WO2016016505A1 - Hybrid material as contrast agent in magnetic resonance images - Google Patents

Hybrid material as contrast agent in magnetic resonance images Download PDF

Info

Publication number
WO2016016505A1
WO2016016505A1 PCT/ES2015/070595 ES2015070595W WO2016016505A1 WO 2016016505 A1 WO2016016505 A1 WO 2016016505A1 ES 2015070595 W ES2015070595 W ES 2015070595W WO 2016016505 A1 WO2016016505 A1 WO 2016016505A1
Authority
WO
WIPO (PCT)
Prior art keywords
contrast agent
agent according
combinations
molecule
silica
Prior art date
Application number
PCT/ES2015/070595
Other languages
Spanish (es)
French (fr)
Inventor
Pablo BOTELLA ASUNCIÓN
Alejandro CABRERA GARCÍA
Original Assignee
Consejo Superior De Investigaciones Científicas (Csic)
Universitat Politècnica De València (Upv)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas (Csic), Universitat Politècnica De València (Upv) filed Critical Consejo Superior De Investigaciones Científicas (Csic)
Publication of WO2016016505A1 publication Critical patent/WO2016016505A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C3/00Cyanogen; Compounds thereof
    • C01C3/08Simple or complex cyanides of metals

Definitions

  • HYBRID MATERIAL AS A CONTRACTING AGENT IN IMAGES OF
  • the present invention is framed within the applications of Prussian blue derivatives (AP) for imaging and diagnosis.
  • AP Prussian blue derivatives
  • the incorporation of an insoluble and biocompatible silica-based shell stabilizes the nanoparticles of the AP derivative and reduces its toxicity in vitro and in vivo, while promoting the accumulation of the magnetically active compound in pathogenic tissues due to the increased permeability and retention effect. and improves the contrast in the magnetic resonance imaging.
  • Magnetic resonance imaging is a widely used non-invasive and non-radioactive clinical diagnostic technique.
  • the intensity of the images obtained by MRI depends on the proton density of the water in the examined tissues, as well as the longitudinal (Ti) and transverse (T 2 ) relaxation times.
  • Ti longitudinal
  • T 2 transverse
  • CA contrast agent
  • It is a compound capable of modifying the values of Ti and T 2 in tissues. Two types of these agents are usually differentiated: those capable of reducing the value of Ti and those capable of lowering T 2 .
  • the contrast agent for MRI can be injected intravenously (/ V) to improve the visualization of tumors, blood vessels and / or inflamed tissues, among others.
  • a contrast agent can be injected directly into a certain organ or tissues, or into a joint, when it is desired to obtain a specific image thereof.
  • Gd 3+ is a potent toxic system to renal, can lead to systemic nephrogenic fibrosis and fibrosing nephrogenic dermopathy, as a result of the release of the cation by the chelate.
  • This toxicity is a consequence of the atomic radius of Gd 3+ (1, 02 A), very similar to that of Ca 2+ (1, 00 A). In this way, the presence of free Gd 3+ in the body causes the alteration of the functions of the calcium channels depending on the voltage of the cell membranes.
  • T 2 contrast agents approved for hospital use in MRI are based on superparamagnetic ferric oxide nanoparticles (SPIONs, 5-500 nm). Although these are materials with high sensitivity, non-toxic and with the ability to enter the cells, from the point of view of clinical diagnosis and cell imaging, the resolution of the images obtained with T 2 agents is lower than those generated by Ti compounds and it is often difficult to distinguish them from hemorrhages, calcifications, metallic deposits and other possible formations in a damaged tissue.
  • SPIONs superparamagnetic ferric oxide nanoparticles
  • both ⁇ and T 2 contrast agents are unstable in the stomach acid medium, which prevents their oral administration.
  • the development of a new contrast agent requires a stable system in physiological medium, with high plasma residence time and capable of accumulating in the tissues and target cells, allowing to improve the contrast in MRI images at low concentration, at The time during which the study is possible is increased.
  • it must be an easy elimination system, mainly by the renal or digestive route, once its mission has been fulfilled, without the intracellular processes to which it can be subjected give rise to toxic metabolites.
  • it would be of great interest that such a contrast agent allows the Ti and T 2 values to be significantly reduced together.
  • AP derivatives doped with a Gd 3+ or other paramagnetic cation have utility as contrast agents ⁇ and T 2 .
  • US patent 2010/0254912 2010; Huang, SD; Li, Y .; Shokouhimehr, M. presents a material based on ultrafine AP nanoparticles doped with Gd 3+ , of generic formula A 4x Fe 4- x '"[Fe" (CN) 6] 3 + x nl-l20, where A it is a cation selected from the group consisting of Li + , Na + , K + , Rb + , Cs + , NH 4 + or ⁇ , Fe '"is substituted by Gd 3+ in a proportion ranging from 1 to 100%, x varies from 0 to 1 and n varies from 1 to 24, and its application as a contrast agent T
  • the partial solubility of the derivatives of the AP in biological medium considerably limits the clinical use of these materials, due to the possible release of ions G
  • composition of said metal core responds to the formula A x M m [M (CN) 6 ] n, where A can correspond to a metal selected from the group consisting of Li, Na, K, Rb, Cs, Fr and TI, M corresponds to a metal selected from the group consisting of V, Cr, Mn, Fe, Co, Ni, Cu, Ga, Zr, Nb, Mo, Ru, Cd, In, Hf, Ta, W, Os or Hg, M 'corresponds to a metal selected from the group consisting of Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Sr, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Cd, In, Lu, Ba, Hf, Ta, W, Os, Pt, Hg, La, Eu, Gd, Tb, Dy and Ho, m varies from 0 to 5, x varies from 0 to 5 and n varies from 0.5 to 10.
  • the biocompatible organic shell comprises one or more biocompatible materials selected from the group consisting of antibodies, dextran, polyethylene glycol, polyvinyl pyrrolidone and citrate.
  • biocompatible materials selected from the group consisting of antibodies, dextran, polyethylene glycol, polyvinyl pyrrolidone and citrate.
  • the nanoparticles of a hybrid material composed of an organ-metallic core derived from the AP and a silica cover have very high ⁇ and r 2 values, while being biocompatible and very stable in physiological medium , being able to incorporate a large number of molecules that give them multifunctional character.
  • the encapsulation of nanoparticles of derivatives of the AP with a silica layer is strongly impeded, because these compounds dissolve virtually instantaneously in the alkaline medium in which silicate polymerization is carried out.
  • the present invention relates to a magnetic resonance contrast (MRI) agent based on a hybrid material that can comprise at least: - An organometric metal core of nanometer size derived from Prussian blue (AP), of generic formula
  • M is Cr, Mn, Fe, Co, Ru, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, or combinations thereof;
  • M ' is Cr, Mn, Fe, Co, Ru or combinations thereof;
  • the silica shell may be a silica shell preferably selected from unstructured and non-porous, which homogeneously coats the core nanoparticles, between unstructured and porous, with pore diameter between 1 and 100 nm, which homogeneously coats the core nanoparticles, between structured and porous, preferably mesoporous, with a pore diameter between 1 and 30 nm, which homogeneously coats the core nanoparticles.
  • the joint presence of an agent ⁇ (eg, Gd 3+ ) and a T 2 agent (eg, Fe 3+ ) in the contrast system of the present invention is beneficial to improve the overall contrast (positive and negative) of the images. of MRI and, therefore, the resolution, especially when the values of relajativity r- ⁇ and r 2 are very high.
  • agent ⁇ eg, Gd 3+
  • T 2 agent eg, Fe 3+
  • the contrast agent of the present invention may have values of longitudinal relaxivity (r- ⁇ ) between 5.0 and 50.0 mM “1 s “ 1 , preferably between 5.0 and 30.0 mM “1 s “ 1 , and transverse relaxivity values (r 2 ) between 10 and 300 mM “1 s “ 1 , preferably between 10 and 200 mM “1 s “ 1 , in a magnetic force field preferably between 0.5 and 1 1.0 T, and more preferably between 1, 2 and 9.4 T.
  • longitudinal relaxivity r- ⁇
  • r 2 transverse relaxivity values
  • the purpose of incorporating the silica shell onto the nanoparticles of the AP derivative is multiple;
  • the inorganic layer stabilizes the nanocrystals of the AP derivative, minimizing or suppressing the dissolution in physiological medium and release of toxic ions, such as Gd 3+ and Fe (CN) 6 3 " .
  • the silica cover prevents phenomena of uncontrolled aggregation of the nanoparticles of the organometallic compound, while preventing phenomena of extravasation, immune reactions and rapid renal elimination.
  • the silica cover has a large number of surface silanole groups on which it can be attached by covalent bond many molecules that provide multifunctionality to the hybrid material, in any case, the encapsulation of the nanopar AP derivative with a silica cover does not imply any structural and / or functional alteration of the contrast agent, as shown in Figure 1.
  • the presence of the silica surface layer is evidenced by a wide band in the infrared spectrum at 1080 cm "1 , which is not seen in the uncoated material, (see Figure 2).
  • the particles of said contrast agent may have different shapes.
  • its particles may have the shape selected between spherical, rod, blade or star and combinations thereof.
  • the particles are in the form of a blade or star.
  • the particles of the contrast agent may have an average diameter between 10 and 3000 nm, preferably between 20 and 1000 nm.
  • the silica cover of the contrast agent may have a thickness between 1 and 100 nm, preferably between 5 and 50 nm.
  • the silica cover of the contrast agent can be functionalized with a molecule, that is, the silica cover of the contrast agent can further comprise a molecule selected from a poly (ethylene glycol) (PEG) , a fluorescent agent, a radionuclide, a directing molecule and combinations thereof.
  • PEG poly (ethylene glycol)
  • this molecule increases the solubility and stability of the material in aqueous medium, allowing the preparation of stable colloids while reducing the interactions of the nanoparticles with plasma components. blood, increasing plasma residence time, reducing or eliminating the immune response, reducing toxicity and increasing efficacy, and promoting accumulation in specific tissues and / or cells.
  • the molecular weight of the PEG molecule can range from 200 to 20,000 Da and its concentration can range from 1 to 30% by weight.
  • the contrast agent is functionalized with a covalently bound fluorescent agent.
  • the fluorescent agent molecule allows the study of the biodistribution of the contrast agent.
  • the fluorescent agent may be selected from 5-amino fluorescein, fluorescein isothiocyanate, NHS-fluorescein, rhodamine B isothiocyanate, tetramethylrodamine B isothiocyanate, NHS-Cy5 and / or NHS-Cy5.5 or a derivative thereof incorporating a organic ligand that facilitates covalent bonding with the inorganic shell, as well as combinations thereof.
  • the concentration of the fluorescent agent may range from 0.01 to 5% by weight.
  • the silica cover of the contrast agent may incorporate a radionuclide, preferably an 18 F radionuclide as a functionalizing molecule.
  • the radioactive isotope allows the study of the biodistribution and pharmacokinetics of the pharmaceutical preparation using the positron emission tomography (PET) technique.
  • PET positron emission tomography
  • the concentration of the 18 F radionucle can range from 0.0001 to 1% by weight.
  • the silica coating of the contrast agent may incorporate a directing molecule, the directing molecule being understood as any molecule that favors endocytosis internalization in the target cells.
  • the directing molecule may be selected from a synthetic, semi-synthetic, natural molecule and combinations thereof.
  • the targeting molecule according to the present invention may be selected from proteins, carbohydrates, lipids, nucleic acids, hormones and hormonal analogs, vitamins, enzymatic co-factors and metabolites of protein synthesis, a derivative thereof that incorporates an organic ligand that facilitates the covalent attachment to the inorganic shell and combinations thereof.
  • the present invention also relates to a method of preparing the contrast agent defined above.
  • This method may comprise, at least, contacting an aqueous suspension of nanoparticles of the Prussian blue derivative (AP) with a solution of at least one silicon compound preferably selected from a silicon alkoxide, an alkylsilane, sodium silicate and colloidal silica and combinations thereof, in the presence of at least one amine preferentially selected from primary, secondary, tertiary amine and combinations thereof and its molecular weight is less than 1000 Da, preferably maintaining the pH between 7 and 8 , and shaking to allow the growth of the inorganic wall that surrounds the organ-metallic core.
  • Said method may further comprise a step of washing and lyophilization of the hybrid material obtained.
  • the formation of the inorganic shell can be carried out in the presence of an organic surfactant, which can be added to the mixture, and which will subsequently be removed, preferably by extraction with alcohols.
  • This organic surfactant may preferably be a cationic, anionic or neutral compound, with a surfactant ratio: Si0 2 preferably between 0.005 and 0.65 molar, more preferably between 0.01 and 0.5 molar.
  • said surfactant can be removed after obtaining the particles of the hybrid material, by refluxing with short chain alcohols.
  • the method of preparing the contrast agent may further comprise the use of an organic co-solvent, adding this to the mixture, with a preferred co-solvent ratio: water in volume between 1: 1 and 10: 1, more preferably between 2: 1 and 4: 1.
  • said solvent may preferably be an aliphatic chain alcohol with a carbon number between 1 and 6.
  • the present invention also relates to the use of the contrast agent defined above and obtained by the method described above for magnetic resonance imaging (MRI), specifically to improve the resolution of MRI images, said use comprising administration to humans and animals either orally, parenterally, respiratoryly or transdermally in sufficient concentration to achieve non-selectively pathological tissues.
  • MRI magnetic resonance imaging
  • the contrast agent defined above can be administered to the host by direct injection into the injured area, accumulating in the interstitial tissue.
  • the contrast agent described in the present invention can be used with a magnetic field of varying force between 0.5 and 1.0 T, preferably between 1.2 and 9.4 T.
  • the dose of the contrast agent of the present invention will depend on the host, tissue and / or cells under study and the route of administration. In general, the dose varies between 0.001 and 0.1 mmol / Kg.
  • the blood half-life of the contrast agent of the present invention is sufficient to be able to obtain MRI images in the different hosts, said half-life being in the range of 0.5 to 6 h, preferably between 1 and 6 h.
  • the word "comprises” and its variants are not intended to exclude other technical characteristics, additives, components or steps.
  • other objects, advantages and features of the invention will be derived partly from the description and partly from the practice of the invention.
  • FIGURES Figure 1 shows the X-ray diffractograms of the Gd [Fe (CN) 6] material prepared according to Example 1 (A) and Example 3 (C), and of the contrast agent of the present invention prepared according to Example 2 (B) and Example 4 (D).
  • Figure 2 shows the infrared spectra of the Gd [Fe (CN) 6] material prepared according to Example 1 (A) and the y of the contrast agent of the present invention prepared according to Example 2 (B).
  • Figure 3 is a schematic illustration of the nanoparticle preparation process of the contrast agent of the present invention.
  • Figure 4 shows nanoparticle transmission electron microscopy images of the contrast agent of the present invention prepared according to Example 2, showing the general morphology (A) and the silica coating deposited on the surface of the Gd material [Fe (CN) 6 ] (B).
  • Figure 5 shows the evolution of the longitudinal (1 / ⁇ ) and transverse (1 / T 2 ) relaxation velocity with respect to the concentration of the contrast agent of the present invention prepared according to Example 2, as well as the calculated values of longitudinal relaxivity (n) and transverse (r 2 ).
  • Figure 6 shows the evolution of the longitudinal (1 / ⁇ ) and transverse (1 / T 2 ) relaxation velocity with respect to the concentration of the contrast agent of the present invention prepared according to Example 4, as well as the calculated values of longitudinal relaxivity (n) and transverse (r 2 ).
  • the present invention is illustrated by the following examples that are not intended to be limiting thereof.
  • EXAMPLE 1 Preparation of nanoparticles of the Gd [Fe (CN) 6 ] material of average diameter between 100 and 400 nm (modified from J. Phys. Chem. C 2009, 113, 21531-21537; Yamada, M; Yonekura, S .) - In a 500 ml balloon connected to the N 2 line, 3.30 g (10 mmol) of K 3 [Fe (CN) 6 ] and 6.30 g (30 mmol) of tetraethyl ammonium bromide are introduced (Et 4 NBr), and dissolved with stirring in 200 ml of methanol at 30 ° C for 3 days under nitrogen atmosphere.
  • Et 4 NBr tetraethyl ammonium bromide
  • EXAMPLE 2 Preparation of a magnetic resonance contrast agent based on nanoparticles of a hybrid material composed of a Gd core [Fe (CN) 6 ] prepared according to Example 1 and a silica cover. 3.80 g of the material Gd [Fe (CN) 6 ] prepared according to Example 1 is dispersed in 1900 ml of a H 2 0 hydroalcoholic mixture: ethanol (2: 5 v / v) and 3.6 ml (0.019 mol) of cyanopropyl trimethoxysilane with vigorous magnetic stirring.
  • TMOS tetramethyl orthosilicate
  • EXAMPLE 4 Preparation of a magnetic resonance contrast agent based on nanoparticles of a hybrid material composed of a Gd core [Fe (CN) 6 ] prepared according to Example 3 and a silica cover.
  • the resulting dispersion is kept under stirring for 24 hours, which allows the growth of a wall of amorphous non-porous silica on the surface of the crystals of the material Gd [Fe (CN) 6 ].
  • TMOS 9.5 ml, 0.064 mol
  • the suspension is centrifuged (500 g, 2 h), washed three times with a hydroalcoholic mixture H 2 0: ethanol (2: 5 v / v) (2000 g, 20 min).
  • the sediment is lyophilized at -55 ° C for 16 h.
  • An orange powder is obtained, consisting of particles of Gd [Fe (CN) 6 ] @ Si0 2 of average diameter between 20-200 nm.
  • the X-ray diffractogram of the material is shown in Figure 1 D.
  • EXAMPLE 5 Measurement of longitudinal (n) and transverse (r 2 ) relaxivity with respect to the concentration of the contrast agent prepared in Example 2.
  • Stable suspensions of the contrast agent Gd [Fe (CN) 6 ] @ Si0 2 are prepared obtained according to the procedure described in Example 2, varying the concentration of Gd 3+ from 0.1 to 2.0 mM, and measuring the relaxation of the Ti and T 2 protons in a 400 MHz NMR device (9.4 T).
  • the results obtained expressed as normalized relaxivity versus concentration are presented in Figure 5.
  • the values obtained from r- ⁇ and r 2 are also indicated in Table 1.
  • EXAMPLE 6 Measurement of longitudinal (n) and transverse (r 2 ) relaxivity with respect to the concentration of the contrast agent prepared in Example 4.
  • Stable suspensions of the contrast agent Gd [Fe (CN) 6 ] @ Si0 2 are prepared obtained according to the procedure described in Example 4, varying the concentration of Gd 3+ from 0.1 to 2.0 mM, and the relaxation of the Ti and T 2 protons in a 400 MHz NMR device (9.4 T).
  • the results obtained expressed as normalized relaxivity versus concentration are presented in Figure 6.
  • the values obtained from r- ⁇ and r 2 are also indicated in Table 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Epidemiology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Toxicology (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

The invention relates to a contrast agent of magnetic resonance based on a hybrid material formed by an organo-metallic core derived from Prussian blue and a silica cover, and optionally, molecules of a poly(ethylene glycol), a fluorescent agent, a radio nucleus and/or a substance that directs to specific receptors, cells or tissues, joined by covalent bonding to the surface of the inorganic cover.

Description

MATERIAL HÍBRIDO COMO AGENTE DE CONTRASTE EN IMÁGENES DE HYBRID MATERIAL AS A CONTRACTING AGENT IN IMAGES OF
RESONANCIA MAGNÉTICA MAGNETIC RESONANCE
DESCRIPCIÓN DESCRIPTION
Campo de la Técnica Technical Field
La presente invención se enmarca dentro de las aplicaciones de los derivados del azul de Prusia (AP) para imagen y diagnóstico. La elevada solubilidad de los materiales en fluidos biológicos y el carácter altamente tóxico de sus componentes limita su utilización en la práctica clínica. La incorporación de una cubierta insoluble y biocompatible basada en sílice estabiliza las nanopartículas del derivado del AP y reduce su toxicidad in vitro e in vivo, a la vez que favorece la acumulación del compuesto magnéticamente activo en tejidos patógenos por el efecto de permeabilidad y retención aumentada y mejora el contraste en la imágenes de resonancia magnética. The present invention is framed within the applications of Prussian blue derivatives (AP) for imaging and diagnosis. The high solubility of materials in biological fluids and the highly toxic nature of their components limits their use in clinical practice. The incorporation of an insoluble and biocompatible silica-based shell stabilizes the nanoparticles of the AP derivative and reduces its toxicity in vitro and in vivo, while promoting the accumulation of the magnetically active compound in pathogenic tissues due to the increased permeability and retention effect. and improves the contrast in the magnetic resonance imaging.
Antecedentes La resonancia magnética de imagen (MRI) es una técnica de diagnóstico clínico no invasiva y no radiactiva de amplia utilización. La intensidad de las imágenes obtenidas por MRI depende de la densidad de protones del agua en los tejidos examinados, así como de los tiempos de relajación longitudinal (T-i) y tranversal (T2). Habitualmente, la diferencia en la densidad de protones del agua en los distintos tejidos es escasa, por lo que para obtener alta resolución en las imágenes de MRI es necesaria la administración de un agente de contraste (CA). Se trata de un compuesto capaz de modificar los valores de T-i y T2 en los tejidos. Habitualmente se diferencia dos tipos de estos agentes: aquellos capaces de reducir el valor de T-i y aquellos capaces de bajar el T2. En el primer caso, se trata de sustancias que aumentan el brillo (contraste positivo) de las imágenes de MRI, mientras que en el segundo caso se trata de compuestos que oscurecen aquellas regiones en las que se acumulan (contraste negativo). Al respecto, desde un punto de vista de su aplicación en diagnostico clínico, la información aportada por los agentes T-i es muy superior a la que ofrecen las sustancias que disminuyen el T2, si bien la combinación de ambos puede resultar complementaria. El agente de contraste para MRI puede ser inyectado vía intravenosa (/V) para mejorar la visualización de tumores, vasos sanguíneos y/o tejidos inflamados, entre otros. Igualmente, un agente de contraste puede ser inyectado directamente sobre un determinado órgano o tejidos, o sobre una articulación, cuando se desee obtener una imagen específica de los mismos. Como se ha comentado, se diferencian dos tipos de estos materiales magnéticamente activos capaces de modificar el contraste en las imágenes de MRI: paramagnéticos, capaces de reducir primariamente el T-i (agentes Ti) y ferromagnéticos, capaces de bajar primariamente el T2 (agentes T2). Todos los agentes T-i utilizados en MRI clínica están basados en complejos paramagnéticos de Gd3+ y ligandos poliaminopolicarboxilatos solubles en medio fisiológico. El elevado spin electrónico de este catión, con 7 electrones desapareados (4f7, S=7/2), unido a su estado electrónico basal (8S7/2) y a la lenta relajación electrónica (10"9 s), proporciona al Gd3+ unas propiedades magnético-nucleares únicas para la disminución del tiempo de relajación longitudinal de los protones del agua. Sin embargo, el uso de estos compuestos solubles de Gd3+ conlleva una serie de problemas y riegos que limitan la práctica clínica. En primer lugar, la baja relajatividad del T-i de estos agentes ante la acción de un campo magnético de alta intensidad obliga a administrar elevadas dosis para obtener contraste, debiendo alcanzar una concentración plasmática superior a 0,1 mM. Además, estas moléculas de pequeño tamaño presentan una velocidad de aclarado plasmático muy elevada, lo que reduce considerablemente el tiempo de medida. Todo esto complica la utilización clínica de los agentes T-i, puesto que el Gd3+ es un potente tóxico del sistema renal, pudiendo dar lugar a fibrosis sistémica nefrogénica y dermopatía nefrogénica fibrosante, como consecuencia de la liberación del catión por el quelato. Dicha toxicidad es una consecuencia del radio atómico del Gd3+ (1 ,02 A), muy similar al del Ca2+ (1 ,00 A). De esta forma, la presencia de Gd3+ libre en el organismo provoca la alteración de las funciones de los canales de calcio dependientes del voltaje de las membranas celulares. Background Magnetic resonance imaging (MRI) is a widely used non-invasive and non-radioactive clinical diagnostic technique. The intensity of the images obtained by MRI depends on the proton density of the water in the examined tissues, as well as the longitudinal (Ti) and transverse (T 2 ) relaxation times. Usually, the difference in the density of water protons in the different tissues is small, so to obtain high resolution in the MRI images, the administration of a contrast agent (CA) is necessary. It is a compound capable of modifying the values of Ti and T 2 in tissues. Two types of these agents are usually differentiated: those capable of reducing the value of Ti and those capable of lowering T 2 . In the first case, these are substances that increase the brightness (positive contrast) of the MRI images, while in the second case they are compounds that obscure those regions where they accumulate (negative contrast). In this regard, from a point of view of its application in clinical diagnosis, the information provided by the Ti agents is far superior to that offered by substances that decrease T 2 , although the combination of both may be complementary. The contrast agent for MRI can be injected intravenously (/ V) to improve the visualization of tumors, blood vessels and / or inflamed tissues, among others. Likewise, a contrast agent can be injected directly into a certain organ or tissues, or into a joint, when it is desired to obtain a specific image thereof. As mentioned, there are two types of these magnetically active materials that are capable of modifying the contrast in MRI images: paramagnetic, capable of primarily reducing Ti (Ti agents) and ferromagnetic, capable of primarily lowering T 2 (T agents 2 ). All Ti agents used in clinical MRI are based on paramagnetic complexes of Gd 3+ and polyamine polycarboxylate ligands soluble in physiological medium. The high electronic spin of this cation, with 7 missing electrons (4f 7 , S = 7/2 ), together with its baseline electronic state ( 8 S 7/2 ) and the slow electronic relaxation (10 "9 s), provides the Gd 3+ unique magnetic-nuclear properties for the reduction of the longitudinal relaxation time of water protons, however, the use of these soluble compounds of Gd 3+ entails a series of problems and risks that limit clinical practice. First, the low relaxivity of the Ti of these agents before the action of a high intensity magnetic field forces to administer high doses to obtain contrast, having to reach a plasma concentration higher than 0.1 mM. In addition, these small molecules have a very high plasma rinse rate, which considerably reduces the measurement time.This all complicates the clinical use of Ti agents, since Gd 3+ is a potent toxic system to renal, can lead to systemic nephrogenic fibrosis and fibrosing nephrogenic dermopathy, as a result of the release of the cation by the chelate. This toxicity is a consequence of the atomic radius of Gd 3+ (1, 02 A), very similar to that of Ca 2+ (1, 00 A). In this way, the presence of free Gd 3+ in the body causes the alteration of the functions of the calcium channels depending on the voltage of the cell membranes.
Todos los agentes de contraste T2 aprobados para uso hospitalario en MRI se basan en nanopartículas de óxido férrico superparamagnéticas (SPIONs, 5-500 nm). A pesar de que se trata de materiales con elevada sensibilidad, no tóxicos y con capacidad para entrar en las células, desde el punto de vista de diagnóstico clínico e imagen celular, la resolución de las imágenes obtenidas con agentes T2 es inferior a las generadas por compuestos Ti y, con frecuencia, resulta difícil distinguirlas de hemorragias, calcificaciones, depósitos metálicos y otras formaciones posibles en un tejido dañado. All T 2 contrast agents approved for hospital use in MRI are based on superparamagnetic ferric oxide nanoparticles (SPIONs, 5-500 nm). Although these are materials with high sensitivity, non-toxic and with the ability to enter the cells, from the point of view of clinical diagnosis and cell imaging, the resolution of the images obtained with T 2 agents is lower than those generated by Ti compounds and it is often difficult to distinguish them from hemorrhages, calcifications, metallic deposits and other possible formations in a damaged tissue.
Por otro lado, tanto los agentes de contraste ΤΊ como T2 son inestables en el medio ácido estomacal, lo que impide su administración oral. Al respecto, el desarrollo de un nuevo agente de contraste requiere un sistema estable en medio fisiológico, con elevado tiempo de residencia plasmática y capaz de acumularse en los tejidos y células diana, permitiendo mejorar el contraste en las imágenes de MRI a baja concentración, a la vez que se aumenta el periodo durante el cual es posible realizar el estudio. Asimismo, debe tratarse de un sistema de fácil eliminación, fundamentalmente por vía renal o digestiva, una vez cumplido su cometido, sin que los procesos intracelulares a los que pueda verse sometido den lugar a metabolitos tóxicos. Por último, con vistas a mejorar la resolución de las imágenes de MRI, sería de gran interés que dicho agente de contraste permita reducir sensiblemente los valores de T-i y T2 conjuntamente. On the other hand, both ΤΊ and T 2 contrast agents are unstable in the stomach acid medium, which prevents their oral administration. In this regard, the development of a new contrast agent requires a stable system in physiological medium, with high plasma residence time and capable of accumulating in the tissues and target cells, allowing to improve the contrast in MRI images at low concentration, at The time during which the study is possible is increased. Likewise, it must be an easy elimination system, mainly by the renal or digestive route, once its mission has been fulfilled, without the intracellular processes to which it can be subjected give rise to toxic metabolites. Finally, with a view to improving the resolution of the MRI images, it would be of great interest that such a contrast agent allows the Ti and T 2 values to be significantly reduced together.
Los derivados del AP dopados con un Gd3+ u otro catión paramagnético presentan utilidad como agentes de contraste ΤΊ y T2. En la patente US 2010/0254912 2010; Huang, S.D.; Li, Y.; Shokouhimehr, M., se presenta un material basado en nanopartículas ultrafinas de AP dopado con Gd3+, de fórmula genérica A4xFe4- x'"[Fe"(CN)6]3+x nl-l20, en donde A es un catión seleccionado del grupo formado por Li+, Na+, K+, Rb+, Cs+, NH4 + o Τ , Fe'" esta sustituido por Gd3+ en una proporción que oscila entre 1 y 100 %, x varía de 0 a 1 y n varía de 1 a 24, y su aplicación como agente de contraste T Sin embargo, la solubilidad parcial de los derivados del AP en medio biológico limita considerablemente el uso clínico de estos materiales, debido a la posible liberación de iones Gd3+ y Fe(CN)6 4", ambos altamente tóxicos. AP derivatives doped with a Gd 3+ or other paramagnetic cation have utility as contrast agents ΤΊ and T 2 . In US patent 2010/0254912 2010; Huang, SD; Li, Y .; Shokouhimehr, M., presents a material based on ultrafine AP nanoparticles doped with Gd 3+ , of generic formula A 4x Fe 4- x '"[Fe" (CN) 6] 3 + x nl-l20, where A it is a cation selected from the group consisting of Li + , Na + , K + , Rb + , Cs + , NH 4 + or Τ, Fe '"is substituted by Gd 3+ in a proportion ranging from 1 to 100%, x varies from 0 to 1 and n varies from 1 to 24, and its application as a contrast agent T However, the partial solubility of the derivatives of the AP in biological medium considerably limits the clinical use of these materials, due to the possible release of ions Gd 3+ and Fe (CN) 6 4 " , both highly toxic.
En la patente WO2012/108856 2012; Huang, S.; Khitrin, A.K.; Perea, V.S.; Kandanapitive, M.S., se describe un agente de contraste de MRI basado en nanopartículas (4-500 nm) del compuesto AxMny[M(CN)6]z nH20, en donde A=Li, Na, K, NH4 o TI, M=Cr, Mn, Fe, Co o Ru, x=0-2, y=1 -4, z=1-4, y n=0 o 1-20, protegidas con una cubierta hidrófila de ácido carboxílico o polímero biocompatible. Asimismo, se indica que la liberación in vitro de iones CN" en agua es menor de 0,1 mM durante un periodo de 24 h, lo que indica un cierto efecto estabilizador de la cubierta orgánica sobre el derivado del AP nanoparticulado. La patente WO2012/1 10835 2012; Máthé, D.; Szigeti, K., reivindica un material basado en nanopartículas con un núcleo metálico de AP dopado con uno o más isótopos metálicos y una cubierta orgánica biocompatible, así como su aplicación como agente de contraste en MRI. La composición de dicho núcleo metálico responde a la fórmula AxM m[M(CN)6]n, donde A puede corresponde a un metal seleccionado del grupo formado por Li, Na, K, Rb, Cs, Fr y TI, M corresponde a un metal seleccionado del grupo formado por V, Cr, Mn, Fe, Co, Ni, Cu, Ga, Zr, Nb, Mo, Ru, Cd, In, Hf, Ta, W, Os o Hg, M' corresponde a un metal seleccionado del grupo formado por Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Sr, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Cd, In, Lu, Ba, Hf, Ta, W, Os, Pt, Hg, La, Eu, Gd, Tb, Dy y Ho, m varía de 0 a 5, x varía de 0 a 5 y n varía de 0,5 a 10. Respecto de la cubierta orgánica biocompatible, comprende uno o más materiales biocompatibles seleccionados del grupo formado por anticuerpos, dextrano, polietilen glicol, polivinil pirrolidona y citrato. De nuevo la aplicación hospitalaria de este tipo de materiales, que requiere de administración iv, se ve limitada por la posible liberación de iones como Gd3+ y Fe(CN)6 4" en plasma (no se ofrece dato alguno acerca de la estabilidad del material en medio biológico), y sus posibles efectos tóxicos. In WO2012 / 108856 2012; Huang, S .; Khitrin, AK; Perea, VS; Kandanapitive, MS, describes an MRI contrast agent based on nanoparticles (4-500 nm) of compound A x Mn and [M (CN) 6 ] z nH 2 0, wherein A = Li, Na, K, NH 4 o TI, M = Cr, Mn, Fe, Co or Ru, x = 0-2, y = 1 -4, z = 1-4, and n = 0 or 1-20, protected with a hydrophilic carboxylic acid shell or biocompatible polymer. Likewise, it is indicated that the in vitro release of CN ions " in water is less than 0.1 mM for a period of 24 h, which indicates a certain stabilizing effect of the organic shell on the nanoparticulate AP derivative. WO2012 / 1 10835 2012; Máthé, D .; Szigeti, K., claims a nanoparticle-based material with an AP metal core doped with one or more metal isotopes and a biocompatible organic shell, as well as its application as a contrast agent in MRI. The composition of said metal core responds to the formula A x M m [M (CN) 6 ] n, where A can correspond to a metal selected from the group consisting of Li, Na, K, Rb, Cs, Fr and TI, M corresponds to a metal selected from the group consisting of V, Cr, Mn, Fe, Co, Ni, Cu, Ga, Zr, Nb, Mo, Ru, Cd, In, Hf, Ta, W, Os or Hg, M 'corresponds to a metal selected from the group consisting of Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Sr, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Cd, In, Lu, Ba, Hf, Ta, W, Os, Pt, Hg, La, Eu, Gd, Tb, Dy and Ho, m varies from 0 to 5, x varies from 0 to 5 and n varies from 0.5 to 10. Regarding The biocompatible organic shell comprises one or more biocompatible materials selected from the group consisting of antibodies, dextran, polyethylene glycol, polyvinyl pyrrolidone and citrate. Again, the hospital application of this type of materials, which requires iv administration, is limited by the possible release of ions such as Gd 3+ and Fe (CN) 6 4 " in plasma (no data on stability is offered of the material in biological medium), and its possible toxic effects.
Todo lo anterior conduce a la necesidad de desarrollar nuevos sistemas para mejorar la resolución de las imágenes de MRI mediante un aumento del contraste, que reúnan las siguientes propiedades: i) biocompatibilidad, es decir, no provocar respuesta inmune inespecífica o específica; ii) elevados valores de relajatividad longitudinal (r-ι) y transversal (r2), permitiendo aumentar, respectivamente, el contraste positivo y negativo en las imágenes de MRI con dosis bajas del producto; iii) estabilidad en plasma humano, esto es, que no libere componente alguno en medio fisiológico o, en caso de que se produzca liberación de alguno de sus componentes, su concentración en sangre debe mantenerse por debajo de los niveles de toxicidad; iv) capacidad para incorporar sobre su superficie moléculas de diversa funcionalidad (terapéutica, diagnóstico, estabilizadora, etc.) mediante unión covalente estable. All of the above leads to the need to develop new systems to improve the resolution of MRI images by increasing the contrast, which meet the following properties: i) biocompatibility, that is, not to cause a specific or nonspecific immune response; ii) high values of longitudinal (r-ι) and transverse (r 2 ) relaxivity, allowing to increase, respectively, the positive and negative contrast in the MRI images with low doses of the product; iii) stability in human plasma, that is, that it does not release any component in physiological medium or, in case of release of any of its components, its concentration in blood must be kept below toxicity levels; iv) ability to incorporate on its surface molecules of diverse functionality (therapeutic, diagnostic, stabilizer, etc.) by stable covalent bonding.
En nuestro caso, hemos encontrado que las nanopartículas de un material híbrido compuesto de un núcleo órgano-metálico derivado del AP y una cubierta de sílice, presentan valores de π y r2 muy altos, a la vez que resultan biocompatibles y muy estables en medio fisiológico, pudiendo incorporar gran cantidad de moléculas que les confieren carácter multifuncional. Al respecto, el encapsulamiento de nanopartículas de derivados del AP con una capa de sílice se encuentra fuertemente impedido, debido a que estos compuestos se disuelven de forma prácticamente instantánea en el medio alcalino en que se lleva a cabo la polimerización del silicato. Para superar este inconveniente, se ha desarrollado un procedimiento de deposición de una capa de sílice sobre nanopartículas de derivados del AP a pH neutro mediante hidrólisis controlada de un precursor de sílice, utilizando aminas de bajo peso molecular como agentes activadores del silicato. Como resultado se ha obtenido un nanocomposite AP@Si02 en el que se mejora ostensiblemente la estabilidad en medio fisiológico de los nanocristales del derivado de AP, a la vez que se controla los parámetros texturales de la cubierta, la cual ofrece numerosas posibilidades de funcionalización. Descripción de la Invención In our case, we have found that the nanoparticles of a hybrid material composed of an organ-metallic core derived from the AP and a silica cover, have very high π and r 2 values, while being biocompatible and very stable in physiological medium , being able to incorporate a large number of molecules that give them multifunctional character. In this regard, the encapsulation of nanoparticles of derivatives of the AP with a silica layer is strongly impeded, because these compounds dissolve virtually instantaneously in the alkaline medium in which silicate polymerization is carried out. To overcome this drawback, a method of deposition of a silica layer onto nanoparticles of AP derivatives at neutral pH has been developed by controlled hydrolysis of a silica precursor, using low molecular weight amines as silicate activating agents. As a result, an AP @ Si0 2 nanocomposite has been obtained in which the stability in physiological medium of the nanocrystals of the AP derivative is significantly improved, while controlling the textural parameters of the shell, which offers numerous functionalization possibilities . Description of the Invention
La presente invención se refiere a un agente de contraste de resonancia magnética (MRI) basado en un material híbrido que puede comprender, al menos: - Un núcleo órgano-metálico de tamaño nanométrico derivado del azul de Prusia (AP), de fórmula genérica The present invention relates to a magnetic resonance contrast (MRI) agent based on a hybrid material that can comprise at least: - An organometric metal core of nanometer size derived from Prussian blue (AP), of generic formula
AxMm[M'(CN)6]n A x M m [M ' (CN) 6 ] n
donde  where
A es Li, Na, K, Rb, Cs, Fr, TI, NR4 siendo R=H o cualquier radical alquilo de estequiometria CaH2a+2, o combinaciones de los mismos; A is Li, Na, K, Rb, Cs, Fr, TI, NR 4 where R = H or any alkyl radical of stoichiometry C to H 2 to + 2, or combinations thereof;
M es Cr, Mn, Fe, Co, Ru, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, o combinaciones de los mismos;  M is Cr, Mn, Fe, Co, Ru, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, or combinations thereof;
M' es Cr, Mn, Fe, Co, Ru o combinaciones de los mismos; M ' is Cr, Mn, Fe, Co, Ru or combinations thereof;
x=0-2,  x = 0-2,
m=1-4,  m = 1-4,
n=1 -3, y  n = 1 -3, and
- Una cubierta de sílice que recubre homogéneamente las nanopartículas del núcleo. Según una realización particular, la cubierta de sílice puede ser una cubierta de sílice seleccionada preferentemente entre no estructurada y no porosa, que recubre homogéneamente las nanopartículas del núcleo, entre no estructurada y porosa, con diámetro de poro comprendido entre 1 y 100 nm, que recubre homogéneamente las nanopartículas del núcleo, entre estructurada y porosa, preferentemente mesoporosa, con diámetro de poro comprendido entre 1 y 30 nm, que recubre homogéneamente las nanopartículas del núcleo. - A silica cover that homogeneously covers the core nanoparticles. According to a particular embodiment, the silica shell may be a silica shell preferably selected from unstructured and non-porous, which homogeneously coats the core nanoparticles, between unstructured and porous, with pore diameter between 1 and 100 nm, which homogeneously coats the core nanoparticles, between structured and porous, preferably mesoporous, with a pore diameter between 1 and 30 nm, which homogeneously coats the core nanoparticles.
La presencia conjunta de un agente ΤΊ (p.e., Gd3+) y un agente T2 (p.e., Fe3+) en el sistema de contraste de la presente invención resulta beneficiosa para mejorar el contraste global (positivo y negativo) de las imágenes de MRI y, por tanto, la resolución, especialmente cuando los valores de relajatividad r-ι y r2 son muy altos. Así, el agente de contraste de la presente invención puede presentar valores de relajatividad longitudinal (r-ι) entre 5,0 y 50,0 mM"1 s"1, preferentemente entre 5,0 y 30,0 mM"1 s"1, y valores de relajatividad transversal (r2) entre 10 y 300 mM"1 s"1 , preferentemente entre 10 y 200 mM"1 s"1 , en un campo magnético de fuerza preferentemente entre 0,5 y 1 1 ,0 T, y más preferentemente entre 1 ,2 y 9,4 T. The joint presence of an agent ΤΊ (eg, Gd 3+ ) and a T 2 agent (eg, Fe 3+ ) in the contrast system of the present invention is beneficial to improve the overall contrast (positive and negative) of the images. of MRI and, therefore, the resolution, especially when the values of relajativity r-ι and r 2 are very high. Thus, the contrast agent of the present invention may have values of longitudinal relaxivity (r-ι) between 5.0 and 50.0 mM "1 s " 1 , preferably between 5.0 and 30.0 mM "1 s " 1 , and transverse relaxivity values (r 2 ) between 10 and 300 mM "1 s " 1 , preferably between 10 and 200 mM "1 s " 1 , in a magnetic force field preferably between 0.5 and 1 1.0 T, and more preferably between 1, 2 and 9.4 T.
La finalidad de la incorporación de la cubierta de sílice sobre las nanopartículas del derivado del AP es múltiple; de un lado, la capa inorgánica estabiliza los nanocristales del derivado del AP, minimizando o suprimiendo la disolución en medio fisiológico y liberación de iones tóxicos, como Gd3+ y Fe(CN)6 3". De esta forma se evitan efectos indeseados causados por la toxicidad de dichos iones, a la vez que se favorece la acumulación del agente de contraste en los tejidos y células diana, lo que permite reducir la dosis administrada sin perder resolución en las imágenes de MRI. Asimismo, la cubierta de sílice evita fenómenos de agregación no controlada de las nanopartículas del compuesto órgano-metálico, a la vez que impide fenómenos de extravasación, reacciones inmunitarias y rápida eliminación renal. Por otro lado, la cubierta de sílice presenta gran cantidad de grupos silanoles en superficie sobre los cuales puede unirse por enlace covalente multitud de moléculas que proporcionan multifuncionalidad al material híbrido. En cualquier caso, el encapsulamiento de las nanopartículas del derivado del AP con una cubierta de sílice no supone alteración estructural y/o funcional alguna del agente de contraste, tal y como se muestra en la Figura 1 . La presencia de la capa superficial de sílice queda en evidencia por una banda ancha en el espectro de infrarrojo a 1080 cm"1 , que no se aprecia en el material sin recubrir, (véase Figura 2). The purpose of incorporating the silica shell onto the nanoparticles of the AP derivative is multiple; On the one hand, the inorganic layer stabilizes the nanocrystals of the AP derivative, minimizing or suppressing the dissolution in physiological medium and release of toxic ions, such as Gd 3+ and Fe (CN) 6 3 " . This avoids unwanted effects caused due to the toxicity of these ions, while the accumulation of the contrast agent in the tissues and target cells is favored, which allows reducing the dose administered without losing resolution in the MRI images.Also, the silica cover prevents phenomena of uncontrolled aggregation of the nanoparticles of the organometallic compound, while preventing phenomena of extravasation, immune reactions and rapid renal elimination.On the other hand, the silica cover has a large number of surface silanole groups on which it can be attached by covalent bond many molecules that provide multifunctionality to the hybrid material, in any case, the encapsulation of the nanopar AP derivative with a silica cover does not imply any structural and / or functional alteration of the contrast agent, as shown in Figure 1. The presence of the silica surface layer is evidenced by a wide band in the infrared spectrum at 1080 cm "1 , which is not seen in the uncoated material, (see Figure 2).
En el agente de contraste de la presente invención las partículas de dicho agente de contraste pueden presentar diferentes formas. De manera preferente sus partículas pueden presentar la forma seleccionada entre esférica, varilla, aspa o estrellada y combinaciones de las mismas. De manera preferente, las partículas tienen forma de aspa o estrellada. In the contrast agent of the present invention the particles of said contrast agent may have different shapes. Preferably, its particles may have the shape selected between spherical, rod, blade or star and combinations thereof. Preferably, the particles are in the form of a blade or star.
Según la presente invención las partículas del agente de contraste pueden presentar un diámetro medio comprendido entre 10 y 3000 nm, preferentemente entre 20 y 1000 nm. According to the present invention the particles of the contrast agent may have an average diameter between 10 and 3000 nm, preferably between 20 and 1000 nm.
Según una realización particular, la cubierta de sílice del agente de contraste puede tener un espesor entre 1 y 100 nm, preferentemente entre 5 y 50 nm. En una realización adicional de la presente invención la cubierta de sílice del agente de contraste puede funcionalizarse con una molécula, es decir, la cubierta de sílice del agente de contraste puede comprender, además, una molécula seleccionada entre un poli(etilenglicol) (PEG), un agente fluorescente, un radionúcleo, una molécula directora y combinaciones de los mismos.  According to a particular embodiment, the silica cover of the contrast agent may have a thickness between 1 and 100 nm, preferably between 5 and 50 nm. In a further embodiment of the present invention the silica cover of the contrast agent can be functionalized with a molecule, that is, the silica cover of the contrast agent can further comprise a molecule selected from a poly (ethylene glycol) (PEG) , a fluorescent agent, a radionuclide, a directing molecule and combinations thereof.
Según la realización particular en la que el agente de contraste se funcionaliza con un PEG, esta molécula aumenta la solubilidad y estabilidad del material en medio acuoso, permitiendo la preparación de coloides estables a la vez que reduce las interacciones de las nanopartículas con componentes del plasma sanguíneo, aumentando el tiempo de residencia plasmática, reduciendo o eliminando la respuesta inmune, reduciendo la toxicidad y aumentando la eficacia, y promoviendo la acumulación en tejidos y/o células específicos. En el material de la presente invención, el peso molecular de la molécula de PEG puede oscilar entre 200 y 20.000 Da y su concentración puede oscilar entre el 1 y el 30% en peso. According to the particular embodiment in which the contrast agent is functionalized with a PEG, this molecule increases the solubility and stability of the material in aqueous medium, allowing the preparation of stable colloids while reducing the interactions of the nanoparticles with plasma components. blood, increasing plasma residence time, reducing or eliminating the immune response, reducing toxicity and increasing efficacy, and promoting accumulation in specific tissues and / or cells. In the material of the present invention, the molecular weight of the PEG molecule can range from 200 to 20,000 Da and its concentration can range from 1 to 30% by weight.
Según otra realización particular el agente de contraste se funcionaliza con un agente fluorescente unido por enlace covalente. La molécula del agente fluorescente permite el estudio de la biodistribución del agente de contraste. De manera preferente, el agente fluorescente puede estar seleccionado entre 5-amino fluoresceina, fluoresceina isotiocianato, NHS-fluoresceina, rodamina B isotiocianato, tetrametilrodamina B isotiocianato, NHS-Cy5 y/o NHS-Cy5.5 o un derivado de estos que incorpore un ligando orgánico que facilite la unión covalente con la cubierta inorgánica, así como combinaciones de los mismos. En el material de la presente invención, la concentración del agente fluorescente puede oscilar entre el 0,01 y el 5% en peso. Según otra realización particular de la presente invención la cubierta de sílice del agente de contraste puede incorporar un radionúcleo, preferentemente un radionúcleo de 18F como molécula funcionalizadora. El isótopo radioactivo permite el estudio de la biodistribución y la farmacocinética del preparado farmacéutico mediante la técnica de tomografía de emisión de positrones (PET). En el material de la presente invención, la concentración del radionúcleo de 18F puede oscilar entre el 0,0001 y el 1 % en peso. According to another particular embodiment, the contrast agent is functionalized with a covalently bound fluorescent agent. The fluorescent agent molecule allows the study of the biodistribution of the contrast agent. Preferably, the fluorescent agent may be selected from 5-amino fluorescein, fluorescein isothiocyanate, NHS-fluorescein, rhodamine B isothiocyanate, tetramethylrodamine B isothiocyanate, NHS-Cy5 and / or NHS-Cy5.5 or a derivative thereof incorporating a organic ligand that facilitates covalent bonding with the inorganic shell, as well as combinations thereof. In the material of the present invention, the concentration of the fluorescent agent may range from 0.01 to 5% by weight. According to another particular embodiment of the present invention, the silica cover of the contrast agent may incorporate a radionuclide, preferably an 18 F radionuclide as a functionalizing molecule. The radioactive isotope allows the study of the biodistribution and pharmacokinetics of the pharmaceutical preparation using the positron emission tomography (PET) technique. In the material of the present invention, the concentration of the 18 F radionucle can range from 0.0001 to 1% by weight.
En otra realización particular de la presente invención, la cubierta de sílice del agente de contraste puede incorporar una molécula directora, entendiendo por molécula directora cualquier molécula que favorezca la internalización por endocitosis en las células diana. La molécula directora puede estar seleccionada entre una molécula sintética, semi-sintética, natural y combinaciones de las mismas. La molécula directora según la presente invención puede estar seleccionada entre proteínas, carbohidratos, lípidos, ácidos nucleicos, hormonas y análogos hormonales, vitaminas, co-factores enzimáticos y metabolitos de la síntesis de proteínas, un derivado de estos que incorpore un ligando orgánico que facilite la unión covalente a la cubierta inorgánica y combinaciones de los mismos. In another particular embodiment of the present invention, the silica coating of the contrast agent may incorporate a directing molecule, the directing molecule being understood as any molecule that favors endocytosis internalization in the target cells. The directing molecule may be selected from a synthetic, semi-synthetic, natural molecule and combinations thereof. The targeting molecule according to the present invention may be selected from proteins, carbohydrates, lipids, nucleic acids, hormones and hormonal analogs, vitamins, enzymatic co-factors and metabolites of protein synthesis, a derivative thereof that incorporates an organic ligand that facilitates the covalent attachment to the inorganic shell and combinations thereof.
La presente invención también se refiere a un método de preparación del agente de contraste definido anteriormente. Este método puede comprender, al menos, poner en contacto una suspensión acuosa de nanopartículas del derivado del azul de Prusia (AP) con una solución de al menos un compuesto de silicio seleccionado de manera preferente entre un alcóxido de silicio, un alquilsilano, silicato sódico y sílice coloidal y combinaciones de los mismos, en presencia de al menos una amina seleccionada de manera preferente entre amina primaria, secundaria, terciaria y combinaciones de las mismas y su peso molecular es inferior a 1000 Da, manteniendo preferentemente el pH entre 7 y 8, y agitando para permitir el crecimiento de la pared inorgánica que envuelve el núcleo órgano-metálico. Dicho método puede comprender, además, una etapa de lavado y liofilización del material híbrido obtenido. De forma adicional, según una realización particular, la formación de la cubierta inorgánica puede llevarse a cabo en presencia de un surfactante orgánico, que se puede añadir a la mezcla, y que posteriormente será eliminado, preferentemente mediante extracción con alcoholes. Este surfactante orgánico puede ser de manera preferente un compuesto catiónico, aniónico o neutro, con una relación surfactante:Si02 comprendida preferentemente entre 0,005 y 0,65 molar, más preferentemente entre 0,01 y 0,5 molar. Como se ha comentado, dicho surfactante puede ser eliminado tras la obtención de las partículas del material híbrido, mediante extracción a reflujo con alcoholes de cadena corta. The present invention also relates to a method of preparing the contrast agent defined above. This method may comprise, at least, contacting an aqueous suspension of nanoparticles of the Prussian blue derivative (AP) with a solution of at least one silicon compound preferably selected from a silicon alkoxide, an alkylsilane, sodium silicate and colloidal silica and combinations thereof, in the presence of at least one amine preferentially selected from primary, secondary, tertiary amine and combinations thereof and its molecular weight is less than 1000 Da, preferably maintaining the pH between 7 and 8 , and shaking to allow the growth of the inorganic wall that surrounds the organ-metallic core. Said method may further comprise a step of washing and lyophilization of the hybrid material obtained. Additionally, according to a particular embodiment, the formation of the inorganic shell can be carried out in the presence of an organic surfactant, which can be added to the mixture, and which will subsequently be removed, preferably by extraction with alcohols. This organic surfactant may preferably be a cationic, anionic or neutral compound, with a surfactant ratio: Si0 2 preferably between 0.005 and 0.65 molar, more preferably between 0.01 and 0.5 molar. As mentioned, said surfactant can be removed after obtaining the particles of the hybrid material, by refluxing with short chain alcohols.
Según otra realización particular, el método de preparación del agente de contraste puede comprender, además, el uso de un co-solvente orgánico, añadiendo este a la mezcla, con una relación preferente co-solvente:agua en volumen comprendida entre 1 :1 y 10:1 , más preferentemente entre 2:1 y 4:1 . Según esta realización, dicho co- solvente puede ser de manera preferente un alcohol de cadena alifática con un número de carbonos comprendido entre 1 y 6. According to another particular embodiment, the method of preparing the contrast agent may further comprise the use of an organic co-solvent, adding this to the mixture, with a preferred co-solvent ratio: water in volume between 1: 1 and 10: 1, more preferably between 2: 1 and 4: 1. According to this embodiment, said solvent may preferably be an aliphatic chain alcohol with a carbon number between 1 and 6.
La presente invención se refiere también al uso del agente de contraste definido anteriormente y obtenido por el método descrito arriba para resonancia magnética (MRI), concretamente para mejorar la resolución de las imágenes de MRI, comprendiendo dicho uso la administración a humanos y animales ya sea por vía oral, parenteral, respiratoria o transdérmica en concentración suficiente para alcanzar de forma no selectiva los tejidos patológicos. La elevada estabilidad del agente de contraste en medio biológico y el incremento del tiempo de residencia plasmática respecto de los compuestos solubles de Gd3+, así como los procesos de angiogénesis y destrucción parcial del endotelio vascular asociados a las lesiones internas, favorece la extravasación de las nanopartículas del agente de contraste (efecto EPR), permitiendo su acumulación de en la matriz extracelular. Alternativamente el agente de contraste definido anteriormente puede ser administrado al huésped mediante inyección directa en la zona lesionada, acumulándose en el tejido intersticial. The present invention also relates to the use of the contrast agent defined above and obtained by the method described above for magnetic resonance imaging (MRI), specifically to improve the resolution of MRI images, said use comprising administration to humans and animals either orally, parenterally, respiratoryly or transdermally in sufficient concentration to achieve non-selectively pathological tissues. The high stability of the contrast agent in biological medium and the increase in plasma residence time with respect to soluble compounds of Gd 3+ , as well as the processes of angiogenesis and partial destruction of the vascular endothelium associated with internal lesions, favor the extravasation of the nanoparticles of the contrast agent (EPR effect), allowing their accumulation in the extracellular matrix. Alternatively, the contrast agent defined above can be administered to the host by direct injection into the injured area, accumulating in the interstitial tissue.
El agente de contraste descrito en la presente invención puede ser utilizado con campo magnético de fuerza variable entre 0,5 y 1 1 ,0 T, preferiblemente entre 1 ,2 y 9,4 T. The contrast agent described in the present invention can be used with a magnetic field of varying force between 0.5 and 1.0 T, preferably between 1.2 and 9.4 T.
La dosis del agente de contraste de la presente invención dependerá del huésped, el tejido y/o células objeto de estudio y la vía de administración. De una forma general, la dosis varía entre 0,001 y 0,1 mmol/Kg. The dose of the contrast agent of the present invention will depend on the host, tissue and / or cells under study and the route of administration. In general, the dose varies between 0.001 and 0.1 mmol / Kg.
La vida media en sangre del agente de contraste de la presente invención es suficiente para poder obtener imágenes de MRI en los diferentes huéspedes, estando dicha vida media en el rango de 0,5 a 6 h, preferiblemente entre 1 y 6 h. A lo largo de la descripción y las reivindicaciones la palabra "comprende" y sus variantes no pretenden excluir otras características técnicas, aditivos, componentes o pasos. Para los expertos en la materia, otros objetos, ventajas y características de la invención se desprenderán en parte de la descripción y en parte de la práctica de la invención. The blood half-life of the contrast agent of the present invention is sufficient to be able to obtain MRI images in the different hosts, said half-life being in the range of 0.5 to 6 h, preferably between 1 and 6 h. Throughout the description and the claims the word "comprises" and its variants are not intended to exclude other technical characteristics, additives, components or steps. For those skilled in the art, other objects, advantages and features of the invention will be derived partly from the description and partly from the practice of the invention.
Breve descripción de las figuras Figura 1 muestra los difractogramas de rayos X del material Gd[Fe(CN)6] preparado según el Ejemplo 1 (A) y el Ejemplo 3 (C), y del agente de contraste de la presente invención preparado según el Ejemplo 2 (B) y el Ejemplo 4 (D). BRIEF DESCRIPTION OF THE FIGURES Figure 1 shows the X-ray diffractograms of the Gd [Fe (CN) 6] material prepared according to Example 1 (A) and Example 3 (C), and of the contrast agent of the present invention prepared according to Example 2 (B) and Example 4 (D).
Figura 2 muestra los espectros de infrarrojo del material Gd[Fe(CN)6] preparado según el Ejemplo 1 (A) y el y del agente de contraste de la presente invención preparado según el Ejemplo 2 (B). Figure 2 shows the infrared spectra of the Gd [Fe (CN) 6] material prepared according to Example 1 (A) and the y of the contrast agent of the present invention prepared according to Example 2 (B).
Figura 3 es una ilustración esquemática del proceso de preparación de nanopartículas del agente de contraste de la presente invención. Figure 3 is a schematic illustration of the nanoparticle preparation process of the contrast agent of the present invention.
Figura 4 muestra imágenes de microscopía electrónica de transmisión de nanopartículas del agente de contraste de la presente invención preparadas según el Ejemplo 2, mostrando la morfología general (A) y el recubrimiento de sílice depositado sobre la superficie del material Gd[Fe(CN)6] (B). Figure 4 shows nanoparticle transmission electron microscopy images of the contrast agent of the present invention prepared according to Example 2, showing the general morphology (A) and the silica coating deposited on the surface of the Gd material [Fe (CN) 6 ] (B).
Figura 5 muestra la evolución de la velocidad de relajación longitudinal (1/ΤΊ) y transversal (1/T2) respecto de la concentración del agente de contraste de la presente invención preparado según el Ejemplo 2, así como los valores calculados de relajatividad longitudinal (n) y transversal (r2). Figura 6 muestra la evolución de la velocidad de relajación longitudinal (1/ΤΊ) y transversal (1/T2) respecto de la concentración del agente de contraste de la presente invención preparado según el Ejemplo 4, así como los valores calculados de relajatividad longitudinal (n) y transversal (r2). La presente invención se ilustra mediante los siguientes ejemplos que no pretenden ser limitantes de la misma. Figure 5 shows the evolution of the longitudinal (1 / ΤΊ) and transverse (1 / T 2 ) relaxation velocity with respect to the concentration of the contrast agent of the present invention prepared according to Example 2, as well as the calculated values of longitudinal relaxivity (n) and transverse (r 2 ). Figure 6 shows the evolution of the longitudinal (1 / ΤΊ) and transverse (1 / T 2 ) relaxation velocity with respect to the concentration of the contrast agent of the present invention prepared according to Example 4, as well as the calculated values of longitudinal relaxivity (n) and transverse (r 2 ). The present invention is illustrated by the following examples that are not intended to be limiting thereof.
EJEMPLOS EXAMPLES
EJEMPLO 1. Preparación de nanopartículas del material Gd[Fe(CN)6] de diámetro medio comprendido entre 100 y 400 nm (modificado de J. Phys. Chem. C 2009, 113, 21531 -21537; Yamada, M; Yonekura, S.)- En un balón de 500 mi conectado a la línea de N2 se introduce 3,30 g (10 mmol) de K3[Fe(CN)6] y 6,30 g (30 mmol) de bromuro de tetraetil amonio (Et4NBr), y se disuelven con agitación en 200 mi de metanol a 30°C durante 3 días bajo atmósfera de nitrógeno. La mezcla se filtra (0,45 m), y el filtrado se concentra hasta unos 10 mi en un rotavapor. La disolución resultante se agita con 100 mi de éter etílico y se filtra el precipitado amarillo obtenido. El producto crudo se disuelve en 100 mi de acetonitrilo a reflujo; a continuación se deja enfriar la disolución para cristalizar el polvo purificado de (Et4N)3[Fe(CN)6]. En un balón de 250 mi se disuelven 1 1 ,75 g de CH3COOH (225 mmol) y Gd(N03)3-5H20 (1 ,08 g, 2,50 mmol) en 50 mi de una mezcla H20:etanol (2:5 v/v). Luego se añade una disolución de (Et4N)3[Fe(CN)6] (1 ,50 g, 2,50 mmol) en 15 mi de metanol. La mezcla se mantiene a 25°C un día completo en reposo. El precipitado se filtra y se lava con etanol, y se seca a vacío para obtener un polvo naranja de Gd[Fe(CN)6], constituido por cristales en forma de aspa y de varilla de diámetro medio comprendido entre 100 y 400 nm. En la Figura 1A se muestra el difractograma de rayos X del material. EXAMPLE 1. Preparation of nanoparticles of the Gd [Fe (CN) 6 ] material of average diameter between 100 and 400 nm (modified from J. Phys. Chem. C 2009, 113, 21531-21537; Yamada, M; Yonekura, S .) - In a 500 ml balloon connected to the N 2 line, 3.30 g (10 mmol) of K 3 [Fe (CN) 6 ] and 6.30 g (30 mmol) of tetraethyl ammonium bromide are introduced (Et 4 NBr), and dissolved with stirring in 200 ml of methanol at 30 ° C for 3 days under nitrogen atmosphere. The mixture is filtered (0.45 m), and the filtrate is concentrated to about 10 ml in a rotary evaporator. The resulting solution is stirred with 100 ml of ethyl ether and the yellow precipitate obtained is filtered. The crude product is dissolved in 100 ml of acetonitrile at reflux; The solution is then allowed to cool to crystallize the purified powder of (Et 4 N) 3 [Fe (CN) 6 ]. In a 250 ml balloon, 1.75 g of CH 3 COOH (225 mmol) and Gd (N0 3 ) 3 -5H 2 0 (1.08 g, 2.50 mmol) are dissolved in 50 ml of a mixture H 2 0: ethanol (2: 5 v / v). Then a solution of (Et 4 N) 3 [Fe (CN) 6 ] (1.50 g, 2.50 mmol) in 15 ml of methanol is added. The mixture is kept at 25 ° C for a full day at rest. The precipitate is filtered and washed with ethanol, and dried in vacuo to obtain an orange powder of Gd [Fe (CN) 6 ], consisting of crystals in the form of a blade and a rod of average diameter between 100 and 400 nm. The X-ray diffractogram of the material is shown in Figure 1A.
EJEMPLO 2. Preparación de un agente de contraste de resonancia magnética basado en nanopartículas de un material híbrido compuesto de un núcleo de Gd[Fe(CN)6] preparado según el Ejemplo 1 y una cubierta de sílice. Se dispersa 3,80 g del material Gd[Fe(CN)6] preparado según el Ejemplo 1 en 1900 mi de una mezcla hidroalcohólica H20:etanol (2:5 v/v) y se añade 3,6 mi (0,019 mol) de cianopropil trimetoxisilano con agitación magnética vigorosa. Después de 30 minutos, se introduce 9.5 mi (0,064 mol) de tetrametil ortosilicato (TMOS) y, a continuación, se adiciona 0,38 mi (0,003 mol) de trietilamina. La dispersión resultante se mantiene en agitación durante 24h, lo que permite el crecimiento de una pared de sílice no porosa amorfa sobre la superficie de los cristales del material Gd[Fe(CN)6]. A las 24 h y a las 48 h se llevan a cabo sucesivas adiciones de TMOS (9,5 mi, 0,064 mol) manteniendo la agitación. Finamente, la suspensión se centrifuga (500 g, 2 h), se lava tres veces con una mezcla hidroalcohólica H20:etanol (2:5 v/v) (2000 g, 20 min). El sedimento se liofiliza a -55°C durante 16 h. Se obtiene un polvo de color naranja, constituido por partículas de Gd[Fe(CN)6]@Si02 de diámetro medio comprendido entre 100-400 nm. En la Figura 1 B se muestra el difractograma de rayos X del material, y en la Figura 4 se muestran imágenes de microscopía electrónica de transmisión de las partículas. EJEMPLO 3. Preparación de nanopartículas del material Gd[Fe(CN)6] de diámetro medio comprendido entre 20 y 200 nm (modificado de J. Phys. Chem. C 2009, 113, 21531 -21537; Yamada, M; Yonekura, S.)- EXAMPLE 2. Preparation of a magnetic resonance contrast agent based on nanoparticles of a hybrid material composed of a Gd core [Fe (CN) 6 ] prepared according to Example 1 and a silica cover. 3.80 g of the material Gd [Fe (CN) 6 ] prepared according to Example 1 is dispersed in 1900 ml of a H 2 0 hydroalcoholic mixture: ethanol (2: 5 v / v) and 3.6 ml (0.019 mol) of cyanopropyl trimethoxysilane with vigorous magnetic stirring. After 30 minutes, 9.5 ml (0.064 mol) of tetramethyl orthosilicate (TMOS) is introduced and then 0.38 ml (0.003 mol) of triethylamine is added. The resulting dispersion is kept under stirring for 24 hours, which allows the growth of a non-porous silica wall. amorphous on the surface of the crystals of the material Gd [Fe (CN) 6 ]. At 24 h and at 48 h, successive additions of TMOS (9.5 ml, 0.064 mol) are carried out while stirring. Finally, the suspension is centrifuged (500 g, 2 h), washed three times with a hydroalcoholic mixture H 2 0: ethanol (2: 5 v / v) (2000 g, 20 min). The sediment is lyophilized at -55 ° C for 16 h. An orange powder is obtained, consisting of particles of Gd [Fe (CN) 6 ] @ Si0 2 of average diameter between 100-400 nm. The X-ray diffractogram of the material is shown in Figure 1 B, and electron transmission microscopy images of the particles are shown in Figure 4. EXAMPLE 3. Preparation of nanoparticles of the Gd [Fe (CN) 6 ] material of average diameter between 20 and 200 nm (modified from J. Phys. Chem. C 2009, 113, 21531-21537; Yamada, M; Yonekura, S .) -
En un balón de 500 mi conectado a la línea de N2 se introduce 3,30 g (10 mmol) de K3[Fe(CN)6] y 6,30 g (30 mmol) de bromuro de tetraetil amonio (Et4NBr), y se disuelven con agitación en 200 mi de metanol a 30°C durante 3 días bajo atmósfera de nitrógeno. La mezcla se filtra (0,45 m), y el filtrado se concentra hasta unos 10 mi en un rotavapor. La disolución resultante se agita con 100 mi de éter etílico y se filtra el precipitado amarillo obtenido. El producto crudo se disuelve en 100 mi de acetonitrilo a reflujo; a continuación se deja enfriar la disolución para cristalizar el polvo purificado de (Et4N)3[Fe(CN)6]. En un balón de 250 mi se disuelve Gd(N03)3-5H20 (1 ,08 g, 2,50 mmol) en 50 mi de una mezcla H20:etanol (2:5 v/v). Luego se añade una disolución de (EtN)3[Fe(CN)6] (1 ,50 g, 2,50 mmol) en 15 mi de metanol. La mezcla se mantiene a 25°C un día completo en reposo. El precipitado se filtra y se lava con etanol, y se seca a vacío para obtener un polvo naranja de Gd[Fe(CN)6], constituido por cristales en forma de varilla de diámetro medio comprendido entre 20 y 200 nm. En la Figura 1 C se muestra el difractograma de rayos X del material. In a 500 ml balloon connected to the N 2 line, 3.30 g (10 mmol) of K 3 [Fe (CN) 6 ] and 6.30 g (30 mmol) of tetraethyl ammonium bromide (Et 4) are introduced NBr), and dissolve with stirring in 200 ml of methanol at 30 ° C for 3 days under nitrogen atmosphere. The mixture is filtered (0.45 m), and the filtrate is concentrated to about 10 ml in a rotary evaporator. The resulting solution is stirred with 100 ml of ethyl ether and the yellow precipitate obtained is filtered. The crude product is dissolved in 100 ml of acetonitrile at reflux; The solution is then allowed to cool to crystallize the purified powder of (Et 4 N) 3 [Fe (CN) 6 ]. In a 250 ml balloon, Gd (N0 3 ) 3 -5H 2 0 (1.08 g, 2.50 mmol) is dissolved in 50 ml of a mixture H 2 0: ethanol (2: 5 v / v). Then a solution of (EtN) 3 [Fe (CN) 6 ] (1.50 g, 2.50 mmol) in 15 ml of methanol is added. The mixture is kept at 25 ° C for a full day at rest. The precipitate is filtered and washed with ethanol, and dried in vacuo to obtain an orange powder of Gd [Fe (CN) 6 ], consisting of rod-shaped crystals of average diameter between 20 and 200 nm. The X-ray diffractogram of the material is shown in Figure 1 C.
EJEMPLO 4. Preparación de un agente de contraste de resonancia magnética basado en nanopartículas de un material híbrido compuesto de un núcleo de Gd[Fe(CN)6] preparado según el Ejemplo 3 y una cubierta de sílice. EXAMPLE 4. Preparation of a magnetic resonance contrast agent based on nanoparticles of a hybrid material composed of a Gd core [Fe (CN) 6 ] prepared according to Example 3 and a silica cover.
Se dispersa 3,80 g del material Gd[Fe(CN)6] preparado según el Ejemplo 3 en 1900 mi de una mezcla hidroalcohólica H20:etanol (2:5 v/v) y se añade 3,6 mi (0,019 mol) de cianopropil trimetoxisilano con agitación magnética vigorosa. Después de 30 minutos, se introduce 9.5 mi (0,064 mol) de tetrametil ortosilicato (TMOS) y, a continuación, se adiciona 0,38 mi (0,003 mol) de trietilamina. La dispersión resultante se mantiene en agitación durante 24h, lo que permite el crecimiento de una pared de sílice no porosa amorfa sobre la superficie de los cristales del material Gd[Fe(CN)6]. A las 24 h y a las 48 h se llevan a cabo sucesivas adiciones de TMOS (9,5 mi, 0,064 mol) manteniendo la agitación. Finamente, la suspensión se centrifuga (500 g, 2 h), se lava tres veces con una mezcla hidroalcohólica H20:etanol (2:5 v/v) (2000 g, 20 min). El sedimento se liofiliza a -55°C durante 16 h. Se obtiene un polvo de color naranja, constituido por partículas de Gd[Fe(CN)6]@Si02 de diámetro medio comprendido entre 20-200 nm. En la Figura 1 D se muestra el difractograma de rayos X del material. 3.80 g of the material Gd [Fe (CN) 6 ] prepared according to Example 3 is dispersed in 1900 ml of a H 2 0 hydroalcoholic mixture: ethanol (2: 5 v / v) and 3.6 ml (0.019 mol) of cyanopropyl trimethoxysilane with vigorous magnetic stirring. After 30 minutes 9.5 ml (0.064 mol) of tetramethyl orthosilicate (TMOS) is introduced and then 0.38 ml (0.003 mol) of triethylamine is added. The resulting dispersion is kept under stirring for 24 hours, which allows the growth of a wall of amorphous non-porous silica on the surface of the crystals of the material Gd [Fe (CN) 6 ]. At 24 h and at 48 h, successive additions of TMOS (9.5 ml, 0.064 mol) are carried out while stirring. Finally, the suspension is centrifuged (500 g, 2 h), washed three times with a hydroalcoholic mixture H 2 0: ethanol (2: 5 v / v) (2000 g, 20 min). The sediment is lyophilized at -55 ° C for 16 h. An orange powder is obtained, consisting of particles of Gd [Fe (CN) 6 ] @ Si0 2 of average diameter between 20-200 nm. The X-ray diffractogram of the material is shown in Figure 1 D.
EJEMPLO 5. Medida de la relajatividad longitudinal (n) y transversal (r2) respecto de la concentración del agente de contraste preparado en el Ejemplo 2. Se preparan suspensiones estables del agente de contraste Gd[Fe(CN)6]@Si02 obtenido según el procedimiento descrito el Ejemplo 2, variando la concentración de Gd3+ de 0,1 a 2,0 mM, y se miden la relajación de los protones T-i y T2 en un equipo de RMN de 400 MHz (9,4 T). Los resultados obtenidos expresados como relajatividad normalizada frente a la concentración se presentan en la Figura 5. Los valores obtenidos de r-ι y r2 se indican igualmente en la Tabla 1 . EXAMPLE 5. Measurement of longitudinal (n) and transverse (r 2 ) relaxivity with respect to the concentration of the contrast agent prepared in Example 2. Stable suspensions of the contrast agent Gd [Fe (CN) 6 ] @ Si0 2 are prepared obtained according to the procedure described in Example 2, varying the concentration of Gd 3+ from 0.1 to 2.0 mM, and measuring the relaxation of the Ti and T 2 protons in a 400 MHz NMR device (9.4 T). The results obtained expressed as normalized relaxivity versus concentration are presented in Figure 5. The values obtained from r-ι and r 2 are also indicated in Table 1.
EJEMPLO 6. Medida de la relajatividad longitudinal (n) y transversal (r2) respecto de la concentración del agente de contraste preparado en el Ejemplo 4. Se preparan suspensiones estables del agente de contraste Gd[Fe(CN)6]@Si02 obtenido según el procedimiento descrito el Ejemplo 4, variando la concentración de Gd3+ de 0,1 a 2,0 mM, y se mide la relajación de los protones T-i y T2 en un equipo de RMN de 400 MHz (9,4 T). Los resultados obtenidos expresados como relajatividad normalizada frente a la concentración se presentan en la Figura 6. Los valores obtenidos de r-ι y r2 se indican igualmente en la Tabla 1 . EXAMPLE 6. Measurement of longitudinal (n) and transverse (r 2 ) relaxivity with respect to the concentration of the contrast agent prepared in Example 4. Stable suspensions of the contrast agent Gd [Fe (CN) 6 ] @ Si0 2 are prepared obtained according to the procedure described in Example 4, varying the concentration of Gd 3+ from 0.1 to 2.0 mM, and the relaxation of the Ti and T 2 protons in a 400 MHz NMR device (9.4 T). The results obtained expressed as normalized relaxivity versus concentration are presented in Figure 6. The values obtained from r-ι and r 2 are also indicated in Table 1.
Tabla 1. Valores de relajatividad longitudinal y transversal medidos a 9,4 T para agentes de contraste preparados según los procedimientos descritos en la presente invención. Ejemplo Composición Tamaño Partícula n r2
Figure imgf000015_0001
Table 1. Longitudinal and transverse relaxivity values measured at 9.4 T for contrast agents prepared according to the procedures described in the present invention. Example Composition Particle Size nr 2
Figure imgf000015_0001
2 Gd[Fe(CN)6]@Si02 100-400 1 1 ,7 58,62 Gd [Fe (CN) 6 ] @ Si0 2 100-400 1 1, 7 58.6
2 Gd[Fe(CN)6]@Si02 20-200 13,2 66,6 2 Gd [Fe (CN) 6 ] @ Si0 2 20-200 13.2 66.6

Claims

REIVINDICACIONES
1. Agente de contraste de resonancia magnética caracterizado porque está basado en un material híbrido que comprende, al menos: 1. Magnetic resonance contrast agent characterized in that it is based on a hybrid material comprising at least:
- Un núcleo órgano-metálico de tamaño nanométrico derivado del azul de Prusia, de fórmula genérica  - An organometric metallic core of nanometric size derived from Prussian blue, of generic formula
AxMm[M'(CN)6]n A x M m [M ' (CN) 6 ] n
donde  where
A es Li, Na, K, Rb, Cs, Fr, TI, NR4 siendo R=H o cualquier radical alquilo de estequiometria CaH2a+2, o combinaciones de los mismos; A is Li, Na, K, Rb, Cs, Fr, TI, NR 4 where R = H or any alkyl radical of stoichiometry C to H 2 to + 2, or combinations thereof;
M es Cr, Mn, Fe, Co, Ru, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, o combinaciones de los mismos;  M is Cr, Mn, Fe, Co, Ru, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, or combinations thereof;
M' es Cr, Mn, Fe, Co, Ru o combinaciones de los mismos; M ' is Cr, Mn, Fe, Co, Ru or combinations thereof;
x=0-2,  x = 0-2,
m=1-4,  m = 1-4,
n=1 -3, y  n = 1 -3, and
- Una cubierta de sílice que recubre homogéneamente las nanopartículas del núcleo.  - A silica cover that homogeneously covers the core nanoparticles.
2. Agente de contraste según la reivindicación 1 , caracterizado porque la cubierta de sílice es una cubierta no estructurada y no porosa. 2. Contrast agent according to claim 1, characterized in that the silica cover is an unstructured and non-porous cover.
3. Agente de contraste según la reivindicación 1 , caracterizado porque la cubierta de sílice es una cubierta no estructurada y porosa, con diámetro de poro comprendido entre 1 y 100 nm. 3. Contrast agent according to claim 1, characterized in that the silica shell is an unstructured and porous shell, with a pore diameter between 1 and 100 nm.
4. Agente de contraste según la reivindicación 3, caracterizado porque la cubierta de sílice es una cubierta estructurada y porosa, con diámetro de poro comprendido entre 1 y 30 nm. 4. Contrast agent according to claim 3, characterized in that the silica cover is a structured and porous cover, with a pore diameter between 1 and 30 nm.
5. Agente de contraste según las reivindicaciones 1 a 4, caracterizado porque presenta valores de relajatividad longitudinal (π) entre 5,0 y 50,0 mM"1 s"1, y valores de relajatividad transversal (r2) entre 10 y 300 mM"1 s"1 , en un campo magnético de fuerza entre 0,5 y 1 1 ,0 T. 5. Contrast agent according to claims 1 to 4, characterized in that it has values of longitudinal relaxivity (π) between 5.0 and 50.0 mM "1 s " 1 , and values of transverse relaxivity (r 2 ) between 10 and 300 mM "1 s " 1 , in a magnetic field of force between 0.5 and 1, 0 T.
6. Agente de contraste según la reivindicación 5, caracterizado porque presenta valores de relajatividad longitudinal (r-ι ) entre 5,0 y 30,0 mM"1 s' 6. Contrast agent according to claim 5, characterized in that it has values of longitudinal relaxivity (r-ι) between 5.0 and 30.0 mM "1 s '
7. Agente de contraste según la reivindicación 5, caracterizado porque presenta valores de relajatividad transversal (r2) entre 10 y 200 mM"1 s' 7. Contrast agent according to claim 5, characterized in that it has values of transverse relaxivity (r 2 ) between 10 and 200 mM "1 s '
8. Agente de contraste según la reivindicación 5, caracterizado porque el campo magnético es un campo magnético de fuerza entre 1 ,2 y 9,4 T. 8. Contrast agent according to claim 5, characterized in that the magnetic field is a magnetic field of force between 1, 2 and 9.4 T.
9. Agente de contraste según las reivindicaciones anteriores, caracterizado porque sus partículas presentan forma seleccionada entre esférica, varilla, aspa o estrellada y combinaciones de las mismas. 9. Contrast agent according to the preceding claims, characterized in that its particles have a selected shape between spherical, rod, blade or star and combinations thereof.
10. Agente de contraste según la reivindicación 9, caracterizado porque las partículas presentan forma de aspa o varilla. 10. Contrast agent according to claim 9, characterized in that the particles have a blade or rod shape.
1 1 . Agente de contraste según las reivindicaciones anteriores, caracterizado porque las partículas presentan un diámetro medio comprendido entre 10 y 3000 nm. eleven . Contrast agent according to the preceding claims, characterized in that the particles have an average diameter between 10 and 3000 nm.
12. Agente de contraste según la reivindicación 1 1 , caracterizado porque las partículas presentan un diámetro medio comprendido entre 20 y 1000 nm. 12. Contrast agent according to claim 1, characterized in that the particles have an average diameter between 20 and 1000 nm.
13. Agente de contraste según las reivindicaciones anteriores, caracterizado porque la cubierta de sílice tiene un espesor entre 1 y 100 nm. 13. Contrast agent according to the preceding claims, characterized in that the silica shell has a thickness between 1 and 100 nm.
14. Agente de contraste según la reivindicación 13, caracterizado porque la cubierta de sílice tiene un espesor entre 5 y 50 nm. 14. Contrast agent according to claim 13, characterized in that the silica shell has a thickness between 5 and 50 nm.
15. Agente de contraste según las reivindicaciones anteriores, caracterizado porque la cubierta de sílice comprende, además, una molécula seleccionada entre un poli(etilenglicol), un agente fluorescente, un radionúcleo, una molécula directora y combinaciones de los mismos. 15. Contrast agent according to the preceding claims, characterized in that the silica shell further comprises a molecule selected from a poly (ethylene glycol), a fluorescent agent, a radionuclide, a targeting molecule and combinations thereof.
16. Agente de contraste según la reivindicación 15, caracterizado porque la molécula es un poli(etilenglicol) unido por enlace covalente de peso molecular seleccionado entre 200 y 20.000 Da y una concentración en peso entre el 1 y el 30%. 16. Contrast agent according to claim 15, characterized in that the molecule is a covalently bonded poly (ethylene glycol) of selected molecular weight between 200 and 20,000 Da and a weight concentration between 1 and 30%.
17. Agente de contraste según la reivindicación 15, caracterizado porque la molécula es un agente fluorescente unido por enlace covalente seleccionado entre 5-amino fluoresceina, fluoresceina isotiocianato, NHS-fluoresceina, rodamina B isotiocianato, tetrametilrodamina B isotiocianato, NHS-Cy5 y/o NHS-Cy5.5 o un derivado de estos que incorpore un ligando orgánico que facilite la unión covalente con la cubierta inorgánica y combinaciones de los mismos. 17. Contrast agent according to claim 15, characterized in that the molecule is a covalently bound fluorescent agent selected from 5-amino fluorescein, fluorescein isothiocyanate, NHS-fluorescein, rhodamine B isothiocyanate, tetramethylrodamine B isothiocyanate, NHS-Cy5 and / or NHS-Cy5.5 or a derivative thereof that incorporates an organic ligand that facilitates covalent bonding with the inorganic shell and combinations thereof.
18. Agente de contraste según la reivindicación 15, caracterizado porque la molécula es un radionúcleo de 18F. 18. Contrast agent according to claim 15, characterized in that the molecule is an 18 F radionucle.
19. Agente de contraste según la reivindicación 15, caracterizado porque la molécula es una molécula directora seleccionada entre molécula sintética, semi-sintética, natural y combinaciones de las mismas. 19. Contrast agent according to claim 15, characterized in that the molecule is a directing molecule selected from synthetic, semi-synthetic, natural molecule and combinations thereof.
20. Agente de contraste según la reivindicación 19, caracterizado porque la molécula directora está seleccionada entre proteínas, carbohidratos, lípidos, ácidos nucleicos, hormonas y análogos hormonales, vitaminas, co-factores enzimáticos y metabolitos de la síntesis de proteínas, o un derivado de estos que incorpore un ligando orgánico que facilite la unión covalente a la cubierta inorgánica, y combinaciones de los mismos. 20. Contrast agent according to claim 19, characterized in that the targeting molecule is selected from proteins, carbohydrates, lipids, nucleic acids, hormones and hormonal analogs, vitamins, enzymatic co-factors and metabolites of protein synthesis, or a derivative of These incorporate an organic ligand that facilitates covalent binding to the inorganic shell, and combinations thereof.
21 . Método de preparación del agente de contraste descrito según las reivindicaciones 1 a 20, caracterizado porque comprende, al menos, poner en contacto una suspensión acuosa de nanopartículas del derivado del azul de Prusia con una solución de al menos un compuesto de silicio en presencia de al menos una amina, manteniendo el pH entre 7 y 8 y agitando. twenty-one . Method of preparing the contrast agent described according to claims 1 to 20, characterized in that it comprises at least contacting an aqueous suspension of nanoparticles of the Prussian blue derivative with a solution of at least one silicon compound in the presence of the minus an amine, keeping the pH between 7 and 8 and stirring.
22. Método de preparación del agente de contraste según la reivindicación 21 , caracterizado porque comprende, además, lavar y liofilizar el material híbrido obtenido. 22. Method of preparing the contrast agent according to claim 21, characterized in that it further comprises washing and lyophilizing the obtained hybrid material.
23. Método de preparación del agente de contraste según las reivindicaciones 21 y 22, caracterizado porque comprende, además, añadir un surfactante orgánico a la mezcla. 23. Method of preparing the contrast agent according to claims 21 and 22, characterized in that it further comprises adding an organic surfactant to the mixture.
24. Método de preparación del agente de contraste según la reivindicación 21 , caracterizado porque el compuesto de silicio está seleccionado entre un alcóxido de silicio, un alquilsilano, silicato sódico, sílice coloidal y combinaciones de los mismos. 24. Method of preparing the contrast agent according to claim 21, characterized in that the silicon compound is selected from a silicon alkoxide, an alkylsilane, sodium silicate, colloidal silica and combinations thereof.
25. Método de preparación del agente de contraste según la reivindicación 21 , caracterizado porque la amina está seleccionada entre amina primaria, secundaria, terciaria y combinaciones de las mismas y su peso molecular es inferior a 1000 Da. 25. Method of preparing the contrast agent according to claim 21, characterized in that the amine is selected from primary, secondary, tertiary amine and combinations thereof and its molecular weight is less than 1000 Da.
26. Método de preparación del agente de contraste según la reivindicación 21 , caracterizado porque comprende, además, añadir un co-solvente orgánico a la mezcla, con una relación co-solvente:agua en volumen comprendida entre 1 :1 y 10:1. 26. Method of preparing the contrast agent according to claim 21, characterized in that it further comprises adding an organic co-solvent to the mixture, with a co-solvent: water volume ratio between 1: 1 and 10: 1.
27. Método de preparación del agente de contraste según la reivindicación 21 , caracterizado porque comprende, además, añadir un surfactante orgánico a la mezcla con una relación surfactante:Si02 comprendida entre 0,005 y 0,65 molar. 27. Method of preparing the contrast agent according to claim 21, characterized in that it further comprises adding an organic surfactant to the mixture with a surfactant ratio: Si0 2 between 0.005 and 0.65 molar.
28. Uso del agente de contraste descrito en las reivindicaciones 1 -20 y obtenido según el método descrito en las reivindicaciones 21 a 27 para resonancia magnética. 28. Use of the contrast agent described in claims 1-20 and obtained according to the method described in claims 21 to 27 for magnetic resonance.
29. Uso del agente de contraste según la reivindicación 28, caracterizado porque la fuerza de campo magnético variable está entre 0,5 y 1 1 ,0 T. 29. Use of the contrast agent according to claim 28, characterized in that the variable magnetic field strength is between 0.5 and 1, 0 T.
PCT/ES2015/070595 2014-07-31 2015-07-30 Hybrid material as contrast agent in magnetic resonance images WO2016016505A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201431165A ES2561934B1 (en) 2014-07-31 2014-07-31 HYBRID MATERIAL AS A CONTRACTING AGENT IN IMAGING RESONANCES
ESP201431165 2014-07-31

Publications (1)

Publication Number Publication Date
WO2016016505A1 true WO2016016505A1 (en) 2016-02-04

Family

ID=55216808

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2015/070595 WO2016016505A1 (en) 2014-07-31 2015-07-30 Hybrid material as contrast agent in magnetic resonance images

Country Status (2)

Country Link
ES (1) ES2561934B1 (en)
WO (1) WO2016016505A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2366841A1 (en) * 2010-04-06 2011-10-26 Consejo Superior De Investigaciones Cientificas (Csic) (45%) Silica nanoparticles for the intracellular diffusion of poorly soluble bioactive agents

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2366841A1 (en) * 2010-04-06 2011-10-26 Consejo Superior De Investigaciones Cientificas (Csic) (45%) Silica nanoparticles for the intracellular diffusion of poorly soluble bioactive agents

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
FORNASIERI, G. ET AL.: "Elaboration of Prussian Blue analogue/silica nanocomposites: towards tailor-made nano-scale electronic devices", MATERIALS, vol. 5, 2012, pages 385 - 403 *
LARTIGUE, L. ET AL.: "Superspin-glass behavior on Co3[Fe (CN) 6]2 Prussian blue nanoparticles confined in mesoporous silica", MATERIALS CHEMISTRY AND PHYSICS, vol. 132, 2012, pages 438 - 445 *
MOORE, J.G. ET AL.: "Transparent, superparamagnetic KxCoy[Fe (CN) 6]-silica nanocomposites with tunable photomagnetism", ANGEW.CHEM.INT.ED., vol. 42, 2003, pages 2741 - 2743 *
ROHILLA, S. ET AL.: "Synthesis and characterization of Fe4[Co (CN) 6]3.16H2O/SiO2 nano-composites by coprecipitation method", ADV. MAT.LETT., vol. 4, 2013, pages 53 - 57 *
SHOKOUHIMEHR, M. ET AL.: "Biocompatible Prussian blue nanoparticles: preparation, stability, citotoxicity, and potential use as an MRI contrast agent", INORGANIC CHEMISTRY COMMUNICATIONS, vol. 13, 2010, pages 58 - 61, XP026820188 *
YOON, T.-J. ET AL.: "Multifunctional nanoparticles possessing a ''magnetic motor effect'' for drug or gene delivery", ANGEW.CHEM.INT.ED., vol. 44, 2005, pages 1068 - 1071, XP001238315, DOI: doi:10.1002/anie.200461910 *

Also Published As

Publication number Publication date
ES2561934A1 (en) 2016-03-01
ES2561934B1 (en) 2016-12-09

Similar Documents

Publication Publication Date Title
Zhen et al. Development of manganese-based nanoparticles as contrast probes for magnetic resonance imaging
Moritz et al. Mesoporous materials as multifunctional tools in biosciences: Principles and applications
Chen et al. Multifunctional envelope-type mesoporous silica nanoparticles for pH-responsive drug delivery and magnetic resonance imaging
Maldiney et al. Mesoporous persistent nanophosphors for in vivo optical bioimaging and drug-delivery
Liu et al. Multifunctional NaYF 4: Yb, Er@ mSiO 2@ Fe 3 O 4-PEG nanoparticles for UCL/MR bioimaging and magnetically targeted drug delivery
Chen et al. Structure-property relationships in manganese oxide-mesoporous silica nanoparticles used for T1-weighted MRI and simultaneous anti-cancer drug delivery
AU2012351537B2 (en) Nanoparticles comprising metallic and hafnium oxide materials, preparation and uses thereof
Cormode et al. Inorganic nanocrystals as contrast agents in MRI: synthesis, coating and introduction of multifunctionality
Yan et al. A novel type of aqueous dispersible ultrathin-layered double hydroxide nanosheets for in vivo bioimaging and drug delivery
ES2400696T3 (en) Magnetic nanoparticles for application in hyperthermia, their preparation and use in constructions that have a pharmacological application
Gayathri et al. Gadolinium oxide nanoparticles for magnetic resonance imaging and cancer theranostics
Yan et al. Nanomaterials for drug delivery
JP5463549B2 (en) Liposomes for ultrasound therapy and liposomes for promoting ultrasound therapy
WO2012051341A1 (en) Hydrothermal process for enhanced stability of mesoporous nanoparticles
Sun et al. A polyethyleneimine-driven self-assembled nanoplatform for fluorescence and MR dual-mode imaging guided cancer chemotherapy
CN104840977A (en) Method for preparing magnetic fluorescence composite nano drug carrier
Kumar et al. Recent progresses in Organic-Inorganic Nano technological platforms for cancer therapeutics
US8865129B2 (en) Lanthanoid complex capsule and particle contrast agents, methods of making and using thereof
JP7321151B2 (en) Nanovectors and their uses
PT115474B (en) MAGNETIC NANOSYSTEM AND METHOD TO PRODUCE THE NANOSYSTEM
ES2561934B1 (en) HYBRID MATERIAL AS A CONTRACTING AGENT IN IMAGING RESONANCES
ES2768798T3 (en) Anti-tumor composition based on hyaluronic acid and inorganic nanoparticles, method of preparing it and using it
Nedyalkova et al. Iron oxide nanoparticles in anticancer drug delivery and imaging diagnostics
Gnanasammandhan et al. Rare earth nanomaterials in fluorescence microscopy
Novio et al. Coordination polymers for medical applications: amorphous versus crystalline materials

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15827360

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15827360

Country of ref document: EP

Kind code of ref document: A1