iser).
  • the vertical tube may have a length of 5 m to 15 m, the diameter may be 1/4 inch to 1 inch, but is not limited thereto.
  • the reactor 10 may be each formed with a tube to which naphtha and methanol are supplied.
  • the naphtha and methane input positions are different, it is preferable to form tubes for naphtha and methanol at respective positions.
  • the stripper 20 is produced value substitute paper produced from naphtha and methanol (Article 26) It may include a cylinder 21 for discharging the product gas. Furthermore, a regenerator 30 is located under the stripper, and may further include a valve 22 for distinguishing the stripper and the regenerator and controlling the circulating flow of catalyst and fuel gas.
  • the regenerator 30 may include a cylinder 31 for discharging a fuel gas (feul gas) containing naphtha and methane.
  • the regenerator may be filled with a catalyst, and a tube through which air (ai r) may be injected may be formed under the regenerator.
  • the bottom of the regenerator is connected to the reaction vessel 10, and may further include a valve 32 for distinguishing the regenerator and the reactor and regulating the circulating flow of the catalyst and fuel gas.
  • the co-reaction reaction of naphtha and methanol is performed by using the circulating fluidized bed half vessel as described above, wherein the naphtha is supplied to the bottom of the half vessel and the methanol is separated from the bottom. It is preferred to be supplied.
  • the input position of methanol may vary depending on the reaction temperature, the amount of circulation of the catalyst, and the amount of the semi-solution, but it is preferable that the methanol is introduced at a position of 10% to 80% of the length of the entire reactor from the bottom of the semi-container. In this way, if the input position is different, thermal increase can be achieved and the yield of light olefin can be maximized.
  • the methanol is Of the total reactor length from the bottom
  • the methane replacement paper (Article 26) It may be supplied from the bottom of the half vessel to the 15% to 45% position of the total half vessel grinding.
  • the naphtha used as a semi- aquaculture may include a saturated hydrocarbon or an unsaturated hydrocarbon having C 4 to C 12 , and the naphtha may be a full range of naphtha or hard naphtha. light naphtha, raffinate oil, and mixtures thereof.
  • the circulating-flow-catalytic cracking process using the catalyst may be used as an anti-lephine containing hydrocarbon.
  • the methanol used as the reaction product can be used not only anhydrous methanol, but also hydrous methanol containing up to 20% of water.
  • the circulating fluidized bed reaction apparatus 100 is cyclically circulated, wherein the catalyst may use a zeolite-based catalyst.
  • the catalyst may use a shaped spherical or elliptical catalyst having a diameter of 20 / an to 200 including a catalyst component, a binder, and a matrix (matr ix) which is ZSM-5 or SAP0-34. Do not.
  • the naphtha and methanol feed ratio is preferably 0.2 to 1.4 parts by weight of methane per 1 part by weight of naphtha. If the supply of naphtha and methane substitutes (Article 26) If the ratio is less than 0.2 parts by weight of methanol with respect to 1 part by weight of naphtha, the amount of heat generated by the exothermic reaction of methane decreases, which increases the amount of energy used to maintain the reaction temperature. There is a problem that the amount of CO and CH 4 increases.
  • the naphtha and methane is preferably performed at a temperature of 600 1: 700 I: and a space velocity range of 5 h-30 h ⁇ 1 .
  • the residence time of the naphtha and methane in the reaction vessel is preferably 1 second to 5 seconds. If the temperature at which the reaction of the naphtha and methane is performed is less than 600 t, the conversion rate is lowered, so that the yield of the desired product is sharply lowered. There is a problem that the yield of the product is reduced by conversion to coke.
  • the naphtha is fed from the bottom of the half vessel to the position 0 3 ⁇ 4 to 5 3 ⁇ 4 of the total half foot length, and the methane is
  • It provides a light olefin produced by the catalytic cracking reaction process comprising the feed to 10% to 80% position.
  • the heat neutralization (heat neutral i zat i on) It is possible to minimize energy consumption and to suppress the production of hard saturated hydrocarbons such as methane, ethane, and propane, thereby improving the yield of hard lepine, and thus making the produced hard lepine economically. Can be used.
  • the naphtha is fed from the bottom of the reactor to a position of 0 to 5 3/4 of the total reaction length and the methanol is from the bottom of the reactor to
  • the present invention employs a circulatory fluid caterpillar, and adjusts the position of the hydrocarbon and methanol in order to more precisely control the contact time between naphtha and methanol to the desired time.
  • the circulating fluidized bed semi-aerator 100 used in the method for improving the yield of hard lepine according to the present invention is a semi-unggi (10) as a specific example. It is preferred to include a stripper (str i pper 20) and a regenerator 30
  • the reactor 10 may be a vertical pipe (r i ser) as a specific example.
  • the vertical tube may have a length of 5 m to 15 m.
  • the diameter may range from 1/4 inch to 1 inch, but is not limited thereto.
  • the counterunggi 10 may be formed with a tube supplied with naphtha and methane, respectively. Since the method of improving the yield of light olefins according to the present invention differs in the naphtha and methane input positions, it is preferable to form a tube supplying the naphtha and methane at each position.
  • the stripper 20 may include a cylinder 21 for discharging the product gas produced from naphtha and methanol.
  • a regenerator 30 is located below the stripper, and may further include a valve 22 for distinguishing the stripper and the regenerator and controlling circulating flow of catalyst and fuel gas.
  • the regenerator 30 may include a cylinder 31 for discharging a fuel gas (feul gas) containing naphtha and methane.
  • the regenerator may be filled with a catalyst, and a tube through which air (ai r) may be injected may be formed under the regenerator.
  • the bottom of the regenerator is connected to the reaction device (10), and the regenerator and the reactionary replacement paper (Article 26) It may further include a valve (32) to distinguish the groups and to control the circulation flow of the catalyst and fuel gas.
  • a method for improving the yield of hard lepin is circulating as described above.
  • the reaction of naphtha and methanol is carried out using a semi-container.
  • the naphtha is preferably supplied to the bottom of the reactor and the methane is supplied at a position away from the bottom.
  • the input position of methanol may vary depending on the reaction temperature, the circulation amount of the catalyst, and the input amount of the reactant, but it is preferable to be introduced at a position of 10% to 80% of the length of the entire reactor from the bottom of the reactor. In this way, if the input position is different, the thermal increase can be achieved and the yield of hard lepine can be maximized.
  • the naphtha is fed from the bottom of the reactor to a position of 0 3 ⁇ 4 to 5% of the total reactor length, the methanol is Of the total reactor length from the bottom of
  • the yield of light olefins can be maximized when the methanol is fed from the bottom of the reactor to 15% to 45% of the total reactor length.
  • the naphtha used as the counter-agar may include a saturated hydrocarbon or an unsaturated hydrocarbon having C 4 to C 12 , and the naphtha is a full range of naphtha replacement paper (Rule 26). FuU-range naphtha, light naphtha, raffinate oil, and mixtures thereof, and the like.
  • the circulating fluid catalytic cracking process using a catalyst can also be used as an olefin containing hydrocarbon.
  • the methane used as the reaction product can be used not only anhydrous methane, but also hydrous methane containing up to 20% of moisture.
  • the circulating fluidized bed semi-agitator 100 is a catalyst is circulated, wherein the catalyst may be a zeolite-based catalyst.
  • the catalyst may be a spherical or elliptical catalyst having a diameter of 20 to 200, including but not limited to, ZSM-5 or SAP0-34 catalyst component, binder, and matrix ix.
  • the naphtha and methanol supply ratio is preferably 0.2 to 1.4 parts by weight of methane per 1 part by weight of naphtha. if.
  • the supply ratio of naphtha and methanol is less than 2 parts by weight of methane relative to 1 part by weight of naphtha, the amount of heat generated by the exothermic reaction of methane decreases, thus increasing the amount of energy used to maintain the reaction temperature. 1.4 If the excess portion is exceeded, there is a problem in that the amount of by-products CO and C3 ⁇ 4 is added.
  • the circulating fluidized bed reactor is composed of a reactor, a stripper and a regenerator, the reactor is 7 m long and has a diameter of 1/2 inch.
  • the ACO-100 catalyst used in the ACO process with HZSM-5 content of 40% by weight was used as a catalyst, and the temperature of 800 t: 100% steam was used to characterize the E-cat. After steaming in the atmosphere for 24 hours, 3 kg of catalyst was loaded into the regenerator.
  • the naphtha feeding position supplied to the reactor is the lower part of the counterunggi, and the methanol feeding position is different from the lower portion of the reactor to 20% position, 40% position, 60% position, and 80 3 ⁇ 4 position of the total reactor length. Methanol was fed.
  • the reciprocating inlet temperature was set to 690 V and the catalyst / oil ratio (Cat / Oi l rat io) to 25.
  • the naphtha to be added to the reaction was used hard naphtha, the weight ratio of hard naphtha and methanol was fixed to 1: 0.25.
  • the reactor inlet temperature is 690 X: and the catalyst / oil ratio is
  • Example 1-4 The circulating fluidized bed half vessel used in Example 1-4 was used.
  • the reactor was fed naphtha to the bottom of the counterunggi.
  • the temperature value ( ⁇ ) of the reactor was 21 1 after the process of Comparative Example 2, which is a case of decomposing only hard naphtha, and the yield of hard lephine was shown. Showed a 33.5 increase 3 ⁇ 4. In addition, the yield of methane was about 10% by weight increase.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The present invention concerns a naphtha and methanol mixed catalytic cracking reaction process involving a simultaneous cracking reaction of naphtha and methanol by using a circulating fluidized-bed reactor comprising a reactor, a stripper and a regenerator, being a catalytic cracking reaction process wherein: the naphtha is supplied from the bottom part of the reactor, at a position between 0% and 5% of the total length of the reactor; and the methanol is supplied from the bottom part of the reactor, at a position between 10% and 80% % of the total length of the reactor. In the catalytic cracking reaction process according to the present invention, by using the circulating fluidized-bed reactor and by simultaneously cracking the naphtha and methanol that are introduced into the reactor while having different introduction positions for the naphtha and the methanol, the present invention makes it possible to ensure heat neutralisation and thus possible to minimise the amount of energy used, and, in addition, makes it possible to improve the yield of light olefins by suppressing the production of light saturated hydrocarbons such as methane, ethane and propane.

Description

【명세세  [Specifications
【발명의 명칭】  [Name of invention]
나프타와 메탄올 흔합 접촉분해 반웅공정  Naphtha and Methanol Mixed Catalytic Reaction
【기술분야 1  Technical Field 1
<οοοι> 본 발명은 순환유동층 반웅기를 이용하여 나프타와 메탄올을 동시분해 반응 을 수행하는 나프타와 메탄올 혼합 접촉분해 반웅공정을 통해 에틸렌, 프로필렌 등 과 같은 경질을레핀을 제조하는 방법에 관한 것이다.  <οοοι> The present invention relates to a method for producing hard lepin, such as ethylene, propylene, through a naphtha and methanol mixed catalytic reaction process for performing a co-decomposition reaction of naphtha and methanol using a circulating fluidized bed reaction.
<0002>  <0002>
【배경기술】  Background Art
<0003> 에틸렌, 프로필렌과 같은 경질을레핀은 석유화학산업의 기초원료소서 대부분 나프타의 800 이상의 고온 열분해공정에 의하여 생산되고 있으며, 흡열반웅이기 때문에 많은 양의 에너지가 사용되고 있다. 최근 들어, 에틸렌이 선택적으로 생산 되는 천연가스 크래커의 중가로 인하여 나프타 크래커의 경쟁력이 떨어지고 있으 며 , 프로필렌을 선택적으로 생산할 수 있는 신을레핀 제조기술 개발이 요구되고 있 다ᅳ  Hard lepine, such as ethylene and propylene, is produced by the high temperature pyrolysis process of more than 800 of naphtha mostly in the basic raw materials of the petrochemical industry, and because of the endothermic reaction, a large amount of energy is used. Recently, the naphtha cracker's competitiveness is falling due to the increase in the weight of natural gas crackers in which ethylene is selectively produced, and the development of Sinulpin manufacturing technology capable of selectively producing propylene is required.
<0004>  <0004>
<0(»5> 최근, 기존 나프타 열분해 공정대비 프로필렌 생산량올 100 ¾ 이상 향상시킬 수 있는 촉매식 나프타 분해공정, ACO (Advanced Catalyt ic Olef ins) 공정을 한국 화학연구원, SK Innovat ion , KBR이 개발한 바 있다 (대한민국 등록특허 제 10- 0651329호, 대한민국 등록특허 제 10-0632563호) . 대체용지 (규칙 제 26조) <0006> <0 (»5) Recently, the Korea Institute of Chemistry, SK Innovat ion, and KBR have developed a catalytic naphtha cracking process and an advanced catalyzed oligophosphate (ACO) process that can improve propylene production by more than 100 ¾ compared to the existing naphtha pyrolysis process. (Korean Patent No. 10-0651329, Korean Patent No. 10-0632563) Alternative Paper (Article 26) <0006>
<0007> 한편, 새로운 올레핀 생산기술로서 석탄이나 천연가스로부터 가스화나 리포 밍올 거쳐 메탄올을 제조한 후 메탄을로부터 경질올레핀을 생산하는 MTO(Methanol To Olef in) 기술이 시장에 등장하고 있는 상황이다. 나프타에서 경질올레핀을 생산 하는 열분해 반웅은 흡열반응인데 비하여, 메탄올에서 경질을레핀을 생산하는 MTO 반응은 발열반웅으로서 반웅시 많은 양의 열이 발생하기 때문에 반웅 중 반웅열을 제거해 주어야 하는 특징을 가지고 있다. Γ0 공정은 미국의 U0P, 중국의 DICP 등 에서 개발하여 상업적 생산을 위하여 가동 중에 있다.  Meanwhile, as a new olefin production technology, MTO (Methanol To Olef in) technology for producing light olefins from methane after producing methanol through gasification or reforming from coal or natural gas is emerging on the market. The pyrolysis reaction that produces light olefins in naphtha is an endothermic reaction, whereas the MTO reaction that produces light lepine in methanol is an exothermic reaction, which generates a large amount of heat. have. The Γ0 process was developed by U0P in the US and DICP in China, and is in operation for commercial production.
<麵>  <麵>
<000 > 이상에 열거한 바와 같이 탄화수소 분해반움은 흡열반응이고 메탄을 분해반 웅은 발열반웅이기 때문에 열적증화 (heat neutral i zat ion)를 위하여 두 반용을 결 합한 (coupl ing) 반웅이 제안되었다. Nowak et al .의 결과에 따르면, 메탄을 전환 공정 증에 C4 탄화수소를 첨가할 경우 열적증화가 가능함을 개시하고 있다 (Appl . Catal . A , 50, (1989) 149-155) . 메탄을과 n-부탄 (n-butane)을 1 : 3의 비율로 투 입할 경우 외부에서 추가적인 에너지 공급이나 제거 없이도 경질을레핀 생산을 위 한 분해반움을 진행시킬 수 있음을 제시하고 있다.  As listed above, hydrocarbon reactions are endothermic and methane is an exothermic reaction, so a reaction that combines two reactions for heat neutral i zat ion has been proposed. . Nowak et al. Have shown that methane can be thermally enriched by the addition of C4 hydrocarbons to the conversion process (Appl. Catal. A, 50, (1989) 149-155). The introduction of methane and n-butane in a ratio of 1: 3 suggests that cracking can be promoted for the production of hard lephine without additional energy supply or removal from outside.
<0010>  <0010>
<0011> 그러나, 메탄올 분해반용은 탄화수소인 나프타의 분해 반웅반응에 비하여 매 우 빠르게 일어나기 때문에 단순하게 두 반용물을 동시에 반웅시키는 것을 부반웅 물을 많이 생성하여 경질을레핀 수율을 높이는데 불리하다.  However, methanol dissolution incineration occurs very fast compared to the decomposition reaction of naphtha, which is a hydrocarbon, so it is disadvantageous to increase the yield of hard lepin by simply producing a lot of side reactions.
<0012> 대체용지 (규칙 제 26조) <0013> 이에, 본 발명자들은 나프타와 메탄올을 동시분해 반용을 수행하는 나프타와 메탄올 흔합 접촉분해 반응공정에 대하여 연구하던 증. 순환유동층 반응기를 이용 하여 나프타와 메탄을의 동시분해 반웅을 수행시키되, 상기 나프타와 메탄올의 순 환유동층 반웅기로의 투입 위치를 조절함으로써 경질올레핀의 수율을 향상시킬 수 있음을 발견하고 본 발명을 완성하였다. <0012> Alternative Paper (Article 26) Thus, the present inventors have been studying the naphtha and methanol combined catalytic cracking reaction process to perform the co-decomposition of naphtha and methanol. Completion of the present invention by performing a co-decomposition reaction of naphtha and methane using a circulating fluidized bed reactor, by adjusting the input position of the naphtha and methanol into the circulating fluidized bed reaction reactor to complete the present invention and completed the present invention It was.
<0014>  <0014>
【발명의 상세한설명】  Detailed Description of the Invention
【기술적 과제】  [Technical problem]
< 015> 본 발명의 목적은 나프타와 메탄을의 동시분해 반웅을 수행하는 나프타와 메 탄올 흔합 접촉분해 반응공정에 있어서, 메탄올의 분해반용속도가 빠르기 때문에 발생하는 메탄, 에탄 및 프로판과 같은 경질의 포화탄화수소 생성을 최소화시키며 경질을레핀의 수율을 향상시키는 방법을 제공하는 데 있다.  An object of the present invention is to provide a method for the combined catalytic cracking reaction of naphtha and methane, which is performed due to the high rate of methanol decomposition. It is to provide a method for minimizing the generation of saturated hydrocarbons and improving the yield of hard lepine.
<0016>  <0016>
【기술적 해결방법】  Technical Solution
<0017> 상기 목적을 달성하기 위하여, 본 발명은  In order to achieve the above object, the present invention
<oois> 반옹기, 스트리퍼 ( st r i pper ) 및 재생기를 포함하는 순환유동층 반옹기를 이 용하여 나프타와 메탄올의 동시분해 반응을 수행하는 나프타와 메탄올 혼합 접촉분 해 반응공정에 있어서 ,  <oois> In a catalytic cracking reaction of naphtha and methanol in which a co-reaction of naphtha and methanol is carried out using a circulating fluidized bed semi-reactor comprising a repeller, a stripper (st r i pper) and a regenerator,
<0019> 상기 나프타는 상기 반웅기의 하부로부터 전체 반응기 길이의 0 ¾ 내지 5 % 위치로 공급되고, 상기 메탄올은 상기 반응기의 하부로부터 전체 반응기 길이의 10 % 내지 80 % 위치로 공급되는 것을 포함하는 접촉분해 반웅공정을 제공한다. 대체용지 (규칙 제 26조) <0020> Wherein the naphtha is fed from the bottom of the reactor to a position of 0 ¾ to 5% of the total reactor length, and the methanol is fed from the bottom of the reactor to a position of 10% to 80% of the total reactor length. Provides a catalytic cracking reaction process. Alternative Site (Article 26) <0020>
<0021> 또한, 본 발명은  In addition, the present invention
<oo22> 반응기, 스트리퍼 ( s tr i pper ) 및 재생기를 포함하는 순환유동층 반응기를 이 용하여 나프타와 메탄올의 동시분해 반응을 수행하는 나프타와 메탄올 흔합 접촉분 해 반응공정에 있어서,  In the combined catalytic cracking reaction of naphtha and methanol, which performs a simultaneous decomposition reaction of naphtha and methanol using a circulating fluidized bed reactor including a reactor, a stripper and a regenerator,
<0023> 상기 나프타는 상기 반움기의 하부로부터 전체 반움기 길이의 0 ¾ 내지 5 ¾ 위치로 공급되고, 상기 메탄을은 상기 반웅기의 하부로부터 전체 반응기 길이의 The naphtha is fed from the bottom of the half hopper to a position of 0 ¾ to 5 ¾ of the length of the full lash, and the methane is
10 % 내지 80 % 위치로 공급되는 것을 포함하는 접촉분해 반웅공정으로 제조된 경 질을레핀을 제공한다 Provides a hard lepine produced by the catalytic cracking reaction process, including feeding to a 10% to 80% position
<0024>  <0024>
<0025> 나아가, 본 발명은  Furthermore, the present invention
<0026> 반용기, 스트리퍼 ( str i pper ) 및 재생기를 포함하는 순환유동층 반용기를 이 용하여 나프타와 메탄올의 동시분해 반응을 수행하는 나프타와 메탄올 혼합 접촉분 해 반웅공정으로 경질을레핀을 제조하는 방법에 있어세  <0026> A method for producing hard lephine by a mixed reaction reaction of naphtha and methanol, which performs a simultaneous decomposition reaction of naphtha and methanol using a circulating fluidized bed half vessel including a half container, a stripper, and a regenerator. There is
<0027> 상기 나프타는 상기 반용기의 하부로부터 전체 반웅기 길이의 0 ¾ 내지 5 % 위치로 공급되고, 상기 메탄을은 상기 반웅기의 하부로부터 전체 반응기 길이의 10 % 내지 80 % 위치로 공급되는 것을 특징으로 하는 경질을레핀 수율을 향상시키 는 방법을 제공한다.  Wherein the naphtha is supplied from 0 ¾ to 5% of the total half-length of the reaction vessel from the bottom of the semi-container, the methane is supplied from 10% to 80% of the total reactor length from the bottom of the semi-unggi Characterized by a hard to provide a method for improving the pin yield.
<0028>  <0028>
【발명의 효과】  【Effects of the Invention】
<0029> 본 발명에 따른 접촉분해 반용공정은 순환유동층 반웅기 1 이용하고, 반응기 대체용지 (규칙 제 26조) 에 투입되는 나프타와 메탄올의 투입 위치를 달리하여 나프타 메탄을을 동시에 분 해시킴으로써 열적증화 (heat neutral i zat ion)를 꾀할 수 있어 에너지 사용량을 최 소화할 수 있을 뿐만 아니라, 메탄, 에탄, 프로판 등의 경질 포화탄화수소의 생성 을 억제하여 경질올레핀 수율을 향상시킬 수 있다. The catalytic cracking reaction process according to the present invention uses a circulating fluidized bed reaction reactor 1, reactor replacement paper (rule 26) By dissolving naphtha methane at the same time by different naphtha and methanol input positions, it is possible to minimize heat consumption by minimizing energy consumption and to minimize energy consumption. The production of light saturated hydrocarbons can be suppressed to improve light olefin yield.
<0030>  <0030>
【도면의 간단한 설명】  [Brief Description of Drawings]
<0031> 도 1은 본 발명에 따른 접촉분해 공정반웅에서 사용되는 순환유동층 반움기 의 일례를 나타낸 모식도이고;  Figure 1 is a schematic diagram showing an example of the circulating fluidized bed bed used in the catalytic cracking process reaction according to the present invention;
<0032> 도 2는 비교예 1과 동일한 조건으로 접촉분해 반용공정을 수행하며 경질나프 타 대비 메탄을의 투입 무게비율을 0 증량 ¾에서 100 중량 %로 바꿔가면서 반웅기의 인렛 ( inl et ) 및 아옷렛 (out l et )간의 온도 차를 관찰한 그래프이고; 2 is carried out under the same conditions as in Comparative Example 1 in the catalytic cracking anti-reflection process while changing the weight ratio of methane to hard naphtha from 0 to ¾ to 100% by weight of the inlet (inl et) A graph of the temperature difference between the outlets (out l et);
<0033> 도 3은 본 발명에 따른 실시예 1 내지 4ᅳ비교예 1 및 비교예 2의 공정을 수 행하고난 후의 메탄의 수율을 나타낸 그래프이고; 3 is a graph showing the yield of methane after performing the process of Examples 1 to 4 ᅳ Comparative Example 1 and Comparative Example 2 according to the present invention;
<0034> 도 4는 본 발명에 따른 실시예 1 내지 4, 비교예 1 및 비교예 2의 공정을 수 행하고난 후의 경질올레핀의 수율을 나타낸 그래프이고; Figure 4 is a graph showing the yield of the light olefin after performing the process of Examples 1 to 4, Comparative Example 1 and Comparative Example 2 according to the present invention;
<0035> 도 5는 본 발명에 따른 실시예 1 내지 4, 비교예 1 및 비교예 2의 공정을 수 행하고난 후의 반응기 온도 변화를 관찰한 그래프이다. 5 is a graph illustrating changes in the reactor temperature after performing the processes of Examples 1 to 4, Comparative Example 1 and Comparative Example 2 according to the present invention.
<0036>  <0036>
【발명의 실시를 위한 최선의 형태】  [Best form for implementation of the invention]
<0037> 본 발명은  <0037> The present invention
<oo38> 반응기, 스트리퍼 (str ipper) 및 재생기를 포함하는 순환유동충 반웅기를 이 대체용지 (규칙 제 26조) 용하여 나프타와 메탄을의 동시분해 반웅을 수행하는 나프타와 메탄올 혼합 접촉분 해 반응공정에 있어서, <oo38> Circulating fluidized bed reactors, including reactors, strippers and regenerators, shall be used as replacement papers (Art. 26). In the catalytic cracking reaction process of naphtha and methanol, which performs the simultaneous reaction of naphtha and methane.
<003 상기 나프타는 상기 반용기의 하부로부터 전체 반용기 길이의 0 ¾ 내지 5 % 위치로 공급되고, 상기 메탄올은 상기 반응기의 하부로부터 전체 반웅기 길이의 The naphtha is fed from the bottom of the half vessel to 0 ¾ to 5% of the total half vessel length and the methanol is from the bottom of the reactor
10 % 내지 80 % 위치로 공급되는 것을 포함하는 접촉분해 반웅공정을 제공한다. 0040> Provided is a catalytic cracking reaction process comprising feeding to a 10% to 80% position. 0040>
< 41> 이때, 도 1에 나프타와 메탄을 흔합 접촉분해 반용공정을 수행하는 순환유동 층 반용기의 일례를 모식도로 나타내었으며, 1 shows an example of a circulating fluidized bed semi-container for carrying out a mixed catalytic cracking process of naphtha and methane.
<0(M2> 이하, 도 1에 순환유동충 반용기의 일례를 나타낸 모식도를 참조하여 본 발 명에 따른 접촉분해 반응공정에 대하여 상세히 설명한다. <0 (M2>) Hereinafter, the catalytic cracking reaction process according to the present invention will be described in detail with reference to a schematic diagram showing an example of a circulating fluidized bed anti-container in FIG. 1.
<0043>  <0043>
<0044> 종래에 제안된 기술들은 반응속도 및 반응열이 크게 다른 나프타와 메탄을의 동시분해 반웅에 있어 에너지 효율을 높이기 위한 열적증화를 실현하기 위한 개념 들만 제안하고 있다. 그러나, 두 반웅물을 동시에 투입하여 높은 수율로 경질을레 핀을 얻기 위해서는 이와 같은 개념만으로는 불층분하며, 반응물의 반웅속도에 따 른 정확한 접촉시간조절이 필수적이다.  The conventionally proposed techniques propose only concepts for realizing thermal increase to increase energy efficiency in the simultaneous decomposition of naphtha and methane, which have significantly different reaction rates and heats of reaction. However, in order to obtain hard lepin with high yield by inputting two reaction products at the same time, this concept alone is unsatisfactory, and accurate contact time control according to reaction reaction speed is essential.
<0045> 이를 해결하기 위해서 본 발명에서는 순환유동충 반용기를 적용하였으며, 나 프타와 메탄올의 촉매와의 접측시간을 원하는 시간으로 보다 더 정확히 조절하기 위하여 탄화수소와 메탄을의 투입되는 위치를 조절하였다.  In order to solve this problem, in the present invention, a circulating fluidized bed anti-tanker was applied, and the position of the hydrocarbon and the methane was adjusted to more precisely control the contact time of naphtha and methanol to a desired time.
<0046>  <0046>
<0047> 나프타 및 메탄올의 분해반웅에 있어 에틸렌, 프로필렌 등과 같은 경질을레 대체용지 (규칙 제 26조) 핀은 증간 생성물로서 접촉시간이 짧으면 분해가 원활하게 이루어지지 않으며, 접 촉시간이 너무 길면 부반움이 심화되어 원하지 않는 생성물을 얻게 된다. 따라서, 반웅물과 촉매와의 접촉시간 정확하게 조절하는 것이 매우 중요하다. Hard paper such as ethylene and propylene in the decomposition reaction of naphtha and methanol (Article 26 of the Rule) The pin is an intermediate product, and if the contact time is short, the decomposition does not occur smoothly. If the contact time is too long, the coarseness is intensified to obtain an unwanted product. Therefore, it is very important to precisely control the contact time between the reactant and the catalyst.
<0048> 특히, 메탄올의 분해속도가 탄화수소인 나프타의 분해속도보다 10 배 이상으 로 빠르기 때문에 두 반움물을 동시에 투입할 경우 메탄올의 체류시간이 너무 길어 져서 메탄, 에탄, 프로판 등의 경질 포화탄화수소 및 BTX 생성량이 증가하게 되는 문제가 있다. 이러한 문제점을 해결하기 위해서는 나프타에 비하여 메탄올의 반응 기 내에서의 체류시간을 짧게 해주는 것이 바람직하며, 이를 위해 나프타 및 메탄 을의 순환유동층 반웅기의 반응기에 투입되는 위치를 달리하는 것이 더욱 바람직하 다. In particular, since the decomposition rate of methanol is more than 10 times faster than the decomposition rate of naphtha, which is a hydrocarbon, when the two effluents are added at the same time, the residence time of methanol becomes too long, and thus, the hard saturated hydrocarbons such as methane, ethane, and propane And there is a problem that the amount of BTX production increases. In order to solve this problem, it is preferable to shorten the residence time of methanol in the reactor as compared to naphtha, and for this purpose, it is more preferable to change the position to be introduced into the reactor of the circulating fluidized bed reaction vessel of naphtha and methane. .
<0049>  <0049>
<0050> 본 발명에 따른 접촉분해 반웅공정에 사용되는 순환유동충 반응기 (100)는, 구체적인 일례로써 반웅기 ( 10), 스트리퍼 (str ipper , 20) 및 재생기 (30)를 포함하는 것이 바람직하다.  The circulating fluidized bed reactor 100 used in the catalytic cracking reaction process according to the present invention preferably includes a reaction vessel 10, a stripper 20, and a regenerator 30 as a specific example. .
<005i> 상기 반응기 (10)는 구체적인 일례로써. 수직관 (r iser )일 수 있다. 상기 수직 관은 5 m 내지 15 m 길이를 가질 수 있으며, 지름이 1/4 인치 내지 1 인치일 수 있 으나 이에 제한되지 않는다. 또한, 상기 반응기 ( 10)는 나프타 및 메탄올이 공급되 는 관이 각각 형성되어 있을 수 있다. 본 발명에 따른 접촉분해 반웅공정은 나프타 및 메탄을의 투입위치를 달리하기 때문에 나프타 및 메탄올을 공급하는 관을 각각 의 위치에 형성하는 것이 바람직하다.  The reactor 10 is a specific example. It may be a vertical tube (r iser). The vertical tube may have a length of 5 m to 15 m, the diameter may be 1/4 inch to 1 inch, but is not limited thereto. In addition, the reactor 10 may be each formed with a tube to which naphtha and methanol are supplied. In the catalytic cracking reaction process according to the present invention, since the naphtha and methane input positions are different, it is preferable to form tubes for naphtha and methanol at respective positions.
<0052> 또한, 상기 스트리퍼 (20)는 나프타 및 메탄올로부터 생성되는 생성 가 대체용지 (규칙 제 26조) 스 (product gas)를 배출하기 위한 실린더 (21)를 포함할 수 있다. 나아가 상기 스트 리퍼 하부로는 재생기 (30)가 위치하며, 상기 스트리퍼 및 재생기를 구분 짓고 촉매 및 연료 가스의 순환유동을 조절하기 위한 벨브 (22)를 더 포함할 수 있다. In addition, the stripper 20 is produced value substitute paper produced from naphtha and methanol (Article 26) It may include a cylinder 21 for discharging the product gas. Furthermore, a regenerator 30 is located under the stripper, and may further include a valve 22 for distinguishing the stripper and the regenerator and controlling the circulating flow of catalyst and fuel gas.
<0053> 상기 재생기 (30)는 나프타 및 메탄을인 연료 가스 ( feul gas )를 배출기 위한 실린더 (31)를 포함할 수 있다. 상기 재생기에는 촉매가 채워져 있으며, 상기 재생 기 하부로는 공기 (ai r )가 주입될 수 있는 관이 형성되어 있을 수 있다. 또한, 상기 재생기 하부로 상기 반웅기 ( 10)와 연결되는 것이 바람직하며, 상기 재생기 및 반응 기를 구분 짓고 촉매 및 연료 가스의 순환유동을 조절하기 위한 벨브 (32)를 더 포 함할 수 있다. The regenerator 30 may include a cylinder 31 for discharging a fuel gas (feul gas) containing naphtha and methane. The regenerator may be filled with a catalyst, and a tube through which air (ai r) may be injected may be formed under the regenerator. In addition, it is preferable that the bottom of the regenerator is connected to the reaction vessel 10, and may further include a valve 32 for distinguishing the regenerator and the reactor and regulating the circulating flow of the catalyst and fuel gas.
<0054>  <0054>
< 055> 본 발명에 따른 접촉분해 반웅공정은 상기와 같은 순환유동층 반용기를 이용 하여 나프타와 메탄올의 동시분해 반웅을 수행하게 되며, 상기 나프타는 반용기의 하부로 공급되고 상기 메탄올은 하부로부터 떨어진 위치에서 공급되는 것이 바람직 하다. 메탄올의 투입 위치는 반응온도, 촉매의 순환량, 반용물의 투입량에 따라 차 이가 발생할 수 있으나, 상기 반용기의 하부로부터 전체 반응기의 길이의 10 % 내 지 80 % 위치로 투입되는 것이 바람직하다. 이와 같이 , 투입위치를 달리하게 되면 열적증화를 달성함과 동시에 경질올레핀의 수율을 최대로 할 수 있디-.  In the catalytic cracking reaction process according to the present invention, the co-reaction reaction of naphtha and methanol is performed by using the circulating fluidized bed half vessel as described above, wherein the naphtha is supplied to the bottom of the half vessel and the methanol is separated from the bottom. It is preferred to be supplied. The input position of methanol may vary depending on the reaction temperature, the amount of circulation of the catalyst, and the amount of the semi-solution, but it is preferable that the methanol is introduced at a position of 10% to 80% of the length of the entire reactor from the bottom of the semi-container. In this way, if the input position is different, thermal increase can be achieved and the yield of light olefin can be maximized.
<0056> 또한, 나프타 및 메탄을의 촉데와의 접촉시간을 보다 정확하게 조절하기 위 하여 상기 나프타는 상기 반응기의 하부로부터 전체 반응기 길이의 0 % 내지 5 ¾ 위치로 공급되고, 상기 메탄올은 상기 반응기의 하부로부터 전체 반응기 길이의 In addition, in order to more precisely control the contact time of naphtha and methane with the catalyst of the naphtha is supplied from 0 to 5 ¾ position of the total reactor length from the bottom of the reactor, the methanol is Of the total reactor length from the bottom
10 % 내지 80 ¾ 위치로 공급되는 것이 바람직하다. 더욱 바람직하게는, 상기 메탄 대체용지 (규칙 제 26조) 을이 상기 반용기의 하부로부터 전체 반용기 갈이의 15 % 내지 45 % 위치로 공급될 수 있다. It is preferred to be fed to the 10% to 80 3/4 position. More preferably, the methane replacement paper (Article 26) It may be supplied from the bottom of the half vessel to the 15% to 45% position of the total half vessel grinding.
<0057>  <0057>
<0058> 이때, 반웅물로 사용되는 나프타는 탄소수 C4 내지 C12인 포화 탄화수소 또는 불포화 탄화수소를 포함할 수 있으며, 상기 나프타의 종류로는 전 범위 나프 타 (ful l-range naphtha) , 경질 나프타 ( l ight naphtha) , 라피네이트 오일 (raff inate oi l ) 및 이들의 혼합물 등일 수 있다. 또한, 포화탄화수소만을 사용하는 열분해 공 정과 달리 촉매를 사융하는 순환유동^접촉분해 공정은 을레핀이 함유된 탄화수소 도 반용물로사용할 수 있다. In this case, the naphtha used as a semi- aquaculture may include a saturated hydrocarbon or an unsaturated hydrocarbon having C 4 to C 12 , and the naphtha may be a full range of naphtha or hard naphtha. light naphtha, raffinate oil, and mixtures thereof. In addition, unlike the pyrolysis process using only saturated hydrocarbons, the circulating-flow-catalytic cracking process using the catalyst may be used as an anti-lephine containing hydrocarbon.
<0059> 나아가, 반웅물로 사용되는 메탄올은 무수 메탄올 뿐만 아니라, 수분이 20 % 까지 함유된 함수 메탄올도 사용이 가능하다. Further, the methanol used as the reaction product can be used not only anhydrous methanol, but also hydrous methanol containing up to 20% of water.
<0060>  <0060>
<0061> 또한, 상기 순환유동층 반옹기 (100)는 촉데가 순환되며, 이때 상기 촉매는 제올라이트계 촉매를 사용할 수 있다. 구체적인 일례로써 상기 촉매는 ZSM— 5 또는 SAP0-34인 촉데 성분, 바인더 (binder ) 및 매트릭스 (matr ix)를 포함하는 20 /an 내지 200 지름의 성형된 구형 또는 타원형 촉매를 사용할 수 있으나 이에 제한되지 않는다.  In addition, the circulating fluidized bed reaction apparatus 100 is cyclically circulated, wherein the catalyst may use a zeolite-based catalyst. As a specific example, the catalyst may use a shaped spherical or elliptical catalyst having a diameter of 20 / an to 200 including a catalyst component, a binder, and a matrix (matr ix) which is ZSM-5 or SAP0-34. Do not.
<0062>  <0062>
<0063> 나아가, 상기 나프타와 메탄올의 공급 비율은 나프타 1 중량부에 대하여 메 탄을 0.2 내지 1.4 증량부인 것이 바람직하다. 만약, 상기 나프타와 메탄을의 공급 대체용지 (규칙 제 26조) 비율이 나프타 1 중량부에 대하여 메탄올 0.2 증량부 미만일 경우에는 메탄을의 발 열반응에 의한 발열량이 줄어들어 반응온도를 유지하기 위한 에너지 사용량이 증가 하는 문제가 있으며 , 1.4 증량부를 초과하는 경우에는 부산물인 CO와 CH4의 양이 증 가하는 문제가 있다. Further, the naphtha and methanol feed ratio is preferably 0.2 to 1.4 parts by weight of methane per 1 part by weight of naphtha. If the supply of naphtha and methane substitutes (Article 26) If the ratio is less than 0.2 parts by weight of methanol with respect to 1 part by weight of naphtha, the amount of heat generated by the exothermic reaction of methane decreases, which increases the amount of energy used to maintain the reaction temperature. There is a problem that the amount of CO and CH 4 increases.
<0064>  <0064>
<0065> 또한, 상기 나프타와 메탄을은 600 1: 내지 700 I:의 온도 및 5 h 내지 30 hᅳ1의 공간 속도 범위에서 반웅이 수행되는 것이 바람직하다. 나아가, 상기 나프타 와 메탄을의 반웅기 내에서의 체류시간은 1 초 내지 5 초인 것이 바람직하다. 만 약, 상기 나프타와 메탄을의 반웅이 수행되는 온도가 600 t 미만일 경우에는 전환 율이 낮아지게 됨으로써, 원하는 생성물의 수율이 급격히 저하되는 문제가 있으며, 700 1 를 초과하는 경우에는 반웅물 대부분이 coke로 전환되어 생성물의 수율이 저 하되는 문제가 있다. 또한, 상기 나프타와 메탄올의 반웅이 수행되는 공간 속도 범 위가 5 hᅳ1 미만일 경우에는 메탄을의 빠른 전환반응에 의해 coke 생성량이 증가하 는 문제가 있으며, 30 h—1을 초과하는 경우에는 나프타의 전환율이 급격히 저하되는 문제가 있다. In addition, the naphtha and methane is preferably performed at a temperature of 600 1: 700 I: and a space velocity range of 5 h-30 h ᅳ 1 . Furthermore, the residence time of the naphtha and methane in the reaction vessel is preferably 1 second to 5 seconds. If the temperature at which the reaction of the naphtha and methane is performed is less than 600 t, the conversion rate is lowered, so that the yield of the desired product is sharply lowered. There is a problem that the yield of the product is reduced by conversion to coke. In addition, when the space velocity range in which the reaction between the naphtha and methanol is performed is less than 5 h ᅳ 1 , there is a problem in that the amount of coke production is increased by a fast conversion reaction of methane, and when it exceeds 30 h— 1 . There is a problem that the conversion rate of naphtha is sharply lowered.
<0066>  <0066>
<0067> 또한, 본 발명은  In addition, the present invention
<0068> 반응기, 스트리퍼 (str ipper) 및 재생기를 포함하는 순환유동충 반응기를 이 용하여 나프타와 메탄을의 동시분해 반응을 수행하는 나프타와 메탄올 혼합 접촉분 대체용지 (규칙 제 26조) 해 반웅공정에 있어서, Naphtha and Methanol Mixed Contact Substituting Paper for Simultaneous Decomposition of Naphtha and Methane Using Recirculating Fluidized Bed Reactor with Reactor, Stripper and Regenerator (Rule 26) In the sea reaction process,
<0069> 상기 나프타는 상기 반용기의 하부로부터 전체 반웅기 길이의 0 ¾ 내지 5 ¾ 위치로 공급되고, 상기 메탄을은 상기 반움기의 하부로부터 전체 반웅기 길이의 The naphtha is fed from the bottom of the half vessel to the position 0 ¾ to 5 ¾ of the total half foot length, and the methane is
10 % 내지 80 % 위치로 공급되는 것을 포함하는 접촉분해 반응공정으로 제조된 경 질올레핀을 제공한다. It provides a light olefin produced by the catalytic cracking reaction process comprising the feed to 10% to 80% position.
<0070>  <0070>
<0071> 본 발명에 따른 접촉분해 반웅공정은 순환유동층 반용기를 이용하고, 반용기 에 투입되는 나프타와 메탄을의 투입 위치를 달리하여 나프타 메탄을을 동시에 분 해시킴으로써 열적중화 (heat neutral i zat i on)를 꾀할 수 있어 에너지 사용량을 최 소화할 수 있을 뿐만 아니라, 메탄, 에탄, 프로판 등의 경질 포화탄화수소의 생성 을 억제하여 경질을레핀 수율을 향상시킬 수 있어, 제조된 경질을레핀을 경제적으 로 사용할 수 있다.  In the catalytic cracking reaction process according to the present invention, using a circulating fluidized bed half vessel and dissociating naphtha methane at the same time by varying the naphtha and methane input positions, the heat neutralization (heat neutral i zat i on) It is possible to minimize energy consumption and to suppress the production of hard saturated hydrocarbons such as methane, ethane, and propane, thereby improving the yield of hard lepine, and thus making the produced hard lepine economically. Can be used.
<0072>  <0072>
<0073> 나아가, 본 발명은  Furthermore, the present invention
<0074> 반움기, 스트리퍼 (str ipper ) 및 재생기를 포함하는 순환유동층 반용기를 이 용하여 나프타와 메탄을의 동시분해 반용을 수행하는 나프타와 메탄올 혼합 접촉분 해 반웅공정으로 경질을레핀을 제조하는 방법에 있어서,  Method for preparing a hard lepine by a mixed reaction reaction of naphtha and methanol, which performs co-lysis of naphtha and methane using a circulating fluidized bed semi-container including a vanizer, a stripper, and a regenerator. To
<0075> 상기 나프타는 상기 반응기의 하부로부터 전체 반웅기 길이의 0 내지 5 ¾ 위치로 공급되고, 상기 메탄올은 상기 반웅기의 하부로부터 전체 반웅기 길이의 The naphtha is fed from the bottom of the reactor to a position of 0 to 5 3/4 of the total reaction length and the methanol is from the bottom of the reactor to
10 ¾ 내지 80 ¾ 위치로 공급되는 것을 특징으로 하는 경질올레핀 수율을 향상시키 는 방법을 제공한다. 대체용지 (규칙 제 26조) <0076> It provides a method for improving light olefin yield, characterized in that it is supplied in the 10 ¾ to 80 ¾ position. Alternative Site (Article 26) <0076>
<0077> 이하, 본 발명에 따른 경질올레핀 수율을 향상시키는 방법에 대하여 상세히 설명한다.  Hereinafter, the method for improving the light olefin yield according to the present invention will be described in detail.
<0078>  <0078>
<0079> 종래에 제안된 기술들은 반용속도 및 반옹열이 크게 다른 나프타의" 메탄을^ 동시분해 반응에 있어 에너지 효율을 높이기 위한 열적중화를 실현하기 위한 개념 들만 제안하고 있다. 그러나, 두 반응물을 동시에 투입하여 높은 수율로 경질올레 핀을 얻기 위해서는 이와 같은 개념만으로는 불층분하며, 반응물의 반웅속도에 따 른 정확한 접촉시간 조절이 필수적이다.  Previously proposed techniques only suggest concepts to realize thermal neutralization to increase energy efficiency in naphtha &quot; methane ^ co-reaction reactions with significantly different reaction rates and reaction heat. At the same time, in order to obtain hard olefins with high yield, this concept alone is unsatisfactory, and accurate contact time control according to the reaction rate of reactants is essential.
<oosa> 이를 해결하기 위해서 본 발명에서는 순환유동충 반웅기를 적용하였으며, 나 프타와 메탄올의 촉매와의 접촉시간을 원하는 시간으로 보다 더 정확히 조절하기 위하여 탄화수소와 메탄올의 투입되는 위치를 조절하였다.  <oosa> In order to solve this problem, the present invention employs a circulatory fluid caterpillar, and adjusts the position of the hydrocarbon and methanol in order to more precisely control the contact time between naphtha and methanol to the desired time.
<讓>  <讓>
<0082> 나프타 및 메탄을의 분해반응에 있어 에틸렌, 프로필렌 등과 같은 경질올레 핀은 증간 생성물로서 접촉시간이 짧으면 분해가 원활하게 이루어지자 않으며, 접 촉시간이 너무 길면 부반응이 심화되어 원하지 않는 생성물을 얻게 된다. 따리ᅳ서, 반응물과 촉매와의 접촉시간 정확하게 조절하는 것이 매우 중요하다.  In the decomposition reaction of naphtha and methane, light olefins such as ethylene, propylene, etc. are extra products, and if the contact time is short, the decomposition does not occur smoothly. If the contact time is too long, the side reaction is intensified to produce an unwanted product. You get Therefore, it is very important to precisely control the contact time between the reactants and the catalyst.
<0083> 특히, 메탄을의 분해속도가 탄화수소인 나프타의 분해속도보다 10 배 이상으 로 빠르기 때문에 두 반웅물을 동시에 투입할 경우 메탄올의 체류시간이 너무 길어 져서 메탄, 에탄, 프로판 등의 경질 포화탄화수소 및 ΒΤΧ 생성량이 증가하게 되는 문제가 있다. 이러한 문제점을 해결하기 위해서는 나프타에 비하여 메탄을의 반웅 대체용지 (규칙 제 26조) 기 내에서의 체류시간을 짧게 해주는 것이 바람직하며, 이를 위해 나프타 및 메탄 올의 순환유동층 반웅기의 반웅기에 투입되는 위치를 달리하는 것이 더욱 바람직하 다. In particular, since the rate of decomposition of methane is 10 times faster than that of naphtha, a hydrocarbon, when two reaction products are added at the same time, the residence time of methanol becomes too long, resulting in hard saturation of methane, ethane, propane, etc. There is a problem in that the amount of hydrocarbon and β? In order to solve this problem, countermeasures to replace methane are compared to naphtha (rule 26). It is preferable to shorten the residence time in the group, and for this purpose, it is more preferable to change the position to be added to the counterunggi of the circulating fluidized bed semi-unggi of naphtha and methanol.
<0084>  <0084>
< 085> 본 발명에 따른 경질을레핀 수율을 향상시키는 방법에 사용되는 순환유동층 반웅기 (100)는, 구체적인 일례로써 반웅기 (10) . 스트리퍼 (str i pper , 20) 및 재생 기 (30)를 포함하는 것이 바람직하다ᅳ  The circulating fluidized bed semi-aerator 100 used in the method for improving the yield of hard lepine according to the present invention is a semi-unggi (10) as a specific example. It is preferred to include a stripper (str i pper 20) and a regenerator 30
<0086> 상기 반응기 ( 10)는 구체적인 일례로쎄 수직관 ( r i ser )일 수 있다. 상기 수직 관은 5 m 내지 15 m 길이를 가질 수 있으며. 지름이 1/4 인치 내지 1 인치일 수 있 으나 이에 제한되지 않는디-, 또한, 상기 반웅기 ( 10)는 나프타 및 메탄을이 공급되 는 관이 각각 형성되어 있을 수 있다. 본 발명에 따른 경질올레핀 수율을 향상시키 는 방법은 나프타 및 메탄을의 투입위치를 달리하기 때문에 나프타 및 메탄을을 공 급하는 관을 각각의 위치에 형성하는 것이 바람직하다.  The reactor 10 may be a vertical pipe (r i ser) as a specific example. The vertical tube may have a length of 5 m to 15 m. The diameter may range from 1/4 inch to 1 inch, but is not limited thereto. In addition, the counterunggi 10 may be formed with a tube supplied with naphtha and methane, respectively. Since the method of improving the yield of light olefins according to the present invention differs in the naphtha and methane input positions, it is preferable to form a tube supplying the naphtha and methane at each position.
<0087> 또한, 상기 스트리퍼 (20)는 나프타 및 메탄올로부터 생성되는 생성 가 스 (product gas)를 배출하기 위한 실린더 (21)를 포함할 수 있다. 나아가 상기 스트 리퍼 하부로는 재생기 (30)가 위치하며, 상기 스트리퍼 및 재생기를 구분 짓고 촉매 및 연료 가스의 순환유동을 조절하기 위한 밸브 (22)를 더 포함할 수 있다.  In addition, the stripper 20 may include a cylinder 21 for discharging the product gas produced from naphtha and methanol. Furthermore, a regenerator 30 is located below the stripper, and may further include a valve 22 for distinguishing the stripper and the regenerator and controlling circulating flow of catalyst and fuel gas.
<0088> 상기 재생기 (30)는 나프타 및 메탄을인 연료 가스 ( feul gas )를 배출기 위한 실린더 (31)를 포함할 수 있다. 상기 재생기에는 촉매가 채워져 있으며, 상기 재생 기 하부로는 공기 (ai r )가 주입될 수 있는 관이 형성되어 있을 수 있다. 또한, 상기 재생기 하부로 상기 반웅기 ( 10)와 연결되는 것이 바람직하며, 상기 재생기 및 반웅 대체용지 (규칙 제 26조) 기를 구분 짓고 촉매 및 연료 가스의 순환유동을 조절하기 위한 ¾브(32)를 더 포 함할 수 있다. The regenerator 30 may include a cylinder 31 for discharging a fuel gas (feul gas) containing naphtha and methane. The regenerator may be filled with a catalyst, and a tube through which air (ai r) may be injected may be formed under the regenerator. In addition, it is preferable that the bottom of the regenerator is connected to the reaction device (10), and the regenerator and the reactionary replacement paper (Article 26) It may further include a valve (32) to distinguish the groups and to control the circulation flow of the catalyst and fuel gas.
<0089>  <0089>
<0090> 본 발명에 따른 경질을레핀 수율을 향상시키는 방법은 상기와 같은 순환유동 According to the present invention, a method for improving the yield of hard lepin is circulating as described above.
% 반용기를 이용하여 나프타와 메탄올의 동시분해 반웅을 수행하게 되며, 상기 나 프타는 반응기의 하부로 공급되고 상기 메탄을은 하부로부터 떨어진 위치에서 공급 되는 것이 바람직하다. 메탄올의 투입 위치는 반웅온도, 촉매의 순환량, 반응물의 투입량에 따라 차이가 발생할 수 있으나, 상기 반응기의 하부로부터 전체 반응기의 길이의 10 % 내지 80 % 위치로 투입되는 것이 바람직하다. 이와 같이, 투입위치를 달리하게 되면 열적증화를 달성함과 동시에 경질을레핀의 수율을 최대로 할 수 있 다. % ■ The reaction of naphtha and methanol is carried out using a semi-container. The naphtha is preferably supplied to the bottom of the reactor and the methane is supplied at a position away from the bottom. The input position of methanol may vary depending on the reaction temperature, the circulation amount of the catalyst, and the input amount of the reactant, but it is preferable to be introduced at a position of 10% to 80% of the length of the entire reactor from the bottom of the reactor. In this way, if the input position is different, the thermal increase can be achieved and the yield of hard lepine can be maximized.
<0091> 또한, 나프타 및 메탄을의 촉매와의 접촉시간을 보다 정확하게 조절하기 위 하여 상기 나프타는 상기 반응기의 하부로부터 전체 반응기 길이의 0 ¾ 내지 5 % 위치로 공급되고, 상기 메탄올은 상기 반웅기의 하부로부터 전체 반응기 길이의 In addition, in order to more precisely control the contact time of naphtha and methane with the catalyst, the naphtha is fed from the bottom of the reactor to a position of 0 ¾ to 5% of the total reactor length, the methanol is Of the total reactor length from the bottom of
10 ¾ 내지 80 ¾ 위치로 공급되는 것이 바람직하다. 더욱 바람직하게는, 상기 메탄 올이 상기 반응기의 하부로부터 전체 반응기 길이의 15 % 내지 45 % 위치로 공급되 는 경우 경질올레핀의 수율을 최대로 향상시칼 수 있다. It is preferred to be fed to the 10 ¾ to 80 ¾ position. More preferably, the yield of light olefins can be maximized when the methanol is fed from the bottom of the reactor to 15% to 45% of the total reactor length.
<0092>  <0092>
<0093> .이때, 반웅물로 사용되는 나프타는 탄소수 C4 내지 C12인 포화 탄화수소 또는 불포화 탄화수소를 포함할 수 있으며, 상기 나프타의 종류로는 전 범위 나프 대체용지 (규칙 제 26조) 타 (fuU-range naphtha) , 경질 나프타 ( l ight naphtha) , 라피네이트 오일 (raff inate oi l ) 및 이들의 혼합물 등일 수 있다. 또한, 포화탄화수소만을사용하는 열분해 공 정과 달리 촉매를 사용하는 순환유동 접촉분해 공정은 올레핀이 함유된 탄화수소 도 반웅물로 사용할 수 있다. In this case, the naphtha used as the counter-agar may include a saturated hydrocarbon or an unsaturated hydrocarbon having C 4 to C 12 , and the naphtha is a full range of naphtha replacement paper (Rule 26). FuU-range naphtha, light naphtha, raffinate oil, and mixtures thereof, and the like. In addition, unlike the pyrolysis process using only saturated hydrocarbons, the circulating fluid catalytic cracking process using a catalyst can also be used as an olefin containing hydrocarbon.
<0094> 나아가, 반웅물로 사용되는 메탄을은 무수 메탄을 뿐만 아니라, 수분이 20 % 까지 함유된 함수 메탄을도 사용이 가능하다. Further, the methane used as the reaction product can be used not only anhydrous methane, but also hydrous methane containing up to 20% of moisture.
<0095>  <0095>
<0096> 또한, 상기 순환유동층 반웅기 ( 100)는 촉매가 순환되며, 이때 상기 촉매는 제을라이트계 촉매를 사용할 수 있다. 구체적인 일례로써 상기 촉데는 ZSM-5 또는 SAP0-34인 촉매 성분, 바인더 (binder) 및 매트릭스 (matr ix)를 포함하는 20 내지 200 지름의 성형된 구형 또는 타원형 촉매를 사용할 수 있으나 이에 제한되지 않는다.  In addition, the circulating fluidized bed semi-agitator 100 is a catalyst is circulated, wherein the catalyst may be a zeolite-based catalyst. As a specific example, the catalyst may be a spherical or elliptical catalyst having a diameter of 20 to 200, including but not limited to, ZSM-5 or SAP0-34 catalyst component, binder, and matrix ix.
<0097>  <0097>
<00 8> 나아가, 상기 나프타와 메탄올의 공급 비율은 나프타 1 중량부에 대하여 메 탄을 0.2 내지 1.4 증량부인 것이 바람직하다. 만약. 상기 나프타와 메탄올의 공급 비율이 나프타 1 증량부에 대하여 메탄을 으 2 중량부 미만일 경우에는 메탄을의 발 열반응에 의한 발열량이 줄어들어 반응온도를 유지하기 위한 에너지 사용량이 증가 하는 문제가 있으며 , 1.4 증량부를 초과하는 경우에는 부산물인 CO와 C¾의 양이 중 가하는 문제가 있다.  Further, the naphtha and methanol supply ratio is preferably 0.2 to 1.4 parts by weight of methane per 1 part by weight of naphtha. if. When the supply ratio of naphtha and methanol is less than 2 parts by weight of methane relative to 1 part by weight of naphtha, the amount of heat generated by the exothermic reaction of methane decreases, thus increasing the amount of energy used to maintain the reaction temperature. 1.4 If the excess portion is exceeded, there is a problem in that the amount of by-products CO and C¾ is added.
<0099> 대체용지 (규칙 제 26조) <oioo> 또한, 상기 나프타와 메탄을은 600 °C 내지 700 t푀 온도 및 5 h"1 내지 30 ιΓ1의 공간 속도 범위에서 반웅이 수행되는 것이 바람직하다. 나아가, 상기 나프타 와 메탄올의 반웅기 내에서의 체류시간은 1 초 내지 5 초인 것이 바람직하다. 만 약, 상기 나프타와 메탄올의 반응이 수행되는 은도가 600 미만일 경우에는 전환 율이 낮아지게 됨으로써, 왼하는 생성물의 수율이 급격히 저하되는 문제가 있으며, 700 1:를 초과하는 경우에는 반응물 대부분이 coke로 전환되어 생성물의 수율이 저 하되는 문제가 있다. 또한, 상기 나프타와 메탄을의 반응이 수행되는 공간 속도 범 위가 5 hᅳ1 미만일 경우에는 메탄을의 빠른 전환반웅에 의해 coke 생성량이 증가하 는 문제가 있으며 , 30 hᅳ1을 초과하는 경우에는 나프타푀 전환율이 급격히 저하되는 문제가 있다. <0099> Alternative Paper (Article 26) <oioo> In addition, it is preferable that the reaction of naphtha and methane is performed at a temperature of 600 ° C. to 700 t 및 and a space velocity range of 5 h “1 to 30 γΓ 1. Furthermore, the reaction of naphtha and methanol is performed. It is preferable that the residence time within is within 1 second to 5 seconds, if the silver content at which the reaction of the naphtha and methanol is performed is less than 600, the conversion rate is lowered, so that the yield of the left product is sharply lowered. In case of exceeding 700 1:, most of the reactants are converted to coke, which lowers the yield of the product, and the space velocity range in which the reaction between naphtha and methane is performed is 5 h ᅳ 1. If less than one, there is a problem that the coke production rate is increased by the rapid conversion reaction of methane, naphtha 푀 conversion rate is sharply lowered if it exceeds 30 h ᅳ 1 .
<0101>  <0101>
【발명의 실시를 위한 형태】  [Form for implementation of invention]
<0102> 이하, 본 발명을 하기 실시예 및 실험예에 의하여 상세히 설명한다.  Hereinafter, the present invention will be described in detail by the following Examples and Experimental Examples.
<0103> <0103>
<0104> 단 하기 실시예 및 실험예는 본 발명을 예시하는 것일 뿐 발명의 범위가 실 시예 및 실험예에 의해 한정되는 것은 아니다.  However, the following Examples and Experimental Examples are only illustrative of the present invention and the scope of the invention is not limited by the Examples and Experimental Examples.
<0105>  <0105>
<0106> <실시예 1-4> 접촉분해 반용공정 1-4  <Example 1-4> Catalytic Dissolution Process 1-4
<0107> 본 발명에 따른 접촉분해 반웅공정을 수행하기 위하여 도 1의 모식도에 나타 대체용지 (규칙 제 26조) 낸 바와 같은 순환유동층 반웅기를 준비하였다. Alternative paper shown in the schematic diagram of FIG. 1 to perform the catalytic cracking reaction process according to the present invention (Article 26) A circulating fluidized bed reaction vessel was prepared as shown.
<0108> 상기 순환유동층 반웅기는 반응기, 스트리퍼 (Str ipper ) 및 재생기로 구성되 며, 반웅기의 길이는 7 m이고, 지름은 1/2 인치이다.  The circulating fluidized bed reactor is composed of a reactor, a stripper and a regenerator, the reactor is 7 m long and has a diameter of 1/2 inch.
<0109> 또한, 촉매로 HZSM— 5 함량이 40 증량 %인 ACO 공정에 사용되는 ACO-100 촉 매를 사용하였으며 E-cat의 특성을 보기 위하여 800 t:의 온도, 100 % 스 팀 (steam) 분위기에서 24 시간 동안 스티밍 (steaming)을 수행한 후 3 kg의 촉매를 재생기에 로딩 ( loading) 하였다. In addition, the ACO-100 catalyst used in the ACO process with HZSM-5 content of 40% by weight was used as a catalyst, and the temperature of 800 t: 100% steam was used to characterize the E-cat. After steaming in the atmosphere for 24 hours, 3 kg of catalyst was loaded into the regenerator.
<0110>  <0110>
<0111> 이때, 반웅물인 나프타와 메탄을 (MeOH)을 다른 위치에서 투입하기 위하여 반 웅기의 증간 여러 부분 (반응기의 하부로부터 전체 반움기 길이의 20 % 위치, 40 % 위치, 60 % 위치, 80 % 위치)에 메탄을 투입 노즐을 설치하였다. 반응기에 투입되 는 나프타는 경질나프타를 사용하였으며, 경질나프타와 메탄올의 투입 무게비율은 1 : 0.25로 고정하였다.  At this time, the various parts of the semi-ungwoong (20% position, 40% position, 60% position, 80 from the lower part of the reactor) to introduce the naphtha and methane (MeOH) at the other positions Methane injection nozzles were installed. Hard naphtha was used as the naphtha introduced into the reactor, and the weight ratio of the hard naphtha and methanol was fixed at 1: 0.25.
<0112> 상기 반응기로 공급되는 나프타의 투입 위치는 반웅기의 하부이며, 메탄올의 투입 위치를 반응기의 하부로부터 전체 반응기 길이의 20 % 위치 40 % 위치, 60 % 위치, 80 ¾ 위치로 각각 다르게 하여 메탄올을 공급하였다.  The naphtha feeding position supplied to the reactor is the lower part of the counterunggi, and the methanol feeding position is different from the lower portion of the reactor to 20% position, 40% position, 60% position, and 80 ¾ position of the total reactor length. Methanol was fed.
<0113> 상기 반움기 인렛 ( inlet ) 온도는 690 V , 촉매 /오일 비율 (Cat/Oi l rat io)은 25로 설정하였다.  The reciprocating inlet temperature was set to 690 V and the catalyst / oil ratio (Cat / Oi l rat io) to 25.
<0114>  <0114>
<0115> <비교예 1> 대체용지 (규칙 제 26조) <0U6> 상기 실시예 1—4에서 사용된 순환유동충 반웅기를 사용하였다.<Comparative Example 1> Alternative Paper (Article 26) <0U6> The circulating fluid caterpillar used in Example 1-4 was used.
<0117> <0117>
<0118> 이때, 반웅기에 투입되는 나프타는 경질나프타를 사용하였으며, 경질나프타 와 메탄올의 투입 무게비율은 1 : 0.25로 고정하였다.  At this time, the naphtha to be added to the reaction was used hard naphtha, the weight ratio of hard naphtha and methanol was fixed to 1: 0.25.
<011 > 상기 반용기로 나프타와 메탄을을 반§ "기의 하부로 공급하였디-. <011> for the naphtha and methane in the banyonggi half D it was fed to the bottom of the group § "-.
<oi20> 상기 반응기 인렛 (inlet) 온도는 690 X: , 촉매 /오일 비율 (Cat/Oil ratio)은 The reactor inlet temperature is 690 X: and the catalyst / oil ratio is
25로 설정하였다. 25 was set.
<0121>  <0121>
<0122> <비교예 2>  <0122> <Comparative Example 2>
<0123> 상기 실시예 1—4에서 사용된 순환유동층 반용기를 사용하였디-.  The circulating fluidized bed half vessel used in Example 1-4 was used.
<0124> <0124>
<0125> 이띠 1,반응기에 투입되는 나프타는 경질나프타를 사용하였으며, 메탄을은 공 급하지 않았다.  The naphtha used in Itti 1, a reactor, used hard naphtha, and did not supply methane.
<0126> 상기 반응기로 나프타를 반웅기의 하부로 공급하였다.  The reactor was fed naphtha to the bottom of the counterunggi.
<oi27> 상기 반용기 인렛 (inlet) 은도는 690 t, 촉매 /오일 비율 (Cat/Oil ratio)은 <oi27> The half vessel inlet silver degree is 690 t, the catalyst / oil ratio (Cat / Oil ratio) is
35로 설정하였다. 35 was set.
<0128>  <0128>
<0129> <실험예 1>나프타와 메탄올의 동시 투입시 열적증화 분석  Experimental Example 1 Thermal Incremental Analysis During Simultaneous Injection of Naphtha and Methanol
<0130> 본 발명에 따론 접촉분해 반웅공정인 나프타와 메탄올의 동시분해 반웅 시 열적증화 현상을 확인하기 위하여, 상기 비교예 1과 동일한 조건으로 접촉분해 반 웅공정을 수행하며 경질나프타 대비 메탄올의 투입 무게비율을 0 중량 %에서 100 중 대체용지 (규칙 제 26조) 량%로 바꿔가면서 투업하였고, 반웅기의 인렛 ( inlet ) 및 아옷렛 (out let )간의 은도 차를 관찰하였으며 , 그 결과를 도 2에 나타내었다. In order to confirm the thermal increase phenomenon in the simultaneous decomposition reaction of naphtha and methanol, which is a catalytic cracking reaction according to the present invention, the catalytic cracking reaction is performed under the same conditions as in Comparative Example 1 and the methanol is added to the hard naphtha. Alternative paper in weight ratio of 0 to 100% (Rule Article 26) The fighting was performed while changing to the amount%, and the silver difference between the inlet and the out let of Banunggi was observed, and the results are shown in FIG. 2.
<0131>  <0131>
<0132> 도 2에 나타난 바와 같이, 경질나프타 대비 메탄올의 투입 무게비율이 약 60 증량 %일 경우 에너지 사용량이 0인 열적중화 (heat neutral izat ion) )가 일어남을 확 인할 수 있었다. 이를 통해, 본 발명에 따른 접촉분해 반웅공정은 열적증화가 가능 한 상태에서 나프타와 메탄을의 동시분해가 가능함을 알 수 있었다.  As shown in FIG. 2, when the weight ratio of methanol to hard naphtha is about 60% by weight, heat neutralization (heat neutral izat ion) with zero energy consumption may occur. Through this, the catalytic cracking reaction process according to the present invention was found to be possible to simultaneously decompose naphtha and methane in the state of thermal increase.
<0133>  <0133>
<0134> <실험예 2> 메탄을의 투입 위치에 따른 영향 분석  Experimental Example 2 Effect Analysis of Methane-Injected Locations
<0135> 본 발명에 따른 접촉분해 반웅공정에서 메탄을의 투입 위치에 따른 변화를 살펴보기 위하여, 상기 실시예 1 내지 4. 비교예 1 및 비교예 2의 공정을 수행하고 난 후의 메탄의 수율, 경질을레핀의 수율 및 반웅기의 온도를 분석하였으며, 그 결 과를 도 3 내지 도 5에 나타내었다.  In order to examine the change according to the input position of methane in the catalytic cracking reaction process according to the present invention, the yield of methane after performing the process of Examples 1 to 4. Comparative Example 1 and Comparative Example 2, The yield of hardpin and the temperature of the counterunggi were analyzed, and the results are shown in FIGS. 3 to 5.
<0136>  <0136>
<oi37> 도 3 내지 5에 나타낸 바와 같이, 경질나프타만을 분해하는 경우인 비교예 2 의 공정을 수행하고 난 후에는 반응기의 온도 값 ( ΔΤ)이 21 1 를 나타내었으며, 경 질을레핀의 수율은 약 33.5 증량 ¾를 나타내었다. 또한, 메탄의 수율은 약 10 증량 % 를 나타내었다.  3 to 5, the temperature value (ΔΤ) of the reactor was 21 1 after the process of Comparative Example 2, which is a case of decomposing only hard naphtha, and the yield of hard lephine was shown. Showed a 33.5 increase ¾. In addition, the yield of methane was about 10% by weight increase.
<0138> 한편, 탄화수소인 경질나프타와 메탄을을 동시분해하는 경우인 비교예 1의 공정을 수행하고 난 후에는 반웅기의 온도 값이 비교예 1보다 감소하고, 경질올레 핀의 수율은 향상되는 것을 확인할 수 있었다. 그러나 메탄의 수율이 약 13 증량 % 대체용지 (규칙 제 26조) 로 매우 높아진 것을 확인할 수 있었다. On the other hand, after performing the process of Comparative Example 1, which is a case of co-decomposing hydrocarbon light naphtha and methane, the temperature value of the counterunggi is reduced than that of Comparative Example 1, the yield of hard olefins is improved I could confirm that. However, the yield of methane is increased by about 13% by weight of replacement paper (Rule 26). It was confirmed that the very high.
<0139>  <0139>
<0140> 반면, 본 발명에 따른 접촉분해 반응공정으로 메탄을이 공급되는 위치를 조 절한 경우인 실시예 1 내지 4의 공정을 수행하고 난 후에는 메탄의 생성량은 거의 늘지 않을 것을 확인할 수 있었으며, 반용기의 온도 값도 일정 수준으로 유지한 것 을 확인할 수 있었다.  On the other hand, after performing the process of Examples 1 to 4 in the case where the position where methane is supplied by the catalytic cracking reaction process according to the present invention was confirmed that the amount of methane produced almost does not increase, It was confirmed that the temperature value of the half vessel was also maintained at a constant level.
<oi4i> 특히, 경질올레핀 (Ethylene + Propylene)의 수율은 최대 약 40 증량 %로 나프 타와 메탄올을 하부로 동시에 공급하는 경우보다 약 15 증량% 향상된 것을 확인할 수 있었다.  <oi4i> In particular, the yield of light olefins (Ethylene + Propylene) was up to about 40% by weight increase than naphtha and methanol at the same time it was confirmed that about 15% increase.
대체용지 (규칙 제 26조) Alternative Site (Article 26)

Claims

【청구의 범위】 [Range of request]
【청구항 1】  [Claim 1]
반응기, 스트리퍼 (str ipper) 및 계생기를 포함하는 순환유동층 반웅기를 이 용하여 나프타와 메탄올의 동시분해 반웅을 수행하는 나프타와 메탄을 혼합 접촉분 해 반웅공정에 있어서,  In the mixed catalytic reaction reaction of naphtha and methane, which perform co-decomposition of naphtha and methanol using a circulating fluidized bed reactor including a reactor, a stripper, and a regenerator,
상기 나프타는 상기 반웅기의 하부로부터 전체 반응기 길이의 0 ¾ 내지 5 ¾ 위치로 공급되고. 상기 메탄올은 상기 반웅기의 하부로부터 전체 반웅기 길이의 10 ¾ 내지 80 ¾ 위치로 공급되는 것을 포함하는 접촉분해 반웅공정.  The naphtha is fed from the bottom of the counterunggi to positions 0 ¾ to 5 ¾ of the total reactor length. The methanol is a catalytic cracking reaction process comprising the supply from the bottom of the counterunggi to 10 ¾ to 80 ¾ position of the total counterunggi length.
【청구항 2} [Claim 2]
제 1항에 있어서,  The method of claim 1,
상기 메탄을은 상기 반웅기의 하부로부터 전체 반응기 길이의 15 % 내지 45 % 위치로 공급되는 것을 포함하는 접촉분해 반웅공정.  The methane is a catalytic cracking reaction comprising being supplied to the position of 15% to 45% of the total reactor length from the bottom of the reactor.
【청구항 3】 [Claim 3]
제 1항에 있어서,  The method of claim 1,
상기 나프타는 탄소수 C4 내지 C12인 포화 탄화수소 또는 불포화 탄화수소를 포함하는 것을 특징으로 하는 접촉분해 반웅공정 . The naphtha is a catalytic cracking reaction process comprising a saturated hydrocarbon or unsaturated hydrocarbon having C 4 to C 12 carbon atoms.
【청구항 4] 대체용지 (규칙 제 26조) 제 1항에 있어서, 【Claim 4】 Alternative Site (Article 26) The method of claim 1,
상기 나프타는 전 범위 나프타 (full— range naphtha), 경질 나프타 (light naphtha), 라피네이트 오일 (raifinate oil) 및 이들의 흔합물로 이루어지는 군으로 부터 선택되는 1 종 이상인 것을 특징으로 하는 접촉분해 반옹공정.  The naphtha is at least one selected from the group consisting of full range naphtha, light naphtha, raffinate oil, and combinations thereof. .
【청구항 5] [Claim 5]
제 1항에 있어서,  The method of claim 1,
상기 순환유동충 반웅기는 촉매가 순환되며, 상기 촉매는 ZSM-5 또는 SAPO- 34인 촉매 성분. 바인더 (binder) 및 매트릭스 (matrix)를 포함하는 20 내지 200 지름의 성형된 구형 또는 타원형 촉데인 것을 특징으로 하는 접촉분해 반웅공 정.  The circulating fluidized bed reactor is the catalyst is circulated, the catalyst is ZSM-5 or SAPO- 34 catalyst component. A catalytically semi-perforated tablet characterized in that it is a molded spherical or elliptical catalyst of 20 to 200 diameters comprising a binder and a matrix.
【청구항 6】 [Claim 6]
제 1항에 있어서,  The method of claim 1,
상기 나프타와 메탄올의 공급 비율은 나프타 1 증량부에 대하여 메탄올 0.2 내지 1.4증량부인 것을 특징으로 하는 접촉분해 반응공정ᅳ  The naphtha and methanol feed ratio is 0.2 to 1.4 parts by weight of methanol relative to 1 part by weight of naphtha.
【청구항 7] [Claim 7]
제 1항에 있어^ 상기 나프타와 메탄을은 600 "C 내지 700 1 의 온도 및 5 h1 내지 30니의 대체용지 (규칙 제 26조) 공간 속도 범위에서 반웅이 수행되는 것을 특징으로 하는 접촉분해 반응공정. The naphtha and methane are replaced by a 600 "C to 700 1 temperature and 5 h 1 to 30 needles (Article 26). Catalytic reaction process, characterized in that the reaction is carried out in the space velocity range.
【청구항 8】 [Claim 8]
제 1항에 있어서,  The method of claim 1,
상기 나프타와 메탄을의 반웅기 내에서의 체류시간은 1 초 내지 5 초인 것을 특징으로 하는 접촉분해 반응공정.  Catalytic cracking reaction process, characterized in that the residence time of the naphtha and methane in the reaction vessel is 1 second to 5 seconds.
【청구항 9] [Claim 9]
반응기. 스트리퍼 (str ipper) 및 재생기를 포함하는 순환유동층 반옹기를 이 용하여 나프타와 메탄올의 동시분해 반웅을 수행하는 나프타와 메탄을 흔합 접촉분 해 반용공정에 있어서,  Reactor. In a mixed contact reaction process for naphtha and methane, which performs a simultaneous decomposition reaction of naphtha and methanol using a circulating fluidized bed reaction device including a stripper and a regenerator,
상기 나프타는 상기 반응기의 하부로부터 전체 반용기 길이의 0 % 내지 5 ¾ 위치로 공급되고. 상기 메탄올은 상기 반웅기의 하부로부터 전체 반응기 길이의 10 ¾ 내지 80 % 위치로 공급되는 것을 포함하는 접촉분해 반웅공정으로 제조된 경 질을레핀.  The naphtha is fed from the bottom of the reactor to a position of 0% to 5 3/4 of the total half vessel length. The methanol is prepared by the catalytic cracking reaction process comprising the methanol supplied from the bottom of the reaction vessel to 10 ¾ to 80% of the total length of the reactor.
【청구항 10】 [Claim 10]
반웅기, 스트리퍼 (str i pper ) 및 재생기를 포함하는 순환유동층 반응기를 이 용하여 나프타와 메탄올의 동시분해 반웅을 수행하는 나프타와 메탄을 혼합 접촉분 해 반웅공정으로 경질을레핀올 제조하는 방법에 있어서,  In a method for producing hard lepinol by mixed catalytic cracking reaction of naphtha and methane which perform co-decomposition of naphtha and methanol using a circulating fluidized bed reactor including a reaction vessel, a stripper and a regenerator, ,
상기 나프타는 상기 반웅기의 하부로부터 전체 반웅기 길이의 0 % 내지 5 % 대체용지 (규칙 제 26조) 위치로공급되고, 상기 메탄을은상기 반응기의 하부로부터 전체 반응기 길이의The naphtha is 0% to 5% replacement paper of the total length of the reaction from the bottom of the reaction (rule 26) Is fed to a position, and the methane is
10 %내지 80 %위치로공급되는 것을특징으로하는경질올레핀 수율을향상시키 는방법 . A method for improving the yield of light olefins characterized by being fed at 10% to 80% position.
대체용지 (규칙 제 26조) Alternative Site (Article 26)
PCT/KR2015/007989 2014-08-01 2015-07-30 Naphtha and methanol mixed catalytic cracking reaction process WO2016018097A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15826774.0A EP3176242B1 (en) 2014-08-01 2015-07-30 Naphtha and methanol mixed catalytic cracking reaction process
US15/501,006 US10131850B2 (en) 2014-08-01 2015-07-30 Naphtha and methanol mixed catalytic cracking reaction process
JP2017526029A JP6343400B2 (en) 2014-08-01 2015-07-30 Mixed catalyst cracking reaction process of naphtha and methanol
CN201580052123.2A CN106715656A (en) 2014-08-01 2015-07-30 Naphtha and methanol mixed catalytic cracking reaction process

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20140098863 2014-08-01
KR10-2014-0098863 2014-08-01
KR1020150106710A KR101803406B1 (en) 2014-08-01 2015-07-28 Process for catalytic cracking reaction of naphtha and methanol mixture
KR10-2015-0106710 2015-07-28

Publications (1)

Publication Number Publication Date
WO2016018097A1 true WO2016018097A1 (en) 2016-02-04

Family

ID=55217878

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/007989 WO2016018097A1 (en) 2014-08-01 2015-07-30 Naphtha and methanol mixed catalytic cracking reaction process

Country Status (1)

Country Link
WO (1) WO2016018097A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060073940A (en) * 2003-08-19 2006-06-29 토탈 페트로케미칼스 리서치 펠루이 Preparation of Olefin
KR20080078865A (en) * 2005-12-23 2008-08-28 차이나 페트로리움 앤드 케미컬 코포레이션 Catalytic Conversion Process for Increasing Yield of Lower Olefin
KR20090057027A (en) * 2006-08-23 2009-06-03 달리안 인스티튜트 오브 케미컬 피직스, 차이니즈 아카데미 오브 사이언시즈 Recovery of calorific value regenerated during the production of lower olefins from methanol
CN102875304A (en) * 2011-07-12 2013-01-16 中国石油化工股份有限公司 Method for preparing low carbon olefins from methanol and naphtha
KR20130106872A (en) * 2010-12-28 2013-09-30 달리안 인스티튜트 오브 케미컬 피직스, 차이니즈 아카데미 오브 사이언시즈 Process for methanol coupled catalytic cracking reaction of naphtha using a modified zsm-5 molecular sieve catalyst

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060073940A (en) * 2003-08-19 2006-06-29 토탈 페트로케미칼스 리서치 펠루이 Preparation of Olefin
KR20080078865A (en) * 2005-12-23 2008-08-28 차이나 페트로리움 앤드 케미컬 코포레이션 Catalytic Conversion Process for Increasing Yield of Lower Olefin
KR20090057027A (en) * 2006-08-23 2009-06-03 달리안 인스티튜트 오브 케미컬 피직스, 차이니즈 아카데미 오브 사이언시즈 Recovery of calorific value regenerated during the production of lower olefins from methanol
KR20130106872A (en) * 2010-12-28 2013-09-30 달리안 인스티튜트 오브 케미컬 피직스, 차이니즈 아카데미 오브 사이언시즈 Process for methanol coupled catalytic cracking reaction of naphtha using a modified zsm-5 molecular sieve catalyst
CN102875304A (en) * 2011-07-12 2013-01-16 中国石油化工股份有限公司 Method for preparing low carbon olefins from methanol and naphtha

Similar Documents

Publication Publication Date Title
CN101348404B (en) Method for improving ethylene and propene yield in methyl alcohol or dimethyl ether conversion process
AU2007291793B2 (en) A process for starting up fluidized catalytic reaction means used for producing lower olefin
KR101847474B1 (en) Method for preparing a light olefin using an oxygen-containing compound
CN101239871B (en) Method for increasing selectivity of low-carbon olefins in methanol or dimethyl ether converting process
CN101177374B (en) A method for producing propylene from methanol or dimethyl ether
CN101279873B (en) Method for preparing low-carbon olefin hydrocarbon with methanol or dimethyl ether
KR101803406B1 (en) Process for catalytic cracking reaction of naphtha and methanol mixture
CN107963957B (en) Method and device for preparing propylene and C4 hydrocarbon
CN102464532A (en) Method for preparing low-carbon olefins
CN102875299A (en) Method for producing low-carbon olefins by using methanol and naphtha
CN101270019B (en) Method for preparing low carbon olefin hydrocarbon with methanol or dimethyl ether
US11161085B2 (en) Fluidized bed device and method for preparing para-xylene and co-producing light olefins from methanol and/or dimethyl ether and benzene
CN102464524A (en) Method for producing low-carbon olefin from methanol
CN102295507A (en) Method for converting methanol or dimethyl ether into low-carbon olefin
CN102276406A (en) Method for increasing yield of propylene
CN101279876B (en) Method for preparing ethylene and propone with oxocompound
CN102464522A (en) Production method of low-carbon olefin
WO2016018097A1 (en) Naphtha and methanol mixed catalytic cracking reaction process
CN102464528B (en) Method for increasing yields of ethylene and propylene
CN103121901A (en) Method for converting oxygenated chemicals to generate low-carbon olefins
CN102463079B (en) Reaction device for producing low-carbon olefin from methanol
CN102190540A (en) Method for producing propylene
CN106748620A (en) For the system and method recycled to preparing propylene from methanol accessory substance
CN102276383B (en) Method of reducing runoff of catalysts in conversion of oxygen containing compounds to low carbon olefins
CN206476918U (en) System for being recycled to preparing propylene from methanol accessory substance

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15826774

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017526029

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015826774

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015826774

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15501006

Country of ref document: US