WO2016017965A1 - Potable blood glucose meter - Google Patents

Potable blood glucose meter Download PDF

Info

Publication number
WO2016017965A1
WO2016017965A1 PCT/KR2015/007372 KR2015007372W WO2016017965A1 WO 2016017965 A1 WO2016017965 A1 WO 2016017965A1 KR 2015007372 W KR2015007372 W KR 2015007372W WO 2016017965 A1 WO2016017965 A1 WO 2016017965A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
unit
blood glucose
measuring
signal
Prior art date
Application number
PCT/KR2015/007372
Other languages
French (fr)
Korean (ko)
Inventor
김태은
최대각
차근식
남학현
Original Assignee
주식회사 아이센스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 아이센스 filed Critical 주식회사 아이센스
Publication of WO2016017965A1 publication Critical patent/WO2016017965A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/66Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving blood sugars, e.g. galactose

Definitions

  • the present invention relates to a portable blood glucose meter. More specifically, the blood sample adsorbed on the test strip is configured to measure the red blood cell volume ratio through a second measurement unit, thereby measuring and calculating the red blood cell volume ratio contained in the blood sample to correct and calculate the blood glucose level. It is possible to improve the accuracy and reliability of the blood sugar level results, and to apply the variable potential to the blood sample through the second measurement operation unit, and to calculate the red blood cell volume ratio by measuring the rectified signal rectified from the response signal generated therefrom By doing so, the red blood cell volume ratio can be easily measured, and the data calculation process is not complicated, so that the accuracy of the measurement result can be improved, as well as a portable blood glucose meter which can simplify the structure and reduce the manufacturing cost.
  • Diabetes is a chronic disease that occurs frequently in modern people, and in Korea, more than 2 million people, or 5% of the total population.
  • Diabetes has a huge amount of sugar in the blood due to the lack of or relative lack of insulin produced by the pancreas due to various causes, such as obesity, stress, poor diet, and congenital heredity. Loses and develops.
  • Blood usually contains a certain concentration of glucose, and tissue cells are getting energy from it.
  • Diabetes is characterized by almost no symptoms in the early stages, and when the disease progresses, it is characteristic of diabetes mellitus, followed by polyps, polyuria, weight loss, systemic boredom, itching of the skin, and long-lasting pain in the hands and feet.
  • polyps polyuria
  • weight loss polyuria
  • weight loss polyuria
  • weight loss polyuria
  • weight loss polyuria
  • weight loss polyuria
  • weight loss a
  • systemic boredom itching of the skin
  • long-lasting pain in the hands and feet and long-lasting pain in the hands and feet.
  • complications develop into vision disorders, hypertension, kidney disease, stroke, periodontal disease, muscle spasms and neuralgia, gangrene, and the like.
  • the portable blood glucose meter absorbs and injects a blood sample, which is a blood glucose measurement target, into a test strip inserted into the case, and the blood measurement module mounted on the PCB substrate inside the case measures and calculates the blood sugar, and then measures the blood sugar on the display unit formed in the case. It is constructed by outputting the result.
  • the method of measuring and calculating blood glucose from the blood sample is generally configured to measure the response signal generated by applying a current to the blood sample adsorbed on the test strip, and calculate the blood sugar for the blood sample according to the response signal measurement result. This is a measurement method using the principle that the response signal of the current is generated differently according to the blood glucose level in the blood.
  • the response signal of the current applied to the blood sample not only changes with the temperature of the environment to be measured, but also the response signal results very differently depending on other components contained in the blood, in particular the hematocrit.
  • a general blood glucose meter is provided with a separate temperature sensor inside the case to measure the temperature of the measurement environment, and is configured to correct and calculate the blood glucose level by reflecting the temperature measurement result.
  • a conventional blood glucose meter calculates and calculates a blood sugar level by considering a temperature of a measurement environment, and thus can provide a relatively accurate blood sugar level result, but does not reflect information about the volume of red blood cells contained in blood. The problem was that it did not produce accurate blood glucose levels.
  • a blood glucose meter which measures the red blood cell volume ratio and reflects the information on the blood sugar level has been developed, but the red blood cell volume ratio is measured by an indirect calculation method or the measurement instead of the method of directly measuring the blood glucose level. Because the method is very complicated, the accuracy is not only reduced, but the structure is complicated and difficult to manufacture.
  • the present invention is invented to solve the problems of the prior art, an object of the present invention is to configure the red blood cell volume ratio through a separate second measurement calculation unit for the blood sample adsorbed on the test strip, thereby It is to provide a portable blood glucose meter that can measure the blood red blood cell volume ratio contained therein and reflect the reflected red blood cell volume to improve the accuracy and reliability of the blood glucose level result.
  • Another object of the present invention is to easily measure the red blood cell volume ratio by applying a variable potential to a blood sample through a second measurement operation unit, and calculating a red blood cell volume ratio by measuring a rectified signal rectified from the response signal generated therefrom.
  • the data calculation process is not complicated, thereby improving the accuracy of the measurement results, and providing a portable blood glucose meter that can simplify the structure and reduce the manufacturing cost.
  • the present invention the case and the strip inlet is formed on one side;
  • a test strip having a measuring electrode is inserted to apply an electrical signal to a blood sample
  • a first blood glucose level is calculated by applying a fixed potential electrical signal to the measuring electrode and measuring a response signal generated from the measuring electrode.
  • a second measurement calculator configured to apply a variable potential electric signal to the measurement electrode, calculate a mean value of response signals generated from the measurement electrode, and calculate a correction calculation value;
  • a correction calculator configured to correct and calculate a final blood sugar level by reflecting the correction calculation value to the first blood sugar level.
  • the correction calculation value is characterized in that the red blood cell volume ratio for the blood sample.
  • the measurement electrode may be separated into a first measurement electrode to which the fixed potential electric signal of the first measurement operation unit is applied, and a second measurement electrode to which the variable potential electric signal of the second measurement operation unit is applied.
  • the second measurement operator may be configured to measure the average value of the response signal through the rectified signal rectified from the response signal generated from the second measurement electrode to calculate the correction calculation value.
  • the second measurement calculator may include a variable potential applying unit configured to apply the variable potential electric signal to the second measurement electrode; A response signal rectifying unit configured to receive and rectify a response signal generated through the blood sample from the second measurement electrode as the variable potential electric signal is applied; A rectified signal measuring unit measuring the rectified signal generated by the response signal rectifying unit; And a correction calculation value calculator configured to receive the measured value measured through the rectified signal measuring part and calculate the correction calculation value.
  • the second measurement calculator may further include a database that stores correction calculation values corresponding to respective measured ranges of the measured value of the rectified signal, and the correction calculation value calculator uses the database to calculate the correction calculation values. Can be calculated.
  • the rectified signal measuring unit may apply the measured value for the rectified signal to the correction operation calculator when the measured value of the rectified signal generated by the response signal rectifying unit is stabilized within a predetermined range.
  • the rectified signal measuring unit may apply the measured value of the rectified signal measured at a time after a preset reference time from the time of generating the rectified signal generated by the response signal rectifying unit to the correction calculation unit.
  • the rectified signal measuring unit may measure the rectified signal a plurality of times, and apply the average value obtained by averaging a plurality of measured values to the correction calculation value calculator.
  • the variable potential applying unit may be a digital-to-analog converter (DAC) that generates an analog variable voltage.
  • DAC digital-to-analog converter
  • variable potential electric signal generated by the variable potential applying unit may have a waveform of any one of a square wave, a sinusoidal wave, and a triangular wave, and may have a frequency of several KHz to several tens of KHz.
  • the blood sample adsorbed on the test strip is configured to measure the red blood cell volume ratio through a separate second measurement operation unit, thereby measuring the red blood cell volume ratio contained in the blood sample and correcting the blood glucose level to reflect the calculation. This can improve the accuracy and reliability of blood sugar level results.
  • the red blood cell volume ratio can be easily measured by applying a fluctuation potential to the blood sample through the second measurement calculation unit and measuring the rectified signal rectified from the response signal generated therefrom to calculate the red blood cell volume ratio.
  • the complexity of the process not only improves the accuracy of the measurement results, but also simplifies the structure and reduces manufacturing costs.
  • FIG. 1 is a view schematically showing the appearance of a portable blood glucose meter according to an embodiment of the present invention
  • FIG. 2 is a view schematically showing a configuration of a test strip of a portable blood glucose meter according to an embodiment of the present invention
  • FIG. 3 is a functional block diagram schematically showing the functional classification of the configuration of a portable blood glucose meter according to an embodiment of the present invention
  • FIG. 4 is a diagram illustrating waveforms of electrical signals generated by first and second measurement calculation units according to an exemplary embodiment of the present invention
  • FIG. 5 is a diagram illustrating a rectified signal generated by a second measurement operation unit according to an embodiment of the present invention
  • FIG. 6 is a diagram illustrating a method of measuring the rectified signal through the rectified signal measuring unit according to an embodiment of the present invention
  • FIGS. 7 to 9 are diagrams experimentally showing the results of verifying the accuracy of the blood glucose level calculated by the portable blood glucose meter according to an embodiment of the present invention.
  • FIG. 1 is a view schematically showing the appearance of a portable blood glucose meter according to an embodiment of the present invention
  • FIG. 2 is a diagram schematically showing a configuration of a test strip of a portable blood glucose meter according to an embodiment of the present invention
  • 3 is a functional block diagram schematically illustrating a functional classification of a portable blood glucose meter according to an embodiment of the present invention
  • FIG. 4 is a first and second measurement operation unit according to an embodiment of the present invention. Exemplary waveforms for electrical signals generated in FIG.
  • the portable blood glucose meter is configured to improve the accuracy of the blood sugar level result by calculating and correcting the blood sugar level by reflecting the temperature and the red blood cell volume ratio in the process of calculating the blood sugar level for the blood sample.
  • a case 100 a test strip 200, a first measurement operator 300, a second measurement operator 400, and a correction operator 500.
  • the case 100 has an accommodation space formed therein, and may be detachably formed as the upper case 110 and the lower case 120 as shown in FIG. 1.
  • a strip inlet 150 is formed to inject the test strip 200 into the inner space, and the test strip 200 has a blood sample (T) in the state of being injected into the strip inlet 150 as described in the background art. ) Is adsorbed and flows into the inner space.
  • An operation button unit 140 for a user's operation is formed on the upper surface of the case 100, and a display unit 130 is formed to quantify and output a blood glucose measurement result measured from the blood sample T. do.
  • the test strip 200 is formed so that the blood sample T can be adsorbed and introduced into the strip inlet 150 of the case 100, and the test sample 200 is inserted into the strip inlet 150. T) is adsorbed to the test strip 200.
  • the measurement electrode 210 is formed to apply an electrical signal to the adsorbed blood sample T as shown in FIGS. 1 and 2.
  • the measurement electrode 210 is a first measurement electrode 211 to which the fixed potential electric signal of the first measurement calculation unit 300 described later is applied, and a second measurement to which the variable potential electric signal of the second measurement calculation unit 400 is applied.
  • the electrode 212 may be formed separately.
  • the measurement electrode 210 may be formed in the form of an integrated electrode instead of being separated into the first measurement electrode 211 and the second measurement electrode 212, in this case, one measurement electrode 210.
  • the electrical signals of the first measurement operator 300 and the second measurement operator 400 may be applied to each other at time intervals.
  • the first measuring electrode 211 includes two first measuring electrode terminals 211-1 and 211-2 spaced apart from each other such that the blood sample T is energized by the blood sample T as the blood sample T is adsorbed.
  • the second measurement electrode 212 also includes two second measurement electrode terminals 212-1 and 212-2 which are likewise spaced apart from each other.
  • the first measurement operation unit 300 applies an electric signal having a fixed potential to the measurement electrode 210, more specifically, to the first measurement electrode 211, and measures a response signal generated from the first measurement electrode 211.
  • the first blood sugar level is calculated.
  • the second measurement operation unit 400 applies an electrical signal having a variable potential to the measurement electrode 210, more specifically, to the second measurement electrode 212, and measures a response signal generated from the second measurement electrode 212. To calculate the correction calculation value.
  • the correction calculator 500 corrects and calculates the final blood glucose level by reflecting the correction calculation value calculated by the second measurement calculator 400 to the first blood sugar level calculated by the first measurement calculator 300. At this time, the correction calculation value may be set to the red blood cell volume ratio for the blood sample.
  • the first measurement calculator 300 includes a fixed potential applying unit 310 for applying a fixed potential electric signal to the first measurement electrode 211, and the application of the fixed potential electric signal.
  • the response signal measuring unit 320 for receiving and measuring the response signal generated through the blood sample from the first measurement electrode, and receives the measured value measured by the response signal measuring unit 320 to receive the first blood glucose level It may be configured to include a blood sugar level calculation unit 330 to calculate.
  • the first measurement operator 300 applies a fixed potential electric signal to the first measurement electrode 211 of the test strip 200, measures the response signal generated from the blood sample T, and based on the measured blood response, the corresponding blood is measured.
  • the first blood glucose level of the sample T is calculated.
  • the first measurement calculator 300 may be further provided with a temperature measuring unit (not shown) for measuring temperature, and the blood sugar level calculating unit 330 measures the temperature value measured through the temperature measuring unit. Reflecting this may be configured to calculate the first blood sugar level in a manner to correct the blood sugar level.
  • the second measurement operation unit 400 includes the variable potential applying unit 410, the response signal rectifying unit 420, the rectified signal measuring unit 430, and the correction operation value calculating unit 440. It may be configured to include, and may further include a separate database 450.
  • the variable potential applying unit 410 is configured to apply a variable potential electric signal to the second measurement electrode 212, which may be applied as a general alternating current, and has various waveforms in which a constant displacement occurs. Can be applied. Accordingly, a fixed potential electric signal having a constant voltage is applied to the first measurement electrode 211 as shown in FIG. 4 by the fixed potential applying unit 310, and various waveforms are applied to the second measurement electrode 212. A variable potential electrical signal of the form is applied.
  • the variable potential applying unit 410 may be applied to a digital-to-analog converter (DAC) that generates an analog variable voltage. Accordingly, the digital signal input to the digital-analog converter is converted into an analog signal to convert the generated analog variable voltage. It is possible to apply the variable potential through.
  • DAC digital-to-analog converter
  • Such a digital-to-analog converter may be embedded in a control chip of a PCB board or mounted on the PCB board in an interlocked form. This simplifies the analog circuit for variable potentials.
  • variable potential electric signal generated by the variable potential applying unit 410 may have any one of a waveform of a square wave, a sinusoidal wave, and a triangular wave, and may be formed to have a frequency of several KHz to several tens of KHz.
  • the response signal rectifier 420 is configured to receive and rectify the response signal generated through the blood sample T from the second measuring electrode 212 as the variable potential electric signal is applied through the variable potential applying unit 410. . That is, the variable potential electrical signal applied to the second measurement electrode 212 generates a response signal through the blood sample T, and the response signal generated therein has a waveform corresponding to the variable potential electrical signal. In an embodiment of the present invention, the waveform of the response signal corresponding to the variation potential is configured to be rectified through the response signal rectifier 420.
  • the rectified signal measuring unit 430 is configured to measure the rectified signal generated by the response signal rectifying unit 420, and the correction calculation unit 440 applies the measured value measured by the rectifying signal measuring unit 430. And calculate a correction calculation value.
  • variable potential electric signal applied to the second measurement electrode 212 through the variable potential applying unit 410 generates a response signal through the blood sample T, in which the characteristics of the blood sample T Therefore, different kinds of response signals are generated.
  • the response signal is rectified by the response signal rectifying unit 420, and the rectified signal thus rectified also generates different rectified signals according to the characteristics of the blood sample (T). Therefore, the rectified signal measuring unit 430 measures such a rectified signal, and the correction calculation unit 440 according to the measured value of the rectified signal measuring unit 430 correction operation indicating the characteristics of the blood sample (T) Calculate the value.
  • the correction calculation value may be set to the red blood cell volume ratio contained in the blood as described above.
  • the method of calculating the correction calculation value 440 may be set by using a separate database 450. That is, the second measurement operation unit 400 may further include a database 450 that stores correction operation values corresponding to respective predetermined ranges of the measured values of the rectified signal, and the correction operation value calculation unit 440 may rectify the operation.
  • the correction operation value may be calculated by matching the rectified signal measurement value applied from the signal measuring unit 430 with the correction operation value stored in the database 450.
  • the portable blood glucose meter calculates the first blood sugar level through the first measurement calculator 300, and corrects the calculated value through the second measurement calculator 400, for example.
  • the red blood cell volume ratio may be calculated, and the final blood glucose level may be corrected and calculated by correcting the red blood cell volume ratio based on the first blood sugar level through the correction calculator 500. Therefore, the blood glucose level can be calculated in consideration of the red blood cell volume ratio contained in the blood sample T, thereby providing a more accurate blood glucose level result.
  • FIG. 4 is a diagram illustrating a form of a potential supplied to a measurement electrode of a test strip in chronological order.
  • the form of a variable potential electrical signal may be a square wave, a triangular wave, a sin wave, or the like.
  • the red blood cell volume ratio can be measured due to the characteristic change in blood due to the change of potential.
  • FIG 5 is a diagram illustrating a rectified signal generated by the second measurement operation unit according to an embodiment of the present invention
  • Figure 6 is a measurement of the rectified signal through the rectified signal measurement unit according to an embodiment of the present invention
  • 7 to 9 are diagrams showing experimental results of accuracy verification of blood glucose levels calculated by a portable blood glucose meter according to an embodiment of the present invention.
  • the rectified signal generated through the response signal rectifier 420 of the second measurement operator 400 is shown in a form having different potentials according to the red blood cell volume ratio contained in the blood as shown in FIG. 5.
  • the red blood cell volume ratio (Hct) is 10%
  • the potential measurement value of the rectified signal is relatively high
  • the red blood cell volume ratio (Hct) is 70%
  • the potential measurement value of the rectified signal is relatively low.
  • mutual matching data on the potential measurement value of the rectified signal and the red blood cell volume ratio is previously collected and stored in the database 450 through a preliminary experiment. Therefore, when the potential value of the rectified signal is measured, the red blood cell volume ratio may be calculated by matching the red blood cell volume ratio data stored in the database 450.
  • the correction operation unit 500 corrects and calculates the final blood glucose level in a manner of correcting the first blood sugar level by reflecting the calculated red blood cell volume ratio.
  • the rectified signal generated through the response signal rectifying unit 420 is a form in which the change potential is rectified and appears to converge to a specific value (V 0 ) with time as shown in FIG. 6. According to the method, the rectified signal measuring method can be appropriately changed.
  • the measured value of the rectified signal generated by the response signal rectifying unit 420 may be configured to apply the measured value for the rectified signal to the correction calculation value calculating unit 440 in a state where the measured value of the rectified signal is converged and stabilized within a predetermined range. have.
  • the measured value of the rectified signal measured at the time after the preset reference time t 0 has elapsed from the time of generating the rectified signal may be configured to be applied to the correction operation value calculator 440.
  • the reference time t 0 may be set to a time point at which the measured value of the rectified signal converges within a predetermined range.
  • the rectified signal measuring unit 430 measures the rectified signal a plurality of times (t 1 , t 2 , t 3 time points) in a section after the reference time t 0 or in a section after the measured value of the rectified signal converges within a predetermined range
  • the average value obtained by averaging a plurality of measured values may be configured to be applied to the correction calculation value calculator. As described above, when the rectified signal is measured a plurality of times and averaged and applied to the correction calculation unit, the accuracy of the measured rectified signal may be further improved.
  • FIG. 7 to 9 show experimental results of accuracy verification for blood glucose levels measured by a blood glucose meter according to the present invention, each of which shows a measurement result according to a change in red blood cell volume ratio by varying the range of blood sugar levels.
  • the experimental method proceeded by preparing a blood sample having a specific blood glucose level and measuring blood glucose levels by changing the red blood cell volume ratio for the blood sample.
  • the blood glucose level calculated in a general manner without reflecting the change in the red blood cell volume rate is shown to decrease as the red blood cell volume rate increases.
  • the blood glucose level result shows very inaccurate result.
  • the error rate is more than 20% or 40% as compared to the actual blood glucose level (H 0 ) in accordance with the change in the red blood cell volume rate.
  • the blood glucose meter is configured to correct and calculate the blood glucose level by reflecting the red blood cell volume rate, and thus shows almost similar blood sugar levels despite the change in the red blood cell volume rate as shown in FIGS. 7 to 9.
  • the error rate is also within 10% compared to the actual blood glucose level (H 0 ).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Hematology (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Diabetes (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

The present invention relates to a portable blood glucose meter. More specifically, the present invention relates to a portable blood glucose meter which is configured to measure hematocrit of a blood sample adsorbed by a test strip through a separate second measurement computation unit so that a blood glucose level can be correctly calculated by measuring hematocrit contained in the blood sample and reflecting the measured hematocrit. Therefore, the portable blood glucose meter can improve accuracy and reliability for a blood glucose level result. The portable blood glucose meter applies fluctuating electric potential to the blood sample through a second measurement computation unit, measures a rectification signal rectifying a response signal generated therefrom, and calculates the hematocrit. Therefore, the portable blood glucose meter can easily measure the hematocrit, and has a simple data computation process, which improves accuracy for a measurement result, simplifies the structure, and reduces the manufacturing cost.

Description

휴대용 혈당 측정기Portable blood glucose meter
본 발명은 휴대용 혈당 측정기에 관한 것이다. 보다 상세하게는 검사 스트립에 흡착된 혈액 샘플에 대해 별도의 제 2 측정 연산부를 통해 적혈구 용적률을 측정할 수 있도록 구성함으로써, 혈액 샘플 속에 함유된 적혈구 용적률을 측정하고 이를 반영하여 혈당 수치를 보정 산출할 수 있어 혈당 수치 결과에 대한 정확도 및 신뢰도를 향상시킬 수 있으며, 제 2 측정 연산부를 통해 혈액 샘플에 변동 전위를 인가하고, 이로부터 발생되는 응답 신호를 정류한 정류 신호를 측정하여 적혈구 용적률을 산출하도록 함으로써, 적혈구 용적률을 용이하게 측정할 수 있고, 데이터 연산 처리 과정이 복잡하지 않아 측정 결과에 대한 정확도를 향상시킬 수 있을 뿐만 아니라 구조 단순화 및 제조 비용을 절감할 수 있는 휴대용 혈당 측정기에 관한 것이다.The present invention relates to a portable blood glucose meter. More specifically, the blood sample adsorbed on the test strip is configured to measure the red blood cell volume ratio through a second measurement unit, thereby measuring and calculating the red blood cell volume ratio contained in the blood sample to correct and calculate the blood glucose level. It is possible to improve the accuracy and reliability of the blood sugar level results, and to apply the variable potential to the blood sample through the second measurement operation unit, and to calculate the red blood cell volume ratio by measuring the rectified signal rectified from the response signal generated therefrom By doing so, the red blood cell volume ratio can be easily measured, and the data calculation process is not complicated, so that the accuracy of the measurement result can be improved, as well as a portable blood glucose meter which can simplify the structure and reduce the manufacturing cost.
당뇨병은 현대인에게 많이 발생되는 만성질환으로 국내의 경우 전체 인구의 5%에 해당하는 200만 명 이상에 이르고 있다.Diabetes is a chronic disease that occurs frequently in modern people, and in Korea, more than 2 million people, or 5% of the total population.
당뇨병은 비만, 스트레스, 잘못된 식습관, 선천적 유전 등 다양한 원인에 의해 췌장에서 만들어지는 인슐린이 절대적으로 부족하거나 상대적으로 부족하여 혈액에서 당에 대한 균형을 바로 잡아주지 못함으로써 혈액 안에 당 성분이 절대적으로 많아지게 되어 발병한다.Diabetes has a huge amount of sugar in the blood due to the lack of or relative lack of insulin produced by the pancreas due to various causes, such as obesity, stress, poor diet, and congenital heredity. Loses and develops.
혈액 중에는 보통 일정 농도의 포도당이 함유되어 있으며 조직 세포는 여기에서 에너지를 얻고 있다.Blood usually contains a certain concentration of glucose, and tissue cells are getting energy from it.
그러나, 포도당이 필요 이상으로 증가하게 되면 간장이나 근육 또는 지방세포 등에 적절히 저장되지 못하고 혈액 속에 축적되며, 이로 인해 당뇨병 환자는 정상인보다 훨씬 높은 혈당이 유지되며, 과다한 혈당은 조직을 그대로 통과하여 소변으로 배출됨에 따라 신체의 각 조직에 절대적으로 필요한 당분은 부족해져서 신체 각 조직에 이상을 불러일으키게 된다.However, when glucose is increased more than necessary, it is not properly stored in the liver, muscle, or fat cells, and accumulates in the blood, which causes diabetes patients to maintain a much higher blood sugar level than a normal person, and excessive blood sugar passes through the tissues directly into the urine. As it is released, the sugars that are absolutely necessary for each tissue of the body are insufficient, causing abnormalities in each tissue of the body.
당뇨병은 초기에는 거의 자각 증상이 없는 것이 특징인데, 병이 진행되면 당뇨병 특유의 다음, 다식, 다뇨, 체중감소, 전신 권태, 피부 가려움증, 손과 발의 상처가 낫지 않고 오래가는 경우 등의 특유의 증상이 나타나며, 병이 한층 더 진행되면 시력장애, 고혈압, 신장병, 중풍, 치주질환, 근육 경련 및 신경통, 괴저 등으로 진전되는 합병증이 나타난다.Diabetes is characterized by almost no symptoms in the early stages, and when the disease progresses, it is characteristic of diabetes mellitus, followed by polyps, polyuria, weight loss, systemic boredom, itching of the skin, and long-lasting pain in the hands and feet. When the disease progresses further, complications develop into vision disorders, hypertension, kidney disease, stroke, periodontal disease, muscle spasms and neuralgia, gangrene, and the like.
이러한 당뇨병을 진단하고 합병증으로 진전되지 않도록 관리하기 위해서는 체계적인 혈당 측정과 치료가 병행되어야 한다.In order to diagnose this diabetes and manage it to prevent the development of complications, systematic blood glucose measurement and treatment should be combined.
당뇨병 환자 및 당뇨병으로 진전되지 않았으나 혈액 내에 정상보다 많은 당이 검출되는 사람들을 위하여 많은 의료기기 제조업체에서는 가정에서 혈당을 측정할 수 있도록 다양한 종류의 휴대용 혈당 측정기를 제공하고 있다.For diabetics and people who have not advanced to diabetes but have detected more than normal sugar in their blood, many medical device manufacturers offer a variety of portable blood glucose meters to measure blood glucose at home.
이러한 휴대용 혈당 측정기는 케이스 내부에 투입된 검사 스트립에 혈당 측정 대상인 혈액 샘플을 흡착 유입시킴에 따라 케이스 내부의 PCB 기판에 실장된 혈액 측정 모듈이 혈당을 측정 산출한 후, 케이스에 형성된 디스플레이부에 혈당 측정 결과를 출력하는 방식으로 구성된다.The portable blood glucose meter absorbs and injects a blood sample, which is a blood glucose measurement target, into a test strip inserted into the case, and the blood measurement module mounted on the PCB substrate inside the case measures and calculates the blood sugar, and then measures the blood sugar on the display unit formed in the case. It is constructed by outputting the result.
혈액 샘플로부터 혈당을 측정 산출하는 방식은 일반적으로 검사 스트립에 흡착된 혈액 샘플에 전류를 인가하여 발생한 응답 신호를 측정하고, 응답 신호 측정 결과에 따라 혈액 샘플에 대한 혈당을 산출하도록 구성된다. 이는 혈액 속에 함유된 혈당 수치에 따라 전류의 응답 신호가 각각 다르게 발생하는 원리를 이용한 측정 방식이다.The method of measuring and calculating blood glucose from the blood sample is generally configured to measure the response signal generated by applying a current to the blood sample adsorbed on the test strip, and calculate the blood sugar for the blood sample according to the response signal measurement result. This is a measurement method using the principle that the response signal of the current is generated differently according to the blood glucose level in the blood.
그러나, 혈액 샘플에 인가된 전류의 응답 신호는 측정하는 환경의 온도에 따라 변화할 뿐만 아니라 혈액 속에 함유된 다른 성분, 특히, 적혈구 용적률(hematocrit)에 따라 응답 신호 결과는 매우 상이하게 발생한다.However, the response signal of the current applied to the blood sample not only changes with the temperature of the environment to be measured, but also the response signal results very differently depending on other components contained in the blood, in particular the hematocrit.
이러한 이유로, 일반적인 혈당 측정기는 케이스 내부에 별도의 온도 센서를 구비하여 측정 환경의 온도를 측정하고, 온도 측정 결과를 반영하여 혈당 수치를 보정 산출하도록 구성된다.For this reason, a general blood glucose meter is provided with a separate temperature sensor inside the case to measure the temperature of the measurement environment, and is configured to correct and calculate the blood glucose level by reflecting the temperature measurement result.
이와 같이 종래 기술에 따른 일반적인 혈당 측정기는 측정 환경의 온도를 고려하여 혈당 수치를 보정 산출하게 되므로, 상대적으로 정확한 혈당 수치 결과를 제공할 수 있지만, 혈액 속에 함유된 적혈구 용적률에 대한 정보를 반영하지 않아 정확한 혈당 수치 결과를 산출하지 못한다는 문제가 있었다.As such, a conventional blood glucose meter according to the related art calculates and calculates a blood sugar level by considering a temperature of a measurement environment, and thus can provide a relatively accurate blood sugar level result, but does not reflect information about the volume of red blood cells contained in blood. The problem was that it did not produce accurate blood glucose levels.
이러한 문제를 해결하기 위해 적혈구 용적률을 측정하여 이에 대한 정보를 반영하여 혈당 수치를 보정 산출하는 방식의 혈당 측정기가 개발되고 있지만, 적혈구 용적률을 직접 측정하는 방식이 아니라 간접적인 연산 방식으로 측정하거나 그 측정 방식이 매우 복잡하게 구성되어 있어 정확도가 감소할 뿐만 아니라 구조가 복잡하고 제작이 어려운 등의 문제가 있었다.In order to solve this problem, a blood glucose meter which measures the red blood cell volume ratio and reflects the information on the blood sugar level has been developed, but the red blood cell volume ratio is measured by an indirect calculation method or the measurement instead of the method of directly measuring the blood glucose level. Because the method is very complicated, the accuracy is not only reduced, but the structure is complicated and difficult to manufacture.
본 발명은 종래 기술의 문제점을 해결하기 위해 발명한 것으로서, 본 발명의 목적은 검사 스트립에 흡착된 혈액 샘플에 대해 별도의 제 2 측정 연산부를 통해 적혈구 용적률을 측정할 수 있도록 구성함으로써, 혈액 샘플 속에 함유된 적혈구 용적률을 측정하고 이를 반영하여 혈당 수치를 보정 산출할 수 있어 혈당 수치 결과에 대한 정확도 및 신뢰도를 향상시킬 수 있는 휴대용 혈당 측정기를 제공하는 것이다.The present invention is invented to solve the problems of the prior art, an object of the present invention is to configure the red blood cell volume ratio through a separate second measurement calculation unit for the blood sample adsorbed on the test strip, thereby It is to provide a portable blood glucose meter that can measure the blood red blood cell volume ratio contained therein and reflect the reflected red blood cell volume to improve the accuracy and reliability of the blood glucose level result.
본 발명의 다른 목적은 제 2 측정 연산부를 통해 혈액 샘플에 변동 전위를 인가하고, 이로부터 발생되는 응답 신호를 정류한 정류 신호를 측정하여 적혈구 용적률을 산출하도록 함으로써, 적혈구 용적률을 용이하게 측정할 수 있고, 데이터 연산 처리 과정이 복잡하지 않아 측정 결과에 대한 정확도를 향상시킬 수 있을 뿐만 아니라 구조 단순화 및 제조 비용을 절감할 수 있는 휴대용 혈당 측정기를 제공하는 것이다.Another object of the present invention is to easily measure the red blood cell volume ratio by applying a variable potential to a blood sample through a second measurement operation unit, and calculating a red blood cell volume ratio by measuring a rectified signal rectified from the response signal generated therefrom. In addition, the data calculation process is not complicated, thereby improving the accuracy of the measurement results, and providing a portable blood glucose meter that can simplify the structure and reduce the manufacturing cost.
본 발명은, 일측에 스트립 투입구가 형성되는 케이스와; 혈액 샘플에 전기 신호를 인가할 수 있도록 측정 전극을 구비하는 검사 스트립이 삽입되는 경우 상기 측정 전극에 고정 전위 전기 신호를 인가하고 상기 측정 전극으로부터 발생되는 응답 신호를 측정하여 제 1 혈당 수치를 산출하는 제 1 측정 연산부; 상기 측정 전극에 변동 전위 전기 신호를 인가하고 상기 측정 전극으로부터 발생되는 응답 신호의 평균값을 계산하여 보정 연산치를 산출하는 제 2 측정 연산부; 및 상기 제 1 혈당 수치에 상기 보정 연산치를 반영하여 최종 혈당 수치를 보정 산출하는 보정 연산부를 포함하는 것을 특징으로 하는 휴대용 혈당 측정기를 제공한다.The present invention, the case and the strip inlet is formed on one side; When a test strip having a measuring electrode is inserted to apply an electrical signal to a blood sample, a first blood glucose level is calculated by applying a fixed potential electrical signal to the measuring electrode and measuring a response signal generated from the measuring electrode. A first measurement calculator; A second measurement calculator configured to apply a variable potential electric signal to the measurement electrode, calculate a mean value of response signals generated from the measurement electrode, and calculate a correction calculation value; And a correction calculator configured to correct and calculate a final blood sugar level by reflecting the correction calculation value to the first blood sugar level.
이때, 상기 보정 연산치는 상기 혈액 샘플에 대한 적혈구 용적률인 것을 특징으로 한다.In this case, the correction calculation value is characterized in that the red blood cell volume ratio for the blood sample.
또한, 상기 측정 전극은 상기 제 1 측정 연산부의 고정 전위 전기 신호가 인가되는 제 1 측정 전극과, 상기 제 2 측정 연산부의 변동 전위 전기 신호가 인가되는 제 2 측정 전극으로 분리 형성될 수 있다.In addition, the measurement electrode may be separated into a first measurement electrode to which the fixed potential electric signal of the first measurement operation unit is applied, and a second measurement electrode to which the variable potential electric signal of the second measurement operation unit is applied.
또한, 상기 제 2 측정 연산부는 상기 제 2 측정 전극으로부터 발생되는 응답 신호를 정류한 정류 신호를 통해 상기 응답 신호의 평균값을 측정하여 상기 보정 연산치를 산출하도록 구성될 수 있다.The second measurement operator may be configured to measure the average value of the response signal through the rectified signal rectified from the response signal generated from the second measurement electrode to calculate the correction calculation value.
또한, 상기 제 2 측정 연산부는 상기 제 2 측정 전극에 상기 변동 전위 전기 신호를 인가하는 변동 전위 인가부; 상기 변동 전위 전기 신호가 인가됨에 따라 상기 제 2 측정 전극으로부터 상기 혈액 샘플을 통해 발생되는 응답 신호를 수신하여 정류하는 응답 신호 정류부; 상기 응답 신호 정류부를 통해 생성된 정류 신호를 측정하는 정류 신호 측정부; 및 상기 정류 신호 측정부를 통해 측정된 측정값을 인가받아 상기 보정 연산치를 산출하는 보정 연산치 산출부를 포함하여 구성될 수 있다.The second measurement calculator may include a variable potential applying unit configured to apply the variable potential electric signal to the second measurement electrode; A response signal rectifying unit configured to receive and rectify a response signal generated through the blood sample from the second measurement electrode as the variable potential electric signal is applied; A rectified signal measuring unit measuring the rectified signal generated by the response signal rectifying unit; And a correction calculation value calculator configured to receive the measured value measured through the rectified signal measuring part and calculate the correction calculation value.
또한, 상기 제 2 측정 연산부는 상기 정류 신호의 측정값에 대한 일정 범위마다 각각 대응되는 보정 연산치를 저장한 데이터 베이스를 더 포함하고, 상기 보정 연산치 산출부는 상기 데이터 베이스를 이용하여 상기 보정 연산치를 산출할 수 있다.The second measurement calculator may further include a database that stores correction calculation values corresponding to respective measured ranges of the measured value of the rectified signal, and the correction calculation value calculator uses the database to calculate the correction calculation values. Can be calculated.
또한, 상기 정류 신호 측정부는 상기 응답 신호 정류부를 통해 생성된 정류 신호의 측정값이 일정 범위 이내로 안정화된 상태에서 상기 정류 신호에 대한 측정값을 상기 보정 연산치 산출부로 인가할 수 있다.The rectified signal measuring unit may apply the measured value for the rectified signal to the correction operation calculator when the measured value of the rectified signal generated by the response signal rectifying unit is stabilized within a predetermined range.
또한, 상기 정류 신호 측정부는 상기 응답 신호 정류부를 통해 생성된 정류 신호의 생성 시점으로부터 미리 설정된 기준 시간 이후 시점에서 측정된 정류 신호의 측정값을 상기 보정 연산치 산출부로 인가할 수 있다.The rectified signal measuring unit may apply the measured value of the rectified signal measured at a time after a preset reference time from the time of generating the rectified signal generated by the response signal rectifying unit to the correction calculation unit.
또한, 상기 정류 신호 측정부는 상기 정류 신호를 다수회 측정하고, 다수회의 측정값을 평균한 평균값을 상기 보정 연산치 산출부로 인가할 수 있다.The rectified signal measuring unit may measure the rectified signal a plurality of times, and apply the average value obtained by averaging a plurality of measured values to the correction calculation value calculator.
또한, 상기 변동 전위 인가부는 아날로그 변동 전압을 생성하는 디지털-아날로그 컨버터(DAC)인 것을 특징으로 할 수 있다.The variable potential applying unit may be a digital-to-analog converter (DAC) that generates an analog variable voltage.
또한, 상기 변동 전위 인가부에서 발생하는 변동 전위 전기 신호는 구형파, 정현파 및 삼각파 중 어느 하나의 파형을 가지며 수Khz 내지 수십Khz의 주파수를 갖도록 형성될 수 있다.In addition, the variable potential electric signal generated by the variable potential applying unit may have a waveform of any one of a square wave, a sinusoidal wave, and a triangular wave, and may have a frequency of several KHz to several tens of KHz.
본 발명에 의하면, 검사 스트립에 흡착된 혈액 샘플에 대해 별도의 제 2 측정 연산부를 통해 적혈구 용적률을 측정할 수 있도록 구성함으로써, 혈액 샘플 속에 함유된 적혈구 용적률을 측정하고 이를 반영하여 혈당 수치를 보정 산출할 수 있어 혈당 수치 결과에 대한 정확도 및 신뢰도를 향상시킬 수 있는 효과가 있다.According to the present invention, the blood sample adsorbed on the test strip is configured to measure the red blood cell volume ratio through a separate second measurement operation unit, thereby measuring the red blood cell volume ratio contained in the blood sample and correcting the blood glucose level to reflect the calculation. This can improve the accuracy and reliability of blood sugar level results.
또한, 제 2 측정 연산부를 통해 혈액 샘플에 변동 전위를 인가하고, 이로부터 발생되는 응답 신호를 정류한 정류 신호를 측정하여 적혈구 용적률을 산출하도록 함으로써, 적혈구 용적률을 용이하게 측정할 수 있고, 데이터 연산 처리 과정이 복잡하지 않아 측정 결과에 대한 정확도를 향상시킬 수 있을 뿐만 아니라 구조 단순화 및 제조 비용을 절감할 수 있는 효과가 있다.In addition, the red blood cell volume ratio can be easily measured by applying a fluctuation potential to the blood sample through the second measurement calculation unit and measuring the rectified signal rectified from the response signal generated therefrom to calculate the red blood cell volume ratio. The complexity of the process not only improves the accuracy of the measurement results, but also simplifies the structure and reduces manufacturing costs.
도 1은 본 발명의 일 실시예에 따른 휴대용 혈당 측정기의 외형을 개략적으로 도시한 도면,1 is a view schematically showing the appearance of a portable blood glucose meter according to an embodiment of the present invention;
도 2는 본 발명의 일 실시예에 따른 휴대용 혈당 측정기의 검사 스트립에 대한 구성을 개략적으로 도시한 도면,2 is a view schematically showing a configuration of a test strip of a portable blood glucose meter according to an embodiment of the present invention;
도 3은 본 발명의 일 실시예에 따른 휴대용 혈당 측정기의 구성을 기능적으로 분류하여 개략적으로 도시한 기능 블록도,3 is a functional block diagram schematically showing the functional classification of the configuration of a portable blood glucose meter according to an embodiment of the present invention;
도 4는 본 발명의 일 실시예에 따른 제 1 및 제 2 측정 연산부에서 발생하는 전기 신호에 대한 파형을 예시적으로 도시한 도면,4 is a diagram illustrating waveforms of electrical signals generated by first and second measurement calculation units according to an exemplary embodiment of the present invention;
도 5는 본 발명의 일 실시예에 따른 제 2 측정 연산부에서 발생하는 정류 신호를 예시적으로 도시한 도면,5 is a diagram illustrating a rectified signal generated by a second measurement operation unit according to an embodiment of the present invention;
도 6은 본 발명의 일 실시예에 따른 정류 신호 측정부를 통해 정류 신호를 측정하는 방식을 예시적으로 도시한 도면,6 is a diagram illustrating a method of measuring the rectified signal through the rectified signal measuring unit according to an embodiment of the present invention,
도 7 내지 도 9는 본 발명의 일 실시예에 따른 휴대용 혈당 측정기를 통해 산출한 혈당 수치에 대한 정확도 검증 결과를 실험적으로 나타내는 도면이다.7 to 9 are diagrams experimentally showing the results of verifying the accuracy of the blood glucose level calculated by the portable blood glucose meter according to an embodiment of the present invention.
이하, 본 발명의 바람직한 실시예를 첨부된 도면들을 참조하여 상세히 설명한다. 우선 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. First of all, in adding reference numerals to the components of each drawing, it should be noted that the same reference numerals are used as much as possible even if displayed on different drawings. In addition, in describing the present invention, when it is determined that the detailed description of the related well-known configuration or function may obscure the gist of the present invention, the detailed description thereof will be omitted.
도 1은 본 발명의 일 실시예에 따른 휴대용 혈당 측정기의 외형을 개략적으로 도시한 도면이고, 도 2는 본 발명의 일 실시예에 따른 휴대용 혈당 측정기의 검사 스트립에 대한 구성을 개략적으로 도시한 도면이고, 도 3은 본 발명의 일 실시예에 따른 휴대용 혈당 측정기의 구성을 기능적으로 분류하여 개략적으로 도시한 기능 블록도이고, 도 4는 본 발명의 일 실시예에 따른 제 1 및 제 2 측정 연산부에서 발생하는 전기 신호에 대한 파형을 예시적으로 도시한 도면이다.1 is a view schematically showing the appearance of a portable blood glucose meter according to an embodiment of the present invention, and FIG. 2 is a diagram schematically showing a configuration of a test strip of a portable blood glucose meter according to an embodiment of the present invention. 3 is a functional block diagram schematically illustrating a functional classification of a portable blood glucose meter according to an embodiment of the present invention, and FIG. 4 is a first and second measurement operation unit according to an embodiment of the present invention. Exemplary waveforms for electrical signals generated in FIG.
본 발명의 일 실시예에 따른 휴대용 혈당 측정기는 혈액 샘플에 대한 혈당 수치를 산출하는 과정에서, 온도 및 적혈구 용적률을 반영하여 혈당 수치를 보정 산출함으로써, 혈당 수치 결과의 정확도를 향상시킬 수 있는 구성으로, 케이스(100), 검사 스트립(200), 제 1 측정 연산부(300), 제 2 측정 연산부(400) 및 보정 연산부(500)를 포함하여 구성된다.The portable blood glucose meter according to an embodiment of the present invention is configured to improve the accuracy of the blood sugar level result by calculating and correcting the blood sugar level by reflecting the temperature and the red blood cell volume ratio in the process of calculating the blood sugar level for the blood sample. , A case 100, a test strip 200, a first measurement operator 300, a second measurement operator 400, and a correction operator 500.
케이스(100)는 내부에 수용 공간이 형성되며, 도 1에 도시된 바와 같이 상부 케이스(110) 및 하부 케이스(120)로 분리 가능하게 형성될 수 있다. 측면 일측에는 검사 스트립(200)을 내부 공간으로 투입할 수 있도록 스트립 투입구(150)가 형성되며, 검사 스트립(200)에는 배경 기술에서 설명한 바와 같이 스트립 투입구(150)에 투입된 상태에서 혈액 샘플(T)이 흡착되어 내부 공간으로 유입된다. 케이스(100)의 상면에는 사용자의 조작을 위한 조작 버튼부(140)가 형성되고, 아울러, 혈액 샘플(T)로부터 측정한 혈당 측정 결과 등을 수치화하여 출력할 수 있도록 디스플레이부(130)가 형성된다.The case 100 has an accommodation space formed therein, and may be detachably formed as the upper case 110 and the lower case 120 as shown in FIG. 1. On one side, a strip inlet 150 is formed to inject the test strip 200 into the inner space, and the test strip 200 has a blood sample (T) in the state of being injected into the strip inlet 150 as described in the background art. ) Is adsorbed and flows into the inner space. An operation button unit 140 for a user's operation is formed on the upper surface of the case 100, and a display unit 130 is formed to quantify and output a blood glucose measurement result measured from the blood sample T. do.
검사 스트립(200)은 혈액 샘플(T)이 흡착될 수 있도록 형성되어 케이스(100)의 스트립 투입구(150)에 투입되며, 검사 스트립(200)이 스트립 투입구(150)에 투입된 상태에서 혈액 샘플(T)이 검사 스트립(200)에 흡착된다. The test strip 200 is formed so that the blood sample T can be adsorbed and introduced into the strip inlet 150 of the case 100, and the test sample 200 is inserted into the strip inlet 150. T) is adsorbed to the test strip 200.
이러한 검사 스트립(200)에는 도 1 및 도 2에 도시된 바와 같이 흡착된 혈액 샘플(T)에 전기 신호를 인가할 수 있도록 측정 전극(210)이 형성된다. 측정 전극(210)은 후술하는 제 1 측정 연산부(300)의 고정 전위 전기 신호가 인가되는 제 1 측정 전극(211)과, 제 2 측정 연산부(400)의 변동 전위 전기 신호가 인가되는 제 2 측정 전극(212)으로 분리 형성될 수 있다. 물론, 이러한 측정 전극(210)은 제 1 측정 전극(211) 및 제 2 측정 전극(212)으로 분리 형성되지 않고 통합된 하나의 전극 형태로 형성될 수도 있으며, 이 경우에는 하나의 측정 전극(210)를 통해 제 1 측정 연산부(300) 및 제 2 측정 연산부(400)의 전기 신호가 서로 시간 간격을 갖고 각각 인가되는 방식으로 구성될 수 있다. 한편, 제 1 측정 전극(211)은 혈액 샘플(T)이 흡착됨에 따라 혈액 샘플(T)에 의해 통전되도록 서로 이격 배치된 2개의 제 1 측정 전극 단자(211-1,211-2)를 포함하며, 제 2 측정 전극(212) 또한 마찬가지로 서로 이격 배치된 2개의 제 2 측정 전극 단자(212-1,212-2)를 포함한다.1 and 2, the measurement electrode 210 is formed to apply an electrical signal to the adsorbed blood sample T as shown in FIGS. 1 and 2. The measurement electrode 210 is a first measurement electrode 211 to which the fixed potential electric signal of the first measurement calculation unit 300 described later is applied, and a second measurement to which the variable potential electric signal of the second measurement calculation unit 400 is applied. The electrode 212 may be formed separately. Of course, the measurement electrode 210 may be formed in the form of an integrated electrode instead of being separated into the first measurement electrode 211 and the second measurement electrode 212, in this case, one measurement electrode 210. The electrical signals of the first measurement operator 300 and the second measurement operator 400 may be applied to each other at time intervals. Meanwhile, the first measuring electrode 211 includes two first measuring electrode terminals 211-1 and 211-2 spaced apart from each other such that the blood sample T is energized by the blood sample T as the blood sample T is adsorbed. The second measurement electrode 212 also includes two second measurement electrode terminals 212-1 and 212-2 which are likewise spaced apart from each other.
제 1 측정 연산부(300)는 측정 전극(210)에, 보다 구체적으로는 제 1 측정 전극(211)에 고정 전위의 전기 신호를 인가하고, 제 1 측정 전극(211)으로부터 발생되는 응답 신호를 측정하여 제 1 혈당 수치를 산출한다.The first measurement operation unit 300 applies an electric signal having a fixed potential to the measurement electrode 210, more specifically, to the first measurement electrode 211, and measures a response signal generated from the first measurement electrode 211. The first blood sugar level is calculated.
제 2 측정 연산부(400)는 측정 전극(210)에, 보다 구체적으로는 제 2 측정 전극(212)에 변동 전위의 전기 신호를 인가하고, 제 2 측정 전극(212)으로부터 발생되는 응답 신호를 측정하여 보정 연산치를 산출한다.The second measurement operation unit 400 applies an electrical signal having a variable potential to the measurement electrode 210, more specifically, to the second measurement electrode 212, and measures a response signal generated from the second measurement electrode 212. To calculate the correction calculation value.
보정 연산부(500)는 제 1 측정 연산부(300)를 통해 산출된 제 1 혈당 수치에 제 2 측정 연산부(400)를 통해 산출된 보정 연산치를 반영하여 최종 혈당 수치를 보정 산출한다. 이때, 보정 연산치는 혈액 샘플에 대한 적혈구 용적률로 설정될 수 있다.The correction calculator 500 corrects and calculates the final blood glucose level by reflecting the correction calculation value calculated by the second measurement calculator 400 to the first blood sugar level calculated by the first measurement calculator 300. At this time, the correction calculation value may be set to the red blood cell volume ratio for the blood sample.
좀 더 자세히 살펴보면, 제 1 측정 연산부(300)는 도 3에 도시된 바와 같이 제 1 측정 전극(211)에 고정 전위 전기 신호를 인가하는 고정 전위 인가부(310)와, 고정 전위 전기 신호의 인가에 따라 제 1 측정 전극으로부터 혈액 샘플을 통해 발생되는 응답 신호를 수신하여 측정하는 응답 신호 측정부(320)와, 응답 신호 측정부(320)를 통해 측정된 측정값을 인가받아 제 1 혈당 수치를 산출하는 혈당 수치 산출부(330)를 포함하여 구성될 수 있다.In more detail, as illustrated in FIG. 3, the first measurement calculator 300 includes a fixed potential applying unit 310 for applying a fixed potential electric signal to the first measurement electrode 211, and the application of the fixed potential electric signal. According to the response signal measuring unit 320 for receiving and measuring the response signal generated through the blood sample from the first measurement electrode, and receives the measured value measured by the response signal measuring unit 320 to receive the first blood glucose level It may be configured to include a blood sugar level calculation unit 330 to calculate.
즉, 제 1 측정 연산부(300)는 검사 스트립(200)의 제 1 측정 전극(211)에 고정 전위 전기 신호를 인가하고, 혈액 샘플(T)로부터 발생하는 응답 신호를 측정하여 이를 기초로 해당 혈액 샘플(T)의 제 1 혈당 수치를 산출해내는 방식으로 구성된다.That is, the first measurement operator 300 applies a fixed potential electric signal to the first measurement electrode 211 of the test strip 200, measures the response signal generated from the blood sample T, and based on the measured blood response, the corresponding blood is measured. The first blood glucose level of the sample T is calculated.
이때, 제 1 측정 연산부(300)에는, 도시되지는 않았으나 온도를 측정하는 온도 측정부(미도시)가 추가로 구비될 수 있고, 혈당 수치 산출부(330)는 온도 측정부를 통해 측정된 온도값을 반영하여 혈당 수치를 보정하는 방식으로 제 1 혈당 수치를 산출하도록 구성될 수 있다.In this case, although not shown, the first measurement calculator 300 may be further provided with a temperature measuring unit (not shown) for measuring temperature, and the blood sugar level calculating unit 330 measures the temperature value measured through the temperature measuring unit. Reflecting this may be configured to calculate the first blood sugar level in a manner to correct the blood sugar level.
제 2 측정 연산부(400)는 도 3에 도시된 바와 같이 변동 전위 인가부(410)와, 응답 신호 정류부(420)와, 정류 신호 측정부(430)와, 보정 연산치 산출부(440)를 포함하여 구성될 수 있으며, 별도의 데이터 베이스(450)를 더 포함할 수 있다.As shown in FIG. 3, the second measurement operation unit 400 includes the variable potential applying unit 410, the response signal rectifying unit 420, the rectified signal measuring unit 430, and the correction operation value calculating unit 440. It may be configured to include, and may further include a separate database 450.
변동 전위 인가부(410)는 제 2 측정 전극(212)에 변동 전위 전기 신호를 인가하도록 구성되는데, 변동 전위 전기 신호는 일반적인 교류 전류로 적용될 수 있으며, 일정 변위가 발생하는 다양한 파형을 갖는 형태로 적용될 수 있다. 따라서, 제 1 측정 전극(211)에는 고정 전위 인가부(310)에 의해 도 4에 도시된 바와 같이 일정한 전압을 갖는 고정 전위 전기 신호가 인가되고, 제 2 측정 전극(212)에는 다양한 파형을 갖는 형태의 변동 전위 전기 신호가 인가된다.The variable potential applying unit 410 is configured to apply a variable potential electric signal to the second measurement electrode 212, which may be applied as a general alternating current, and has various waveforms in which a constant displacement occurs. Can be applied. Accordingly, a fixed potential electric signal having a constant voltage is applied to the first measurement electrode 211 as shown in FIG. 4 by the fixed potential applying unit 310, and various waveforms are applied to the second measurement electrode 212. A variable potential electrical signal of the form is applied.
이러한 변동 전위 인가부(410)는 아날로그 변동 전압을 생성하는 디지털-아날로그 컨버터(DAC)로 적용될 수 있으며, 이에 따라 디지털-아날로그 컨버터로 입력된 디지털 신호가 아날로그 신호로 변환되어 생성된 아날로그 변동 전압을 통해 변동 전위를 인가할 수 있다. 이러한 디지털-아날로그 컨버터는 PCB 기판의 제어칩 등에 내장되거나 또는 연동된 형태로 PCB 기판에 실장될 수 있다. 이를 통해 변동 전위에 대한 아날로그 회로를 단순화할 수 있다. The variable potential applying unit 410 may be applied to a digital-to-analog converter (DAC) that generates an analog variable voltage. Accordingly, the digital signal input to the digital-analog converter is converted into an analog signal to convert the generated analog variable voltage. It is possible to apply the variable potential through. Such a digital-to-analog converter may be embedded in a control chip of a PCB board or mounted on the PCB board in an interlocked form. This simplifies the analog circuit for variable potentials.
또한, 이와 같은 변동 전위 인가부(410)에서 발생하는 변동 전위 전기 신호는 구형파, 정현파 및 삼각파 중 어느 하나의 파형을 가질 수 있으며, 수Khz 내지 수십Khz의 주파수를 갖도록 형성될 수 있다.In addition, the variable potential electric signal generated by the variable potential applying unit 410 may have any one of a waveform of a square wave, a sinusoidal wave, and a triangular wave, and may be formed to have a frequency of several KHz to several tens of KHz.
응답 신호 정류부(420)는 변동 전위 인가부(410)를 통해 변동 전위 전기 신호가 인가됨에 따라 제 2 측정 전극(212)으로부터 혈액 샘플(T)을 통해 발생하는 응답신호를 수신하여 정류하도록 구성된다. 즉, 제 2 측정 전극(212)으로 인가된 변동 전위 전기 신호는 혈액 샘플(T)을 통해 응답 신호를 발생시키는데, 이때 발생하는 응답 신호는 변동 전위 전기 신호에 대응되는 형태의 파형을 갖는다. 본 발명의 일 실시예에서는 이와 같이 변동 전위에 대응되는 응답 신호의 파형을 응답 신호 정류부(420)를 통해 정류하도록 구성된다.The response signal rectifier 420 is configured to receive and rectify the response signal generated through the blood sample T from the second measuring electrode 212 as the variable potential electric signal is applied through the variable potential applying unit 410. . That is, the variable potential electrical signal applied to the second measurement electrode 212 generates a response signal through the blood sample T, and the response signal generated therein has a waveform corresponding to the variable potential electrical signal. In an embodiment of the present invention, the waveform of the response signal corresponding to the variation potential is configured to be rectified through the response signal rectifier 420.
정류 신호 측정부(430)는 응답 신호 정류부(420)를 통해 생성된 정류 신호를 측정하도록 구성되며, 보정 연산치 산출부(440)는 정류 신호 측정부(430)를 통해 측정된 측정값을 인가받아 보정 연산치를 산출하도록 구성된다.The rectified signal measuring unit 430 is configured to measure the rectified signal generated by the response signal rectifying unit 420, and the correction calculation unit 440 applies the measured value measured by the rectifying signal measuring unit 430. And calculate a correction calculation value.
즉, 변동 전위 인가부(410)를 통해 제 2 측정 전극(212)으로 인가된 변동 전위 전기 신호는 혈액 샘플(T)을 통해 응답 신호를 생성하게 되는데, 이때, 혈액 샘플(T)의 특성에 따라 서로 다른 종류의 응답 신호를 발생시키게 된다. 이러한 응답 신호는 응답 신호 정류부(420)를 통해 정류되고, 이와 같이 정류된 정류 신호 또한 혈액 샘플(T)의 특성에 따라 서로 다른 정류 신호를 발생시키게 된다. 따라서, 정류 신호 측정부(430)를 통해 이러한 정류 신호를 측정하고, 정류 신호 측정부(430)의 측정값에 따라 보정 연산치 산출부(440)가 혈액 샘플(T)의 특성을 나타내는 보정 연산치를 산출한다. 이때, 보정 연산치는 전술한 바와 같이 혈액 속에 함유된 적혈구 용적률로 설정될 수 있다.That is, the variable potential electric signal applied to the second measurement electrode 212 through the variable potential applying unit 410 generates a response signal through the blood sample T, in which the characteristics of the blood sample T Therefore, different kinds of response signals are generated. The response signal is rectified by the response signal rectifying unit 420, and the rectified signal thus rectified also generates different rectified signals according to the characteristics of the blood sample (T). Therefore, the rectified signal measuring unit 430 measures such a rectified signal, and the correction calculation unit 440 according to the measured value of the rectified signal measuring unit 430 correction operation indicating the characteristics of the blood sample (T) Calculate the value. At this time, the correction calculation value may be set to the red blood cell volume ratio contained in the blood as described above.
보정 연산치 산출부(440)가 보정 연산치를 산출하는 방식은 별도의 데이터 베이스(450)를 이용하는 방식으로 설정될 수 있다. 즉, 제 2 측정 연산부(400)는 정류 신호의 측정값에 대한 일정 범위마다 각각 대응되는 보정 연산치를 저장한 데이터 베이스(450)를 더 구비할 수 있으며, 보정 연산치 산출부(440)는 정류 신호 측정부(430)로부터 인가받은 정류 신호 측정값을 데이터 베이스(450)에 저장된 보정 연산치와 매칭시켜 보정 연산치를 산출할 수 있다.The method of calculating the correction calculation value 440 may be set by using a separate database 450. That is, the second measurement operation unit 400 may further include a database 450 that stores correction operation values corresponding to respective predetermined ranges of the measured values of the rectified signal, and the correction operation value calculation unit 440 may rectify the operation. The correction operation value may be calculated by matching the rectified signal measurement value applied from the signal measuring unit 430 with the correction operation value stored in the database 450.
이상에서 설명한 구조에 따라 본 발명의 일 실시예에 따른 휴대용 혈당 측정기는 제 1 측정 연산부(300)를 통해 제 1 혈당 수치를 산출하고, 제 2 측정 연산부(400)를 통해 보정 연산치, 예를 들면, 적혈구 용적률을 산출할 수 있으며, 보정 연산부(500)를 통해 제 1 혈당 수치를 기준으로 적혈구 용적률을 반영하여 보정하는 방식으로 최종 혈당 수치를 보정 산출할 수 있다. 따라서, 혈액 샘플(T) 속에 함유된 적혈구 용적률을 고려하여 혈당 수치를 산출할 수 있어 더욱 정확한 혈당 수치 결과를 제공할 수 있다.According to the structure described above, the portable blood glucose meter according to the embodiment of the present invention calculates the first blood sugar level through the first measurement calculator 300, and corrects the calculated value through the second measurement calculator 400, for example. For example, the red blood cell volume ratio may be calculated, and the final blood glucose level may be corrected and calculated by correcting the red blood cell volume ratio based on the first blood sugar level through the correction calculator 500. Therefore, the blood glucose level can be calculated in consideration of the red blood cell volume ratio contained in the blood sample T, thereby providing a more accurate blood glucose level result.
도 4는 검사 스트립의 측정 전극으로 공급되는 전위의 형태를 시간 순서에 따라 도시한 도면으로, 도 4에 도시된 바와 같이 변동 전위 전기 신호의 형태는 구형파, 삼각파, 사인(sin)파 등 여러가지 형태로 구현이 가능하며, 전위의 변화로 인한 혈액 내의 특성 변화로 인해 적혈구 용적률 측정이 가능하다.FIG. 4 is a diagram illustrating a form of a potential supplied to a measurement electrode of a test strip in chronological order. As illustrated in FIG. 4, the form of a variable potential electrical signal may be a square wave, a triangular wave, a sin wave, or the like. The red blood cell volume ratio can be measured due to the characteristic change in blood due to the change of potential.
도 5는 본 발명의 일 실시예에 따른 제 2 측정 연산부에서 발생하는 정류 신호를 예시적으로 도시한 도면이고, 도 6은 본 발명의 일 실시예에 따른 정류 신호 측정부를 통해 정류 신호를 측정하는 방식을 예시적으로 도시한 도면이고, 도 7 내지 도 9는 본 발명의 일 실시예에 따른 휴대용 혈당 측정기를 통해 산출한 혈당 수치에 대한 정확도 검증 결과를 실험적으로 나타내는 도면이다.5 is a diagram illustrating a rectified signal generated by the second measurement operation unit according to an embodiment of the present invention, Figure 6 is a measurement of the rectified signal through the rectified signal measurement unit according to an embodiment of the present invention 7 to 9 are diagrams showing experimental results of accuracy verification of blood glucose levels calculated by a portable blood glucose meter according to an embodiment of the present invention.
제 2 측정 연산부(400)의 응답 신호 정류부(420)를 통해 발생하는 정류 신호는 도 5에 도시된 바와 같이 혈액 속에 함유된 적혈구 용적률에 따라 서로 다른 전위를 갖는 형태로 나타난다. 예를 들면, 적혈구 용적률(Hct)이 10%인 경우 정류 신호의 전위 측정값이 상대적으로 높게 나타나며, 적혈구 용적률(Hct)이 70%인 경우 정류 신호의 전위 측정값이 상대적으로 낮게 나타난다. 이때, 데이터 베이스(450)에는 사전 실험을 통해 정류 신호의 전위 측정값과 적혈구 용적률에 대한 상호 매칭 데이터가 미리 수집되어 저장된다. 따라서, 정류 신호의 전위값을 측정하면, 이를 데이터 베이스(450)에 저장된 적혈구 용적률 데이터와 매칭시켜 해당 적혈구 용적률을 산출할 수 있다. 이후, 보정 연산부(500)는 산출된 적혈구 용적률을 반영하여 제 1 혈당 수치를 보정하는 방식으로 최종 혈당 수치를 보정 산출한다.The rectified signal generated through the response signal rectifier 420 of the second measurement operator 400 is shown in a form having different potentials according to the red blood cell volume ratio contained in the blood as shown in FIG. 5. For example, when the red blood cell volume ratio (Hct) is 10%, the potential measurement value of the rectified signal is relatively high, and when the red blood cell volume ratio (Hct) is 70%, the potential measurement value of the rectified signal is relatively low. In this case, mutual matching data on the potential measurement value of the rectified signal and the red blood cell volume ratio is previously collected and stored in the database 450 through a preliminary experiment. Therefore, when the potential value of the rectified signal is measured, the red blood cell volume ratio may be calculated by matching the red blood cell volume ratio data stored in the database 450. Thereafter, the correction operation unit 500 corrects and calculates the final blood glucose level in a manner of correcting the first blood sugar level by reflecting the calculated red blood cell volume ratio.
한편, 응답 신호 정류부(420)를 통해 발생하는 정류 신호는 변동 전위를 정류한 형태로서 도 6에 도시된 바와 같이 시간에 따라 특정 값(V0)으로 수렴하는 형태로 나타나는데, 이러한 정류 신호의 특성에 따라 정류 신호 측정 방식을 적절히 변경할 수 있다.On the other hand, the rectified signal generated through the response signal rectifying unit 420 is a form in which the change potential is rectified and appears to converge to a specific value (V 0 ) with time as shown in FIG. 6. According to the method, the rectified signal measuring method can be appropriately changed.
예를 들면, 응답 신호 정류부(420)를 통해 생성된 정류 신호의 측정값이 일정 범위 이내로 수렴되어 안정화된 상태에서 정류 신호에 대한 측정값을 보정 연산치 산출부(440)로 인가하도록 구성될 수 있다. For example, the measured value of the rectified signal generated by the response signal rectifying unit 420 may be configured to apply the measured value for the rectified signal to the correction calculation value calculating unit 440 in a state where the measured value of the rectified signal is converged and stabilized within a predetermined range. have.
또는 도 6에 도시된 바와 같이 정류 신호 생성 시점으로부터 미리 설정된 기준 시간 t0 이 경과한 이후 시점에서 측정된 정류 신호의 측정값을 보정 연산치 산출부(440)로 인가하도록 구성될 수 있다. 이때, 기준 시간 t0 는 정류 신호의 측정값이 일정 범위 이내로 수렴되는 시점으로 설정될 수 있다.Alternatively, as illustrated in FIG. 6, the measured value of the rectified signal measured at the time after the preset reference time t 0 has elapsed from the time of generating the rectified signal may be configured to be applied to the correction operation value calculator 440. In this case, the reference time t 0 may be set to a time point at which the measured value of the rectified signal converges within a predetermined range.
또한, 정류 신호 측정부(430)는 기준 시간 t0 이후 구간 또는 정류 신호의 측정값이 일정 범위 이내로 수렴된 이후 구간에서 정류 신호를 다수회 측정(t1,t2,t3 시점)하고, 다수회의 측정값을 평균한 평균값을 보정 연산치 산출부로 인가하도록 구성될 수도 있다. 이와 같이 정류 신호를 다수회 측정하여 이를 평균하여 보정 연산치 산출부로 인가하게 되면, 정류 신호 측정값에 대한 정확도를 더욱 향상시킬 수 있다.In addition, the rectified signal measuring unit 430 measures the rectified signal a plurality of times (t 1 , t 2 , t 3 time points) in a section after the reference time t 0 or in a section after the measured value of the rectified signal converges within a predetermined range, The average value obtained by averaging a plurality of measured values may be configured to be applied to the correction calculation value calculator. As described above, when the rectified signal is measured a plurality of times and averaged and applied to the correction calculation unit, the accuracy of the measured rectified signal may be further improved.
도 7 내지 도 9에는 본 발명에 따른 혈당 측정기를 통해 측정된 혈당 수치에 대한 정확도 검증 결과가 실험적으로 나타나는데, 각각은 혈당 수치의 범위를 서로 달리하여 적혈구 용적률 변화에 따른 측정 결과를 나타낸다. 7 to 9 show experimental results of accuracy verification for blood glucose levels measured by a blood glucose meter according to the present invention, each of which shows a measurement result according to a change in red blood cell volume ratio by varying the range of blood sugar levels.
실험 방식은, 특정 혈당 수치를 갖는 혈액 샘플을 준비하고, 이러한 혈액 샘플에 대해 적혈구 용적률을 변화시켜가며 혈당 수치를 측정하는 방식으로 진행되었다. 도 7 내지 도 9에 도시된 바와 같이 적혈구 용적률 변화를 반영하지 않고 일반적인 방식으로 산출한 혈당 수치는 적혈구 용적률이 증가함에 따라 혈당 수치가 감소하는 것으로 산출 결과가 나타나는데, 이는 혈당 수치의 변화가 없음에도 불구하고 적혈구 용적률 변화에 의해 잘못된 혈당 수치 결과가 산출된 것이므로, 그 혈당 수치 결과는 매우 부정확한 결과를 나타낸다. 특히, 그 오차율은 적혈구 용적률 변화에 따라 많게는 실제 혈당 수치(H0)와 비교하여 20% 또는 40% 이상 나타남을 알 수 있다.The experimental method proceeded by preparing a blood sample having a specific blood glucose level and measuring blood glucose levels by changing the red blood cell volume ratio for the blood sample. As shown in FIGS. 7 to 9, the blood glucose level calculated in a general manner without reflecting the change in the red blood cell volume rate is shown to decrease as the red blood cell volume rate increases. Nevertheless, since the result of incorrect blood glucose level was calculated by the change of red blood cell volume ratio, the blood glucose level result shows very inaccurate result. In particular, it can be seen that the error rate is more than 20% or 40% as compared to the actual blood glucose level (H 0 ) in accordance with the change in the red blood cell volume rate.
그러나, 본 발명의 일 실시예에 따른 혈당 측정기는 적혈구 용적률을 반영하여 혈당 수치를 보정 산출하도록 구성함으로써, 도 7 내지 도 9에 나타난 바와 같이 적혈구 용적률의 변화에도 불구하고 거의 비슷한 혈당 수치를 나타내고 있으며, 그 오차율 또한 실제 혈당 수치(H0)와 비교하여 10% 이내임을 알 수 있다.However, the blood glucose meter according to an embodiment of the present invention is configured to correct and calculate the blood glucose level by reflecting the red blood cell volume rate, and thus shows almost similar blood sugar levels despite the change in the red blood cell volume rate as shown in FIGS. 7 to 9. The error rate is also within 10% compared to the actual blood glucose level (H 0 ).
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The above description is merely illustrative of the technical idea of the present invention, and those skilled in the art to which the present invention pertains may make various modifications and changes without departing from the essential characteristics of the present invention. Therefore, the embodiments disclosed in the present invention are not intended to limit the technical idea of the present invention but to describe the present invention, and the scope of the technical idea of the present invention is not limited by these embodiments. The protection scope of the present invention should be interpreted by the following claims, and all technical ideas within the equivalent scope should be interpreted as being included in the scope of the present invention.

Claims (11)

  1. 혈액 샘플에 전기 신호를 인가할 수 있도록 측정 전극을 구비하는 검사 스트립이 삽입되는 경우, 상기 측정 전극에 고정 전위 전기 신호를 인가하고 상기 측정 전극으로부터 발생되는 응답 신호를 측정하여 제 1 혈당 수치를 산출하는 제 1 측정 연산부;When a test strip having a measuring electrode is inserted to apply an electrical signal to a blood sample, a first blood glucose level is calculated by applying a fixed potential electrical signal to the measuring electrode and measuring a response signal generated from the measuring electrode. A first measurement calculator;
    상기 측정 전극에 변동 전위 전기 신호를 인가하고 상기 측정 전극으로부터 발생되는 응답 신호의 평균값을 계산하여 보정 연산치를 산출하는 제 2 측정 연산부; 및A second measurement calculator configured to apply a variable potential electric signal to the measurement electrode, calculate a mean value of response signals generated from the measurement electrode, and calculate a correction calculation value; And
    상기 제 1 혈당 수치에 상기 보정 연산치를 반영하여 최종 혈당 수치를 보정 산출하는 보정 연산부A correction calculation unit for correcting and calculating a final blood glucose level by reflecting the correction calculation value to the first blood sugar level
    를 포함하는 것을 특징으로 하는 휴대용 혈당 측정기.Portable blood glucose meter comprising a.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 보정 연산치는 상기 혈액 샘플에 대한 적혈구 용적률인 것을 특징으로 하는 휴대용 혈당 측정기.And the correction calculation value is a red blood cell volume ratio for the blood sample.
  3. 제 2 항에 있어서,The method of claim 2,
    상기 측정 전극은The measuring electrode
    상기 제 1 측정 연산부의 고정 전위 전기 신호가 인가되는 제 1 측정 전극과, 상기 제 2 측정 연산부의 변동 전위 전기 신호가 인가되는 제 2 측정 전극으로 분리 형성되는 것을 특징으로 하는 휴대용 혈당 측정기.And a first measurement electrode to which the fixed potential electric signal of the first measurement operation unit is applied and a second measurement electrode to which the variable potential electric signal of the second measurement operation unit is applied.
  4. 제 3 항에 있어서,The method of claim 3, wherein
    상기 제 2 측정 연산부는The second measurement calculation unit
    상기 제 2 측정 전극으로부터 발생되는 응답 신호를 정류한 정류 신호를 통해 상기 응답 신호의 평균값을 측정하여 상기 보정 연산치를 산출하는 것을 특징으로 하는 휴대용 혈당 측정기.And a correction value is calculated by measuring an average value of the response signal through the rectified signal obtained by rectifying the response signal generated from the second measurement electrode.
  5. 제 4 항에 있어서,The method of claim 4, wherein
    상기 제 2 측정 연산부는The second measurement calculation unit
    상기 제 2 측정 전극에 상기 변동 전위 전기 신호를 인가하는 변동 전위 인가부;A variable potential applying unit configured to apply the variable potential electric signal to the second measurement electrode;
    상기 변동 전위 전기 신호가 인가됨에 따라 상기 제 2 측정 전극으로부터 상기 혈액 샘플을 통해 발생되는 응답 신호를 수신하여 정류하는 응답 신호 정류부;A response signal rectifying unit configured to receive and rectify a response signal generated through the blood sample from the second measurement electrode as the variable potential electric signal is applied;
    상기 응답 신호 정류부를 통해 생성된 정류 신호를 측정하는 정류 신호 측정부; 및A rectified signal measuring unit measuring the rectified signal generated by the response signal rectifying unit; And
    상기 정류 신호 측정부를 통해 측정된 측정값을 인가받아 상기 보정 연산치를 산출하는 보정 연산치 산출부A correction calculation value calculator for calculating the correction calculation value by receiving the measured value measured by the rectified signal measuring part.
    를 포함하는 것을 특징으로 하는 휴대용 혈당 측정기.Portable blood glucose meter comprising a.
  6. 제 5 항에 있어서,The method of claim 5, wherein
    상기 제 2 측정 연산부는The second measurement calculation unit
    상기 정류 신호의 측정값에 대한 일정 범위마다 각각 대응되는 보정 연산치를 저장한 데이터 베이스를 더 포함하고,And a database storing correction calculation values corresponding to respective ranges of the measured values of the rectified signal.
    상기 보정 연산치 산출부는 상기 데이터 베이스를 이용하여 상기 보정 연산치를 산출하는 것을 특징으로 하는 휴대용 혈당 측정기.And the correction calculation value calculating unit calculates the correction calculation value using the database.
  7. 제 5 항에 있어서,The method of claim 5, wherein
    상기 정류 신호 측정부는The rectified signal measuring unit
    상기 응답 신호 정류부를 통해 생성된 정류 신호의 측정값이 일정 범위 이내로 안정화된 상태에서 상기 정류 신호에 대한 측정값을 상기 보정 연산치 산출부로 인가하는 것을 특징으로 하는 휴대용 혈당 측정기.And a measurement value of the rectified signal is applied to the correction calculation value calculating unit while the measured value of the rectified signal generated by the response signal rectifying unit is stabilized within a predetermined range.
  8. 제 5 항에 있어서,The method of claim 5, wherein
    상기 정류 신호 측정부는The rectified signal measuring unit
    상기 응답 신호 정류부를 통해 생성된 정류 신호의 생성 시점으로부터 미리 설정된 기준 시간 이후 시점에서 측정된 정류 신호의 측정값을 상기 보정 연산치 산출부로 인가하는 것을 특징으로 하는 휴대용 혈당 측정기.And a measurement value of the rectified signal measured at a time after a preset reference time from the time of generating the rectified signal generated by the response signal rectifying unit, to the correction operation calculator.
  9. 제 7 항 또는 제 8 항에 있어서,The method according to claim 7 or 8,
    상기 정류 신호 측정부는The rectified signal measuring unit
    상기 정류 신호를 다수회 측정하고, 다수회의 측정값을 평균한 평균값을 상기 보정 연산치 산출부로 인가하는 것을 특징으로 하는 휴대용 혈당 측정기.And measuring the rectified signal a plurality of times, and applying the average value obtained by averaging the plurality of measured values to the correction calculation value calculating unit.
  10. 제 5 항에 있어서,The method of claim 5, wherein
    상기 변동 전위 인가부는 The variable potential applying unit
    아날로그 변동 전압을 생성하는 디지털-아날로그 컨버터(DAC)인 것을 특징으로 하는 휴대용 혈당 측정기.A portable blood glucose meter, characterized in that it is a digital-to-analog converter (DAC) that generates an analog variable voltage.
  11. 제 5 항에 있어서,The method of claim 5, wherein
    상기 변동 전위 인가부에서 발생하는 변동 전위 전기 신호는The variable potential electrical signal generated by the variable potential applying unit is
    구형파, 정현파 및 삼각파 중 어느 하나의 파형을 가지며 수Khz 내지 수십Khz의 주파수를 갖도록 형성되는 것을 특징으로 하는 휴대용 혈당 측정기.Handheld blood glucose meter, characterized in that having a waveform of any one of a square wave, a sine wave and a triangular wave has a frequency of several kilohertz to several tens of kHz.
PCT/KR2015/007372 2014-07-28 2015-07-15 Potable blood glucose meter WO2016017965A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140096046A KR20160014212A (en) 2014-07-28 2014-07-28 Portable Blood Glucose Tester
KR10-2014-0096046 2014-07-28

Publications (1)

Publication Number Publication Date
WO2016017965A1 true WO2016017965A1 (en) 2016-02-04

Family

ID=55217798

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/007372 WO2016017965A1 (en) 2014-07-28 2015-07-15 Potable blood glucose meter

Country Status (2)

Country Link
KR (1) KR20160014212A (en)
WO (1) WO2016017965A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114137218A (en) * 2020-09-04 2022-03-04 百略医学科技股份有限公司 Blood glucose detection device capable of correcting measured value according to blood volume ratio

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060019442A (en) * 2004-08-27 2006-03-03 주식회사 인포피아 Measurement equipment for a biosensor which measures the reaction result of a sample
KR20120102749A (en) * 2010-01-08 2012-09-18 에프. 호프만-라 로슈 아게 Sample characterization based on ac measurement methods
JP2013101135A (en) * 2009-01-30 2013-05-23 Panasonic Corp Method for measuring concentration of biological sample, measurement unit and biosensor system
US20130284611A1 (en) * 2012-04-30 2013-10-31 Cilag Gmbh International Analyte measurement technique and system
KR20130135605A (en) * 2012-06-01 2013-12-11 주식회사 아이센스 Electrochemical biosensor with improved accuracy

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101344405B1 (en) 2012-11-13 2013-12-26 김시원 Blood glucose meter with compensation bias circuit and blood glucose measurement method using same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060019442A (en) * 2004-08-27 2006-03-03 주식회사 인포피아 Measurement equipment for a biosensor which measures the reaction result of a sample
JP2013101135A (en) * 2009-01-30 2013-05-23 Panasonic Corp Method for measuring concentration of biological sample, measurement unit and biosensor system
KR20120102749A (en) * 2010-01-08 2012-09-18 에프. 호프만-라 로슈 아게 Sample characterization based on ac measurement methods
US20130284611A1 (en) * 2012-04-30 2013-10-31 Cilag Gmbh International Analyte measurement technique and system
KR20130135605A (en) * 2012-06-01 2013-12-11 주식회사 아이센스 Electrochemical biosensor with improved accuracy

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114137218A (en) * 2020-09-04 2022-03-04 百略医学科技股份有限公司 Blood glucose detection device capable of correcting measured value according to blood volume ratio
CN114137218B (en) * 2020-09-04 2024-04-12 百略医学科技股份有限公司 Blood sugar detection device capable of correcting measured value according to blood volume ratio

Also Published As

Publication number Publication date
KR20160014212A (en) 2016-02-11

Similar Documents

Publication Publication Date Title
Sun et al. A multi-technique reconfigurable electrochemical biosensor: Enabling personal health monitoring in mobile devices
US6473643B2 (en) Method and apparatus for measuring body fat
ES2250593T3 (en) APPLIANCE AND BIOSENSOR PROCEDURE WITH VOLUME DETECTION AND SAMPLE TYPE.
US10130273B2 (en) Device and method having automatic user-responsive and user-specific physiological-meter platform
US11033211B2 (en) Analyte monitoring devices and methods
US20160038037A1 (en) Multi-function fitness scale with display
ES2559663T3 (en) System and method to assess the condition of a test strip
US10004971B2 (en) Physical-fitness test system using acceleration sensor
ATE554826T1 (en) DEVICES FOR ACCURATE CLASSIFICATION OF HEART ACTIVITY
US10215619B1 (en) Scale-based time synchrony
JP6149274B2 (en) Muscle evaluation device
CN101884541A (en) Non-invasive detector and detecting method for biochemical parameters of human blood
CN109509553B (en) Sub-health quantitative evaluation system based on meridian balance
KR102122201B1 (en) Smart sclae able to measure HRV and Foot pressure distribution
CN104101699A (en) Improved analyte meter and method of operation
CN100377687C (en) Method and device for collecting functional and metabolic data of living organism
WO2016017965A1 (en) Potable blood glucose meter
US20100233793A1 (en) Healthcare management apparatus, healthcare management method, and display method of determination results
CN107704748A (en) User identification method and device and human body scale
CN110609076B (en) Based on I2C-communication multi-blood index detection method
CN106461637A (en) Hand-held test meter with body portion proximity sensor module
US11490828B2 (en) Bioelectrical impedance measurement device and method thereof
CN104983430B (en) The blood-sugar detecting instrument of non-intrusion type
CN104545910B (en) Chronic disease early stage electro physiology detection method and system
TWI299261B (en)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15827083

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15827083

Country of ref document: EP

Kind code of ref document: A1