WO2016017800A1 - Production method for fine-particle-adsorbing material - Google Patents

Production method for fine-particle-adsorbing material Download PDF

Info

Publication number
WO2016017800A1
WO2016017800A1 PCT/JP2015/071797 JP2015071797W WO2016017800A1 WO 2016017800 A1 WO2016017800 A1 WO 2016017800A1 JP 2015071797 W JP2015071797 W JP 2015071797W WO 2016017800 A1 WO2016017800 A1 WO 2016017800A1
Authority
WO
WIPO (PCT)
Prior art keywords
medulla
liquid
fine particle
grass
adsorbing material
Prior art date
Application number
PCT/JP2015/071797
Other languages
French (fr)
Japanese (ja)
Inventor
勝代 村上
Original Assignee
勝代 村上
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 勝代 村上 filed Critical 勝代 村上
Priority to CN201580040812.1A priority Critical patent/CN106573226B/en
Publication of WO2016017800A1 publication Critical patent/WO2016017800A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/24Naturally occurring macromolecular compounds, e.g. humic acids or their derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating

Definitions

  • the present invention relates to a method for producing a material that adsorbs fine particles.
  • Patent Document 1 discloses paints, binders, paper, twisted yarns, spun fibers, and wall materials having a harmful substance-adsorbing action using finely crushed rush grasses and powders or linear bodies. Materials such as knitted fabrics and cocoons have been proposed.
  • grass is composed of the outer skin and the medulla covered with the outer skin, and adsorbs gaseous chemical substances such as formaldehyde in the medulla rather than the outer skin.
  • fine particles such as PM2.5 (Particulate Matter 2.5) having a particle size larger than that of a chemical substance in gas (in this application, “fine particles” means particles of the order of 1 ⁇ m to 10 ⁇ m) Whether it was adsorbed or not was unknown.
  • the inventor of the present application has obtained the following knowledge through an original experiment.
  • Grasses adsorb particulates such as PM2.5 The adsorption rate of fine particles (the number of adsorptions per unit area) is much higher in the medulla than the husk of rush.
  • Fine particles such as PM2.5 are adsorbed on the surfaces of the branches forming the sponge structure provided in the medulla of the grass.
  • the medulla mushroom has a sponge structure (three-dimensional network structure). Therefore, if particulates such as PM2.5 are removed by the medulla of rush, it is assumed that the mesh of the sponge structure captures particulates such as PM2.5. However, it is presumed that the mesh of the medulla medulla has a mesh structure of the order of 10 ⁇ m, and fine particles having a particle size smaller than the order of 10 ⁇ m such as PM2.5 are not captured by the medulla medulla. Contrary to these assumptions, as described in (3) above, it has been found that particulates such as PM2.5 are actually adsorbed on the surface of the branches forming the sponge structure of the medulla medulla.
  • the present invention aims to provide a fine particle adsorbing material that adsorbs fine particles such as PM2.5 at a high adsorption rate based on the above findings.
  • the present invention provides a separation step of separating the medulla medulla from the outer skin, an infiltration step of infiltrating liquid into the medulla medulla separated from the outer skin in the separation step, and the infiltration step
  • a method for producing a fine particle adsorbing material comprising a shearing and grinding step of shearing and crushing the medulla of licorice infiltrated with a liquid is provided as a first aspect.
  • this invention is a manufacturing method concerning said 1st aspect WHEREIN: The structure of providing the cutting process which cut
  • the manufacturing method according to the first aspect further includes a tearing step for tearing the medulla of the grass isolated from the outer skin after the separation step and before the infiltration step.
  • a tearing step for tearing the medulla of the grass isolated from the outer skin after the separation step and before the infiltration step.
  • the present invention provides a material having a mesh structure, wherein the medulla mushroom infiltrated with liquid, which has been sheared and ground in the shearing and grinding step, in the manufacturing method according to any one of the first to third aspects described above.
  • coated to is provided as a 4th aspect.
  • the present invention provides, as a fifth aspect, a configuration in which the application in the application step is an application by spraying in the manufacturing method according to the fourth aspect.
  • the present invention also provides the manufacturing method according to any one of the first to third aspects, wherein the pith of rush grass infiltrated with liquid, which is sheared and ground in the shearing and grinding step, is mixed and mixed with a fiber material.
  • a configuration is provided as a sixth aspect, comprising a mixing step for generating a raw material and a liquid removal step for removing liquid from the mixed material generated by the mixing step.
  • the present invention includes the compression step of compressing the mixed material generated in the mixing step in the liquid removal step or after the liquid removal step in the manufacturing method according to the sixth aspect. This configuration is provided as a seventh aspect.
  • the present invention provides the production method according to any one of the first to seventh aspects, wherein the application step of applying an adhesive to the medulla mushroom at any timing after the separation step.
  • a configuration of providing is provided as an eighth aspect.
  • the present invention provides the drainage method for draining from the medulla of the grass infiltrated with the liquid, which has been sheared and ground in the shearing and grinding step, in the manufacturing method according to any one of the first to third aspects.
  • a step of applying a pressure-sensitive adhesive to the base material, and a surface of the base material to which the pressure-sensitive adhesive has been applied in the coating step is adhered to the surface of the base material coated with the pressure-sensitive adhesive.
  • a ninth aspect is provided as a ninth aspect.
  • the present invention provides a manufacturing method according to any one of the first to third aspects, According to a tenth aspect of the present invention, there is provided a configuration including a sealing step of sealing the medulla of the grass crushed and ground in the shearing and grinding step in a sheet-like body having air permeability.
  • a fine particle adsorbing material containing medulla moss which is separated from the outer skin and maintains many branch structures, is produced.
  • a particulate adsorption material that adsorbs particulates such as PM2.5 at a high adsorption rate is obtained.
  • the fine particle adsorbing material does not substantially contain a rush of rush.
  • substantially no outer skin means that a minute amount of outer skin that is not separated from the marrow and mixed in the separation step is included in the particulate adsorbing material. Therefore, a fine particle adsorbing material that adsorbs fine particles at a high adsorption rate and has an excellent appearance as compared with a material containing a husk of rush.
  • FIG. 1 is a photomicrograph of a cross section obtained by cutting a cypress into a semi-cylindrical shape along a longitudinal direction. As shown in FIG. 1, the grass 1 is composed of an outer skin 11 and a medulla 12 covered with the outer skin 11.
  • FIG. 2 is a photomicrograph of the medulla of grass after exposure for a predetermined time to the outside air in which particulates such as PM2.5 float.
  • the medulla of the grass has a sponge structure (three-dimensional network structure), and the fine particles 2 are adsorbed on the surfaces of the branches forming the sponge structure.
  • FIG. 3 is a flowchart showing a method for producing a particulate adsorption material according to an embodiment of the present invention.
  • the medulla of rush is separated from the outer skin (separation step, step S11).
  • the following examples may be adopted, but are not limited thereto.
  • FIG. 5 is a diagram showing a device originally invented to separate the marrow from the outer skin and how to use it.
  • the instrument 3 shown in FIG. 5 includes a cutter unit 31 that cuts the outer skin and a spoon-shaped scraping unit 32 that scrapes the marrow.
  • the operator inserts the blade tip of the cutter unit 31 into the grass 1 and then slides the instrument 3 toward the other end of the grass 1. .
  • the cutter unit 31 cuts the outer skin of the grass 1 along the longitudinal direction, and the scraping portion 32 scrapes the marrow from between the cut outer skins.
  • step S12 the appearance (texture) of the finally produced fine particle adsorbing material differs depending on whether the pith is cut or torn in step S12. Note that the cutting step and the tearing step may be omitted depending on the purpose.
  • the liquid is infiltrated into the marrow separated from the outer skin (or the marrow shortened by cutting or tearing after being separated from the outer skin) (infiltration step, step S13).
  • the liquid used for infiltrating the marrow in the infiltration process is, for example, water, but is not limited thereto.
  • the amount of liquid used to infiltrate the medulla in the infiltration process is preferably about 300 cc to 400 cc with respect to 1 g of medulla when the liquid is water, for example.
  • the inventor of the present application has confirmed through experiments that the pulverization efficiency in the shear pulverization step described below is reduced when an amount of water outside the above-mentioned range is used.
  • the medulla infiltrated with the liquid (including the liquid that has not infiltrated the medulla used in the infiltration process) is put into a shear pulverizer and sheared and pulverized (shear pulverization process, step S14).
  • the shear pulverization means pulverization by shearing the medulla with a shearing blade, and does not include, for example, pulverization by grinding a ball mill or a mortar.
  • the pith when performing shearing and grinding, if the dried pith is applied to a shearing and grinding machine without passing through the infiltration step, the pith cannot be shattered to a particle size of the order of 100 ⁇ m or less. This is presumably because the spinal cord is provided with a sponge structure, and the spinal cord is moved by wind force generated by rotation of the shearing blade or the like so as to avoid the shearing blade.
  • the inventor of the present application conducts various experiments, and by shearing and pulverizing the spinal cord in a state where the spinal cord is infiltrated with the liquid, the sponge-like spinal cord can be miniaturized to a particle size of the order of 100 ⁇ m or less while maintaining the branch structure. discovered.
  • a pressure-sensitive adhesive is applied to the liquid containing the sheared and crushed pith (application step, step S15).
  • the pressure-sensitive adhesive used in the application step is, for example, starch paste, but is not limited thereto. However, it is desirable to use an adhesive derived from animals and plants that is less likely to be harmful to the human body (for example, rice paste, glue, cloth nori). Note that the applying step may be omitted depending on the purpose.
  • the liquid material including the refined pith generated through the above process is applied to the material having a network structure (application process, step S16).
  • the material having a network structure used in the coating process include, but are not limited to, gauze, non-woven fabric, air cleaner filter, and the like.
  • the application method in the application step is, for example, spraying, but is not limited thereto, and brushing, impregnation, etc. may be employed depending on the purpose and the characteristics of the object to be applied.
  • the material having a network structure to which the liquid material including the refined pith is applied is dried (drying step, step S17).
  • the particulate adsorbing material in the present embodiment is manufactured.
  • the fine particle adsorbing material manufactured in this way is used as, for example, a filter for a mask or an air cleaner, but its application is not limited thereto.
  • the liquid material including the fined pith produced by the shearing and grinding step or the applying step can itself be provided to the user as a fine particle adsorbing material.
  • the user can easily add the particulate adsorption performance to an existing mask or filter by spraying the particulate adsorption material on, for example, a commercially available mask or a filter of an air cleaner. Further, the user can easily add the particulate adsorption capability to an existing wall or the like by applying the particulate adsorption material to the wall or the like of the home by spraying, brushing, or the like. Further, the user can remove fine particles floating in the air by spraying the fine particle adsorbing material in the air, for example.
  • FIG. 6 is a flowchart showing a method for producing a particulate adsorbing material according to another embodiment of the present invention. Steps S21 to S24 performed in the manufacturing method of the present embodiment are the same as steps S11 to S14 in the flow shown in FIG.
  • a liquid material containing finely divided marrow (the marrow that has been infiltrated with liquid and pulverized) is mixed with the fiber material, and the marrow and the fiber material are mixed.
  • a mixed material is generated (mixing step, step S25).
  • the fiber material used in the mixing step is, for example, cotton, but is not limited thereto.
  • stirring with a stirring rod for example, stirring with a stirring rod, mixing while mixing with the hands of an operator, etc. can be adopted. Not limited.
  • liquid removal is performed from the mixed material generated in the mixing process (liquid removal process, step S26).
  • the liquid removal method include, but are not limited to, dropping the mixed material from the net, or rolling (or papering) the mixed material with a net.
  • the mixed material drained in the draining process is shaped so that the thickness is substantially uniform (shaping process, step S27).
  • the shaping step may be omitted.
  • compression step, step S28 the liquid mixture that has been drained is compressed.
  • a compression method for example, a method of sandwiching and pressing a mixed material between two compression plates can be adopted, but the method is not limited thereto.
  • the main purpose of the compression process is to increase the strength while reducing the thickness of the material.
  • step S29 an adhesive is applied to the compressed mixed material.
  • This application step is the same as the step S15 in the flow shown in FIG.
  • step S210 the mixed material to which the adhesive has been applied is further compressed.
  • This compression process is the same as the process of step S28. Note that either step S28 or step S210 may be omitted.
  • the mixed material compressed with the adhesive is dried (drying step, step S211).
  • the particulate adsorbing material in the present embodiment is manufactured.
  • the fine particle adsorbing material manufactured in this way is used as, for example, a wall material, but its use is not limited thereto.
  • FIG. 7 is a flowchart showing a method for producing a particulate adsorbing material according to another embodiment of the present invention.
  • Steps S31 to S34 performed in the manufacturing method of the present embodiment are the same as steps S11 to S14 in the flow shown in FIG.
  • the amount of liquid with respect to the medulla is less than in the infiltration process in step S13. May be. In this way, by reducing the amount of liquid used for the medulla, the particle size of the medulla generated in the shear pulverization in step S34 can be increased.
  • step S34 following the shear pulverization step of step S34, the same liquid removal as step S26 of the flow shown in FIG. 6 is performed (liquid removal step, step S35). Subsequently, the drained and refined pith is dried (drying step, step S36).
  • step S37 an adhesive is applied to the surface of the separately prepared base material.
  • the base material used in step S37 for example, a plate-like body, a sheet-like body such as paper, a fiber material such as gauze, and the like can be adopted, but not limited thereto.
  • the adhesive used in step S37 is a starch paste, for example, it is not restricted to this. However, it is desirable to use an adhesive derived from animals and plants that is less likely to be harmful to the human body (for example, rice paste, glue, cloth nori).
  • the method of applying the adhesive to the substrate in step S37 may be any of spraying, brushing, impregnation and the like. Note that step S37 may be performed in parallel with steps S31 to S36.
  • step S36 is attached to the surface of the base material coated with the adhesive in step S37 (attachment step, step S38).
  • attachment step, step S38 for example, a base material coated with an adhesive is placed in a container containing finely divided pith, and the finely divided pith is sprayed onto a base material coated with an adhesive.
  • the pressure-sensitive adhesive having the micronized pith attached to the surface of the base material is dried (drying step, step S39).
  • the particulate adsorbing material in the present embodiment is manufactured.
  • the fine particle adsorbing material manufactured in this way is used as, for example, a wall material, a wallpaper, a mask, or the like according to the type of the base material, but the application is not limited thereto.
  • a covering step of covering the surface of the base material on which the medulla adheres with a sheet material having air permeability may be performed after step S38 or step S39.
  • the size of the medulla may be in the order of 1 mm to 1 cm. In this case, if the size of the medulla is cut or torn to a desired size in step S32, steps S33 to S36 may be omitted.
  • the fine particle adsorbing material manufactured by the manufacturing method according to the present example most of the surface of the medulla is not covered with the adhesive. For example, even if the concentration of the adhesive used is increased, the adhesive has an effect of adsorbing the fine particles. It is not reduced and shows high adsorption performance.
  • FIG. 8 is a flowchart showing a method for producing a particulate adsorption material according to another embodiment of the present invention.
  • Steps S41 to S44 performed in the manufacturing method of the present embodiment are the same as steps S11 to S14 in the flow shown in FIG.
  • water when water is used as the liquid to be used, it is desirable to use about 100 cc to 200 cc of water per 1 g of marrow.
  • the particle size of the medulla generated in the shear pulverization in step S44 can be increased.
  • the particle size of the medulla generated in step S44 is, for example, on the order of 100 ⁇ m to 1 mm.
  • Step S45 a liquid removal process
  • step S46 a drying process
  • step S47 the dried and refined medulla is encapsulated in a breathable sheet.
  • a breathable sheet for example, a non-woven sheet, cotton cloth, linen, fine nylon mesh sheet, or the like can be used, but is not limited thereto.
  • a sealing method in step S47 for example, a method of closing the opening of the sheet-like body by sewing, bonding, or the like after inserting the fined pith from the opening of the sheet-like body formed in advance in a bag shape
  • a method of stitching the two sheet-like bodies in a form in which the pulverized medulla is sandwiched between the two sheet-like bodies can be employed, but is not limited thereto.
  • step S45 may be performed simultaneously with step S47.
  • the sheet-like body serves as a net for liquid removal.
  • step S46 is performed after step S47.
  • the size of the medulla may be in the order of 1 mm to 1 cm.
  • steps S43 to S46 may be omitted if the size of the medulla is cut or torn to a desired size in step S42.
  • the fine particle adsorbing material manufactured in this way is used as, for example, a filter or a wall material (interior material), but its application is not limited thereto.
  • particulates such as PM2.5 are efficiently removed by the cleaning sheet.
  • the fine particle adsorbing material according to the present invention may be included in various cosmetics such as gels and creams used for facial cleansers, shampoos, body soaps, and gorges (treatment to remove old keratin from the body using natural materials). Good. In this case, particulates such as PM2.5 adhering to the body as dirt are efficiently removed from the body.
  • the shape of the crushed licorice wick and the moderate hardness makes the old keratin without damaging the body. It has also been confirmed that removal takes place.
  • the flow of the manufacturing method shown in FIGS. 3 and 6 to 8 is an example, and a part of the order of the steps constituting the manufacturing method can be changed.
  • the application process for applying the adhesive to the material may be performed at the same time in the infiltration process and the shear pulverization process as long as the timing is after the separation process. Also good.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

In the present invention, the pith of soft rushes is separated from the outer skin thereof. Then, the pith separated from the outer skin is soaked in a liquid. Then, the pith that has been soaked in the liquid is sheared and ground. Then, an adhesive agent such as a starch paste is added to the sheared and ground pith. Then, the ground pith to which the adhesive agent is added is applied to a material having a net structure by spraying or the like. Accordingly, a fine-particle-adsorbing material that adsorbs fine particles, such as PM2.5, at a high adsorption rate is produced. The fine-particle-adsorbing material produced in this way can be used as a mask, a filter for an air cleaner, or the like.

Description

微粒子吸着素材の製造方法Manufacturing method of particulate adsorption material
 本発明は微粒子を吸着する素材の製造方法に関する。 The present invention relates to a method for producing a material that adsorbs fine particles.
 ホルムアルデヒド等の人体に有害な物質をイ草素材に吸着させることで除去する技術がある。 There is a technology that removes substances harmful to the human body, such as formaldehyde, by adsorbing them to the grass material.
 例えば、特許文献1には、イ草を細かく破砕して粉状体や線状体としたものを用いた、有害物質の吸着作用を備える塗料、結合材、紙、撚り糸、紡糸繊維、壁材、編織物、茣蓙などの材料が提案されている。 For example, Patent Document 1 discloses paints, binders, paper, twisted yarns, spun fibers, and wall materials having a harmful substance-adsorbing action using finely crushed rush grasses and powders or linear bodies. Materials such as knitted fabrics and cocoons have been proposed.
特開2002-67006号公報JP 2002-670006 A
 イ草は外皮と、外皮に覆われた髄で構成され、外皮よりも髄において、ホルムアルデヒド等の気体の化学物質を吸着することが知られている。しかしながら、気体の化学物質より粒径が大きいPM2.5(Particulate Matter 2.5)等の微粒子(本願において、「微粒子」とは、1μm~10μmオーダーの粒子をいうものとする)がイ草に吸着されるか否かは不明であった。 It is known that grass is composed of the outer skin and the medulla covered with the outer skin, and adsorbs gaseous chemical substances such as formaldehyde in the medulla rather than the outer skin. However, fine particles such as PM2.5 (Particulate Matter 2.5) having a particle size larger than that of a chemical substance in gas (in this application, “fine particles” means particles of the order of 1 μm to 10 μm) Whether it was adsorbed or not was unknown.
 本願の発明者は独自の実験により、以下の知見を得た。
(1)イ草はPM2.5等の微粒子を吸着する。
(2)イ草の外皮よりも髄において微粒子の吸着率(単位面積当たりの吸着数)が遙かに高い。
(3)イ草の髄が備えるスポンジ構造を形成する枝の表面にPM2.5等の微粒子が吸着する。
(4)イ草の外皮と髄を分離せずにイ草を1mmオーダー以下に粉砕すると、髄の枝の多くが破壊される。(粉砕の方法が剪断粉砕であっても、髄の枝構造はほとんど残らない。)
The inventor of the present application has obtained the following knowledge through an original experiment.
(1) Grasses adsorb particulates such as PM2.5.
(2) The adsorption rate of fine particles (the number of adsorptions per unit area) is much higher in the medulla than the husk of rush.
(3) Fine particles such as PM2.5 are adsorbed on the surfaces of the branches forming the sponge structure provided in the medulla of the grass.
(4) If the grass is pulverized to the order of 1 mm or less without separating the hull and the medulla, many branches of the medulla are destroyed. (Even if the pulverization method is shear pulverization, almost no medullary branch structure remains.)
 上記の知見に関し補足すると、イ草の髄がスポンジ構造(三次元的な網目構造)を備えていることは従来から知られていた。従って、仮にイ草の髄によりPM2.5等の微粒子が除去されるとすれば、当該スポンジ構造が有する網目がPM2.5等の微粒子を捕捉する、と推測される。ただし、イ草の髄が備える網目構造の目は10μmのオーダーであり、PM2.5のような粒径が10μmオーダーより小さい微粒子はイ草の髄により捕捉されない、と推測される。これらの推測に反して、実際には上記(3)に述べたとおり、イ草の髄が備えるスポンジ構造を形成する枝の表面にPM2.5等の微粒子が吸着することが判明した。 Supplementing the above findings, it has been conventionally known that the medulla mushroom has a sponge structure (three-dimensional network structure). Therefore, if particulates such as PM2.5 are removed by the medulla of rush, it is assumed that the mesh of the sponge structure captures particulates such as PM2.5. However, it is presumed that the mesh of the medulla medulla has a mesh structure of the order of 10 μm, and fine particles having a particle size smaller than the order of 10 μm such as PM2.5 are not captured by the medulla medulla. Contrary to these assumptions, as described in (3) above, it has been found that particulates such as PM2.5 are actually adsorbed on the surface of the branches forming the sponge structure of the medulla medulla.
 本発明は、上記の知見に基づき、高い吸着率でPM2.5等の微粒子を吸着する微粒子吸着素材を提供することを目的とする。 The present invention aims to provide a fine particle adsorbing material that adsorbs fine particles such as PM2.5 at a high adsorption rate based on the above findings.
 上述した課題を解決するため、本発明は、イ草の髄を外皮から分離する分離工程と、前記分離工程において外皮から分離されたイ草の髄に液体を浸潤させる浸潤工程と、前記浸潤工程において液体に浸潤されたイ草の髄を剪断粉砕する剪断粉砕工程とを備える微粒子吸着素材の製造方法を第1の態様として提供する。 In order to solve the above-described problems, the present invention provides a separation step of separating the medulla medulla from the outer skin, an infiltration step of infiltrating liquid into the medulla medulla separated from the outer skin in the separation step, and the infiltration step A method for producing a fine particle adsorbing material comprising a shearing and grinding step of shearing and crushing the medulla of licorice infiltrated with a liquid is provided as a first aspect.
 また、本発明は、上記の第1の態様にかかる製造方法において、前記分離工程の後かつ前記浸潤工程の前に、外皮から分離されたイ草の髄を切断する切断工程を備える、という構成を第2の態様として提供する。 Moreover, this invention is a manufacturing method concerning said 1st aspect WHEREIN: The structure of providing the cutting process which cut | disconnects the medulla of the grass which was isolate | separated from the outer skin after the said isolation | separation process and before the said infiltration process. Is provided as a second aspect.
 また、本発明は、上記の第1の態様にかかる製造方法において、前記分離工程の後かつ前記浸潤工程の前に、外皮から分離されたイ草の髄を引き裂く引き裂き工程を備える、という構成を第3の態様として提供する。 In the manufacturing method according to the first aspect of the present invention, the manufacturing method according to the first aspect further includes a tearing step for tearing the medulla of the grass isolated from the outer skin after the separation step and before the infiltration step. Provided as a third aspect.
 また、本発明は、上記の第1乃至第3のいずれかの態様にかかる製造方法において、前記剪断粉砕工程において剪断粉砕された、液体に浸潤されたイ草の髄を、網目構造を備える素材に塗布する塗布工程を備える、という構成を第4の態様として提供する。 Further, the present invention provides a material having a mesh structure, wherein the medulla mushroom infiltrated with liquid, which has been sheared and ground in the shearing and grinding step, in the manufacturing method according to any one of the first to third aspects described above. The structure which is provided with the application | coating process apply | coated to is provided as a 4th aspect.
 また、本発明は、上記の第4の態様にかかる製造方法において、前記塗布工程における塗布は噴霧による塗布である、という構成を第5の態様として提供する。 Further, the present invention provides, as a fifth aspect, a configuration in which the application in the application step is an application by spraying in the manufacturing method according to the fourth aspect.
 また、本発明は、上記の第1乃至第3のいずれかの態様にかかる製造方法において、前記剪断粉砕工程において剪断粉砕された、液体に浸潤されたイ草の髄を繊維素材と混合し混合素材を生成する混合工程と、前記混合工程により生成された混合素材から脱液を行う脱液工程とを備える、という構成を第6の態様として提供する。 The present invention also provides the manufacturing method according to any one of the first to third aspects, wherein the pith of rush grass infiltrated with liquid, which is sheared and ground in the shearing and grinding step, is mixed and mixed with a fiber material. A configuration is provided as a sixth aspect, comprising a mixing step for generating a raw material and a liquid removal step for removing liquid from the mixed material generated by the mixing step.
 また、本発明は、上記の第6の態様にかかる製造方法において、前記脱液工程において、または、前記脱液工程の後に、前記混合工程において生成された混合素材を圧縮する圧縮行程を備える、という構成を第7の態様として提供する。 Further, the present invention includes the compression step of compressing the mixed material generated in the mixing step in the liquid removal step or after the liquid removal step in the manufacturing method according to the sixth aspect. This configuration is provided as a seventh aspect.
 また、本発明は、上記の第1乃至第7のいずれかの態様にかかる製造方法において、前記分離工程の後のいずれかのタイミングにおいて、前記イ草の髄に粘着剤を付与する付与工程を備える、という構成を第8の態様として提供する。 Further, the present invention provides the production method according to any one of the first to seventh aspects, wherein the application step of applying an adhesive to the medulla mushroom at any timing after the separation step. A configuration of providing is provided as an eighth aspect.
 また、本発明は、上記の第1乃至第3のいずれかの態様にかかる製造方法において、前記剪断粉砕工程において剪断粉砕された、液体に浸潤されたイ草の髄から脱液を行う脱液工程と、基材に粘着剤を塗布する塗布工程と、前記塗布工程において粘着剤の塗布された基材の表面に、前記脱液工程により脱液された、粉砕されたイ草の髄を付着させる付着工程とを備える、という構成を第9の態様として提供する。 In addition, the present invention provides the drainage method for draining from the medulla of the grass infiltrated with the liquid, which has been sheared and ground in the shearing and grinding step, in the manufacturing method according to any one of the first to third aspects. A step of applying a pressure-sensitive adhesive to the base material, and a surface of the base material to which the pressure-sensitive adhesive has been applied in the coating step is adhered to the surface of the base material coated with the pressure-sensitive adhesive. A ninth aspect is provided as a ninth aspect.
 また、本発明は、上記の第1乃至第3のいずれかの態様にかかる製造方法において、
前記剪断粉砕工程において剪断粉砕されたイ草の髄を、通気性を有するシート状体に封入する封入工程を備える、という構成を第10の態様として提供する。
In addition, the present invention provides a manufacturing method according to any one of the first to third aspects,
According to a tenth aspect of the present invention, there is provided a configuration including a sealing step of sealing the medulla of the grass crushed and ground in the shearing and grinding step in a sheet-like body having air permeability.
 本発明によれば、外皮から分離され、枝構造の多くが維持されたイ草の髄を含む微粒子吸着素材が製造される。その結果、高い吸着率でPM2.5等の微粒子を吸着する微粒子吸着素材が得られる。 According to the present invention, a fine particle adsorbing material containing medulla moss, which is separated from the outer skin and maintains many branch structures, is produced. As a result, a particulate adsorption material that adsorbs particulates such as PM2.5 at a high adsorption rate is obtained.
 また、当該微粒子吸着素材には、イ草の外皮が実質的に含まれない。なお、この「外皮が実質的に含まれない」とは、分離工程において髄から分離されず混入した微量な外皮が微粒子吸着素材に含まれることを許容する、という意味である。従って、イ草の外皮を含む素材と比較し、高い吸着率で微粒子を吸着し、かつ、外観に優れた微粒子吸着素材が得られる。 Also, the fine particle adsorbing material does not substantially contain a rush of rush. Note that “substantially no outer skin” means that a minute amount of outer skin that is not separated from the marrow and mixed in the separation step is included in the particulate adsorbing material. Therefore, a fine particle adsorbing material that adsorbs fine particles at a high adsorption rate and has an excellent appearance as compared with a material containing a husk of rush.
イ草の構造を示す顕微鏡写真。A photomicrograph showing the structure of the grass. イ草の髄の構造と微粒子が吸着されている様子を示す顕微鏡写真。A photomicrograph showing the structure of medulla mushrooms and how fine particles are adsorbed. 一実施形態にかかる微粒子吸着素材の製造方法を示すフロー図。The flowchart which shows the manufacturing method of the fine particle adsorption material concerning one Embodiment. イ草の髄を外皮から押し出して分離する方法の一例を示す図。The figure which shows an example of the method of extruding and isolate | separating the medulla of a grass. イ草の髄を外皮から押し出して分離するための器具の一例およびその使用方法を示す図。The figure which shows an example of the instrument for extruding and isolate | separating the medulla of a grass from the outer skin, and its usage. 一実施形態にかかる微粒子吸着素材の製造方法を示すフロー図。The flowchart which shows the manufacturing method of the fine particle adsorption material concerning one Embodiment. 一実施形態にかかる微粒子吸着素材の製造方法を示すフロー図。The flowchart which shows the manufacturing method of the fine particle adsorption material concerning one Embodiment. 一実施形態にかかる微粒子吸着素材の製造方法を示すフロー図。The flowchart which shows the manufacturing method of the fine particle adsorption material concerning one Embodiment.
[実施形態]
 図1は、イ草を長手方向に沿った面で半円筒状に切断した断面の顕微鏡写真である。図1に示されるように、イ草1は、外皮11と、外皮11に覆われる髄12で構成される。
[Embodiment]
FIG. 1 is a photomicrograph of a cross section obtained by cutting a cypress into a semi-cylindrical shape along a longitudinal direction. As shown in FIG. 1, the grass 1 is composed of an outer skin 11 and a medulla 12 covered with the outer skin 11.
 図2は、PM2.5等の微粒子が浮遊する外気に所定時間曝露した後のイ草の髄の顕微鏡写真である。図2に示されるように、イ草の髄はスポンジ構造(三次元的な網目構造)を備えており、当該スポンジ構造を形成する枝の表面に微粒子2が吸着される。 FIG. 2 is a photomicrograph of the medulla of grass after exposure for a predetermined time to the outside air in which particulates such as PM2.5 float. As shown in FIG. 2, the medulla of the grass has a sponge structure (three-dimensional network structure), and the fine particles 2 are adsorbed on the surfaces of the branches forming the sponge structure.
[第1実施例]
 図3は、本発明の一実施形態にかかる微粒子吸着素材の製造方法を示すフロー図である。まず、イ草の髄を外皮から分離する(分離工程、ステップS11)。ステップS11において髄を外皮から分離する方法としては以下に例示のものが採用され得るが、これらに限られない。
[First embodiment]
FIG. 3 is a flowchart showing a method for producing a particulate adsorption material according to an embodiment of the present invention. First, the medulla of rush is separated from the outer skin (separation step, step S11). As a method for separating the medulla from the outer skin in step S11, the following examples may be adopted, but are not limited thereto.
(1)外皮を髄から捲るように剥離することで分離する。
(2)短く切断したイ草の一方の端部を台の上に置いて押さえ、棒等を押し付けながら当該端部から他方の端部に向かい移動させることにより、髄を絞り出すことで分離する(図4)。
(3)短く切断したイ草の軸方向に、外皮の内径より小さい直径の押し出し棒を押し込み、髄を外皮から押し出すことで分離する。
(4)長手方向に沿った面で半円筒状に切断したイ草の切断面に露出した髄を棒等で掻き出すことで分離する。
(1) Separate by peeling the outer skin so that it crawls from the medulla.
(2) Place one end of a short cut rush on a table, hold it down, and move it from the end toward the other end while pressing a rod or the like to separate it by squeezing the marrow ( FIG. 4).
(3) A push bar having a diameter smaller than the inner diameter of the outer skin is pushed in the axial direction of the cut short grass, and the marrow is separated from the outer skin by pushing it out.
(4) The medulla exposed on the cut surface of the grass cut into a semi-cylindrical shape along the longitudinal direction is separated by scraping with a stick or the like.
 図5は、髄を外皮から分離するために独自に発明した器具とその使い方を示した図である。図5に示す器具3は、外皮に切れ目を入れるカッター部31と、髄を掻き出すスプーン形状の掻き出し部32を備える。 FIG. 5 is a diagram showing a device originally invented to separate the marrow from the outer skin and how to use it. The instrument 3 shown in FIG. 5 includes a cutter unit 31 that cuts the outer skin and a spoon-shaped scraping unit 32 that scrapes the marrow.
 作業員は、例えば5cm程度に切断したイ草1の一方の端部付近において、カッター部31の刃先をイ草1に差し入れた後、器具3をイ草1の他方の端部方向にスライドさせる。その際、カッター部31がイ草1の外皮を長手方向に沿って切断しつつ、掻き出し部32が切断された外皮の間から髄を掻き出す。 For example, in the vicinity of one end of the grass 1 cut to about 5 cm, the operator inserts the blade tip of the cutter unit 31 into the grass 1 and then slides the instrument 3 toward the other end of the grass 1. . At this time, the cutter unit 31 cuts the outer skin of the grass 1 along the longitudinal direction, and the scraping portion 32 scrapes the marrow from between the cut outer skins.
 図3に戻り、本実施例にかかる微粒子吸着素材の製造方法の説明を続ける。続いて、外皮から分離された髄をハサミ等の器具やカッターミル等の切断装置により切断する(切断工程)か、もしくは引き裂く(引き裂き工程)ことにより、概ね所定の長さ(例えば、1mm~1cmオーダー)とする(ステップS12)。なお、ステップS12において髄を切断するか引き裂くかによって、最終的に製造される微粒子吸着素材の外観(風合い)が異なる。なお、切断工程および引き裂き工程は目的に応じて省略されてもよい。 Referring back to FIG. 3, the description of the method for producing the fine particle adsorbing material according to the present example will be continued. Subsequently, the medulla separated from the outer skin is cut (cutting step) by an instrument such as scissors or a cutting device such as a cutter mill (cutting step), or is torn (tearing step), so that the length of the spinal cord is approximately 1 mm to 1 cm. Order) (step S12). Note that the appearance (texture) of the finally produced fine particle adsorbing material differs depending on whether the pith is cut or torn in step S12. Note that the cutting step and the tearing step may be omitted depending on the purpose.
 続いて、外皮から分離された髄(または外皮から分離された後、切断または引き裂きにより短くされた髄)に液体を浸潤させる(浸潤工程、ステップS13)。浸潤工程において髄に浸潤させるために用いられる液体は、例えば水であるがこれに限られない。また、浸潤工程において髄に浸潤させるために用いられる液体の量は、例えば当該液体が水の場合、髄1gに対し300cc~400cc程度が望ましい。本願の発明者は、実験により、左記の範囲外の比率の量の水を用いた場合、次に述べる剪断粉砕工程における粉砕効率が低下することを確認した。 Subsequently, the liquid is infiltrated into the marrow separated from the outer skin (or the marrow shortened by cutting or tearing after being separated from the outer skin) (infiltration step, step S13). The liquid used for infiltrating the marrow in the infiltration process is, for example, water, but is not limited thereto. In addition, the amount of liquid used to infiltrate the medulla in the infiltration process is preferably about 300 cc to 400 cc with respect to 1 g of medulla when the liquid is water, for example. The inventor of the present application has confirmed through experiments that the pulverization efficiency in the shear pulverization step described below is reduced when an amount of water outside the above-mentioned range is used.
 続いて、液体に浸潤された髄(浸潤工程で用いた髄に浸潤していない液体を含む)を剪断粉砕機に投入し、剪断粉砕する(剪断粉砕工程、ステップS14)。ここで、剪断粉砕とは、剪断刃により髄を剪断することにより粉砕することをいい、例えばボールミルや臼等の磨り潰しによる粉砕は含まない。 Subsequently, the medulla infiltrated with the liquid (including the liquid that has not infiltrated the medulla used in the infiltration process) is put into a shear pulverizer and sheared and pulverized (shear pulverization process, step S14). Here, the shear pulverization means pulverization by shearing the medulla with a shearing blade, and does not include, for example, pulverization by grinding a ball mill or a mortar.
 髄の粉砕において剪断粉砕を採用することで、髄の枝の多くが破壊されずに残る。そのため、粉砕によって枝の表面においてPM2.5等の微粒子を吸着する能力が低下することがない。なお、髄を外皮から分離せず、外皮と髄をそのまま剪断粉砕した場合、外皮が1mmオーダー以下となるまで粉砕すると、髄の枝構造がほとんど残らないことを本願の発明者が発見した点は既述のとおりである。 By adopting shear pulverization in the pulverization of the medulla, many of the medullary branches remain without being destroyed. Therefore, the ability to adsorb particulates such as PM2.5 on the surface of the branch by pulverization does not decrease. The inventor of the present application found that when the outer skin and the medulla were sheared and pulverized as they were without separating the medulla from the outer skin, the medullary branch structure was hardly left when the outer skin was pulverized to the order of 1 mm or less. As described above.
 また、剪断粉砕を行う場合、仮に浸潤工程を経ないで乾燥した髄を剪断粉砕機にかけると、100μmオーダー以下の粒径まで髄を粉砕することができない。これは、髄がスポンジ構造を備えるため、剪断刃の回転等により生じる風力で髄が剪断刃を避けるように移動してしまうためであると推測される。本願の発明者は様々な実験を行い、髄を液体に浸潤させた状態で剪断粉砕することにより、スポンジ構造の髄を、その枝構造を維持しつつ100μmオーダー以下の粒径まで微小化できることを発見した。 Also, when performing shearing and grinding, if the dried pith is applied to a shearing and grinding machine without passing through the infiltration step, the pith cannot be shattered to a particle size of the order of 100 μm or less. This is presumably because the spinal cord is provided with a sponge structure, and the spinal cord is moved by wind force generated by rotation of the shearing blade or the like so as to avoid the shearing blade. The inventor of the present application conducts various experiments, and by shearing and pulverizing the spinal cord in a state where the spinal cord is infiltrated with the liquid, the sponge-like spinal cord can be miniaturized to a particle size of the order of 100 μm or less while maintaining the branch structure. discovered.
 続いて、剪断粉砕された髄を含む液体に粘着剤を付与する(付与工程、ステップS15)。付与工程において用いられる粘着剤は、例えばでんぷん糊であるがこれに限られない。ただし、人体に有害な可能性の低い動植物由来の粘着剤(例えば、米糊、膠、布海苔等)が用いられることが望ましい。なお、付与工程は目的に応じて省略されてもよい。 Subsequently, a pressure-sensitive adhesive is applied to the liquid containing the sheared and crushed pith (application step, step S15). The pressure-sensitive adhesive used in the application step is, for example, starch paste, but is not limited thereto. However, it is desirable to use an adhesive derived from animals and plants that is less likely to be harmful to the human body (for example, rice paste, glue, cloth nori). Note that the applying step may be omitted depending on the purpose.
 続いて、上記の工程を経て生成された、微細化された髄を含む液体状の素材を、網目構造を備える素材に塗布する(塗布工程、ステップS16)。塗布工程において用いられる網目構造を備える素材は、例えばガーゼ、不織布、空気清浄機のフィルタ等であるがこれらに限られない。 Subsequently, the liquid material including the refined pith generated through the above process is applied to the material having a network structure (application process, step S16). Examples of the material having a network structure used in the coating process include, but are not limited to, gauze, non-woven fabric, air cleaner filter, and the like.
 また、塗布工程における塗布の方法は例えば噴霧であるがこれに限られず、目的や塗布対象物の特性等に応じて刷毛塗り、含浸等が採用されてもよい。 Further, the application method in the application step is, for example, spraying, but is not limited thereto, and brushing, impregnation, etc. may be employed depending on the purpose and the characteristics of the object to be applied.
 続いて、微細化された髄を含む液体状の素材の塗布された網目構造を備える素材を乾燥する(乾燥工程、ステップS17)。これにより、本実施例における微粒子吸着素材が製造される。このように製造された微粒子吸着素材は、例えばマスクや空気清浄機のフィルタとして利用されるが、その用途はこれらに限られない。 Subsequently, the material having a network structure to which the liquid material including the refined pith is applied is dried (drying step, step S17). Thereby, the particulate adsorbing material in the present embodiment is manufactured. The fine particle adsorbing material manufactured in this way is used as, for example, a filter for a mask or an air cleaner, but its application is not limited thereto.
 なお、剪断粉砕工程または付与工程により生成される微細化された髄を含む液体状の素材は、それ自体が微粒子吸着素材として利用者に提供され得る。利用者は当該微粒子吸着素材を、例えば市販のマスクや空気清浄機のフィルタ等に噴霧することによって、既存のマスクやフィルタに微粒子吸着性能を手軽に付加することができる。また、利用者は、自宅の壁等に当該微粒子吸着素材を噴霧、刷毛塗り等により塗布することにより、既存の壁等に微粒子吸着能力を手軽に付加することができる。さらに、利用者は、例えば空中に当該微粒子吸着素材を噴霧することにより、空中に浮遊する微粒子を除去することができる。 It should be noted that the liquid material including the fined pith produced by the shearing and grinding step or the applying step can itself be provided to the user as a fine particle adsorbing material. The user can easily add the particulate adsorption performance to an existing mask or filter by spraying the particulate adsorption material on, for example, a commercially available mask or a filter of an air cleaner. Further, the user can easily add the particulate adsorption capability to an existing wall or the like by applying the particulate adsorption material to the wall or the like of the home by spraying, brushing, or the like. Further, the user can remove fine particles floating in the air by spraying the fine particle adsorbing material in the air, for example.
[第2実施例]
 図6は、本発明の他の一実施形態にかかる微粒子吸着素材の製造方法を示すフロー図である。本実施例の製造方法において行われるステップS21~S24の工程は、図3に示したフローのステップS11~S14の工程と同様である。
[Second Embodiment]
FIG. 6 is a flowchart showing a method for producing a particulate adsorbing material according to another embodiment of the present invention. Steps S21 to S24 performed in the manufacturing method of the present embodiment are the same as steps S11 to S14 in the flow shown in FIG.
 本実施例においては、ステップS24の剪断粉砕工程に続いて、微細化された髄を含む液体状の素材(液体に浸潤され粉砕された髄)を、繊維素材と混合し、髄と繊維素材の混合素材を生成する(混合工程、ステップS25)。混合工程において用いられる繊維素材は、例えば綿であるがこれに限られない。また、混合工程において微細化された髄を含む液体状の素材と繊維素材を混合する方法としては、例えば攪拌棒で攪拌する、作業者の手で揉みながら混ぜる、等が採用され得るがこれらに限られない。 In the present embodiment, following the shear pulverization step of step S24, a liquid material containing finely divided marrow (the marrow that has been infiltrated with liquid and pulverized) is mixed with the fiber material, and the marrow and the fiber material are mixed. A mixed material is generated (mixing step, step S25). The fiber material used in the mixing step is, for example, cotton, but is not limited thereto. In addition, as a method of mixing the liquid material including the fined medulla and the fiber material in the mixing step, for example, stirring with a stirring rod, mixing while mixing with the hands of an operator, etc. can be adopted. Not limited.
 続いて、混合工程により生成された混合素材から脱液を行う(脱液工程、ステップS26)。脱液の方法としては、例えば混合素材を網の上から落とす、または、混合素材を網で漉く(または抄く)、等が採用され得るがこれらに限られない。 Subsequently, liquid removal is performed from the mixed material generated in the mixing process (liquid removal process, step S26). Examples of the liquid removal method include, but are not limited to, dropping the mixed material from the net, or rolling (or papering) the mixed material with a net.
 続いて、脱液工程において脱液された混合素材を、厚さが略均等となるように整形する(整形工程、ステップS27)。なお、混合工程において、混合素材が整形された状態で脱液される場合、整形工程は省略されてもよい。 Subsequently, the mixed material drained in the draining process is shaped so that the thickness is substantially uniform (shaping process, step S27). In the mixing step, when the mixed material is drained in a shaped state, the shaping step may be omitted.
 続いて、脱液された混合素材を圧縮する(圧縮工程、ステップS28)。圧縮の方法としては、例えば、混合素材を2枚の圧縮板で挟み込んで加圧する方法が採用され得るが、これに限られない。なお、圧縮工程の主な目的は素材の厚みを薄くするとともに強度を高めることである。 Subsequently, the liquid mixture that has been drained is compressed (compression step, step S28). As a compression method, for example, a method of sandwiching and pressing a mixed material between two compression plates can be adopted, but the method is not limited thereto. The main purpose of the compression process is to increase the strength while reducing the thickness of the material.
 続いて、圧縮された混合素材に粘着剤を付与する(付与工程、ステップS29)。この付与工程は、図3に示したフローのステップS15の工程と同様である。 Subsequently, an adhesive is applied to the compressed mixed material (applying step, step S29). This application step is the same as the step S15 in the flow shown in FIG.
 続いて、粘着剤の付与された混合素材を、さらに圧縮する(圧縮工程、ステップS210)。この圧縮工程は、ステップS28の工程と同様である。なお、ステップS28とステップS210のいずれか一方が省略されてもよい。 Subsequently, the mixed material to which the adhesive has been applied is further compressed (compression process, step S210). This compression process is the same as the process of step S28. Note that either step S28 or step S210 may be omitted.
 続いて、粘着剤が付与され圧縮された混合素材を乾燥する(乾燥工程、ステップS211)。これにより、本実施例における微粒子吸着素材が製造される。このように製造された微粒子吸着素材は、例えば壁材として利用されるが、その用途はこれらに限られない。 Subsequently, the mixed material compressed with the adhesive is dried (drying step, step S211). Thereby, the particulate adsorbing material in the present embodiment is manufactured. The fine particle adsorbing material manufactured in this way is used as, for example, a wall material, but its use is not limited thereto.
[第3実施例]
 図7は、本発明の他の一実施形態にかかる微粒子吸着素材の製造方法を示すフロー図である。本実施例の製造方法において行われるステップS31~S34の工程は、図3に示したフローのステップS11~S14の工程と同様である。ただし、ステップS33における浸潤工程において、製造する微粒子吸着素材の用途等に応じて髄の粒径が大きくてもよい場合は、ステップS13における浸潤工程における場合と比較し、髄に対する液体の量を少なくしてもよい。このように、髄に対し用いる液体の量を減らすことで、ステップS34における剪断粉砕において生成される髄の粒径を大きくすることができる。
[Third embodiment]
FIG. 7 is a flowchart showing a method for producing a particulate adsorbing material according to another embodiment of the present invention. Steps S31 to S34 performed in the manufacturing method of the present embodiment are the same as steps S11 to S14 in the flow shown in FIG. However, in the infiltration process in step S33, when the particle size of the medulla may be large according to the use of the particulate adsorbing material to be manufactured, the amount of liquid with respect to the medulla is less than in the infiltration process in step S13. May be. In this way, by reducing the amount of liquid used for the medulla, the particle size of the medulla generated in the shear pulverization in step S34 can be increased.
 本実施例においては、ステップS34の剪断粉砕工程に続いて、図6に示したフローのステップS26と同様の脱液を行う(脱液工程、ステップS35)。続いて、脱液された、微細化された髄を乾燥する(乾燥工程、ステップS36)。 In the present embodiment, following the shear pulverization step of step S34, the same liquid removal as step S26 of the flow shown in FIG. 6 is performed (liquid removal step, step S35). Subsequently, the drained and refined pith is dried (drying step, step S36).
 続いて、別途準備した基材の表面に粘着剤を塗布する(塗布工程、ステップS37)。ステップS37において用いられる基材は、例えば板状体、紙等のシート状体、ガーゼ等の繊維素材等が採用され得るが、これらに限られない。また、ステップS37において用いる粘着剤は、例えばでんぷん糊であるがこれに限られない。ただし、人体に有害な可能性の低い動植物由来の粘着剤(例えば、米糊、膠、布海苔等)が用いられることが望ましい。また、ステップS37において粘着剤を基材に塗布する方法は、噴霧、刷毛塗り、含浸等のいずれであってもよい。なお、ステップS37は、ステップS31~S36と並行して行われてもよい。 Subsequently, an adhesive is applied to the surface of the separately prepared base material (application process, step S37). As the base material used in step S37, for example, a plate-like body, a sheet-like body such as paper, a fiber material such as gauze, and the like can be adopted, but not limited thereto. Moreover, although the adhesive used in step S37 is a starch paste, for example, it is not restricted to this. However, it is desirable to use an adhesive derived from animals and plants that is less likely to be harmful to the human body (for example, rice paste, glue, cloth nori). In addition, the method of applying the adhesive to the substrate in step S37 may be any of spraying, brushing, impregnation and the like. Note that step S37 may be performed in parallel with steps S31 to S36.
 続いて、ステップS36において乾燥した微細化された髄を、ステップS37において粘着剤の塗布された基材の表面に付着させる(付着工程、ステップS38)。ステップS38における付着の方法は、例えば微細化した髄の入った容器に粘着剤の塗布された基材を入れてまぶす、微細化した髄を粘着剤の塗布された基材に吹き付ける、等が採用され得るが、これらに限られない。 Subsequently, the refined pith dried in step S36 is attached to the surface of the base material coated with the adhesive in step S37 (attachment step, step S38). As the attachment method in step S38, for example, a base material coated with an adhesive is placed in a container containing finely divided pith, and the finely divided pith is sprayed onto a base material coated with an adhesive. Can be, but is not limited to.
 続いて、微細化された髄を基材の表面に付着させている粘着剤を乾燥させる(乾燥工程、ステップS39)。これにより、本実施例における微粒子吸着素材が製造される。このように製造された微粒子吸着素材は、基材の種別に応じて、例えば壁材、壁紙、マスク等として利用されるが、その用途はこれらに限られない。 Subsequently, the pressure-sensitive adhesive having the micronized pith attached to the surface of the base material is dried (drying step, step S39). Thereby, the particulate adsorbing material in the present embodiment is manufactured. The fine particle adsorbing material manufactured in this way is used as, for example, a wall material, a wallpaper, a mask, or the like according to the type of the base material, but the application is not limited thereto.
 なお、基材に付着された髄の剥がれ落ちに備え、通気性を有するシート状体で髄の付着した基材の表面を覆う被覆工程をステップS38またはステップS39の後に行ってもよい。 In addition, in preparation for peeling off of the medulla adhering to the base material, a covering step of covering the surface of the base material on which the medulla adheres with a sheet material having air permeability may be performed after step S38 or step S39.
 また、製造される微粒子吸着素材の用途によっては、髄の大きさが1mm~1cmオーダーの大きさでよい場合がある。この場合、ステップS32において髄の大きさを所望の大きさに切断または引き裂けば、ステップS33~S36が省略されてもよい。 Also, depending on the application of the particulate adsorbing material to be manufactured, the size of the medulla may be in the order of 1 mm to 1 cm. In this case, if the size of the medulla is cut or torn to a desired size in step S32, steps S33 to S36 may be omitted.
 本実施例にかかる製造方法により製造される微粒子吸着素材は、髄の表面の多くが粘着剤に覆われないため、例えば使用する粘着剤の濃度を高めても、粘着剤により微粒子の吸着効果が低減されず、高い吸着性能を示す。 In the fine particle adsorbing material manufactured by the manufacturing method according to the present example, most of the surface of the medulla is not covered with the adhesive. For example, even if the concentration of the adhesive used is increased, the adhesive has an effect of adsorbing the fine particles. It is not reduced and shows high adsorption performance.
[第4実施例]
 図8は、本発明の他の一実施形態にかかる微粒子吸着素材の製造方法を示すフロー図である。本実施例の製造方法において行われるステップS41~S44の工程は、図3に示したフローのステップS11~S14の工程と同様である。ただし、ステップS43における浸潤工程においては、ステップS13における浸潤工程における場合と比較し、髄に対する液体の量を少なくすることが望ましい。例えば、使用する液体として水を用いる場合、髄1gに対し100cc~200cc程度の水が用いられることが望ましい。このように、髄に対し用いる液体の量を減らすことで、ステップS44における剪断粉砕において生成される髄の粒径を大きくすることができる。ステップS44において生成される髄の粒径は、例えば100μm~1mmオーダーである。
[Fourth embodiment]
FIG. 8 is a flowchart showing a method for producing a particulate adsorption material according to another embodiment of the present invention. Steps S41 to S44 performed in the manufacturing method of the present embodiment are the same as steps S11 to S14 in the flow shown in FIG. However, in the infiltration process in step S43, it is desirable to reduce the amount of liquid with respect to the medulla compared with the case of the infiltration process in step S13. For example, when water is used as the liquid to be used, it is desirable to use about 100 cc to 200 cc of water per 1 g of marrow. In this way, by reducing the amount of liquid used for the medulla, the particle size of the medulla generated in the shear pulverization in step S44 can be increased. The particle size of the medulla generated in step S44 is, for example, on the order of 100 μm to 1 mm.
 続いて、脱液工程(ステップS45)および乾燥工程(ステップS46)を行う。ステップS45~S46は、図7のステップS35~S36と同様である。 Subsequently, a liquid removal process (step S45) and a drying process (step S46) are performed. Steps S45 to S46 are the same as steps S35 to S36 of FIG.
 続いて、乾燥された、微細化された髄を、通気性を有するシート状体に封入する(封入工程、ステップS47)。ステップS47において用いられるシート状体は、例えば不織布のシート、綿布、麻布、目の細かいナイロンメッシュのシート等が採用可能であるが、これらに限られない。また、ステップS47における封入の方法としては、例えば予め袋状に形成したシート状体の開口部から微細化された髄を投入した後、シート状体の開口部を縫製や接着等により閉じる方法や、2枚のシート状体の間に微細化された髄を挟み込んだ状体で、それらの2枚のシート状体を縫い合わせる方法などが採用され得るが、これらに限られない。 Subsequently, the dried and refined medulla is encapsulated in a breathable sheet (encapsulation step, step S47). As the sheet-like body used in step S47, for example, a non-woven sheet, cotton cloth, linen, fine nylon mesh sheet, or the like can be used, but is not limited thereto. In addition, as a sealing method in step S47, for example, a method of closing the opening of the sheet-like body by sewing, bonding, or the like after inserting the fined pith from the opening of the sheet-like body formed in advance in a bag shape, A method of stitching the two sheet-like bodies in a form in which the pulverized medulla is sandwiched between the two sheet-like bodies can be employed, but is not limited thereto.
 なお、ステップS45は、ステップS47と同時に行われてもよい。この場合、シート状体が脱液のための網の役割を果たす。また、この場合、ステップS46はステップS47の後に行われることになる。 Note that step S45 may be performed simultaneously with step S47. In this case, the sheet-like body serves as a net for liquid removal. In this case, step S46 is performed after step S47.
 また、製造される微粒子吸着素材の用途によっては、髄の大きさが1mm~1cmオーダーの大きさでよい場合がある。この場合、ステップS42において髄の大きさを所望の大きさに切断または引き裂けば、ステップS43~S46が省略されてもよい。 Also, depending on the application of the particulate adsorbing material to be manufactured, the size of the medulla may be in the order of 1 mm to 1 cm. In this case, steps S43 to S46 may be omitted if the size of the medulla is cut or torn to a desired size in step S42.
 このように製造された微粒子吸着素材は、例えばフィルタや壁材(内装材)等として利用されるが、その用途はこれらに限られない。例えば、汚れを拭き取る清掃用シートに本発明にかかる微粒子吸着素材を含めるように構成してもよい。この場合、清掃用シートによりPM2.5等の微粒子が効率よく除去される。また、洗顔剤、シャンプー、ボディーソープ、ゴマージュ(天然素材を用いて身体から古い角質を取り除く施術)に用いるジェルまたはクリーム等の各種化粧品に本発明にかかる微粒子吸着素材を含めるように構成してもよい。この場合、汚れとして身体に付着しているPM2.5等の微粒子が効率よく身体から除去される。また、本発明にかかる微粒子吸着素材を含むゴマージュ用のジェルやクリーム等を用いて身体をマッサージすると、粉砕されたイ草の灯心の形状や程良い硬さによって、身体を傷つけることなく古い角質の除去が行われることも確認されている。 The fine particle adsorbing material manufactured in this way is used as, for example, a filter or a wall material (interior material), but its application is not limited thereto. For example, you may comprise so that the fine particle adsorption material concerning this invention may be included in the cleaning sheet which wipes off dirt. In this case, particulates such as PM2.5 are efficiently removed by the cleaning sheet. Further, the fine particle adsorbing material according to the present invention may be included in various cosmetics such as gels and creams used for facial cleansers, shampoos, body soaps, and gorges (treatment to remove old keratin from the body using natural materials). Good. In this case, particulates such as PM2.5 adhering to the body as dirt are efficiently removed from the body. In addition, when the body is massaged using a gorgeous gel or cream containing the fine particle adsorbing material according to the present invention, the shape of the crushed licorice wick and the moderate hardness makes the old keratin without damaging the body. It has also been confirmed that removal takes place.
 上述した製造方法は本発明の一実施形態であって、本発明の技術的思想の範囲内において様々に変形することができる。 The manufacturing method described above is an embodiment of the present invention, and can be variously modified within the scope of the technical idea of the present invention.
 例えば、図3、図6~図8に示した製造方法のフローは一例であって、それらの製造方法を構成する工程の順序の一部は変更され得る。例えば、素材に粘着剤を付与する付与工程は、分離工程の後のタイミングであれば、例えば浸潤工程、剪断粉砕工程において同時に行われてもよいし、それらの工程の間または前後において行われてもよい。 For example, the flow of the manufacturing method shown in FIGS. 3 and 6 to 8 is an example, and a part of the order of the steps constituting the manufacturing method can be changed. For example, the application process for applying the adhesive to the material may be performed at the same time in the infiltration process and the shear pulverization process as long as the timing is after the separation process. Also good.
1…イ草、11…外皮、12…髄、2…微粒子、3…器具、31…カッター部、32…掻き出し部 DESCRIPTION OF SYMBOLS 1 ... I grass, 11 ... Outer skin, 12 ... Spinal cord, 2 ... Fine particle, 3 ... Instrument, 31 ... Cutter part, 32 ... Scraping part

Claims (10)

  1.  イ草の髄を外皮から分離する分離工程と、
     前記分離工程において外皮から分離されたイ草の髄に液体を浸潤させる浸潤工程と、
     前記浸潤工程において液体に浸潤されたイ草の髄を剪断粉砕する剪断粉砕工程と
     を備える微粒子吸着素材の製造方法。
    A separation step of separating the medulla from the outer skin,
    An infiltration step of infiltrating a liquid into the medulla of the grass isolated from the outer skin in the separation step;
    A method for producing a fine particle adsorbing material, comprising: a shear pulverization step of shearing and pulverizing the medulla of rush grass infiltrated with a liquid in the infiltration step.
  2.  前記分離工程の後かつ前記浸潤工程の前に、外皮から分離されたイ草の髄を切断する切断工程を備える
     請求項1に記載の微粒子吸着素材の製造方法。
    The manufacturing method of the fine particle adsorption | suction raw material of Claim 1 provided with the cutting process which cut | disconnects the medulla of the grass isolated from the outer skin after the said separation process and before the said infiltration process.
  3.  前記分離工程の後かつ前記浸潤工程の前に、外皮から分離されたイ草の髄を引き裂く引き裂き工程を備える
     請求項1に記載の微粒子吸着素材の製造方法。
    The method for producing a fine particle adsorbing material according to claim 1, further comprising a tearing step for tearing the medulla of the grass isolated from the outer skin after the separation step and before the infiltration step.
  4.  前記剪断粉砕工程において剪断粉砕された、液体に浸潤されたイ草の髄を、網目構造を備える素材に塗布する塗布工程
     を備える請求項1乃至3のいずれか1項に記載の微粒子吸着素材の製造方法。
    The fine particle adsorbing material according to any one of claims 1 to 3, further comprising: an application step of applying the spinal cord of leeks infiltrated with liquid, which has been sheared and ground in the shearing and grinding step, to a material having a network structure. Production method.
  5.  前記塗布工程における塗布は噴霧による塗布である
     請求項4に記載の微粒子吸着素材の製造方法。
    The method for producing a fine particle adsorbing material according to claim 4, wherein the application in the application step is application by spraying.
  6.  前記剪断粉砕工程において剪断粉砕された、液体に浸潤されたイ草の髄を繊維素材と混合し混合素材を生成する混合工程と、
     前記混合工程により生成された混合素材から脱液を行う脱液工程と
     を備える請求項1乃至3のいずれか1項に記載の微粒子吸着素材の製造方法。
    A mixing step of mixing the medulla of rush grass infiltrated with the liquid shear-ground in the shear-pulverization step with a fiber material to produce a mixed material;
    A method for producing a particulate adsorption material according to any one of claims 1 to 3, further comprising: a liquid removal step of performing liquid removal from the mixed material generated by the mixing step.
  7.  前記脱液工程において、または、前記脱液工程の後に、前記混合工程において生成された混合素材を圧縮する圧縮行程を備える
     請求項6に記載の微粒子吸着素材の製造方法。
    The method for producing a fine particle adsorbing material according to claim 6, further comprising a compression step of compressing the mixed material generated in the mixing step in the liquid removing step or after the liquid removing step.
  8.  前記分離工程の後のいずれかのタイミングにおいて、前記イ草の髄に粘着剤を付与する付与工程を備える
     請求項1乃至7のいずれか1項に記載の微粒子吸着素材の製造方法。
    The method for producing a fine particle adsorbing material according to any one of claims 1 to 7, further comprising an application step of applying an adhesive to the medulla of the grass at any timing after the separation step.
  9.  前記剪断粉砕工程において剪断粉砕された、液体に浸潤されたイ草の髄から脱液を行う脱液工程と、
     基材に粘着剤を塗布する塗布工程と、
     前記塗布工程において粘着剤の塗布された基材の表面に、前記脱液工程により脱液された、粉砕されたイ草の髄を付着させる付着工程と
     を備える請求項1乃至3のいずれか1項に記載の微粒子吸着素材の製造方法。
    A draining step of draining from the medulla of rush grass infiltrated with liquid, which was sheared and ground in the shearing and grinding step;
    An application step of applying an adhesive to the substrate;
    An attachment step of attaching the pulverized mushroom medulla, which has been drained in the draining step, to the surface of the substrate on which the adhesive has been applied in the coating step. A method for producing the fine particle adsorbing material according to Item.
  10.  前記剪断粉砕工程において剪断粉砕されたイ草の髄を、通気性を有するシート状体に封入する封入工程
     を備える請求項1乃至3のいずれか1項に記載の微粒子吸着素材の製造方法。
    The method for producing a fine particle adsorbing material according to any one of claims 1 to 3, further comprising: an enclosing step of enclosing the medulla of the grass crushed and crushed in the shearing and pulverizing step into a sheet-like body having air permeability.
PCT/JP2015/071797 2014-07-31 2015-07-31 Production method for fine-particle-adsorbing material WO2016017800A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201580040812.1A CN106573226B (en) 2014-07-31 2015-07-31 Method for producing fine particle-adsorbed material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014156439A JP5639302B1 (en) 2014-07-31 2014-07-31 Manufacturing method of particulate adsorption material
JP2014-156439 2014-07-31

Publications (1)

Publication Number Publication Date
WO2016017800A1 true WO2016017800A1 (en) 2016-02-04

Family

ID=52145684

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/071797 WO2016017800A1 (en) 2014-07-31 2015-07-31 Production method for fine-particle-adsorbing material

Country Status (3)

Country Link
JP (1) JP5639302B1 (en)
CN (1) CN106573226B (en)
WO (1) WO2016017800A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106403083B (en) * 2016-11-09 2021-11-19 北京工业大学 Air humidifying, dust cleaning and cooling device for spraying straw core
CN106621589A (en) * 2016-12-09 2017-05-10 钦州市钦南区科学技术情报研究所 Anti-haze spraying agent and preparation method thereof
CN106902573B (en) * 2017-04-01 2020-01-17 成都宏恩生物科技有限公司 Application of rush core, filter structure and filter device formed by rush core and preparation method of filter device
CN108049254A (en) * 2017-12-11 2018-05-18 成都宏恩生物科技有限公司 Particulate air filter paper based on rush core fibre particle and preparation method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62189522U (en) * 1986-05-26 1987-12-02
JP3022757U (en) * 1995-09-18 1996-04-02 金十 山田 Water purification filter for microbial treatment using rush
JP2000129598A (en) * 1998-10-16 2000-05-09 Takeo Kameda Wallpaper of ground rush
JP2002067006A (en) * 2000-08-25 2002-03-05 Ikehiko Corporation:Kk Rush material, atricle using the same and method for manufacturing the rush material
JP2004149950A (en) * 2002-10-30 2004-05-27 Junichi Kanesashi Method for producing rush-containing paper
JP2006046035A (en) * 2004-07-30 2006-02-16 Mizunoko:Kk Wall material compound
JP2007203540A (en) * 2006-01-31 2007-08-16 Ikehiko Corporation Rush laminate and product using the same
WO2014010536A1 (en) * 2012-07-10 2014-01-16 三粧化研株式会社 Hair-care product

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5064407A (en) * 1990-03-13 1991-11-12 The Andersons Method of manufacturing a cellulose absorbent product
DE102004009956A1 (en) * 2004-03-01 2005-09-29 Eurofilters N.V. Adsorbent for dust collection filter, dust collection filter and method for odor adsorption
US6271278B1 (en) * 1997-05-13 2001-08-07 Purdue Research Foundation Hydrogel composites and superporous hydrogel composites having fast swelling, high mechanical strength, and superabsorbent properties
CN2757604Y (en) * 2004-12-29 2006-02-15 江西科技师范学院 rush filter-tipped cigarette
CN101259404A (en) * 2008-04-24 2008-09-10 郑州宇晶洁净技术咨询有限公司 Porous active carbon composite material and manufacturing method thereof
CN103463969B (en) * 2013-06-09 2016-12-28 广东工业大学 Multifunctional formaldehyde catalytic purification device
CN103623780B (en) * 2013-12-11 2016-06-08 张旭东 A kind of purification adsorption for sterilization material and application thereof
CN103638898A (en) * 2013-12-17 2014-03-19 尹无忌 PM2.5 pollutant adsorption sand with indoor humidifying function as well as application thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62189522U (en) * 1986-05-26 1987-12-02
JP3022757U (en) * 1995-09-18 1996-04-02 金十 山田 Water purification filter for microbial treatment using rush
JP2000129598A (en) * 1998-10-16 2000-05-09 Takeo Kameda Wallpaper of ground rush
JP2002067006A (en) * 2000-08-25 2002-03-05 Ikehiko Corporation:Kk Rush material, atricle using the same and method for manufacturing the rush material
JP2004149950A (en) * 2002-10-30 2004-05-27 Junichi Kanesashi Method for producing rush-containing paper
JP2006046035A (en) * 2004-07-30 2006-02-16 Mizunoko:Kk Wall material compound
JP2007203540A (en) * 2006-01-31 2007-08-16 Ikehiko Corporation Rush laminate and product using the same
WO2014010536A1 (en) * 2012-07-10 2014-01-16 三粧化研株式会社 Hair-care product

Also Published As

Publication number Publication date
JP5639302B1 (en) 2014-12-10
CN106573226B (en) 2020-02-14
JP2016032793A (en) 2016-03-10
CN106573226A (en) 2017-04-19

Similar Documents

Publication Publication Date Title
WO2016017800A1 (en) Production method for fine-particle-adsorbing material
CN104856223B (en) A kind of cigarette is with solid flavoring pearl and preparation method thereof
AU2015344139B2 (en) Porous Silica Particle and Cleansing Cosmetic
JP2005289997A (en) Product for treating the skin
CN101391203A (en) Compound powder capable of releasing negative ion with high efficiency and adhesive material thereof
KR102597677B1 (en) Beauty mask pack containing mugwort and manufacturing method for the same
CA2546209A1 (en) Pest control composition and method
CN108158918A (en) Wrap up microcapsules of natural extract and preparation method thereof and microcapsule-type lipstick
EP4239124A3 (en) Dry mixture
CN107841390A (en) A kind of bentonite cleaning agent and preparation method thereof
KR102075374B1 (en) Manufacturing method of puff using nano-fiber for environmental cosmetic having antibacterial property and farinfrared radiation characteristic and the cosmetic puff
KR102142453B1 (en) Cleansing composition comprising inorganic powder, and cleansing pad using the same, and method for manufacturing the same
KR102278638B1 (en) Maskpack with improved moisture content
KR102045327B1 (en) The Manufacture method of the Modeling sheet mask pack with fabrics used for the cosmetic mask pack
KR100204835B1 (en) Preparation method of pack composition for massage containing yellow soil powder and extracts of pineneedles
US9889072B2 (en) Porous silica particle, method for producing the same, and cleansing cosmetic containing the same
CN101375828B (en) Attapulgite non-foam depilatory paste for animal
CN101249049B (en) Soy protein skin-protection face pack and preparing method thereof
JP6154316B2 (en) Air cleaning filter
CN103232904A (en) Tea seed meal cleaning ball, its preparation method and application
CN108049032A (en) A kind of preparation method of the non-woven fabrics with strong negative ion releasing function
JP3906425B2 (en) Dissolution tank, solution production method, textile product, feather product, wallpaper, adhesion method of solution component, washing softener, non-woven paper
WO2021219255A1 (en) Natural material pad
CN1931705A (en) Elastic hose and its prepn process and the pillow therewith
JP2004149950A (en) Method for producing rush-containing paper

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15827941

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15827941

Country of ref document: EP

Kind code of ref document: A1