WO2016017334A1 - Electrical current detection apparatus - Google Patents

Electrical current detection apparatus Download PDF

Info

Publication number
WO2016017334A1
WO2016017334A1 PCT/JP2015/068427 JP2015068427W WO2016017334A1 WO 2016017334 A1 WO2016017334 A1 WO 2016017334A1 JP 2015068427 W JP2015068427 W JP 2015068427W WO 2016017334 A1 WO2016017334 A1 WO 2016017334A1
Authority
WO
WIPO (PCT)
Prior art keywords
leads
lead
current detection
magnetic
magnetic flux
Prior art date
Application number
PCT/JP2015/068427
Other languages
French (fr)
Japanese (ja)
Inventor
宗貴 岡本
順哉 若林
Original Assignee
株式会社東海理化電機製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東海理化電機製作所 filed Critical 株式会社東海理化電機製作所
Publication of WO2016017334A1 publication Critical patent/WO2016017334A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices

Definitions

  • the present invention relates to a current detection device, and more particularly to a current detection device that includes a magnetic detection element and performs current detection.
  • a current sensor that is disposed in the vicinity of a conductor that performs current measurement and measures a current flowing through the conductor by detecting a magnetic flux generated by the current flowing through the conductor.
  • a current sensor is configured by storing a core having a gap and a magnetoelectric conversion element arranged in the gap of the core in a component storage chamber in the case, and filling the component storage chamber with a molding agent.
  • the Hall IC which is a magnetoelectric conversion element, is mounted with its leads inserted into the lead holes of the substrate and soldered on the back surface of the substrate.
  • An object of the present invention is to provide a current detection device that simultaneously improves noise performance and solderability.
  • a current detection device includes a substrate disposed in the vicinity of a conductor that generates a magnetic flux around when a current flows, and a plurality of leads arranged at a predetermined pitch, And a SIP type magnetic detection element mounted with the lead inserted into the substrate, and the lead of the magnetic detection element is formed without expanding the predetermined pitch in the arrangement direction and inserted into the substrate. Has been implemented.
  • the leads may be formed in a direction intersecting the arrangement direction.
  • the leading end side of the lead may be formed corresponding to the lead hole of the substrate.
  • the magnetic detection element according to [1] to [3] may be formed and mounted so that an area where the magnetic flux interlinks with the leads or between the leads does not increase.
  • the magnetic detection elements according to [1] to [4] may be arranged so that an extending direction of the conductor is orthogonal to the arrangement direction of the leads.
  • the forming described in [1] to [5] may be performed so that a pitch (L) between leads after the forming exceeds the predetermined pitch (P).
  • the conductor according to [1] to [6] may include a bus bar.
  • FIG. 1 is a perspective view showing a current detection device according to an embodiment of the present invention.
  • FIG. 2 is a plan view showing the current detection device viewed from the direction A in FIG.
  • FIG. 3A is a front view showing the SIP type magnetic sensing element in a state where it is formed with three leads.
  • FIG. 3B is a right side view seen from the direction C in FIG. 3A.
  • 3C is a plan view seen from the direction D in FIG. 3B.
  • FIG. 4A is a front view showing a SIP type magnetic sensing element having four leads.
  • FIG. 4B is a front view showing the SIP-type magnetic detection element in a formed state.
  • Figure 5A is a front view showing between the lead or lead and flux B is the interlinked area S 1 in SIP type magnetic sensor in a state of being forming includes three leads.
  • Figure 5B is a front view showing a is interlinked area S 2 between the leads or leads and the magnetic flux B in the SIP type magnetic sensor in a state of being forming includes four leads.
  • FIG. 6 is a relationship diagram illustrating the relationship between area ⁇ magnetic flux and transient characteristic noise peak value.
  • FIG. 7 is a waveform diagram showing the correspondence between the input current and the output voltage of the magnetic detection element that detects the magnetic flux generated by this input current.
  • FIG. 1 is a perspective view showing a current detection device according to an embodiment of the present invention.
  • FIG. 2 is a plan view showing the current detection device viewed from the direction A in FIG.
  • the current detection device 1 has a substrate 20 disposed in the vicinity of a conductor 10 that generates a magnetic flux around it when a current flows, and a plurality of leads arranged at a predetermined pitch P. , And a SIP type magnetic detection element 30 mounted with the leads (31a, 31b, 31c) being inserted into the lead holes (21a, 21b, 21c) of the substrate 20, and the leads of the magnetic detection element 30 are
  • the predetermined pitch P is formed without being expanded in the arrangement direction and is inserted and mounted on the substrate 20.
  • the predetermined pitch P is an IC lead pitch P in which SIP type ICs are arranged before forming.
  • the conductor 10 is, for example, a bus bar, and generates a magnetic flux around when a current flows.
  • the substrate 20 is a printed wiring board (PCB) such as epoxy or glass epoxy.
  • the substrate 20 is formed with necessary wiring patterns on the front surface and the back surface, and lead holes for inserting leads of electronic components such as the magnetic detection element 30 and fixing them by soldering.
  • the lead holes are formed as through holes that electrically connect the wiring patterns on the front and back surfaces, the lead holes are formed at arbitrary intervals.
  • the lead holes into which the leads of SIP-type electronic components are inserted Are formed at a predetermined pitch.
  • the predetermined pitch P is often set to an interval of 2.54 mm (nominal value) as the lead interval of the SIP type electronic component. Therefore, when the lead of the electronic component is used without forming, the lead hole pitch formed in the substrate 20 is formed at an interval of 2.54 mm.
  • the magnetic detection element 30 has a magnetoelectric conversion part (magnetic sensor chip), a signal amplification part, a lead frame, etc. inside, is molded with resin or ceramic, and is packaged.
  • the integrated leads are exposed outside the package.
  • it is a SIP (Single Inline Package) type magnetic detection element in which a plurality of leads exposed outside the package are arranged in a line at a predetermined pitch.
  • the plurality of leads are set, for example, at a predetermined pitch P and an interval of 2.54 mm (nominal value).
  • a Hall element that outputs an output value based on the magnetic flux density
  • a magnetoresistive element that outputs an output value based on a change in the direction of the magnetic flux density, or the like is used.
  • a Hall element is used.
  • the conductor 10 generates a magnetic flux (magnetic flux density) B around the conductor 10 in accordance with Ampere's right-handed screw law. Note that the magnetic flux is generated concentrically around the conductor 10, but in the figure, one magnetic flux is shown as a representative.
  • the current detection device 1 measures the current I flowing through the conductor 10 by detecting the magnetic flux (magnetic flux density) B of this magnetic field.
  • the magnetic detection element 30 is arranged so as to intersect with the magnetic flux (magnetic flux density) B in a state where the leads 31a, 31b, 31c are inserted and mounted on the substrate 20. Therefore, in the current detection device 1, the magnetoelectric conversion unit inside outputs a detection value proportional to the magnetic flux (magnetic flux density) B, and the area where the magnetic flux is linked with the leads 31 a, 31 b, 31 c or between the leads and Depending on the value of magnetic flux (magnetic flux density) B, it is affected by noise generated by current I.
  • FIG. 3A is a front view showing the SIP-type magnetic sensing element formed with three leads
  • FIG. 3B is a right side view as seen from the direction C in FIG. 3A
  • FIG. 3C is from the direction D in FIG. 3B.
  • the magnetic detection element 30 three leads (31a, 31b, 31c) are arranged in a line and the pitch between the leads is a constant value P.
  • the middle lead 31b is not expanded in the arrangement direction, but is bent and formed in a direction substantially orthogonal to the arrangement direction. Thereby, the leading end side of the lead can be formed corresponding to the lead holes 21 a, 21 b, 21 c of the substrate 20.
  • the lead interval is expanded to L by forming the middle lead 31b in a direction substantially orthogonal to the arrangement direction.
  • the formed lead interval L > predetermined pitch P.
  • FIG. 4A is a front view showing a SIP type magnetic detection element having four leads
  • FIG. 4B is a front view showing the SIP type magnetic detection element in a formed state.
  • the lead 35c is, for example, a test pin, and when three leads 35a, 35b, and 35d are mounted and used on the substrate, the tip side of the lead 35c is cut off, and the lead 35b
  • the distal end side 35e is bent in the shape of a crank toward the lead 35c and is formed. Thereby, the leading end side of the lead can be formed corresponding to the lead holes 22a, 22b, 22d of the substrate 20.
  • forming is performed by bending the leading end side of the leads in the arrangement direction without expanding the predetermined pitch P of the leads in the arrangement direction.
  • the interval between the lead 35a and the lead 35b is P
  • the interval between the lead 35b and the lead 35d is L.
  • the formed lead interval L > predetermined pitch P.
  • 3P> 2L the area where the magnetic flux links does not increase.
  • FIG. 5A is a front view showing the inter-lead or lead and flux B is interlinked area S 1 in SIP type magnetic sensor in a state of being forming includes three leads, Figure 5B is provided with four lead between the leads or lead in SIP magnetic sensing element forming state and the magnetic flux B is a front view showing an interlinkage area S 2.
  • the SIP type magnetic sensing element 30 having the three leads in the formed state shown in FIG. 3A is inserted into the lead holes 21a, 21b, 21c of the substrate 20. It is fixed with solder 40.
  • the hatched area in FIG. 5A is an area S 1 where the magnetic flux B interlinks with the leads or between the leads. Forming is not spread a certain pitch in the arrangement direction, since the forming in a direction substantially orthogonal to the array direction, interlinked area S 1 is the same as when not forming. That is, since the area where the magnetic flux intersects with the leads or between the leads does not increase, the noise performance does not deteriorate.
  • the SIP type magnetic sensing element 35 having four leads in the formed state shown in FIG. 4B is inserted into the lead holes 22a, 22b, 22d of the substrate 20. And fixed with solder 40.
  • a region indicated by hatching in FIG. 5B, between the lead or leads and the magnetic flux B is interlinked area S 2.
  • Forming is not spread a certain pitch in the arrangement direction, since by bending the front end side of the lead 35b to the lead 35c side are forming, it interlinks area S 2 is the same as when not forming. That is, since the area where the magnetic flux intersects with the leads or between the leads does not increase, the noise performance does not deteriorate.
  • FIG. 6 is a relationship diagram illustrating the relationship between area ⁇ magnetic flux and transient characteristic noise peak value.
  • FIG. 7 is a waveform diagram showing the correspondence between the input current and the output voltage of the magnetic detection element that detects the magnetic flux generated by this input current.
  • the interlinked area ⁇ magnetic flux (magnetic flux density) and the transient characteristic noise peak value are in a substantially proportional relationship.
  • the interlinked area ⁇ magnetic flux and the transient characteristic noise peak value are both normalized with a certain value of 1.
  • five types of interlinked areas ⁇ magnetic fluxes are obtained, and the noise peak values in the transient characteristics are measured and plotted for each.
  • the lead or the area where the magnetic flux B interlinks between the leads and the noise peak value in the transient characteristics are proportional. Therefore, as in this embodiment, if the forming does not spread the leads in the arrangement direction, the noise performance is not deteriorated.
  • FIG. 7 shows a current waveform when a current of 100 A rises within ⁇ t (1 ⁇ s) and an output voltage of the current detection device 1 that detects this current as a voltage change based on a change in the magnetic field.
  • the noise performance in the transient characteristic is represented by ⁇ Vh / Vh by dI / dt.
  • the magnetic flux (magnetic flux density) shown in FIG. 6 is proportional to ⁇ Vh / Vh by dI / dt. Since this magnetic flux (magnetic flux density) depends on the object to be measured, it is necessary not to increase the interlinking area in order not to reduce the noise performance due to dI / dt as the current detection device 1.
  • the current detection device 1 according to the embodiment of the present invention has the following effects.
  • the current detection device 1 according to the present embodiment performs lead forming without expanding the predetermined pitch P of the SIP type IC (SIP type magnetic detection element) in the arrangement direction. Thereby, the area where the magnetic flux based on the lead or between the leads and the current flowing through the conductor 10 is linked does not increase, and the noise performance does not deteriorate.
  • the leads are bent in a direction substantially orthogonal to the arrangement direction, without forming the leads in the arrangement direction.
  • the lead interval can be expanded without increasing the area where the magnetic flux links, and short-circuit defects in the soldering operation can be reduced.
  • the predetermined pitch P of the SIP type IC is, for example, 2.54 mm (1/10 inch).
  • the present invention can be applied to a drive motor used in a hybrid vehicle or an electric vehicle and a current detection device having a magnetic detection element for detecting a current flowing in a battery.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

Provided is an electrical current detection apparatus with both improved noise performance and solderability, the electrical current detection apparatus comprising a substrate 20 disposed in the vicinity of a conductor 10 that generates a peripheral magnetic flux through the flow of an electrical current, and an SIP-type magnetic detection element 30 comprising a plurality of leads arranged at a predetermined pitch P, the leads (31a, 31b, 31c) being mounted by being inserted into lead apertures (21a, 21b, 21c) of the substrate 20. The leads of the magnetic detection element 30 are formed without widening the predetermined pitch P in the arrangement direction, and are inserted into the substrate 20.

Description

電流検出装置Current detector
本発明は、電流検出装置に関し、特に、磁気検出素子を備えて電流検出を行なう電流検出装置に関する。 The present invention relates to a current detection device, and more particularly to a current detection device that includes a magnetic detection element and performs current detection.
電流測定を行なう導体の付近に配置されて、その導体に流れる電流により発生する磁束を検出することにより、導体に流れる電流を測定する電流センサがある。このような電流センサは、ギャップを有するコアと、このコアのギャップ内に配置される磁電変換素子とをケース内の部品収容室に収容し、部品収容室内をモールド剤で充填して構成されている(例えば、特許文献1参照)。磁電変換素子であるホールICは、そのリードが基板のリード穴に挿入されて、基板の裏面ではんだ付けされて実装されている。 There is a current sensor that is disposed in the vicinity of a conductor that performs current measurement and measures a current flowing through the conductor by detecting a magnetic flux generated by the current flowing through the conductor. Such a current sensor is configured by storing a core having a gap and a magnetoelectric conversion element arranged in the gap of the core in a component storage chamber in the case, and filling the component storage chamber with a molding agent. (For example, refer to Patent Document 1). The Hall IC, which is a magnetoelectric conversion element, is mounted with its leads inserted into the lead holes of the substrate and soldered on the back surface of the substrate.
ICのリードピッチは狭ピッチ化する一方で、はんだ接続におけるショート不良を低減するため、適切にピン間ピッチをとる必要がある。しかし、ピン間ピッチを確保するためにリードフレームを広げると、磁束が交差する面積が増え、電流検出装置のノイズ性能が低下するという問題があった。 While the lead pitch of the IC is narrowed, it is necessary to provide an appropriate pin-to-pin pitch in order to reduce short-circuit defects in solder connection. However, if the lead frame is widened to ensure the pin-to-pin pitch, there is a problem that the area where the magnetic flux intersects increases and the noise performance of the current detection device decreases.
特開2006-78255号公報JP 2006-78255 A
本発明の目的は、ノイズ性能及びはんだ付け性を同時に向上させた電流検出装置を提供することにある。 An object of the present invention is to provide a current detection device that simultaneously improves noise performance and solderability.
[1]本発明の一実施形態による電流検出装置は、電流が流れることにより周囲に磁束を発生させる導体の付近に配置された基板と、所定ピッチで配列された複数のリードを有し、前記リードが前記基板に挿入されて実装されるSIP型の磁気検出素子と、を有し、前記磁気検出素子の前記リードは、前記所定ピッチを前記配列方向に広げずにフォーミングされて前記基板に挿入実装されている。 [1] A current detection device according to an embodiment of the present invention includes a substrate disposed in the vicinity of a conductor that generates a magnetic flux around when a current flows, and a plurality of leads arranged at a predetermined pitch, And a SIP type magnetic detection element mounted with the lead inserted into the substrate, and the lead of the magnetic detection element is formed without expanding the predetermined pitch in the arrangement direction and inserted into the substrate. Has been implemented.
[2][1]に記載の前記磁気検出素子は、前記リードが前記配列方向と交差する方向にフォーミングされていてもよい。 [2] In the magnetic detection element according to [1], the leads may be formed in a direction intersecting the arrangement direction.
[3][1]に記載の前記磁気検出素子は、前記リードの先端側が前記基板のリード穴に対応してフォーミングされていてもよい。 [3] In the magnetic detection element according to [1], the leading end side of the lead may be formed corresponding to the lead hole of the substrate.
[4][1]~[3]に記載の前記磁気検出素子は、前記リード又は前記リード間と前記磁束が鎖交する面積が増加しないようにフォーミングされて実装されていてもよい。
[5][1]~[4]に記載の前記磁気検出素子は、前記導体の延伸方向が前記リードの前記配列方向と直交するように配置されてもよい。
[6][1]~[5]に記載の前記フォーミングは、前記フォーミング後のリード間ピッチ(L)が前記所定ピッチ(P)を上回るように行われてもよい。
[7][1]~[6]に記載の前記導体は、バスバーを含んでもよい。
[4] The magnetic detection element according to [1] to [3] may be formed and mounted so that an area where the magnetic flux interlinks with the leads or between the leads does not increase.
[5] The magnetic detection elements according to [1] to [4] may be arranged so that an extending direction of the conductor is orthogonal to the arrangement direction of the leads.
[6] The forming described in [1] to [5] may be performed so that a pitch (L) between leads after the forming exceeds the predetermined pitch (P).
[7] The conductor according to [1] to [6] may include a bus bar.
本発明の一実施形態によると、ノイズ性能及びはんだ付け性を同時に向上させた電流検出装置を提供することができる。 According to an embodiment of the present invention, it is possible to provide a current detection device that simultaneously improves noise performance and solderability.
図1は、本願発明の実施の形態に係る電流検出装置を示す斜視図である。FIG. 1 is a perspective view showing a current detection device according to an embodiment of the present invention. 図2は、図1のA方向から見た電流検出装置を示す平面図である。FIG. 2 is a plan view showing the current detection device viewed from the direction A in FIG. 図3Aは、3本リードを備えフォーミングされた状態のSIP型磁気検出素子を示す正面図である。FIG. 3A is a front view showing the SIP type magnetic sensing element in a state where it is formed with three leads. 図3Bは、図3AのC方向から見た右側面図である。FIG. 3B is a right side view seen from the direction C in FIG. 3A. 図3Cは、図3BのD方向から見た平面図である。3C is a plan view seen from the direction D in FIG. 3B. 図4Aは、4本リードを備えたSIP型磁気検出素子を示す正面図である。FIG. 4A is a front view showing a SIP type magnetic sensing element having four leads. 図4Bは、フォーミングされた状態のSIP型磁気検出素子を示す正面図である。FIG. 4B is a front view showing the SIP-type magnetic detection element in a formed state. 図5Aは、3本リードを備えフォーミングされた状態のSIP型磁気検出素子においてリード又はリード間と磁束Bが鎖交する面積Sを示す正面図である。Figure 5A is a front view showing between the lead or lead and flux B is the interlinked area S 1 in SIP type magnetic sensor in a state of being forming includes three leads. 図5Bは、4本リードを備えフォーミングされた状態のSIP型磁気検出素子においてリード又はリード間と磁束Bが鎖交する面積Sを示す正面図である。Figure 5B is a front view showing a is interlinked area S 2 between the leads or leads and the magnetic flux B in the SIP type magnetic sensor in a state of being forming includes four leads. 図6は、面積×磁束と過渡特性ノイズピーク値との関係を示す関係図である。FIG. 6 is a relationship diagram illustrating the relationship between area × magnetic flux and transient characteristic noise peak value. 図7は、入力電流と、この入力電流により発生する磁束を検出した磁気検出素子の出力電圧との対応関係を示す波形図である。FIG. 7 is a waveform diagram showing the correspondence between the input current and the output voltage of the magnetic detection element that detects the magnetic flux generated by this input current.
[本発明の実施の形態]
(電流検出装置の構成)
図1は、本願発明の実施の形態に係る電流検出装置を示す斜視図である。図2は、図1のA方向から見た電流検出装置を示す平面図である。
[Embodiments of the present invention]
(Configuration of current detection device)
FIG. 1 is a perspective view showing a current detection device according to an embodiment of the present invention. FIG. 2 is a plan view showing the current detection device viewed from the direction A in FIG.
本発明の実施の形態に係る電流検出装置1は、電流が流れることにより周囲に磁束を発生させる導体10の付近に配置された基板20と、所定ピッチPで配列された複数のリードを有し、リード(31a、31b、31c)が基板20のリード穴(21a、21b、21c)に挿入されて実装されるSIP型の磁気検出素子30と、を有し、磁気検出素子30のリードは、所定ピッチPを配列方向に広げずにフォーミングされて基板20に挿入実装されて構成される。ここで、所定ピッチPとは、SIP型ICがフォーミング前に配列されていたICリードピッチPである。 The current detection device 1 according to the embodiment of the present invention has a substrate 20 disposed in the vicinity of a conductor 10 that generates a magnetic flux around it when a current flows, and a plurality of leads arranged at a predetermined pitch P. , And a SIP type magnetic detection element 30 mounted with the leads (31a, 31b, 31c) being inserted into the lead holes (21a, 21b, 21c) of the substrate 20, and the leads of the magnetic detection element 30 are The predetermined pitch P is formed without being expanded in the arrangement direction and is inserted and mounted on the substrate 20. Here, the predetermined pitch P is an IC lead pitch P in which SIP type ICs are arranged before forming.
導体10は、例えば、バスバーであって、電流が流れることにより周囲に磁束を発生させるものである。 The conductor 10 is, for example, a bus bar, and generates a magnetic flux around when a current flows.
基板20は、エポキシ、ガラスエポキシ等のプリント配線基板(PCB)である。基板20には、表面及び裏面に必要な配線パターンが形成され、また、磁気検出素子30等の電子部品等のリードを挿入してハンダ付けにより固定するためのリード穴が形成されている。このリード穴は、表面及び裏面の配線パターンを電気的に接続するスルーホールとして形成される場合は、任意の間隔で形成されるが、SIP型の電子部品のリードが挿入されるリード穴としては、所定ピッチで形成されている。通常は、SIP型の電子部品のリード間隔として所定ピッチPが、2.54mm(公称値)の間隔に設定されている場合が多い。したがって、電子部品のリードがフォーミングなしで使用される場合は、基板20に形成されるリード穴ピッチは、2.54mmの間隔で形成されることになる。 The substrate 20 is a printed wiring board (PCB) such as epoxy or glass epoxy. The substrate 20 is formed with necessary wiring patterns on the front surface and the back surface, and lead holes for inserting leads of electronic components such as the magnetic detection element 30 and fixing them by soldering. When the lead holes are formed as through holes that electrically connect the wiring patterns on the front and back surfaces, the lead holes are formed at arbitrary intervals. However, as lead holes into which the leads of SIP-type electronic components are inserted, Are formed at a predetermined pitch. Usually, the predetermined pitch P is often set to an interval of 2.54 mm (nominal value) as the lead interval of the SIP type electronic component. Therefore, when the lead of the electronic component is used without forming, the lead hole pitch formed in the substrate 20 is formed at an interval of 2.54 mm.
磁気検出素子30は、内部に磁気電気変換部(磁気センサチップ)、信号増幅部、及びリードフレーム等を有して樹脂あるいはセラミック等でモールドされてパッケージ化されたものであり、基板等に挿入されるリードをパッケージの外に露出した状態で一体化されている。本実施の形態では、パッケージの外に露出した複数のリードが所定ピッチで一列に配置されたSIP(Single Inline Package)型の磁気検出素子である。この複数のリードは、例えば所定ピッチP、2.54mm(公称値)の間隔に設定されている。なお、磁気電気変換部としては、磁束密度に基づいて出力値を出力するホール素子、また、磁束密度の方向の変化に基づいて出力値を出力する磁気抵抗素子(MR素子)等を使用することができる。本実施の形態では、ホール素子を使用する。 The magnetic detection element 30 has a magnetoelectric conversion part (magnetic sensor chip), a signal amplification part, a lead frame, etc. inside, is molded with resin or ceramic, and is packaged. The integrated leads are exposed outside the package. In the present embodiment, it is a SIP (Single Inline Package) type magnetic detection element in which a plurality of leads exposed outside the package are arranged in a line at a predetermined pitch. The plurality of leads are set, for example, at a predetermined pitch P and an interval of 2.54 mm (nominal value). As the magnetoelectric conversion unit, a Hall element that outputs an output value based on the magnetic flux density, a magnetoresistive element (MR element) that outputs an output value based on a change in the direction of the magnetic flux density, or the like is used. Can do. In the present embodiment, a Hall element is used.
(電流検出装置の配置)
図1、2に示されるように、導体10は、流れる電流Iにより、導体10の回りにアンペールの右ねじの法則に従って磁束(磁束密度)Bを発生させる。なお、磁束は導体10の周囲に同心円状に発生するが、図では代表して1本の磁束を図示している。
(Arrangement of current detection device)
As shown in FIGS. 1 and 2, the conductor 10 generates a magnetic flux (magnetic flux density) B around the conductor 10 in accordance with Ampere's right-handed screw law. Note that the magnetic flux is generated concentrically around the conductor 10, but in the figure, one magnetic flux is shown as a representative.
電流検出装置1は、この磁界の磁束(磁束密度)Bを検出することにより導体10に流れる電流Iを測定する。磁気検出素子30は、基板20にリード31a、31b、31cが挿入されて実装された状態で、磁束(磁束密度)Bと交差するように配置されている。したがって、電流検出装置1は、内部にある磁気電気変換部が磁束(磁束密度)Bに比例した検出値を出力する、また、リード31a、31b、31c又はリード間と磁束が鎖交する面積及び磁束(磁束密度)Bの値に応じて、電流Iにより発生するノイズの影響を受けることになる。 The current detection device 1 measures the current I flowing through the conductor 10 by detecting the magnetic flux (magnetic flux density) B of this magnetic field. The magnetic detection element 30 is arranged so as to intersect with the magnetic flux (magnetic flux density) B in a state where the leads 31a, 31b, 31c are inserted and mounted on the substrate 20. Therefore, in the current detection device 1, the magnetoelectric conversion unit inside outputs a detection value proportional to the magnetic flux (magnetic flux density) B, and the area where the magnetic flux is linked with the leads 31 a, 31 b, 31 c or between the leads and Depending on the value of magnetic flux (magnetic flux density) B, it is affected by noise generated by current I.
(リードフォーミング)
図3Aは、3本リードを備えフォーミングされた状態のSIP型磁気検出素子を示す正面図、図3Bは、図3AのC方向から見た右側面図、図3Cは、図3BのD方向から見た平面図である。
(Lead forming)
3A is a front view showing the SIP-type magnetic sensing element formed with three leads, FIG. 3B is a right side view as seen from the direction C in FIG. 3A, and FIG. 3C is from the direction D in FIG. 3B. FIG.
磁気検出素子30は、各リード(31a、31b、31c)が一列に、各リード間のピッチが一定値Pとして3本配列されている。図3Bに示されるように、真ん中のリード31bを配列方向には広げずに、配列方向と略直交する方向に屈曲させてフォーミングしている。これにより、リードの先端側を基板20のリード穴21a、21b、21cに対応してフォーミングすることができる。 In the magnetic detection element 30, three leads (31a, 31b, 31c) are arranged in a line and the pitch between the leads is a constant value P. As shown in FIG. 3B, the middle lead 31b is not expanded in the arrangement direction, but is bent and formed in a direction substantially orthogonal to the arrangement direction. Thereby, the leading end side of the lead can be formed corresponding to the lead holes 21 a, 21 b, 21 c of the substrate 20.
図3Cに示されるように、真ん中のリード31bを配列方向と略直交する方向にフォーミングさせることで、リード間隔はLに拡大される。フォーミングされたリード間隔L>所定ピッチPである。これによりリード間隔が拡大することから、はんだ付け作業におけるショート不良が低減できる。 As shown in FIG. 3C, the lead interval is expanded to L by forming the middle lead 31b in a direction substantially orthogonal to the arrangement direction. The formed lead interval L> predetermined pitch P. As a result, the lead interval increases, so that short-circuit defects in the soldering operation can be reduced.
図4Aは、4本リードを備えたSIP型磁気検出素子を示す正面図、図4Bは、フォーミングされた状態のSIP型磁気検出素子を示す正面図である。 FIG. 4A is a front view showing a SIP type magnetic detection element having four leads, and FIG. 4B is a front view showing the SIP type magnetic detection element in a formed state.
磁気検出素子35は、各リードが一列に、各リード間のピッチが一定値Pとして4本配列されている。図4Aにおいて、リード35cは例えばテスト用ピンであって、基板に実装されて使用されるのがリード35a、35b、35dの3本である場合、リード35cの先端側を切除し、リード35bの先端側35eをリード35c側にクランク状に屈曲させてフォーミングしている。これにより、リードの先端側を基板20のリード穴22a、22b、22dに対応してフォーミングすることができる。 In the magnetic detection element 35, four leads are arranged in a row and the pitch between the leads is a constant value P. In FIG. 4A, the lead 35c is, for example, a test pin, and when three leads 35a, 35b, and 35d are mounted and used on the substrate, the tip side of the lead 35c is cut off, and the lead 35b The distal end side 35e is bent in the shape of a crank toward the lead 35c and is formed. Thereby, the leading end side of the lead can be formed corresponding to the lead holes 22a, 22b, 22d of the substrate 20.
図4Bに示されるように、リードの所定ピッチPを配列方向に広げずに、リードの先端側を配列方向に屈曲させてフォーミングしている。このフォーミングされた状態では、リード35aとリード35bの間隔はP、リード35bとリード35dの間隔はLである。フォーミングされたリード間隔L>所定ピッチPである。ここで、3P>2Lであれば、磁束が鎖交する面積は増加しない。 As shown in FIG. 4B, forming is performed by bending the leading end side of the leads in the arrangement direction without expanding the predetermined pitch P of the leads in the arrangement direction. In this formed state, the interval between the lead 35a and the lead 35b is P, and the interval between the lead 35b and the lead 35d is L. The formed lead interval L> predetermined pitch P. Here, if 3P> 2L, the area where the magnetic flux links does not increase.
図5Aは、3本リードを備えフォーミングされた状態のSIP型磁気検出素子においてリード又はリード間と磁束Bが鎖交する面積Sを示す正面図であり、図5Bは、4本リードを備えフォーミングされた状態のSIP型磁気検出素子においてリード又はリード間と磁束Bが鎖交する面積Sを示す正面図である。 5A is a front view showing the inter-lead or lead and flux B is interlinked area S 1 in SIP type magnetic sensor in a state of being forming includes three leads, Figure 5B is provided with four lead between the leads or lead in SIP magnetic sensing element forming state and the magnetic flux B is a front view showing an interlinkage area S 2.
図5Aに示されるように、図3Aで示されたフォーミングされた状態の3本リードを備えたSIP型磁気検出素子30が、各リードが基板20のリード穴21a、21b、21cに挿入されてはんだ40で固定されている。図1、2で示された磁束Bと鎖交する位置に配置された場合、図5Aのハッチングで示す領域が、リード又はリード間と磁束Bが鎖交する面積Sとなる。フォーミングは、所定ピッチを配列方向に広げずに、配列方向と略直交する方向にフォーミングしているので、鎖交する面積Sは、フォーミングしない場合と同じである。すなわち、リード又はリード間と磁束が交差する面積が増えないので、ノイズ性能が低下することはない。 As shown in FIG. 5A, the SIP type magnetic sensing element 30 having the three leads in the formed state shown in FIG. 3A is inserted into the lead holes 21a, 21b, 21c of the substrate 20. It is fixed with solder 40. When arranged at a position interlinking with the magnetic flux B shown in FIGS. 1 and 2, the hatched area in FIG. 5A is an area S 1 where the magnetic flux B interlinks with the leads or between the leads. Forming is not spread a certain pitch in the arrangement direction, since the forming in a direction substantially orthogonal to the array direction, interlinked area S 1 is the same as when not forming. That is, since the area where the magnetic flux intersects with the leads or between the leads does not increase, the noise performance does not deteriorate.
また、図5Bに示されるように、図4Bで示されたフォーミングされた状態の4本リードを備えたSIP型磁気検出素子35が、各リードが基板20のリード穴22a、22b、22dに挿入されてはんだ40で固定されている。図1、2で示された磁束Bと鎖交する位置に配置された場合、図5Bのハッチングで示す領域が、リード又はリード間と磁束Bが鎖交する面積Sとなる。フォーミングは、所定ピッチを配列方向に広げずに、リード35bの先端側をリード35c側に屈曲させてフォーミングしているので、鎖交する面積Sは、フォーミングしない場合と同じである。すなわち、リード又はリード間と磁束が交差する面積が増えないので、ノイズ性能が低下することはない。 Further, as shown in FIG. 5B, the SIP type magnetic sensing element 35 having four leads in the formed state shown in FIG. 4B is inserted into the lead holes 22a, 22b, 22d of the substrate 20. And fixed with solder 40. When placed in the indicated flux B and chains interlinked that position in FIGS. 1 and 2, a region indicated by hatching in FIG. 5B, between the lead or leads and the magnetic flux B is interlinked area S 2. Forming is not spread a certain pitch in the arrangement direction, since by bending the front end side of the lead 35b to the lead 35c side are forming, it interlinks area S 2 is the same as when not forming. That is, since the area where the magnetic flux intersects with the leads or between the leads does not increase, the noise performance does not deteriorate.
図6は、面積×磁束と過渡特性ノイズピーク値との関係を示す関係図である。また、図7は、入力電流とこの入力電流により発生する磁束を検出した磁気検出素子の出力電圧との対応関係を示す波形図である。 FIG. 6 is a relationship diagram illustrating the relationship between area × magnetic flux and transient characteristic noise peak value. FIG. 7 is a waveform diagram showing the correspondence between the input current and the output voltage of the magnetic detection element that detects the magnetic flux generated by this input current.
図6に示されるように、鎖交する面積×磁束(磁束密度)と過渡特性ノイズピーク値とは、ほぼ比例関係にある。鎖交する面積×磁束、及び過渡特性ノイズピーク値は、共に、ある値を1として規格化したものである。本実施の形態では、図6に示されるように、鎖交する面積×磁束を5種類とり、それぞれに対して過渡特性におけるノイズピーク値を測定してプロットした結果である。これにより、導体10と磁気検出素子との位置関係が一定であれば、リード又はリード間と磁束Bが鎖交する面積、と過渡特性におけるノイズピーク値とは比例する。したがって、本実施の形態のように、リードを配列方向に広げないフォーミングであればノイズ性能を劣化させることがない。 As shown in FIG. 6, the interlinked area × magnetic flux (magnetic flux density) and the transient characteristic noise peak value are in a substantially proportional relationship. The interlinked area × magnetic flux and the transient characteristic noise peak value are both normalized with a certain value of 1. In the present embodiment, as shown in FIG. 6, five types of interlinked areas × magnetic fluxes are obtained, and the noise peak values in the transient characteristics are measured and plotted for each. As a result, if the positional relationship between the conductor 10 and the magnetic detection element is constant, the lead or the area where the magnetic flux B interlinks between the leads and the noise peak value in the transient characteristics are proportional. Therefore, as in this embodiment, if the forming does not spread the leads in the arrangement direction, the noise performance is not deteriorated.
図7は、Δt(1μs)以内で100Aの電流が立上った場合の電流波形と、この電流を磁界の変化に基づく電圧変化として検出する電流検出装置1の出力電圧を示す。過渡特性におけるノイズ性能は、dI/dtによるΔVh/Vhで示される。 FIG. 7 shows a current waveform when a current of 100 A rises within Δt (1 μs) and an output voltage of the current detection device 1 that detects this current as a voltage change based on a change in the magnetic field. The noise performance in the transient characteristic is represented by ΔVh / Vh by dI / dt.
図6で示された磁束(磁束密度)は、dI/dtによるΔVh/Vhに比例する。この磁束(磁束密度)は測定対象に依存するので、電流検出装置1としてdI/dtによるノイズ性能を低下させないためには、鎖交する面積を増加させないことが必要である。 The magnetic flux (magnetic flux density) shown in FIG. 6 is proportional to ΔVh / Vh by dI / dt. Since this magnetic flux (magnetic flux density) depends on the object to be measured, it is necessary not to increase the interlinking area in order not to reduce the noise performance due to dI / dt as the current detection device 1.
(本発明の実施の形態の効果)
以上から、本発明の実施の形態に係る電流検出装置1は、以下のような効果を有する。
(1)本実施の形態に係る電流検出装置1は、SIP型IC(SIP型磁気検出素子)の所定ピッチPを配列方向に広げずに、リードのフォーミングを行なっている。これにより、リード又はリード間と導体10を流れる電流に基づく磁束が鎖交する面積は増加せず、ノイズ性能が低下することはない。
(2)複数のリードを切除等せずにフォーミングする場合は、リードを配列方向には広げずに、配列方向と略直交する方向に屈曲させてフォーミングする。これにより、磁束が鎖交する面積を増加させずに、リード間隔を拡大することができ、はんだ付け作業におけるショート不良が低減できる。
(3)複数のリードの一部のリードを切除可能な場合は、リードの先端側を切除したリード側に屈曲(例えば、クランク状に屈曲)させてフォーミングする。これにより、磁束が鎖交する面積を増加させずに、リード間隔を拡大することができ、はんだ付け作業におけるショート不良が低減できる。
(4)一般にSIP型IC(SIP型磁気検出素子)の所定ピッチPは、例えば、2.54mm(1/10インチ)とされている。一方、社内基準として、はんだ付け作業におけるショート防止のために、基板のリード穴間隔が規定されている場合がある。このような場合でも、本実施の形態によれば、ショート不良を低減すると共に、ノイズ性能を維持することが可能となる。
(Effect of the embodiment of the present invention)
From the above, the current detection device 1 according to the embodiment of the present invention has the following effects.
(1) The current detection device 1 according to the present embodiment performs lead forming without expanding the predetermined pitch P of the SIP type IC (SIP type magnetic detection element) in the arrangement direction. Thereby, the area where the magnetic flux based on the lead or between the leads and the current flowing through the conductor 10 is linked does not increase, and the noise performance does not deteriorate.
(2) When forming a plurality of leads without excision or the like, the leads are bent in a direction substantially orthogonal to the arrangement direction, without forming the leads in the arrangement direction. As a result, the lead interval can be expanded without increasing the area where the magnetic flux links, and short-circuit defects in the soldering operation can be reduced.
(3) If some of the leads of the plurality of leads can be excised, forming is performed by bending (for example, bending in a crank shape) the lead side of the lead. As a result, the lead interval can be expanded without increasing the area where the magnetic flux links, and short-circuit defects in the soldering operation can be reduced.
(4) Generally, the predetermined pitch P of the SIP type IC (SIP type magnetic detection element) is, for example, 2.54 mm (1/10 inch). On the other hand, as an in-house standard, there is a case where the lead hole interval of the board is defined in order to prevent a short circuit in the soldering operation. Even in such a case, according to the present embodiment, it is possible to reduce short-circuit defects and maintain noise performance.
本発明は、ハイブリッド車や電気自動車で使用される駆動モータ、バッテリーに流れる電流を検出するための磁気検出素子を有する電流検出装置に適用できる。 The present invention can be applied to a drive motor used in a hybrid vehicle or an electric vehicle and a current detection device having a magnetic detection element for detecting a current flowing in a battery.
1 電流検出装置
10 導体
20 基板
30 磁気検出素子
31a、31b、31c リード
35a、35b、35c、35d リード
DESCRIPTION OF SYMBOLS 1 Current detection apparatus 10 Conductor 20 Board | substrate 30 Magnetic detection element 31a, 31b, 31c Lead 35a, 35b, 35c, 35d Lead

Claims (7)

  1. 電流が流れることにより周囲に磁束を発生させる導体の付近に配置された基板と、
    所定ピッチで配列された複数のリードを有し、前記リードが前記基板に挿入されて実装されるSIP型の磁気検出素子と、を有し、
    前記磁気検出素子の前記リードは、前記所定ピッチを前記配列方向に広げずにフォーミングされて前記基板に挿入実装されている電流検出装置。
    A substrate disposed in the vicinity of a conductor that generates a magnetic flux around when current flows;
    A plurality of leads arranged at a predetermined pitch, and a SIP type magnetic sensing element mounted with the leads inserted into the substrate,
    The current detection device, wherein the leads of the magnetic detection element are formed without extending the predetermined pitch in the arrangement direction and are inserted and mounted on the substrate.
  2. 前記磁気検出素子は、前記リードが前記配列方向と交差する方向にフォーミングされている、請求項1に記載の電流検出装置。 The current detection device according to claim 1, wherein the magnetic detection element is formed in a direction in which the leads intersect the arrangement direction.
  3. 前記磁気検出素子は、前記リードの先端側が前記基板のリード穴に対応してフォーミングされている、請求項1に記載の電流検出装置。 The current detection device according to claim 1, wherein the magnetic detection element is formed such that a tip end side of the lead corresponds to a lead hole of the substrate.
  4. 前記磁気検出素子は、前記リード又は前記リード間と前記磁束が鎖交する面積が増加しないようにフォーミングされて実装されている、請求項1~3のいずれか1項に記載の電流検出装置。 The current detection device according to any one of claims 1 to 3, wherein the magnetic detection element is formed and mounted so that an area where the magnetic flux links with the leads or between the leads does not increase.
  5. 前記磁気検出素子は、前記導体の延伸方向が前記リードの前記配列方向と直交するように配置される、請求項1~4のいずれか1項に記載の電流検出装置。 The current detection device according to any one of claims 1 to 4, wherein the magnetic detection element is arranged such that an extending direction of the conductor is orthogonal to the arrangement direction of the leads.
  6. 前記フォーミングは、前記フォーミング後のリード間ピッチ(L)が前記所定ピッチ(P)を上回るように行われる、請求項1~5のいずれか1項に記載の電流検出装置。 The current detection device according to any one of claims 1 to 5, wherein the forming is performed such that a pitch (L) between the leads after the forming exceeds the predetermined pitch (P).
  7. 前記導体は、バスバーを含む、請求項1~6のいずれか1項に記載の電流検出装置。 The current detection device according to any one of claims 1 to 6, wherein the conductor includes a bus bar.
PCT/JP2015/068427 2014-07-29 2015-06-25 Electrical current detection apparatus WO2016017334A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014154152A JP2016031304A (en) 2014-07-29 2014-07-29 Current detection device
JP2014-154152 2014-07-29

Publications (1)

Publication Number Publication Date
WO2016017334A1 true WO2016017334A1 (en) 2016-02-04

Family

ID=55217239

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/068427 WO2016017334A1 (en) 2014-07-29 2015-06-25 Electrical current detection apparatus

Country Status (2)

Country Link
JP (1) JP2016031304A (en)
WO (1) WO2016017334A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6740863B2 (en) 2016-11-04 2020-08-19 アイシン精機株式会社 Electronic parts
JP2019105605A (en) 2017-12-14 2019-06-27 アイシン精機株式会社 Electronic component

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012247197A (en) * 2011-05-25 2012-12-13 Sumitomo Wiring Syst Ltd Current detector and magnetic core
JP2013024851A (en) * 2011-07-21 2013-02-04 Kohshin Electric Corp Current sensor
WO2013065266A1 (en) * 2011-10-31 2013-05-10 旭化成エレクトロニクス株式会社 Magnetic sensor
JP2013205194A (en) * 2012-03-28 2013-10-07 Sumitomo Electric Ind Ltd Current sensor
JP2013250257A (en) * 2012-05-01 2013-12-12 Mitsumi Electric Co Ltd Current sensor
EP2746782A2 (en) * 2012-12-20 2014-06-25 Aisin Seiki Kabushiki Kaisha Current sensor and manufacturing method for the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012247197A (en) * 2011-05-25 2012-12-13 Sumitomo Wiring Syst Ltd Current detector and magnetic core
JP2013024851A (en) * 2011-07-21 2013-02-04 Kohshin Electric Corp Current sensor
WO2013065266A1 (en) * 2011-10-31 2013-05-10 旭化成エレクトロニクス株式会社 Magnetic sensor
JP2013205194A (en) * 2012-03-28 2013-10-07 Sumitomo Electric Ind Ltd Current sensor
JP2013250257A (en) * 2012-05-01 2013-12-12 Mitsumi Electric Co Ltd Current sensor
EP2746782A2 (en) * 2012-12-20 2014-06-25 Aisin Seiki Kabushiki Kaisha Current sensor and manufacturing method for the same

Also Published As

Publication number Publication date
JP2016031304A (en) 2016-03-07

Similar Documents

Publication Publication Date Title
JP5607933B2 (en) High bandwidth open loop current sensor
JP6467696B2 (en) Current measuring device
JP2017015588A (en) Current detection device
JP4403428B2 (en) Printed wiring board
WO2016017334A1 (en) Electrical current detection apparatus
JP5458966B2 (en) Mounting structure of temperature detection element
JP5144577B2 (en) Shunt resistor device
JP6625588B2 (en) Magnetically permeable member and current detection device
JP2007221006A (en) Resistor including resistance element and method of resistance value inspection performed by resistor
US11029339B2 (en) Current measuring apparatus
US10184958B2 (en) Current sensor devices and methods
JP6833101B2 (en) Semiconductor device
US20150192622A1 (en) Shunt Resistance Type Current Sensor
JP6314010B2 (en) Current sensor
KR20090000596U (en) Shunt resistance used for current measuring
JP2005031000A (en) Method of measuring current, and current measuring device
JP2018048840A (en) Current measurement device
JP2016176715A (en) Current detection device
US10454259B2 (en) Circuit assembly and electrical junction box
JP6740863B2 (en) Electronic parts
JP6740864B2 (en) Electronic parts
US20230066238A1 (en) Motor drive device and method for manufacturing same
JP6082604B2 (en) Shunt resistance type current sensor
US20110120751A1 (en) Accurate impedance designing method for circuit layout
US20200233044A1 (en) Current sensor device with a routable molded lead frame

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15826646

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15826646

Country of ref document: EP

Kind code of ref document: A1