WO2016014535A1 - Treatment of cancer using a cll-1 chimeric antigen receptor - Google Patents

Treatment of cancer using a cll-1 chimeric antigen receptor Download PDF

Info

Publication number
WO2016014535A1
WO2016014535A1 PCT/US2015/041337 US2015041337W WO2016014535A1 WO 2016014535 A1 WO2016014535 A1 WO 2016014535A1 US 2015041337 W US2015041337 W US 2015041337W WO 2016014535 A1 WO2016014535 A1 WO 2016014535A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
cll
car
amino acid
acid sequence
Prior art date
Application number
PCT/US2015/041337
Other languages
French (fr)
Inventor
Jennifer BROGDON
Hilmar Ebersbach
Saar GILL
David Glass
Julia JASCUR
Saad KENDERIAN
Joan Mannick
Michael C. MILONE
Leon Murphy
Celeste RICHARDSON
Reshma Singh
Lai Wei
Qilong WU
Qiumei Yang
Jiquan Zhang
Original Assignee
Novartis Ag
The Trustees Of The University Of Pennsylvania
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP15744448.0A priority Critical patent/EP3171882A1/en
Priority to SG11201700418VA priority patent/SG11201700418VA/en
Priority to JP2017503488A priority patent/JP6736540B2/en
Priority to KR1020177004392A priority patent/KR20170037625A/en
Priority to CN201580050589.9A priority patent/CN107109420A/en
Priority to AU2015292811A priority patent/AU2015292811B2/en
Priority to CA2955465A priority patent/CA2955465A1/en
Priority to BR112017000939A priority patent/BR112017000939A2/en
Application filed by Novartis Ag, The Trustees Of The University Of Pennsylvania filed Critical Novartis Ag
Priority to RU2017105161A priority patent/RU2741120C2/en
Priority to MX2017001013A priority patent/MX2017001013A/en
Publication of WO2016014535A1 publication Critical patent/WO2016014535A1/en
Priority to IL250116A priority patent/IL250116B/en
Priority to CONC2017/0000506A priority patent/CO2017000506A2/en
Priority to AU2020201939A priority patent/AU2020201939A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • A61K39/001102Receptors, cell surface antigens or cell surface determinants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7052Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
    • A61K31/706Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom
    • A61K31/7064Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines
    • A61K31/7068Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines having oxo groups directly attached to the pyrimidine ring, e.g. cytidine, cytidylic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/14Blood; Artificial blood
    • A61K35/17Lymphocytes; B-cells; T-cells; Natural killer cells; Interferon-activated or cytokine-activated lymphocytes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/461Cellular immunotherapy characterised by the cell type used
    • A61K39/4611T-cells, e.g. tumor infiltrating lymphocytes [TIL], lymphokine-activated killer cells [LAK] or regulatory T cells [Treg]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/463Cellular immunotherapy characterised by recombinant expression
    • A61K39/4631Chimeric Antigen Receptors [CAR]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/464Cellular immunotherapy characterised by the antigen targeted or presented
    • A61K39/4643Vertebrate antigens
    • A61K39/4644Cancer antigens
    • A61K39/464402Receptors, cell surface antigens or cell surface determinants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/464Cellular immunotherapy characterised by the antigen targeted or presented
    • A61K39/4643Vertebrate antigens
    • A61K39/4644Cancer antigens
    • A61K39/464402Receptors, cell surface antigens or cell surface determinants
    • A61K39/464411Immunoglobulin superfamily
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/464Cellular immunotherapy characterised by the antigen targeted or presented
    • A61K39/4643Vertebrate antigens
    • A61K39/4644Cancer antigens
    • A61K39/464402Receptors, cell surface antigens or cell surface determinants
    • A61K39/464416Receptors for cytokines
    • A61K39/464419Receptors for interleukins [IL]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70503Immunoglobulin superfamily
    • C07K14/7051T-cell receptor (TcR)-CD3 complex
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70578NGF-receptor/TNF-receptor superfamily, e.g. CD27, CD30, CD40, CD95
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2851Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the lectin superfamily, e.g. CD23, CD72
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/515Animal cells
    • A61K2039/5156Animal cells expressing foreign proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2239/00Indexing codes associated with cellular immunotherapy of group A61K39/46
    • A61K2239/31Indexing codes associated with cellular immunotherapy of group A61K39/46 characterized by the route of administration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2239/00Indexing codes associated with cellular immunotherapy of group A61K39/46
    • A61K2239/38Indexing codes associated with cellular immunotherapy of group A61K39/46 characterised by the dose, timing or administration schedule
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2239/00Indexing codes associated with cellular immunotherapy of group A61K39/46
    • A61K2239/46Indexing codes associated with cellular immunotherapy of group A61K39/46 characterised by the cancer treated
    • A61K2239/48Blood cells, e.g. leukemia or lymphoma
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/60Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
    • C07K2317/62Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
    • C07K2317/622Single chain antibody (scFv)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/02Fusion polypeptide containing a localisation/targetting motif containing a signal sequence
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/03Fusion polypeptide containing a localisation/targetting motif containing a transmembrane segment

Definitions

  • the present invention relates generally to the use of immune effector cells (e.g., T cells, NK cells) engineered to express a Chimeric Antigen Receptor (CAR) to treat a disease associated with expression of C-type lectin-like- 1 (CLL-1).
  • immune effector cells e.g., T cells, NK cells
  • CAR Chimeric Antigen Receptor
  • C-type lectin-like- 1 (CLL-1) is also known as MICL, CLEC12A, CLEC-1, Dendritic Cell- Associated Lectin 1, and DCAL-2.
  • CLL-1 is a glycoprotein receptor and member of the large family of C-type lectin-like receptors involved in immune regulation. CLL-1 is expressed in hematopoietic cells, primarily on innate immune cells including monocytes, DCs, pDCs, and granulocytes (Cancer Res. 2004; J Immunol 2009) and myeloid progenitor cells (Blood, 2007).
  • CLL-1 is also found on acute myeloid leukemia (AML) blasts and leukemic stem cells (e.g., CD34 + /CD38 " ) (Zhao et al., Haematologica. 2010, 95(l):71-78.). CLL-1 expression may also be relevant for other myeloid leukemias, such as acute myelomonocytic leukemia, acute monocytic leukemia, acute promyelocytic leukemia, chronic myeloid leukemia (CML), and myelodysplasia syndrome (MDS).
  • AML acute myeloid leukemia
  • CML chronic myeloid leukemia
  • MDS myelodysplasia syndrome
  • the invention features an isolated nucleic acid molecule encoding a chimeric antigen receptor (CAR), wherein the CAR comprises an antibody or antibody fragment which includes a human anti-CLL-1 binding domain, a transmembrane domain, and an intracellular signaling domain (e.g., an intracellular signaling domain comprising a costimulatory domain and/or a primary signaling domain).
  • CAR chimeric antigen receptor
  • the CAR comprises an antibody or antibody fragment which includes a human anti-CLL-1 binding domain described herein, a transmembrane domain described herein, and an intracellular signaling domain described herein (e.g., an intracellular signaling domain comprising a costimulatory domain and/or a primary signaling domain).
  • the CAR comprises a human anti-CLL-1 binding domain, a transmembrane domain, and an intracellular signaling domain, and wherein said anti-CLL- lbinding domain comprises a heavy chain complementary determining region 1 (HC CDRl), a heavy chain complementary determining region 2 (HC CDR2), and a heavy chain
  • the human CLL-lbinding domain further comprises a light chain complementary determining region 1 (LC CDRl), a light chain complementary determining region 2 (LC CDR2), and a light chain complementary determining region 3 (LC CDR3).
  • the human CLL-1 binding domain comprises a light chain complementary determining region 1 (LC CDRl), a light chain complementary determining region 2 (LC CDR2), and a light chain complementary determining region 3 (LC CDR3) of any CLL-1 light chain binding domain amino acid sequences listed in Table 2.
  • the CAR comprises an antibody or antibody fragment which includes a human CLL-lbinding domain, a transmembrane domain, and an intracellular signaling domain comprising a costimulatory domain and/or a primary signaling domain
  • said CLL-lbinding domain comprises one or more of light chain complementary determining region 1 (LC CDR1), light chain complementary determining region 2 (LC CDR2), and light chain complementary determining region 3 (LC CDR3) of any CLL-1 light chain binding domain amino acid sequences listed in Table 2, and one or more of heavy chain complementary determining region 1 (HC CDR1), heavy chain complementary determining region 2 (HC CDR2), and heavy chain complementary determining region 3 (HC CDR3) of any CLL-lheavy chain binding domain amino acid sequences listed in Table 2.
  • LC CDR1 light chain complementary determining region 1
  • HC CDR2 light chain complementary determining region 2
  • HC CDR3 heavy chain complementary determining region 3
  • the encoded human anti-CLL-1 binding domain comprises one or more (e.g., all three) light chain complementary determining region 1 (LC CDR1), light chain complementary determining region 2 (LC CDR2), and light chain complementary determining region 3 (LC CDR3) of a human anti-CLL-1 binding domain described herein, and/or one or more (e.g., all three) heavy chain complementary determining region 1 (HC CDR1), heavy chain complementary determining region 2 (HC CDR2), and heavy chain complementary determining region 3 (HC CDR3) of a human anti-CLL-1 binding domain described herein, e.g., a human anti-CLL-1 binding domain comprising one or more, e.g., all three, LC CDRs and one or more, e.g., all three, HC CDRs.
  • LC CDR1 light chain complementary determining region 1
  • HC CDR2 light chain complementary determining region 2
  • HC CDR3 light chain complementary determining region 3
  • the encoded human anti-CLL-1 binding domain comprises a light chain variable region described herein (e.g., in Table 2) and/or a heavy chain variable region described herein (e.g., in Table 2).
  • the encoded human anti-CLL-1 binding domain is a scFv comprising a light chain and a heavy chain of an amino acid sequence of Table 2.
  • the human anti-CLL-1 binding domain (e.g., an scFv) comprises: a light chain variable region comprising an amino acid sequence having at least one, two or three modifications (e.g., substitutions, e.g., conservative substitutions) but not more than 30, 20 or 10 modifications (e.g., substitutions, e.g., conservative substitutions) of an amino acid sequence of a light chain variable region provided in Table 2, or a sequence with 95-99% identity with an amino acid sequence of Table 2; and/or a heavy chain variable region comprising an amino acid sequence having at least one, two or three modifications (e.g., substitutions, e.g., conservative substitutions) but not more than 30, 20 or 10 modifications (e.g., substitutions, e.g., conservative substitutions) of an amino acid sequence of a heavy chain variable region provided in Table 2, or a sequence with 95-99% identity to an amino acid sequence of Table 2.
  • the encoded CLL-1 binding domain comprises a HC CDR1
  • the CLL-1 binding domain further comprises a LC CDRl, a LC CDR2, and a LC CDR3.
  • the CLL-1 binding domain comprises a LC CDRl, a LC CDR2, and a LC CDR3 of any CLL-1 light chain binding domain amino acid sequences listed in Table 2.
  • the encoded CLL-1 binding domain comprises one, two or all of
  • the encoded human anti-CLL-1 binding domain comprises an amino acid sequence selected from a group consisting of SEQ ID NO:39-51, 65-77, 195, 78-90, or 196.
  • the encoded CLL-1 binding domain (e.g., an scFv) comprises an amino acid sequence having at least one, two or three modifications (e.g., substitutions, e.g., conservative substitutions) but not more than 30, 20 or 10 modifications (e.g., substitutions, e.g., conservative substitutions) of an amino acid sequence of SEQ ID NO: 39-51, 65-77, 195, 78-90, or 196, or a sequence with 95-99% identity with an amino acid sequence of SEQ ID NO: 39-51, 65-77, 195, 78-90, or 196.
  • the encoded CLL-1 binding domain comprises a heavy chain variable region comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 65-77, or 195, or a sequence with 95-99% identity thereof.
  • the encoded CLL-1 binding domain comprises a light chain variable region comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 66-74, or 196, or a sequence with 95-99% identity thereof.
  • the nucleic acid molecule comprises a nucleotide sequence selected from the group consisting of SEQ ID NO: 52-64, or a sequence with 95-99% identity thereof.
  • the encoded humanized anti-CLL-1 binding domain includes a (Gly4-Ser)n linker, wherein n is 1, 2, 3, 4, 5, or 6, preferably 3 or 4 (SEQ ID NO:26).
  • the light chain variable region and heavy chain variable region of a scFv can be, e.g., in any of the following orientations: light chain variable region-linker-heavy chain variable region or heavy chain variable region-linker-light chain variable region.
  • the encoded CAR includes a transmembrane domain that comprises a transmembrane domain of a protein selected from the group consisting of the alpha, beta or zeta chain of the T-cell receptor, CD28, CD3 epsilon, CD45, CD4, CD5, CD8, CD9, CD16, CD22, CD33, CD37, CD64, CD80, CD86, CD134, CD137 and CD154.
  • the encoded transmembrane domain comprises the sequence of SEQ ID NO: 6.
  • the encoded transmembrane domain comprises an amino acid sequence comprising at least one, two or three modifications but not more than 20, 10 or 5 modifications of the amino acid sequence of SEQ ID NO:6, or a sequence with 95-99% identity to an amino acid sequence of SEQ ID NO:6.
  • the nucleic acid sequence encoding the transmembrane domain comprises the sequence of SEQ ID NO: 17, or a sequence with 95-99% identity thereof.
  • the encoded anti-CLL-1 binding domain is connected to the transmembrane domain by a hinge region, e.g., a hinge region described herein.
  • the encoded hinge region comprises SEQ ID NO:2, or a sequence with 95-99% identity thereof.
  • the nucleic acid sequence encoding the hinge region comprises the sequence of SEQ ID NO: 13, or a sequence with 95-99% identity thereof.
  • the isolated nucleic acid molecule further comprises a sequence encoding a costimulatory domain, e.g., a costimulatory domain described herein.
  • a costimulatory domain e.g., a costimulatory domain described herein.
  • the intracellular signaling domain comprises a costimulatory domain. In embodiments, the intracellular signaling domain comprises a primary signaling domain. In embodiments, the intracellular signaling domain comprises a costimulatory domain and a primary signaling domain. In one embodiment, the encoded costimulatory domain is a functional signaling domain obtained from a protein selected from the group consisting of a MHC class I molecule, TNF receptor proteins, Immunoglobulin-like proteins, cytokine receptors, integrins, signaling lymphocytic activation molecules (SLAM proteins), activating NK cell receptors, BTLA, a Toll ligand receptor, OX40, CD2, CD7, CD27, CD28, CD30, CD40, CDS, ICAM-1, LFA-1
  • CDl la/CD18 4-1BB (CD137), B7-H3, CDS, ICAM-1, ICOS (CD278), GITR, BAFFR,
  • the encoded co stimulatory domain comprises 4-1BB, CD27, CD28, or ICOS.
  • the encoded costimulatory domain of 4- IBB comprises the amino acid sequence of SEQ ID NO:7.
  • the encoded costimulatory domain comprises an amino acid sequence having at least one, two or three modifications but not more than 20, 10 or 5 modifications of the amino acid sequence of SEQ ID NO:7, or a sequence with 95-99% identity to the amino acid sequence of SEQ ID NO:7.
  • the nucleic acid sequence encoding the costimulatory domain comprises the nucleotide sequence of SEQ ID NO: 18, or a sequence with 95-99% identity thereof.
  • the encoded costimulatory domain of CD28 comprises the amino acid sequence of SEQ ID NO:482.
  • the encoded costimulatory domain comprises an amino acid sequence having at least one, two or three modifications but not more than 20, 10 or 5 modifications of an amino acid sequence of SEQ ID NO:482, or a sequence with 95-99% identity to an amino acid sequence of SEQ ID NO:482.
  • the nucleic acid sequence encoding the costimulatory domain of CD28 comprises the nucleotide sequence of SEQ ID NO:483, or a sequence with 95-99% identity thereof.
  • the encoded costimulatory domain of CD27 comprises the amino acid sequence of SEQ ID NO: 8.
  • the encoded costimulatory domain comprises an amino acid sequence having at least one, two or three modifications but not more than 20, 10 or 5 modifications of an amino acid sequence of SEQ ID NO:8, or a sequence with 95-99% identity to an amino acid sequence of SEQ ID NO: 8.
  • the nucleic acid sequence encoding the costimulatory domain of CD27 comprises the nucleotide sequence of SEQ ID NO: 19, or a sequence with 95-99% identity thereof.
  • the encoded costimulatory domain of ICOS comprises the amino acid sequence of SEQ ID NO:484.
  • the encoded costimulatory domain comprises an amino acid sequence having at least one, two or three modifications but not more than 20, 10 or 5 modifications of an amino acid sequence of SEQ ID NO:484, or a sequence with 95-99% identity to an amino acid sequence of SEQ ID NO:484.
  • the nucleic acid sequence encoding the costimulatory domain of ICOS comprises the nucleotide sequence of SEQ ID NO:485, or a sequence with 95-99% identity thereof.
  • the encoded primary signaling domain comprises a functional signaling domain of CD3 zeta.
  • the functional signaling domain of CD3 zeta comprises the sequence of SEQ ID NO: 9 (mutant CD3 zeta) or SEQ ID NO: 10 (wild- type human CD3 zeta), or a sequence with 95-99% identity thereof.
  • the encoded intracellular signaling domain comprises a functional signaling domain of 4- IBB and/or a functional signaling domain of CD3 zeta.
  • the encoded intracellular signaling domain of 4-1BB comprises the amino acid sequence of SEQ ID NO: 7 and/or the CD3 zeta amino acid sequence of SEQ ID NO:9 or SEQ ID NO: 10.
  • the intracellular signaling domain comprises an amino acid sequence having at least one, two or three modifications but not more than 20, 10 or 5 modifications of an amino acid sequence of SEQ ID NO:7 and/or an amino acid sequence of SEQ ID NO:9 or SEQ ID NO: 10, or a sequence with 95-99% identity to an amino acid sequence of SEQ ID NO:7 and/or an amino acid sequence of SEQ ID NO:9 or SEQ ID NO:10.
  • the encoded intracellular signaling domain comprises the sequence of SEQ ID NO:7 and the sequence of SEQ ID NO:9 or SEQ ID NO: 10, wherein the sequences comprising the intracellular signaling domain are expressed in the same frame and as a single polypeptide chain.
  • the nucleic acid sequence encoding the intracellular signaling domain of 4-1BB comprises the nucleotide sequence of SEQ ID NO:18, or a sequence with 95-99% identity thereof, and/or a sequence of SEQ ID NO:20 or SEQ ID NO:21, or the CD3 zeta nucleotide sequence with 95-99% identity thereof.
  • the encoded intracellular signaling domain comprises a functional signaling domain of CD27 and/or a functional signaling domain of CD3 zeta.
  • the encoded intracellular signaling domain of CD27 comprises the amino acid sequence of SEQ ID NO: 8 and/or the CD3 zeta amino acid sequence of SEQ ID NO:9 or SEQ ID NO: 10.
  • the intracellular signaling domain comprises an amino acid sequence having at least one, two or three modifications but not more than 20, 10 or 5 modifications of an amino acid sequence of SEQ ID NO: 8 and/or an amino acid sequence of SEQ ID NO:9 or SEQ ID NO: 10, or a sequence with 95-99% identity to an amino acid sequence of SEQ ID NO:8 and/or an amino acid sequence of SEQ ID NO:9 or SEQ ID NO:10.
  • the encoded intracellular signaling domain comprises the sequence of SEQ ID NO:8 and the sequence of SEQ ID NO:9 or SEQ ID NO: 10, wherein the sequences comprising the intracellular signaling domain are expressed in the same frame and as a single polypeptide chain.
  • the nucleic acid sequence encoding the intracellular signaling domain of CD27 comprises the nucleotide sequence of SEQ ID NO: 19, or a sequence with 95-99% identity thereof, and/or the CD3 zeta nucleotide sequence of SEQ ID NO:20 or SEQ ID NO:21, or a sequence with 95-99% identity thereof.
  • the encoded intracellular signaling domain comprises a functional signaling domain of CD28 and/or a functional signaling domain of CD3 zeta.
  • the encoded intracellular signaling domain of CD28 comprises the amino acid sequence of SEQ ID NO: 482 and/or the CD3 zeta amino acid sequence of SEQ ID NO:9 or SEQ ID NO: 10.
  • the intracellular signaling domain comprises an amino acid sequence having at least one, two or three modifications but not more than 20, 10 or 5 modifications of an amino acid sequence of SEQ ID NO:482 and/or an amino acid sequence of SEQ ID NO:9 or SEQ ID NO: 10, or a sequence with 95-99% identity to an amino acid sequence of SEQ ID NO:482 and/or an amino acid sequence of SEQ ID NO:9 or SEQ ID NO: 10.
  • the encoded intracellular signaling domain comprises the sequence of SEQ ID NO:482 and the sequence of SEQ ID NO:9 or SEQ ID NO: 10, wherein the sequences comprising the intracellular signaling domain are expressed in the same frame and as a single polypeptide chain.
  • the nucleic acid sequence encoding the intracellular signaling domain of CD28 comprises the nucleotide sequence of SEQ ID NO:483, or a sequence with 95-99% identity thereof, and/or the CD3 zeta nucleotide sequence of SEQ ID NO:20 or SEQ ID NO:21, or a sequence with 95-99% identity thereof.
  • the encoded intracellular signaling domain comprises a functional signaling domain of ICOS and/or a functional signaling domain of CD3 zeta.
  • the encoded intracellular signaling domain of ICOS comprises the amino acid sequence of SEQ ID NO: 484 and/or the CD3 zeta amino acid sequence of SEQ ID NO:9 or SEQ ID NO: 10.
  • the intracellular signaling domain comprises an amino acid sequence having at least one, two or three modifications but not more than 20, 10 or 5 modifications of an amino acid sequence of SEQ ID NO:484 and/or an amino acid sequence of SEQ ID NO:9 or SEQ ID NO: 10, or a sequence with 95-99% identity to an amino acid sequence of SEQ ID NO:484 and/or an amino acid sequence of SEQ ID NO:9 or SEQ ID NO: 10.
  • the encoded intracellular signaling domain comprises the sequence of SEQ ID NO:484 and the sequence of SEQ ID NO:9 or SEQ ID NO: 10, wherein the sequences comprising the intracellular signaling domain are expressed in the same frame and as a single polypeptide chain.
  • the nucleic acid sequence encoding the intracellular signaling domain of ICOS comprises the nucleotide sequence of SEQ ID NO:485, or a sequence with 95-99% identity thereof, and/or the CD3 zeta nucleotide sequence of SEQ ID NO:20 or SEQ ID NO:21, or a sequence with 95-99% identity thereof.
  • the isolated CAR molecule further comprises a leader sequence, e.g., a leader sequence described herein.
  • the leader sequence comprises an amino acid sequence of SEQ ID NO: 1, or a sequence with 95-99% identity to an amino acid sequence of SEQ ID NO:l.
  • the invention pertains to an isolated nucleic acid molecule encoding a CAR construct comprising a leader sequence, e.g., a leader sequence described herein, e.g., the amino acid sequence of SEQ ID NO: 1, an anti-CLL-1 binding domain described herein, e.g., human anti-CLL-1 binding domain comprising a LC CDR1, a LC CDR2, a LC CDR3, a HC CDR1, a HC CDR2 and a HC CDR3 described herein, e.g., a human anti-CLL-1 binding domain described in Table 2, or a sequence with 95-99% identify thereof, a hinge region described herein, e.g., the amino acid sequence of SEQ ID NO:2, a transmembrane domain described herein, e.g., having a sequence of SEQ ID NO: 6, and an intracellular signaling domain, e.g., an intracellular signaling domain described herein.
  • a leader sequence e.g.
  • the encoded intracellular signaling domain comprises a costimulatory domain, e.g., a costimulatory domain described herein (e.g., a 4-1BB costimulatory domain having the amino acid sequence of SEQ ID NO:7, a CD28 costimulatory domain having the amino acid sequence of SEQ ID NO: 482, or an ICOS costimulatory domain having the amino acid sequence of SEQ ID NO: 484, or a CD27 costimulatory domain having the amino acid sequence of SEQ ID NO: 8), and/or a primary signaling domain, e.g., a primary signaling domain described herein, (e.g., a CD3 zeta stimulatory domain having a sequence of SEQ ID NO:9 or SEQ ID NO: 10).
  • a costimulatory domain described herein e.g., a 4-1BB costimulatory domain having the amino acid sequence of SEQ ID NO:7, a CD28 costimulatory domain having the amino acid sequence of SEQ ID NO: 48
  • the isolated nucleic acid molecule encoding the CAR construct includes a human anti-CLL-1 binding domain sequence encoded by the nucleic acid sequence of SEQ ID NO:52, SEQ ID NO:53, SEQ ID NO:54, SEQ ID NO:55, SEQ ID NO:56, SEQ ID NO:57, SEQ ID NO:58, SEQ ID NO:59, SEQ ID NO:60, SEQ ID N0:61, SEQ ID NO:62, SEQ ID NO:63, and SEQ ID NO:64, or a sequence with 95-99% identity thereto.
  • the isolated nucleic acid molecule comprises (e.g., consists of) a nucleic acid encoding a CAR amino acid sequence of SEQ ID NO: 91, SEQ ID NO: 92, SEQ ID NO: 93, SEQ ID NO: 94, SEQ ID NO: 95, SEQ ID NO: 96, SEQ ID NO: 97, SEQ ID NO: 98, SEQ ID NO: 99, SEQ ID NO: 100, SEQ ID NO: 101, SEQ ID NO: 102, SEQ ID NO:103, or SEQ ID NO: 197; or an amino acid sequence having one, two or three modifications (e.g., substitutions, e.g., conservative substitutions) but not more than 30, 20, or 10 modifications of an amino acid sequence of SEQ ID NO: 91, SEQ ID NO: 92, SEQ ID NO: 93, SEQ ID NO: 94, SEQ ID NO: 95, SEQ ID NO: 96, SEQ ID NO: 97, SEQ ID NO:
  • the isolated nucleic acid molecule comprises (e.g., consists of) a nucleic acid sequence of SEQ ID NO: 104, SEQ ID NO: 105, SEQ ID NO: 106, SEQ ID NO:
  • the invention pertains to an isolated nucleic acid molecule encoding an anti-CLL-1 binding domain, wherein the anti-CLL-1 binding domain comprises one or more (e.g., all three) light chain complementary determining region 1 (LC CDR1), light chain complementary determining region 2 (LC CDR2), and light chain complementary determining region 3 (LC CDR3) of an anti-CLL-1 binding domain described herein, and/or one or more (e.g., all three) heavy chain complementary determining region 1 (HC CDR1), heavy chain complementary determining region 2 (HC CDR2), and heavy chain complementary
  • LC CDR1 light chain complementary determining region 1
  • HC CDR2 heavy chain complementary determining region 2
  • HC CDR3 heavy chain complementary determining region 3
  • determining region 3 of an anti-CLL-1 binding domain described herein, e.g., a human anti-CLL-1 binding domain comprising one or more, e.g., all three, LC CDRs and one or more, e.g., all three, HC CDRs.
  • the CLL-1 binding domain comprises a HC CDRl, a HC CDR2, and a HC CDR3 of any CLL-1 heavy chain binding domain amino acid sequences listed in Table 2.
  • the CLL-1 binding domain further comprises a LC CDRl, a LC
  • the CLL-1 binding domain comprises a LC CDRl, a LC CDR2, and a LC CDR3) ⁇ of any CLL-1 light chain binding domain amino acid sequences listed in Table 2.
  • the CLL-1 binding domain comprises one, two or all of LC CDRl, LC CDR2, and LC CDR3 of any CLL-1 light chain binding domain amino acid sequences listed in Table 2, and one, two or all of HC CDRl, HC CDR2, and HC CDR3 of any CLL-1 heavy chain binding domain amino acid sequences listed in Table 2.
  • the encoded anti-CLL-1 binding domain comprises a light chain variable region described herein (e.g., in SEQ ID NO:78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, or 196) and/or a heavy chain variable region described herein (e.g., in SEQ ID NO:65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, or 195).
  • a light chain variable region described herein e.g., in SEQ ID NO:78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, or 196
  • a heavy chain variable region described herein e.g., in SEQ ID NO:65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, or
  • the encoded anti- CLL-1 binding domain is a scFv comprising a light chain and a heavy chain of an amino acid sequence of in SEQ ID NO:39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, or 51.
  • the anti-CLL-1 binding domain (e.g., an scFv) comprises: a light chain variable region comprising an amino acid sequence having at least one, two or three modifications (e.g., substitutions, e.g., conservative substitutions) but not more than 30, 20 or 10 modifications (e.g., substitutions, e.g., conservative substitutions) of an amino acid sequence of a light chain variable region provided in SEQ ID NO: 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, or 196, or a sequence with 95-99% identity with an amino acid sequence of SEQ ID NO: 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, or 196; and/or a heavy chain variable region comprising an amino acid sequence having at least one, two or three modifications (e.g., substitutions, e.g., conservative substitutions)
  • the anti-CLL-1 binding domain comprises a sequence selected from a group consisting of SEQ ID NO: 39, SEQ ID NO:40, SEQ ID NO:41, SEQ ID NO:42, SEQ ID NO:43, SEQ ID NO:44, SEQ ID NO:45, SEQ ID NO:46, SEQ ID NO:47, SEQ ID NO:48, SEQ ID NO:49, SEQ ID NO:50, and SEQ ID NO:51, or a sequence with 95-99% identify thereof.
  • the encoded anti- CLL-1 binding domain is a scFv, and a light chain variable region comprising an amino acid sequence described herein, e.g., in Table 2, is attached to a heavy chain variable region comprising an amino acid sequence described herein, e.g., in Table 2, via a linker, e.g., a linker described herein.
  • the encoded anti-CLL-1 binding domain includes a (Gly 4 -Ser)n linker, wherein n is 1, 2, 3, 4, 5, or 6, preferably 4 (SEQ ID NO: 26).
  • the light chain variable region and heavy chain variable region of a scFv can be, e.g., in any of the following orientations: light chain variable region-linker-heavy chain variable region or heavy chain variable region-linker-light chain variable region.
  • the isolated nucleic acid sequence encoding the human anti-CLL-1 binding domain comprises a sequence selected from a group consisting of SEQ ID NO:52, SEQ ID NO:53, SEQ ID NO:54, SEQ ID NO:55, SEQ ID NO:56, SEQ ID NO:57, SEQ ID NO:58, SEQ ID NO:59, SEQ ID NO:60, SEQ ID NO:61, SEQ ID NO:62, SEQ ID NO:63, and SEQ ID NO:64, or a sequence with 95- 99% identity thereof.
  • the invention pertains to an isolated CAR (e.g., a polypeptide) molecule encoded by the nucleic acid molecule.
  • the isolated CAR molecule comprises a sequence selected from the group consisting of SEQ ID NO:91, SEQ ID NO:92, SEQ ID NO:93, SEQ ID NO:94, SEQ ID NO:95, SEQ ID NO:96, SEQ ID NO:97, SEQ ID NO:98, SEQ ID NO:99, SEQ ID NO:100, SEQ ID NO:101, SEQ ID NO:102, SEQ ID NO: 103, and SEQ ID NO: 197 or a sequence with 95-99% identify thereof.
  • the invention pertains to an isolated chimeric antigen receptor (CAR) molecule (e.g., polypeptide) comprising an anti-CLL-1 binding domain (e.g., a human antibody or antibody fragment that specifically binds to CLL-1), a transmembrane domain, and an intracellular signaling domain (e.g., an intracellular signaling domain comprising a CAR molecule
  • CAR chimeric antigen receptor
  • the CAR comprises an antibody or antibody fragment which includes an anti-CLL-1 binding domain described herein (e.g., a human antibody or antibody fragment that specifically binds to CLL-1 as described herein), a transmembrane domain described herein, and an intracellular signaling domain described herein (e.g., an intracellular signaling domain comprising a costimulatory domain and/or a primary signaling domain described herein).
  • an anti-CLL-1 binding domain described herein e.g., a human antibody or antibody fragment that specifically binds to CLL-1 as described herein
  • a transmembrane domain described herein e.g., a transmembrane domain described herein
  • an intracellular signaling domain described herein e.g., an intracellular signaling domain comprising a costimulatory domain and/or a primary signaling domain described herein.
  • the anti-CLL-1 binding domain comprises one or more (e.g., all three) light chain complementary determining region 1 (LC CDRl), light chain complementary determining region 2 (LC CDR2), and light chain complementary determining region 3 (LC CDR3) of an anti-CLL-1 binding domain described herein, and/or one or more (e.g., all three) heavy chain complementary determining region 1 (HC CDRl), heavy chain complementary determining region 2 (HC CDR2), and heavy chain complementary determining region 3 (HC CDR3) of an anti-CLL-1 binding domain described herein, e.g., a human anti-CLL-1 binding domain comprising one or more, e.g., all three, LC CDRs and one or more, e.g., all three, HC CDRs.
  • LC CDRl light chain complementary determining region 1
  • HC CDR2 light chain complementary determining region 2
  • HC CDR3 light chain complementary determining region 3
  • the anti-CLL-1 binding domain comprises a light chain variable region described herein (e.g., in Table 2) and/or a heavy chain variable region described herein (e.g., in Table 2).
  • the anti-CLL-1 binding domain is a scFv comprising a light chain and a heavy chain of an amino acid sequence listed in Table 2.
  • the anti-CLL-1 binding domain (e.g., an scFv) comprises: a light chain variable region comprising an amino acid sequence having at least one, two or three modifications (e.g., substitutions, e.g., conservative substitutions) but not more than 30, 20 or 10 modifications (e.g., substitutions, e.g., conservative substitutions) of an amino acid sequence of a light chain variable region provided in Table 2, or a sequence with 95-99% identity with an amino acid sequence provided in Table 2; and/or a heavy chain variable region comprising an amino acid sequence having at least one, two or three modifications (e.g., substitutions, e.g., conservative substitutions) but not more than 30, 20 or 10 modifications (e.g., substitutions, e.g., conservative substitutions) of an amino acid sequence of a heavy chain variable region provided in Table 2, or a sequence with 95-99% identity to an amino acid sequence provided in Table 2.
  • a light chain variable region comprising an amino acid sequence having at least one, two or three modifications
  • the encoded CLL-1 binding domain comprises a HC CDRl, a HC CDR2, and a HC CDR3 of any CLL-1 heavy chain binding domain amino acid sequences listed in Table 2.
  • the CLL-1 binding domain further comprises a LC CDRl, a LC CDR2, and a LC CDR3.
  • the CLL-1 binding domain comprises a LC CDRl, a LC CDR2, and a LC CDR3 of any CLL-1 light chain binding domain amino acid sequences listed in Table 2.
  • the encoded CLL-1 binding domain comprises one, two or all of LC CDR1, LC CDR2, and LC CDR3 of any CLL-1 light chain binding domain amino acid sequences listed in Table 2, and one, two or all of HC CDR1, HC CDR2, and HC CDR3 of any CLL-1 heavy chain binding domain amino acid sequences listed in Table 2.
  • the anti-CLL-1 binding domain comprises a sequence selected from a group consisting of SEQ ID NO:39, SEQ ID NO:40, SEQ ID NO:41, SEQ ID NO:42, SEQ ID NO:43, SEQ ID NO:44, SEQ ID NO:45, SEQ ID NO:46, SEQ ID NO:47, SEQ ID NO:48, SEQ ID NO:49, SEQ ID NO:50, SEQ ID NO:51, SEQ ID NO: 65-90, or SEQ ID NO: 195-196, or an amino acid sequence having at least one, two or three modifications (e.g., substitutions, e.g., conservative substitutions) but not more than 30, 20 or 10 modifications (e.g., substitutions, e.g., conservative substitutions) to any of the aforesaid sequences; or a sequence with 95-99% identify thereof.
  • modifications e.g., substitutions, e.g., conservative substitutions
  • substitutions e.g., conservative substitutions
  • the anti-CLL-1 binding domain is a scFv, and a light chain variable region comprising an amino acid sequence described herein, e.g., in Table 2, is attached to a heavy chain variable region comprising an amino acid sequence described herein, e.g., in Table 2, via a linker, e.g., a linker described herein.
  • a linker e.g., a linker described herein.
  • the anti-CLL-1 binding domain includes a (Gly 4 -Ser)n linker, wherein n is 1, 2, 3, 4, 5, or 6, preferably 4 (SEQ ID NO: 26).
  • the light chain variable region and heavy chain variable region of a scFv can be, e.g., in any of the following orientations: light chain variable region-linker-heavy chain variable region or heavy chain variable region-linker- light chain variable region.
  • the isolated CAR molecule comprises a transmembrane domain of a protein selected from the group consisting of the alpha, beta or zeta chain of the T-cell receptor, CD28, CD3 epsilon, CD45, CD4, CD5, CD8, CD9, CD16, CD22, CD33, CD37, CD64, CD80, CD86, CD 134, CD 137 and CD 154.
  • the transmembrane domain comprises a sequence of SEQ ID NO: 6.
  • the transmembrane domain comprises an amino acid sequence having at least one, two or three modifications (e.g., substitutions, e.g., conservative substitutions) but not more than 20, 10 or 5 modifications (e.g., substitutions, e.g., conservative substitutions) of an amino acid sequence of SEQ ID NO: 6, or a sequence with 95-99% identity to an amino acid sequence of SEQ ID NO: 6.
  • the anti-CLL-1 binding domain is connected to the transmembrane domain by a hinge region, e.g., a hinge region described herein.
  • the encoded hinge region comprises SEQ ID NO:2, or a sequence with 95-99% identity thereof.
  • the intracellular signaling domain of the isolated CAR molecule comprises a costimulatory domain. In embodiments, the intracellular signaling domain of the isolated CAR molecule comprises a primary signaling domain. In embodiments, the intracellular signaling domain of the isolated CAR molecule comprises a costimulatory domain and a primary signaling domain. In one embodiment, the isolated CAR molecule further comprises a sequence encoding a costimulatory domain, e.g., a costimulatory domain described herein.
  • the costimulatory domain comprises a functional signaling domain of a protein selected from the group consisting of a MHC class I molecule, TNF receptor proteins, Immunoglobulin-like proteins, cytokine receptors, integrins, signaling lymphocytic activation molecules (SLAM proteins), activating NK cell receptors, BTLA, a Toll ligand receptor, OX40, CD2, CD7, CD27, CD28, CD30, CD40, CDS, ICAM-1, LFA-1
  • a functional signaling domain of a protein selected from the group consisting of a MHC class I molecule, TNF receptor proteins, Immunoglobulin-like proteins, cytokine receptors, integrins, signaling lymphocytic activation molecules (SLAM proteins), activating NK cell receptors, BTLA, a Toll ligand receptor, OX40, CD2, CD7, CD27, CD28, CD30, CD40, CDS, ICAM-1, LFA-1
  • CDl la/CD18 4-lBB (CD137), B7-H3, CDS, ICAM-1, ICOS (CD278), GITR, BAFFR, LIGHT, HVEM (LIGHTR), KIRDS2, SLAMF7, NKp80 (KLRF1), NKp44, NKp30, NKp46, CD19, CD4, CD8alpha, CD8beta, IL2R beta, IL2R gamma, IL7R alpha, ITGA4, VLA1, CD49a, ITGA4, IA4, CD49D, ITGA6, VLA-6, CD49f, ITGAD, CDl ld, ITGAE, CD103, ITGAL, CDl la, LFA-1, ITGAM, CDl lb, ITGAX, CDl lc, ITGB1, CD29, ITGB2, CD18, LFA-1, ITGB7, NKG2D, NKG2C, TNFR2, TRANCE/RANKL, DNAM1 (CD226),
  • the costimulatory domain of 4-lBB comprises the amino acid sequence of SEQ ID NO:7.
  • the costimulatory domain comprises an amino acid sequence having at least one, two or three modifications (e.g., substitutions, e.g., conservative substitutions) but not more than 20, 10 or 5 modifications (e.g., substitutions, e.g., conservative substitutions) of an amino acid sequence of SEQ ID NO:7, or a sequence with 95-99% identity to an amino acid sequence of SEQ ID NO:7.
  • the costimulatory domain of CD28 comprises the amino acid sequence of SEQ ID NO:482.
  • the costimulatory domain comprises an amino acid sequence having at least one, two or three modifications but not more than 20, 10 or 5 modifications of an amino acid sequence of SEQ ID NO:482, or a sequence with 95-99% identity to an amino acid sequence of SEQ ID NO:482.
  • the costimulatory domain of CD27 comprises the amino acid sequence of SEQ ID NO: 8.
  • the costimulatory domain comprises an amino acid sequence having at least one, two or three modifications but not more than 20, 10 or 5 modifications of an amino acid sequence of SEQ ID NO:8, or a sequence with 95-99% identity to an amino acid sequence of SEQ ID NO: 8.
  • the costimulatory domain of ICOS comprises the amino acid sequence of SEQ ID NO:484.
  • the costimulatory domain comprises an amino acid sequence having at least one, two or three modifications but not more than 20, 10 or 5 modifications of an amino acid sequence of SEQ ID NO:484, or a sequence with 95-99% identity to an amino acid sequence of SEQ ID NO:484.
  • the primary signaling domain comprises a functional signaling domain of CD3 zeta.
  • the functional signaling domain of CD3 zeta comprises the amino acid sequence of SEQ ID NO: 9 (mutant CD3 zeta) or SEQ ID NO: 10 (wild type human CD3 zeta), or a sequence with 95-99% identity thereof.
  • the intracellular signaling domain comprises a functional signaling domain of 4- IBB and/or a functional signaling domain of CD3 zeta. In one embodiment, the intracellular signaling domain comprises the sequence of SEQ ID NO: 7 and/or the sequence of SEQ ID NO:9 or SEQ ID NO: 10.
  • the intracellular signaling domain comprises an amino acid sequence having at least one, two or three modifications (e.g., substitutions, e.g., conservative substitutions) but not more than 20, 10 or 5 modifications (e.g., substitutions, eg., conservative substitutions) of an amino acid sequence of SEQ ID NO: 7 and/or the sequence of SEQ ID NO:9 or SEQ ID NO: 10., or a sequence with 95-99% identity to an amino acid sequence of SEQ ID NO: 7 and/or the sequence of SEQ ID NO:9 or SEQ ID NO: 10..
  • the intracellular signaling domain comprises the sequence of SEQ ID NO: 7 and/or the sequence of SEQ ID NO:9 or SEQ ID NO: 10, wherein the sequences comprising the intracellular signaling domain are expressed in the same frame and as a single polypeptide chain.
  • the intracellular signaling domain comprises a functional signaling domain of CD27 and/or a functional signaling domain of CD3 zeta.
  • the intracellular signaling domain of CD27 comprises the amino acid sequence of SEQ ID NO: 8 and/or the CD3 zeta amino acid sequence of SEQ ID NO:9 or SEQ ID NO: 10.
  • the intracellular signaling domain comprises an amino acid sequence having at least one, two or three modifications but not more than 20, 10 or 5 modifications of an amino acid sequence of SEQ ID NO:8 and/or an amino acid sequence of SEQ ID NO:9 or SEQ ID NO: 10, or a sequence with 95-99% identity to an amino acid sequence of SEQ ID NO:8 and/or an amino acid sequence of SEQ ID NO:9 or SEQ ID NO: 10.
  • the intracellular signaling domain comprises the sequence of SEQ ID NO: 8 and the sequence of SEQ ID NO:9 or SEQ ID NO: 10, wherein the sequences comprising the intracellular signaling domain are expressed in the same frame and as a single polypeptide chain.
  • the intracellular signaling domain comprises a functional signaling domain of CD28 and/or a functional signaling domain of CD3 zeta.
  • the encoded intracellular signaling domain of CD28 comprises the amino acid sequence of SEQ ID NO: 482 and/or the CD3 zeta amino acid sequence of SEQ ID NO:9 or SEQ ID NO: 10.
  • the intracellular signaling domain comprises an amino acid sequence having at least one, two or three modifications but not more than 20, 10 or 5 modifications of an amino acid sequence of SEQ ID NO: 482 and/or an amino acid sequence of SEQ ID NO:9 or SEQ ID NO: 10, or a sequence with 95-99% identity to an amino acid sequence of SEQ ID NO: 482 and/or an amino acid sequence of SEQ ID NO:9 or SEQ ID NO: 10.
  • the intracellular signaling domain comprises the sequence of SEQ ID NO: 482 and the sequence of SEQ ID NO:9 or SEQ ID NO: 10, wherein the sequences comprising the intracellular signaling domain are expressed in the same frame and as a single polypeptide chain.
  • the intracellular signaling domain comprises a functional signaling domain of ICOS and/or a functional signaling domain of CD3 zeta.
  • the encoded intracellular signaling domain of ICOS comprises the amino acid sequence of SEQ ID NO: 484 and/or the CD3 zeta amino acid sequence of SEQ ID NO:9 or SEQ ID NO: 10.
  • the intracellular signaling domain comprises an amino acid sequence having at least one, two or three modifications but not more than 20, 10 or 5 modifications of an amino acid sequence of SEQ ID NO: 484 and/or an amino acid sequence of SEQ ID NO:9 or SEQ ID NO: 10, or a sequence with 95-99% identity to an amino acid sequence of SEQ ID NO: 482 and/or an amino acid sequence of SEQ ID NO:9 or SEQ ID NO: 10.
  • the intracellular signaling domain comprises the sequence of SEQ ID NO: 484 and the sequence of SEQ ID NO:9 or SEQ ID NO: 10, wherein the sequences comprising the intracellular signaling domain are expressed in the same frame and as a single polypeptide chain.
  • the isolated CAR molecule further comprises a leader sequence, e.g., a leader sequence described herein.
  • the leader sequence comprises an amino acid sequence of SEQ ID NO: 1, or a sequence with 95-99% identity to an amino acid sequence of SEQ ID NO:l.
  • the invention pertains to an isolated CAR molecule comprising a leader sequence, e.g., a leader sequence described herein, e.g., a leader sequence of SEQ ID NO: 1, or having 95-99% identity thereof, an anti-CLL-1 binding domain described herein, e.g., an anti-CLL-1 binding domain comprising a LC CDR1, a LC CDR2, a LC CDR3, a HC CDR1, a HC CDR2 and a HC CDR3 described herein, e.g., an anti-CLL-1 binding domain described in Table 2, or a sequence with 95-99% identify thereof, a hinge region, e.g., a hinge region described herein, e.g., a hinge region of SEQ ID NO:2, or having 95-99% identity thereof, a transmembrane domain, e.g., a transmembrane domain described herein, e.g., a transmembrane domain having a sequence of
  • the intracellular signaling domain comprises a costimulatory domain, e.g., a costimulatory domain described herein, e.g., a 4-1BB costimulatory domain having a sequence of SEQ ID NO:7, or having 95-99% identity thereof, and/or a primary signaling domain, e.g., a primary signaling domain described herein, e.g., a CD3 zeta stimulatory domain having a sequence of SEQ ID NO:9 or SEQ ID NO: 10, or having 95-99% identity thereof.
  • the intracellular signaling domain comprises a costimulatory domain, e.g., a costimulatory domain described herein, e.g., a 4-1BB
  • costimulatory domain having a sequence of SEQ ID NO:7, and/or a primary signaling domain, e.g., a primary signaling domain described herein, e.g., a CD3 zeta stimulatory domain having a sequence of SEQ ID NO:9 or SEQ ID NO: 10.
  • the isolated CAR molecule comprises (e.g., consists of) an amino acid sequence of SEQ ID NO:91, SEQ ID NO:92, SEQ ID NO:93, SEQ ID NO:94, SEQ ID NO:95, SEQ ID NO:96, SEQ ID NO:97, SEQ ID NO:98, SEQ ID NO:99, SEQ ID NO: 100, SEQ ID NO:101, SEQ ID NO:102, SEQ ID NO: 103, or SEQ ID NO:197, or an amino acid sequence having at least one, two, three, four, five, 10, 15, 20 or 30 modifications (e.g., substitutions, e.g., conservative substitutions) but not more than 60, 50 or 40 modifications (e.g., substitutions, e.g., conservative substitutions) of an amino acid sequence of SEQ ID NO:91, SEQ ID NO:92, SEQ ID NO:93, SEQ ID NO:94, SEQ ID NO:95, SEQ ID NO:96, SEQ ID NO:97, SEQ
  • the invention pertains to an anti-CLL-1 binding domain comprising one or more (e.g., all three) light chain complementary determining region 1 (LC CDRl), light chain complementary determining region 2 (LC CDR2), and light chain complementary determining region 3 (LC CDR3) of an anti-CLL-1 binding domain described herein, and/or one or more (e.g., all three) heavy chain complementary determining region 1 (HC CDRl), heavy chain complementary determining region 2 (HC CDR2), and heavy chain
  • HC CDR3 complementary determining region 3 of an anti-CLL-1 binding domain described herein, e.g., a human anti-CLL-1 binding domain comprising one or more, e.g., all three, LC CDRs and one or more, e.g., all three, HC CDRs.
  • the encoded CLL-1 binding domain comprises a HC CDRl, a
  • the CLL-1 binding domain further comprises a LC CDRl, a LC CDR2, and a LC CDR3.
  • the CLL-1 binding domain comprises a LC CDRl, a LC CDR2, and a LC CDR3 of any CLL-1 light chain binding domain amino acid sequences listed in Table 2.
  • the encoded CLL-1 binding domain comprises one, two or all of LC CDRl, LC CDR2, and LC CDR3 of any CLL-1 light chain binding domain amino acid sequences listed in Table 2, and one, two or all of HC CDRl, HC CDR2, and HC CDR3 of any CLL-1 heavy chain binding domain amino acid sequences listed in Table 2.
  • the anti-CLL-1 binding domain comprises a light chain variable region described herein (e.g., in SEQ ID NO: 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, or 196) and/or a heavy chain variable region described herein (e.g.
  • the anti-CLL-1 binding domain is a scFv comprising a light chain and a heavy chain of an amino acid sequence of SEQ ID NO:39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, or 51.
  • the anti-CLL-1 binding domain (e.g., an scFv) comprises: a light chain variable region comprising an amino acid sequence having at least one, two or three modifications (e.g., substitutions, e.g., conservative substitutions) but not more than 30, 20 or 10 modifications (e.g., substitutions, e.g., conservative substitutions) of an amino acid sequence of a light chain variable region provided, in SEQ ID NO: 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, or 196 or a sequence with 95-99% identity with an amino acid sequence in SEQ ID NO: 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, or 196; and/or a heavy chain variable region comprising an amino acid sequence having at least one, two or three modifications (e.g., substitutions, e.g., conservative substitutions)
  • the anti-CLL-1 binding domain comprises a sequence selected from a group consisting of SEQ ID NO:39, SEQ ID NO:40, SEQ ID NO:41, SEQ ID NO:42, SEQ ID NO:43, SEQ ID NO:44, SEQ ID NO:45, SEQ ID NO:46, SEQ ID NO:47, SEQ ID NO:48, SEQ ID NO:49, SEQ ID NO:50, or SEQ ID NO:51 or a sequence with 95-99% identify thereof.
  • the anti-CLL-1 binding domain is a scFv, and a light chain variable region comprising an amino acid sequence described herein, e.g., in Table 2, is attached to a heavy chain variable region comprising an amino acid sequence described herein, e.g., in Table 2, via a linker, e.g., a linker described herein.
  • the anti-CLL-1 binding domain includes a (Gly 4 -Ser)n linker, wherein n is 1, 2, 3, 4, 5, or 6, preferably 4 (SEQ ID NO: 26).
  • the light chain variable region and heavy chain variable region of a scFv can be, e.g., in any of the following orientations: light chain variable region-linker- heavy chain variable region or heavy chain variable region-linker-light chain variable region.
  • the invention pertains to a vector comprising a nucleic acid molecule described herein, e.g., a nucleic acid molecule encoding a CAR described herein.
  • the vector is selected from the group consisting of a DNA, a RNA, a plasmid, a lentivirus vector, adenoviral vector, or a retrovirus vector.
  • the vector is a lentivirus vector.
  • the vector further comprises a promoter.
  • the promoter is an EF-1 promoter.
  • the EF-1 promoter comprises a sequence of SEQ ID NO: 11.
  • the promoter is a PGK promoter, e.g., a truncated PGK promoter as described herein.
  • the vector is an in vitro transcribed vector, e.g., a vector that transcribes RNA of a nucleic acid molecule described herein.
  • the nucleic acid sequence in the vector further comprises a poly(A) tail, e.g., a poly A tail described herein, e.g., comprising about 150 adenosine bases (SEQ ID NO:312).
  • the nucleic acid sequence in the vector further comprises a 3'UTR, e.g., a 3' UTR described herein, e.g., comprising at least one repeat of a 3'UTR derived from human beta-globulin.
  • the nucleic acid sequence in the vector further comprises promoter, e.g., a T2A promoter.
  • the invention pertains to a cell comprising a vector described herein.
  • the cell is a cell described herein, e.g., an immune effector cell, e.g., a human T cell, e.g., a human T cell described herein; or a human NK cell, e.g., a human NK cell described herein.
  • the human T cell is a CD8+ T cell.
  • the CAR-expressing cell described herein can further express another agent, e.g., an agent which enhances the activity of a CAR-expressing cell.
  • the agent can be an agent which inhibits an inhibitory molecule.
  • inhibitory molecules include PD1, PD-L1, PD-L2, CTLA4, TIM3, CEACAM (e.g., CEACAM- 1, CEACAM-3 and/or CEACAM-5), LAG3, VISTA, BTLA, TIGIT, LAIR1, CD160, 2B4, CD80, CD86, B7-H3 (CD276), B7-H4 (VTCN1), HVEM (TNFRSF14 or CD270), KIR, A2aR, MHC class I, MHC class II, GAL9, adenosine, and TGFR beta.
  • the agent which inhibits an inhibitory molecule comprises a first polypeptide, e.g., an inhibitory molecule, associated with a second polypeptide that provides a positive signal to the cell, e.g., an intracellular signaling domain described herein.
  • the agent comprises a first polypeptide, e.g., of an inhibitory molecule such as PD1, PD-L1, PD-L2, CTLA4, TIM3, CEACAM (e.g., CEACAM-1, CEACAM-3 and/or CEACAM-5), LAG3, VISTA, BTLA, TIGIT, LAIR1, CD160, 2B4, CD80, CD86, B7-H3 (CD276), B7-H4 (VTCN1), HVEM (TNFRSF14 or CD270), KIR, A2aR, MHC class I, MHC class II, GAL9, adenosine, and TGFR beta, or a fragment of any of these (e.g., at least a portion of the extracellular domain of any of these), and a second polypeptide which is an intracellular signaling domain described herein (e.g., comprising a costimulatory domain (e.g., 41BB, CD27 or CD28, e.g., as described
  • the agent comprises a first polypeptide of PD1 or a fragment thereof (e.g., at least a portion of the extracellular domain of PD1), and a second polypeptide of an intracellular signaling domain described herein (e.g., a CD28 signaling domain described herein and/or a CD3 zeta signaling domain described herein).
  • a first polypeptide of PD1 or a fragment thereof e.g., at least a portion of the extracellular domain of PD1
  • a second polypeptide of an intracellular signaling domain described herein e.g., a CD28 signaling domain described herein and/or a CD3 zeta signaling domain described herein.
  • the invention pertains to a method of making a cell comprising transducing a cell described herein, e.g., an immune effector cell described herein, e.g., a T cell or a NK cell described herein, with a vector of comprising a nucleic acid encoding a CAR, e.g., a CAR described herein.
  • the present invention also provides a method of generating a population of RNA- engineered cells, e.g., cells described herein, e.g., immune effector cells, e.g., T cells or NK cells, transiently expressing exogenous RNA.
  • the method comprises introducing an in vitro transcribed RNA or synthetic RNA into a cell, where the RNA comprises a nucleic acid encoding a CAR molecule described herein.
  • the invention pertains to a method of providing an anti-tumor immunity in a mammal comprising administering to the mammal an effective amount of a cell expressing a CAR molecule, e.g., a cell expressing a CAR molecule described herein.
  • the cell is an autologous immune effector cell, e.g., T cell.
  • the cell is an allogeneic immune effector cell, e.g., T cell.
  • the mammal is a human, e.g., a patient with a hematologic cancer.
  • the invention pertains to a method of treating a mammal having a disease associated with expression of CLL-1 (e.g., a proliferative disease, a precancerous condition, and a noncancer related indication associated with the expression of CLL-1) comprising administering to the mammal an effective amount of the cells expressing a CAR molecule, e.g., a CAR molecule described herein.
  • the mammal is a human, e.g., a patient with a hematologic cancer.
  • the disease is a disease described herein.
  • the disease associated with CLL-1 expression is selected from a hematologic cancer such as acute leukemias including but not limited to acute myeloid leukemia (AML); myelodysplastic syndrome; myeloproliferative neoplasms; chronic myeloid leukemia (CML); Blastic plasmacytoid dendritic cell neoplasm; and to disease associated with CLL-1 expression including, but not limited to atypical and/or non-classical cancers, malignancies, precancerous conditions or proliferative diseases expressing CLL-1; and combinations thereof.
  • AML acute myeloid leukemia
  • CML chronic myeloid leukemia
  • Blastic plasmacytoid dendritic cell neoplasm Blastic plasmacytoid dendritic cell neoplasm
  • the disease associated with CLL-1 expression is a hematologic cancer selected from the group consisting of one or more acute leukemias including but not limited to acute myelogenous leukemia (or acute myeloid leukemia, AML); chronic myelogenous leukemia (or chronic myeloid leukemia, CML): acute lymphoid leukemia (or acute lymphoblastic leukemia, ALL); chronic lymphoid leukemia (or chronic lymphocytic leukemia, CLL) and
  • BALL B-cell acute lymphoid leukemia
  • TALL T-cell acute lymphoid leukemia
  • ALL acute lymphoid leukemia
  • ALL one or more chronic leukemias including but not limited to chronic myelogenous leukemia (CML), chronic lymphocytic leukemia (CLL);
  • additional hematologic cancers or hematologic conditions including, but not limited to B cell prolymphocytic leukemia, blastic plasmacytoid dendritic cell neoplasm, lymphomas including but not limited to multiple myeloma; non-Hodgkin's lymphoma; Burkitt's lymphoma; small cell-follicular lymphoma; and large cell-follicular lymphomaBurkitt's lymphoma, diffuse large B cell lymphoma, follicular lymphoma, hairy cell leukemia, small cell- or a large cell-follicular lymphoma, malignant lymphoproliferative conditions, MALT lymphoma, mantle cell lymphoma, Marginal zone lymphoma, multiple myeloma, myelodysplasia and myelodysplastic syndrome, Hodgkin's lymphoma, plasmablastic lymphoma, plasmacytoid dendritic cell neoplasm
  • the invention pertains to a method of conditioning a subject prior to cell transplantation comprising administering to the subject an effective amount of the cell of comprising a CAR molecule disclosed herein.
  • the cell transplantation is a stem cell transplantation.
  • the stem cell transplantation is a hematopoietic stem cell stransplantation or a bone marrow transplantation.
  • the cell transplantation is allogeneic or autologous.
  • the conditioning a subject prior to cell transplantation comprises reducing the number of CLL-1 -expressing cells in a subject.
  • the CLL-1 -expressing cells in the subject are CLL-1 -expressing normal cells or CLL-1 -expressing cancer cells, and in some cases, the condition in the subject will reduce both CLL-1 -expressing normal and cancer cells prior to a cell transplantation.
  • the cells expressing a CAR molecule are administered in combination with an agent that increases the efficacy of a cell expressing a CAR molecule, e.g., an agent described herein.
  • the cells expressing a CAR molecule are administered in combination with a low, immune enhancing dose of an mTOR inhibitor.
  • a low, immune enhancing, dose e.g., a dose that is insufficient to completely suppress the immune system but sufficient to improve immune function
  • treatment with a low, immune enhancing, dose is accompanied by a decrease in PD-1 positive T cells or an increase in PD-1 negative cells.
  • PD-1 positive T cells, but not PD-1 negative T cells can be exhausted by engagement with cells which express a PD-1 ligand, e.g., PD-L1 or PD-L2.
  • this approach can be used to optimize the performance of CAR cells described herein in the subject. While not wishing to be bound by theory, it is believed that, in an embodiment, the performance of endogenous, non-modified immune effector cells, e.g., T cells, is improved. While not wishing to be bound by theory, it is believed that, in an embodiment, the performance of of a CLL-1 CAR expressing cell is improved.
  • cells e.g., T cells, which have, or will be that expresses a CAR
  • cells can be treated ex vivo by contact with an amount of an mTOR inhibitor that increases the number of PD1 negative immune effector cells, e.g., T cells or increases the ratio of PD1 negative immune effector cells, e.g., T cells/ PD1 positive immune effector cells, e.g., T cells.
  • administering is initiated prior to administration of an CAR expressing cell described herein, e.g., T cells.
  • an mTOR inhibitor e.g., an allosteric inhibitor, e.g., RAD001, or a catalytic inhibitor
  • the CAR cells are administered after a sufficient time, or sufficient dosing, of an mTOR inhibitor, such that the level of PDl negative immune effector cells, e.g., T cells, or the ratio of PDl negative immune effector cells, e.g., T cells/ PDl positive immune effector cells, e.g., T cells, has been, at least transiently, increased.
  • the invention provides an mTOR inhibitor for use in the treatment of a subject, wherein said mTOR inhibitor enhances an immune response of said subject, and wherein said subject has received, is receiving or is about to receive an immune effector cell that expresses a CLL-1 CAR as described herein.
  • the cell, e.g., T cell, to be engineered to express a CAR is harvested after a sufficient time, or after sufficient dosing of the low, immune enhancing, dose of an mTOR inhibitor, such that the level of PDl negative immune effector cells, e.g., T cells, or the ratio of PDl negative immune effector cells, e.g., T cells/ PDl positive immune effector cells, e.g., T cells, in the subject or harvested from the subject has been, at least transiently, increased.
  • the cells expressing a CAR molecule are administered in combination with an agent that ameliorates one or more side effect associated with administration of a cell expressing a CAR molecule, e.g., an agent described herein.
  • the cells expressing a CAR molecule are administered in combination with an agent that treats the disease associated with CLL-1, e.g., an agent described herein.
  • the cells expressing a CAR molecule are administered in combination with a chemotherapeutic agent, e.g., a chemotherapeutic agent described herein.
  • the chemotherapeutic agent is administered prior to administration of the cell expressing a CAR molecule, e.g., a CAR molecule described herein.
  • the chemotherapeutic regimen is initiated or completed prior to administration of a cell expressing a CAR molecule, e.g., a CAR molecule described herein.
  • the chemotherapeutic agent is administered at least 5 days, 10 days, 15 days, 30 days prior to administration of the cell expressing the CAR molecule.
  • the chemotherapeutic agent is administered at least 5 days, 10 days, 15 days, 30 days prior to administration of the cell expressing the CAR molecule.
  • the chemotherapeutic agent is administered at least 5 days, 10 days, 15 days, 30 days prior to administration of the cell expressing the CAR molecule.
  • chemotherapeutic agent is a chemotherapeutic agent that increases CLL-1 expression on the cancer cells, e.g., the tumor cells, e.g., as compared to CLL-1 expression on normal or non- cancer cells.
  • the chemotherapeutic agent is cytarabine (Ara-C).
  • the combination of chemotherapy and a cell expressing a CAR molecule described herein is useful for treating a hematological cancer, e.g., a leukemia, e.g., AML, or a minimal residual disease (MRD) of a hematological cancer described herein.
  • the invention pertains to the isolated nucleic acid molecule encoding a CAR of the invention, the isolated polypeptide molecule of a CAR of the invention, the vector comprising a CAR of the invention, and the cell comprising a CAR of the invention for use as a medicament, e.g., as described herein.
  • the invention pertains to a the isolated nucleic acid molecule encoding a CAR of the invention, the isolated polypeptide molecule of a CAR of the invention, the vector comprising a CAR of the invention, and the cell comprising a CAR of the invention for use in the treatment of a disease expressing CLL-1, e.g., a disease expressing CLL-1 as described herein.
  • the CLL-1 CAR molecule e.g., a CLL-1 CAR nucleic acid or a CLL-1 CAR polypeptide as described herein
  • the CLL-1 binding domain as described herein includes one, two or three CDRs from the heavy chain variable region (e.g., HC CDRl, HC CDR2 and/or HC CDR3), provided in Table 3; and/or one, two or three CDRs from the light chain variable region (e.g., LC CDRl, LC CDR2 and/or LC CDR3) of CLL-1 CAR-1, CLL-1 CAR-2, CLL-1 CAR-3, CLL-1 CAR-4, CLL-1 CAR-5, CLL-1 CAR-6, CLL-1 CAR-7, CLL-1 CAR-8, CLL-1 CAR-9, CLL-1 CAR- 10, CLL-1 CAR-11, CLL-1 CAR-
  • the heavy chain variable region e.g., HC CDRl, HC CDR2 and/or HC C
  • the CLL-1 CAR molecule e.g., a CLL-1 CAR nucleic acid or a CLL-1 CAR polypeptide as described herein, or the CLL-1 binding domain as described herein, includes one, two or three CDRs from the heavy chain variable region (e.g., HC CDRl, HC CDR2 and/or HC CDR3), provided in Table 5; and/or one, two or three CDRs from the light chain variable region (e.g., LC CDRl, LC CDR2 and/or LC CDR3) of CLL-1 CAR-1, CLL-1 CAR-2, CLL-1 CAR-3, CLL-1 CAR-4, CLL-1 CAR-5, CLL-1 CAR-6, CLL-1 CAR-7, CLL-1 CAR-8, CLL-1 CAR-9, CLL-1 CAR- 10, CLL-1 CAR-11, CLL-1 CAR- 12, CLL-1 CAR-13
  • the heavy chain variable region e.g., HC CDRl, HC C
  • the CLL-1 CAR molecule (e.g., a CLL-1 CAR nucleic acid or a CLL-1 CAR polypeptide as described herein), or the CLL-1 binding domain as described herein, includes one, two or three CDRs from the heavy chain variable region (e.g., HC CDRl, HC CDR2 and/or HC CDR3), provided in Table 7; and/or one, two or three CDRs from the light chain variable region (e.g., LC CDRl, LC CDR2 and/or LC CDR3) of CLL-1 CAR-1, CLL-1 CAR-2, CLL-1 CAR-3, CLL-1 CAR-4, CLL-1 CAR-5, CLL-1 CAR-6, CLL-1 CAR-7, CLL-1 CAR-8, CLL-1 CAR-9, CLL-1 CAR- 10, CLL-1 CAR-11, CLL-1 CAR- 12, CLL-1 CAR-13, or 181268 provided in Table 8; or a sequence substantially identical (e.g.,
  • the CAR molecule described herein (e.g., the CAR nucleic acid or the CAR polypeptide) includes:
  • LC CDRs chosen from one of the following:
  • the CAR molecule described herein e.g., the CAR nucleic acid or the CAR polypeptide
  • a CLL-1 binding domain includes:
  • LC CDRs chosen from one of the following:
  • SEQ ID NO: 391 of CLL-1 CAR-8 or (ix) a LC CDRl of SEQ ID NO: 364, LC CDR2 of SEQ ID NO: 378 and LC CDR3 of SEQ ID NO: 392 of CLL-1 CAR-9;
  • the CAR molecule described herein (e.g., the CAR nucleic acid or the CAR polypeptide) includes:
  • LC CDRs chosen from one of the following:
  • SEQ ID NO: 476 of CLL-1 CAR-9 (x) a LC CDRl of SEQ ID NO: 449, LC CDR2 of SEQ ID NO: 463 and LC CDR3 of SEQ ID NO: 477 of CLL-1 CAR-10;
  • Figure 1 comprising Figures 1A IB, and 1C, is a series of images demonstrating luciferase levels in target-positive (PL21, THP1, HL60, U937) or target-negative (K562) cell lines mixed with a JNL cell line transduced with anti-CLL-1 CAR.
  • Figure 2 comprising Figures 2A, 2B, and 2C, is a series of images demonstrating CAR expression as evaluated by FACS in a JNL cell line transduced with anti-CLL-1 CAR.
  • Figure 3 is a series of images demonstrating histogram plots of relative fluorescent intensity from that FACS showed the percentage of transduced T cells.
  • Figure 3A shows detection of CART expression in primary T cells using Protein L.
  • Figure 3B shows detection of CART expression in primary T cells using recombinant CLL-1 protein.
  • Figure 4 is a series of images demonstrating anti- CLL-1 CART cell killing of luciferized PL21 (Fig. 4A), HL60 (Fig. 4B) and U87 cells (Fig. 4C).
  • Figure 5 is a series of images demonstrating cytokine production in CART-CLL-1 cells.
  • Untransduced T cells UTD
  • TNF-alpha Fig. 5A
  • IL-2 Fig. 5B
  • IFN interferon-gamma
  • Figure 6 is an image demonstrating that CLL-1 is expressed in most primary patient samples with AML (AML blasts were gated using standard side scatter
  • CLL-1 was measured by flow cytometry using a commercially available antibody (clone HIM3-4, eBioscience)
  • Figure 7 is a series of images demonstrating the transduction efficiency of T cells transduced with CAR.
  • Figure 8 is a series of images demonstrating that CLL1-CART cells undergo specific degranulation to CLL1+ cell lines and primary AML samples.
  • CD107a degranulation was measured by flow cytometry (Fig. 8A).
  • CLL-1 CART cells underwent specific degranulation to THP1 and primary AML samples and not to the control cell line (Fig. 8B).
  • Figure 9 is a series of images demonstrating CLL1- CART cells produce TNF-a after incubation with CLL1+ cell line and primary AML samples.
  • Figure 10 is a series of images demonstrating CLLl-CART cells produce IL-2 after incubation with CLL1+ cell line and primary AML samples..
  • Figure 11 is a series of images demonstrating CLL1- CART cells specifically kill the CLL-1 + cell lines MOLM14 and THP-1 and primary AML samples.
  • CLLl-CART cells results in specific lysis of MOLM14 (Fig. 11D), THP-1 (Fig. 11 A) and the primary AML sample (Fig. 11B) and not to the control cell line JEKO (Fig. 11C), at the indicated E:T ratios.
  • Figure 12 is a series of images demonstrating CLL1- CART cells proliferate in response to MOLM14, THP-1 and primary AML samples.
  • Figure 13 is an image illustrating a schematic diagram for assaying hematopoietic stem cell yoxicity of CLL-1 CART cells using autologous xenografts.
  • Figure 14 comprising Figures 14A, 14B, and 14C, is a series of images demonstrating that CLL-1 is expressed on different myeloid lineage cells and B cells in humanized mice.
  • a representative FACS plots of the peripheral blood analysis of one mouse is shown (Fig. 14A).
  • CLL-1 is expressed on monocytes (CD14+ cells), myeloid cells (CD33+ and CD123+ cells), B cells (CD19+ cells), but not on platelets (CD41+ cells) or T cells (CD3+ cells).
  • monocytes CD14+ cells
  • myeloid cells CD33+ and CD123+ cells
  • B cells CD19+ cells
  • CD41+ cells CD41+ cells
  • T cells CD3+ cells
  • FIG. 14B A schematic plot representation of peripheral blood analysis from 24 mice is shown (Fig. 14C).
  • Figure 15, comprising Figures 15A, 15B, 15C, and 15D, is a series of images demonstrating CLL-1 is expressed on different myeloid lineage cells and B cells in humanized mice.
  • Figure 16 comprising Figures 16A, 16B, 16C, and 16D, is a series of images demonstrating that CLL-1 is expressed on different myeloid progenitors and on hematopoietic stem cells in humanized mice.
  • Figure 17 is an image illustrating a schematic diagram for assaying hematopoietic stem cell toxicity of CLL-1 CART cells using a Humanized Immune System (HIS) xenografts.
  • HIS Humanized Immune System
  • Figure 18, is a series of images demonstrating bone marrow analysis 4 weeks post CLL-1 CAR T cell infusions. Flow cytometry analysis was performed in the CD34+CD38- component (hematopoietic stem cells) (Fig. 18A) and
  • CD34+CD38+ component (Progenitor cells) (Fig. 18B).
  • Figure 19 comprising Figures 19A, 19B, 19C, 19D, and 19E, is a series of images demonstrating bone marrow analysis 4 weeks post T cells.
  • Figure 20 is an image demonstrating bone marrow analysis in HIS mice 4 weeks post T cells. Hematopoietic stem cell toxicity of CLL1-CART cells using HIS xenografts.
  • Figure 21 is a series of images demonstrating borne marrow analysis in HIS mice 4 weeks post T cells. Representative plots of bone marrows from mice treated with different CART cells are shown.
  • Figure 22, comprising Figures 22A and 22B, is a series of histogram plots showing the relative fluorescent intensity from FACS analysis showing the percentage of transduced T cells.
  • Figure 22A shows detection of CART expression in primary T cells using Protein L.
  • Figure 22B shows detection of CART expression in primary T cells using recombinant CLL-1 protein.
  • Figure 23 comprising Figures 23 A and 23B, are two graphs showing the proliferation capacity of the CLL-1 CART cells when cultured with target cells.
  • Figure 24 is a graphic representation demonstrating AML disease progression in the PL- 21-luc xenograft model after treatment with CLL-1 CAR T cells.
  • Mean bioluminescence (+/- SEM) of the tumor cells show disease burden in the whole animal is shown as photons/second (p/s) of the ROI (region of interest), which is the whole mouse.
  • Figure 25, comprising Figures 25 A and 25B, are two graphs showing the quantification of CD4 + (Fig. 25A) and CD8 + (Fig. 25B) CAR + T cells in the peripheral blood of PL-21-luc tumor-bearing mice.
  • Figure 26, comprising Figures 26A, 26B, 26C, and 26D, are bar graphs quantifying the CD4 + T cells (Fig. 26A), CD4 + CLL-1 CAR-expressing T cells (Fig. 26B), CD8 + T cells (Fig. 26C), and the CD8 + CLL-1 CAR-expressing T cells (Fig. 26D) in the bone marrow of the PL- 21-luc tumor-bearing mice. Mean T cell number (+/- SEM) per million bone marrow cells is shown. Significance is calculated by one way ANOVA and is denoted as * P ⁇ 0.05 and
  • Figure 27 comprising Figures 27A, 27B, 27C, and 27D, are bar graphs quantifying the CD4 + T cells (Fig. 27 A), CD4 + CLL-1 CAR-expressing T cells (Fig. 27B), CD8 + T cells (Fig. 27C), and the CD8 + CLL-1 CAR-expressing T cells (Fig. 27D) in the spleen of the PL-21-luc tumor-bearing mice. Mean T cell number (+/- SEM) per million splenocytes is shown.
  • Figure 28 shows treatment with induction chemotherapy followed by CLL1-CART cells results in leukemic eradication in primary AML xenografts.
  • Figure 28 A is a schematic illustrating the experimental schema for the combined therapy of chemotherapy and CLL-1 -CART cells in primary AML xenografts.
  • Figure 28B is a bar graph showing the the mean fluorescence intensity (MFI) of CLL1 in leukemic cells (live huCD45dim compartment).
  • Figure 28C is a graph showing the
  • FIG. 28D is a graph showing the survival of the AML xenografts.
  • Figure 29, shows the various configurations on a single vector, e.g., where the U6 regulated shRNA is upstream or downstream of the EFl alpha regulated CAR encoding elements.
  • the transcription occurs through the U6 and EFl alpha promoters in the same direction.
  • the transcription occurs through the U6 and EFl alpha promoters in different directions.
  • the shRNA (and corresponding U6 promoter) is on a first vector
  • the CAR (and corresponding EFl alpha promoter) is on a second vector.
  • Figure 30 depicts the structures of two exemplary RCAR configurations.
  • the antigen binding members comprise an antigen binding domain, a transmembrane domain, and a switch domain.
  • the intracellular binding members comprise a switch domain, a co- stimulatory signaling domain and a primary signaling domain.
  • the two configurations demonstrate that the first and second switch domains described herein can be in different orientations with respect to the antigen binding member and the intracellular binding member.
  • Other RCAR configurations are further described herein.
  • Figure 31 shows that the proliferation of CAR-expressing, transduced T cells is enhanced by low doses of RADOOl in a cell culture system. CARTs were co-cultured with Nalm-6 cells in the presence of different concentrations of RADOOl. The number of CAR- positive CD3-positive T cells (black) and total T cells (gray) was assessed after 4 days of co- culture.
  • Figure 32 depicts tumor growth measurements of NALM6-luc cells with daily RADOOl dosing at 0.3, 1, 3, and 10 mg/kg (mpk) or vehicle dosing. Circles denote the vehicle; squares denote the 10 mg/kg dose of RADOOl; triangles denote the 3 mg/kg dose of RADOOl, inverted triangles denote the 1 mg/kg dose of RADOOl; and diamonds denote the 0.3 mg/kg dose of RADOOl.
  • Figure 33 shows pharmacokinetic curves showing the amount of RADOOl in the blood of NSG mice with NALM6 tumors.
  • FIG. 33A shows day 0 PK following the first dose of RADOOl.
  • FIG. 33B shows Day 14 PK following the final RADOOl dose.
  • Diamonds denote the 10 mg/kg dose of RADOOl; squares denote the 1 mg/kg dose of RADOOl; triangles denote the 3 mg/kg dose of RADOOl; and x's denote the 10 mg/kg dose of RADOOl.
  • Figure 34 shows in vivo proliferation of humanized CD19 CART cells with and without RADOOl dosing. Low doses of RADOOl (0.003 mg/kg) daily lead to an enhancement in CAR T cell proliferation, above the normal level of huCAR19 proliferation.
  • Figures 34A shows CD4 + CAR T cells;
  • FIG. 34B shows CD8 + CAR T cells.
  • Circles denote PBS; squares denote huCTL019; triangles denote huCTL019 with 3 mg/kg RADOOl; inverted triangles denote huCTL019 with 0.3 mg/kg RADOOl; diamonds denote huCTL019 with 0.03 mg/kg RADOOl; and circles denote huCTL019 with 0.003 mg/kg RADOOl.
  • CAR Chimeric Antigen Receptor
  • recombinant polypeptide construct comprising at least an extracellular antigen binding domain, a transmembrane domain and a cytoplasmic signaling domain (also referred to herein as "an intracellular signaling domain") comprising a functional signaling domain derived from a stimulatory molecule as defined below.
  • an intracellular signaling domain also referred to herein as "an intracellular signaling domain” comprising a functional signaling domain derived from a stimulatory molecule as defined below.
  • domains in the CAR polypeptide construct are in the same polypeptide chain, e.g.,
  • the domains in the CAR comprise a chimeric fusion protein.
  • the domains in the CAR comprise a chimeric fusion protein.
  • polypeptide construct are not contiguous with each other, e.g., are in different
  • polypeptide chains e.g., as provided in an RCAR as described herein
  • the stimulatory molecule of the CAR is the zeta chain associated with the T cell receptor complex.
  • the cytoplasmic signaling domain comprises a primary signaling domain (e.g., a primary signaling domain of CD3-zeta).
  • the cytoplasmic signaling domain further comprises one or more functional signaling domains derived from at least one costimulatory molecule as defined below.
  • the costimulatory molecule is chosen from 4-1BB (i.e., CD137), CD27, ICOS, and/or CD28.
  • the CAR comprises a chimeric fusion protein comprising an extracellular antigen recognition domain, a transmembrane domain and an intracellular signaling domain comprising a functional signaling domain derived from a stimulatory molecule. In one aspect, the CAR comprises a chimeric fusion protein comprising an extracellular antigen recognition domain, a transmembrane domain and an intracellular signaling domain comprising a functional signaling domain derived from a co- stimulatory molecule and a functional signaling domain derived from a stimulatory molecule.
  • the CAR comprises a chimeric fusion protein comprising an extracellular antigen recognition domain, a transmembrane domain and an intracellular signaling domain comprising two functional signaling domains derived from one or more co-stimulatory molecule(s) and a functional signaling domain derived from a stimulatory molecule.
  • the CAR comprises a chimeric fusion protein comprising an extracellular antigen recognition domain, a transmembrane domain and an intracellular signaling domain comprising at least two functional signaling domains derived from one or more co-stimulatory molecule(s) and a functional signaling domain derived from a stimulatory molecule.
  • the CAR comprises an optional leader sequence at the amino-terminus (N-ter) of the CAR fusion protein.
  • the CAR further comprises a leader sequence at the N-terminus of the extracellular antigen recognition domain, wherein the leader sequence is optionally cleaved from the antigen recognition domain (e.g., aa scFv) during cellular processing and localization of the CAR to the cellular membrane.
  • the antigen recognition domain e.g., aa scFv
  • a CAR that comprises an antigen binding domain e.g., a scFv, a single domain antibody, or TCR (e.g., a TCR alpha binding domain or TCR beta binding domain)) that specifically binds a specific tumor marker X, wherein X can be a tumor marker as described herein, is also referred to as XCAR.
  • a CAR that comprises an antigen binding domain that specifically binds CLL-1 is referred to as CLL-1 CAR.
  • the CAR can be expressed in any cell, e.g., an immune effector cell as described herein (e.g., a T cell or an NK cell).
  • signaling domain refers to the functional portion of a protein which acts by transmitting information within the cell to regulate cellular activity via defined signaling pathways by generating second messengers or functioning as effectors by responding to such messengers.
  • CLL-1 refers to C-type lectin-like molecule- 1, which is an antigenic determinant detectable on leukemia precursor cells and on normal immune cells.
  • C- type lectin-like- 1 (CLL-1) is also known as MICL, CLEC12A, CLEC-1, Dendritic Cell- Associated Lectin 1, and DCAL-2.
  • the human and murine amino acid and nucleic acid sequences can be found in a public database, such as GenBank, UniProt and Swiss-Prot.
  • the amino acid sequence of human CLL-1 can be found as UniProt/Swiss-Prot Accession No.
  • the antigen-binding portion of the CAR recognizes and binds an epitope within the extracellular domain of the CLL-1 protein or a fragment thereof.
  • the CLL-1 protein is expressed on a cancer cell.
  • antibody refers to a protein, or polypeptide sequence derived from an immunoglobulin molecule which specifically binds with an antigen.
  • Antibodies can be polyclonal or monoclonal, multiple or single chain, or intact
  • immunoglobulins may be derived from natural sources or from recombinant sources.
  • Antibodies can be tetramers of immunoglobulin molecules.
  • antibody fragment refers to at least one portion of an intact antibody, or recombinant variants thereof, and refers to the antigen binding domain, e.g., an antigenic determining variable region of an intact antibody, that is sufficient to confer recognition and specific binding of the antibody fragment to a target, such as an antigen.
  • antibody fragments include, but are not limited to, Fab, Fab', F(ab') 2 , and Fv fragments, scFv antibody fragments, linear antibodies, single domain antibodies such as sdAb (either VL or VH), camelid VHH domains, and multi- specific molecules formed from antibody fragments such as a bivalent fragment comprising two or more, e.g., two, Fab fragments linked by a disulfide bridge at the hinge region, or two or more, e.g., two, isolated CDR or other epitope binding fragments of an antibody linked.
  • An antibody fragment can also be incorporated into single domain antibodies, maxibodies, minibodies, nanobodies, intrabodies, diabodies, triabodies, tetrabodies, v-NAR and bis-scFv (see, e.g., Hollinger and Hudson, Nature Biotechnology 23:1126-1136, 2005).
  • Antibody fragments can also be grafted into scaffolds based on polypeptides such as a fibronectin type III (Fn3) (see U.S. Patent No.: 6,703,199, which describes fibronectin polypeptide minibodies).
  • Fn3 fibronectin type III
  • scFv refers to a fusion protein comprising at least one antibody fragment comprising a variable region of a light chain and at least one antibody fragment comprising a variable region of a heavy chain, wherein the light and heavy chain variable regions are contiguously linked via a short flexible polypeptide linker, and capable of being expressed as a single chain polypeptide, and wherein the scFv retains the specificity of the intact antibody from which it is derived.
  • an scFv may have the VL and VH variable regions in either order, e.g., with respect to the N-terminal and C-terminal ends of the polypeptide, the scFv may comprise VL-linker-VH or may comprise VH-linker-VL.
  • CDR complementarity determining region
  • HCDR1, HCDR2, and HCDR3 three CDRs in each heavy chain variable region
  • LCDR1, LCDR2, and LCDR3 three CDRs in each light chain variable region
  • the precise amino acid sequence boundaries of a given CDR can be determined using any of a number of well-known schemes, including those described by Kabat et al. (1991), “Sequences of Proteins of Immunological Interest,” 5th Ed.
  • the CDR amino acid residues in the heavy chain variable domain (VH) are numbered 31-35 (HCDR1), 50-65 (HCDR2), and 95-102 (HCDR3); and the CDR amino acid residues in the light chain variable domain (VL) are numbered 24-34 (LCDR1), 50-56 (LCDR2), and 89-97 (LCDR3).
  • the CDR amino acids in the VH are numbered 26-32 (HCDR1), 52-56 (HCDR2), and 95-102 (HCDR3); and the CDR amino acid residues in the VL are numbered 26-32 (LCDR1), 50-52 (LCDR2), and 91-96 (LCDR3).
  • the CDRs correspond to the amino acid residues that are part of a Kabat CDR, a Chothia CDR, or both.
  • the CDRs correspond to amino acid residues 26-35 (HCDR1), 50-65 (HCDR2), and 95-102 (HCDR3) in a VH, e.g., a mammalian VH, e.g., a human VH; and amino acid residues 24-34 (LCDR1), 50-56 (LCDR2), and 89-97 (LCDR3) in a VL, e.g., a mammalian VL, e.g., a human VL.
  • the portion of the CAR composition of the invention comprising an antibody or antibody fragment thereof may exist in a variety of forms, for example, where the antigen binding domain is expressed as part of a polypeptide chain including, for example, a single domain antibody fragment (sdAb), a single chain antibody (scFv), e.g., a human antibody (Harlow et al., 1999, In: Using Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory Press, NY; Harlow et al., 1989, In: Antibodies: A Laboratory Manual, Cold Spring Harbor, New York; Houston et al., 1988, Proc. Natl. Acad. Sci. USA 85:5879-5883; Bird et al., 1988, Science 242:423-426).
  • sdAb single domain antibody fragment
  • scFv single chain antibody
  • the antigen binding domain of a CAR composition of the invention comprises an antibody fragment.
  • the CAR comprises an antibody fragment that comprises a scFv.
  • binding domain or "antibody molecule” (also referred to herein as “anti-target (e.g., CLL-1) binding domain”) refers to a protein, e.g., an immunoglobulin chain or fragment thereof, comprising at least one immunoglobulin variable domain sequence.
  • binding domain or “antibody molecule” encompasses antibodies and antibody fragments.
  • an antibody molecule is a multispecific antibody molecule, e.g., it comprises a plurality of immunoglobulin variable domain sequences, wherein a first immunoglobulin variable domain sequence of the plurality has binding specificity for a first epitope and a second immunoglobulin variable domain sequence of the plurality has binding specificity for a second epitope.
  • a multispecific antibody molecule is a bispecific antibody molecule.
  • a bispecific antibody has specificity for no more than two antigens.
  • a bispecific antibody molecule is characterized by a first immunoglobulin variable domain sequence which has binding specificity for a first epitope and a second
  • immunoglobulin variable domain sequence that has binding specificity for a second epitope.
  • antibody heavy chain refers to the larger of the two types of polypeptide chains present in antibody molecules in their naturally occurring conformations, and which normally determines the class to which the antibody belongs.
  • antibody light chain refers to the smaller of the two types of polypeptide chains present in antibody molecules in their naturally occurring conformations.
  • Kappa ( ⁇ ) and lambda ( ⁇ ) light chains refer to the two major antibody light chain isotypes.
  • recombinant antibody refers to an antibody which is generated using recombinant DNA technology, such as, for example, an antibody expressed by a bacteriophage or yeast expression system.
  • the term should also be construed to mean an antibody which has been generated by the synthesis of a DNA molecule encoding the antibody and which DNA molecule expresses an antibody protein, or an amino acid sequence specifying the antibody, wherein the DNA or amino acid sequence has been obtained using recombinant DNA or amino acid sequence technology which is available and well known in the art.
  • antigen or “Ag” refers to a molecule that provokes an immune response.
  • This immune response may involve either antibody production, or the activation of specific immunologically-competent cells, or both.
  • any macromolecule including virtually all proteins or peptides, can serve as an antigen.
  • antigens can be derived from recombinant or genomic DNA.
  • any DNA which comprises a nucleotide sequences or a partial nucleotide sequence encoding a protein that elicits an immune response therefore encodes an "antigen" as that term is used herein.
  • an antigen need not be encoded solely by a full length nucleotide sequence of a gene. It is readily apparent that the present invention includes, but is not limited to, the use of partial nucleotide sequences of more than one gene and that these nucleotide sequences are arranged in various combinations to encode polypeptides that elicit the desired immune response.
  • an antigen need not be encoded by a "gene” at all. It is readily apparent that an antigen can be generated synthesized or can be derived from a biological sample, or might be macromolecule besides a polypeptide. Such a biological sample can include, but is not limited to a tissue sample, a tumor sample, a cell or a fluid with other biological components.
  • anti-tumor effect refers to a biological effect which can be manifested by various means, including but not limited to, e.g., a decrease in tumor volume, a decrease in the number of tumor cells, a decrease in the number of metastases, an increase in life expectancy, decrease in tumor cell proliferation, decrease in tumor cell survival, or amelioration of various physiological symptoms associated with the cancerous condition.
  • An "anti-tumor effect” can also be manifested by the ability of the peptides, polynucleotides, cells and antibodies of the invention in prevention of the occurrence of tumor in the first place.
  • autologous refers to any material derived from the same individual to whom it is later to be re-introduced into the individual.
  • allogeneic refers to any material derived from a different animal of the same species as the individual to whom the material is introduced. Two or more individuals are said to be allogeneic to one another when the genes at one or more loci are not identical. In some aspects, allogeneic material from individuals of the same species may be sufficiently unlike genetically to interact antigenically
  • xenogeneic refers to a graft derived from an animal of a different species.
  • an apheresis sample refers to a sample obtained using apheresis.
  • combination refers to either a fixed combination in one dosage unit form, or a combined administration where a compound of the present invention and a combination partner (e.g.
  • terapéutica agent another drug as explained below, also referred to as “therapeutic agent” or “co- agent”
  • therapeutic agent may be administered independently at the same time or separately within time intervals, especially where these time intervals allow that the combination partners show a cooperative, e.g. synergistic effect.
  • the single components may be packaged in a kit or separately.
  • One or both of the components e.g., powders or liquids
  • co-administration or “combined administration” or the like as utilized herein are meant to encompass administration of the selected combination partner to a single subject in need thereof (e.g. a patient), and are intended to include treatment regimens in which the agents are not necessarily administered by the same route of
  • pharmaceutical combination means a product that results from the mixing or combining of more than one active ingredient and includes both fixed and non-fixed combinations of the active ingredients.
  • fixed combination means that the active ingredients, e.g. a compound of the present invention and a combination partner, are both administered to a patient simultaneously in the form of a single entity or dosage.
  • non-fixed combination means that the active ingredients, e.g. a compound of the present invention and a combination partner, are both administered to a patient as separate entities either simultaneously, concurrently or sequentially with no specific time limits, wherein such administration provides therapeutically effective levels of the two compounds in the body of the patient.
  • cocktail therapy e.g. the administration of three or more active ingredients
  • cancer refers to a disease characterized by the rapid and uncontrolled growth of aberrant cells. Cancer cells can spread locally or through the bloodstream and lymphatic system to other parts of the body. Examples of various cancers are described herein and include but are not limited to, breast cancer, prostate cancer, ovarian cancer, cervical cancer, skin cancer, pancreatic cancer, colorectal cancer, renal cancer, liver cancer, brain cancer, lymphoma, leukemia, lung cancer and the like.
  • tumor and “cancer” are used interchangeably herein, e.g., both terms encompass solid and liquid, e.g., diffuse or circulating, tumors.
  • cancer or “tumor” includes premalignant, as well as malignant cancers and tumors.
  • "Derived from” as that term is used herein indicates a relationship between a first and a second molecule. It generally refers to structural similarity between the first molecule and a second molecule and does not connotate or include a process or source limitation on a first molecule that is derived from a second molecule. For example, in the case of an intracellular signaling domain that is derived from a CD3zeta molecule, the intracellular signaling domain retains sufficient CD3zeta structure such that is has the required function, namely, the ability to generate a signal under the appropriate conditions.
  • disease associated with expression of CLL-1 includes, but is not limited to, a disease associated with a cell which expresses CLL-1 or condition associated with a cell which expresses CLL-1 including, e.g., proliferative diseases such as a cancer or malignancy or a precancerous condition such as a myelodysplasia, a myelodysplastic syndrome or a preleukemia; or a noncancer related indication associated with a cell which expresses CLL-1 (e.g., wild-type or mutant CLL-1).
  • proliferative diseases such as a cancer or malignancy or a precancerous condition such as a myelodysplasia, a myelodysplastic syndrome or a preleukemia
  • a noncancer related indication associated with a cell which expresses CLL-1 (e.g., wild-type or mutant CLL-1).
  • a disease associated with expression of CLL-1 may include a condition associated with a cell which do not presently express CLL-1, e.g., because CLL-1 expression has been downregulated, e.g., due to treatment with a molecule targeting CLL-1, e.g., a CLL-1 inhibitor described herein, but which at one time expressed CLL-1.
  • a cancer associated with expression of CLL-1 is a hematological cancer.
  • a hematological cancer includes but is not limited to leukemia (such as acute myelogenous leukemia, chronic myelogenous leukemia, acute lymphoid leukemia, chronic lymphoid leukemia and myelodysplastic syndrome) and malignant lymphoproliferative conditions, including lymphoma (such as multiple myeloma, non- Hodgkin's lymphoma, Burkitt's lymphoma, and small cell- and large cell-follicular lymphoma).
  • leukemia such as acute myelogenous leukemia, chronic myelogenous leukemia, acute lymphoid leukemia, chronic lymphoid leukemia and myelodysplastic syndrome
  • lymphoma such as multiple myeloma, non- Hodgkin's lymphoma, Burkitt's lymphoma, and small cell- and large cell-follicular lymphoma.
  • cancers include, but not limited to, e.g., atypical and/or non-classical cancers, malignancies, precancerous conditions or proliferative diseases associated with expression of CLL-1.
  • Non-cancer related indications associated with expression of CLL-1 may also be included.
  • the tumor antigen-expressing cell expresses, or at any time expressed, mRNA encoding the tumor antigen.
  • the tumor antigen-expressing cell produces the tumor antigen protein (e.g., wild-type or mutant), and the tumor antigen protein may be present at normal levels or reduced levels.
  • the tumor antigen-expressing cell produced detectable levels of a tumor antigen protein at one point, and subsequently produced substantially no detectable tumor antigen protein.
  • conservative sequence modifications refers to amino acid modifications that do not significantly affect or alter the binding characteristics of the antibody or antibody fragment containing the amino acid sequence. Such conservative modifications include amino acid substitutions, additions and deletions. Modifications can be introduced into an antibody or antibody fragment of the invention by standard techniques known in the art, such as site-directed mutagenesis and PCR- mediated mutagenesis.
  • Conservative substitutions are ones in which the amino acid residue is replaced with an amino acid residue having a similar side chain.
  • Families of amino acid residues having similar side chains have been defined in the art. These families include amino acids with basic side chains (e.g., lysine, arginine, histidine), acidic side chains (e.g., aspartic acid, glutamic acid), uncharged polar side chains (e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine, tryptophan), nonpolar side chains (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine), beta-branched side chains (e.g., threonine, valine, isoleucine) and aromatic side chains (e.g., tyrosine, phenylalanine, tryptophan, histidine).
  • amino acids with basic side chains
  • stimulation refers to a primary response induced by binding of a stimulatory molecule (e.g., a TCR/CD3 complex) with its cognate ligand thereby mediating a signal transduction event, such as, but not limited to, signal transduction via the TCR/CD3 complex.
  • a stimulatory molecule e.g., a TCR/CD3 complex
  • signal transduction event such as, but not limited to, signal transduction via the TCR/CD3 complex.
  • Stimulation can mediate altered expression of certain molecules, such as
  • the term "stimulatory molecule,” refers to a molecule expressed by a T cell that provides the primary cytoplasmic signaling sequence(s) that regulate primary activation of the TCR complex in a stimulatory way for at least some aspect of the T cell signaling pathway.
  • the primary signal is initiated by, for instance, binding of a TCR/CD3 complex with an MHC molecule loaded with peptide, and which leads to mediation of a T cell response, including, but not limited to, proliferation, activation, differentiation, and the like.
  • a primary cytoplasmic signaling sequence (also referred to as a "primary signaling domain") that acts in a stimulatory manner may contain a signaling motif which is known as immunoreceptor tyrosine- based activation motif or IT AM.
  • IT AM immunoreceptor tyrosine- based activation motif
  • Examples of an IT AM containing primary cytoplasmic signaling sequence that is of particular use in the invention includes, but is not limited to, those derived from TCR zeta, FcR gamma, FcR beta, CD3 gamma, CD3 delta , CD3 epsilon, CD5, CD22, CD79a, CD79b, CD278 (also known as "ICOS”), FcsRI, CD66d, DAP10, and DAP12.
  • the intracellular signaling domain in any one or more CARS of the invention comprises an intracellular signaling sequence, e.g., a primary signaling sequence of CD3-zeta.
  • the primary signaling sequence of CD3-zeta is the sequence provided as SEQ ID NO:9, or the equivalent residues from a non- human species, e.g., mouse, rodent, monkey, ape and the like.
  • the primary signaling sequence of CD3-zeta is the sequence as provided in SEQ ID NO: 10, or the equivalent residues from a non-human species, e.g., mouse, rodent, monkey, ape and the like.
  • an immune system cell such as an accessory cell (e.g., a B-cell, a dendritic cell, and the like) that displays a foreign antigen complexed with major histocompatibility complexes (MHC's) on its surface.
  • MHC's major histocompatibility complexes
  • T-cells may recognize these complexes using their T-cell receptors (TCRs).
  • APCs process antigens and present them to T-cells.
  • intracellular signaling domain refers to an intracellular portion of a molecule.
  • the intracellular signaling domain generates a signal that promotes an immune effector function of the CAR containing cell, e.g., a CART cell.
  • immune effector function e.g., in a CART cell
  • helper activity including the secretion of cytokines.
  • the intracellular signal domain transduces the effector function signal and directs the cell to perform a specialized function. While the entire intracellular signaling domain can be employed, in many cases it is not necessary to use the entire chain.
  • intracellular signaling domain is thus meant to include any truncated portion of the intracellular signaling domain sufficient to transduce the effector function signal.
  • the intracellular signaling domain can comprise a primary intracellular signaling domain.
  • Exemplary primary intracellular signaling domains include those derived from the molecules responsible for primary stimulation, or antigen dependent simulation.
  • the intracellular signaling domain can comprise a costimulatory intracellular domain.
  • Exemplary costimulatory intracellular signaling domains include those derived from molecules responsible for costimulatory signals, or antigen independent stimulation.
  • a primary intracellular signaling domain can comprise a cytoplasmic sequence of a T cell receptor
  • a costimulatory intracellular signaling domain can comprise cytoplasmic sequence from co-receptor or costimulatory molecule.
  • a primary intracellular signaling domain can comprise a signaling motif which is known as an immunoreceptor tyrosine-based activation motif or ITAM.
  • ITAM immunoreceptor tyrosine-based activation motif
  • ⁇ containing primary cytoplasmic signaling sequences include, but are not limited to, those derived from CD3 zeta, FcR gamma, FcR beta, CD3 gamma, CD3 delta, CD3 epsilon, CD5, CD22, CD79a, CD79b, CD278 (also known as "ICOS”), FcsRI, CD66d, DAP10, and DAP12.
  • zeta or alternatively “zeta chain”, “CD3-zeta” or “TCR-zeta” is defined as the protein provided as GenBan Acc. No. BAG36664.1, or the equivalent residues from a non- human species, e.g., mouse, rodent, monkey, ape and the like, and a "zeta stimulatory domain” or alternatively a "CD3-zeta stimulatory domain” or a “TCR-zeta stimulatory domain” is defined as the amino acid residues from the cytoplasmic domain of the zeta chain that are sufficient to functionally transmit an initial signal necessary for T cell activation.
  • the cytoplasmic domain of zeta comprises residues 52 through 164 of GenBank Acc. No.
  • the "zeta stimulatory domain” or a "CD3-zeta stimulatory domain” is the sequence provided as SEQ ID NO:9. In one aspect, the "zeta stimulatory domain” or a “CD3-zeta stimulatory domain” is the sequence provided as SEQ ID NO: 10.
  • costimulatory molecule refers to the cognate binding partner on a T cell that specifically binds with a costimulatory ligand, thereby mediating a costimulatory response by the T cell, such as, but not limited to, proliferation.
  • Costimulatory molecules are cell surface molecules other than antigen receptors or their ligands that are required for an efficient immune response.
  • Costimulatory molecules include, but are not limited to an a MHC class I molecule, TNF receptor proteins, Immunoglobulin-like proteins, cytokine receptors, integrins, signaling lymphocytic activation molecules (SLAM proteins), activating NK cell receptors, BTLA, a Toll ligand receptor, OX40, CD2, CD7, CD27, CD28, CD30, CD40, CDS, ICAM-1, LFA-1
  • CDl la/CD18 4-1BB (CD137), B7-H3, CDS, ICAM-1, ICOS (CD278), GITR, BAFFR, LIGHT, HVEM (LIGHTR), KIRDS2, SLAMF7, NKp80 (KLRF1), NKp44, NKp30, NKp46, CD19, CD4, CD8alpha, CD8beta, IL2R beta, IL2R gamma, IL7R alpha, ITGA4, VLA1, CD49a, ITGA4, IA4, CD49D, ITGA6, VLA-6, CD49f, ITGAD, CDl ld, ITGAE, CD103, ITGAL, CDl la, LFA-1, ITGAM, CDl lb, ITGAX, CDl lc, ITGB1, CD29, ⁇ 2, CD18, LFA-1, ITGB7, NKG2D, NKG2C, TNFR2, TRANCE/RANKL, DNAM1 (CD226),
  • a costimulatory intracellular signaling domain refers to the intracellular portion of a costimulatory molecule.
  • the intracellular signaling domain can comprise the entire intracellular portion, or the entire native intracellular signaling domain, of the molecule from which it is derived, or a functional fragment thereof.
  • 4- IBB refers to a member of the TNFR superfamily with an amino acid sequence provided as GenBank Acc. No. AAA62478.2, or the equivalent residues from a non- human species, e.g., mouse, rodent, monkey, ape and the like; and a "4-1BB costimulatory domain” is defined as amino acid residues 214-255 of GenBank Acc. No. AAA62478.2, or the equivalent residues from a non-human species, e.g., mouse, rodent, monkey, ape and the like.
  • the "4- IBB costimulatory domain” is the sequence provided as SEQ ID NO:7 or the equivalent residues from a non-human species, e.g., mouse, rodent, monkey, ape and the like.
  • Immuno effector cell refers to a cell that is involved in an immune response, e.g., in the promotion of an immune effector response.
  • immune effector cells include T cells, e.g., alpha/beta T cells and gamma/delta T cells, B cells, natural killer (NK) cells, natural killer T (NKT) cells, mast cells, and myeloic-derived phagocytes.
  • T cells e.g., alpha/beta T cells and gamma/delta T cells
  • B cells natural killer (NK) cells, natural killer T (NKT) cells, mast cells, and myeloic-derived phagocytes.
  • NK natural killer
  • NKT natural killer T
  • an immune effector function or response refers a property of a T or NK cell that promotes killing or the inhibition of growth or proliferation, of a target cell.
  • primary stimulation and co-stimulation are examples of immune effector function or response.
  • effector function refers to a specialized function of a cell. Effector function of a T cell, for example, may be cytolytic activity or helper activity including the secretion of cytokines.
  • encoding refers to the inherent property of specific sequences of nucleotides in a polynucleotide, such as a gene, a cDNA, or an mRNA, to serve as templates for synthesis of other polymers and macromolecules in biological processes having either a defined sequence of nucleotides (e.g., rRNA, tRNA and mRNA) or a defined sequence of amino acids and the biological properties resulting therefrom.
  • a gene, cDNA, or RNA encodes a protein if transcription and translation of mRNA corresponding to that gene produces the protein in a cell or other biological system.
  • nucleotide sequence encoding an amino acid sequence includes all nucleotide sequences that are degenerate versions of each other and that encode the same amino acid sequence.
  • nucleotide sequence that encodes a protein or a RNA may also include introns to the extent that the nucleotide sequence encoding the protein may in some version contain an intron(s).
  • effective amount or “therapeutically effective amount” are used
  • endogenous refers to any material from or produced inside an organism, cell, tissue or system.
  • exogenous refers to any material introduced from or produced outside an organism, cell, tissue or system.
  • transfer vector refers to a composition of matter which comprises an isolated nucleic acid and which can be used to deliver the isolated nucleic acid to the interior of a cell. Numerous vectors are known in the art including, but not limited to, linear
  • transfer vector includes an autonomously replicating plasmid or a virus.
  • the term should also be construed to further include non-plasmid and non-viral compounds which facilitate transfer of nucleic acid into cells, such as, for example, a polylysine compound, liposome, and the like.
  • viral transfer vectors include, but are not limited to, adenoviral vectors, adeno-associated virus vectors, retroviral vectors, lenti viral vectors, and the like.
  • expression vector refers to a vector comprising a recombinant
  • polynucleotide comprising expression control sequences operatively linked to a nucleotide sequence to be expressed.
  • An expression vector comprises sufficient cis-acting elements for expression; other elements for expression can be supplied by the host cell or in an in vitro expression system.
  • Expression vectors include all those known in the art, including cosmids, plasmids (e.g., naked or contained in liposomes) and viruses (e.g., lentiviruses, retroviruses, adenoviruses, and adeno-associated viruses) that incorporate the recombinant polynucleotide.
  • lentivirus refers to a genus of the Retroviridae family. Lentiviruses are unique among the retroviruses in being able to infect non-dividing cells; they can deliver a significant amount of genetic information into the DNA of the host cell, so they are one of the most efficient methods of a gene delivery vector. HIV, SIV, and FIV are all examples of lentiviruses.
  • lentiviral vector refers to a vector derived from at least a portion of a lentivirus genome, including especially a self-inactivating lentiviral vector as provided in Milone et al., Mol. Ther. 17(8): 1453-1464 (2009).
  • Other examples of lentivirus vectors that may be used in the clinic include but are not limited to, e.g., the LENTIVECTOR® gene delivery technology from Oxford BioMedica, the LENTIMAXTM vector system from Lentigen and the like. Nonclinical types of lentiviral vectors are also available and would be known to one skilled in the art.
  • homologous refers to the subunit sequence identity between two polymeric molecules, e.g., between two nucleic acid molecules, such as, two DNA molecules or two RNA molecules, or between two polypeptide molecules.
  • two nucleic acid molecules such as, two DNA molecules or two RNA molecules
  • polypeptide molecules between two polypeptide molecules.
  • a subunit position in both of the two molecules is occupied by the same monomeric subunit; e.g., if a position in each of two DNA molecules is occupied by adenine, then they are homologous or identical at that position.
  • the homology between two sequences is a direct function of the number of matching or homologous positions; e.g., if half (e.g., five positions in a polymer ten subunits in length) of the positions in two sequences are homologous, the two sequences are 50% homologous; if 90% of the positions (e.g., 9 of 10), are matched or homologous, the two sequences are 90% homologous.
  • Humanized forms of non-human (e.g., murine) antibodies are chimeric
  • immunoglobulins immunoglobulin chains or fragments thereof (such as Fv, Fab, Fab', F(ab')2 or other antigen-binding subsequences of antibodies) which contain minimal sequence derived from non-human immunoglobulin.
  • humanized antibodies and antibody fragments thereof are human immunoglobulins (recipient antibody or antibody fragment) in which residues from a complementary-determining region (CDR) of the recipient are replaced by residues from a CDR of a non-human species (donor antibody) such as mouse, rat or rabbit having the desired specificity, affinity, and capacity.
  • CDR complementary-determining region
  • donor antibody such as mouse, rat or rabbit having the desired specificity, affinity, and capacity.
  • Fv framework region (FR) residues of the human immunoglobulin are replaced by corresponding non-human residues.
  • a humanized antibody/antibody fragment can comprise residues which are found neither in the recipient antibody nor in the imported CDR or framework sequences. These modifications can further refine and optimize antibody or antibody fragment performance.
  • the humanized antibody or antibody fragment thereof will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the CDR regions correspond to those of a non-human immunoglobulin and all or a significant portion of the FR regions are those of a human immunoglobulin sequence.
  • the humanized antibody or antibody fragment can also comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin.
  • Fc immunoglobulin constant region
  • Fully human refers to an immunoglobulin, such as an antibody or antibody fragment, where the whole molecule is of human origin or consists of an amino acid sequence identical to a human form of the antibody or immunoglobulin.
  • isolated means altered or removed from the natural state.
  • a nucleic acid or a peptide naturally present in a living animal is not “isolated,” but the same nucleic acid or peptide partially or completely separated from the coexisting materials of its natural state is “isolated.”
  • An isolated nucleic acid or protein can exist in substantially purified form, or can exist in a non-native environment such as, for example, a host cell.
  • A refers to adenosine
  • C refers to cytosine
  • G refers to guanosine
  • T refers to thymidine
  • U refers to uridine.
  • operably linked refers to functional linkage between a regulatory sequence and a heterologous nucleic acid sequence resulting in expression of the latter.
  • a first nucleic acid sequence is operably linked with a second nucleic acid sequence when the first nucleic acid sequence is placed in a functional relationship with the second nucleic acid sequence.
  • a promoter is operably linked to a coding sequence if the promoter affects the transcription or expression of the coding sequence.
  • Operably linked DNA sequences can be contiguous with each other and, e.g., where necessary to join two protein coding regions, are in the same reading frame.
  • parenteral administration of an immunogenic composition includes, e.g., subcutaneous (s.c), intravenous (i.v.), intramuscular (i.m.), or intrasternal injection,
  • nucleic acid or “polynucleotide” refers to deoxyribonucleic acids (DNA) or ribonucleic acids (RNA) and polymers thereof in either single- or double- stranded form.
  • nucleic acids containing known analogues of natural nucleotides that have similar binding properties as the reference nucleic acid and are metabolized in a manner similar to naturally occurring nucleotides.
  • a particular nucleic acid sequence also implicitly encompasses conservatively modified variants thereof (e.g., degenerate codon substitutions), alleles, orthologs, SNPs, and complementary sequences as well as the sequence explicitly indicated.
  • degenerate codon substitutions may be achieved by generating sequences in which the third position of one or more selected (or all) codons is substituted with mixed-base and/or deoxyinosine residues (Batzer et al., Nucleic Acid Res. 19:5081 (1991); Ohtsuka et al., J. Biol. Chem. 260:2605-2608 (1985); and Rossolini et al., Mol. Cell. Probes 8:91-98 (1994)).
  • peptide refers to a compound comprised of amino acid residues covalently linked by peptide bonds.
  • a protein or peptide must contain at least two amino acids, and no limitation is placed on the maximum number of amino acids that can comprise a protein's or peptide's sequence.
  • Polypeptides include any peptide or protein comprising two or more amino acids joined to each other by peptide bonds.
  • the term refers to both short chains, which also commonly are referred to in the art as peptides, oligopeptides and oligomers, for example, and to longer chains, which generally are referred to in the art as proteins, of which there are many types.
  • Polypeptides include, for example, biologically active fragments, substantially homologous polypeptides, oligopeptides, homodimers, heterodimers, variants of polypeptides, modified polypeptides, derivatives, analogs, fusion proteins, among others.
  • a polypeptide includes a natural peptide, a recombinant peptide, or a combination thereof.
  • promoter refers to a DNA sequence recognized by the synthetic machinery of the cell, or introduced synthetic machinery, required to initiate the specific transcription of a polynucleotide sequence.
  • promoter/regulatory sequence refers to a nucleic acid sequence which is required for expression of a gene product operably linked to the promoter/regulatory sequence. In some instances, this sequence may be the core promoter sequence and in other instances, this sequence may also include an enhancer sequence and other regulatory elements which are required for expression of the gene product.
  • the promoter/regulatory sequence may, for example, be one which expresses the gene product in a tissue specific manner.
  • constitutive promoter refers to a nucleotide sequence which, when operably linked with a polynucleotide which encodes or specifies a gene product, causes the gene product to be produced in a cell under most or all physiological conditions of the cell.
  • inducible promoter refers to a nucleotide sequence which, when operably linked with a polynucleotide which encodes or specifies a gene product, causes the gene product to be produced in a cell substantially only when an inducer which corresponds to the promoter is present in the cell.
  • tissue-specific promoter refers to a nucleotide sequence which, when operably linked with a polynucleotide encodes or specified by a gene, causes the gene product to be produced in a cell substantially only if the cell is a cell of the tissue type corresponding to the promoter.
  • flexible polypeptide linker or "linker” as used in the context of a scFv refers to a peptide linker that consists of amino acids such as glycine and/or serine residues used alone or in combination, to link variable heavy and variable light chain regions together.
  • the flexible polypeptide linkers include, but are not limited to, (Gly4 Ser) 4 (SEQ ID NO:27) or (Gly4 Ser)3 (SEQ ID NO:28).
  • the linkers include multiple repeats of (GlyiSer), (GlySer) or (GlysSer) (SEQ ID NO:29). Also included within the scope of the invention are linkers described in WO2012/138475, incorporated herein by reference.
  • a 5' cap (also termed an RNA cap, an RNA 7-methylguanosine cap or an RNA m G cap) is a modified guanine nucleotide that has been added to the "front" or 5' end of a eukaryotic messenger RNA shortly after the start of transcription.
  • the 5' cap consists of a terminal group which is linked to the first transcribed nucleotide. Its presence is critical for recognition by the ribosome and protection from RNases. Cap addition is coupled to transcription, and occurs co-transcriptionally, such that each influences the other. Shortly after the start of transcription, the 5' end of the mRNA being synthesized is bound by a cap- synthesizing complex associated with RNA polymerase.
  • in vitro transcribed RNA refers to RNA, preferably mRNA, that has been synthesized in vitro. Generally, the in vitro transcribed RNA is generated from an in vitro transcription vector. The in vitro transcription vector comprises a template that is used to generate the in vitro transcribed RNA.
  • poly(A) is a series of adenosines attached by polyadenylation to the mRNA.
  • the polyA is between 50 and 5000 (SEQ ID NO: 30), preferably greater than 64, more preferably greater than 100, most preferably greater than 300 or 400.
  • poly(A) sequences can be modified chemically or enzymatically to modulate mRNA functionality such as localization, stability or efficiency of translation.
  • polyadenylation refers to the covalent linkage of a polyadenylyl moiety, or its modified variant, to a messenger RNA molecule.
  • mRNA messenger RNA
  • the 3' poly(A) tail is a long sequence of adenine nucleotides (often several hundred) added to the pre-mRNA through the action of an enzyme, polyadenylate polymerase.
  • poly(A) tail is added onto transcripts that contain a specific sequence, the polyadenylation signal.
  • Polyadenylation is also important for transcription termination, export of the mRNA from the nucleus, and translation. Polyadenylation occurs in the nucleus immediately after transcription of DNA into RNA, but additionally can also occur later in the cytoplasm.
  • the mRNA chain is cleaved through the action of an endonuclease complex associated with RNA polymerase.
  • the cleavage site is usually characterized by the presence of the base sequence AAUAAA near the cleavage site.
  • adenosine residues are added to the free 3' end at the cleavage site.
  • transient refers to expression of a non-integrated transgene for a period of hours, days or weeks, wherein the period of time of expression is less than the period of time for expression of the gene if integrated into the genome or contained within a stable plasmid replicon in the host cell.
  • the terms “treat”, “treatment” and “treating” refer to the reduction or amelioration of the progression, severity and/or duration of a proliferative disorder, or the amelioration of one or more symptoms (preferably, one or more discernible symptoms) of a proliferative disorder resulting from the administration of one or more therapies (e.g., one or more therapeutic agents such as a CAR of the invention).
  • the terms “treat”, “treatment” and “treating” refer to the amelioration of at least one measurable physical parameter of a proliferative disorder, such as growth of a tumor, not necessarily discernible by the patient.
  • the terms “treat”, “treatment” and “treating” -refer to the inhibition of the progression of a proliferative disorder, either physically by, e.g., stabilization of a discernible symptom, physiologically by, e.g., stabilization of a physical parameter, or both.
  • the terms “treat”, “treatment” and “treating” refer to the reduction or stabilization of tumor size or cancerous cell count.
  • signal transduction pathway refers to the biochemical relationship between a variety of signal transduction molecules that play a role in the transmission of a signal from one portion of a cell to another portion of a cell.
  • cell surface receptor includes molecules and complexes of molecules capable of receiving a signal and transmitting signal across the membrane of a cell.
  • a substantially purified cell refers to a cell that is essentially free of other cell types.
  • a substantially purified cell also refers to a cell which has been separated from other cell types with which it is normally associated in its naturally occurring state.
  • a population of substantially purified cells refers to a homogenous population of cells. In other instances, this term refers simply to cell that have been separated from the cells with which they are naturally associated in their natural state.
  • the cells are cultured in vitro. In other aspects, the cells are not cultured in vitro.
  • terapéutica as used herein means a treatment.
  • a therapeutic effect is obtained by reduction, suppression, remission, or eradication of a disease state.
  • prophylaxis means the prevention of or protective treatment for a disease or disease state.
  • tumor antigen or “hyperproliferative disorder antigen” or “antigen associated with a hyperproliferative disorder” refers to antigens that are common to specific hyperproliferative disorders.
  • the hyperproliferative disorder antigens of the present invention are derived from, cancers including but not limited to primary or metastatic melanoma, thymoma, lymphoma, sarcoma, lung cancer, liver cancer, non-Hodgkin's lymphoma, Hodgkins lymphoma, leukemias, uterine cancer, cervical cancer, bladder cancer, kidney cancer and adenocarcinomas such as breast cancer, prostate cancer, ovarian cancer, pancreatic cancer, and the like.
  • transfected or “transformed” or “transduced” refers to a process by which exogenous nucleic acid is transferred or introduced into the host cell.
  • a “transfected” or “transformed” or “transduced” cell is one which has been transfected, transformed or transduced with exogenous nucleic acid.
  • the cell includes the primary subject cell and its progeny.
  • the term “specifically binds,” refers to an antibody, or a ligand, which recognizes and binds with a cognate binding partner (e.g., a stimulatory and/or costimulatory molecule present on a T cell) protein present in a sample, but which antibody or ligand does not substantially recognize or bind other molecules in the sample.
  • a cognate binding partner e.g., a stimulatory and/or costimulatory molecule present on a T cell
  • RCAR Regular chimeric antigen receptor
  • an RCAR comprises at least an extracellular antigen binding domain, a transmembrane and a cytoplasmic signaling domain (also referred to herein as "an intracellular signaling domain") comprising a functional signaling domain derived from a stimulatory molecule and/or costimulatory molecule as defined herein in the context of a CAR molecule.
  • the RCAR includes a dimerization switch that, upon the presence of a dimerization molecule, can couple the polypeptides to one another, e.g., can couple an antigen binding domain to an intracellular signaling domain.
  • the RCAR is expressed in a cell (e.g., an immune effector cell) as described herein, e.g., an RCAR-expressing cell (also referred to herein as "RCARX cell").
  • the RCARX cell is a T cell, and is referred to as a RCART cell.
  • the RCARX cell is an NK cell, and is referred to as a RCARN cell.
  • the RCAR can provide the RCAR- expressing cell with specificity for a target cell, typically a cancer cell, and with regulatable intracellular signal generation or proliferation, which can optimize an immune effector property of the RCAR-expressing cell.
  • an RCAR cell relies at least in part, on an antigen binding domain to provide specificity to a target cell that comprises the antigen bound by the antigen binding domain.
  • Membrane anchor or “membrane tethering domain”, as that term is used herein, refers to a polypeptide or moiety, e.g., a myristoyl group, sufficient to anchor an extracellular or intracellular domain to the plasma membrane.
  • Switch domain refers to an entity, typically a polypeptide-based entity, that, in the presence of a dimerization molecule, associates with another switch domain. The association results in a functional coupling of a first entity linked to, e.g., fused to, a first switch domain, and a second entity linked to, e.g., fused to, a second switch domain.
  • a first and second switch domain are collectively referred to as a dimerization switch.
  • the first and second switch domains are the same as one another, e.g., they are polypeptides having the same primary amino acid sequence, and are referred to collectively as a homodimerization switch. In embodiments, the first and second switch domains are different from one another, e.g., they are polypeptides having different primary amino acid sequences, and are referred to collectively as a heterodimerization switch. In embodiments, the switch is intracellular. In embodiments, the switch is extracellular. In embodiments, the switch domain is a polypeptide-based entity, e.g., FKBP or FRB-based, and the dimerization molecule is small molecule, e.g., a rapalogue. In embodiments, the switch domain is a polypeptide-based entity, e.g., an scFv that binds a myc peptide, and the
  • dimerization molecule is a polypeptide, a fragment thereof, or a multimer of a polypeptide, e.g., a myc ligand or multimers of a myc ligand that bind to one or more myc scFvs.
  • the switch domain is a polypeptide-based entity, e.g., myc receptor, and the dimerization molecule is an antibody or fragments thereof, e.g., myc antibody.
  • dimerization molecule refers to a molecule that promotes the association of a first switch domain with a second switch domain.
  • the dimerization molecule does not naturally occur in the subject, or does not occur in concentrations that would result in significant dimerization.
  • the dimerization molecule is a small molecule, e.g., rapamycin or a rapalogue, e.g, RAD001.
  • bioequivalent refers to an amount of an agent other than the reference compound (e.g., RAD001), required to produce an effect equivalent to the effect produced by the reference dose or reference amount of the reference compound (e.g., RAD001).
  • the effect is the level of mTOR inhibition, e.g., as measured by P70 S6 kinase inhibition, e.g., as evaluated in an in vivo or in vitro assay, e.g., as measured by an assay described herein, e.g., the Boulay assay, or measurement of phosphorylated S6 levels by western blot .
  • the effect is alteration of the ratio of PD-1 positive/PD-1 negative T cells, as measured by cell sorting.
  • a bioequivalent amount or dose of an mTOR inhibitor is the amount or dose that achieves the same level of P70 S6 kinase inhibition as does the reference dose or reference amount of a reference compound.
  • a bioequivalent amount or dose of an mTOR inhibitor is the amount or dose that achieves the same level of alteration in the ratio of PD-1 positive/PD-1 negative T cells as does the reference dose or reference amount of a reference compound.
  • low, immune enhancing, dose when used in conjuction with an mTOR inhibitor, e.g., an allosteric mTOR inhibitor, e.g., RAD001 or rapamycin, or a catalytic mTOR inhibitor, refers to a dose of mTOR inhibitor that partially, but not fully, inhibits mTOR activity, e.g., as measured by the inhibition of P70 S6 kinase activity. Methods for evaluating mTOR activity, e.g., by inhibition of P70 S6 kinase, are discussed herein. The dose is insufficient to result in complete immune suppression but is sufficient to enhance the immune response.
  • an mTOR inhibitor e.g., an allosteric mTOR inhibitor, e.g., RAD001 or rapamycin, or a catalytic mTOR inhibitor
  • the low, immune enhancing, dose of mTOR inhibitor results in a decrease in the number of PD-1 positive T cells and/or an increase in the number of PD-1 negative T cells, or an increase in the ratio of PD-1 negative T cells/PD-1 positive T cells. In an embodiment, the low, immune enhancing, dose of mTOR inhibitor results in an increase in the number of naive T cells.
  • the low, immune enhancing, dose of mTOR inhibitor results in one or more of the following: an increase in the expression of one or more of the following markers: CD62L hlgh , CD127 high , CD27 + , and BCL2, e.g., on memory T cells, e.g., memory T cell precursors; a decrease in the expression of KLRG1, e.g., on memory T cells, e.g., memory T cell precursors; and an increase in the number of memory T cell precursors, e.g., cells with any one or combination of the following characteristics: increased CD62L hlgh , increased CD127 hlgh , increased CD27 + , decreased KLRG1, and increased BCL2; wherein any of the changes described above occurs, e.g., at least transiently, e.g., as compared to a non-treated subject.
  • any of the changes described above occurs, e.g., at least transiently, e.g., as
  • Refractory refers to a disease, e.g., cancer, that does not respond to a treatment.
  • a refractory cancer can be resistant to a treatment before or at the beginning of the treatment. In other embodiments, the refractory cancer can become resistant during a treatment.
  • a refractory cancer is also called a resistant cancer.
  • Relapsed or a “relapse” as used herein refers to the reappearance of a disease (e.g., cancer) or the signs and symptoms of a disease such as cancer after a period of improvement or responsiveness, e.g., after prior treatment of a therapy, e.g., cancer therapy.
  • the period of responsiveness may involve the level of cancer cells falling below a certain threshold, e.g., below 20%, 1%, 10%, 5%, 4%, 3%, 2%, or 1%.
  • the reappearance may involve the level of cancer cells rising above a certain threshold, e.g., above 20%, 1%, 10%, 5%, 4%, 3%, 2%, or 1%.
  • ranges throughout this disclosure, various aspects of the invention can be presented in a range format. It should be understood that the description in range format is merely for convenience and brevity and should not be construed as an inflexible limitation on the scope of the invention. Accordingly, the description of a range should be considered to have specifically disclosed all the possible subranges as well as individual numerical values within that range. For example, description of a range such as from 1 to 6 should be considered to have specifically disclosed subranges such as from 1 to 3, from 1 to 4, from 1 to 5, from 2 to 4, from 2 to 6, from 3 to 6 etc., as well as individual numbers within that range, for example, 1, 2, 2.7, 3, 4, 5, 5.3, and 6.
  • a range such as 95-99% identity includes something with 95%, 96%, 97%, 98% or 99% identity, and includes subranges such as 96-99%, 96-98%, 96-97%, 97-99%, 97-98% and 98-99% identity. This applies regardless of the breadth of the range.
  • CAR CLL-1 chimeric antigen receptors
  • the invention provides a number of chimeric antigen receptors (CAR) comprising an antibody or antibody fragment engineered for specific binding to a CLL-1 protein or a fragment thereof.
  • CAR chimeric antigen receptors
  • the invention provides a cell (e.g., an immune effector cell, e.g., a T cell or a NK cell) engineered to express a CAR, wherein the CAR T cell ("CART") exhibits an antitumor property.
  • a cell is transformed with the CAR and at least part of the CAR construct is expressed on the cell surface.
  • the cell (e.g., an immune effector cell, e.g., a T cell or a NK cell) is transduced with a viral vector encoding a CAR.
  • the viral vector is a retroviral vector.
  • the viral vector is a lentiviral vector.
  • the cell may stably express the CAR.
  • the cell e.g., an immune effector cell, e.g., a T cell or a NK cell
  • a nucleic acid e.g., mRNA, cDNA, DNA, encoding a CAR.
  • the cell may transiently express the CAR.
  • the human anti-CLL-1 protein binding portion of the CAR is a scFv antibody fragment.
  • antibody fragments are functional in that they retain the equivalent binding affinity, e.g., they bind the same antigen with comparable efficacy, as the IgG antibody having the same heavy and light chain variable regions.
  • antibody fragments are functional in that they provide a biological response that can include, but is not limited to, activation of an immune response, inhibition of signal-transduction origination from its target antigen, inhibition of kinase activity, and the like, as will be understood by a skilled artisan.
  • the antibodies of the invention are incorporated into a chimeric antigen receptor (CAR).
  • CAR comprises the polypeptide sequence provided herein as SEQ ID NO: 91-103.
  • the anti- CLL-1 binding domain, e.g., human scFv, portion of a CAR of the invention is encoded by a transgene whose sequence has been codon optimized for expression in a mammalian cell.
  • entire CAR construct of the invention is encoded by a transgene whose entire sequence has been codon optimized for expression in a mammalian cell. Codon optimization refers to the discovery that the frequency of occurrence of synonymous codons (i.e., codons that code for the same amino acid) in coding DNA is biased in different species. Such codon degeneracy allows an identical polypeptide to be encoded by a variety of nucleotide sequences.
  • a variety of codon optimization methods is known in the art, and include, e.g., methods disclosed in at least US Patent Numbers 5,786,464 and 6,114,148.
  • the human CLL-1 binding domain comprises the scFv portion provided in SEQ ID NOs:39-51. In one embodiment, the human anti-CLL-1 binding domain comprises the scFv portion provided in SEQ ID NO:39. In one embodiment, the human anti- CLL-1 binding domain comprises the scFv portion provided in SEQ ID NO:40. In one embodiment, the human anti-CLL-1 binding domain comprises the scFv portion provided in SEQ ID NO:41. In one embodiment, the human anti-CLL-1 binding domain comprises the scFv portion provided in SEQ ID NO:42. In one embodiment, the human anti-CLL-1 binding domain comprises the scFv portion provided in SEQ ID NO:43.
  • the human anti-CLL-1 binding domain comprises the scFv portion provided in SEQ ID NO:44. In one embodiment, the human anti-CLL-1 binding domain comprises the scFv portion provided in SEQ ID NO:45. In one embodiment, the human anti-CLL-1 binding domain comprises the scFv portion provided in SEQ ID NO:46. In one embodiment, the human anti-CLL-1 binding domain comprises the scFv portion provided in SEQ ID NO:47. In one embodiment, the human anti-CLL-1 binding domain comprises the scFv portion provided in SEQ ID NO:48. In one embodiment, the human anti-CLL-1 binding domain comprises the scFv portion provided in SEQ ID NO:49.
  • the human anti-CLL-1 binding domain comprises the scFv portion provided in SEQ ID NO:50. In one embodiment, the human anti-CLL-1 binding domain comprises the scFv portion provided in SEQ ID NO:51.
  • the CARs of the invention combine an antigen binding domain of a specific antibody with an intracellular signaling molecule.
  • the intracellular signaling molecule includes, but is not limited to, CD3-zeta chain, 4- IBB and CD28 signaling modules and combinations thereof.
  • the antigen binding domain binds to CLL-1.
  • the CLL-1 CAR comprises a CAR selected from the sequence provided in one or more of SEQ ID NOs: 91-103 or 197.
  • the CLL-1 CAR comprises the sequence provided in SEQ ID NO:91. In one aspect, the CLL-1 CAR comprises the sequence provided in SEQ ID NO:92. In one aspect, the CLL-1 CAR comprises the sequence provided in SEQ ID NO:93. In one aspect, the CLL-1 CAR comprises the sequence provided in SEQ ID NO:94. In one aspect, the CLL-1 CAR comprises the sequence provided in SEQ ID NO:95. In one aspect, the CLL-1 CAR comprises the sequence provided in SEQ ID NO:96. In one aspect, the CLL-1 CAR comprises the sequence provided in SEQ ID NO: 97. In one aspect, the CLL-1 CAR comprises the sequence provided in SEQ ID NO:98.
  • the CLL-1 CAR comprises the sequence provided in SEQ ID NO:99. In one aspect, the CLL-1 CAR comprises the sequence provided in SEQ ID NO: 100. In one aspect, the CLL-1 CAR comprises the sequence provided in SEQ ID NO: 101. In one aspect, the CLL-1 CAR comprises the sequence provided in SEQ ID NO: 102. In one aspect, the CLL-1 CAR comprises the sequence provided in SEQ ID NO: 103. In one aspect, the CLL- 1 CAR comprises the sequence provided in SEQ ID NO: 197. Furthermore, the present invention provides CLL-1 CAR compositions and their use in medicaments or methods for treating, among other diseases, cancer or any malignancy or autoimmune diseases involving cells or tissues which express CLL-1.
  • the CAR of the invention can be used to eradicate CLL-1 -expressing normal cells, thereby applicable for use as a cellular conditioning therapy prior to cell transplantation.
  • the CLL-1 -expressing normal cell is a CLL-1 -expressing normal stem cell and the cell transplantation is a stem cell transplantation.
  • the invention provides a cell (e.g., an immune effector cell, e.g., a T cell or a NK cell) engineered to express a chimeric antigen receptor (CAR) of the present invention, wherein the cell (e.g., CAR-expressing immune effector cell, e.g., CAR T cell, e.g., "CART") exhibits an antitumor property.
  • CAR chimeric antigen receptor
  • a preferred antigen is CLL-1.
  • the antigen binding domain of the CAR comprises a human anti- CLL-1 antibody fragment.
  • the antigen binding domain of the CAR comprises human anti- CLL-1 antibody fragment comprising an scFv.
  • the antigen binding domain of the CAR comprises a human anti-CLL-1 scFv.
  • the invention provides a CLL-1 -CAR that comprises an anti- CLL-1 binding domain and is engineered into an immune effector cell, e.g., a T cell or a NK cell and methods of their use for adoptive therapy.
  • the CLL-1 -CAR comprises a human anti-CLL-1 binding domain.
  • the CLL-1 -CAR comprises at least one intracellular domain selected from the group of a CD137 (4-1BB) signaling domain, a CD28 signaling domain, a CD3zeta signal domain, and any combination thereof.
  • the CLL-1 -CAR comprises at least one intracellular signaling domain is from one or more co- stimulatory molecule(s) other than a CD137 (4-1BB) or CD28.
  • the present invention provides a CAR (e..g., a CAR polypeptide) that comprises an anti-CLL-1 binding domain (e.g., human or humanized CLL-1 binding domain as described herein), a transmembrane domain, and an intracellular signaling domain, and wherein said anti- CLL-1 binding domain comprises a heavy chain complementary determining region 1 (HC CDR1), a heavy chain complementary determining region 2 (HC CDR2), and a heavy chain complementary determining region 3 (HC CDR3) of any anti-CLL-1 heavy chain binding domain amino acid sequences listed in Table 2.
  • HC CDR1 heavy chain complementary determining region 1
  • HC CDR2 heavy chain complementary determining region 2
  • HC CDR3 heavy chain complementary determining region 3
  • the anti-CLL-1 binding domain of the CAR can further comprise a light chain complementary determining region 1 (LC CDR1), a light chain complementary determining region 2 (LC CDR2), and a light chain complementary determining region 3 (LC CDR3) of any anti-CLL-1 light chain binding domain amino acid sequences listed in Table 2.
  • LC CDR1 light chain complementary determining region 1
  • LC CDR2 light chain complementary determining region 2
  • LC CDR3 light chain complementary determining region 3
  • the present invention also provides nucleic acid molecules encoding the CAR as described herein, e.g., encoding a CAR that comprises an anti-CLL-1 binding domain (e.g., human or humanized CLL-1 binding domain as described herein), a transmembrane domain, and an intracellular signaling domain, and wherein said anti-CLL-1 binding domain comprises a heavy chain complementary determining region 1 (HC CDR1), a heavy chain complementary determining region 2 (HC CDR2), and a heavy chain complementary determining region 3 (HC CDR3) of any anti-CLL-1 heavy chain binding domain amino acid sequences listed in Table 2.
  • the encoded anti-CLL-1 binding domain of the CAR can further comprise a light chain complementary determining region 1 (LC CDR1), a light chain complementary determining region 2 (LC CDR2), and a light chain complementary
  • a CAR construct of the invention comprises a scFv domain selected from the group consisting of SEQ ID NOs:39-51, wherein the scFv may be preceded by an optional leader sequence such as provided in SEQ ID NO: 1, and followed by an optional hinge sequence such as provided in SEQ ID NO:2 or SEQ ID NO:3 or SEQ ID NO:4 or SEQ ID NO:5, a transmembrane region such as provided in SEQ ID NO:6, an intracellular signalling domain that includes SEQ ID NO:7 or SEQ ID NO: 8 and a CD3 zeta sequence that includes SEQ ID NO:9 or SEQ ID NO: 10, e.g., wherein the domains are contiguous with and in the same reading frame to form a single fusion protein.
  • an exemplary CLL-1 CAR constructs comprise an optional leader sequence, an extracellular antigen binding domain, a hinge, a transmembrane domain, and an intracellular stimulatory domain.
  • an exemplary CLL-1 CAR construct comprises an optional leader sequence, an extracellular antigen binding domain, a hinge, a transmembrane domain, an intracellular co stimulatory domain and an intracellular stimulatory domain.
  • full-length CAR sequences are also provided herein as SEQ ID NOs: 91-103, as shown in Table 2.
  • An exemplary leader sequence is provided as SEQ ID NO: 1.
  • An exemplary leader sequence is provided as SEQ ID NO: 1.
  • SEQ ID NO:2 amino acid sequence
  • SEQ ID NO:3 amino acid sequence
  • SEQ ID NO:4 amino acid sequence
  • SEQ ID NO:5 amino acid sequence
  • SEQ ID NO:6 amino acid sequence
  • SEQ ID NO: 7 amino acid sequence of the intracellular signaling domain of the 4-1BB protein
  • SEQ ID NO: 8 amino acid sequence of the intracellular signaling domain of CD27
  • SEQ ID NO: 9 amino acid sequence of the intracellular signaling domain of CD27
  • the present invention encompasses a recombinant nucleic acid construct comprising a nucleic acid molecule encoding a CAR, wherein the nucleic acid molecule comprises the nucleic acid sequence encoding a CLL-1 binding domain, e.g., described herein, e.g., that is contiguous with and in the same reading frame as a nucleic acid sequence encoding an intracellular signaling domain.
  • the CLL-1 binding domain is selected from one or more of SEQ ID NOs:39-51.
  • the CLL-1 binding domain comprises SEQ ID NO:39.
  • the CLL-1 binding domain comprises SEQ ID NO:40.
  • the CLL-1 binding domain comprises SEQ ID NO:41. In one embodiment, the CLL-1 binding domain comprises SEQ ID NO:42. In one embodiment, the CLL-1 binding domain comprises SEQ ID NO:43. In one embodiment, the CLL-1 binding domain comprises SEQ ID NO:44. In one embodiment, the CLL-1 binding domain comprises SEQ ID NO:45. In one embodiment, the CLL-1 binding domain comprises SEQ ID NO:46. In one embodiment, the CLL-1 binding domain comprises SEQ ID NO:47. In one embodiment, the CLL-1 binding domain comprises SEQ ID NO:48. In one embodiment, the CLL-1 binding domain comprises SEQ ID NO:49. In one embodiment, the CLL-1 binding domain comprises SEQ ID NO:50.
  • the CLL-1 binding domain comprises SEQ ID NO:51.
  • the present invention encompasses a recombinant nucleic acid construct comprising a transgene encoding a CAR, wherein the nucleic acid molecule comprises a nucleic acid sequence encoding an anti- CLL-1 binding domain selected from one or more of SEQ ID NOs:39-51, wherein the sequence is contiguous with and in the same reading frame as the nucleic acid sequence encoding an intracellular signaling domain.
  • An exemplary intracellular signaling domain that can be used in the CAR includes, but is not limited to, one or more intracellular signaling domains of, e.g., CD3-zeta, CD28, 4-lBB, and the like.
  • the CAR can comprise any combination of CD3-zeta, CD28, 4- IBB, and the like.
  • the nucleic acid sequence of a CAR construct of the invention is selected from one or more of SEQ ID NOs:104-116, or 198.
  • the nucleic acid sequence of a CAR construct is SEQ ID NO: 104.
  • the nucleic acid sequence of a CAR construct is SEQ ID NO: 105.
  • the nucleic acid sequence of a CAR construct is SEQ ID NO:106.
  • the nucleic acid sequence of a CAR construct is SEQ ID NO:107.
  • the nucleic acid sequence of a CAR construct is SEQ ID NO: 108.
  • nucleic acid sequence of a CAR construct is SEQ ID NO: 109. In one aspect the nucleic acid sequence of a CAR construct is SEQ ID NO: 110. In one aspect the nucleic acid sequence of a CAR construct is SEQ ID NO:l l l. In one aspect the nucleic acid sequence of a CAR construct is SEQ ID NO: 112. In one aspect the nucleic acid sequence of a CAR construct is SEQ ID NO:113. In one aspect the nucleic acid sequence of a CAR construct is SEQ ID NO:114. In one aspect the nucleic acid sequence of a CAR construct is SEQ ID NO: 115. In one aspect the nucleic acid sequence of a CAR construct is SEQ ID NO: 116.
  • the nucleic acid sequence of a CAR construct is SEQ ID NO: 198.
  • the nucleic acid sequences coding for the desired molecules can be obtained using recombinant methods known in the art, such as, for example by screening libraries from cells expressing the gene, by deriving the gene from a vector known to include the same, or by isolating directly from cells and tissues containing the same, using standard techniques.
  • the nucleic acid of interest can be produced synthetically, rather than cloned.
  • the present invention includes retroviral and lentiviral vector constructs expressing a CAR that can be directly transduced into a cell.
  • the present invention also includes an RNA construct that can be directly transfected into a cell.
  • a method for generating mRNA for use in transfection involves in vitro transcription (IVT) of a template with specially designed primers, followed by polyA addition, to produce a construct containing 3' and 5' untranslated sequence ("UTR"), a 5' cap and/or Internal Ribosome Entry Site (IRES), the nucleic acid to be expressed, and a polyA tail, typically 50-2000 bases in length (SEQ ID NO:35).
  • RNA so produced can efficiently transfect different kinds of cells.
  • the template includes sequences for the CAR.
  • an RNA CAR vector is transduced into a T cell by electroporation.
  • the CARs of the present invention comprise a target- specific binding domain.
  • the choice of moiety depends upon the type and number of ligands that define the surface of a target cell.
  • the antigen binding domain may be chosen to recognize a ligand that acts as a cell surface marker on target cells associated with a particular disease state.
  • cell surface markers that may act as ligands for the antigen binding domain in a CAR of the invention include those associated with viral, bacterial and parasitic infections, autoimmune disease and cancer cells.
  • the CAR-mediated T-cell response can be directed to an antigen of interest by way of engineering an antigen binding domain that specifically binds a desired antigen into the CAR.
  • the CAR of the present invention comprises a binding domain that specifically binds CLL-1.
  • the antigen binding domain specifically binds human CLL-1.
  • the antigen binding domain can be any domain that binds to the antigen including but not limited to a monoclonal antibody, a polyclonal antibody, a recombinant antibody, a human antibody, a humanized antibody, and a functional fragment thereof, including but not limited to a single-domain antibody such as a heavy chain variable domain (VH), a light chain variable domain (VL) and a variable domain (VHH) of camelid derived nanobody, and to an alternative scaffold known in the art to function as antigen binding domain, such as a recombinant fibronectin domain, and the like.
  • VH heavy chain variable domain
  • VL light chain variable domain
  • VHH variable domain
  • it is beneficial for the antigen binding domain to be derived from the same species in which the CAR will ultimately be used in.
  • the antigen binding domain it is beneficial for the antigen binding domain to be derived from the same species in which the CAR will ultimately be used in.
  • the antigen binding domain of the CAR may be beneficial for the antigen binding domain of the CAR to comprise human or humanized residues for the antigen binding domain of an antibody or antibody fragment.
  • the antigen binding domain comprises a human antibody or an antibody fragment.
  • the antigen binding domain comprises a human antibody or an antibody fragment.
  • the human anti- CLL-1 binding domain comprises one or more (e.g., all three) light chain complementary determining region 1 (LC CDR1), light chain complementary determining region 2 (LC CDR2), and light chain complementary determining region 3 (LC CDR3) of a human anti- CLL-lbinding domain described herein, and/or one or more (e.g., all three) heavy chain complementary determining region 1 (HC CDR1), heavy chain complementary determining region 2 (HC CDR2), and heavy chain complementary determining region 3 (HC CDR3) of a human anti- CLL-1 binding domain described herein, e.g., a human anti- CLL-1 binding domain comprising one or more, e.g., all three, LC CDRs and one or more, e.g., all three, HC CDRs.
  • the human anti- CLL-1 binding domain comprises one or more (e.g., all three) heavy chain complementary determining region 1 (HC C
  • the human anti-CLL-1 binding domain has two variable heavy chain regions, each comprising a HC CDR1, a HC CDR2 and a HC CDR3 described herein.
  • the human anti- CLL-1 binding domain comprises a human light chain variable region described herein (e.g., in Table 4) and/or a human heavy chain variable region described herein (e.g., in Table 3).
  • the human anti- CLL-1 binding domain comprises a human heavy chain variable region described herein (e.g., in Table 3), e.g., at least two human heavy chain variable regions described herein (e.g., in Table 3).
  • the anti- CLL-1 binding domain is a scFv comprising a light chain and a heavy chain of an amino acid sequence of Table 4.
  • the anti- CLL-1 binding domain (e.g., an scFv) comprises: a light chain variable region comprising an amino acid sequence having at least one, two or three modifications (e.g., substitutions, e.g., conservative substitutions) but not more than 30, 20 or 10 modifications (e.g., substitutions, e.g., conservative substitutions) of an amino acid sequence of a light chain variable region provided in Table 4, or a sequence with 95-99% identity with an amino acid sequence of Table 4; and/or a heavy chain variable region comprising an amino acid sequence having at least one, two or three modifications (e.g., substitutions, e.g., conservative substitutions) but not more than 30, 20 or 10 modifications (e.g., substitutions, e.g., conservative substitutions) of an amino acid sequence of a heavy chain variable region provided in Table 3, or a sequence with 95-99% identity to an amino acid sequence of Table 3.
  • a light chain variable region comprising an amino acid sequence having at least one, two or three modifications (e
  • the human anti- CLL- lbinding domain comprises a sequence selected from a group consisting of SEQ ID NO:39-51, or a sequence with 95-99% identity thereof.
  • the nucleic acid sequence encoding the human anti- CLL-1 binding domain comprises a sequence selected from a group consisting of SEQ ID NO:52-64, or a sequence with 95-99% identity thereof.
  • the human anti- CLL-1 binding domain is a scFv, and a light chain variable region comprising an amino acid sequence described herein, e.g., in Table 2, is attached to a heavy chain variable region comprising an amino acid sequence described herein, e.g., in Table 2, via a linker, e.g., a linker described herein.
  • the human anti- CLL-1 binding domain includes a (Gly 4 -Ser)n linker, wherein n is 1, 2, 3, 4, 5, or 6, preferably 3 or 4 (SEQ ID NO:26).
  • the light chain variable region and heavy chain variable region of a scFv can be, e.g., in any of the following orientations: light chain variable region-linker-heavy chain variable region or heavy chain variable region-linker-light chain variable region.
  • the antigen binding domain portion comprises one or more sequence selected from SEQ ID NOs:39-41.
  • the CAR is selected from one or more sequence selected from SEQ ID NOs: 91-103, or 197.
  • the anti- CLL-1 binding domain is characterized by particular functional features or properties of an antibody or antibody fragment.
  • the portion of a CAR composition of the invention that comprises an antigen binding domain specifically binds human CLL-1.
  • the invention relates to an antigen binding domain comprising an antibody or antibody fragment, wherein the antibody binding domain specifically binds to a CLL-1 protein or fragment thereof, wherein the antibody or antibody fragment comprises a variable light chain and/or a variable heavy chain that includes an amino acid sequence of SEQ ID NO: 39-51.
  • the antigen binding domain comprises an amino acid sequence of an scFv selected from SEQ ID NOs: 39-51.
  • the scFv is contiguous with and in the same reading frame as a leader sequence.
  • the leader sequence is the polypeptide sequence provided as SEQ ID NO:l.
  • the human anti- CLL-1 binding domain is a fragment, e.g., a single chain variable fragment (scFv).
  • the human anti- CLL-1 binding domain is a Fv, a Fab, a (Fab')2, or a bi-functional (e.g. bi-specific) hybrid antibody (e.g., Lanzavecchia et al., Eur. J. Immunol. 17, 105 (1987)).
  • the antibodies and fragments thereof of the invention binds a CLL-1 protein or a fragment thereof with wild- type or enhanced affinity.
  • a human scFv be derived from a display library.
  • a display library is a collection of entities; each entity includes an accessible polypeptide component and a recoverable component that encodes or identifies the polypeptide component.
  • the polypeptide component is varied so that different amino acid sequences are represented.
  • the polypeptide component can be of any length, e.g. from three amino acids to over 300 amino acids.
  • a display library entity can include more than one polypeptide component, for example, the two polypeptide chains of a Fab.
  • a display library can be used to identify a human CLL-1 binding domain. In a selection, the polypeptide component of each member of the library is probed with CLL-1, or a fragment there, and if the polypeptide component binds to CLL-1, the display library member is identified, typically by retention on a support.
  • Retained display library members are recovered from the support and analyzed.
  • the analysis can include amplification and a subsequent selection under similar or dissimilar conditions. For example, positive and negative selections can be alternated.
  • the analysis can also include determining the amino acid sequence of the polypeptide component, i.e., the CLL- 1 binding domain, and purification of the polypeptide component for detailed characterization.
  • phage display the protein component is typically covalently linked to a
  • the linkage results from translation of a nucleic acid encoding the protein component fused to the coat protein.
  • the linkage can include a flexible peptide linker, a protease site, or an amino acid incorporated as a result of suppression of a stop codon.
  • Phage display is described, for example, in U.S. 5,223,409; Smith (1985) Science 228:1315-1317; WO 92/18619; WO 91/17271; WO 92/20791; WO 92/15679; WO 93/01288; WO 92/01047; WO 92/09690; WO 90/02809; de Haard et al. (1999) J. Biol. Chem 274:18218-30;
  • Bacteriophage displaying the protein component can be grown and harvested using standard phage preparatory methods, e.g. PEG precipitation from growth media. After selection of individual display phages, the nucleic acid encoding the selected protein components can be isolated from cells infected with the selected phages or from the phage themselves, after amplification. Individual colonies or plaques can be picked, the nucleic acid isolated and sequenced.
  • display formats include cell based display (see, e.g., WO 03/029456), protein- nucleic acid fusions (see, e.g., US 6,207,446), ribosome display (See, e.g., Mattheakis et al. (1994) Proc. Natl. Acad. Sci. USA 91:9022 and Hanes et al. (2000) Nat Biotechnol. 18:1287- 92; Hanes et al. (2000) Methods Enzymol. 328:404-30; and Schaffitzel et al. (1999) J Immunol Methods. 231(l-2):119-35), and E.
  • scFvs can be prepared according to method known in the art (see, for example, Bird et al., (1988) Science 242:423-426 and Huston et al., (1988) Proc. Natl. Acad. Sci. USA 85:5879-5883).
  • ScFv molecules can be produced by linking VH and VL regions together using flexible polypeptide linkers.
  • the scFv molecules comprise a linker (e.g., a Ser- Gly linker) with an optimized length and/or amino acid composition. The linker length can greatly affect how the variable regions of a scFv fold and interact.
  • WO2007/024715 is incorporated herein by reference.
  • An scFv can comprise a linker of at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 45, 50, or more amino acid residues between its VL and VH regions.
  • the linker sequence may comprise any naturally occurring amino acid.
  • the linker sequence comprises amino acids glycine and serine.
  • the linker sequence comprises sets of glycine and serine repeats such as (Gly 4 Ser)n, where n is a positive integer equal to or greater than 1 (SEQ ID NO:25).
  • the linker can be (Gly 4 Ser) 4 (SEQ ID NO:27) or (Gly 4 Ser) 3 (SEQ ID NO:28). Variation in the linker length may retain or enhance activity, giving rise to superior efficacy in activity studies.
  • Exemplary CLL-1 CAR constructs disclose herein comprise an scFv (e.g., a human scFv as disclosed in Tables 2 herein, optionally preceded with an optional leader sequence (e.g., SEQ ID NO:l and SEQ ID NO: 12 for exemplary leader amino acid and nucleotide sequences, respectively).
  • scFv e.g., a human scFv as disclosed in Tables 2 herein, optionally preceded with an optional leader sequence (e.g., SEQ ID NO:l and SEQ ID NO: 12 for exemplary leader amino acid and nucleotide sequences, respectively).
  • the sequences of the human scFv fragments are provided herein in Table 2.
  • the CLL-1 CAR construct can further include an optional hinge domain, e.g., a CD8 hinge domain (e.g., including the amino acid sequence of SEQ ID NO: 2 or encoded by a nucleic acid sequence of SEQ ID NO: 13); a transmembrane domain, e.g., a CD8
  • transmembrane domain e.g., including the amino acid sequence of SEQ ID NO: 6 or encoded by the nucleotide sequence of SEQ ID NO: 17
  • an intracellular domain e.g., a 4-1BB intracellular domain (e.g., including the amino acid sequence of SEQ ID NO: 7 or encoded by the nucleotide sequence of SEQ ID NO: 18
  • a functional signaling domain e.g., a CD3 zeta domain (e.g., including amino acid sequence of SEQ ID NO: 9 or 10, or encoded by the nucleotide sequence of SEQ ID NO: 20 or 21).
  • the domains are contiguous with and in the same reading frame to form a single fusion protein.
  • the domain are in separate polypeptides, e.g., as in an RCAR molecule as described herein.
  • the full length CLL-1 CAR molecule includes the amino acid sequence of, or is encoded by the nucleotide sequence of, CLL-1 CAR-1, CLL-1 CAR-2, CLL- 1 CAR-3, CLL-1 CAR-4, CLL-1 CAR-5, CLL-1 CAR-6, CL-L1 CAR-7, CLL-1 CAR-8, CLL- 1 CAR-9, CLL-1 CAR-10, CLL-1 CAR-11, CLL-1 CAR-12, CLL-1 CAR-13, 181268 provided in Table 2, or a sequence substantially (e.g., 95-99%) identical thereto.
  • the CLL-1 CAR molecule, or the anti-CLL-1 antigen binding domain includes the scFv amino acid sequence of CLL-1 CAR-1, CLL-1 CAR-2, CLL-1 CAR-3, CLL-1 CAR-4, CLL-1 CAR-5, CLL-1 CAR-6, CL-L1 CAR-7, CLL-1 CAR-8, CLL-1 CAR-9, CLL-1 CAR-10, CLL-1 CAR-11, CLL-1 CAR-12, CLL-1 CAR-13, 181268, provided in Table 2; or includes the scFv amino acid sequence of, or is encoded by the nucleotide sequence of, CLL-1 CAR-1, CLL-1 CAR-2, CLL-1 CAR-3, CLL-1 CAR-4, CLL-1 CAR-5, CLL-1 CAR-6, CL-L1 CAR-7, CLL-1 CAR-8, CLL-1 CAR-9, CLL-1 CAR-10, CLL-1 CAR- 11, CLL-1 CAR-12, CLL-1 CAR
  • the CLL-1 CAR molecule, or the anti-CLL-1 antigen binding domain includes the heavy chain variable region and/or the light chain variable region of CLL- 1 CAR-1, CLL-1 CAR-2, CLL-1 CAR-3, CLL-1 CAR-4, CLL-1 CAR-5, CLL-1 CAR-6, CLLI CAR-7, CLL-1 CAR-8, CLL-1 CAR-9, CLL-1 CAR-10, CLL-1 CAR-11, CLL-1 CAR-12, CLL-1 CAR-13, 181268, provided in Table 2, or a sequence substantially identical (e.g., 95- 99% identical, or up to 20, 15, 10, 8, 6, 5, 4, 3, 2, or 1 amino acid changes, e.g., substitutions (e.g., conservative substitutions)) to any of the aforesaid sequences.
  • substitutions e.g., conservative substitutions
  • the CLL-1 CAR molecule, or the anti-CLL-1 antigen binding domain includes one, two or three CDRs from the heavy chain variable region (e.g., HCDR1, HCDR2 and/or HCDR3), provided in Table 3; and/or one, two or three CDRs from the light chain variable region (e.g., LCDRl, LCDR2 and/or LCDR3) of CLL-1 CAR-1, CLL-1 CAR-2, CLL-1 CAR-3, CLL-1 CAR-4, CLL-1 CAR-5, CLL-1 CAR-6, CL-L1 CAR-7, CLL-1 CAR-8, CLL-1 CAR-9, CLL-1 CAR-10, CLL-1 CAR-11, CLL-1 CAR-12, CLL-1 CAR-13, 181268, provided in Table 4; or a sequence substantially identical (e.g., 95-99% identical, or up to 5, 4, 3, 2, or 1 amino acid changes, e.g., substitutions (e.g., conservative substitutions))
  • the CLL-1 CAR molecule, or the anti-CLL-1 antigen binding domain includes one, two or three CDRs from the heavy chain variable region (e.g., HCDR1, HCDR2 and/or HCDR3), provided in Table 5; and/or one, two or three CDRs from the light chain variable region (e.g., LCDRl, LCDR2 and/or LCDR3) of CLL-1 CAR-1, CLL-1 CAR-2, CLL-1 CAR-3, CLL-1 CAR-4, CLL-1 CAR-5, CLL-1 CAR-6, CL-L1 CAR-7, CLL-1 CAR-8, CLL-1 CAR-9, CLL-1 CAR-10, CLL-1 CAR-11, CLL-1 CAR-12, CLL-1 CAR-13, 181268, provided in Table 6; or a sequence substantially identical (e.g., 95-99% identical, or up to 5, 4, 3, 2, or 1 amino acid changes, e.g., substitutions (e.g., conservative substitutions))
  • the CLL-1 CAR molecule, or the anti-CLL-1 antigen binding domain includes one, two or three CDRs from the heavy chain variable region (e.g., HCDR1, HCDR2 and/or HCDR3), provided in Table 7; and/or one, two or three CDRs from the light chain variable region (e.g., LCDRl, LCDR2 and/or LCDR3) of CLL-1 CAR-1, CLL-1 CAR-2, CLL-1 CAR-3, CLL-1 CAR-4, CLL-1 CAR-5, CLL-1 CAR-6, CL-Ll CAR-7, CLL-1 CAR-8, CLL-1 CAR-9, CLL-1 CAR- 10, CLL-1 CAR-11, CLL-1 CAR-12, CLL-1 CAR- 13, 181268, provided in Table 8; or a sequence substantially identical (e.g., 95-99% identical, or up to 5, 4, 3, 2, or 1 amino acid changes, e.g., substitutions (e.g., conservative substitutions))
  • the CDRs provided in Tables 3 and 4 are according to a combination of the Kabat and Chothia numbering scheme.
  • the CAR molecule described herein (e.g., the CAR nucleic acid or the CAR polypeptide) includes:
  • LC CDRs chosen from one of the following: (i) a LC CDRl of SEQ ID NO: 156, LC CDR2 of SEQ ID NO: 169 and LC CDR3 of
  • the CAR molecule described herein e.g., the CAR nucleic acid or the CAR polypeptide
  • a CLL-1 binding domain includes:
  • LC CDRs chosen from one of the following:
  • the CAR molecule described herein (e.g., the CAR nucleic acid or the CAR polypeptide) includes:
  • LC CDRs chosen from one of the following:
  • the order in which the VL and VH domains appear in the scFv is varied (i.e., VL-VH, or VH-VL orientation), and where either three or four copies of the "G4S' (SEQ ID NO:25) subunit, in which each subunit comprises the sequence GGGGS (SEQ ID NO:25) (e.g., (G4S) 3 (SEQ ID NO:28) or (G4S) 4 (SEQ ID NO:27)), connect the variable domains to create the entirety of the scFv domain, as shown in Table 2.
  • the amino acid and nucleic acid sequences of the CLL-1 scFv domains and CLL-1 CAR molecules are provided in Table 2.
  • amino acid sequences for the variable heavy chain and variable light chain for each scFv is also provided in Table 2 It is noted that the scFv fragments (SEQ ID NOs: 39-51) with a leader sequence (e.g., the amino acid sequence of SEQ ID NO: 1 or the nucleotide sequence of SEQ ID NO: 12) are also encompassed by the present invention.
  • CD8 hinge amino acid sequence (SEQ ID NO: 2)
  • CD28 Intracellular domain (amino acid sequence) (SEQ ID NO: 482) RSKRSRLLHSDYMNMTPRRPGPTRKHYQPYAPPRDFAAYRS (SEQ ID NO: 482)
  • CD28 Intracellular domain (nucleotide sequence) (SEQ ID NO: 483)
  • ICOS Intracellular domain (amino acid sequence) (SEQ ID NO: 484)
  • ICOS Intracellular domain (nucleotide sequence) (SEQ ID NO: 485)
  • CD3 zeta domain (amino acid sequence) (SEQ ID NO: 9)
  • CD3 zeta domain (amino acid sequence; NCBI Reference Sequence NM_000734.3) (SEQ ID NO:10)
  • CD3 zeta nucleic acid sequence; NCBI Reference Sequence NM_000734.3); (SEQ ID NO: 1
  • IgG4 Hinge amino acid sequence (SEQ ID NO:36)
  • IgG4 Hinge (nucleotide sequence) (SEQ ID NO:37)
  • these clones (e.g., in Table 2) all contained a Q/K residue change in the signal domain of the co-stimulatory domain derived from CD3zeta chain.
  • the CAR scFv fragments were then cloned into lentiviral vectors to create a full length CAR construct in a single coding frame, and using the EF1 alpha promoter for expression (SEQ ID NO: 11).
  • Gly/Ser SEQ ID NO:26: This sequence may encompass 1-6 "Gly Gly Gly Gly Ser" repeating units
  • PolyA (A) 500 o (SEQ ID NO:30)
  • This sequence may encompass 50-5000 adenines.
  • This sequence may encompass 50-5000 thymines.
  • PolyA (A) 500 o (SEQ ID NO:33)
  • This sequence may encompass 100-5000 adenines.
  • PolyA (A) 400 (SEQ ID NO:34) PolyA: (A) 2000 (SEQ ID NO:35) Gly/Ser (SEQ ID NO:38): This sequence may encompass 1-10 "Gly Gly Gly Ser" repeating units
  • the CLL-1 CAR may comprise one or more, e.g., one, two, or three, CDRs of the heavy chain variable domain and/or one or more, e.g., one, two, or three, CDRs of the light chain variable domain, or the variable heavy chain (VH) or the variable light chain (VL) of of the anti-CLL-1 (CLEC12A) antibody disclosed in PCT Publication
  • the CAR scFv fragments can be cloned into lenti viral vectors to create a full length
  • the CAR construct can include a Gly/Ser linker having one or more of the following sequences: GGGGS (SEQ ID NO:25); encompassing 1-6 "Gly Gly Gly Gly Ser" repeating units, e.g., GGGGSGGGGS GGGGSGGGGS GGGGSGGGGS (SEQ ID NO:26);
  • GGGGSGGGGS GGGGSGGGGS SEQ ID NO:27
  • GGGGSGGGGS GGGGS SEQ ID NO:28
  • GGGS SEQ ID NO:29
  • Gly Gly Gly Ser repeating units, e.g., GGGSGGGSGG GSGGGSGGGSGGGSGG GSGGGSGGGS (SEQ ID NO:38).
  • the CAR construct include a poly A sequence, e.g., a sequence encompassing 50-5000 or 100-5000 adenines (e.g., SEQ ID NO:30, SEQ ID NO:33, SEQ ID NO:34 or SEQ ID NO:35), or a sequence encompassing 50-5000 thymines (e.g., SEQ ID NO:31, SEQ ID NO:32).
  • the CAR construct can include, for example, a linker including the sequence GSTSGSGKPGSGEGSTKG (SEQ ID NO: 486)
  • a multispecific antibody molecule is a bispecific antibody molecule.
  • a bispecific antibody has specificity for no more than two antigens.
  • a bispecific antibody molecule is characterized by a first immunoglobulin variable domain sequence which has binding specificity for a first epitope and a second immunoglobulin variable domain sequence that has binding specificity for a second epitope.
  • the first and second epitopes are on the same antigen, e.g., the same protein (or subunit of a multimeric protein).
  • the first and second epitopes overlap.
  • the first and second epitopes do not overlap.
  • first and second epitopes are on different antigens, e.g., different proteins (or different subunits of a multimeric protein).
  • a bispecific antibody molecule comprises a heavy chain variable domain sequence and a light chain variable domain sequence which have binding specificity for a first epitope and a heavy chain variable domain sequence and a light chain variable domain sequence which have binding specificity for a second epitope.
  • a bispecific antibody molecule comprises a half antibody having binding specificity for a first epitope and a half antibody having binding specificity for a second epitope.
  • a bispecific antibody molecule comprises a half antibody, or fragment thereof, having binding specificity for a first epitope and a half antibody, or fragment thereof, having binding specificity for a second epitope.
  • a bispecific antibody molecule comprises a scFv, or fragment thereof, have binding specificity for a first epitope and a scFv, or fragment thereof, have binding specificity for a second epitope.
  • the antibody molecule is a multi- specific (e.g., a bispecific or a trispecific) antibody molecule.
  • Protocols for generating bispecific or heterodimeric antibody molecules are known in the art; including but not limited to, for example, the "knob in a hole" approach described in, e.g., US 5731168; the electrostatic steering Fc pairing as described in, e.g., WO 09/089004, WO 06/106905 and WO 2010/129304; Strand Exchange Engineered Domains (SEED) heterodimer formation as described in, e.g., WO 07/110205; Fab arm exchange as described in, e.g., WO 08/119353, WO 2011/131746, and WO 2013/060867;
  • SEED Strand Exchange Engineered Domains
  • double antibody conjugate e.g., by antibody cross-linking to generate a bi-specific structure using a heterobifunctional reagent having an amine-reactive group and a sulfhydryl reactive group as described in, e.g., US 4433059; bispecific antibody determinants generated by recombining half antibodies (heavy-light chain pairs or Fabs) from different antibodies through cycle of reduction and oxidation of disulfide bonds between the two heavy chains, as described in, e.g., US 4444878; Afunctional antibodies, e.g., three Fab' fragments cross-linked through sulfhdryl reactive groups, as described in, e.g., US5273743; biosynthetic binding proteins, e.g., pair of scFvs cross-linked through C-terminal tails preferably through disulfide or amine- reactive chemical cross-linking, as described in, e.g., US5534254; bifunctional antibodies, e.g.,
  • the VH can be upstream or downstream of the VL.
  • the upstream antibody or antibody fragment e.g., scFv
  • the downstream antibody or antibody fragment is arranged with its VL (VL 2 ) upstream of its VH (VH 2 ), such that the overall bispecific antibody molecule has the arrangement VHi-VLi-VL 2 -VH 2 .
  • the upstream antibody or antibody fragment (e.g., scFv) is arranged with its VL (VLi) upstream of its VH (VHi) and the downstream antibody or antibody fragment (e.g., scFv) is arranged with its VH (VH 2 ) upstream of its VL (VL 2 ), such that the overall bispecific antibody molecule has the arrangement VLi- VHi-VH 2 -VL 2 .
  • a linker is disposed between the two antibodies or antibody fragments (e.g., scFvs), e.g., between VLi and VL 2 if the construct is arranged as VH VLi- VL 2 -VH 2 , or between VHi and VH 2 if the construct is arranged as VLi-VH VH 2 -VL 2 .
  • the linker may be a linker as described herein, e.g., a (Gly 4 -Ser)n linker, wherein n is 1, 2, 3, 4, 5, or 6, preferably 4 (SEQ ID NO: 64).
  • the linker between the two scFvs should be long enough to avoid mispairing between the domains of the two scFvs.
  • a linker is disposed between the VL and VH of the first scFv.
  • a linker is disposed between the VL and VH of the second scFv.
  • any two or more of the linkers can be the same or different.
  • a bispecific CAR comprises VLs, VHs, and optionally one or more linkers in an arrangement as described herein.
  • the bispecific antibody molecule is characterized by a first immunoglobulin variable domain sequence, e.g., a scFv, which has binding specificity for CLL-1, e.g., comprises a scFv as described herein, e.g., as described in Table 2, or comprises the light chain CDRs and/or heavy chain CDRs from a CLL-1 scFv described herein, and a second immunoglobulin variable domain sequence that has binding specificity for a second epitope on a different antigen.
  • the second immunoglobulin variable domain sequence has binding specificity for an antigen expressed on AML cells, e.g., an antigen other than CLL-1.
  • the second immunoglobulin variable domain sequence has binding specificity for CD123.
  • the second immunoglobulin variable domain sequence has binding specificity for CD33.
  • the second immunoglobulin variable domain sequence has binding specificity for CD34.
  • the second immunoglobulin variable domain sequence has binding specificity for FLT3.
  • the second immunoglobulin variable domain sequence has binding specificity for folate receptor beta.
  • the second immunoglobulin variable domain sequence has binding specificity for an antigen expressed on B-cells, for example, CD19, CD20, CD22 or ROR1.
  • the CLL-1 antibodies and antibody fragments of the present invention can be grafted to one or more constant domain of a T cell receptor (“TCR") chain, for example, a TCR alpha or TCR beta chain, to create an chimeric TCR that binds specificity to CLL-1.
  • TCR T cell receptor
  • chimeric TCRs will signal through the TCR complex upon antigen binding.
  • a CLL-1 scFv as disclosed herein can be grafted to the constant domain, e.g., at least a portion of the extracellular constant domain, the transmembrane domain and the cytoplasmic domain, of a TCR chain, for example, the TCR alpha chain and/or the TCR beta chain.
  • a CLL-1 antibody fragment for example a VL domain as described herein
  • a CLL-1 antibody fragment for example a VH domain as described herein
  • a VL domain may be grafted to the constant domain of the TCR beta chain
  • a VH domain may be grafted to a TCR alpha chain
  • the CDRs of a CLL-1 antibody or antibody fragment may be grafted into a TCR alpha and/or beta chain to create a chimeric TCR that binds specifically to CLL-1.
  • the LCDRs disclosed herein may be grafted into the variable domain of a TCR alpha chain and the HCDRs disclosed herein may be grafted to the variable domain of a TCR beta chain, or vice versa.
  • Such chimeric TCRs may be produced by methods known in the art (For example, Willemsen RA et al, Gene Therapy 2000; 7: 1369-1377; Zhang T et al, Cancer Gene Ther 2004; 11 : 487- 496; Aggen et al, Gene Ther. 2012 Apr;19(4):365-74).
  • a CAR can be designed to comprise a transmembrane domain that is attached to the extracellular domain of the CAR.
  • a transmembrane domain can include one or more additional amino acids adjacent to the transmembrane region, e.g., one or more amino acid associated with the extracellular region of the protein from which the transmembrane was derived (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 up to 15 amino acids of the extracellular region) and/or one or more additional amino acids associated with the intracellular region of the protein from which the transmembrane protein is derived (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 up to 15 amino acids of the intracellular region).
  • the transmembrane domain is one that is associated with one of the other domains of the CAR is used.
  • the transmembrane domain can be selected or modified by amino acid substitution to avoid binding of such domains to the transmembrane domains of the same or different surface membrane proteins, e.g., to minimize interactions with other members of the receptor complex.
  • the transmembrane domain is capable of
  • the amino acid sequence of the transmembrane domain may be modified or substituted so as to minimize interactions with the binding domains of the native binding partner present in the same CART.
  • the transmembrane domain may be derived either from a natural or from a recombinant source. Where the source is natural, the domain may be derived from any membrane-bound or transmembrane protein. In one aspect the transmembrane domain is capable of signaling to the intracellular domain(s) whenever the CAR has bound to a target.
  • a transmembrane domain of particular use in this invention may include at least the transmembrane region(s) of e.g., the alpha, beta or zeta chain of the T-cell receptor, CD28, CD3 epsilon, CD45, CD4, CD5, CD 8 (e.g., CD8 alpha, CD8 beta), CD9, CD16, CD22, CD33, CD37, CD64, CD80, CD86, CD134, CD137, CD154.
  • a transmembrane domain may include at least the transmembrane region(s) of a costimulatory molecule, e.g., a MHC class I molecule, TNF receptor proteins, Immunoglobulin-like proteins, cytokine receptors, integrins, signaling lymphocytic activation molecules (SLAM proteins), activating NK cell receptors, BTLA, a Toll ligand receptor, OX40, CD2, CD7, CD27, CD28, CD30, CD40, CDS, ICAM-1, LFA-1
  • a costimulatory molecule e.g., a MHC class I molecule, TNF receptor proteins, Immunoglobulin-like proteins, cytokine receptors, integrins, signaling lymphocytic activation molecules (SLAM proteins), activating NK cell receptors, BTLA, a Toll ligand receptor, OX40, CD2, CD7, CD27, CD28, CD30, CD40, CDS, ICAM-1
  • CDl la/CD18 4-1BB (CD137), B7-H3, CDS, ICAM-1, ICOS (CD278), GITR, BAFFR, LIGHT, HVEM (LIGHTR), KIRDS2, SLAMF7, NKp80 (KLRF1), NKp44, NKp30, NKp46, CD19, CD4, CD8alpha, CD8beta, IL2R beta, IL2R gamma, IL7R alpha, ITGA4, VLA1, CD49a, ITGA4, IA4, CD49D, ITGA6, VLA-6, CD49f, ITGAD, CDl ld, ITGAE, CD103, ITGAL, CDl la, LFA-1, ITGAM, CDl lb, ITGAX, CDl lc, ITGB1, CD29, ⁇ 2, CD18,
  • the transmembrane domain can be attached to the extracellular region of the CAR, e.g., the antigen binding domain of the CAR, via a hinge, e.g., a hinge from a human protein.
  • a hinge e.g., a hinge from a human protein.
  • the hinge can be a human Ig
  • the hinge or spacer comprises (e.g., consists of) the amino acid sequence of SEQ ID NO:2.
  • the transmembrane domain comprises (e.g., consists of) a transmembrane domain of SEQ ID NO: 6.
  • the hinge or spacer comprises an IgG4 hinge.
  • the hinge or spacer comprises a hinge of the amino acid sequence
  • the hinge or spacer comprises a hinge encoded by a nucleotide sequence of
  • the hinge or spacer comprises an IgD hinge.
  • the hinge or spacer comprises a hinge of the amino acid sequence
  • the hinge or spacer comprises a hinge encoded by a nucleotide sequence of
  • the transmembrane domain may be recombinant, in which case it will comprise predominantly hydrophobic residues such as leucine and valine.
  • a triplet of phenylalanine, tryptophan and valine can be found at each end of a recombinant
  • a short oligo- or polypeptide linker may form the linkage between the transmembrane domain and the cytoplasmic region of the CAR.
  • a glycine- serine doublet provides a particularly suitable linker.
  • the linker comprises the amino acid sequence of GGGGSGGGGS (SEQ ID NO:5).
  • the linker is encoded by a nucleotide sequence of
  • the hinge or spacer comprises a KIR2DS2 hinge.
  • the cytoplasmic domain or region of a CAR of the present invention includes an intracellular signaling domain.
  • An intracellular signaling domain is generally responsible for activation of at least one of the normal effector functions of the immune cell in which the CAR has been introduced.
  • intracellular signaling domains for use in the CAR of the invention include the cytoplasmic sequences of the T cell receptor (TCR) and co-receptors that act in concert to initiate signal transduction following antigen receptor engagement, as well as any derivative or variant of these sequences and any recombinant sequence that has the same functional capability.
  • TCR T cell receptor
  • T cell activation can be said to be mediated by two distinct classes of cytoplasmic signaling sequences: those that initiate antigen-dependent primary activation through the TCR (primary intracellular signaling domains) and those that act in an antigen-independent manner to provide a secondary or costimulatory signal (secondary cytoplasmic domain, e.g., a costimulatory domain).
  • primary intracellular signaling domains that act in a stimulatory manner may contain signaling motifs which are known as immunoreceptor tyrosine-based activation motifs or ITAMs.
  • IT AM containing primary intracellular signaling domains examples include those of TCR zeta, FcR gamma, FcR beta, CD3 gamma, CD3 delta , CD3 epsilon, CD5, CD22, CD79a, CD79b, , CD278 (also known as "ICOS"), FcsRI, DAP10, DAP12, and CD66d.
  • a CAR of the invention comprises an intracellular signaling domain, e.g., a primary signaling domain of CD3-zeta.
  • a primary signaling domain comprises a modified ITAM domain, e.g., a mutated ITAM domain which has altered (e.g., increased or decreased) activity as compared to the native ITAM domain.
  • a primary signaling domain comprises a modified ITAM-containing primary intracellular signaling domain, e.g., an optimized and/or truncated ITAM-containing primary intracellular signaling domain.
  • a primary signaling domain comprises one, two, three, four or more ITAM motifs.
  • molecules containing a primary intracellular signaling domain that are of particular use in the invention include those of DAP10, DAP12, and CD32.
  • the intracellular signalling domain of the CAR can comprise the primary signalling domain, e.g., CD3-zeta signaling domain, by itself or it can be combined with any other desired intracellular signaling domain(s) useful in the context of a CAR of the invention.
  • the intracellular signaling domain of the CAR can comprise a primary signalling domain, e.g., CD3 zeta chain portion, and a costimulatory signaling domain.
  • the costimulatory signaling domain refers to a portion of the CAR comprising the intracellular domain of a costimulatory molecule.
  • a costimulatory molecule is a cell surface molecule other than an antigen receptor or its ligands that is required for an efficient response of lymphocytes to an antigen.
  • MHC class I molecules examples include a MHC class I molecule, TNF receptor proteins, Immunoglobulin-like proteins, cytokine receptors, integrins, signaling lymphocytic activation molecules (SLAM proteins), activating NK cell receptors, BTLA, a Toll ligand receptor, OX40, CD2, CD7, CD27, CD28, CD30, CD40, CDS, ICAM-1, LFA-1 (CDl la/CD18), 4-1BB (CD137), B7-H3, CDS, ICAM-1, ICOS (CD278), GITR, BAFFR, LIGHT, HVEM (LIGHTR), KIRDS2,
  • TRANCE/RANKL DNAM1 (CD226), SLAMF4 (CD244, 2B4), CD84, CD96 (Tactile), CEACAM1, CRT AM, Ly9 (CD229), CD160 (BY55), PSGL1, CD100 (SEMA4D), CD69, SLAMF6 (NTB-A, Lyl08), SLAM (SLAMF1, CD150, IPO-3), BLAME (SLAMF8), SELPLG (CD162), LTBR, LAT, GADS, SLP-76, PAG/Cbp, CD19a, and a ligand that specifically binds with CD83, and the like.
  • the intracellular signaling sequences within the cytoplasmic portion of the CAR of the invention may be linked to each other in a random or specified order.
  • a short oligo- or polypeptide linker for example, between 2 and 10 amino acids (e.g., 2, 3, 4, 5, 6, 7, 8, 9, or 10 amino acids) in length may form the linkage between intracellular signaling sequence.
  • a glycine- serine doublet can be used as a suitable linker.
  • a single amino acid e.g., an alanine, a glycine, can be used as a suitable linker.
  • the intracellular signaling domain is designed to comprise two or more, e.g., 2, 3, 4, 5, or more, costimulatory signaling domains.
  • the two or more, e.g., 2, 3, 4, 5, or more, costimulatory signaling domains are separated by a linker molecule, e.g., a linker molecule described herein.
  • the intracellular signaling domain comprises two costimulatory signaling domains.
  • the linker molecule is a glycine residue. In some embodiments, the linker is an alanine residue.
  • the intracellular signaling domain is designed to comprise the signaling domain of CD3-zeta and the signaling domain of CD28. In one aspect, the intracellular signaling domain is designed to comprise the signaling domain of CD3-zeta and the signaling domain of 4-1BB. In one aspect, the signaling domain of 4-1BB is a signaling domain of SEQ ID NO: 7. In one aspect, the signaling domain of CD3-zeta is a signaling domain of SEQ ID NO: 9 (mutant CD3 zeta) or SEQ ID NO: 10 (wild- type human CD3 zeta).
  • the intracellular signaling domain is designed to comprise the signaling domain of CD3-zeta and the signaling domain of CD27.
  • the signaling domain of CD27 comprises an amino acid sequence of
  • the signaling domain of CD27 is encoded by a nucleic acid sequence of
  • the intracellular is designed to comprise the signaling domain of CD3- zeta and the signaling domain of CD28.
  • the signaling domain of CD28 comprises an amino acid sequence of SEQ ID NO: 482.
  • the signaling domain of CD28 is encoded by a nucleic acid sequence of SEQ ID NO: 483.
  • the intracellular is designed to comprise the signaling domain of CD3- zeta and the signaling domain of ICOS.
  • the signaling domain of CD28 comprises an amino acid sequence of SEQ ID NO: 484.
  • the signaling domain of ICOS is encoded by a nucleic acid sequence of SEQ ID NO: 485.
  • the CAR-expressing cell described herein can further comprise a second
  • the CAR e.g., a second CAR that includes a different antigen binding domain, e.g., to the same target (CLL-1) or a different target (e.g., CD123, CD33, CD34, FLT3, or folate receptor beta).
  • the second CAR includes an antigen binding domain to a target expressed on acute myeloid leukemia cells, such as, e.g., CD123, CD33, CD34, FLT3, or folate receptor beta.
  • the CAR-expressing cell comprises a first CAR that specifically binds a first antigen and includes an intracellular signaling domain having a costimulatory signaling domain but not a primary signaling domain, and a second CAR that specifically binds a second, different, antigen and includes an intracellular signaling domain having a primary signaling domain but not a costimulatory signaling domain.
  • a costimulatory signaling domain e.g., 4-1BB, CD28, CD27, ICOS, or OX-40
  • placement of a costimulatory signaling domain e.g., 4-1BB, CD28, CD27, ICOS, or OX-40
  • the primary signaling domain e.g.,CD3 zeta
  • the CAR expressing cell comprises a first CLL-1 CAR that includes a CLL-1 binding domain, a transmembrane domain and a costimulatory domain and a second CAR that specifically binds an antigen other than CLL-1 (e.g., an antigen expressed on AML cells, e.g., CD123, CD33, CD34, FLT3, or folate receptor beta) and includes an antigen binding domain, a transmembrane domain and a primary signaling domain.
  • an antigen other than CLL-1 e.g., an antigen expressed on AML cells, e.g., CD123, CD33, CD34, FLT3, or folate receptor beta
  • the CAR expressing cell comprises a first CLL-1 CAR that includes a CLL-1 binding domain, a transmembrane domain and a primary signaling domain and a second CAR that specifically binds an antigen other than CLL-1 (e.g., an antigen expressed on AML cells, e.g., CD123, CD33, CD34, FLT3, or folate receptor beta) and includes an antigen binding domain to the antigen, a transmembrane domain and a costimulatory signaling domain.
  • an antigen other than CLL-1 e.g., an antigen expressed on AML cells, e.g., CD123, CD33, CD34, FLT3, or folate receptor beta
  • the CAR-expressing cell comprises a CLL-1 CAR described herein and an inhibitory CAR.
  • the inhibitory CAR comprises an antigen binding domain that binds an antigen found on normal cells but not cancer cells, e.g., normal cells that also express CLL.
  • the inhibitory CAR comprises the antigen binding domain, a transmembrane domain and an intracellular domain of an inhibitory molecule.
  • the intracellular domain of the inhibitory CAR can be an intracellular domain of PDl, PD-L1, PD-L2, CTLA4, TIM3, CEACAM (e.g., CEACAM-1, CEACAM-3 and/or CEACAM- 5), LAG3, VISTA, BTLA, TIGIT, LAIR1, CD160, 2B4, CD80, CD86, B7-H3 (CD276), B7- H4 (VTCN1), HVEM (TNFRSF14 or CD270), KIR, A2aR, MHC class I, MHC class II, GAL9, adenosine, and TGFR beta.
  • CEACAM e.g., CEACAM-1, CEACAM-3 and/or CEACAM- 5
  • LAG3, VISTA BTLA
  • TIGIT LAIR1
  • LAIR1 LAG3, VISTA
  • BTLA TIGIT
  • LAIR1 LAG3, VISTA
  • BTLA TIGIT
  • LAIR1 LAIR1
  • the antigen binding domains of the different CARs can be such that the antigen binding domains do not interact with one another.
  • a cell expressing a first and second CAR can have an antigen binding domain of the first CAR, e.g., as a fragment, e.g., an scFv, that does not form an association with the antigen binding domain of the second CAR, e.g., the antigen binding domain of the second CAR is a VHH.
  • the antigen binding domain comprises a single domain antigen binding (SDAB) molecules include molecules whose complementary determining regions are part of a single domain polypeptide. Examples include, but are not limited to, heavy chain variable domains, binding molecules naturally devoid of light chains, single domains derived from conventional 4-chain antibodies, engineered domains and single domain scaffolds other than those derived from antibodies. SDAB molecules may be any of the art, or any future single domain molecules. SDAB molecules may be derived from any species including, but not limited to mouse, human, camel, llama, lamprey, fish, shark, goat, rabbit, and bovine. This term also includes naturally occurring single domain antibody molecules from species other than Camelidae and sharks.
  • SDAB single domain antigen binding
  • an SDAB molecule can be derived from a variable region of the immunoglobulin found in fish, such as, for example, that which is derived from the
  • immunoglobulin isotype known as Novel Antigen Receptor (NAR) found in the serum of shark.
  • NAR Novel Antigen Receptor
  • Methods of producing single domain molecules derived from a variable region of NAR are described in WO 03/014161 and Streltsov (2005) Protein Sci. 14:2901-2909.
  • an SDAB molecule is a naturally occurring single domain antigen binding molecule known as heavy chain devoid of light chains.
  • Such single domain molecules are disclosed in WO 9404678 and Hamers-Casterman, C. et al. (1993) Nature 363:446-448, for example.
  • this variable domain derived from a heavy chain molecule naturally devoid of light chain is known herein as a VHH or nanobody to distinguish it from the conventional VH of four chain immunoglobulins.
  • a VHH molecule can be derived from Camelidae species, for example in camel, llama, dromedary, alpaca and guanaco. Other species besides Camelidae may produce heavy chain molecules naturally devoid of light chain; such VHHs are within the scope of the invention.
  • the SDAB molecules can be recombinant, CDR-grafted, humanized, camelized, de- immunized and/or in vitro generated (e.g., selected by phage display).
  • cells having a plurality of chimeric membrane embedded receptors comprising an antigen binding domain that interactions between the antigen binding domain of the receptors can be undesirable, e.g., because it inhibits the ability of one or more of the antigen binding domains to bind its cognate antigen.
  • cells having a first and a second non-naturally occurring chimeric membrane embedded receptor comprising antigen binding domains that minimize such interactions are also disclosed herein.
  • nucleic acids encoding a first and a second non-naturally occurring chimeric membrane embedded receptor comprising a antigen binding domains that minimize such interactions, as well as methods of making and using such cells and nucleic acids.
  • the antigen binding domain of one of said first said second non- naturally occurring chimeric membrane embedded receptor comprises an scFv
  • the other comprises a single VH domain, e.g., a camelid, shark, or lamprey single VH domain, or a single VH domain derived from a human or mouse sequence.
  • the claimed invention comprises a first and second CAR, wherein the antigen binding domain of one of said first CAR said second CAR does not comprise a variable light domain and a variable heavy domain.
  • the antigen binding domain of one of said first CAR said second CAR is an scFv, and the other is not an scFv.
  • the antigen binding domain of one of said first CAR said second CAR comprises a single VH domain, e.g., a camelid, shark, or lamprey single VH domain, or a single VH domain derived from a human or mouse sequence.
  • a single VH domain e.g., a camelid, shark, or lamprey single VH domain, or a single VH domain derived from a human or mouse sequence.
  • the antigen binding domain of one of said first CAR said second CAR comprises a nanobody. In some embodiments, the antigen binding domain of one of said first CAR said second CAR comprises a camelid VHH domain. In some embodiments, the antigen binding domain of one of said first CAR said second
  • the CAR comprises an scFv, and the other comprises a single VH domain, e.g., a camelid, shark, or lamprey single VH domain, or a single VH domain derived from a human or mouse sequence.
  • the antigen binding domain of one of said first CAR said second CAR comprises an scFv, and the other comprises a nanobody.
  • the antigen binding domain of one of the first CAR or the second CAR comprises an scFv, and the other comprises a camelid VHH domain.
  • binding of the antigen binding domain of said first CAR to its cognate antigen is not substantially reduced by the presence of said second CAR. In some embodiments, binding of the antigen binding domain of said first CAR to its cognate antigen in the presence of said second CAR is 85%, 90%, 95%, 96%, 97%, 98% or 99% of binding of the antigen binding domain of said first CAR to its cognate antigen in the absence of said second CAR.
  • the antigen binding domains of said first CAR said second CAR when present on the surface of a cell, associate with one another less than if both were scFv antigen binding domains. In some embodiments, the antigen binding domains of said first CAR said second CAR, associate with one another 85%, 90%, 95%, 96%, 97%, 98% or 99% less than if both were scFv antigen binding domains.
  • the CAR-expressing cell described herein can further express another agent, e.g., an agent which enhances the activity of a CAR-expressing cell.
  • the agent can be an agent which inhibits an inhibitory molecule.
  • Inhibitory molecules e.g., PDl, can, in some embodiments, decrease the ability of a CAR-expressing cell to mount an immune effector response.
  • inhibitory molecules include PDl, PD-Ll, PD-L2, CTLA4, TIM3, CEACAM (e.g., CEACAM-1, CEACAM-3 and/or CEACAM-5), LAG3, VISTA, BTLA, TIGIT, LAIR1, CD160, 2B4, CD80, CD86, B7-H3 (CD276), B7-H4 (VTCNl), HVEM (TNFRSF14 or CD270), KIR, A2aR, MHC class I, MHC class II, GAL9, adenosine, and TGFR beta.
  • CEACAM e.g., CEACAM-1, CEACAM-3 and/or CEACAM-5
  • LAG3, VISTA e.g., VISTA, BTLA, TIGIT, LAIR1, CD160, 2B4, CD80, CD86, B7-H3 (CD276), B7-H4 (VTCNl), HVEM (TNFRSF14 or CD270)
  • KIR A2
  • the agent which inhibits an inhibitory molecule comprises a first polypeptide, e.g., an inhibitory molecule, associated with a second polypeptide that provides a positive signal to the cell, e.g., an intracellular signaling domain described herein.
  • the agent comprises a first polypeptide, e.g., of an inhibitory molecule such as PDl, PD-Ll, PD-L2, CTLA4, TIM3, CEACAM (e.g., CEACAM- 1, CEACAM-3 and/or CEACAM-5), LAG3, VISTA, BTLA, TIGIT, LAIR1, CD160, 2B4, CD80, CD86, B7-H3 (CD276), B7-H4 (VTCNl), HVEM (TNFRSF14 or CD270), KIR, A2aR, MHC class I, MHC class II, GAL9, adenosine, and TGFR beta, or a fragment of any of these (e.g., at least a portion of an extracellular domain of any of these), and a second polypeptide which is an intracellular signaling domain described herein (e.g., comprising a costimulatory domain (e.g., 4-1BB, CD27, ICOS, or CD28,
  • the agent comprises a first polypeptide of PDl or a fragment thereof (e.g., at least a portion of an extracellular domain of PDl), and a second polypeptide of an intracellular signaling domain described herein (e.g., a CD28 signaling domain described herein and/or a CD3 zeta signaling domain described herein).
  • the CAR-expressing cell described herein comprises a switch costimulatory receptor, e.g., as described in WO 2013/019615, which is incorporated herein by reference in its entirety.
  • PDl is an inhibitory member of the CD28 family of receptors that also includes CD28, CTLA-4, ICOS, and BTLA.
  • PD-1 is expressed on activated B cells, T cells and myeloid cells (Agata et al. 1996 Int. Immunol 8:765-75).
  • Two ligands for PDl, PD-Ll and PD-L2 have been shown to downregulate T cell activation upon binding to PDl (Freeman et a. 2000 J Exp Med 192:1027-34; Latchman et al. 2001 Nat Immunol 2:261-8; Carter et al. 2002 Eur J Immunol 32:634-43).
  • PD-L1 is abundant in human cancers (Dong et al. 2003 J Mol Med 81:281-7; Blank et al. 2005 Cancer Immunol.
  • the agent comprises the extracellular domain (ECD) of an inhibitory molecule, e.g., Programmed Death 1 (PD1), can be fused to a transmembrane domain and intracellular signaling domains such as 4 IBB and CD3 zeta (also referred to herein as a PD1 CAR).
  • the PD1 CAR when used in combinations with a CLL-1 CAR described herein, improves the persistence of the CAR-expressing cell, e.g., T cell or NK cell.
  • the CAR is a PD1 CAR comprising the extracellular domain of PD1 indicated as underlined in SEQ ID NO: 24.
  • the PD1 CAR comprises the amino acid sequence of SEQ ID NO: 24.
  • the PD1 CAR comprises the amino acid sequence provided below (SEQ ID NO:22). pgwfldspdrpwnpptfspallvvtegdnatftcsfsntsesfylnwyrmspsnqtdklaafpedrsqpgqdcrfrvtqlp ngrdfhmsvyrarrndsgtylcgaislapkaqikeslraelrvterraevptahpspsprpagqfqtlvtttpaprpptpaptiasqplslr peacrpaaggavhtrgldfacdiyiwaplagtcgvlllslvitlyclfl-grldcllyifkqpfmrpvqttqeedgcscrfpeeee kfsrsadapaykqgqn
  • the nucleic acid sequence for the PD1 CAR is shown below, with the PD1 ECD underlined below in SEQ ID NO: 23 atggccctccctgtcactgccctgcttctcccctcgcactcctgctccacgccgctagaccacccggatggtttctggactctc cggatcgcccgtggaatcccccaaccttctcaccggcactcttggttgtgactgagggcgataatgcgaccttcacgtgctcgttctccaa cacctccgaatcattcgtgctgaactggtaccgcatgagcccgtcaaaccagaccgacaagctcccgcgttccggaagatcggt
  • the present invention provides a population of CAR-expressing cells, e.g., CART cells or CAR-expressing NK cells.
  • the population of CAR- expressing cells comprises a mixture of cells expressing different CARs.
  • the population of CAR-expressing cells e.g., CART cells or CAR-expressing NK cells
  • the population of CAR-expressing cells can include a first cell expressing a CAR that includes an anti- CLL-1 binding domain, e.g., as described herein, and a second cell expressing a CAR that includes an antigen binding domain to a target other than CLL-1 (e.g., CD123, CD33, CD34, FLT3, or folate receptor beta).
  • the population of CAR-expressing cells includes, e.g., a first cell expressing a CAR that includes a primary intracellular signaling domain, and a second cell expressing a CAR that includes a secondary signaling domain, e.g., a costimulatory signaling domain.
  • the present invention provides a population of cells wherein at least one cell in the population expresses a CAR having an anti- CLL-1 domain described herein, and a second cell expressing another agent, e.g., an agent which enhances the activity of a CAR-expressing cell.
  • the agent can be an agent which inhibits an inhibitory molecule.
  • Inhibitory molecules e.g., can, in some embodiments, decrease the ability of a CAR-expressing cell to mount an immune effector response.
  • inhibitory molecules include PDl, PD-L1, PD-L2, CTLA4, TIM3, CEACAM (e.g., CEACAM- 1, CEACAM-3 and/or CEACAM-5), LAG3, VISTA, BTLA, TIGIT, LAIR1, CD160, 2B4, CD80, CD86, B7-H3 (CD276), B7-H4 (VTCN1), HVEM (TNFRSF14 or CD270), KIR, A2aR, MHC class I, MHC class II, GAL9, adenosine, and TGFR beta.
  • CEACAM e.g., CEACAM- 1, CEACAM-3 and/or CEACAM-5
  • LAG3, VISTA e.g., VISTA, BTLA, TIGIT, LAIR1, CD160, 2B4, CD80, CD86, B7-H3 (CD276), B7-H4 (VTCN1), HVEM (TNFRSF14 or CD270), KIR, A2aR
  • the agent which inhibits an inhibitory molecule comprises a first polypeptide, e.g., an inhibitory molecule, associated with a second polypeptide that provides a positive signal to the cell, e.g., an intracellular signaling domain described herein.
  • the agent comprises a first polypeptide, e.g., of an inhibitory molecule such as PDl, PD-L1, PD-L2, CTLA4, TIM3, CEACAM (e.g., CEACAM-1, CEACAM-3 and/or CEACAM-5), LAG3, VISTA, BTLA, TIGIT, LAIR1, CD160, 2B4, CD80, CD86, B7-H3 (CD276), B7-H4 (VTCN1), HVEM (TNFRSF14 or CD270), KIR, A2aR, MHC class I, MHC class II, GAL9, adenosine, and TGFR beta, or a fragment of any of these (e.g., at least a portion of an extracellular domain of any of these), and a second polypeptide which is an intracellular signaling domain described herein (e.g., comprising a costimulatory domain (e.g., 4-1BB, CD27 ICOS, or CD28, e
  • the agent comprises a first polypeptide of PDl or a fragment thereof (e.g., at least a portion of the extracellular domain of PDl), and a second polypeptide of an intracellular signaling domain described herein (e.g., a CD28 signaling domain described herein and/or a CD3 zeta signaling domain described herein).
  • a first polypeptide of PDl or a fragment thereof e.g., at least a portion of the extracellular domain of PDl
  • a second polypeptide of an intracellular signaling domain described herein e.g., a CD28 signaling domain described herein and/or a CD3 zeta signaling domain described herein.
  • the present invention provides methods comprising administering a population of CAR-expressing cells (e.g., CART cells or CAR-expressing NK cells), e.g., a mixture of cells expressing different CARs, in combination with another agent, e.g., a kinase inhibitor, such as a kinase inhibitor described herein.
  • a population of CAR-expressing cells e.g., CART cells or CAR-expressing NK cells
  • another agent e.g., a kinase inhibitor, such as a kinase inhibitor described herein.
  • the present invention provides methods comprising administering a population of cells wherein at least one cell in the population expresses a CAR having an anti- cancer associated antigen binding domain as described herein, and a second cell expressing another agent, e.g., an agent which enhances the activity of a CAR-expressing cell, in combination with another agent, e.g., a kinase inhibitor, such as a kinase inhibitor described herein.
  • another agent e.g., an agent which enhances the activity of a CAR-expressing cell
  • another agent e.g., a kinase inhibitor, such as a kinase inhibitor described herein.
  • the CAR molecule described herein comprises one or more components of a natural killer cell receptor (NKR), thereby forming an NKR-CAR.
  • the NKR component can be a transmembrane domain, a hinge domain, or a cytoplasmic domain from any of the following natural killer cell receptors: killer cell immunoglobulin-like receptor (KIR), e.g., KIR2DL1, KIR2DL2/L3, KIR2DL4, KIR2DL5A, KIR2DL5B, KIR2DS1,
  • KIR killer cell immunoglobulin-like receptor
  • the NKR-CAR molecules described herein may interact with an adaptor molecule or intracellular signaling domain, e.g., DAP12.
  • a regulatable CAR where the CAR activity canbe controlled is desirable to optimize the safety and efficacy of a CAR therapy.
  • a regulatable CAR for example, inducing apoptosis using, e.g., a caspase fused to a dimerization domain (see, e.g., Di et al., N Engl. J. Med. 2011 Nov. 3; 365(18):1673- 1683), can be used as a safety switch in the CAR therapy of the instant invention.
  • CAR-expressing cells can also express an inducible Caspase-9 (iCaspase-9) molecule that, upon administration of a dimerizer drug (e.g., rimiducid (also called AP1903 (Bellicum Pharmaceuticals) or AP20187 (Ariad)) leads to activation of the Caspase-9 and apoptosis of the cells.
  • a dimerizer drug e.g., rimiducid (also called AP1903 (Bellicum Pharmaceuticals) or AP20187 (Ariad)
  • AP1903 also called AP1903 (Bellicum Pharmaceuticals)
  • AP20187 AP20187
  • the iCaspase-9 molecule is encoded by a nucleic acid molecule separate from the CAR-encoding vector(s). In some cases, the iCaspase-9 molecule is encoded by the same nucleic acid molecule as the CAR-encoding vector.
  • the iCaspase-9 can provide a safety switch to avoid any toxicity of CAR-expressing cells. See, e.g., Song et al. Cancer Gene Ther. 2008; 15(10):667-75; Clinical Trial Id. No. NCT02107963; and Di Stasi et al. N. Engl. J. Med. 2011; 365:1673-83.
  • Alternative strategies for regulating the CAR therapy of the instant invention include utilizing small molecules or antibodies that deactivate or turn off CAR activity, e.g., by deleting CAR-expressing cells, e.g., by inducing antibody dependent cell-mediated cytotoxicity
  • CAR-expressing cells described herein may also express an antigen that is recognized by molecules capable of inducing cell death, e.g., ADCC or compliment-induced cell death.
  • CAR expressing cells described herein may also express a receptor capable of being targeted by an antibody or antibody fragment.
  • receptors examples include EpCAM, VEGFR, integrins (e.g., integrins ⁇ 3, ⁇ 4, ⁇ 3 ⁇ 4 ⁇ 3, ⁇ 4 ⁇ 7, ⁇ 5 ⁇ 1, ⁇ 3, ⁇ ), members of the TNF receptor superfamily (e.g., TRAIL-R1 , TRAIL-R2), PDGF Receptor, interferon receptor, folate receptor, GPNMB, ICAM-1 , HLA-DR, CEA, CA-125, MUC1 , TAG-72, IL-6 receptor, 5T4, GD2, GD3, CD2, CD3, CD4, CD5, CD1 1 , CD1 1 a/LFA-1 , CD15, CD18/ITGB2, CD19, CD20, CD22, CD23/lgE Receptor, CD25, CD28, CD30, CD33, CD38, CD40, CD41 , CD44, CD51 , CD52, CD62L, CD74, CD80, CD125, CD147/basigin, CD152/CT
  • CAR-expressing cells described herein may also express a truncated epidermal growth factor receptor (EGFR) which lacks signaling capacity but retains the epitope that is recognized by molecules capable of inducing ADCC, e.g., cetuximab (ERBITUX®), such that administration of cetuximab induces ADCC and subsequent depletion of the CAR-expressing cells (see, e.g., WO2011/056894, and
  • Another strategy includes expressing a highly compact marker/suicide gene that combines target epitopes from both CD32 and CD20 antigens in the CAR-expressing cells described herein, which binds rituximab, resulting in selective depletion of the CAR-expressing cells, e.g., by ADCC (see, e.g., Philip et al., Blood. 2014; 124(8)1277-1287).
  • CAMPATH a monoclonal anti-CD52 antibody that selectively binds and targets mature lymphocytes, e.g., CAR-expressing cells, for destruction, e.g., by inducing ADCC.
  • the CAR-expressing cell can be selectively targeted using a
  • the CAR ligand e.g., an anti-idiotypic antibody.
  • the anti-idiotypic antibody can cause effector cell activity, e.g, ADCC or ADC activities, thereby reducing the number of CAR-expressing cells.
  • the CAR ligand, e.g., the anti-idiotypic antibody can be coupled to an agent that induces cell killing, e.g., a toxin, thereby reducing the number of CAR-expressing cells.
  • the CAR molecules themselves can be configured such that the activity can be regulated, e.g., turned on and off, as described below.
  • a RCAR comprises a set of polypeptides, typically two in the simplest embodiments, in which the components of a standard CAR described herein, e.g., an antigen binding domain and an intracellular signaling domain, are partitioned on separate polypeptides or members.
  • the set of polypeptides include a dimerization switch that, upon the presence of a dimerization molecule, can couple the polypeptides to one another, e.g., can couple an antigen binding domain to an intracellular signaling domain.
  • an RCAR comprises two polypeptides or members: 1) an intracellular signaling member comprising an intracellular signaling domain, e.g., a primary intracellular signaling domain described herein, and a first switch domain; 2) an antigen binding member comprising an antigen binding domain, e.g., that specifically binds a tumor antigen described herein, as described herein and a second switch domain.
  • the RCAR comprises a transmembrane domain described herein.
  • a transmembrane domain can be disposed on the intracellular signaling member, on the antigen binding member, or on both.
  • the order can be as provided, but other orders are included as well.
  • the order is as set out in the text, but in other embodiments, the order can be different.
  • the order of elements on one side of a transmembrane region can be different from the example, e.g., the placement of a switch domain relative to a intracellular signaling domain can be different, e.g., reversed).
  • the first and second switch domains can form an intracellular or an extracellular dimerization switch.
  • the dimerization switch can be a homodimerization switch, e.g., where the first and second switch domain are the same, or a heterodimerization switch, e.g., where the first and second switch domain are different from one another.
  • an RCAR can comprise a "multi switch.”
  • a multi switch can comprise heterodimerization switch domains or homodimerization switch domains.
  • a multi switch comprises a plurality of, e.g., 2, 3, 4, 5, 6, 7, 8, 9, or 10, switch domains, independently, on a first member, e.g., an antigen binding member, and a second member, e.g., an intracellular signaling member.
  • the first member can comprise a plurality of first switch domains, e.g., FKBP-based switch domains
  • the second member can comprise a plurality of second switch domains, e.g., FRB-based switch domains.
  • the first member can comprise a first and a second switch domain, e.g., a FKBP-based switch domain and a FRB-based switch domain
  • the second member can comprise a first and a second switch domain, e.g., a FKBP-based switch domain and a FRB-based switch domain.
  • the intracellular signaling member comprises one or more intracellular signaling domains, e.g., a primary intracellular signaling domain and one or more costimulatory signaling domains.
  • the antigen binding member may comprise one or more intracellular signaling domains, e.g., one or more costimulatory signaling domains.
  • the antigen binding member comprises a plurality, e.g., 2 or 3 costimulatory signaling domains described herein, e.g., selected from 4- IBB, CD28, CD27, ICOS, and OX40, and in
  • the antigen binding member comprises the following costimulatory signaling domains, from the extracellular to intracellular direction: 4-1BB-CD27; 4-1BB-CD27; CD27-4-1BB; 4-1BB- CD28; CD28-4-1BB; OX40-CD28; CD28-OX40; CD28-4-1BB; or 4-1BB-CD28.
  • the intracellular binding member comprises a CD3zeta domain.
  • the RCAR comprises (1) an antigen binding member comprising, an antigen binding domain, a transmembrane domain, and two costimulatory domains and a first switch domain; and (2) an intracellular signaling domain comprising a transmembrane domain or membrane tethering domain and at least one primary intracellular signaling domain, and a second switch domain.
  • An embodiment provides RCARs wherein the antigen binding member is not tethered to the surface of the CAR cell. This allows a cell having an intracellular signaling member to be conveniently paired with one or more antigen binding domains, without transforming the cell with a sequence that encodes the antigen binding member.
  • the RCAR comprises: 1) an intracellular signaling member comprising: a first switch domain, a transmembrane domain, an intracellular signaling domain, e.g., a primary intracellular signaling domain, and a first switch domain; and 2) an antigen binding member comprising: an antigen binding domain, and a second switch domain, wherein the antigen binding member does not comprise a transmembrane domain or membrane tethering domain, and, optionally, does not comprise an intracellular signaling domain.
  • the RCAR may further comprise 3) a second antigen binding member comprising: a second antigen binding domain, e.g., a second antigen binding domain that binds a different antigen than is bound by the antigen binding domain; and a second switch domain.
  • a second antigen binding domain e.g., a second antigen binding domain that binds a different antigen than is bound by the antigen binding domain
  • a second switch domain e.g., a second switch domain.
  • the antigen binding member comprises bispecific activation and targeting capacity.
  • the antigen binding member can comprise a plurality, e.g., 2, 3, 4, or 5 antigen binding domains, e.g., scFvs, wherein each antigen binding domain binds to a target antigen, e.g.
  • the plurality of antigen binding domains are in tandem, and optionally, a linker or hinge region is disposed between each of the antigen binding domains. Suitable linkers and hinge regions are described herein.
  • an embodiment provides RCARs having a configuration that allows switching of proliferation.
  • the RCAR comprises: 1) an intracellular signaling member comprising: optionally, a transmembrane domain or membrane tethering domain; one or more co-stimulatory signaling domain, e.g., selected from 4- IBB, CD28, CD27, ICOS, and OX40, and a switch domain; and 2) an antigen binding member comprising: an antigen binding domain, a transmembrane domain, and a primary intracellular signaling domain, e.g., a CD3zeta domain, wherein the antigen binding member does not comprise a switch domain, or does not comprise a switch domain that dimerizes with a switch domain on the intracellular signaling member.
  • an intracellular signaling member comprising: optionally, a transmembrane domain or membrane tethering domain; one or more co-stimulatory signaling domain, e.g., selected from 4- IBB, CD28, CD27, ICOS,
  • the antigen binding member does not comprise a co- stimulatory signaling domain.
  • the intracellular signaling member comprises a switch domain from a homodimerization switch.
  • the intracellular signaling member comprises a first switch domain of a heterodimerization switch and the RCAR comprises a second intracellular signaling member which comprises a second switch domain of the heterodimerization switch.
  • the second intracellular signaling member comprises the same intracellular signaling domains as the intracellular signaling member.
  • the dimerization switch is intracellular. In an embodiment, the dimerization switch is extracellular.
  • the first and second switch domains comprise a FKBP-FRB based switch as described herein.
  • RCARX cell Any cell that is engineered to express a RCAR can be used as a RCARX cell.
  • the RCARX cell is a T cell, and is referred to as a RCART cell.
  • the RCARX cell is an NK cell, and is referred to as a RCARN cell.
  • nucleic acids and vectors comprising RCAR encoding sequences. Sequence encoding various elements of an RCAR can be disposed on the same nucleic acid molecule, e.g., the same plasmid or vector, e.g., viral vector, e.g., lentiviral vector.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Cell Biology (AREA)
  • Epidemiology (AREA)
  • Molecular Biology (AREA)
  • Mycology (AREA)
  • Microbiology (AREA)
  • Genetics & Genomics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Oncology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Hematology (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Biotechnology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Rheumatology (AREA)
  • Virology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Biomedical Technology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

The invention provides compositions and methods for treating diseases associated with expression of CLL-1. The invention also relates to chimeric antigen receptor (CAR) specific to CLL-1, vectors encoding the same, and recombinant cells comprising the CLL-1 CAR. The invention also includes methods of administering a genetically modified cell expressing a CAR that comprises a CLL-1 binding domain.

Description

TREATMENT OF CANCER USING A CLL-1
CHIMERIC ANTIGEN RECEPTOR
RELATED APPLICATIONS This application claims priority to PCT Application No. PCT/CN2014/082602, filed
My 21, 2014, and PCT Application No. PCT/CN2014/090500, filed November 6, 2014. The entire contents of each of these applications are incorporated herein by reference.
SEQUENCE LISTING
The instant application contains a Sequence Listing which has been submitted electronically in ASCII format and is hereby incorporated by reference in its entirety. Said ASCII copy, created on July 15, 2015, is named N2067-7044WO3_SL.txt and is 339,932 bytei in size.
FIELD OF THE INVENTION
The present invention relates generally to the use of immune effector cells (e.g., T cells, NK cells) engineered to express a Chimeric Antigen Receptor (CAR) to treat a disease associated with expression of C-type lectin-like- 1 (CLL-1). BACKGROUND OF THE INVENTION
C-type lectin-like- 1 (CLL-1) is also known as MICL, CLEC12A, CLEC-1, Dendritic Cell- Associated Lectin 1, and DCAL-2. CLL-1 is a glycoprotein receptor and member of the large family of C-type lectin-like receptors involved in immune regulation. CLL-1 is expressed in hematopoietic cells, primarily on innate immune cells including monocytes, DCs, pDCs, and granulocytes (Cancer Res. 2004; J Immunol 2009) and myeloid progenitor cells (Blood, 2007). CLL-1 is also found on acute myeloid leukemia (AML) blasts and leukemic stem cells (e.g., CD34+/CD38") (Zhao et al., Haematologica. 2010, 95(l):71-78.). CLL-1 expression may also be relevant for other myeloid leukemias, such as acute myelomonocytic leukemia, acute monocytic leukemia, acute promyelocytic leukemia, chronic myeloid leukemia (CML), and myelodysplasia syndrome (MDS).
SUMMARY OF THE INVENTION In a first aspect, the invention features an isolated nucleic acid molecule encoding a chimeric antigen receptor (CAR), wherein the CAR comprises an antibody or antibody fragment which includes a human anti-CLL-1 binding domain, a transmembrane domain, and an intracellular signaling domain (e.g., an intracellular signaling domain comprising a costimulatory domain and/or a primary signaling domain). In one embodiment, the CAR comprises an antibody or antibody fragment which includes a human anti-CLL-1 binding domain described herein, a transmembrane domain described herein, and an intracellular signaling domain described herein (e.g., an intracellular signaling domain comprising a costimulatory domain and/or a primary signaling domain).
In embodiments, the CAR comprises a human anti-CLL-1 binding domain, a transmembrane domain, and an intracellular signaling domain, and wherein said anti-CLL- lbinding domain comprises a heavy chain complementary determining region 1 (HC CDRl), a heavy chain complementary determining region 2 (HC CDR2), and a heavy chain
complementary determining region 3 (HC CDR3) of any CLL-1 heavy chain binding domain amino acid sequences listed in Table 2. In embodiments, the human CLL-lbinding domain further comprises a light chain complementary determining region 1 (LC CDRl), a light chain complementary determining region 2 (LC CDR2), and a light chain complementary determining region 3 (LC CDR3). In embodiments, the human CLL-1 binding domain comprises a light chain complementary determining region 1 (LC CDRl), a light chain complementary determining region 2 (LC CDR2), and a light chain complementary determining region 3 (LC CDR3) of any CLL-1 light chain binding domain amino acid sequences listed in Table 2.
In some embodiments, the CAR comprises an antibody or antibody fragment which includes a human CLL-lbinding domain, a transmembrane domain, and an intracellular signaling domain comprising a costimulatory domain and/or a primary signaling domain, and wherein said CLL-lbinding domain comprises one or more of light chain complementary determining region 1 (LC CDR1), light chain complementary determining region 2 (LC CDR2), and light chain complementary determining region 3 (LC CDR3) of any CLL-1 light chain binding domain amino acid sequences listed in Table 2, and one or more of heavy chain complementary determining region 1 (HC CDR1), heavy chain complementary determining region 2 (HC CDR2), and heavy chain complementary determining region 3 (HC CDR3) of any CLL-lheavy chain binding domain amino acid sequences listed in Table 2.
In one embodiment, the encoded human anti-CLL-1 binding domain comprises one or more (e.g., all three) light chain complementary determining region 1 (LC CDR1), light chain complementary determining region 2 (LC CDR2), and light chain complementary determining region 3 (LC CDR3) of a human anti-CLL-1 binding domain described herein, and/or one or more (e.g., all three) heavy chain complementary determining region 1 (HC CDR1), heavy chain complementary determining region 2 (HC CDR2), and heavy chain complementary determining region 3 (HC CDR3) of a human anti-CLL-1 binding domain described herein, e.g., a human anti-CLL-1 binding domain comprising one or more, e.g., all three, LC CDRs and one or more, e.g., all three, HC CDRs.
In one embodiment, the encoded human anti-CLL-1 binding domain comprises a light chain variable region described herein (e.g., in Table 2) and/or a heavy chain variable region described herein (e.g., in Table 2). In one embodiment, the encoded human anti-CLL-1 binding domain is a scFv comprising a light chain and a heavy chain of an amino acid sequence of Table 2. In an embodiment, the human anti-CLL-1 binding domain (e.g., an scFv) comprises: a light chain variable region comprising an amino acid sequence having at least one, two or three modifications (e.g., substitutions, e.g., conservative substitutions) but not more than 30, 20 or 10 modifications (e.g., substitutions, e.g., conservative substitutions) of an amino acid sequence of a light chain variable region provided in Table 2, or a sequence with 95-99% identity with an amino acid sequence of Table 2; and/or a heavy chain variable region comprising an amino acid sequence having at least one, two or three modifications (e.g., substitutions, e.g., conservative substitutions) but not more than 30, 20 or 10 modifications (e.g., substitutions, e.g., conservative substitutions) of an amino acid sequence of a heavy chain variable region provided in Table 2, or a sequence with 95-99% identity to an amino acid sequence of Table 2. In other embodiments, the encoded CLL-1 binding domain comprises a HC CDR1, a
HC CDR2, and a HC CDR3 of any CLL-1 heavy chain binding domain amino acid sequences listed in Table 2. In embodiments, the CLL-1 binding domain further comprises a LC CDRl, a LC CDR2, and a LC CDR3. In embodiments, the CLL-1 binding domain comprises a LC CDRl, a LC CDR2, and a LC CDR3 of any CLL-1 light chain binding domain amino acid sequences listed in Table 2. In some embodiments, the encoded CLL-1 binding domain comprises one, two or all of
LC CDRl, LC CDR2, and LC CDR3 of any CLL-1 light chain binding domain amino acid sequences listed in Table 2, and one, two or all of HC CDRl, HC CDR2, and HC CDR3 of any CLL-1 heavy chain binding domain amino acid sequences listed in Table 2.
In one embodiment, the encoded human anti-CLL-1 binding domain comprises an amino acid sequence selected from a group consisting of SEQ ID NO:39-51, 65-77, 195, 78-90, or 196. In an embodiment, the encoded CLL-1 binding domain (e.g., an scFv) comprises an amino acid sequence having at least one, two or three modifications (e.g., substitutions, e.g., conservative substitutions) but not more than 30, 20 or 10 modifications (e.g., substitutions, e.g., conservative substitutions) of an amino acid sequence of SEQ ID NO: 39-51, 65-77, 195, 78-90, or 196, or a sequence with 95-99% identity with an amino acid sequence of SEQ ID NO: 39-51, 65-77, 195, 78-90, or 196. In another embodiment, the encoded CLL-1 binding domain comprises a heavy chain variable region comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 65-77, or 195, or a sequence with 95-99% identity thereof. In another embodiment, the encoded CLL-1 binding domain comprises a light chain variable region comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 66-74, or 196, or a sequence with 95-99% identity thereof. In one embodiment, the nucleic acid molecule comprises a nucleotide sequence selected from the group consisting of SEQ ID NO: 52-64, or a sequence with 95-99% identity thereof.
In one embodiment, the encoded humanized anti-CLL-1 binding domain includes a (Gly4-Ser)n linker, wherein n is 1, 2, 3, 4, 5, or 6, preferably 3 or 4 (SEQ ID NO:26). The light chain variable region and heavy chain variable region of a scFv can be, e.g., in any of the following orientations: light chain variable region-linker-heavy chain variable region or heavy chain variable region-linker-light chain variable region.
In one embodiment, the encoded CAR includes a transmembrane domain that comprises a transmembrane domain of a protein selected from the group consisting of the alpha, beta or zeta chain of the T-cell receptor, CD28, CD3 epsilon, CD45, CD4, CD5, CD8, CD9, CD16, CD22, CD33, CD37, CD64, CD80, CD86, CD134, CD137 and CD154. In one embodiment, the encoded transmembrane domain comprises the sequence of SEQ ID NO: 6. In one embodiment, the encoded transmembrane domain comprises an amino acid sequence comprising at least one, two or three modifications but not more than 20, 10 or 5 modifications of the amino acid sequence of SEQ ID NO:6, or a sequence with 95-99% identity to an amino acid sequence of SEQ ID NO:6. In one embodiment, the nucleic acid sequence encoding the transmembrane domain comprises the sequence of SEQ ID NO: 17, or a sequence with 95-99% identity thereof.
In one embodiment, the encoded anti-CLL-1 binding domain is connected to the transmembrane domain by a hinge region, e.g., a hinge region described herein. In one embodiment, the encoded hinge region comprises SEQ ID NO:2, or a sequence with 95-99% identity thereof. In one embodiment, the nucleic acid sequence encoding the hinge region comprises the sequence of SEQ ID NO: 13, or a sequence with 95-99% identity thereof.
In one embodiment, the isolated nucleic acid molecule further comprises a sequence encoding a costimulatory domain, e.g., a costimulatory domain described herein. In
embodiments, the intracellular signaling domain comprises a costimulatory domain. In embodiments, the intracellular signaling domain comprises a primary signaling domain. In embodiments, the intracellular signaling domain comprises a costimulatory domain and a primary signaling domain. In one embodiment, the encoded costimulatory domain is a functional signaling domain obtained from a protein selected from the group consisting of a MHC class I molecule, TNF receptor proteins, Immunoglobulin-like proteins, cytokine receptors, integrins, signaling lymphocytic activation molecules (SLAM proteins), activating NK cell receptors, BTLA, a Toll ligand receptor, OX40, CD2, CD7, CD27, CD28, CD30, CD40, CDS, ICAM-1, LFA-1
(CDl la/CD18), 4-1BB (CD137), B7-H3, CDS, ICAM-1, ICOS (CD278), GITR, BAFFR,
LIGHT, HVEM (LIGHTR), KIRDS2, SLAMF7, NKp80 (KLRF1), NKp44, NKp30, NKp46, CD19, CD4, CD8alpha, CD8beta, IL2R beta, IL2R gamma, IL7R alpha, ITGA4, VLA1, CD49a, ITGA4, IA4, CD49D, ITGA6, VLA-6, CD49f, ITGAD, CDl ld, ITGAE, CD103, ITGAL, CDl la, LFA-1, ITGAM, CDl lb, ITGAX, CDl lc, ITGB1, CD29, ITGB2, CD18, LFA-1, ITGB7, NKG2D, NKG2C, TNFR2, TRANCE/RANKL, DNAM1 (CD226), SLAMF4 (CD244, 2B4), CD84, CD96 (Tactile), CEACAM1, CRTAM, Ly9 (CD229), CD160 (BY55), PSGL1, CD100 (SEMA4D), CD69, SLAMF6 (NTB-A, Lyl08), SLAM (SLAMF1, CD150, IPO-3), BLAME (SLAMF8), SELPLG (CD162), LTBR, LAT, GADS, SLP-76, PAG/Cbp, CD 19a, and a ligand that specifically binds with CD83. In embodiments, the encoded co stimulatory domain comprises 4-1BB, CD27, CD28, or ICOS. In one embodiment, the encoded costimulatory domain of 4- IBB comprises the amino acid sequence of SEQ ID NO:7. In one embodiment, the encoded costimulatory domain comprises an amino acid sequence having at least one, two or three modifications but not more than 20, 10 or 5 modifications of the amino acid sequence of SEQ ID NO:7, or a sequence with 95-99% identity to the amino acid sequence of SEQ ID NO:7. In one embodiment, the nucleic acid sequence encoding the costimulatory domain comprises the nucleotide sequence of SEQ ID NO: 18, or a sequence with 95-99% identity thereof. In another embodiment, the encoded costimulatory domain of CD28 comprises the amino acid sequence of SEQ ID NO:482. In one embodiment, the encoded costimulatory domain comprises an amino acid sequence having at least one, two or three modifications but not more than 20, 10 or 5 modifications of an amino acid sequence of SEQ ID NO:482, or a sequence with 95-99% identity to an amino acid sequence of SEQ ID NO:482. In one embodiment, the nucleic acid sequence encoding the costimulatory domain of CD28 comprises the nucleotide sequence of SEQ ID NO:483, or a sequence with 95-99% identity thereof. In another embodiment, the encoded costimulatory domain of CD27 comprises the amino acid sequence of SEQ ID NO: 8. In one embodiment, the encoded costimulatory domain comprises an amino acid sequence having at least one, two or three modifications but not more than 20, 10 or 5 modifications of an amino acid sequence of SEQ ID NO:8, or a sequence with 95-99% identity to an amino acid sequence of SEQ ID NO: 8. In one embodiment, the nucleic acid sequence encoding the costimulatory domain of CD27 comprises the nucleotide sequence of SEQ ID NO: 19, or a sequence with 95-99% identity thereof.
In another embodiment, the encoded costimulatory domain of ICOS comprises the amino acid sequence of SEQ ID NO:484. In one embodiment, the encoded costimulatory domain comprises an amino acid sequence having at least one, two or three modifications but not more than 20, 10 or 5 modifications of an amino acid sequence of SEQ ID NO:484, or a sequence with 95-99% identity to an amino acid sequence of SEQ ID NO:484. In one embodiment, the nucleic acid sequence encoding the costimulatory domain of ICOS comprises the nucleotide sequence of SEQ ID NO:485, or a sequence with 95-99% identity thereof.
In embodiments, the encoded primary signaling domain comprises a functional signaling domain of CD3 zeta. In embodiments, the functional signaling domain of CD3 zeta comprises the sequence of SEQ ID NO: 9 (mutant CD3 zeta) or SEQ ID NO: 10 (wild- type human CD3 zeta), or a sequence with 95-99% identity thereof.
In one embodiment, the encoded intracellular signaling domain comprises a functional signaling domain of 4- IBB and/or a functional signaling domain of CD3 zeta. In one embodiment, the encoded intracellular signaling domain of 4-1BB comprises the amino acid sequence of SEQ ID NO: 7 and/or the CD3 zeta amino acid sequence of SEQ ID NO:9 or SEQ ID NO: 10. In one embodiment, the intracellular signaling domain comprises an amino acid sequence having at least one, two or three modifications but not more than 20, 10 or 5 modifications of an amino acid sequence of SEQ ID NO:7 and/or an amino acid sequence of SEQ ID NO:9 or SEQ ID NO: 10, or a sequence with 95-99% identity to an amino acid sequence of SEQ ID NO:7 and/or an amino acid sequence of SEQ ID NO:9 or SEQ ID NO:10. In one embodiment, the encoded intracellular signaling domain comprises the sequence of SEQ ID NO:7 and the sequence of SEQ ID NO:9 or SEQ ID NO: 10, wherein the sequences comprising the intracellular signaling domain are expressed in the same frame and as a single polypeptide chain. In one embodiment, the nucleic acid sequence encoding the intracellular signaling domain of 4-1BB comprises the nucleotide sequence of SEQ ID NO:18, or a sequence with 95-99% identity thereof, and/or a sequence of SEQ ID NO:20 or SEQ ID NO:21, or the CD3 zeta nucleotide sequence with 95-99% identity thereof.
In one embodiment, the encoded intracellular signaling domain comprises a functional signaling domain of CD27 and/or a functional signaling domain of CD3 zeta. In one embodiment, the encoded intracellular signaling domain of CD27 comprises the amino acid sequence of SEQ ID NO: 8 and/or the CD3 zeta amino acid sequence of SEQ ID NO:9 or SEQ ID NO: 10. In one embodiment, the intracellular signaling domain comprises an amino acid sequence having at least one, two or three modifications but not more than 20, 10 or 5 modifications of an amino acid sequence of SEQ ID NO: 8 and/or an amino acid sequence of SEQ ID NO:9 or SEQ ID NO: 10, or a sequence with 95-99% identity to an amino acid sequence of SEQ ID NO:8 and/or an amino acid sequence of SEQ ID NO:9 or SEQ ID NO:10. In one embodiment, the encoded intracellular signaling domain comprises the sequence of SEQ ID NO:8 and the sequence of SEQ ID NO:9 or SEQ ID NO: 10, wherein the sequences comprising the intracellular signaling domain are expressed in the same frame and as a single polypeptide chain. In one embodiment, the nucleic acid sequence encoding the intracellular signaling domain of CD27 comprises the nucleotide sequence of SEQ ID NO: 19, or a sequence with 95-99% identity thereof, and/or the CD3 zeta nucleotide sequence of SEQ ID NO:20 or SEQ ID NO:21, or a sequence with 95-99% identity thereof.
In one embodiment, the encoded intracellular signaling domain comprises a functional signaling domain of CD28 and/or a functional signaling domain of CD3 zeta. In one embodiment, the encoded intracellular signaling domain of CD28 comprises the amino acid sequence of SEQ ID NO: 482 and/or the CD3 zeta amino acid sequence of SEQ ID NO:9 or SEQ ID NO: 10. In one embodiment, the intracellular signaling domain comprises an amino acid sequence having at least one, two or three modifications but not more than 20, 10 or 5 modifications of an amino acid sequence of SEQ ID NO:482 and/or an amino acid sequence of SEQ ID NO:9 or SEQ ID NO: 10, or a sequence with 95-99% identity to an amino acid sequence of SEQ ID NO:482 and/or an amino acid sequence of SEQ ID NO:9 or SEQ ID NO: 10. In one embodiment, the encoded intracellular signaling domain comprises the sequence of SEQ ID NO:482 and the sequence of SEQ ID NO:9 or SEQ ID NO: 10, wherein the sequences comprising the intracellular signaling domain are expressed in the same frame and as a single polypeptide chain. In one embodiment, the nucleic acid sequence encoding the intracellular signaling domain of CD28 comprises the nucleotide sequence of SEQ ID NO:483, or a sequence with 95-99% identity thereof, and/or the CD3 zeta nucleotide sequence of SEQ ID NO:20 or SEQ ID NO:21, or a sequence with 95-99% identity thereof.
In one embodiment, the encoded intracellular signaling domain comprises a functional signaling domain of ICOS and/or a functional signaling domain of CD3 zeta. In one embodiment, the encoded intracellular signaling domain of ICOS comprises the amino acid sequence of SEQ ID NO: 484 and/or the CD3 zeta amino acid sequence of SEQ ID NO:9 or SEQ ID NO: 10. In one embodiment, the intracellular signaling domain comprises an amino acid sequence having at least one, two or three modifications but not more than 20, 10 or 5 modifications of an amino acid sequence of SEQ ID NO:484 and/or an amino acid sequence of SEQ ID NO:9 or SEQ ID NO: 10, or a sequence with 95-99% identity to an amino acid sequence of SEQ ID NO:484 and/or an amino acid sequence of SEQ ID NO:9 or SEQ ID NO: 10. In one embodiment, the encoded intracellular signaling domain comprises the sequence of SEQ ID NO:484 and the sequence of SEQ ID NO:9 or SEQ ID NO: 10, wherein the sequences comprising the intracellular signaling domain are expressed in the same frame and as a single polypeptide chain. In one embodiment, the nucleic acid sequence encoding the intracellular signaling domain of ICOS comprises the nucleotide sequence of SEQ ID NO:485, or a sequence with 95-99% identity thereof, and/or the CD3 zeta nucleotide sequence of SEQ ID NO:20 or SEQ ID NO:21, or a sequence with 95-99% identity thereof.
In one embodiment, the isolated CAR molecule further comprises a leader sequence, e.g., a leader sequence described herein. In one embodiment, the leader sequence comprises an amino acid sequence of SEQ ID NO: 1, or a sequence with 95-99% identity to an amino acid sequence of SEQ ID NO:l.
In another aspect, the invention pertains to an isolated nucleic acid molecule encoding a CAR construct comprising a leader sequence, e.g., a leader sequence described herein, e.g., the amino acid sequence of SEQ ID NO: 1, an anti-CLL-1 binding domain described herein, e.g., human anti-CLL-1 binding domain comprising a LC CDR1, a LC CDR2, a LC CDR3, a HC CDR1, a HC CDR2 and a HC CDR3 described herein, e.g., a human anti-CLL-1 binding domain described in Table 2, or a sequence with 95-99% identify thereof, a hinge region described herein, e.g., the amino acid sequence of SEQ ID NO:2, a transmembrane domain described herein, e.g., having a sequence of SEQ ID NO: 6, and an intracellular signaling domain, e.g., an intracellular signaling domain described herein. In one embodiment, the encoded intracellular signaling domain comprises a costimulatory domain, e.g., a costimulatory domain described herein (e.g., a 4-1BB costimulatory domain having the amino acid sequence of SEQ ID NO:7, a CD28 costimulatory domain having the amino acid sequence of SEQ ID NO: 482, or an ICOS costimulatory domain having the amino acid sequence of SEQ ID NO: 484, or a CD27 costimulatory domain having the amino acid sequence of SEQ ID NO: 8), and/or a primary signaling domain, e.g., a primary signaling domain described herein, (e.g., a CD3 zeta stimulatory domain having a sequence of SEQ ID NO:9 or SEQ ID NO: 10).
In one embodiment, the isolated nucleic acid molecule encoding the CAR construct includes a human anti-CLL-1 binding domain sequence encoded by the nucleic acid sequence of SEQ ID NO:52, SEQ ID NO:53, SEQ ID NO:54, SEQ ID NO:55, SEQ ID NO:56, SEQ ID NO:57, SEQ ID NO:58, SEQ ID NO:59, SEQ ID NO:60, SEQ ID N0:61, SEQ ID NO:62, SEQ ID NO:63, and SEQ ID NO:64, or a sequence with 95-99% identity thereto.
In one embodiment, the isolated nucleic acid molecule comprises (e.g., consists of) a nucleic acid encoding a CAR amino acid sequence of SEQ ID NO: 91, SEQ ID NO: 92, SEQ ID NO: 93, SEQ ID NO: 94, SEQ ID NO: 95, SEQ ID NO: 96, SEQ ID NO: 97, SEQ ID NO: 98, SEQ ID NO: 99, SEQ ID NO: 100, SEQ ID NO: 101, SEQ ID NO: 102, SEQ ID NO:103, or SEQ ID NO: 197; or an amino acid sequence having one, two or three modifications (e.g., substitutions, e.g., conservative substitutions) but not more than 30, 20, or 10 modifications of an amino acid sequence of SEQ ID NO: 91, SEQ ID NO: 92, SEQ ID NO: 93, SEQ ID NO: 94, SEQ ID NO: 95, SEQ ID NO: 96, SEQ ID NO: 97, SEQ ID NO: 98, SEQ ID NO: 99, SEQ ID NO: 100, SEQ ID NO: 101, SEQ ID NO: 102, SEQ ID NO:103, or SEQ ID NO: 197; or an amino acid sequence having 85%, 90%, 95%, 96%, 97%, 98% or 99% identity to an amino acid sequence of SEQ ID NO: 91, SEQ ID NO: 92, SEQ ID NO: 93, SEQ ID NO: 94, SEQ ID NO: 95, SEQ ID NO: 96, SEQ ID NO: 97, SEQ ID NO: 98, SEQ ID NO: 99, SEQ ID NO: 100, SEQ ID NO: 101, SEQ ID NO: 102, SEQ ID NO: 103 or SEQ ID NO: 197.
In one embodiment, the isolated nucleic acid molecule comprises (e.g., consists of) a nucleic acid sequence of SEQ ID NO: 104, SEQ ID NO: 105, SEQ ID NO: 106, SEQ ID
NO:107, SEQ ID NO:108, SEQ ID NO:109, SEQ ID NO:110, SEQ ID NO:l l l, SEQ ID NO: 112, SEQ ID NO: 113, SEQ ID NO: 114, SEQ ID NO: 115, SEQ ID NO: 116, or SEQ ID NO: 198; or a nucleic acid sequence having 85%, 90%, 95%, 96%, 97%, 98% or 99% identity to a nucleic acid sequence of SEQ ID NO: 104, SEQ ID NO: 105, SEQ ID NO: 106, SEQ ID NO:107, SEQ ID NO:108, SEQ ID NO:109, SEQ ID NO:110, SEQ ID NO:l l l, SEQ ID NO: 112, SEQ ID NO: 113, SEQ ID NO: 114, SEQ ID NO: 115, SEQ ID NO: 116, or SEQ ID NO:198. In one aspect, the invention pertains to an isolated nucleic acid molecule encoding an anti-CLL-1 binding domain, wherein the anti-CLL-1 binding domain comprises one or more (e.g., all three) light chain complementary determining region 1 (LC CDR1), light chain complementary determining region 2 (LC CDR2), and light chain complementary determining region 3 (LC CDR3) of an anti-CLL-1 binding domain described herein, and/or one or more (e.g., all three) heavy chain complementary determining region 1 (HC CDR1), heavy chain complementary determining region 2 (HC CDR2), and heavy chain complementary
determining region 3 (HC CDR3) of an anti-CLL-1 binding domain described herein, e.g., a human anti-CLL-1 binding domain comprising one or more, e.g., all three, LC CDRs and one or more, e.g., all three, HC CDRs.
In other embodiments, the CLL-1 binding domain comprises a HC CDRl, a HC CDR2, and a HC CDR3 of any CLL-1 heavy chain binding domain amino acid sequences listed in Table 2. In embodiments, the CLL-1 binding domain further comprises a LC CDRl, a LC
CDR2, and a LC CDR3. In embodiments, the CLL-1 binding domain comprises a LC CDRl, a LC CDR2, and a LC CDR3)\ of any CLL-1 light chain binding domain amino acid sequences listed in Table 2.
In some embodiments, the CLL-1 binding domain comprises one, two or all of LC CDRl, LC CDR2, and LC CDR3 of any CLL-1 light chain binding domain amino acid sequences listed in Table 2, and one, two or all of HC CDRl, HC CDR2, and HC CDR3 of any CLL-1 heavy chain binding domain amino acid sequences listed in Table 2.
In one embodiment, the encoded anti-CLL-1 binding domain comprises a light chain variable region described herein (e.g., in SEQ ID NO:78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, or 196) and/or a heavy chain variable region described herein (e.g., in SEQ ID NO:65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, or 195). In one embodiment, the encoded anti- CLL-1 binding domain is a scFv comprising a light chain and a heavy chain of an amino acid sequence of in SEQ ID NO:39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, or 51. In an embodiment, the anti-CLL-1 binding domain (e.g., an scFv) comprises: a light chain variable region comprising an amino acid sequence having at least one, two or three modifications (e.g., substitutions, e.g., conservative substitutions) but not more than 30, 20 or 10 modifications (e.g., substitutions, e.g., conservative substitutions) of an amino acid sequence of a light chain variable region provided in SEQ ID NO: 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, or 196, or a sequence with 95-99% identity with an amino acid sequence of SEQ ID NO: 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, or 196; and/or a heavy chain variable region comprising an amino acid sequence having at least one, two or three modifications (e.g., substitutions, e.g., conservative substitutions) but not more than 30, 20 or 10 modifications (e.g., substitutions, e.g., conservative substitutions) of an amino acid sequence of a heavy chain variable region provided in SEQ ID NO: 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, or 195, or a sequence with 95-99% identity to an amino acid sequence in SEQ ID NO: 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, or 195. In one embodiment, the anti-CLL-1 binding domain comprises a sequence selected from a group consisting of SEQ ID NO: 39, SEQ ID NO:40, SEQ ID NO:41, SEQ ID NO:42, SEQ ID NO:43, SEQ ID NO:44, SEQ ID NO:45, SEQ ID NO:46, SEQ ID NO:47, SEQ ID NO:48, SEQ ID NO:49, SEQ ID NO:50, and SEQ ID NO:51, or a sequence with 95-99% identify thereof. In one embodiment, the encoded anti- CLL-1 binding domain is a scFv, and a light chain variable region comprising an amino acid sequence described herein, e.g., in Table 2, is attached to a heavy chain variable region comprising an amino acid sequence described herein, e.g., in Table 2, via a linker, e.g., a linker described herein. In one embodiment, the encoded anti-CLL-1 binding domain includes a (Gly4-Ser)n linker, wherein n is 1, 2, 3, 4, 5, or 6, preferably 4 (SEQ ID NO: 26). The light chain variable region and heavy chain variable region of a scFv can be, e.g., in any of the following orientations: light chain variable region-linker-heavy chain variable region or heavy chain variable region-linker-light chain variable region. In one embodiment, the isolated nucleic acid sequence encoding the human anti-CLL-1 binding domain comprises a sequence selected from a group consisting of SEQ ID NO:52, SEQ ID NO:53, SEQ ID NO:54, SEQ ID NO:55, SEQ ID NO:56, SEQ ID NO:57, SEQ ID NO:58, SEQ ID NO:59, SEQ ID NO:60, SEQ ID NO:61, SEQ ID NO:62, SEQ ID NO:63, and SEQ ID NO:64, or a sequence with 95- 99% identity thereof.
In another aspect, the invention pertains to an isolated CAR (e.g., a polypeptide) molecule encoded by the nucleic acid molecule. In one embodiment, the isolated CAR molecule comprises a sequence selected from the group consisting of SEQ ID NO:91, SEQ ID NO:92, SEQ ID NO:93, SEQ ID NO:94, SEQ ID NO:95, SEQ ID NO:96, SEQ ID NO:97, SEQ ID NO:98, SEQ ID NO:99, SEQ ID NO:100, SEQ ID NO:101, SEQ ID NO:102, SEQ ID NO: 103, and SEQ ID NO: 197 or a sequence with 95-99% identify thereof.
In another aspect, the invention pertains to an isolated chimeric antigen receptor (CAR) molecule (e.g., polypeptide) comprising an anti-CLL-1 binding domain (e.g., a human antibody or antibody fragment that specifically binds to CLL-1), a transmembrane domain, and an intracellular signaling domain (e.g., an intracellular signaling domain comprising a
costimulatory domain and/or a primary signaling domain). In one embodiment, the CAR comprises an antibody or antibody fragment which includes an anti-CLL-1 binding domain described herein (e.g., a human antibody or antibody fragment that specifically binds to CLL-1 as described herein), a transmembrane domain described herein, and an intracellular signaling domain described herein (e.g., an intracellular signaling domain comprising a costimulatory domain and/or a primary signaling domain described herein).
In one embodiment, the anti-CLL-1 binding domain comprises one or more (e.g., all three) light chain complementary determining region 1 (LC CDRl), light chain complementary determining region 2 (LC CDR2), and light chain complementary determining region 3 (LC CDR3) of an anti-CLL-1 binding domain described herein, and/or one or more (e.g., all three) heavy chain complementary determining region 1 (HC CDRl), heavy chain complementary determining region 2 (HC CDR2), and heavy chain complementary determining region 3 (HC CDR3) of an anti-CLL-1 binding domain described herein, e.g., a human anti-CLL-1 binding domain comprising one or more, e.g., all three, LC CDRs and one or more, e.g., all three, HC CDRs. In one embodiment, the anti-CLL-1 binding domain comprises a light chain variable region described herein (e.g., in Table 2) and/or a heavy chain variable region described herein (e.g., in Table 2). In one embodiment, the anti-CLL-1 binding domain is a scFv comprising a light chain and a heavy chain of an amino acid sequence listed in Table 2. In an embodiment, the anti-CLL-1 binding domain (e.g., an scFv) comprises: a light chain variable region comprising an amino acid sequence having at least one, two or three modifications (e.g., substitutions, e.g., conservative substitutions) but not more than 30, 20 or 10 modifications (e.g., substitutions, e.g., conservative substitutions) of an amino acid sequence of a light chain variable region provided in Table 2, or a sequence with 95-99% identity with an amino acid sequence provided in Table 2; and/or a heavy chain variable region comprising an amino acid sequence having at least one, two or three modifications (e.g., substitutions, e.g., conservative substitutions) but not more than 30, 20 or 10 modifications (e.g., substitutions, e.g., conservative substitutions) of an amino acid sequence of a heavy chain variable region provided in Table 2, or a sequence with 95-99% identity to an amino acid sequence provided in Table 2.
In other embodiments, the encoded CLL-1 binding domain comprises a HC CDRl, a HC CDR2, and a HC CDR3 of any CLL-1 heavy chain binding domain amino acid sequences listed in Table 2. In embodiments, the CLL-1 binding domain further comprises a LC CDRl, a LC CDR2, and a LC CDR3. In embodiments, the CLL-1 binding domain comprises a LC CDRl, a LC CDR2, and a LC CDR3 of any CLL-1 light chain binding domain amino acid sequences listed in Table 2. In some embodiments, the encoded CLL-1 binding domain comprises one, two or all of LC CDR1, LC CDR2, and LC CDR3 of any CLL-1 light chain binding domain amino acid sequences listed in Table 2, and one, two or all of HC CDR1, HC CDR2, and HC CDR3 of any CLL-1 heavy chain binding domain amino acid sequences listed in Table 2. In one embodiment, the anti-CLL-1 binding domain comprises a sequence selected from a group consisting of SEQ ID NO:39, SEQ ID NO:40, SEQ ID NO:41, SEQ ID NO:42, SEQ ID NO:43, SEQ ID NO:44, SEQ ID NO:45, SEQ ID NO:46, SEQ ID NO:47, SEQ ID NO:48, SEQ ID NO:49, SEQ ID NO:50, SEQ ID NO:51, SEQ ID NO: 65-90, or SEQ ID NO: 195-196, or an amino acid sequence having at least one, two or three modifications (e.g., substitutions, e.g., conservative substitutions) but not more than 30, 20 or 10 modifications (e.g., substitutions, e.g., conservative substitutions) to any of the aforesaid sequences; or a sequence with 95-99% identify thereof. In one embodiment, the anti-CLL-1 binding domain is a scFv, and a light chain variable region comprising an amino acid sequence described herein, e.g., in Table 2, is attached to a heavy chain variable region comprising an amino acid sequence described herein, e.g., in Table 2, via a linker, e.g., a linker described herein. In one
embodiment, the anti-CLL-1 binding domain includes a (Gly4-Ser)n linker, wherein n is 1, 2, 3, 4, 5, or 6, preferably 4 (SEQ ID NO: 26). The light chain variable region and heavy chain variable region of a scFv can be, e.g., in any of the following orientations: light chain variable region-linker-heavy chain variable region or heavy chain variable region-linker- light chain variable region.
In one embodiment, the isolated CAR molecule comprises a transmembrane domain of a protein selected from the group consisting of the the alpha, beta or zeta chain of the T-cell receptor, CD28, CD3 epsilon, CD45, CD4, CD5, CD8, CD9, CD16, CD22, CD33, CD37, CD64, CD80, CD86, CD 134, CD 137 and CD 154. In one embodiment, the transmembrane domain comprises a sequence of SEQ ID NO: 6. In one embodiment, the transmembrane domain comprises an amino acid sequence having at least one, two or three modifications (e.g., substitutions, e.g., conservative substitutions) but not more than 20, 10 or 5 modifications (e.g., substitutions, e.g., conservative substitutions) of an amino acid sequence of SEQ ID NO: 6, or a sequence with 95-99% identity to an amino acid sequence of SEQ ID NO: 6. In one embodiment, the anti-CLL-1 binding domain is connected to the transmembrane domain by a hinge region, e.g., a hinge region described herein. In one embodiment, the encoded hinge region comprises SEQ ID NO:2, or a sequence with 95-99% identity thereof.
In embodiments, the intracellular signaling domain of the isolated CAR molecule comprises a costimulatory domain. In embodiments, the intracellular signaling domain of the isolated CAR molecule comprises a primary signaling domain. In embodiments, the intracellular signaling domain of the isolated CAR molecule comprises a costimulatory domain and a primary signaling domain. In one embodiment, the isolated CAR molecule further comprises a sequence encoding a costimulatory domain, e.g., a costimulatory domain described herein. In one embodiment, the costimulatory domain comprises a functional signaling domain of a protein selected from the group consisting of a MHC class I molecule, TNF receptor proteins, Immunoglobulin-like proteins, cytokine receptors, integrins, signaling lymphocytic activation molecules (SLAM proteins), activating NK cell receptors, BTLA, a Toll ligand receptor, OX40, CD2, CD7, CD27, CD28, CD30, CD40, CDS, ICAM-1, LFA-1
(CDl la/CD18), 4-lBB (CD137), B7-H3, CDS, ICAM-1, ICOS (CD278), GITR, BAFFR, LIGHT, HVEM (LIGHTR), KIRDS2, SLAMF7, NKp80 (KLRF1), NKp44, NKp30, NKp46, CD19, CD4, CD8alpha, CD8beta, IL2R beta, IL2R gamma, IL7R alpha, ITGA4, VLA1, CD49a, ITGA4, IA4, CD49D, ITGA6, VLA-6, CD49f, ITGAD, CDl ld, ITGAE, CD103, ITGAL, CDl la, LFA-1, ITGAM, CDl lb, ITGAX, CDl lc, ITGB1, CD29, ITGB2, CD18, LFA-1, ITGB7, NKG2D, NKG2C, TNFR2, TRANCE/RANKL, DNAM1 (CD226), SLAMF4 (CD244, 2B4), CD84, CD96 (Tactile), CEACAM1, CRTAM, Ly9 (CD229), CD160 (BY55), PSGL1, CD100 (SEMA4D), CD69, SLAMF6 (NTB-A, Lyl08), SLAM (SLAMF1, CD150, IPO-3), BLAME (SLAMF8), SELPLG (CD162), LTBR, LAT, GADS, SLP-76, PAG/Cbp, CD 19a, and a ligand that specifically binds with CD83. In one embodiment, the costimulatory domain of 4-lBB comprises the amino acid sequence of SEQ ID NO:7. In one embodiment, the costimulatory domain comprises an amino acid sequence having at least one, two or three modifications (e.g., substitutions, e.g., conservative substitutions) but not more than 20, 10 or 5 modifications (e.g., substitutions, e.g., conservative substitutions) of an amino acid sequence of SEQ ID NO:7, or a sequence with 95-99% identity to an amino acid sequence of SEQ ID NO:7. In another embodiment, the costimulatory domain of CD28 comprises the amino acid sequence of SEQ ID NO:482. In one embodiment, the costimulatory domain comprises an amino acid sequence having at least one, two or three modifications but not more than 20, 10 or 5 modifications of an amino acid sequence of SEQ ID NO:482, or a sequence with 95-99% identity to an amino acid sequence of SEQ ID NO:482. In another embodiment, the costimulatory domain of CD27 comprises the amino acid sequence of SEQ ID NO: 8. In one embodiment, the costimulatory domain comprises an amino acid sequence having at least one, two or three modifications but not more than 20, 10 or 5 modifications of an amino acid sequence of SEQ ID NO:8, or a sequence with 95-99% identity to an amino acid sequence of SEQ ID NO: 8. In another embodiment, the costimulatory domain of ICOS comprises the amino acid sequence of SEQ ID NO:484. In one embodiment, the costimulatory domain comprises an amino acid sequence having at least one, two or three modifications but not more than 20, 10 or 5 modifications of an amino acid sequence of SEQ ID NO:484, or a sequence with 95-99% identity to an amino acid sequence of SEQ ID NO:484.
In embodiments, the primary signaling domain comprises a functional signaling domain of CD3 zeta. In embodiments, the functional signaling domain of CD3 zeta comprises the amino acid sequence of SEQ ID NO: 9 (mutant CD3 zeta) or SEQ ID NO: 10 (wild type human CD3 zeta), or a sequence with 95-99% identity thereof.
In one embodiment, the intracellular signaling domain comprises a functional signaling domain of 4- IBB and/or a functional signaling domain of CD3 zeta. In one embodiment, the intracellular signaling domain comprises the sequence of SEQ ID NO: 7 and/or the sequence of SEQ ID NO:9 or SEQ ID NO: 10. In one embodiment, the intracellular signaling domain comprises an amino acid sequence having at least one, two or three modifications (e.g., substitutions, e.g., conservative substitutions) but not more than 20, 10 or 5 modifications (e.g., substitutions, eg., conservative substitutions) of an amino acid sequence of SEQ ID NO: 7 and/or the sequence of SEQ ID NO:9 or SEQ ID NO: 10., or a sequence with 95-99% identity to an amino acid sequence of SEQ ID NO: 7 and/or the sequence of SEQ ID NO:9 or SEQ ID NO: 10.. In one embodiment, the intracellular signaling domain comprises the sequence of SEQ ID NO: 7 and/or the sequence of SEQ ID NO:9 or SEQ ID NO: 10, wherein the sequences comprising the intracellular signaling domain are expressed in the same frame and as a single polypeptide chain.
In one embodiment, the intracellular signaling domain comprises a functional signaling domain of CD27 and/or a functional signaling domain of CD3 zeta. In one embodiment, the intracellular signaling domain of CD27 comprises the amino acid sequence of SEQ ID NO: 8 and/or the CD3 zeta amino acid sequence of SEQ ID NO:9 or SEQ ID NO: 10. In one embodiment, the intracellular signaling domain comprises an amino acid sequence having at least one, two or three modifications but not more than 20, 10 or 5 modifications of an amino acid sequence of SEQ ID NO:8 and/or an amino acid sequence of SEQ ID NO:9 or SEQ ID NO: 10, or a sequence with 95-99% identity to an amino acid sequence of SEQ ID NO:8 and/or an amino acid sequence of SEQ ID NO:9 or SEQ ID NO: 10. In one embodiment, the intracellular signaling domain comprises the sequence of SEQ ID NO: 8 and the sequence of SEQ ID NO:9 or SEQ ID NO: 10, wherein the sequences comprising the intracellular signaling domain are expressed in the same frame and as a single polypeptide chain. In one embodiment, the intracellular signaling domain comprises a functional signaling domain of CD28 and/or a functional signaling domain of CD3 zeta. In one embodiment, the encoded intracellular signaling domain of CD28 comprises the amino acid sequence of SEQ ID NO: 482 and/or the CD3 zeta amino acid sequence of SEQ ID NO:9 or SEQ ID NO: 10. In one embodiment, the intracellular signaling domain comprises an amino acid sequence having at least one, two or three modifications but not more than 20, 10 or 5 modifications of an amino acid sequence of SEQ ID NO: 482 and/or an amino acid sequence of SEQ ID NO:9 or SEQ ID NO: 10, or a sequence with 95-99% identity to an amino acid sequence of SEQ ID NO: 482 and/or an amino acid sequence of SEQ ID NO:9 or SEQ ID NO: 10. In one embodiment, the intracellular signaling domain comprises the sequence of SEQ ID NO: 482 and the sequence of SEQ ID NO:9 or SEQ ID NO: 10, wherein the sequences comprising the intracellular signaling domain are expressed in the same frame and as a single polypeptide chain.
In one embodiment, the intracellular signaling domain comprises a functional signaling domain of ICOS and/or a functional signaling domain of CD3 zeta. In one embodiment, the encoded intracellular signaling domain of ICOS comprises the amino acid sequence of SEQ ID NO: 484 and/or the CD3 zeta amino acid sequence of SEQ ID NO:9 or SEQ ID NO: 10. In one embodiment, the intracellular signaling domain comprises an amino acid sequence having at least one, two or three modifications but not more than 20, 10 or 5 modifications of an amino acid sequence of SEQ ID NO: 484 and/or an amino acid sequence of SEQ ID NO:9 or SEQ ID NO: 10, or a sequence with 95-99% identity to an amino acid sequence of SEQ ID NO: 482 and/or an amino acid sequence of SEQ ID NO:9 or SEQ ID NO: 10. In one embodiment, the intracellular signaling domain comprises the sequence of SEQ ID NO: 484 and the sequence of SEQ ID NO:9 or SEQ ID NO: 10, wherein the sequences comprising the intracellular signaling domain are expressed in the same frame and as a single polypeptide chain.
In one embodiment, the isolated CAR molecule further comprises a leader sequence, e.g., a leader sequence described herein. In one embodiment, the leader sequence comprises an amino acid sequence of SEQ ID NO: 1, or a sequence with 95-99% identity to an amino acid sequence of SEQ ID NO:l.
In another aspect, the invention pertains to an isolated CAR molecule comprising a leader sequence, e.g., a leader sequence described herein, e.g., a leader sequence of SEQ ID NO: 1, or having 95-99% identity thereof, an anti-CLL-1 binding domain described herein, e.g., an anti-CLL-1 binding domain comprising a LC CDR1, a LC CDR2, a LC CDR3, a HC CDR1, a HC CDR2 and a HC CDR3 described herein, e.g., an anti-CLL-1 binding domain described in Table 2, or a sequence with 95-99% identify thereof, a hinge region, e.g., a hinge region described herein, e.g., a hinge region of SEQ ID NO:2, or having 95-99% identity thereof, a transmembrane domain, e.g., a transmembrane domain described herein, e.g., a transmembrane domain having a sequence of SEQ ID NO: 6 or a sequence having 95-99% identity thereof, an intracellular signaling domain, e.g., an intracellular signaling domain described herein (e.g., an intracellular signaling domain comprising a costimulatory domain and/or a primary signaling domain). In one embodiment, the intracellular signaling domain comprises a costimulatory domain, e.g., a costimulatory domain described herein, e.g., a 4-1BB costimulatory domain having a sequence of SEQ ID NO:7, or having 95-99% identity thereof, and/or a primary signaling domain, e.g., a primary signaling domain described herein, e.g., a CD3 zeta stimulatory domain having a sequence of SEQ ID NO:9 or SEQ ID NO: 10, or having 95-99% identity thereof. In one embodiment, the intracellular signaling domain comprises a costimulatory domain, e.g., a costimulatory domain described herein, e.g., a 4-1BB
costimulatory domain having a sequence of SEQ ID NO:7, and/or a primary signaling domain, e.g., a primary signaling domain described herein, e.g., a CD3 zeta stimulatory domain having a sequence of SEQ ID NO:9 or SEQ ID NO: 10.
In one embodiment, the isolated CAR molecule comprises (e.g., consists of) an amino acid sequence of SEQ ID NO:91, SEQ ID NO:92, SEQ ID NO:93, SEQ ID NO:94, SEQ ID NO:95, SEQ ID NO:96, SEQ ID NO:97, SEQ ID NO:98, SEQ ID NO:99, SEQ ID NO: 100, SEQ ID NO:101, SEQ ID NO:102, SEQ ID NO: 103, or SEQ ID NO:197, or an amino acid sequence having at least one, two, three, four, five, 10, 15, 20 or 30 modifications (e.g., substitutions, e.g., conservative substitutions) but not more than 60, 50 or 40 modifications (e.g., substitutions, e.g., conservative substitutions) of an amino acid sequence of SEQ ID NO:91, SEQ ID NO:92, SEQ ID NO:93, SEQ ID NO:94, SEQ ID NO:95, SEQ ID NO:96, SEQ ID NO:97, SEQ ID NO:98, SEQ ID NO:99, SEQ ID NO:100, SEQ ID NO:101, SEQ ID NO: 102, SEQ ID NO: 103, or SEQ ID NO: 197, or an amino acid sequence having 85%, 90%, 95%, 96%, 97%, 98% or 99% identity to an amino acid sequence of SEQ ID NO:91, SEQ ID NO:92, SEQ ID NO:93, SEQ ID NO:94, SEQ ID NO:95, SEQ ID NO:96, SEQ ID NO:97, SEQ ID NO:98, SEQ ID NO:99, SEQ ID NO:100, SEQ ID NO:101, SEQ ID NO:102, SEQ ID NO: 103, and SEQ ID NO: 197.
In one aspect, the invention pertains to an anti-CLL-1 binding domain comprising one or more (e.g., all three) light chain complementary determining region 1 (LC CDRl), light chain complementary determining region 2 (LC CDR2), and light chain complementary determining region 3 (LC CDR3) of an anti-CLL-1 binding domain described herein, and/or one or more (e.g., all three) heavy chain complementary determining region 1 (HC CDRl), heavy chain complementary determining region 2 (HC CDR2), and heavy chain
complementary determining region 3 (HC CDR3) of an anti-CLL-1 binding domain described herein, e.g., a human anti-CLL-1 binding domain comprising one or more, e.g., all three, LC CDRs and one or more, e.g., all three, HC CDRs. In other embodiments, the encoded CLL-1 binding domain comprises a HC CDRl, a
HC CDR2, and a HC CDR3 of any CLL-1 heavy chain binding domain amino acid sequences listed in Table 2. In embodiments, the CLL-1 binding domain further comprises a LC CDRl, a LC CDR2, and a LC CDR3. In embodiments, the CLL-1 binding domain comprises a LC CDRl, a LC CDR2, and a LC CDR3 of any CLL-1 light chain binding domain amino acid sequences listed in Table 2.
In some embodiments, the encoded CLL-1 binding domain comprises one, two or all of LC CDRl, LC CDR2, and LC CDR3 of any CLL-1 light chain binding domain amino acid sequences listed in Table 2, and one, two or all of HC CDRl, HC CDR2, and HC CDR3 of any CLL-1 heavy chain binding domain amino acid sequences listed in Table 2. In one embodiment, the anti-CLL-1 binding domain comprises a light chain variable region described herein (e.g., in SEQ ID NO: 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, or 196) and/or a heavy chain variable region described herein (e.g. in SEQ ID NO: 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, or 195). In one embodiment, the anti-CLL-1 binding domain is a scFv comprising a light chain and a heavy chain of an amino acid sequence of SEQ ID NO:39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, or 51. In an embodiment, the anti-CLL-1 binding domain (e.g., an scFv) comprises: a light chain variable region comprising an amino acid sequence having at least one, two or three modifications (e.g., substitutions, e.g., conservative substitutions) but not more than 30, 20 or 10 modifications (e.g., substitutions, e.g., conservative substitutions) of an amino acid sequence of a light chain variable region provided, in SEQ ID NO: 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, or 196 or a sequence with 95-99% identity with an amino acid sequence in SEQ ID NO: 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, or 196; and/or a heavy chain variable region comprising an amino acid sequence having at least one, two or three modifications (e.g., substitutions, e.g., conservative substitutions) but not more than 30, 20 or 10 modifications (e.g., substitutions, e.g., conservative substitutions) of an amino acid sequence of a heavy chain variable region provided in SEQ ID NO: 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, or 195, or a sequence with 95-99% identity to an amino acid sequence in SEQ ID NO: 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, or 195. In one embodiment, the anti-CLL-1 binding domain comprises a sequence selected from a group consisting of SEQ ID NO:39, SEQ ID NO:40, SEQ ID NO:41, SEQ ID NO:42, SEQ ID NO:43, SEQ ID NO:44, SEQ ID NO:45, SEQ ID NO:46, SEQ ID NO:47, SEQ ID NO:48, SEQ ID NO:49, SEQ ID NO:50, or SEQ ID NO:51 or a sequence with 95-99% identify thereof. In one embodiment, the anti-CLL-1 binding domain is a scFv, and a light chain variable region comprising an amino acid sequence described herein, e.g., in Table 2, is attached to a heavy chain variable region comprising an amino acid sequence described herein, e.g., in Table 2, via a linker, e.g., a linker described herein. In one embodiment, the anti-CLL-1 binding domain includes a (Gly4-Ser)n linker, wherein n is 1, 2, 3, 4, 5, or 6, preferably 4 (SEQ ID NO: 26). The light chain variable region and heavy chain variable region of a scFv can be, e.g., in any of the following orientations: light chain variable region-linker- heavy chain variable region or heavy chain variable region-linker-light chain variable region.
In another aspect, the invention pertains to a vector comprising a nucleic acid molecule described herein, e.g., a nucleic acid molecule encoding a CAR described herein. In one embodiment, the vector is selected from the group consisting of a DNA, a RNA, a plasmid, a lentivirus vector, adenoviral vector, or a retrovirus vector. In one embodiment, the vector is a lentivirus vector. In one embodiment, the vector further comprises a promoter. In one embodiment, the promoter is an EF-1 promoter. In one embodiment, the EF-1 promoter comprises a sequence of SEQ ID NO: 11. In another embodiment, the promoter is a PGK promoter, e.g., a truncated PGK promoter as described herein.
In one embodiment, the vector is an in vitro transcribed vector, e.g., a vector that transcribes RNA of a nucleic acid molecule described herein. In one embodiment, the nucleic acid sequence in the vector further comprises a poly(A) tail, e.g., a poly A tail described herein, e.g., comprising about 150 adenosine bases (SEQ ID NO:312). In one embodiment, the nucleic acid sequence in the vector further comprises a 3'UTR, e.g., a 3' UTR described herein, e.g., comprising at least one repeat of a 3'UTR derived from human beta-globulin. In one embodiment, the nucleic acid sequence in the vector further comprises promoter, e.g., a T2A promoter.
In another aspect, the invention pertains to a cell comprising a vector described herein. In one embodiment, the cell is a cell described herein, e.g., an immune effector cell, e.g., a human T cell, e.g., a human T cell described herein; or a human NK cell, e.g., a human NK cell described herein. In one embodiment, the human T cell is a CD8+ T cell.
In another embodiment, the CAR-expressing cell described herein can further express another agent, e.g., an agent which enhances the activity of a CAR-expressing cell. For example, in one embodiment, the agent can be an agent which inhibits an inhibitory molecule. Examples of inhibitory molecules include PD1, PD-L1, PD-L2, CTLA4, TIM3, CEACAM (e.g., CEACAM- 1, CEACAM-3 and/or CEACAM-5), LAG3, VISTA, BTLA, TIGIT, LAIR1, CD160, 2B4, CD80, CD86, B7-H3 (CD276), B7-H4 (VTCN1), HVEM (TNFRSF14 or CD270), KIR, A2aR, MHC class I, MHC class II, GAL9, adenosine, and TGFR beta. In one embodiment, the agent which inhibits an inhibitory molecule comprises a first polypeptide, e.g., an inhibitory molecule, associated with a second polypeptide that provides a positive signal to the cell, e.g., an intracellular signaling domain described herein. In one embodiment, the agent comprises a first polypeptide, e.g., of an inhibitory molecule such as PD1, PD-L1, PD-L2, CTLA4, TIM3, CEACAM (e.g., CEACAM-1, CEACAM-3 and/or CEACAM-5), LAG3, VISTA, BTLA, TIGIT, LAIR1, CD160, 2B4, CD80, CD86, B7-H3 (CD276), B7-H4 (VTCN1), HVEM (TNFRSF14 or CD270), KIR, A2aR, MHC class I, MHC class II, GAL9, adenosine, and TGFR beta, or a fragment of any of these (e.g., at least a portion of the extracellular domain of any of these), and a second polypeptide which is an intracellular signaling domain described herein (e.g., comprising a costimulatory domain (e.g., 41BB, CD27 or CD28, e.g., as described herein) and/or a primary signaling domain (e.g., a CD3 zeta signaling domain described herein). In one embodiment, the agent comprises a first polypeptide of PD1 or a fragment thereof (e.g., at least a portion of the extracellular domain of PD1), and a second polypeptide of an intracellular signaling domain described herein (e.g., a CD28 signaling domain described herein and/or a CD3 zeta signaling domain described herein). In another aspect, the invention pertains to a method of making a cell comprising transducing a cell described herein, e.g., an immune effector cell described herein, e.g., a T cell or a NK cell described herein, with a vector of comprising a nucleic acid encoding a CAR, e.g., a CAR described herein.
The present invention also provides a method of generating a population of RNA- engineered cells, e.g., cells described herein, e.g., immune effector cells, e.g., T cells or NK cells, transiently expressing exogenous RNA. The method comprises introducing an in vitro transcribed RNA or synthetic RNA into a cell, where the RNA comprises a nucleic acid encoding a CAR molecule described herein.
In another aspect, the invention pertains to a method of providing an anti-tumor immunity in a mammal comprising administering to the mammal an effective amount of a cell expressing a CAR molecule, e.g., a cell expressing a CAR molecule described herein. In one embodiment, the cell is an autologous immune effector cell, e.g., T cell. In one embodiment, the cell is an allogeneic immune effector cell, e.g., T cell. In one embodiment, the mammal is a human, e.g., a patient with a hematologic cancer.In another aspect, the invention pertains to a method of treating a mammal having a disease associated with expression of CLL-1 (e.g., a proliferative disease, a precancerous condition, and a noncancer related indication associated with the expression of CLL-1) comprising administering to the mammal an effective amount of the cells expressing a CAR molecule, e.g., a CAR molecule described herein. In one embodiment, the mammal is a human, e.g., a patient with a hematologic cancer. In one embodiment, the disease is a disease described herein. In one embodiment, the disease associated with CLL-1 expression is selected from a hematologic cancer such as acute leukemias including but not limited to acute myeloid leukemia (AML); myelodysplastic syndrome; myeloproliferative neoplasms; chronic myeloid leukemia (CML); Blastic plasmacytoid dendritic cell neoplasm; and to disease associated with CLL-1 expression including, but not limited to atypical and/or non-classical cancers, malignancies, precancerous conditions or proliferative diseases expressing CLL-1; and combinations thereof. In one embodiment,the disease associated with CLL-1 expression is a hematologic cancer selected from the group consisting of one or more acute leukemias including but not limited to acute myelogenous leukemia (or acute myeloid leukemia, AML); chronic myelogenous leukemia (or chronic myeloid leukemia, CML): acute lymphoid leukemia (or acute lymphoblastic leukemia, ALL); chronic lymphoid leukemia (or chronic lymphocytic leukemia, CLL) and
myelodysplastic syndrome, B-cell acute lymphoid leukemia ("BALL", or acute lymphoblastic B-cell leukemia), T-cell acute lymphoid leukemia ("TALL", or acute lymphoblastic T-cell leukemia), acute lymphoid leukemia (ALL); one or more chronic leukemias including but not limited to chronic myelogenous leukemia (CML), chronic lymphocytic leukemia (CLL);
additional hematologic cancers or hematologic conditions including, but not limited to B cell prolymphocytic leukemia, blastic plasmacytoid dendritic cell neoplasm, lymphomas including but not limited to multiple myeloma; non-Hodgkin's lymphoma; Burkitt's lymphoma; small cell-follicular lymphoma; and large cell-follicular lymphomaBurkitt's lymphoma, diffuse large B cell lymphoma, follicular lymphoma, hairy cell leukemia, small cell- or a large cell-follicular lymphoma, malignant lymphoproliferative conditions, MALT lymphoma, mantle cell lymphoma, Marginal zone lymphoma, multiple myeloma, myelodysplasia and myelodysplastic syndrome, Hodgkin's lymphoma, plasmablastic lymphoma, plasmacytoid dendritic cell neoplasm, plasma cell myeloma, Waldenstrom macroglobulinemia, and "preleukemia" which are a diverse collection of hematological conditions united by ineffective production (or dysplasia) of myeloid blood cells, and to disease associated with CLL-1 expression including, but not limited to atypical and/or non-classical cancers, malignancies, precancerous conditions or proliferative diseases expressing CLL-1; and combinations thereof.
In another aspect, the invention pertains to a method of conditioning a subject prior to cell transplantation comprising administering to the subject an effective amount of the cell of comprising a CAR molecule disclosed herein. In one embodiment, the cell transplantation is a stem cell transplantation. The stem cell transplantation is a hematopoietic stem cell stransplantation or a bone marrow transplantation. In one embodiment, the cell transplantation is allogeneic or autologous.
In one embodiment, the conditioning a subject prior to cell transplantation comprises reducing the number of CLL-1 -expressing cells in a subject. The CLL-1 -expressing cells in the subject are CLL-1 -expressing normal cells or CLL-1 -expressing cancer cells, and in some cases, the condition in the subject will reduce both CLL-1 -expressing normal and cancer cells prior to a cell transplantation.
In one embodiment, the cells expressing a CAR molecule, e.g., a CAR molecule described herein, are administered in combination with an agent that increases the efficacy of a cell expressing a CAR molecule, e.g., an agent described herein.
In one embodiment, the cells expressing a CAR molecule, e.g., a CAR molecule described herein, are administered in combination with a low, immune enhancing dose of an mTOR inhibitor. While not wishing to be bound by theory, it is believed that treatment with a low, immune enhancing, dose (e.g., a dose that is insufficient to completely suppress the immune system but sufficient to improve immune function) is accompanied by a decrease in PD-1 positive T cells or an increase in PD-1 negative cells. PD-1 positive T cells, but not PD-1 negative T cells, can be exhausted by engagement with cells which express a PD-1 ligand, e.g., PD-L1 or PD-L2.
In an embodiment this approach can be used to optimize the performance of CAR cells described herein in the subject. While not wishing to be bound by theory, it is believed that, in an embodiment, the performance of endogenous, non-modified immune effector cells, e.g., T cells, is improved. While not wishing to be bound by theory, it is believed that, in an embodiment, the performance of of a CLL-1 CAR expressing cell is improved. In other embodiments, cells, e.g., T cells, which have, or will be that expresses a CAR, can be treated ex vivo by contact with an amount of an mTOR inhibitor that increases the number of PD1 negative immune effector cells, e.g., T cells or increases the ratio of PD1 negative immune effector cells, e.g., T cells/ PD1 positive immune effector cells, e.g., T cells.
In an embodiment, administration of a low, immune enhancing, dose of an mTOR inhibitor, e.g., an allosteric inhibitor, e.g., RAD001, or a catalytic inhibitor, is initiated prior to administration of an CAR expressing cell described herein, e.g., T cells. In an embodiment, the CAR cells are administered after a sufficient time, or sufficient dosing, of an mTOR inhibitor, such that the level of PDl negative immune effector cells, e.g., T cells, or the ratio of PDl negative immune effector cells, e.g., T cells/ PDl positive immune effector cells, e.g., T cells, has been, at least transiently, increased.
In an embodiment, the invention provides an mTOR inhibitor for use in the treatment of a subject, wherein said mTOR inhibitor enhances an immune response of said subject, and wherein said subject has received, is receiving or is about to receive an immune effector cell that expresses a CLL-1 CAR as described herein.
In an embodiment, the cell, e.g., T cell, to be engineered to express a CAR, is harvested after a sufficient time, or after sufficient dosing of the low, immune enhancing, dose of an mTOR inhibitor, such that the level of PDl negative immune effector cells, e.g., T cells, or the ratio of PDl negative immune effector cells, e.g., T cells/ PDl positive immune effector cells, e.g., T cells, in the subject or harvested from the subject has been, at least transiently, increased.
In one embodiment, the cells expressing a CAR molecule, e.g., a CAR molecule described herein, are administered in combination with an agent that ameliorates one or more side effect associated with administration of a cell expressing a CAR molecule, e.g., an agent described herein.
In one embodiment, the cells expressing a CAR molecule, e.g., a CAR molecule described herein, are administered in combination with an agent that treats the disease associated with CLL-1, e.g., an agent described herein. In another embodiment, the cells expressing a CAR molecule, e.g., a CAR molecule described herein, are administered in combination with a chemotherapeutic agent, e.g., a chemotherapeutic agent described herein. In an embodiment, the chemotherapeutic agent is administered prior to administration of the cell expressing a CAR molecule, e.g., a CAR molecule described herein. For example, in chemotherapeutic regimens where more than one administration of the chemotherapeutic agent is desired, the chemotherapeutic regimen is initiated or completed prior to administration of a cell expressing a CAR molecule, e.g., a CAR molecule described herein. In embodiments, the chemotherapeutic agent is administered at least 5 days, 10 days, 15 days, 30 days prior to administration of the cell expressing the CAR molecule. In embodiments, the
chemotherapeutic agent is a chemotherapeutic agent that increases CLL-1 expression on the cancer cells, e.g., the tumor cells, e.g., as compared to CLL-1 expression on normal or non- cancer cells. For example, the chemotherapeutic agent is cytarabine (Ara-C). In embodiments, the combination of chemotherapy and a cell expressing a CAR molecule described herein is useful for treating a hematological cancer, e.g., a leukemia, e.g., AML, or a minimal residual disease (MRD) of a hematological cancer described herein. In another aspect, the invention pertains to the isolated nucleic acid molecule encoding a CAR of the invention, the isolated polypeptide molecule of a CAR of the invention, the vector comprising a CAR of the invention, and the cell comprising a CAR of the invention for use as a medicament, e.g., as described herein. In another aspect, the invention pertains to a the isolated nucleic acid molecule encoding a CAR of the invention, the isolated polypeptide molecule of a CAR of the invention, the vector comprising a CAR of the invention, and the cell comprising a CAR of the invention for use in the treatment of a disease expressing CLL-1, e.g., a disease expressing CLL-1 as described herein.
Additional features and embodiments of the aforesaid compositions and methods include one or more of the following: In certain embodiments, the CLL-1 CAR molecule (e.g., a CLL-1 CAR nucleic acid or a CLL-1 CAR polypeptide as described herein), or the CLL-1 binding domain as described herein, includes one, two or three CDRs from the heavy chain variable region (e.g., HC CDRl, HC CDR2 and/or HC CDR3), provided in Table 3; and/or one, two or three CDRs from the light chain variable region (e.g., LC CDRl, LC CDR2 and/or LC CDR3) of CLL-1 CAR-1, CLL-1 CAR-2, CLL-1 CAR-3, CLL-1 CAR-4, CLL-1 CAR-5, CLL-1 CAR-6, CLL-1 CAR-7, CLL-1 CAR-8, CLL-1 CAR-9, CLL-1 CAR- 10, CLL-1 CAR-11, CLL-1 CAR- 12, CLL-1 CAR-13, or 181268 provided in Table 4; or a sequence substantially identical (e.g., 95-99% identical, or up to 5, 4, 3, 2, or 1 amino acid changes, e.g., substitutions (e.g., , e.g.,
conservative substitutions)) to any of the aforesaid sequences. In certain embodiments, the CLL-1 CAR molecule (e.g., a CLL-1 CAR nucleic acid or a CLL-1 CAR polypeptide as described herein), or the CLL-1 binding domain as described herein, includes one, two or three CDRs from the heavy chain variable region (e.g., HC CDRl, HC CDR2 and/or HC CDR3), provided in Table 5; and/or one, two or three CDRs from the light chain variable region (e.g., LC CDRl, LC CDR2 and/or LC CDR3) of CLL-1 CAR-1, CLL-1 CAR-2, CLL-1 CAR-3, CLL-1 CAR-4, CLL-1 CAR-5, CLL-1 CAR-6, CLL-1 CAR-7, CLL-1 CAR-8, CLL-1 CAR-9, CLL-1 CAR- 10, CLL-1 CAR-11, CLL-1 CAR- 12, CLL-1 CAR-13, or 181268 provided in Table 6; or a sequence substantially identical (e.g., 95-99% identical, or up to 5, 4, 3, 2, or 1 amino acid changes, e.g., substitutions (e.g., , e.g., conservative substitutions)) to any of the aforesaid sequences.
In certain embodiments, the CLL-1 CAR molecule (e.g., a CLL-1 CAR nucleic acid or a CLL-1 CAR polypeptide as described herein), or the CLL-1 binding domain as described herein, includes one, two or three CDRs from the heavy chain variable region (e.g., HC CDRl, HC CDR2 and/or HC CDR3), provided in Table 7; and/or one, two or three CDRs from the light chain variable region (e.g., LC CDRl, LC CDR2 and/or LC CDR3) of CLL-1 CAR-1, CLL-1 CAR-2, CLL-1 CAR-3, CLL-1 CAR-4, CLL-1 CAR-5, CLL-1 CAR-6, CLL-1 CAR-7, CLL-1 CAR-8, CLL-1 CAR-9, CLL-1 CAR- 10, CLL-1 CAR-11, CLL-1 CAR- 12, CLL-1 CAR-13, or 181268 provided in Table 8; or a sequence substantially identical (e.g., 95-99% identical, or up to 5, 4, 3, 2, or 1 amino acid changes, e.g., substitutions (e.g., , e.g., conservative substitutions)) to any of the aforesaid sequences.
In certain embodiments, the CAR molecule described herein (e.g., the CAR nucleic acid or the CAR polypeptide) includes:
(1) one, two, or three light chain (LC) CDRs chosen from one of the following:
(i) a LC CDRl of SEQ ID NO: 156, LC CDR2 of SEQ ID NO: 169 and LC CDR3 of SEQ ID NO: 182 of CLL-1 CAR-1 ;
(ii) a LC CDRl of SEQ ID NO: 157, LC CDR2 of SEQ ID NO: 170 and LC CDR3 of SEQ ID NO: 183 of CLL-1 CAR-2;
(iii) a LC CDRl of SEQ ID NO: 158, LC CDR2 of SEQ ID NO: 171 and LC CDR3 of SEQ ID NO: 184 of CLL-1 CAR-3;
(iv) a LC CDRl of SEQ ID NO: 159, LC CDR2 of SEQ ID NO: 172 and LC CDR3 of SEQ ID NO: 185 of CLL-1 CAR-4;
(v) a LC CDRl of SEQ ID NO: 160, LC CDR2 of SEQ ID NO: 173 and LC CDR3 of
SEQ ID NO: 186 of CLL-1 CAR-5;
(vi) a LC CDRl of SEQ ID NO: 161, LC CDR2 of SEQ ID NO: 174 and LC CDR3 of SEQ ID NO: 187 of CLL-1 CAR-6;
(vii) a LC CDRl of SEQ ID NO: 162, LC CDR2 of SEQ ID NO: 175 and LC CDR3 of SEQ ID NO: 188 of CLL-1 CAR-7; (viii) a LC CDRl of SEQ ID NO: 163, LC CDR2 of SEQ ID NO: 176 and LC CDR3 of SEQ ID NO: 189 of CLL-1 CAR-8; or
(ix) a LC CDRl of SEQ ID NO: 164, LC CDR2 of SEQ ID NO: 177 and LC CDR3 of SEQ ID NO: 190 of CLL-1 CAR-9;
(x) a LC CDRl of SEQ ID NO: 165, LC CDR2 of SEQ ID NO: 178 and LC CDR3 of
SEQ ID NO: 191 of CLL-1 CAR-10;
(xi) a LC CDRl of SEQ ID NO: 166, LC CDR2 of SEQ ID NO: 179 and LC CDR3 of SEQ ID NO: 192 of CLL-1 CAR-11;
(xii) a LC CDRl of SEQ ID NO: 167, LC CDR2 of SEQ ID NO: 180 and LC CDR3 of SEQ ID NO: 193 of CLL-1 CAR-12;
(xiii) a LC CDRl of SEQ ID NO: 168, LC CDR2 of SEQ ID NO: 181 and LC CDR3 of SEQ ID NO: 194 of CLL-1 CAR-13;
(xiv) a LC CDRl of SEQ ID NO: 202, LC CDR2 of SEQ ID NO: 203 and LC CDR3 of SEQ ID NO: 204 of 181286; and/or
(2) one, two, or three heavy chain (HC) CDRs from one of the following:
(i) a HC CDRl of SEQ ID NO: 117, HC CDR2 of SEQ ID NO: 130 and HC CDR3 of SEQ ID NO: 143 of CLL-1 CAR-1;
(ii) a HC CDRl of SEQ ID NO: 118, HC CDR2 of SEQ ID NO: 131 and HC CDR3 of SEQ ID NO: 144 of CLL-1 CAR-2;
(iii) a HC CDRl of SEQ ID NO: 119, HC CDR2 of SEQ ID NO: 132 and HC CDR3 of
SEQ ID NO: 145 of CLL-1 CAR-3;
(iv) a HC CDRl of SEQ ID NO: 120, HC CDR2 of SEQ ID NO: 133 and HC CDR3 of SEQ ID NO: 146 of CLL-1 CAR-4;
(v) a HC CDRl of SEQ ID NO: 121, HC CDR2 of SEQ ID NO: 134 and HC CDR3 of SEQ ID NO: 147 of CLL-1 CAR-5;
(vi) a HC CDRl of SEQ ID NO: 122, HC CDR2 of SEQ ID NO: 135 and HC CDR3 of SEQ ID NO: 148 of CLL-1 CAR-6;
(vii) a HC CDRl of SEQ ID NO: 123, HC CDR2 of SEQ ID NO: 136 and HC CDR3 of SEQ ID NO: 149 of CLL-1 CAR-7;
(viii) a HC CDRl of SEQ ID NO: 124, HC CDR2 of SEQ ID NO: 137 and HC CDR3 of SEQ ID NO: 150 of CLL-1 CAR-8; or (ix) a HC CDRl of SEQ ID NO: 125, HC CDR2 of SEQ ID NO: 138 and HC CDR3 of SEQ ID NO: 151 of CLL-1 CAR-9;
(x) a HC CDRl of SEQ ID NO: 126, HC CDR2 of SEQ ID NO: 139 and HC CDR3 of SEQ ID NO: 152 of CLL-1 CAR-10;
(xi) a HC CDRl of SEQ ID NO: 127, HC CDR2 of SEQ ID NO: 140 and HC CDR3 of
SEQ ID NO: 153 of CLL-1 CAR-11 ;
(xii) a HC CDRl of SEQ ID NO: 128, HC CDR2 of SEQ ID NO: 141 and HC CDR3 of SEQ ID NO: 154 of CLL-1 CAR-12;
(xiii) a HC CDRl of SEQ ID NO: 129, HC CDR2 of SEQ ID NO: 142 and HC CDR3 of SEQ ID NO: 155 of CLL-1 CAR-13;
(xiv) a HC CDRl of SEQ ID NO: 199, HC CDR2 of SEQ ID NO: 200 and HC CDR3 of SEQ ID NO: 201 of 181286.
In certain embodiments, the CAR molecule described herein (e.g., the CAR nucleic acid or the CAR polypeptide) or a CLL-1 binding domain includes:
(1) one, two, or three light chain (LC) CDRs chosen from one of the following:
(i) a LC CDRl of SEQ ID NO: 356, LC CDR2 of SEQ ID NO: 370 and LC CDR3 of SEQ ID NO: 384 of CLL-1 CAR-1 ;
(ii) a LC CDRl of SEQ ID NO: 357, LC CDR2 of SEQ ID NO: 371 and LC CDR3 of SEQ ID NO: 385 of CLL-1 CAR-2;
(iii) a LC CDRl of SEQ ID NO: 358, LC CDR2 of SEQ ID NO: 372 and LC CDR3 of
SEQ ID NO: 386 of CLL-1 CAR-3;
(iv) a LC CDRl of SEQ ID NO: 359, LC CDR2 of SEQ ID NO: 373 and LC CDR3 of SEQ ID NO: 387 of CLL-1 CAR-4;
(v) a LC CDRl of SEQ ID NO: 360, LC CDR2 of SEQ ID NO: 374 and LC CDR3 of SEQ ID NO: 388 of CLL-1 CAR-5;
(vi) a LC CDRl of SEQ ID NO: 361, LC CDR2 of SEQ ID NO: 375 and LC CDR3 of SEQ ID NO: 389 of CLL-1 CAR-6;
(vii) a LC CDRl of SEQ ID NO: 362, LC CDR2 of SEQ ID NO: 376 and LC CDR3 of SEQ ID NO: 390 of CLL-1 CAR-7;
(viii) a LC CDRl of SEQ ID NO: 363, LC CDR2 of SEQ ID NO: 377 and LC CDR3 of
SEQ ID NO: 391 of CLL-1 CAR-8; or (ix) a LC CDRl of SEQ ID NO: 364, LC CDR2 of SEQ ID NO: 378 and LC CDR3 of SEQ ID NO: 392 of CLL-1 CAR-9;
(x) a LC CDRl of SEQ ID NO: 365, LC CDR2 of SEQ ID NO: 379 and LC CDR3 of SEQ ID NO: 393 of CLL-1 CAR-10;
(xi) a LC CDRl of SEQ ID NO: 366, LC CDR2 of SEQ ID NO: 380 and LC CDR3 of
SEQ ID NO: 394 of CLL-1 CAR-11;
(xii) a LC CDRl of SEQ ID NO: 367, LC CDR2 of SEQ ID NO: 381 and LC CDR3 of SEQ ID NO: 395 of CLL-1 CAR-12;
(xiii) a LC CDRl of SEQ ID NO: 368, LC CDR2 of SEQ ID NO: 382 and LC CDR3 of SEQ ID NO: 396 of CLL-1 CAR-13;
(xiv) a LC CDRl of SEQ ID NO: 369, LC CDR2 of SEQ ID NO: 383 and LC CDR3 of SEQ ID NO: 397 of 181286; and/or
(2) one, two, or three heavy chain (HC) CDRs from one of the following:
(i) a HC CDRl of SEQ ID NO: 314, HC CDR2 of SEQ ID NO: 328 and HC CDR3 of SEQ ID NO: 342 of CLL-1 CAR-1;
(ii) a HC CDRl of SEQ ID NO: 315, HC CDR2 of SEQ ID NO: 329 and HC CDR3 of SEQ ID NO: 343 of CLL-1 CAR-2;
(iii) a HC CDRl of SEQ ID NO: 316, HC CDR2 of SEQ ID NO: 330 and HC CDR3 of SEQ ID NO: 344 of CLL-1 CAR-3;
(iv) a HC CDRl of SEQ ID NO: 317, HC CDR2 of SEQ ID NO: 331 and HC CDR3 of
SEQ ID NO: 345 of CLL-1 CAR-4;
(v) a HC CDRl of SEQ ID NO: 318, HC CDR2 of SEQ ID NO: 332 and HC CDR3 of SEQ ID NO: 346 of CLL-1 CAR-5;
(vi) a HC CDRl of SEQ ID NO: 319, HC CDR2 of SEQ ID NO: 333 and HC CDR3 of SEQ ID NO: 347 of CLL-1 CAR-6;
(vii) a HC CDRl of SEQ ID NO: 320, HC CDR2 of SEQ ID NO: 334 and HC CDR3 of SEQ ID NO: 348 of CLL-1 CAR-7;
(viii) a HC CDRl of SEQ ID NO: 321, HC CDR2 of SEQ ID NO: 335 and HC CDR3 of SEQ ID NO: 349 of CLL-1 CAR-8; or
(ix) a HC CDRl of SEQ ID NO: 322, HC CDR2 of SEQ ID NO: 336 and HC CDR3 of
SEQ ID NO: 350 of CLL-1 CAR-9; (x) a HC CDRl of SEQ ID NO: 323, HC CDR2 of SEQ ID NO: 337 and HC CDR3 of SEQ ID NO: 351 of CLL-1 CAR-10;
(xi) a HC CDRl of SEQ ID NO: 324, HC CDR2 of SEQ ID NO: 338 and HC CDR3 of SEQ ID NO: 352 of CLL-1 CAR-11 ;
(xii) a HC CDRl of SEQ ID NO: 325, HC CDR2 of SEQ ID NO: 339 and HC CDR3 of
SEQ ID NO: 353 of CLL-1 CAR-12;
(xiii) a HC CDRl of SEQ ID NO: 326, HC CDR2 of SEQ ID NO: 340 and HC CDR3 of SEQ ID NO: 354 of CLL-1 CAR- 13;
(xiv) a HC CDRl of SEQ ID NO: 327, HC CDR2 of SEQ ID NO: 341 and HC CDR3 of SEQ ID NO: 355 of 181286.
In certain embodiments, the CAR molecule described herein (e.g., the CAR nucleic acid or the CAR polypeptide) includes:
(1) one, two, or three light chain (LC) CDRs chosen from one of the following:
(i) a LC CDRl of SEQ ID NO: 440, LC CDR2 of SEQ ID NO: 454 and LC CDR3 of SEQ ID NO: 468 of CLL-1 CAR- 1 ;
(ii) a LC CDRl of SEQ ID NO: 441, LC CDR2 of SEQ ID NO: 455 and LC CDR3 of SEQ ID NO: 469 of CLL-1 CAR-2;
(iii) a LC CDRl of SEQ ID NO: 442, LC CDR2 of SEQ ID NO: 456 and LC CDR3 of SEQ ID NO: 470 of CLL-1 CAR-3;
(iv) a LC CDRl of SEQ ID NO: 443, LC CDR2 of SEQ ID NO: 457 and LC CDR3 of
SEQ ID NO: 471 of CLL-1 CAR-4;
(v) a LC CDRl of SEQ ID NO: 444, LC CDR2 of SEQ ID NO: 458 and LC CDR3 of SEQ ID NO: 472 of CLL-1 CAR-5;
(vi) a LC CDRl of SEQ ID NO: 445, LC CDR2 of SEQ ID NO: 459 and LC CDR3 of SEQ ID NO: 473 of CLL-1 CAR-6;
(vii) a LC CDRl of SEQ ID NO: 446, LC CDR2 of SEQ ID NO: 460 and LC CDR3 of SEQ ID NO: 474 of CLL-1 CAR-7;
(viii) a LC CDRl of SEQ ID NO: 447, LC CDR2 of SEQ ID NO: 461 and LC CDR3 of SEQ ID NO: 475 of CLL-1 CAR-8; or
(ix) a LC CDRl of SEQ ID NO: 448, LC CDR2 of SEQ ID NO: 462 and LC CDR3 of
SEQ ID NO: 476 of CLL-1 CAR-9; (x) a LC CDRl of SEQ ID NO: 449, LC CDR2 of SEQ ID NO: 463 and LC CDR3 of SEQ ID NO: 477 of CLL-1 CAR-10;
(xi) a LC CDRl of SEQ ID NO: 450, LC CDR2 of SEQ ID NO: 464 and LC CDR3 of SEQ ID NO: 478 of CLL-1 CAR-11;
(xii) a LC CDRl of SEQ ID NO: 451, LC CDR2 of SEQ ID NO: 465 and LC CDR3 of
SEQ ID NO: 479 of CLL-1 CAR-12;
(xiii) a LC CDRl of SEQ ID NO: 452, LC CDR2 of SEQ ID NO: 466 and LC CDR3 of SEQ ID NO: 480 of CLL-1 CAR-13;
(xiv) a LC CDRl of SEQ ID NO: 453, LC CDR2 of SEQ ID NO: 467 and LC CDR3 of SEQ ID NO: 481 of 181286; and/or
(2) one, two, or three heavy chain (HC) CDRs from one of the following:
(i) a HC CDRl of SEQ ID NO: 398, HC CDR2 of SEQ ID NO: 412 and HC CDR3 of SEQ ID NO: 426 of CLL-1 CAR-1;
(ii) a HC CDRl of SEQ ID NO: 399, HC CDR2 of SEQ ID NO: 413 and HC CDR3 of SEQ ID NO: 427 of CLL-1 CAR-2;
(iii) a HC CDRl of SEQ ID NO: 400, HC CDR2 of SEQ ID NO: 414 and HC CDR3 of SEQ ID NO: 428 of CLL-1 CAR-3;
(iv) a HC CDRl of SEQ ID NO: 401, HC CDR2 of SEQ ID NO: 415 and HC CDR3 of SEQ ID NO: 429 of CLL-1 CAR-4;
(v) a HC CDRl of SEQ ID NO: 402, HC CDR2 of SEQ ID NO: 416 and HC CDR3 of
SEQ ID NO: 430 of CLL-1 CAR-5;
(vi) a HC CDRl of SEQ ID NO: 403, HC CDR2 of SEQ ID NO: 417 and HC CDR3 of SEQ ID NO: 431 of CLL-1 CAR-6;
(vii) a HC CDRl of SEQ ID NO: 404, HC CDR2 of SEQ ID NO: 418 and HC CDR3 of SEQ ID NO: 432 of CLL-1 CAR-7;
(viii) a HC CDRl of SEQ ID NO: 405, HC CDR2 of SEQ ID NO: 419 and HC CDR3 of SEQ ID NO: 433 of CLL-1 CAR-8; or
(ix) a HC CDRl of SEQ ID NO: 406, HC CDR2 of SEQ ID NO: 420 and HC CDR3 of SEQ ID NO: 434 of CLL-1 CAR-9;
(x) a HC CDRl of SEQ ID NO: 407, HC CDR2 of SEQ ID NO: 421 and HC CDR3 of
SEQ ID NO: 435 of CLL-1 CAR-10; (xi) a HC CDR1 of SEQ ID NO: 408, HC CDR2 of SEQ ID NO: 422 and HC CDR3 of SEQ ID NO: 436 of CLL-1 CAR-11;
(xii) a HC CDR1 of SEQ ID NO: 409, HC CDR2 of SEQ ID NO: 423 and HC CDR3 of SEQ ID NO: 437 of CLL-1 CAR-12;
(xiii) a HC CDR1 of SEQ ID NO: 410, HC CDR2 of SEQ ID NO: 424 and HC CDR3 of SEQ ID NO: 438 of CLL-1 CAR-13;
(xiv) a HC CDR1 of SEQ ID NO: 411, HC CDR2 of SEQ ID NO: 425 and HC CDR3 of SEQ ID NO: 439 of 181286.
Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, suitable methods and materials are described below. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting. Headings, sub-headings or numbered or lettered elements, e.g., (a), (b), (i) etc, are presented merely for ease of reading. The use of headings or numbered or lettered elements in this document does not require the steps or elements be performed in alphabetical order or that the steps or elements are necessarily discrete from one another. Other features, objects, and advantages of the invention will be apparent from the description and drawings, and from the claims.
BRIEF DESCRIPTION OF THE DRAWINGS
The following detailed description of preferred embodiments of the invention will be better understood when read in conjunction with the appended drawings. For the purpose of illustrating the invention, there are shown in the drawings embodiments which are presently preferred. It should be understood, however, that the invention is not limited to the precise arrangements and instrumentalities of the embodiments shown in the drawings.
Figure 1, comprising Figures 1A IB, and 1C, is a series of images demonstrating luciferase levels in target-positive (PL21, THP1, HL60, U937) or target-negative (K562) cell lines mixed with a JNL cell line transduced with anti-CLL-1 CAR. Figure 2, comprising Figures 2A, 2B, and 2C, is a series of images demonstrating CAR expression as evaluated by FACS in a JNL cell line transduced with anti-CLL-1 CAR.
Figure 3, comprising Figures 3 A and 3B, is a series of images demonstrating histogram plots of relative fluorescent intensity from that FACS showed the percentage of transduced T cells. Figure 3A shows detection of CART expression in primary T cells using Protein L. Figure 3B shows detection of CART expression in primary T cells using recombinant CLL-1 protein.
Figure 4, comprising Figures 4A, 4B, and 4C, is a series of images demonstrating anti- CLL-1 CART cell killing of luciferized PL21 (Fig. 4A), HL60 (Fig. 4B) and U87 cells (Fig. 4C).
Figure 5, comprising Figures 5 A, 5B, and 5C, is a series of images demonstrating cytokine production in CART-CLL-1 cells. Untransduced T cells (UTD) were used as a nonspecific control for background T cell effects. TNF-alpha (Fig. 5A), IL-2 (Fig. 5B), and interferon (IFN)-gamma (Fig. 5C) were measured. Figure 6 is an image demonstrating that CLL-1 is expressed in most primary patient samples with AML (AML blasts were gated using standard side scatter
low CD45dim characteristics). CLL-1 was measured by flow cytometry using a commercially available antibody (clone HIM3-4, eBioscience)
Figure 7, comprising Figures 7A and 7B, is a series of images demonstrating the transduction efficiency of T cells transduced with CAR.
Figure 8, comprising Figures 8 A and 8B, is a series of images demonstrating that CLL1-CART cells undergo specific degranulation to CLL1+ cell lines and primary AML samples. CD107a degranulation was measured by flow cytometry (Fig. 8A). CLL-1 CART cells underwent specific degranulation to THP1 and primary AML samples and not to the control cell line (Fig. 8B).
Figure 9, comprising Figures 9A and 9B, is a series of images demonstrating CLL1- CART cells produce TNF-a after incubation with CLL1+ cell line and primary AML samples. Figure 10, comprising Figures 10A and 10B, is a series of images demonstrating CLLl-CART cells produce IL-2 after incubation with CLL1+ cell line and primary AML samples..
Figure 11, comprising Figures 11A-11D, is a series of images demonstrating CLL1- CART cells specifically kill the CLL-1 + cell lines MOLM14 and THP-1 and primary AML samples. CLLl-CART cells results in specific lysis of MOLM14 (Fig. 11D), THP-1 (Fig. 11 A) and the primary AML sample (Fig. 11B) and not to the control cell line JEKO (Fig. 11C), at the indicated E:T ratios.
Figure 12, comprising Figures 12A and 12B, is a series of images demonstrating CLL1- CART cells proliferate in response to MOLM14, THP-1 and primary AML samples.
Figure 13 is an image illustrating a schematic diagram for assaying hematopoietic stem cell yoxicity of CLL-1 CART cells using autologous xenografts.
Figure 14, comprising Figures 14A, 14B, and 14C, is a series of images demonstrating that CLL-1 is expressed on different myeloid lineage cells and B cells in humanized mice. A representative FACS plots of the peripheral blood analysis of one mouse is shown (Fig. 14A). CLL-1 is expressed on monocytes (CD14+ cells), myeloid cells (CD33+ and CD123+ cells), B cells (CD19+ cells), but not on platelets (CD41+ cells) or T cells (CD3+ cells). A
representative histogram presentation is shown (Fig. 14B). A schematic plot representation of peripheral blood analysis from 24 mice is shown (Fig. 14C). Figure 15, comprising Figures 15A, 15B, 15C, and 15D, is a series of images demonstrating CLL-1 is expressed on different myeloid lineage cells and B cells in humanized mice.
Figure 16, comprising Figures 16A, 16B, 16C, and 16D, is a series of images demonstrating that CLL-1 is expressed on different myeloid progenitors and on hematopoietic stem cells in humanized mice.
Figure 17 is an image illustrating a schematic diagram for assaying hematopoietic stem cell toxicity of CLL-1 CART cells using a Humanized Immune System (HIS) xenografts.
Figure 18, comprising Figures 18A and 18B, is a series of images demonstrating bone marrow analysis 4 weeks post CLL-1 CAR T cell infusions. Flow cytometry analysis was performed in the CD34+CD38- component (hematopoietic stem cells) (Fig. 18A) and
CD34+CD38+ component (Progenitor cells) (Fig. 18B).
Figure 19, comprising Figures 19A, 19B, 19C, 19D, and 19E, is a series of images demonstrating bone marrow analysis 4 weeks post T cells. Figure 20 is an image demonstrating bone marrow analysis in HIS mice 4 weeks post T cells. Hematopoietic stem cell toxicity of CLL1-CART cells using HIS xenografts.
Figure 21, comprising Figures 21 A, 21B, 21C, 21D, and 21E, is a series of images demonstrating borne marrow analysis in HIS mice 4 weeks post T cells. Representative plots of bone marrows from mice treated with different CART cells are shown. Figure 22, comprising Figures 22A and 22B, is a series of histogram plots showing the relative fluorescent intensity from FACS analysis showing the percentage of transduced T cells. Figure 22A shows detection of CART expression in primary T cells using Protein L. Figure 22B shows detection of CART expression in primary T cells using recombinant CLL-1 protein.
Figure 23, comprising Figures 23 A and 23B, are two graphs showing the proliferation capacity of the CLL-1 CART cells when cultured with target cells.
Figure 24 is a graphic representation demonstrating AML disease progression in the PL- 21-luc xenograft model after treatment with CLL-1 CAR T cells. Mean bioluminescence (+/- SEM) of the tumor cells show disease burden in the whole animal is shown as photons/second (p/s) of the ROI (region of interest), which is the whole mouse. Figure 25, comprising Figures 25 A and 25B, are two graphs showing the quantification of CD4+ (Fig. 25A) and CD8+ (Fig. 25B) CAR+ T cells in the peripheral blood of PL-21-luc tumor-bearing mice.
Figure 26, comprising Figures 26A, 26B, 26C, and 26D, are bar graphs quantifying the CD4+ T cells (Fig. 26A), CD4+ CLL-1 CAR-expressing T cells (Fig. 26B), CD8+ T cells (Fig. 26C), and the CD8+ CLL-1 CAR-expressing T cells (Fig. 26D) in the bone marrow of the PL- 21-luc tumor-bearing mice. Mean T cell number (+/- SEM) per million bone marrow cells is shown. Significance is calculated by one way ANOVA and is denoted as * P<0.05 and
**P<0.01. Figure 27, comprising Figures 27A, 27B, 27C, and 27D, are bar graphs quantifying the CD4+ T cells (Fig. 27 A), CD4+ CLL-1 CAR-expressing T cells (Fig. 27B), CD8+ T cells (Fig. 27C), and the CD8+ CLL-1 CAR-expressing T cells (Fig. 27D) in the spleen of the PL-21-luc tumor-bearing mice. Mean T cell number (+/- SEM) per million splenocytes is shown.
Significance is calculated by one way ANOVA and is denoted as * P<0.05 and **P<0.01.
Figure 28, comprising Figures 28A, 28B, 28C, and 28D, shows treatment with induction chemotherapy followed by CLL1-CART cells results in leukemic eradication in primary AML xenografts. Figure 28 A is a schematic illustrating the experimental schema for the combined therapy of chemotherapy and CLL-1 -CART cells in primary AML xenografts. Figure 28B is a bar graph showing the the mean fluorescence intensity (MFI) of CLL1 in leukemic cells (live huCD45dim compartment). Figure 28C is a graph showing the
quantification of peripheral blood leukemic blast count per 1 ul of peripheral blood (mean +/- SD) at different time points post AML injection as indicated. The arrows denote administration Ara-C (grey arrows) and administration of T cells (untransduced or CLL-1 CAR-expressing T cells, black arrows). Figure 28D is a graph showing the survival of the AML xenografts.
Figure 29, comprising Figures 29A, 29B, 29C, 29D, and 29E, shows the various configurations on a single vector, e.g., where the U6 regulated shRNA is upstream or downstream of the EFl alpha regulated CAR encoding elements. In the exemplary constructs depicted in Fig. 29A and 29B, the transcription occurs through the U6 and EFl alpha promoters in the same direction. In the exemplary constructs depicted in Fig. 29C and 29D, the transcription occurs through the U6 and EFl alpha promoters in different directions. In Figure 29E, the shRNA (and corresponding U6 promoter) is on a first vector, and the CAR (and corresponding EFl alpha promoter) is on a second vector.
Figure 30 depicts the structures of two exemplary RCAR configurations. The antigen binding members comprise an antigen binding domain, a transmembrane domain, and a switch domain. The intracellular binding members comprise a switch domain, a co- stimulatory signaling domain and a primary signaling domain. The two configurations demonstrate that the first and second switch domains described herein can be in different orientations with respect to the antigen binding member and the intracellular binding member. Other RCAR configurations are further described herein. Figure 31 shows that the proliferation of CAR-expressing, transduced T cells is enhanced by low doses of RADOOl in a cell culture system. CARTs were co-cultured with Nalm-6 cells in the presence of different concentrations of RADOOl. The number of CAR- positive CD3-positive T cells (black) and total T cells (gray) was assessed after 4 days of co- culture.
Figure 32 depicts tumor growth measurements of NALM6-luc cells with daily RADOOl dosing at 0.3, 1, 3, and 10 mg/kg (mpk) or vehicle dosing. Circles denote the vehicle; squares denote the 10 mg/kg dose of RADOOl; triangles denote the 3 mg/kg dose of RADOOl, inverted triangles denote the 1 mg/kg dose of RADOOl; and diamonds denote the 0.3 mg/kg dose of RADOOl.
Figure 33, comprising Figures 33A and 33B, shows pharmacokinetic curves showing the amount of RADOOl in the blood of NSG mice with NALM6 tumors. FIG. 33A shows day 0 PK following the first dose of RADOOl. FIG. 33B shows Day 14 PK following the final RADOOl dose. Diamonds denote the 10 mg/kg dose of RADOOl; squares denote the 1 mg/kg dose of RADOOl; triangles denote the 3 mg/kg dose of RADOOl; and x's denote the 10 mg/kg dose of RADOOl.
Figure 34, comprising Figures 34A and 34B, shows in vivo proliferation of humanized CD19 CART cells with and without RADOOl dosing. Low doses of RADOOl (0.003 mg/kg) daily lead to an enhancement in CAR T cell proliferation, above the normal level of huCAR19 proliferation. Figures 34A shows CD4+ CAR T cells; FIG. 34B shows CD8+ CAR T cells. Circles denote PBS; squares denote huCTL019; triangles denote huCTL019 with 3 mg/kg RADOOl; inverted triangles denote huCTL019 with 0.3 mg/kg RADOOl; diamonds denote huCTL019 with 0.03 mg/kg RADOOl; and circles denote huCTL019 with 0.003 mg/kg RADOOl.
DETAILED DESCRIPTION
Definitions
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the invention pertains. The term "a" and "an" refers to one or to more than one (i.e., to at least one) of the grammatical object of the article. By way of example, "an element" means one element or more than one element.
The term "about" when referring to a measurable value such as an amount, a temporal duration, and the like, is meant to encompass variations of +20% or in some instances +10%, or in some instances +5%, or in some instances +1%, or in some instances +0.1% from the specified value, as such variations are appropriate to perform the disclosed methods.
The term "Chimeric Antigen Receptor" or alternatively a "CAR" refers to a
recombinant polypeptide construct comprising at least an extracellular antigen binding domain, a transmembrane domain and a cytoplasmic signaling domain (also referred to herein as "an intracellular signaling domain") comprising a functional signaling domain derived from a stimulatory molecule as defined below. In some embodiments, the
domains in the CAR polypeptide construct are in the same polypeptide chain, e.g.,
comprise a chimeric fusion protein. In some embodiments, the domains in the CAR
polypeptide construct are not contiguous with each other, e.g., are in different
polypeptide chains, e.g., as provided in an RCAR as described herein
In one aspect, the stimulatory molecule of the CAR is the zeta chain associated with the T cell receptor complex. In one aspect, the cytoplasmic signaling domain comprises a primary signaling domain (e.g., a primary signaling domain of CD3-zeta). In one aspect, the cytoplasmic signaling domain further comprises one or more functional signaling domains derived from at least one costimulatory molecule as defined below. In one aspect, the costimulatory molecule is chosen from 4-1BB (i.e., CD137), CD27, ICOS, and/or CD28. In one aspect, the CAR comprises a chimeric fusion protein comprising an extracellular antigen recognition domain, a transmembrane domain and an intracellular signaling domain comprising a functional signaling domain derived from a stimulatory molecule. In one aspect, the CAR comprises a chimeric fusion protein comprising an extracellular antigen recognition domain, a transmembrane domain and an intracellular signaling domain comprising a functional signaling domain derived from a co- stimulatory molecule and a functional signaling domain derived from a stimulatory molecule. In one aspect, the CAR comprises a chimeric fusion protein comprising an extracellular antigen recognition domain, a transmembrane domain and an intracellular signaling domain comprising two functional signaling domains derived from one or more co-stimulatory molecule(s) and a functional signaling domain derived from a stimulatory molecule. In one aspect, the CAR comprises a chimeric fusion protein comprising an extracellular antigen recognition domain, a transmembrane domain and an intracellular signaling domain comprising at least two functional signaling domains derived from one or more co-stimulatory molecule(s) and a functional signaling domain derived from a stimulatory molecule. In one aspect the CAR comprises an optional leader sequence at the amino-terminus (N-ter) of the CAR fusion protein. In one aspect, the CAR further comprises a leader sequence at the N-terminus of the extracellular antigen recognition domain, wherein the leader sequence is optionally cleaved from the antigen recognition domain (e.g., aa scFv) during cellular processing and localization of the CAR to the cellular membrane.
A CAR that comprises an antigen binding domain (e.g., a scFv, a single domain antibody, or TCR (e.g., a TCR alpha binding domain or TCR beta binding domain)) that specifically binds a specific tumor marker X, wherein X can be a tumor marker as described herein, is also referred to as XCAR. For example, a CAR that comprises an antigen binding domain that specifically binds CLL-1 is referred to as CLL-1 CAR. The CAR can be expressed in any cell, e.g., an immune effector cell as described herein (e.g., a T cell or an NK cell).
The term "signaling domain" refers to the functional portion of a protein which acts by transmitting information within the cell to regulate cellular activity via defined signaling pathways by generating second messengers or functioning as effectors by responding to such messengers.
As used herein, the term "CLL-1" refers to C-type lectin-like molecule- 1, which is an antigenic determinant detectable on leukemia precursor cells and on normal immune cells. C- type lectin-like- 1 (CLL-1) is also known as MICL, CLEC12A, CLEC-1, Dendritic Cell- Associated Lectin 1, and DCAL-2. The human and murine amino acid and nucleic acid sequences can be found in a public database, such as GenBank, UniProt and Swiss-Prot. For example, the amino acid sequence of human CLL-1 can be found as UniProt/Swiss-Prot Accession No. Q5QGZ9 and the nucleotide sequence encoding of the human CLL-1 can be found at Accession Nos. NM 001207010.1, NM 138337.5, NM 201623.3, and NM 201625.1. In one embodiment, the antigen-binding portion of the CAR recognizes and binds an epitope within the extracellular domain of the CLL-1 protein or a fragment thereof. In one embodiment, the CLL-1 protein is expressed on a cancer cell. The term "antibody," as used herein, refers to a protein, or polypeptide sequence derived from an immunoglobulin molecule which specifically binds with an antigen.
Antibodies can be polyclonal or monoclonal, multiple or single chain, or intact
immunoglobulins, and may be derived from natural sources or from recombinant sources. Antibodies can be tetramers of immunoglobulin molecules.
The term "antibody fragment" refers to at least one portion of an intact antibody, or recombinant variants thereof, and refers to the antigen binding domain, e.g., an antigenic determining variable region of an intact antibody, that is sufficient to confer recognition and specific binding of the antibody fragment to a target, such as an antigen. Examples of antibody fragments include, but are not limited to, Fab, Fab', F(ab')2, and Fv fragments, scFv antibody fragments, linear antibodies, single domain antibodies such as sdAb (either VL or VH), camelid VHH domains, and multi- specific molecules formed from antibody fragments such as a bivalent fragment comprising two or more, e.g., two, Fab fragments linked by a disulfide bridge at the hinge region, or two or more, e.g., two, isolated CDR or other epitope binding fragments of an antibody linked. An antibody fragment can also be incorporated into single domain antibodies, maxibodies, minibodies, nanobodies, intrabodies, diabodies, triabodies, tetrabodies, v-NAR and bis-scFv (see, e.g., Hollinger and Hudson, Nature Biotechnology 23:1126-1136, 2005). Antibody fragments can also be grafted into scaffolds based on polypeptides such as a fibronectin type III (Fn3) (see U.S. Patent No.: 6,703,199, which describes fibronectin polypeptide minibodies).
The term "scFv" refers to a fusion protein comprising at least one antibody fragment comprising a variable region of a light chain and at least one antibody fragment comprising a variable region of a heavy chain, wherein the light and heavy chain variable regions are contiguously linked via a short flexible polypeptide linker, and capable of being expressed as a single chain polypeptide, and wherein the scFv retains the specificity of the intact antibody from which it is derived. Unless specified, as used herein an scFv may have the VL and VH variable regions in either order, e.g., with respect to the N-terminal and C-terminal ends of the polypeptide, the scFv may comprise VL-linker-VH or may comprise VH-linker-VL.
The term "complementarity determining region" or "CDR," as used herein, refers to the sequences of amino acids within antibody variable regions which confer antigen specificity and binding affinity. For example, in general, there are three CDRs in each heavy chain variable region (e.g., HCDR1, HCDR2, and HCDR3) and three CDRs in each light chain variable region (LCDR1, LCDR2, and LCDR3). The precise amino acid sequence boundaries of a given CDR can be determined using any of a number of well-known schemes, including those described by Kabat et al. (1991), "Sequences of Proteins of Immunological Interest," 5th Ed. Public Health Service, National Institutes of Health, Bethesda, MD ("Kabat" numbering scheme), Al-Lazikani et al., (1997) JMB 273,927-948 ("Chothia" numbering scheme), or a combination thereof. Under the Kabat numbering scheme, in some embodiments, the CDR amino acid residues in the heavy chain variable domain (VH) are numbered 31-35 (HCDR1), 50-65 (HCDR2), and 95-102 (HCDR3); and the CDR amino acid residues in the light chain variable domain (VL) are numbered 24-34 (LCDR1), 50-56 (LCDR2), and 89-97 (LCDR3). Under the Chothia numbering scheme, in some embodiments, the CDR amino acids in the VH are numbered 26-32 (HCDR1), 52-56 (HCDR2), and 95-102 (HCDR3); and the CDR amino acid residues in the VL are numbered 26-32 (LCDR1), 50-52 (LCDR2), and 91-96 (LCDR3). In a combined Kabat and Chothia numbering scheme, in some embodiments, the CDRs correspond to the amino acid residues that are part of a Kabat CDR, a Chothia CDR, or both. For instance, in some embodiments, the CDRs correspond to amino acid residues 26-35 (HCDR1), 50-65 (HCDR2), and 95-102 (HCDR3) in a VH, e.g., a mammalian VH, e.g., a human VH; and amino acid residues 24-34 (LCDR1), 50-56 (LCDR2), and 89-97 (LCDR3) in a VL, e.g., a mammalian VL, e.g., a human VL. The portion of the CAR composition of the invention comprising an antibody or antibody fragment thereof may exist in a variety of forms, for example, where the antigen binding domain is expressed as part of a polypeptide chain including, for example, a single domain antibody fragment (sdAb), a single chain antibody (scFv), e.g., a human antibody (Harlow et al., 1999, In: Using Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory Press, NY; Harlow et al., 1989, In: Antibodies: A Laboratory Manual, Cold Spring Harbor, New York; Houston et al., 1988, Proc. Natl. Acad. Sci. USA 85:5879-5883; Bird et al., 1988, Science 242:423-426). In one aspect, the antigen binding domain of a CAR composition of the invention comprises an antibody fragment. In a further aspect, the CAR comprises an antibody fragment that comprises a scFv. As used herein, the term "binding domain" or "antibody molecule" (also referred to herein as "anti-target (e.g., CLL-1) binding domain") refers to a protein, e.g., an immunoglobulin chain or fragment thereof, comprising at least one immunoglobulin variable domain sequence. The term "binding domain" or "antibody molecule" encompasses antibodies and antibody fragments. In an embodiment, an antibody molecule is a multispecific antibody molecule, e.g., it comprises a plurality of immunoglobulin variable domain sequences, wherein a first immunoglobulin variable domain sequence of the plurality has binding specificity for a first epitope and a second immunoglobulin variable domain sequence of the plurality has binding specificity for a second epitope. In an embodiment, a multispecific antibody molecule is a bispecific antibody molecule. A bispecific antibody has specificity for no more than two antigens. A bispecific antibody molecule is characterized by a first immunoglobulin variable domain sequence which has binding specificity for a first epitope and a second
immunoglobulin variable domain sequence that has binding specificity for a second epitope.
The term "antibody heavy chain," refers to the larger of the two types of polypeptide chains present in antibody molecules in their naturally occurring conformations, and which normally determines the class to which the antibody belongs. The term "antibody light chain," refers to the smaller of the two types of polypeptide chains present in antibody molecules in their naturally occurring conformations. Kappa (κ) and lambda (λ) light chains refer to the two major antibody light chain isotypes.
The term "recombinant antibody" refers to an antibody which is generated using recombinant DNA technology, such as, for example, an antibody expressed by a bacteriophage or yeast expression system. The term should also be construed to mean an antibody which has been generated by the synthesis of a DNA molecule encoding the antibody and which DNA molecule expresses an antibody protein, or an amino acid sequence specifying the antibody, wherein the DNA or amino acid sequence has been obtained using recombinant DNA or amino acid sequence technology which is available and well known in the art. The term "antigen" or "Ag" refers to a molecule that provokes an immune response.
This immune response may involve either antibody production, or the activation of specific immunologically-competent cells, or both. The skilled artisan will understand that any macromolecule, including virtually all proteins or peptides, can serve as an antigen.
Furthermore, antigens can be derived from recombinant or genomic DNA. A skilled artisan will understand that any DNA, which comprises a nucleotide sequences or a partial nucleotide sequence encoding a protein that elicits an immune response therefore encodes an "antigen" as that term is used herein. Furthermore, one skilled in the art will understand that an antigen need not be encoded solely by a full length nucleotide sequence of a gene. It is readily apparent that the present invention includes, but is not limited to, the use of partial nucleotide sequences of more than one gene and that these nucleotide sequences are arranged in various combinations to encode polypeptides that elicit the desired immune response. Moreover, a skilled artisan will understand that an antigen need not be encoded by a "gene" at all. It is readily apparent that an antigen can be generated synthesized or can be derived from a biological sample, or might be macromolecule besides a polypeptide. Such a biological sample can include, but is not limited to a tissue sample, a tumor sample, a cell or a fluid with other biological components.
The term "anti-tumor effect" refers to a biological effect which can be manifested by various means, including but not limited to, e.g., a decrease in tumor volume, a decrease in the number of tumor cells, a decrease in the number of metastases, an increase in life expectancy, decrease in tumor cell proliferation, decrease in tumor cell survival, or amelioration of various physiological symptoms associated with the cancerous condition. An "anti-tumor effect" can also be manifested by the ability of the peptides, polynucleotides, cells and antibodies of the invention in prevention of the occurrence of tumor in the first place.
The term "autologous" refers to any material derived from the same individual to whom it is later to be re-introduced into the individual.
The term "allogeneic" refers to any material derived from a different animal of the same species as the individual to whom the material is introduced. Two or more individuals are said to be allogeneic to one another when the genes at one or more loci are not identical. In some aspects, allogeneic material from individuals of the same species may be sufficiently unlike genetically to interact antigenically
The term "xenogeneic" refers to a graft derived from an animal of a different species.
The term "apheresis" as used herein refers to the art-recognized extracorporeal process by which the blood of a donor or patient is removed from the donor or patient and passed through an apparatus that separates out selected particular constituent s) and returns the remainder to the circulation of the donor or patient, e.g., by retransfusion. Thus, in the context of "an apheresis sample" refers to a sample obtained using apheresis. The term "combination" refers to either a fixed combination in one dosage unit form, or a combined administration where a compound of the present invention and a combination partner (e.g. another drug as explained below, also referred to as "therapeutic agent" or "co- agent") may be administered independently at the same time or separately within time intervals, especially where these time intervals allow that the combination partners show a cooperative, e.g. synergistic effect. The single components may be packaged in a kit or separately. One or both of the components (e.g., powders or liquids) may be reconstituted or diluted to a desired dose prior to administration. The terms "co-administration" or "combined administration" or the like as utilized herein are meant to encompass administration of the selected combination partner to a single subject in need thereof (e.g. a patient), and are intended to include treatment regimens in which the agents are not necessarily administered by the same route of
administration or at the same time. The term "pharmaceutical combination" as used herein means a product that results from the mixing or combining of more than one active ingredient and includes both fixed and non-fixed combinations of the active ingredients. The term "fixed combination" means that the active ingredients, e.g. a compound of the present invention and a combination partner, are both administered to a patient simultaneously in the form of a single entity or dosage. The term "non-fixed combination" means that the active ingredients, e.g. a compound of the present invention and a combination partner, are both administered to a patient as separate entities either simultaneously, concurrently or sequentially with no specific time limits, wherein such administration provides therapeutically effective levels of the two compounds in the body of the patient. The latter also applies to cocktail therapy, e.g. the administration of three or more active ingredients
The term "cancer" refers to a disease characterized by the rapid and uncontrolled growth of aberrant cells. Cancer cells can spread locally or through the bloodstream and lymphatic system to other parts of the body. Examples of various cancers are described herein and include but are not limited to, breast cancer, prostate cancer, ovarian cancer, cervical cancer, skin cancer, pancreatic cancer, colorectal cancer, renal cancer, liver cancer, brain cancer, lymphoma, leukemia, lung cancer and the like. The terms "tumor" and "cancer" are used interchangeably herein, e.g., both terms encompass solid and liquid, e.g., diffuse or circulating, tumors. As used herein, the term "cancer" or "tumor" includes premalignant, as well as malignant cancers and tumors. "Derived from" as that term is used herein, indicates a relationship between a first and a second molecule. It generally refers to structural similarity between the first molecule and a second molecule and does not connotate or include a process or source limitation on a first molecule that is derived from a second molecule. For example, in the case of an intracellular signaling domain that is derived from a CD3zeta molecule, the intracellular signaling domain retains sufficient CD3zeta structure such that is has the required function, namely, the ability to generate a signal under the appropriate conditions. It does not connotate or include a limitation to a particular process of producing the intracellular signaling domain, e.g., it does not mean that, to provide the intracellular signaling domain, one must start with a CD3zeta sequence and delete unwanted sequence, or impose mutations, to arrive at the intracellular signaling domain.
The phrase "disease associated with expression of CLL-1" includes, but is not limited to, a disease associated with a cell which expresses CLL-1 or condition associated with a cell which expresses CLL-1 including, e.g., proliferative diseases such as a cancer or malignancy or a precancerous condition such as a myelodysplasia, a myelodysplastic syndrome or a preleukemia; or a noncancer related indication associated with a cell which expresses CLL-1 (e.g., wild-type or mutant CLL-1). For the avoidance of doubt, a disease associated with expression of CLL-1 may include a condition associated with a cell which do not presently express CLL-1, e.g., because CLL-1 expression has been downregulated, e.g., due to treatment with a molecule targeting CLL-1, e.g., a CLL-1 inhibitor described herein, but which at one time expressed CLL-1. In one aspect, a cancer associated with expression of CLL-1 is a hematological cancer. In one aspect, a hematological cancer includes but is not limited to leukemia (such as acute myelogenous leukemia, chronic myelogenous leukemia, acute lymphoid leukemia, chronic lymphoid leukemia and myelodysplastic syndrome) and malignant lymphoproliferative conditions, including lymphoma (such as multiple myeloma, non- Hodgkin's lymphoma, Burkitt's lymphoma, and small cell- and large cell-follicular lymphoma). Further diseases associated with expression of CLL-1 expression include, but not limited to, e.g., atypical and/or non-classical cancers, malignancies, precancerous conditions or proliferative diseases associated with expression of CLL-1. Non-cancer related indications associated with expression of CLL-1 may also be included. In some embodiments, the tumor antigen-expressing cell expresses, or at any time expressed, mRNA encoding the tumor antigen. In an embodiment, the tumor antigen-expressing cell produces the tumor antigen protein (e.g., wild-type or mutant), and the tumor antigen protein may be present at normal levels or reduced levels. In an embodiment, the tumor antigen-expressing cell produced detectable levels of a tumor antigen protein at one point, and subsequently produced substantially no detectable tumor antigen protein.
The terms "conservative sequence modifications" or "conservative substitutions" refers to amino acid modifications that do not significantly affect or alter the binding characteristics of the antibody or antibody fragment containing the amino acid sequence. Such conservative modifications include amino acid substitutions, additions and deletions. Modifications can be introduced into an antibody or antibody fragment of the invention by standard techniques known in the art, such as site-directed mutagenesis and PCR- mediated mutagenesis.
Conservative substitutions are ones in which the amino acid residue is replaced with an amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been defined in the art. These families include amino acids with basic side chains (e.g., lysine, arginine, histidine), acidic side chains (e.g., aspartic acid, glutamic acid), uncharged polar side chains (e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine, tryptophan), nonpolar side chains (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine), beta-branched side chains (e.g., threonine, valine, isoleucine) and aromatic side chains (e.g., tyrosine, phenylalanine, tryptophan, histidine). Thus, one or more amino acid residues within a CAR of the invention can be replaced with other amino acid residues from the same side chain family and the altered CAR can be tested using the functional assays described herein.
The term "stimulation," refers to a primary response induced by binding of a stimulatory molecule (e.g., a TCR/CD3 complex) with its cognate ligand thereby mediating a signal transduction event, such as, but not limited to, signal transduction via the TCR/CD3 complex. Stimulation can mediate altered expression of certain molecules, such as
downregulation of TGF-β, and/or reorganization of cytoskeletal structures, and the like.
The term "stimulatory molecule," refers to a molecule expressed by a T cell that provides the primary cytoplasmic signaling sequence(s) that regulate primary activation of the TCR complex in a stimulatory way for at least some aspect of the T cell signaling pathway. In one aspect, the primary signal is initiated by, for instance, binding of a TCR/CD3 complex with an MHC molecule loaded with peptide, and which leads to mediation of a T cell response, including, but not limited to, proliferation, activation, differentiation, and the like. A primary cytoplasmic signaling sequence (also referred to as a "primary signaling domain") that acts in a stimulatory manner may contain a signaling motif which is known as immunoreceptor tyrosine- based activation motif or IT AM. Examples of an IT AM containing primary cytoplasmic signaling sequence that is of particular use in the invention includes, but is not limited to, those derived from TCR zeta, FcR gamma, FcR beta, CD3 gamma, CD3 delta , CD3 epsilon, CD5, CD22, CD79a, CD79b, CD278 (also known as "ICOS"), FcsRI, CD66d, DAP10, and DAP12. In a specific CAR of the invention, the intracellular signaling domain in any one or more CARS of the invention comprises an intracellular signaling sequence, e.g., a primary signaling sequence of CD3-zeta. In a specific CAR of the invention, the primary signaling sequence of CD3-zeta is the sequence provided as SEQ ID NO:9, or the equivalent residues from a non- human species, e.g., mouse, rodent, monkey, ape and the like. In a specific CAR of the invention, the primary signaling sequence of CD3-zeta is the sequence as provided in SEQ ID NO: 10, or the equivalent residues from a non-human species, e.g., mouse, rodent, monkey, ape and the like. The term "antigen presenting cell" or "APC" refers to an immune system cell such as an accessory cell (e.g., a B-cell, a dendritic cell, and the like) that displays a foreign antigen complexed with major histocompatibility complexes (MHC's) on its surface. T-cells may recognize these complexes using their T-cell receptors (TCRs). APCs process antigens and present them to T-cells.
An "intracellular signaling domain," as the term is used herein, refers to an intracellular portion of a molecule. The intracellular signaling domain generates a signal that promotes an immune effector function of the CAR containing cell, e.g., a CART cell. Examples of immune effector function, e.g., in a CART cell, include cytolytic activity and helper activity, including the secretion of cytokines. In embodiments, the intracellular signal domain transduces the effector function signal and directs the cell to perform a specialized function. While the entire intracellular signaling domain can be employed, in many cases it is not necessary to use the entire chain. To the extent that a truncated portion of the intracellular signaling domain is used, such truncated portion may be used in place of the intact chain as long as it transduces the effector function signal. The term intracellular signaling domain is thus meant to include any truncated portion of the intracellular signaling domain sufficient to transduce the effector function signal.
In an embodiment, the intracellular signaling domain can comprise a primary intracellular signaling domain. Exemplary primary intracellular signaling domains include those derived from the molecules responsible for primary stimulation, or antigen dependent simulation. In an embodiment, the intracellular signaling domain can comprise a costimulatory intracellular domain. Exemplary costimulatory intracellular signaling domains include those derived from molecules responsible for costimulatory signals, or antigen independent stimulation. For example, in the case of a CART, a primary intracellular signaling domain can comprise a cytoplasmic sequence of a T cell receptor, and a costimulatory intracellular signaling domain can comprise cytoplasmic sequence from co-receptor or costimulatory molecule.
A primary intracellular signaling domain can comprise a signaling motif which is known as an immunoreceptor tyrosine-based activation motif or ITAM. Examples of ΓΓΑΜ containing primary cytoplasmic signaling sequences include, but are not limited to, those derived from CD3 zeta, FcR gamma, FcR beta, CD3 gamma, CD3 delta, CD3 epsilon, CD5, CD22, CD79a, CD79b, CD278 (also known as "ICOS"), FcsRI, CD66d, DAP10, and DAP12.
The term "zeta" or alternatively "zeta chain", "CD3-zeta" or "TCR-zeta" is defined as the protein provided as GenBan Acc. No. BAG36664.1, or the equivalent residues from a non- human species, e.g., mouse, rodent, monkey, ape and the like, and a "zeta stimulatory domain" or alternatively a "CD3-zeta stimulatory domain" or a "TCR-zeta stimulatory domain" is defined as the amino acid residues from the cytoplasmic domain of the zeta chain that are sufficient to functionally transmit an initial signal necessary for T cell activation. In one aspect the cytoplasmic domain of zeta comprises residues 52 through 164 of GenBank Acc. No.
BAG36664.1 or the equivalent residues from a non-human species, e.g., mouse, rodent, monkey, ape and the like, that are functional orthologs thereof. In one aspect, the "zeta stimulatory domain" or a "CD3-zeta stimulatory domain" is the sequence provided as SEQ ID NO:9. In one aspect, the "zeta stimulatory domain" or a "CD3-zeta stimulatory domain" is the sequence provided as SEQ ID NO: 10.
The term "costimulatory molecule" refers to the cognate binding partner on a T cell that specifically binds with a costimulatory ligand, thereby mediating a costimulatory response by the T cell, such as, but not limited to, proliferation. Costimulatory molecules are cell surface molecules other than antigen receptors or their ligands that are required for an efficient immune response. Costimulatory molecules include, but are not limited to an a MHC class I molecule, TNF receptor proteins, Immunoglobulin-like proteins, cytokine receptors, integrins, signaling lymphocytic activation molecules (SLAM proteins), activating NK cell receptors, BTLA, a Toll ligand receptor, OX40, CD2, CD7, CD27, CD28, CD30, CD40, CDS, ICAM-1, LFA-1
(CDl la/CD18), 4-1BB (CD137), B7-H3, CDS, ICAM-1, ICOS (CD278), GITR, BAFFR, LIGHT, HVEM (LIGHTR), KIRDS2, SLAMF7, NKp80 (KLRF1), NKp44, NKp30, NKp46, CD19, CD4, CD8alpha, CD8beta, IL2R beta, IL2R gamma, IL7R alpha, ITGA4, VLA1, CD49a, ITGA4, IA4, CD49D, ITGA6, VLA-6, CD49f, ITGAD, CDl ld, ITGAE, CD103, ITGAL, CDl la, LFA-1, ITGAM, CDl lb, ITGAX, CDl lc, ITGB1, CD29, ΓΓϋΒ2, CD18, LFA-1, ITGB7, NKG2D, NKG2C, TNFR2, TRANCE/RANKL, DNAM1 (CD226), SLAMF4 (CD244, 2B4), CD84, CD96 (Tactile), CEACAM1, CRTAM, Ly9 (CD229), CD160 (BY55), PSGL1, CD100 (SEMA4D), CD69, SLAMF6 (NTB-A, Lyl08), SLAM (SLAMF1, CD150, IPO-3), BLAME (SLAMF8), SELPLG (CD162), LTBR, LAT, GADS, SLP-76, PAG/Cbp, CD 19a, and a ligand that specifically binds with CD83.
A costimulatory intracellular signaling domain refers to the intracellular portion of a costimulatory molecule. The intracellular signaling domain can comprise the entire intracellular portion, or the entire native intracellular signaling domain, of the molecule from which it is derived, or a functional fragment thereof.
The term "4- IBB" refers to a member of the TNFR superfamily with an amino acid sequence provided as GenBank Acc. No. AAA62478.2, or the equivalent residues from a non- human species, e.g., mouse, rodent, monkey, ape and the like; and a "4-1BB costimulatory domain" is defined as amino acid residues 214-255 of GenBank Acc. No. AAA62478.2, or the equivalent residues from a non-human species, e.g., mouse, rodent, monkey, ape and the like. In one aspect, the "4- IBB costimulatory domain" is the sequence provided as SEQ ID NO:7 or the equivalent residues from a non-human species, e.g., mouse, rodent, monkey, ape and the like.
"Immune effector cell," as that term is used herein, refers to a cell that is involved in an immune response, e.g., in the promotion of an immune effector response. Examples of immune effector cells include T cells, e.g., alpha/beta T cells and gamma/delta T cells, B cells, natural killer (NK) cells, natural killer T (NKT) cells, mast cells, and myeloic-derived phagocytes. "Immune effector function or immune effector response," as that term is used herein, refers to function or response, e.g., of an immune effector cell, that enhances or promotes an immune attack of a target cell. E.g., an immune effector function or response refers a property of a T or NK cell that promotes killing or the inhibition of growth or proliferation, of a target cell. In the case of a T cell, primary stimulation and co-stimulation are examples of immune effector function or response.
The term "effector function" refers to a specialized function of a cell. Effector function of a T cell, for example, may be cytolytic activity or helper activity including the secretion of cytokines.
The term "encoding" refers to the inherent property of specific sequences of nucleotides in a polynucleotide, such as a gene, a cDNA, or an mRNA, to serve as templates for synthesis of other polymers and macromolecules in biological processes having either a defined sequence of nucleotides (e.g., rRNA, tRNA and mRNA) or a defined sequence of amino acids and the biological properties resulting therefrom. Thus, a gene, cDNA, or RNA, encodes a protein if transcription and translation of mRNA corresponding to that gene produces the protein in a cell or other biological system. Both the coding strand, the nucleotide sequence of which is identical to the mRNA sequence and is usually provided in sequence listings, and the non- coding strand, used as the template for transcription of a gene or cDNA, can be referred to as encoding the protein or other product of that gene or cDNA. Unless otherwise specified, a "nucleotide sequence encoding an amino acid sequence" includes all nucleotide sequences that are degenerate versions of each other and that encode the same amino acid sequence. The phrase nucleotide sequence that encodes a protein or a RNA may also include introns to the extent that the nucleotide sequence encoding the protein may in some version contain an intron(s). The term "effective amount" or "therapeutically effective amount" are used
interchangeably herein, and refer to an amount of a compound, formulation, material, or composition, as described herein effective to achieve a particular biological result.
The term "endogenous" refers to any material from or produced inside an organism, cell, tissue or system. The term "exogenous" refers to any material introduced from or produced outside an organism, cell, tissue or system.
The term "expression" refers to the transcription and/or translation of a particular nucleotide sequence driven by a promoter. The term "transfer vector" refers to a composition of matter which comprises an isolated nucleic acid and which can be used to deliver the isolated nucleic acid to the interior of a cell. Numerous vectors are known in the art including, but not limited to, linear
polynucleotides, polynucleotides associated with ionic or amphiphilic compounds, plasmids, and viruses. Thus, the term "transfer vector" includes an autonomously replicating plasmid or a virus. The term should also be construed to further include non-plasmid and non-viral compounds which facilitate transfer of nucleic acid into cells, such as, for example, a polylysine compound, liposome, and the like. Examples of viral transfer vectors include, but are not limited to, adenoviral vectors, adeno-associated virus vectors, retroviral vectors, lenti viral vectors, and the like. The term "expression vector" refers to a vector comprising a recombinant
polynucleotide comprising expression control sequences operatively linked to a nucleotide sequence to be expressed. An expression vector comprises sufficient cis-acting elements for expression; other elements for expression can be supplied by the host cell or in an in vitro expression system. Expression vectors include all those known in the art, including cosmids, plasmids (e.g., naked or contained in liposomes) and viruses (e.g., lentiviruses, retroviruses, adenoviruses, and adeno-associated viruses) that incorporate the recombinant polynucleotide.
The term "lentivirus" refers to a genus of the Retroviridae family. Lentiviruses are unique among the retroviruses in being able to infect non-dividing cells; they can deliver a significant amount of genetic information into the DNA of the host cell, so they are one of the most efficient methods of a gene delivery vector. HIV, SIV, and FIV are all examples of lentiviruses.
The term "lentiviral vector" refers to a vector derived from at least a portion of a lentivirus genome, including especially a self-inactivating lentiviral vector as provided in Milone et al., Mol. Ther. 17(8): 1453-1464 (2009). Other examples of lentivirus vectors that may be used in the clinic, include but are not limited to, e.g., the LENTIVECTOR® gene delivery technology from Oxford BioMedica, the LENTIMAX™ vector system from Lentigen and the like. Nonclinical types of lentiviral vectors are also available and would be known to one skilled in the art.
The term "homologous" or "identity" refers to the subunit sequence identity between two polymeric molecules, e.g., between two nucleic acid molecules, such as, two DNA molecules or two RNA molecules, or between two polypeptide molecules. When a subunit position in both of the two molecules is occupied by the same monomeric subunit; e.g., if a position in each of two DNA molecules is occupied by adenine, then they are homologous or identical at that position. The homology between two sequences is a direct function of the number of matching or homologous positions; e.g., if half (e.g., five positions in a polymer ten subunits in length) of the positions in two sequences are homologous, the two sequences are 50% homologous; if 90% of the positions (e.g., 9 of 10), are matched or homologous, the two sequences are 90% homologous.
"Humanized" forms of non-human (e.g., murine) antibodies are chimeric
immunoglobulins, immunoglobulin chains or fragments thereof (such as Fv, Fab, Fab', F(ab')2 or other antigen-binding subsequences of antibodies) which contain minimal sequence derived from non-human immunoglobulin. For the most part, humanized antibodies and antibody fragments thereof are human immunoglobulins (recipient antibody or antibody fragment) in which residues from a complementary-determining region (CDR) of the recipient are replaced by residues from a CDR of a non-human species (donor antibody) such as mouse, rat or rabbit having the desired specificity, affinity, and capacity. In some instances, Fv framework region (FR) residues of the human immunoglobulin are replaced by corresponding non-human residues. Furthermore, a humanized antibody/antibody fragment can comprise residues which are found neither in the recipient antibody nor in the imported CDR or framework sequences. These modifications can further refine and optimize antibody or antibody fragment performance. In general, the humanized antibody or antibody fragment thereof will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the CDR regions correspond to those of a non-human immunoglobulin and all or a significant portion of the FR regions are those of a human immunoglobulin sequence. The humanized antibody or antibody fragment can also comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin. For further details, see Jones et al., Nature, 321: 522-525, 1986; Reichmann et al., Nature, 332: 323-329, 1988; Presta, Curr. Op. Struct. Biol., 2: 593-596, 1992.
"Fully human" refers to an immunoglobulin, such as an antibody or antibody fragment, where the whole molecule is of human origin or consists of an amino acid sequence identical to a human form of the antibody or immunoglobulin.
The term "isolated" means altered or removed from the natural state. For example, a nucleic acid or a peptide naturally present in a living animal is not "isolated," but the same nucleic acid or peptide partially or completely separated from the coexisting materials of its natural state is "isolated." An isolated nucleic acid or protein can exist in substantially purified form, or can exist in a non-native environment such as, for example, a host cell.
In the context of the present invention, the following abbreviations for the commonly occurring nucleic acid bases are used. "A" refers to adenosine, "C" refers to cytosine, "G" refers to guanosine, "T" refers to thymidine, and "U" refers to uridine.
The term "operably linked" or "transcriptional control" refers to functional linkage between a regulatory sequence and a heterologous nucleic acid sequence resulting in expression of the latter. For example, a first nucleic acid sequence is operably linked with a second nucleic acid sequence when the first nucleic acid sequence is placed in a functional relationship with the second nucleic acid sequence. For instance, a promoter is operably linked to a coding sequence if the promoter affects the transcription or expression of the coding sequence.
Operably linked DNA sequences can be contiguous with each other and, e.g., where necessary to join two protein coding regions, are in the same reading frame.
The term "parenteral" administration of an immunogenic composition includes, e.g., subcutaneous (s.c), intravenous (i.v.), intramuscular (i.m.), or intrasternal injection,
intratumoral, or infusion techniques. The term "nucleic acid" or "polynucleotide" refers to deoxyribonucleic acids (DNA) or ribonucleic acids (RNA) and polymers thereof in either single- or double- stranded form.
Unless specifically limited, the term encompasses nucleic acids containing known analogues of natural nucleotides that have similar binding properties as the reference nucleic acid and are metabolized in a manner similar to naturally occurring nucleotides. Unless otherwise indicated, a particular nucleic acid sequence also implicitly encompasses conservatively modified variants thereof (e.g., degenerate codon substitutions), alleles, orthologs, SNPs, and complementary sequences as well as the sequence explicitly indicated. Specifically, degenerate codon substitutions may be achieved by generating sequences in which the third position of one or more selected (or all) codons is substituted with mixed-base and/or deoxyinosine residues (Batzer et al., Nucleic Acid Res. 19:5081 (1991); Ohtsuka et al., J. Biol. Chem. 260:2605-2608 (1985); and Rossolini et al., Mol. Cell. Probes 8:91-98 (1994)).
The terms "peptide," "polypeptide," and "protein" are used interchangeably, and refer to a compound comprised of amino acid residues covalently linked by peptide bonds. A protein or peptide must contain at least two amino acids, and no limitation is placed on the maximum number of amino acids that can comprise a protein's or peptide's sequence. Polypeptides include any peptide or protein comprising two or more amino acids joined to each other by peptide bonds. As used herein, the term refers to both short chains, which also commonly are referred to in the art as peptides, oligopeptides and oligomers, for example, and to longer chains, which generally are referred to in the art as proteins, of which there are many types. "Polypeptides" include, for example, biologically active fragments, substantially homologous polypeptides, oligopeptides, homodimers, heterodimers, variants of polypeptides, modified polypeptides, derivatives, analogs, fusion proteins, among others. A polypeptide includes a natural peptide, a recombinant peptide, or a combination thereof.
The term "promoter" refers to a DNA sequence recognized by the synthetic machinery of the cell, or introduced synthetic machinery, required to initiate the specific transcription of a polynucleotide sequence.
The term "promoter/regulatory sequence" refers to a nucleic acid sequence which is required for expression of a gene product operably linked to the promoter/regulatory sequence. In some instances, this sequence may be the core promoter sequence and in other instances, this sequence may also include an enhancer sequence and other regulatory elements which are required for expression of the gene product. The promoter/regulatory sequence may, for example, be one which expresses the gene product in a tissue specific manner.
The term "constitutive" promoter refers to a nucleotide sequence which, when operably linked with a polynucleotide which encodes or specifies a gene product, causes the gene product to be produced in a cell under most or all physiological conditions of the cell. The term "inducible" promoter refers to a nucleotide sequence which, when operably linked with a polynucleotide which encodes or specifies a gene product, causes the gene product to be produced in a cell substantially only when an inducer which corresponds to the promoter is present in the cell. The term "tissue-specific" promoter refers to a nucleotide sequence which, when operably linked with a polynucleotide encodes or specified by a gene, causes the gene product to be produced in a cell substantially only if the cell is a cell of the tissue type corresponding to the promoter.
The term "flexible polypeptide linker" or "linker" as used in the context of a scFv refers to a peptide linker that consists of amino acids such as glycine and/or serine residues used alone or in combination, to link variable heavy and variable light chain regions together. In one embodiment, the flexible polypeptide linker is a Gly/Ser linker and comprises the amino acid sequence (Gly-Gly-Gly-Ser)n (SEQ ID NO: 38)., where n is a positive integer equal to or greater than 1. For example, n=l, n=2, n=3. n=4, n=5 and n=6, n=7, n=8, n=9 and n=10 In one embodiment, the flexible polypeptide linkers include, but are not limited to, (Gly4 Ser)4 (SEQ ID NO:27) or (Gly4 Ser)3 (SEQ ID NO:28). In another embodiment, the linkers include multiple repeats of (GlyiSer), (GlySer) or (GlysSer) (SEQ ID NO:29). Also included within the scope of the invention are linkers described in WO2012/138475, incorporated herein by reference.
As used herein, a 5' cap (also termed an RNA cap, an RNA 7-methylguanosine cap or an RNA m G cap) is a modified guanine nucleotide that has been added to the "front" or 5' end of a eukaryotic messenger RNA shortly after the start of transcription. The 5' cap consists of a terminal group which is linked to the first transcribed nucleotide. Its presence is critical for recognition by the ribosome and protection from RNases. Cap addition is coupled to transcription, and occurs co-transcriptionally, such that each influences the other. Shortly after the start of transcription, the 5' end of the mRNA being synthesized is bound by a cap- synthesizing complex associated with RNA polymerase. This enzymatic complex catalyzes the chemical reactions that are required for mRNA capping. Synthesis proceeds as a multi-step biochemical reaction. The capping moiety can be modified to modulate functionality of mRNA such as its stability or efficiency of translation. As used herein, "in vitro transcribed RNA" refers to RNA, preferably mRNA, that has been synthesized in vitro. Generally, the in vitro transcribed RNA is generated from an in vitro transcription vector. The in vitro transcription vector comprises a template that is used to generate the in vitro transcribed RNA.
As used herein, a "poly(A)" is a series of adenosines attached by polyadenylation to the mRNA. In the preferred embodiment of a construct for transient expression, the polyA is between 50 and 5000 (SEQ ID NO: 30), preferably greater than 64, more preferably greater than 100, most preferably greater than 300 or 400. poly(A) sequences can be modified chemically or enzymatically to modulate mRNA functionality such as localization, stability or efficiency of translation.
As used herein, "polyadenylation" refers to the covalent linkage of a polyadenylyl moiety, or its modified variant, to a messenger RNA molecule. In eukaryotic organisms, most messenger RNA (mRNA) molecules are polyadenylated at the 3' end. The 3' poly(A) tail is a long sequence of adenine nucleotides (often several hundred) added to the pre-mRNA through the action of an enzyme, polyadenylate polymerase. In higher eukaryotes, the poly(A) tail is added onto transcripts that contain a specific sequence, the polyadenylation signal. The poly(A) tail and the protein bound to it aid in protecting mRNA from degradation by exonucleases. Polyadenylation is also important for transcription termination, export of the mRNA from the nucleus, and translation. Polyadenylation occurs in the nucleus immediately after transcription of DNA into RNA, but additionally can also occur later in the cytoplasm. After transcription has been terminated, the mRNA chain is cleaved through the action of an endonuclease complex associated with RNA polymerase. The cleavage site is usually characterized by the presence of the base sequence AAUAAA near the cleavage site. After the mRNA has been cleaved, adenosine residues are added to the free 3' end at the cleavage site.
As used herein, "transient" refers to expression of a non-integrated transgene for a period of hours, days or weeks, wherein the period of time of expression is less than the period of time for expression of the gene if integrated into the genome or contained within a stable plasmid replicon in the host cell.
As used herein, the terms "treat", "treatment" and "treating" refer to the reduction or amelioration of the progression, severity and/or duration of a proliferative disorder, or the amelioration of one or more symptoms (preferably, one or more discernible symptoms) of a proliferative disorder resulting from the administration of one or more therapies (e.g., one or more therapeutic agents such as a CAR of the invention). In specific embodiments, the terms "treat", "treatment" and "treating" refer to the amelioration of at least one measurable physical parameter of a proliferative disorder, such as growth of a tumor, not necessarily discernible by the patient. In other embodiments the terms "treat", "treatment" and "treating" -refer to the inhibition of the progression of a proliferative disorder, either physically by, e.g., stabilization of a discernible symptom, physiologically by, e.g., stabilization of a physical parameter, or both. In other embodiments the terms "treat", "treatment" and "treating" refer to the reduction or stabilization of tumor size or cancerous cell count.
The term "signal transduction pathway" refers to the biochemical relationship between a variety of signal transduction molecules that play a role in the transmission of a signal from one portion of a cell to another portion of a cell. The phrase "cell surface receptor" includes molecules and complexes of molecules capable of receiving a signal and transmitting signal across the membrane of a cell.
The term "subject" is intended to include living organisms in which an immune response can be elicited (e.g., mammals, human). The term, a "substantially purified" cell refers to a cell that is essentially free of other cell types. A substantially purified cell also refers to a cell which has been separated from other cell types with which it is normally associated in its naturally occurring state. In some instances, a population of substantially purified cells refers to a homogenous population of cells. In other instances, this term refers simply to cell that have been separated from the cells with which they are naturally associated in their natural state. In some aspects, the cells are cultured in vitro. In other aspects, the cells are not cultured in vitro.
The term "therapeutic" as used herein means a treatment. A therapeutic effect is obtained by reduction, suppression, remission, or eradication of a disease state.
The term "prophylaxis" as used herein means the prevention of or protective treatment for a disease or disease state.
In the context of the present invention, "tumor antigen" or "hyperproliferative disorder antigen" or "antigen associated with a hyperproliferative disorder" refers to antigens that are common to specific hyperproliferative disorders. In certain aspects, the hyperproliferative disorder antigens of the present invention are derived from, cancers including but not limited to primary or metastatic melanoma, thymoma, lymphoma, sarcoma, lung cancer, liver cancer, non-Hodgkin's lymphoma, Hodgkins lymphoma, leukemias, uterine cancer, cervical cancer, bladder cancer, kidney cancer and adenocarcinomas such as breast cancer, prostate cancer, ovarian cancer, pancreatic cancer, and the like.
The term "transfected" or "transformed" or "transduced" refers to a process by which exogenous nucleic acid is transferred or introduced into the host cell. A "transfected" or "transformed" or "transduced" cell is one which has been transfected, transformed or transduced with exogenous nucleic acid. The cell includes the primary subject cell and its progeny.
The term "specifically binds," refers to an antibody, or a ligand, which recognizes and binds with a cognate binding partner (e.g., a stimulatory and/or costimulatory molecule present on a T cell) protein present in a sample, but which antibody or ligand does not substantially recognize or bind other molecules in the sample.
"Regulatable chimeric antigen receptor (RCAR),"as used herein, refers to a set of polypeptides, typically two in the simplest embodiments, which when in an immune effector cell, provides the cell with specificity for a target cell, typically a cancer cell, and with regulatable intracellular signal generation. In some embodiments, an RCAR comprises at least an extracellular antigen binding domain, a transmembrane and a cytoplasmic signaling domain (also referred to herein as "an intracellular signaling domain") comprising a functional signaling domain derived from a stimulatory molecule and/or costimulatory molecule as defined herein in the context of a CAR molecule. In some embodiments, the set of
polypeptides in the RCAR are not contiguous with each other, e.g., are in different polypeptide chains. In some embodiments, the RCAR includes a dimerization switch that, upon the presence of a dimerization molecule, can couple the polypeptides to one another, e.g., can couple an antigen binding domain to an intracellular signaling domain. In some embodiments, the RCAR is expressed in a cell (e.g., an immune effector cell) as described herein, e.g., an RCAR-expressing cell (also referred to herein as "RCARX cell"). In an embodiment the RCARX cell is a T cell, and is referred to as a RCART cell. In an embodiment the RCARX cell is an NK cell, and is referred to as a RCARN cell. The RCAR can provide the RCAR- expressing cell with specificity for a target cell, typically a cancer cell, and with regulatable intracellular signal generation or proliferation, which can optimize an immune effector property of the RCAR-expressing cell. In embodiments, an RCAR cell relies at least in part, on an antigen binding domain to provide specificity to a target cell that comprises the antigen bound by the antigen binding domain.
"Membrane anchor" or "membrane tethering domain", as that term is used herein, refers to a polypeptide or moiety, e.g., a myristoyl group, sufficient to anchor an extracellular or intracellular domain to the plasma membrane.
"Switch domain," as that term is used herein, e.g., when referring to an RCAR, refers to an entity, typically a polypeptide-based entity, that, in the presence of a dimerization molecule, associates with another switch domain. The association results in a functional coupling of a first entity linked to, e.g., fused to, a first switch domain, and a second entity linked to, e.g., fused to, a second switch domain. A first and second switch domain are collectively referred to as a dimerization switch. In embodiments, the first and second switch domains are the same as one another, e.g., they are polypeptides having the same primary amino acid sequence, and are referred to collectively as a homodimerization switch. In embodiments, the first and second switch domains are different from one another, e.g., they are polypeptides having different primary amino acid sequences, and are referred to collectively as a heterodimerization switch. In embodiments, the switch is intracellular. In embodiments, the switch is extracellular. In embodiments, the switch domain is a polypeptide-based entity, e.g., FKBP or FRB-based, and the dimerization molecule is small molecule, e.g., a rapalogue. In embodiments, the switch domain is a polypeptide-based entity, e.g., an scFv that binds a myc peptide, and the
dimerization molecule is a polypeptide, a fragment thereof, or a multimer of a polypeptide, e.g., a myc ligand or multimers of a myc ligand that bind to one or more myc scFvs. In
embodiments, the switch domain is a polypeptide-based entity, e.g., myc receptor, and the dimerization molecule is an antibody or fragments thereof, e.g., myc antibody.
"Dimerization molecule," as that term is used herein, e.g., when referring to an RCAR, refers to a molecule that promotes the association of a first switch domain with a second switch domain. In embodiments, the dimerization molecule does not naturally occur in the subject, or does not occur in concentrations that would result in significant dimerization. In embodiments, the dimerization molecule is a small molecule, e.g., rapamycin or a rapalogue, e.g, RAD001.
The term "bioequivalent" refers to an amount of an agent other than the reference compound (e.g., RAD001), required to produce an effect equivalent to the effect produced by the reference dose or reference amount of the reference compound (e.g., RAD001). In an embodiment the effect is the level of mTOR inhibition, e.g., as measured by P70 S6 kinase inhibition, e.g., as evaluated in an in vivo or in vitro assay, e.g., as measured by an assay described herein, e.g., the Boulay assay, or measurement of phosphorylated S6 levels by western blot . In an embodiment, the effect is alteration of the ratio of PD-1 positive/PD-1 negative T cells, as measured by cell sorting. In an embodiment a bioequivalent amount or dose of an mTOR inhibitor is the amount or dose that achieves the same level of P70 S6 kinase inhibition as does the reference dose or reference amount of a reference compound. In an embodiment, a bioequivalent amount or dose of an mTOR inhibitor is the amount or dose that achieves the same level of alteration in the ratio of PD-1 positive/PD-1 negative T cells as does the reference dose or reference amount of a reference compound.
The term "low, immune enhancing, dose" when used in conjuction with an mTOR inhibitor, e.g., an allosteric mTOR inhibitor, e.g., RAD001 or rapamycin, or a catalytic mTOR inhibitor, refers to a dose of mTOR inhibitor that partially, but not fully, inhibits mTOR activity, e.g., as measured by the inhibition of P70 S6 kinase activity. Methods for evaluating mTOR activity, e.g., by inhibition of P70 S6 kinase, are discussed herein. The dose is insufficient to result in complete immune suppression but is sufficient to enhance the immune response. In an embodiment, the low, immune enhancing, dose of mTOR inhibitor results in a decrease in the number of PD-1 positive T cells and/or an increase in the number of PD-1 negative T cells, or an increase in the ratio of PD-1 negative T cells/PD-1 positive T cells. In an embodiment, the low, immune enhancing, dose of mTOR inhibitor results in an increase in the number of naive T cells. In an embodiment, the low, immune enhancing, dose of mTOR inhibitor results in one or more of the following: an increase in the expression of one or more of the following markers: CD62Lhlgh, CD127high, CD27+, and BCL2, e.g., on memory T cells, e.g., memory T cell precursors; a decrease in the expression of KLRG1, e.g., on memory T cells, e.g., memory T cell precursors; and an increase in the number of memory T cell precursors, e.g., cells with any one or combination of the following characteristics: increased CD62Lhlgh, increased CD127hlgh, increased CD27+, decreased KLRG1, and increased BCL2; wherein any of the changes described above occurs, e.g., at least transiently, e.g., as compared to a non-treated subject. "Refractory" as used herein refers to a disease, e.g., cancer, that does not respond to a treatment. In embodiments, a refractory cancer can be resistant to a treatment before or at the beginning of the treatment. In other embodiments, the refractory cancer can become resistant during a treatment. A refractory cancer is also called a resistant cancer.
"Relapsed" or a "relapse" as used herein refers to the reappearance of a disease (e.g., cancer) or the signs and symptoms of a disease such as cancer after a period of improvement or responsiveness, e.g., after prior treatment of a therapy, e.g., cancer therapy. For example, the period of responsiveness may involve the level of cancer cells falling below a certain threshold, e.g., below 20%, 1%, 10%, 5%, 4%, 3%, 2%, or 1%. The reappearance may involve the level of cancer cells rising above a certain threshold, e.g., above 20%, 1%, 10%, 5%, 4%, 3%, 2%, or 1%.
Ranges: throughout this disclosure, various aspects of the invention can be presented in a range format. It should be understood that the description in range format is merely for convenience and brevity and should not be construed as an inflexible limitation on the scope of the invention. Accordingly, the description of a range should be considered to have specifically disclosed all the possible subranges as well as individual numerical values within that range. For example, description of a range such as from 1 to 6 should be considered to have specifically disclosed subranges such as from 1 to 3, from 1 to 4, from 1 to 5, from 2 to 4, from 2 to 6, from 3 to 6 etc., as well as individual numbers within that range, for example, 1, 2, 2.7, 3, 4, 5, 5.3, and 6. As another example, a range such as 95-99% identity, includes something with 95%, 96%, 97%, 98% or 99% identity, and includes subranges such as 96-99%, 96-98%, 96-97%, 97-99%, 97-98% and 98-99% identity. This applies regardless of the breadth of the range.
Description
Provided herein are compositions of matter and methods of use for the treatment of a disease such as cancer using CLL-1 chimeric antigen receptors (CAR).
In one aspect, the invention provides a number of chimeric antigen receptors (CAR) comprising an antibody or antibody fragment engineered for specific binding to a CLL-1 protein or a fragment thereof. In one aspect, the invention provides a cell (e.g., an immune effector cell, e.g., a T cell or a NK cell) engineered to express a CAR, wherein the CAR T cell ("CART") exhibits an antitumor property. In one aspect a cell is transformed with the CAR and at least part of the CAR construct is expressed on the cell surface. In some embodiments, the cell (e.g., an immune effector cell, e.g., a T cell or a NK cell) is transduced with a viral vector encoding a CAR. In some embodiments, the viral vector is a retroviral vector. In some embodiments, the viral vector is a lentiviral vector. In some such embodiments, the cell may stably express the CAR. In another embodiment, the cell (e.g., an immune effector cell, e.g., a T cell or a NK cell) is transfected with a nucleic acid, e.g., mRNA, cDNA, DNA, encoding a CAR. In some such embodiments, the cell may transiently express the CAR.
In one aspect, the human anti-CLL-1 protein binding portion of the CAR is a scFv antibody fragment. In one aspect such antibody fragments are functional in that they retain the equivalent binding affinity, e.g., they bind the same antigen with comparable efficacy, as the IgG antibody having the same heavy and light chain variable regions. In one aspect such antibody fragments are functional in that they provide a biological response that can include, but is not limited to, activation of an immune response, inhibition of signal-transduction origination from its target antigen, inhibition of kinase activity, and the like, as will be understood by a skilled artisan.
In some aspects, the antibodies of the invention are incorporated into a chimeric antigen receptor (CAR). In one aspect, the CAR comprises the polypeptide sequence provided herein as SEQ ID NO: 91-103.
In one aspect, the anti- CLL-1 binding domain, e.g., human scFv, portion of a CAR of the invention is encoded by a transgene whose sequence has been codon optimized for expression in a mammalian cell. In one aspect, entire CAR construct of the invention is encoded by a transgene whose entire sequence has been codon optimized for expression in a mammalian cell. Codon optimization refers to the discovery that the frequency of occurrence of synonymous codons (i.e., codons that code for the same amino acid) in coding DNA is biased in different species. Such codon degeneracy allows an identical polypeptide to be encoded by a variety of nucleotide sequences. A variety of codon optimization methods is known in the art, and include, e.g., methods disclosed in at least US Patent Numbers 5,786,464 and 6,114,148.
In one aspect, the human CLL-1 binding domain comprises the scFv portion provided in SEQ ID NOs:39-51. In one embodiment, the human anti-CLL-1 binding domain comprises the scFv portion provided in SEQ ID NO:39. In one embodiment, the human anti- CLL-1 binding domain comprises the scFv portion provided in SEQ ID NO:40. In one embodiment, the human anti-CLL-1 binding domain comprises the scFv portion provided in SEQ ID NO:41. In one embodiment, the human anti-CLL-1 binding domain comprises the scFv portion provided in SEQ ID NO:42. In one embodiment, the human anti-CLL-1 binding domain comprises the scFv portion provided in SEQ ID NO:43. In one embodiment, the human anti-CLL-1 binding domain comprises the scFv portion provided in SEQ ID NO:44. In one embodiment, the human anti-CLL-1 binding domain comprises the scFv portion provided in SEQ ID NO:45. In one embodiment, the human anti-CLL-1 binding domain comprises the scFv portion provided in SEQ ID NO:46. In one embodiment, the human anti-CLL-1 binding domain comprises the scFv portion provided in SEQ ID NO:47. In one embodiment, the human anti-CLL-1 binding domain comprises the scFv portion provided in SEQ ID NO:48. In one embodiment, the human anti-CLL-1 binding domain comprises the scFv portion provided in SEQ ID NO:49. In one embodiment, the human anti-CLL-1 binding domain comprises the scFv portion provided in SEQ ID NO:50. In one embodiment, the human anti-CLL-1 binding domain comprises the scFv portion provided in SEQ ID NO:51. In one aspect, the CARs of the invention combine an antigen binding domain of a specific antibody with an intracellular signaling molecule. For example, in some aspects, the intracellular signaling molecule includes, but is not limited to, CD3-zeta chain, 4- IBB and CD28 signaling modules and combinations thereof. In one aspect, the antigen binding domain binds to CLL-1. In one aspect, the CLL-1 CAR comprises a CAR selected from the sequence provided in one or more of SEQ ID NOs: 91-103 or 197. In one aspect, the CLL-1 CAR comprises the sequence provided in SEQ ID NO:91. In one aspect, the CLL-1 CAR comprises the sequence provided in SEQ ID NO:92. In one aspect, the CLL-1 CAR comprises the sequence provided in SEQ ID NO:93. In one aspect, the CLL-1 CAR comprises the sequence provided in SEQ ID NO:94. In one aspect, the CLL-1 CAR comprises the sequence provided in SEQ ID NO:95. In one aspect, the CLL-1 CAR comprises the sequence provided in SEQ ID NO:96. In one aspect, the CLL-1 CAR comprises the sequence provided in SEQ ID NO: 97. In one aspect, the CLL-1 CAR comprises the sequence provided in SEQ ID NO:98. In one aspect, the CLL-1 CAR comprises the sequence provided in SEQ ID NO:99. In one aspect, the CLL-1 CAR comprises the sequence provided in SEQ ID NO: 100. In one aspect, the CLL-1 CAR comprises the sequence provided in SEQ ID NO: 101. In one aspect, the CLL-1 CAR comprises the sequence provided in SEQ ID NO: 102. In one aspect, the CLL-1 CAR comprises the sequence provided in SEQ ID NO: 103. In one aspect, the CLL- 1 CAR comprises the sequence provided in SEQ ID NO: 197. Furthermore, the present invention provides CLL-1 CAR compositions and their use in medicaments or methods for treating, among other diseases, cancer or any malignancy or autoimmune diseases involving cells or tissues which express CLL-1. In one aspect, the CAR of the invention can be used to eradicate CLL-1 -expressing normal cells, thereby applicable for use as a cellular conditioning therapy prior to cell transplantation. In one aspect, the CLL-1 -expressing normal cell is a CLL-1 -expressing normal stem cell and the cell transplantation is a stem cell transplantation.
In one aspect, the invention provides a cell (e.g., an immune effector cell, e.g., a T cell or a NK cell) engineered to express a chimeric antigen receptor (CAR) of the present invention, wherein the cell (e.g., CAR-expressing immune effector cell, e.g., CAR T cell, e.g., "CART") exhibits an antitumor property. A preferred antigen is CLL-1. In one aspect, the antigen binding domain of the CAR comprises a human anti- CLL-1 antibody fragment. In one aspect, the antigen binding domain of the CAR comprises human anti- CLL-1 antibody fragment comprising an scFv. In one embodiment, the antigen binding domain of the CAR comprises a human anti-CLL-1 scFv. Accordingly, the invention provides a CLL-1 -CAR that comprises an anti- CLL-1 binding domain and is engineered into an immune effector cell, e.g., a T cell or a NK cell and methods of their use for adoptive therapy. In one aspect, the CLL-1 -CAR comprises a human anti-CLL-1 binding domain. In one aspect, the CLL-1 -CAR comprises at least one intracellular domain selected from the group of a CD137 (4-1BB) signaling domain, a CD28 signaling domain, a CD3zeta signal domain, and any combination thereof. In one aspect, the CLL-1 -CAR comprises at least one intracellular signaling domain is from one or more co- stimulatory molecule(s) other than a CD137 (4-1BB) or CD28.
Chimeric Antigen Receptor (CAR)
The present invention provides a CAR (e..g., a CAR polypeptide) that comprises an anti-CLL-1 binding domain (e.g., human or humanized CLL-1 binding domain as described herein), a transmembrane domain, and an intracellular signaling domain, and wherein said anti- CLL-1 binding domain comprises a heavy chain complementary determining region 1 (HC CDR1), a heavy chain complementary determining region 2 (HC CDR2), and a heavy chain complementary determining region 3 (HC CDR3) of any anti-CLL-1 heavy chain binding domain amino acid sequences listed in Table 2. The anti-CLL-1 binding domain of the CAR can further comprise a light chain complementary determining region 1 (LC CDR1), a light chain complementary determining region 2 (LC CDR2), and a light chain complementary determining region 3 (LC CDR3) of any anti-CLL-1 light chain binding domain amino acid sequences listed in Table 2.
The present invention also provides nucleic acid molecules encoding the CAR as described herein, e.g., encoding a CAR that comprises an anti-CLL-1 binding domain (e.g., human or humanized CLL-1 binding domain as described herein), a transmembrane domain, and an intracellular signaling domain, and wherein said anti-CLL-1 binding domain comprises a heavy chain complementary determining region 1 (HC CDR1), a heavy chain complementary determining region 2 (HC CDR2), and a heavy chain complementary determining region 3 (HC CDR3) of any anti-CLL-1 heavy chain binding domain amino acid sequences listed in Table 2. In one embodiment, the encoded anti-CLL-1 binding domain of the CAR can further comprise a light chain complementary determining region 1 (LC CDR1), a light chain complementary determining region 2 (LC CDR2), and a light chain complementary
determining region 3 (LC CDR3) of any anti-CLL-1 light chain binding domain amino acid sequences listed in Table 2. In specific aspects, a CAR construct of the invention comprises a scFv domain selected from the group consisting of SEQ ID NOs:39-51, wherein the scFv may be preceded by an optional leader sequence such as provided in SEQ ID NO: 1, and followed by an optional hinge sequence such as provided in SEQ ID NO:2 or SEQ ID NO:3 or SEQ ID NO:4 or SEQ ID NO:5, a transmembrane region such as provided in SEQ ID NO:6, an intracellular signalling domain that includes SEQ ID NO:7 or SEQ ID NO: 8 and a CD3 zeta sequence that includes SEQ ID NO:9 or SEQ ID NO: 10, e.g., wherein the domains are contiguous with and in the same reading frame to form a single fusion protein. Also included in the invention is a nucleotide sequence that encodes the polypeptide of each of the scFv fragments selected from the group consisting of SEQ ID NO: 39-51. Also included in the invention is a nucleotide sequence that encodes the polypeptide of each of the scFv fragments selected from the group consisting of SEQ ID NO: 39-51, and each of the domains of SEQ ID NOs: 1, 2, and 6-9. In one aspect an exemplary CLL-1 CAR constructs comprise an optional leader sequence, an extracellular antigen binding domain, a hinge, a transmembrane domain, and an intracellular stimulatory domain. In one aspect an exemplary CLL-1 CAR construct comprises an optional leader sequence, an extracellular antigen binding domain, a hinge, a transmembrane domain, an intracellular co stimulatory domain and an intracellular stimulatory domain.
In some embodiments, full-length CAR sequences are also provided herein as SEQ ID NOs: 91-103, as shown in Table 2.
An exemplary leader sequence is provided as SEQ ID NO: 1. An exemplary
hinge/spacer sequence is provided as SEQ ID NO:2 or SEQ ID NO:3 or SEQ ID NO:4 or SEQ ID NO:5. An exemplary transmembrane domain sequence is provided as SEQ ID NO:6. An exemplary sequence of the intracellular signaling domain of the 4-1BB protein is provided as SEQ ID NO: 7. An exemplary sequence of the intracellular signaling domain of CD27 is provided as SEQ ID NO: 8. An exemplary CD3zeta domain sequence is provided as SEQ ID NO: 9 or SEQ ID NO: 10. In one aspect, the present invention encompasses a recombinant nucleic acid construct comprising a nucleic acid molecule encoding a CAR, wherein the nucleic acid molecule comprises the nucleic acid sequence encoding a CLL-1 binding domain, e.g., described herein, e.g., that is contiguous with and in the same reading frame as a nucleic acid sequence encoding an intracellular signaling domain. In one aspect, the CLL-1 binding domain is selected from one or more of SEQ ID NOs:39-51. In one embodiment, the CLL-1 binding domain comprises SEQ ID NO:39. In one embodiment, the CLL-1 binding domain comprises SEQ ID NO:40. In one embodiment, the CLL-1 binding domain comprises SEQ ID NO:41. In one embodiment, the CLL-1 binding domain comprises SEQ ID NO:42. In one embodiment, the CLL-1 binding domain comprises SEQ ID NO:43. In one embodiment, the CLL-1 binding domain comprises SEQ ID NO:44. In one embodiment, the CLL-1 binding domain comprises SEQ ID NO:45. In one embodiment, the CLL-1 binding domain comprises SEQ ID NO:46. In one embodiment, the CLL-1 binding domain comprises SEQ ID NO:47. In one embodiment, the CLL-1 binding domain comprises SEQ ID NO:48. In one embodiment, the CLL-1 binding domain comprises SEQ ID NO:49. In one embodiment, the CLL-1 binding domain comprises SEQ ID NO:50. In one embodiment, the CLL-1 binding domain comprises SEQ ID NO:51. In one aspect, the present invention encompasses a recombinant nucleic acid construct comprising a transgene encoding a CAR, wherein the nucleic acid molecule comprises a nucleic acid sequence encoding an anti- CLL-1 binding domain selected from one or more of SEQ ID NOs:39-51, wherein the sequence is contiguous with and in the same reading frame as the nucleic acid sequence encoding an intracellular signaling domain. An exemplary intracellular signaling domain that can be used in the CAR includes, but is not limited to, one or more intracellular signaling domains of, e.g., CD3-zeta, CD28, 4-lBB, and the like. In some instances, the CAR can comprise any combination of CD3-zeta, CD28, 4- IBB, and the like. In one aspect the nucleic acid sequence of a CAR construct of the invention is selected from one or more of SEQ ID NOs:104-116, or 198. In one aspect the nucleic acid sequence of a CAR construct is SEQ ID NO: 104. In one aspect the nucleic acid sequence of a CAR construct is SEQ ID NO: 105. In one aspect the nucleic acid sequence of a CAR construct is SEQ ID NO:106. In one aspect the nucleic acid sequence of a CAR construct is SEQ ID NO:107. In one aspect the nucleic acid sequence of a CAR construct is SEQ ID NO: 108. In one aspect the nucleic acid sequence of a CAR construct is SEQ ID NO: 109. In one aspect the nucleic acid sequence of a CAR construct is SEQ ID NO: 110. In one aspect the nucleic acid sequence of a CAR construct is SEQ ID NO:l l l. In one aspect the nucleic acid sequence of a CAR construct is SEQ ID NO: 112. In one aspect the nucleic acid sequence of a CAR construct is SEQ ID NO:113. In one aspect the nucleic acid sequence of a CAR construct is SEQ ID NO:114. In one aspect the nucleic acid sequence of a CAR construct is SEQ ID NO: 115. In one aspect the nucleic acid sequence of a CAR construct is SEQ ID NO: 116. In one aspect the nucleic acid sequence of a CAR construct is SEQ ID NO: 198. The nucleic acid sequences coding for the desired molecules can be obtained using recombinant methods known in the art, such as, for example by screening libraries from cells expressing the gene, by deriving the gene from a vector known to include the same, or by isolating directly from cells and tissues containing the same, using standard techniques. Alternatively, the nucleic acid of interest can be produced synthetically, rather than cloned.
The present invention includes retroviral and lentiviral vector constructs expressing a CAR that can be directly transduced into a cell. The present invention also includes an RNA construct that can be directly transfected into a cell. A method for generating mRNA for use in transfection involves in vitro transcription (IVT) of a template with specially designed primers, followed by polyA addition, to produce a construct containing 3' and 5' untranslated sequence ("UTR"), a 5' cap and/or Internal Ribosome Entry Site (IRES), the nucleic acid to be expressed, and a polyA tail, typically 50-2000 bases in length (SEQ ID NO:35). RNA so produced can efficiently transfect different kinds of cells. In one embodiment, the template includes sequences for the CAR. In an embodiment, an RNA CAR vector is transduced into a T cell by electroporation.
Antigen binding domain
The CARs of the present invention comprise a target- specific binding domain. The choice of moiety depends upon the type and number of ligands that define the surface of a target cell. For example, the antigen binding domain may be chosen to recognize a ligand that acts as a cell surface marker on target cells associated with a particular disease state. Thus examples of cell surface markers that may act as ligands for the antigen binding domain in a CAR of the invention include those associated with viral, bacterial and parasitic infections, autoimmune disease and cancer cells.
In one aspect, the CAR-mediated T-cell response can be directed to an antigen of interest by way of engineering an antigen binding domain that specifically binds a desired antigen into the CAR.
In one aspect, the CAR of the present invention comprises a binding domain that specifically binds CLL-1. In one aspect, the antigen binding domain specifically binds human CLL-1.
The antigen binding domain can be any domain that binds to the antigen including but not limited to a monoclonal antibody, a polyclonal antibody, a recombinant antibody, a human antibody, a humanized antibody, and a functional fragment thereof, including but not limited to a single-domain antibody such as a heavy chain variable domain (VH), a light chain variable domain (VL) and a variable domain (VHH) of camelid derived nanobody, and to an alternative scaffold known in the art to function as antigen binding domain, such as a recombinant fibronectin domain, and the like. In some instances, it is beneficial for the antigen binding domain to be derived from the same species in which the CAR will ultimately be used in. For example, for use in humans, it may be beneficial for the antigen binding domain of the CAR to comprise human or humanized residues for the antigen binding domain of an antibody or antibody fragment.
In some instances, it is beneficial for the antigen binding domain to be derived from the same species in which the CAR will ultimately be used in. For example, for use in humans, it may be beneficial for the antigen binding domain of the CAR to comprise human or humanized residues for the antigen binding domain of an antibody or antibody fragment. Thus, in one aspect, the antigen binding domain comprises a human antibody or an antibody fragment.
Thus, in one aspect, the antigen binding domain comprises a human antibody or an antibody fragment. In one embodiment, the human anti- CLL-1 binding domain comprises one or more (e.g., all three) light chain complementary determining region 1 (LC CDR1), light chain complementary determining region 2 (LC CDR2), and light chain complementary determining region 3 (LC CDR3) of a human anti- CLL-lbinding domain described herein, and/or one or more (e.g., all three) heavy chain complementary determining region 1 (HC CDR1), heavy chain complementary determining region 2 (HC CDR2), and heavy chain complementary determining region 3 (HC CDR3) of a human anti- CLL-1 binding domain described herein, e.g., a human anti- CLL-1 binding domain comprising one or more, e.g., all three, LC CDRs and one or more, e.g., all three, HC CDRs. In one embodiment, the human anti- CLL-1 binding domain comprises one or more (e.g., all three) heavy chain
complementary determining region 1 (HC CDR1), heavy chain complementary determining region 2 (HC CDR2), and heavy chain complementary determining region 3 (HC CDR3) of a human anti- CLL-1 binding domain described herein, e.g., the human anti-CLL-1 binding domain has two variable heavy chain regions, each comprising a HC CDR1, a HC CDR2 and a HC CDR3 described herein. In one embodiment, the human anti- CLL-1 binding domain comprises a human light chain variable region described herein (e.g., in Table 4) and/or a human heavy chain variable region described herein (e.g., in Table 3). In one embodiment, the human anti- CLL-1 binding domain comprises a human heavy chain variable region described herein (e.g., in Table 3), e.g., at least two human heavy chain variable regions described herein (e.g., in Table 3). In one embodiment, the anti- CLL-1 binding domain is a scFv comprising a light chain and a heavy chain of an amino acid sequence of Table 4. In an embodiment, the anti- CLL-1 binding domain (e.g., an scFv) comprises: a light chain variable region comprising an amino acid sequence having at least one, two or three modifications (e.g., substitutions, e.g., conservative substitutions) but not more than 30, 20 or 10 modifications (e.g., substitutions, e.g., conservative substitutions) of an amino acid sequence of a light chain variable region provided in Table 4, or a sequence with 95-99% identity with an amino acid sequence of Table 4; and/or a heavy chain variable region comprising an amino acid sequence having at least one, two or three modifications (e.g., substitutions, e.g., conservative substitutions) but not more than 30, 20 or 10 modifications (e.g., substitutions, e.g., conservative substitutions) of an amino acid sequence of a heavy chain variable region provided in Table 3, or a sequence with 95-99% identity to an amino acid sequence of Table 3. In one embodiment, the human anti- CLL- lbinding domain comprises a sequence selected from a group consisting of SEQ ID NO:39-51, or a sequence with 95-99% identity thereof. In one embodiment, the nucleic acid sequence encoding the human anti- CLL-1 binding domain comprises a sequence selected from a group consisting of SEQ ID NO:52-64, or a sequence with 95-99% identity thereof. In one embodiment, the human anti- CLL-1 binding domain is a scFv, and a light chain variable region comprising an amino acid sequence described herein, e.g., in Table 2, is attached to a heavy chain variable region comprising an amino acid sequence described herein, e.g., in Table 2, via a linker, e.g., a linker described herein. In one embodiment, the human anti- CLL-1 binding domain includes a (Gly4-Ser)n linker, wherein n is 1, 2, 3, 4, 5, or 6, preferably 3 or 4 (SEQ ID NO:26). The light chain variable region and heavy chain variable region of a scFv can be, e.g., in any of the following orientations: light chain variable region-linker-heavy chain variable region or heavy chain variable region-linker-light chain variable region.
In one aspect, the antigen binding domain portion comprises one or more sequence selected from SEQ ID NOs:39-41. In one aspect the CAR is selected from one or more sequence selected from SEQ ID NOs: 91-103, or 197.
In one aspect, the anti- CLL-1 binding domain is characterized by particular functional features or properties of an antibody or antibody fragment. For example, in one aspect, the portion of a CAR composition of the invention that comprises an antigen binding domain specifically binds human CLL-1.
In one aspect, the invention relates to an antigen binding domain comprising an antibody or antibody fragment, wherein the antibody binding domain specifically binds to a CLL-1 protein or fragment thereof, wherein the antibody or antibody fragment comprises a variable light chain and/or a variable heavy chain that includes an amino acid sequence of SEQ ID NO: 39-51. In one aspect, the antigen binding domain comprises an amino acid sequence of an scFv selected from SEQ ID NOs: 39-51. In certain aspects, the scFv is contiguous with and in the same reading frame as a leader sequence. In one aspect the leader sequence is the polypeptide sequence provided as SEQ ID NO:l. In one aspect, the human anti- CLL-1 binding domain is a fragment, e.g., a single chain variable fragment (scFv). In one aspect, the human anti- CLL-1 binding domain is a Fv, a Fab, a (Fab')2, or a bi-functional (e.g. bi-specific) hybrid antibody (e.g., Lanzavecchia et al., Eur. J. Immunol. 17, 105 (1987)). In one aspect, the antibodies and fragments thereof of the invention binds a CLL-1 protein or a fragment thereof with wild- type or enhanced affinity. In some instances a human scFv be derived from a display library. A display library is a collection of entities; each entity includes an accessible polypeptide component and a recoverable component that encodes or identifies the polypeptide component. The polypeptide component is varied so that different amino acid sequences are represented. The polypeptide component can be of any length, e.g. from three amino acids to over 300 amino acids. A display library entity can include more than one polypeptide component, for example, the two polypeptide chains of a Fab. In one exemplary embodiment, a display library can be used to identify a human CLL-1 binding domain. In a selection, the polypeptide component of each member of the library is probed with CLL-1, or a fragment there, and if the polypeptide component binds to CLL-1, the display library member is identified, typically by retention on a support.
Retained display library members are recovered from the support and analyzed. The analysis can include amplification and a subsequent selection under similar or dissimilar conditions. For example, positive and negative selections can be alternated. The analysis can also include determining the amino acid sequence of the polypeptide component, i.e., the CLL- 1 binding domain, and purification of the polypeptide component for detailed characterization.
A variety of formats can be used for display libraries. Examples include the phage display. In phage display, the protein component is typically covalently linked to a
bacteriophage coat protein. The linkage results from translation of a nucleic acid encoding the protein component fused to the coat protein. The linkage can include a flexible peptide linker, a protease site, or an amino acid incorporated as a result of suppression of a stop codon. Phage display is described, for example, in U.S. 5,223,409; Smith (1985) Science 228:1315-1317; WO 92/18619; WO 91/17271; WO 92/20791; WO 92/15679; WO 93/01288; WO 92/01047; WO 92/09690; WO 90/02809; de Haard et al. (1999) J. Biol. Chem 274:18218-30;
Hoogenboom et al. (1998) Immunotechnology 4: 1-20; Hoogenboom et al. (2000) Immunol Today 2:371-8 and Hoet et al. (2005) Nat Biotechnol. 23(3)344-8. Bacteriophage displaying the protein component can be grown and harvested using standard phage preparatory methods, e.g. PEG precipitation from growth media. After selection of individual display phages, the nucleic acid encoding the selected protein components can be isolated from cells infected with the selected phages or from the phage themselves, after amplification. Individual colonies or plaques can be picked, the nucleic acid isolated and sequenced. Other display formats include cell based display (see, e.g., WO 03/029456), protein- nucleic acid fusions (see, e.g., US 6,207,446), ribosome display (See, e.g., Mattheakis et al. (1994) Proc. Natl. Acad. Sci. USA 91:9022 and Hanes et al. (2000) Nat Biotechnol. 18:1287- 92; Hanes et al. (2000) Methods Enzymol. 328:404-30; and Schaffitzel et al. (1999) J Immunol Methods. 231(l-2):119-35), and E. coli periplasmic display (2005 Nov 22;PMID: 16337958). In some instances, scFvs can be prepared according to method known in the art (see, for example, Bird et al., (1988) Science 242:423-426 and Huston et al., (1988) Proc. Natl. Acad. Sci. USA 85:5879-5883). ScFv molecules can be produced by linking VH and VL regions together using flexible polypeptide linkers. The scFv molecules comprise a linker (e.g., a Ser- Gly linker) with an optimized length and/or amino acid composition. The linker length can greatly affect how the variable regions of a scFv fold and interact. In fact, if a short polypeptide linker is employed (e.g., between 5-10 amino acids) intrachain folding is prevented. Interchain folding is also required to bring the two variable regions together to form a functional epitope binding site. For examples of linker orientation and size see, e.g., Hollinger et al. 1993 Proc Natl Acad. Sci. U.S.A. 90:6444-6448, U.S. Patent Application Publication Nos. 2005/0100543, 2005/0175606, 2007/0014794, and PCT publication Nos. WO2006/020258 and
WO2007/024715, is incorporated herein by reference.
An scFv can comprise a linker of at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 45, 50, or more amino acid residues between its VL and VH regions. The linker sequence may comprise any naturally occurring amino acid. In some embodiments, the linker sequence comprises amino acids glycine and serine. In another embodiment, the linker sequence comprises sets of glycine and serine repeats such as (Gly4Ser)n, where n is a positive integer equal to or greater than 1 (SEQ ID NO:25). In one embodiment, the linker can be (Gly4Ser)4 (SEQ ID NO:27) or (Gly4Ser)3(SEQ ID NO:28). Variation in the linker length may retain or enhance activity, giving rise to superior efficacy in activity studies. Exemplary Human CLL-1 CAR Constructs and Antigen Binding Domains
Exemplary CLL-1 CAR constructs disclose herein comprise an scFv (e.g., a human scFv as disclosed in Tables 2 herein, optionally preceded with an optional leader sequence (e.g., SEQ ID NO:l and SEQ ID NO: 12 for exemplary leader amino acid and nucleotide sequences, respectively). The sequences of the human scFv fragments (amino acid sequences of SEQ ID NOs:39-51, and nucleotide sequences of SEQ ID NOs:52-64) are provided herein in Table 2. The CLL-1 CAR construct can further include an optional hinge domain, e.g., a CD8 hinge domain (e.g., including the amino acid sequence of SEQ ID NO: 2 or encoded by a nucleic acid sequence of SEQ ID NO: 13); a transmembrane domain, e.g., a CD8
transmembrane domain (e.g., including the amino acid sequence of SEQ ID NO: 6 or encoded by the nucleotide sequence of SEQ ID NO: 17); an intracellular domain, e.g., a 4-1BB intracellular domain (e.g., including the amino acid sequence of SEQ ID NO: 7 or encoded by the nucleotide sequence of SEQ ID NO: 18; and a functional signaling domain, e.g., a CD3 zeta domain (e.g., including amino acid sequence of SEQ ID NO: 9 or 10, or encoded by the nucleotide sequence of SEQ ID NO: 20 or 21). In certain embodiments, the domains are contiguous with and in the same reading frame to form a single fusion protein. In other embodiments, the domain are in separate polypeptides, e.g., as in an RCAR molecule as described herein.
In certain embodiments, the full length CLL-1 CAR molecule includes the amino acid sequence of, or is encoded by the nucleotide sequence of, CLL-1 CAR-1, CLL-1 CAR-2, CLL- 1 CAR-3, CLL-1 CAR-4, CLL-1 CAR-5, CLL-1 CAR-6, CL-L1 CAR-7, CLL-1 CAR-8, CLL- 1 CAR-9, CLL-1 CAR-10, CLL-1 CAR-11, CLL-1 CAR-12, CLL-1 CAR-13, 181268 provided in Table 2, or a sequence substantially (e.g., 95-99%) identical thereto.
In certain embodiments, the CLL-1 CAR molecule, or the anti-CLL-1 antigen binding domain, includes the scFv amino acid sequence of CLL-1 CAR-1, CLL-1 CAR-2, CLL-1 CAR-3, CLL-1 CAR-4, CLL-1 CAR-5, CLL-1 CAR-6, CL-L1 CAR-7, CLL-1 CAR-8, CLL-1 CAR-9, CLL-1 CAR-10, CLL-1 CAR-11, CLL-1 CAR-12, CLL-1 CAR-13, 181268, provided in Table 2; or includes the scFv amino acid sequence of, or is encoded by the nucleotide sequence of, CLL-1 CAR-1, CLL-1 CAR-2, CLL-1 CAR-3, CLL-1 CAR-4, CLL-1 CAR-5, CLL-1 CAR-6, CL-L1 CAR-7, CLL-1 CAR-8, CLL-1 CAR-9, CLL-1 CAR-10, CLL-1 CAR- 11, CLL-1 CAR-12, CLL-1 CAR-13, 181268, or a sequence substantially identical (e.g., 95- 99% identical, or up to 20, 15, 10, 8, 6, 5, 4, 3, 2, or 1 amino acid changes, e.g., substitutions (e.g., conservative substitutions)) to any of the aforesaid sequences.
In certain embodiments, the CLL-1 CAR molecule, or the anti-CLL-1 antigen binding domain, includes the heavy chain variable region and/or the light chain variable region of CLL- 1 CAR-1, CLL-1 CAR-2, CLL-1 CAR-3, CLL-1 CAR-4, CLL-1 CAR-5, CLL-1 CAR-6, CLLI CAR-7, CLL-1 CAR-8, CLL-1 CAR-9, CLL-1 CAR-10, CLL-1 CAR-11, CLL-1 CAR-12, CLL-1 CAR-13, 181268, provided in Table 2, or a sequence substantially identical (e.g., 95- 99% identical, or up to 20, 15, 10, 8, 6, 5, 4, 3, 2, or 1 amino acid changes, e.g., substitutions (e.g., conservative substitutions)) to any of the aforesaid sequences.
In certain embodiments, the CLL-1 CAR molecule, or the anti-CLL-1 antigen binding domain, includes one, two or three CDRs from the heavy chain variable region (e.g., HCDR1, HCDR2 and/or HCDR3), provided in Table 3; and/or one, two or three CDRs from the light chain variable region (e.g., LCDRl, LCDR2 and/or LCDR3) of CLL-1 CAR-1, CLL-1 CAR-2, CLL-1 CAR-3, CLL-1 CAR-4, CLL-1 CAR-5, CLL-1 CAR-6, CL-L1 CAR-7, CLL-1 CAR-8, CLL-1 CAR-9, CLL-1 CAR-10, CLL-1 CAR-11, CLL-1 CAR-12, CLL-1 CAR-13, 181268, provided in Table 4; or a sequence substantially identical (e.g., 95-99% identical, or up to 5, 4, 3, 2, or 1 amino acid changes, e.g., substitutions (e.g., conservative substitutions)) to any of the aforesaid sequences.
In certain embodiments, the CLL-1 CAR molecule, or the anti-CLL-1 antigen binding domain, includes one, two or three CDRs from the heavy chain variable region (e.g., HCDR1, HCDR2 and/or HCDR3), provided in Table 5; and/or one, two or three CDRs from the light chain variable region (e.g., LCDRl, LCDR2 and/or LCDR3) of CLL-1 CAR-1, CLL-1 CAR-2, CLL-1 CAR-3, CLL-1 CAR-4, CLL-1 CAR-5, CLL-1 CAR-6, CL-L1 CAR-7, CLL-1 CAR-8, CLL-1 CAR-9, CLL-1 CAR-10, CLL-1 CAR-11, CLL-1 CAR-12, CLL-1 CAR-13, 181268, provided in Table 6; or a sequence substantially identical (e.g., 95-99% identical, or up to 5, 4, 3, 2, or 1 amino acid changes, e.g., substitutions (e.g., conservative substitutions)) to any of the aforesaid sequences. In certain embodiments, the CLL-1 CAR molecule, or the anti-CLL-1 antigen binding domain, includes one, two or three CDRs from the heavy chain variable region (e.g., HCDR1, HCDR2 and/or HCDR3), provided in Table 7; and/or one, two or three CDRs from the light chain variable region (e.g., LCDRl, LCDR2 and/or LCDR3) of CLL-1 CAR-1, CLL-1 CAR-2, CLL-1 CAR-3, CLL-1 CAR-4, CLL-1 CAR-5, CLL-1 CAR-6, CL-Ll CAR-7, CLL-1 CAR-8, CLL-1 CAR-9, CLL-1 CAR- 10, CLL-1 CAR-11, CLL-1 CAR-12, CLL-1 CAR- 13, 181268, provided in Table 8; or a sequence substantially identical (e.g., 95-99% identical, or up to 5, 4, 3, 2, or 1 amino acid changes, e.g., substitutions (e.g., conservative substitutions)) to any of the aforesaid sequences.
The sequences of humanized CDR sequences of the scFv domains are shown in Tables 3, 5, and 7 for the heavy chain variable domains and in Tables 4, 6, and 8 for the light chain variable domains. "ID" stands for the respective SEQ ID NO for each CDR.
The CDRs provided in Tables 3 and 4 are according to a combination of the Kabat and Chothia numbering scheme.
Table 3. Heavy Chain Variable Domain CDRs
Figure imgf000077_0001
Figure imgf000078_0001
Table 4. Light Chain Variable Domain CDRs
Figure imgf000078_0002
Table 5. Heavy Chain Variable Domain CDRs according to the Kabat numbering scheme (Kabat et al. (1991), "Sequences of Proteins of Immunological Interest," 5th Ed. Public Health Service, National Institutes of Health, Bethesda, MD)
Figure imgf000078_0003
139118- PGTYYDFLSGYYPF
SSSYYWG 316 SIYYSGSTYYNPSLKS 330 344 CLL-1 -CAR3 Y
139122- NINEDGSAKFYVDSV
SYWMS 317 331 DLRSGRY 345 CLL-1 -CAR4 KG
139117-
SGSHYWN 318 YIYYSGSTNYNPSLEN 332 GTATFDWNFPFDS 346 CLL-1 -CAR5
139120- SISSSSSYIYYADSVK DPSSSGSYYMEDSY
SYSMN 320 334 348 CLL-1 -CAR7 G YYGMDV
139121- YISSSGSTIYYADSVK
SYEMN 321 335 EALGSSWE 349 CLL-1 -CAR8 G
146264- WIDPNSGNTGYAQKF
GYYIQ 326 340 DSYGYYYGMDV 354 CLL-1 -CAR13 QG
YISSSGSTIYYADSVK
181268 SYEMN 327 341 DPYSSSWHDAFDI 355
G
Table 6. Light Chain Variable Domain CDRs according to the Kabat numbering scheme (Kabat et al. (1991), "Sequences of Proteins of Immunological Interest," 5th Ed. Public Health Service, National Institutes of Health, Bethesda, MD)
Figure imgf000079_0001
Table 7. Heavy Chain Variable Domain CDRs according to the Chothia numbering scheme (Al-Lazikani et al., (1997) JMB 273,927-948) Candidate HCDR1 ID HCDR2 ID HCDR3 ID
146259-
ANTFSDH 406 HAANGG 420 GGYNSDAFDI 434 CLL-1 -CAR9
139119-
GGSFSGY 403 NHSGS 417 GSGLVVYAIRVGSGWFDY 431 CLL-1 -CAR6
146261-
GFTFSSY 407 SSSSST 421 DLS VR AID AFDI 435 CLL-1 -CAR10
146262-
GFTFNSY 408 EYDGSN 422 EGNEDLAFDI 436 CLL-1 -CAR11
146263-
GFNVSSN 409 YSGGA 423 DRLYCGNNCYLYYYYGMDV 437 CLL-1 -CAR12
139115-
GGTFSSY 398 IPIFGT 412 DLEMATIMGGY 426 CLL-1 -CAR1
139116-
GFTFDDY 399 SGDGGS 413 VFDSYYMDV 427 CLL-1 -CAR2
139118-
GGSISSSSY 400 YYSGS 414 PGTYYDFLSGYYPFY 428 CLL-1 -CAR3
139122-
GFTFSSY 401 NEDGSA 415 DLRSGRY 429 CLL-1 -CAR4
139117-
GGPVRSGSH 402 YYSGS 416 GTATFDWNFPFDS 430 CLL-1 -CAR5
139120-
GFTFSSY 404 SSSSSY 418 DPSSSGSYYMEDSYYYGMDV 432 CLL-1 -CAR7
139121-
GFTFSSY 405 SSSGST 419 EALGSSWE 433 CLL-1 -CAR8
146264-
GYPFTGY 410 DPNSGN 424 DSYGYYYGMDV 438 CLL-1 -CAR13
181268 GFTFSSY 411 SSSGST 425 DPYSSSWHDAFDI 439
Table 8. Light Chain Variable Domain CDRs according to the Chothia numbering scheme (Al- Lazikani et al., (1997) JMB 273,927-948)
Candidate LCDR1 ID LCDR2 ID LCDR3 ID
146259-
SQDISSW 448 AAS 462 SYSTPL 476 CLL-1 -CAR9
139119-
SQSISSY 445 AAS 459 SYSTPPW 473 CLL-1 -CAR6
146261-
SQDISNY 449 DAS 463 AYSTPF 477 CLL-1 -CAR10
146262-
SQFIKKN 450 DAS 464 HDNLPL 478 CLL-1 -CAR11
146263-
SQSISSY 451 AAS 465 SYSTPPL 479 CLL-1 -CAR12
139115-
TSSDVGGYNY 440 DVS 454 YTSSSTLDV 468 CLL-1 -CAR1
139116-
SQSLVYTDGNTY 441 KVS 455 GTHWSF 469 CLL-1 -CAR2
139118-
SQGISSY 442 AAS 456 LNSYPY 470 CLL-1 -CAR3
139122-
SQSISGSF 443 GAS 457 YGSSPP 471 CLL-1 -CAR4
139117-
SQSISSY 444 AAS 458 SYSTPW 472 CLL-1 -CAR5 139120-
SSGSIASNY 446 EDN 460 YDSSNQV 474 CLL-1 -CAR7
139121-
SQDISNY 447 DAS 461 YDNLPL 475 CLL-1 -CAR8
146264-
SQGISSA 452 DAS 466 FNNYPL 480 CLL-1 -CAR13
181268 SQSVSSSY 453 GAS 467 YGSSPL 481
In certain embodiments, the CAR molecule described herein (e.g., the CAR nucleic acid or the CAR polypeptide) includes:
(1) one, two, or three light chain (LC) CDRs chosen from one of the following: (i) a LC CDRl of SEQ ID NO: 156, LC CDR2 of SEQ ID NO: 169 and LC CDR3 of
SEQ ID NO: 182 of CLL-1 CAR-1 ;
(ii) a LC CDRl of SEQ ID NO: 157, LC CDR2 of SEQ ID NO: 170 and LC CDR3 of SEQ ID NO: 183 of CLL-1 CAR-2;
(iii) a LC CDRl of SEQ ID NO: 158, LC CDR2 of SEQ ID NO: 171 and LC CDR3 of SEQ ID NO: 184 of CLL-1 CAR-3;
(iv) a LC CDRl of SEQ ID NO: 159, LC CDR2 of SEQ ID NO: 172 and LC CDR3 of SEQ ID NO: 185 of CLL-1 CAR-4;
(v) a LC CDRl of SEQ ID NO: 160, LC CDR2 of SEQ ID NO: 173 and LC CDR3 of SEQ ID NO: 186 of CLL-1 CAR-5;
(vi) a LC CDRl of SEQ ID NO: 161, LC CDR2 of SEQ ID NO: 174 and LC CDR3 of
SEQ ID NO: 187 of CLL-1 CAR-6;
(vii) a LC CDRl of SEQ ID NO: 162, LC CDR2 of SEQ ID NO: 175 and LC CDR3 of SEQ ID NO: 188 of CLL-1 CAR-7;
(viii) a LC CDRl of SEQ ID NO: 163, LC CDR2 of SEQ ID NO: 176 and LC CDR3 of SEQ ID NO: 189 of CLL-1 CAR-8; or
(ix) a LC CDRl of SEQ ID NO: 164, LC CDR2 of SEQ ID NO: 177 and LC CDR3 of SEQ ID NO: 190 of CLL-1 CAR-9;
(x) a LC CDRl of SEQ ID NO: 165, LC CDR2 of SEQ ID NO: 178 and LC CDR3 of SEQ ID NO: 191 of CLL-1 CAR-10;
(xi) a LC CDRl of SEQ ID NO: 166, LC CDR2 of SEQ ID NO: 179 and LC CDR3 of
SEQ ID NO: 192 of CLL-1 CAR-11 ; (xii) a LC CDRl of SEQ ID NO: 167, LC CDR2 of SEQ ID NO: 180 and LC CDR3 of SEQ ID NO: 193 of CLL-1 CAR-12;
(xiii) a LC CDRl of SEQ ID NO: 168, LC CDR2 of SEQ ID NO: 181 and LC CDR3 of SEQ ID NO: 194 of CLL-1 CAR-13;
(xiv) a LC CDRl of SEQ ID NO: 202, LC CDR2 of SEQ ID NO: 203 and LC CDR3 of
SEQ ID NO: 204 of 181286; and/or
(2) one, two, or three heavy chain (HC) CDRs from one of the following:
(i) a HC CDRl of SEQ ID NO: 117, HC CDR2 of SEQ ID NO: 130 and HC CDR3 of SEQ ID NO: 143 of CLL-1 CAR-1;
(ii) a HC CDRl of SEQ ID NO: 118, HC CDR2 of SEQ ID NO: 131 and HC CDR3 of
SEQ ID NO: 144 of CLL-1 CAR-2;
(iii) a HC CDRl of SEQ ID NO: 119, HC CDR2 of SEQ ID NO: 132 and HC CDR3 of SEQ ID NO: 145 of CLL-1 CAR-3;
(iv) a HC CDRl of SEQ ID NO: 120, HC CDR2 of SEQ ID NO: 133 and HC CDR3 of SEQ ID NO: 146 of CLL-1 CAR-4;
(v) a HC CDRl of SEQ ID NO: 121, HC CDR2 of SEQ ID NO: 134 and HC CDR3 of SEQ ID NO: 147 of CLL-1 CAR-5;
(vi) a HC CDRl of SEQ ID NO: 122, HC CDR2 of SEQ ID NO: 135 and HC CDR3 of SEQ ID NO: 148 of CLL-1 CAR-6;
(vii) a HC CDRl of SEQ ID NO: 123, HC CDR2 of SEQ ID NO: 136 and HC CDR3 of
SEQ ID NO: 149 of CLL-1 CAR-7;
(viii) a HC CDRl of SEQ ID NO: 124, HC CDR2 of SEQ ID NO: 137 and HC CDR3 of SEQ ID NO: 150 of CLL-1 CAR-8; or
(ix) a HC CDRl of SEQ ID NO: 125, HC CDR2 of SEQ ID NO: 138 and HC CDR3 of SEQ ID NO: 151 of CLL-1 CAR-9;
(x) a HC CDRl of SEQ ID NO: 126, HC CDR2 of SEQ ID NO: 139 and HC CDR3 of SEQ ID NO: 152 of CLL-1 CAR-10;
(xi) a HC CDRl of SEQ ID NO: 127, HC CDR2 of SEQ ID NO: 140 and HC CDR3 of SEQ ID NO: 153 of CLL-1 CAR-11;
(xii) a HC CDRl of SEQ ID NO: 128, HC CDR2 of SEQ ID NO: 141 and HC CDR3 of
SEQ ID NO: 154 of CLL-1 CAR-12; (xiii) a HC CDRl of SEQ ID NO: 129, HC CDR2 of SEQ ID NO: 142 and HC CDR3 of SEQ ID NO: 155 of CLL-1 CAR- 13;
(xiv) a HC CDRl of SEQ ID NO: 199, HC CDR2 of SEQ ID NO: 200 and HC CDR3 of SEQ ID NO: 201 of 181286.
In certain embodiments, the CAR molecule described herein (e.g., the CAR nucleic acid or the CAR polypeptide) or a CLL-1 binding domain includes:
(1) one, two, or three light chain (LC) CDRs chosen from one of the following:
(i) a LC CDRl of SEQ ID NO: 356, LC CDR2 of SEQ ID NO: 370 and LC CDR3 of SEQ ID NO: 384 of CLL-1 CAR-1 ;
(ii) a LC CDRl of SEQ ID NO: 357, LC CDR2 of SEQ ID NO: 371 and LC CDR3 of SEQ ID NO: 385 of CLL-1 CAR-2;
(iii) a LC CDRl of SEQ ID NO: 358, LC CDR2 of SEQ ID NO: 372 and LC CDR3 of SEQ ID NO: 386 of CLL-1 CAR-3;
(iv) a LC CDRl of SEQ ID NO: 359, LC CDR2 of SEQ ID NO: 373 and LC CDR3 of
SEQ ID NO: 387 of CLL-1 CAR-4;
(v) a LC CDRl of SEQ ID NO: 360, LC CDR2 of SEQ ID NO: 374 and LC CDR3 of SEQ ID NO: 388 of CLL-1 CAR-5;
(vi) a LC CDRl of SEQ ID NO: 361, LC CDR2 of SEQ ID NO: 375 and LC CDR3 of SEQ ID NO: 389 of CLL-1 CAR-6;
(vii) a LC CDRl of SEQ ID NO: 362, LC CDR2 of SEQ ID NO: 376 and LC CDR3 of SEQ ID NO: 390 of CLL-1 CAR-7;
(viii) a LC CDRl of SEQ ID NO: 363, LC CDR2 of SEQ ID NO: 377 and LC CDR3 of SEQ ID NO: 391 of CLL-1 CAR-8; or
(ix) a LC CDRl of SEQ ID NO: 364, LC CDR2 of SEQ ID NO: 378 and LC CDR3 of
SEQ ID NO: 392 of CLL-1 CAR-9;
(x) a LC CDRl of SEQ ID NO: 365, LC CDR2 of SEQ ID NO: 379 and LC CDR3 of SEQ ID NO: 393 of CLL-1 CAR-10;
(xi) a LC CDRl of SEQ ID NO: 366, LC CDR2 of SEQ ID NO: 380 and LC CDR3 of SEQ ID NO: 394 of CLL-1 CAR-11 ;
(xii) a LC CDRl of SEQ ID NO: 367, LC CDR2 of SEQ ID NO: 381 and LC CDR3 of SEQ ID NO: 395 of CLL-1 CAR-12; (xiii) a LC CDRl of SEQ ID NO: 368, LC CDR2 of SEQ ID NO: 382 and LC CDR3 of SEQ ID NO: 396 of CLL-1 CAR-13;
(xiv) a LC CDRl of SEQ ID NO: 369, LC CDR2 of SEQ ID NO: 383 and LC CDR3 of SEQ ID NO: 397 of 181286; and/or
(2) one, two, or three heavy chain (HC) CDRs from one of the following:
(i) a HC CDRl of SEQ ID NO: 314, HC CDR2 of SEQ ID NO: 328 and HC CDR3 of SEQ ID NO: 342 of CLL-1 CAR-1;
(ii) a HC CDRl of SEQ ID NO: 315, HC CDR2 of SEQ ID NO: 329 and HC CDR3 of SEQ ID NO: 343 of CLL-1 CAR-2;
(iii) a HC CDRl of SEQ ID NO: 316, HC CDR2 of SEQ ID NO: 330 and HC CDR3 of
SEQ ID NO: 344 of CLL-1 CAR-3;
(iv) a HC CDRl of SEQ ID NO: 317, HC CDR2 of SEQ ID NO: 331 and HC CDR3 of SEQ ID NO: 345 of CLL-1 CAR-4;
(v) a HC CDRl of SEQ ID NO: 318, HC CDR2 of SEQ ID NO: 332 and HC CDR3 of SEQ ID NO: 346 of CLL-1 CAR-5;
(vi) a HC CDRl of SEQ ID NO: 319, HC CDR2 of SEQ ID NO: 333 and HC CDR3 of SEQ ID NO: 347 of CLL-1 CAR-6;
(vii) a HC CDRl of SEQ ID NO: 320, HC CDR2 of SEQ ID NO: 334 and HC CDR3 of SEQ ID NO: 348 of CLL-1 CAR-7;
(viii) a HC CDRl of SEQ ID NO: 321, HC CDR2 of SEQ ID NO: 335 and HC CDR3 of SEQ ID NO: 349 of CLL-1 CAR-8; or
(ix) a HC CDRl of SEQ ID NO: 322, HC CDR2 of SEQ ID NO: 336 and HC CDR3 of SEQ ID NO: 350 of CLL-1 CAR-9;
(x) a HC CDRl of SEQ ID NO: 323, HC CDR2 of SEQ ID NO: 337 and HC CDR3 of SEQ ID NO: 351 of CLL-1 CAR-10;
(xi) a HC CDRl of SEQ ID NO: 324, HC CDR2 of SEQ ID NO: 338 and HC CDR3 of SEQ ID NO: 352 of CLL-1 CAR-11;
(xii) a HC CDRl of SEQ ID NO: 325, HC CDR2 of SEQ ID NO: 339 and HC CDR3 of SEQ ID NO: 353 of CLL-1 CAR-12;
(xiii) a HC CDRl of SEQ ID NO: 326, HC CDR2 of SEQ ID NO: 340 and HC CDR3 of SEQ ID NO: 354 of CLL-1 CAR-13; (xiv) a HC CDRl of SEQ ID NO: 327, HC CDR2 of SEQ ID NO: 341 and HC CDR3 of SEQ ID NO: 355 of 181286.
In certain embodiments, the CAR molecule described herein (e.g., the CAR nucleic acid or the CAR polypeptide) includes:
(1) one, two, or three light chain (LC) CDRs chosen from one of the following:
(i) a LC CDRl of SEQ ID NO: 440, LC CDR2 of SEQ ID NO: 454 and LC CDR3 of SEQ ID NO: 468 of CLL-1 CAR-1 ;
(ii) a LC CDRl of SEQ ID NO: 441, LC CDR2 of SEQ ID NO: 455 and LC CDR3 of SEQ ID NO: 469 of CLL-1 CAR-2;
(iii) a LC CDRl of SEQ ID NO: 442, LC CDR2 of SEQ ID NO: 456 and LC CDR3 of SEQ ID NO: 470 of CLL-1 CAR-3;
(iv) a LC CDRl of SEQ ID NO: 443, LC CDR2 of SEQ ID NO: 457 and LC CDR3 of SEQ ID NO: 471 of CLL-1 CAR-4;
(v) a LC CDRl of SEQ ID NO: 444, LC CDR2 of SEQ ID NO: 458 and LC CDR3 of
SEQ ID NO: 472 of CLL-1 CAR-5;
(vi) a LC CDRl of SEQ ID NO: 445, LC CDR2 of SEQ ID NO: 459 and LC CDR3 of SEQ ID NO: 473 of CLL-1 CAR-6;
(vii) a LC CDRl of SEQ ID NO: 446, LC CDR2 of SEQ ID NO: 460 and LC CDR3 of SEQ ID NO: 474 of CLL-1 CAR-7;
(viii) a LC CDRl of SEQ ID NO: 447, LC CDR2 of SEQ ID NO: 461 and LC CDR3 of SEQ ID NO: 475 of CLL-1 CAR-8; or
(ix) a LC CDRl of SEQ ID NO: 448, LC CDR2 of SEQ ID NO: 462 and LC CDR3 of SEQ ID NO: 476 of CLL-1 CAR-9;
(x) a LC CDRl of SEQ ID NO: 449, LC CDR2 of SEQ ID NO: 463 and LC CDR3 of
SEQ ID NO: 477 of CLL-1 CAR-10;
(xi) a LC CDRl of SEQ ID NO: 450, LC CDR2 of SEQ ID NO: 464 and LC CDR3 of SEQ ID NO: 478 of CLL-1 CAR-11 ;
(xii) a LC CDRl of SEQ ID NO: 451, LC CDR2 of SEQ ID NO: 465 and LC CDR3 of SEQ ID NO: 479 of CLL-1 CAR-12;
(xiii) a LC CDRl of SEQ ID NO: 452, LC CDR2 of SEQ ID NO: 466 and LC CDR3 of SEQ ID NO: 480 of CLL-1 CAR-13; (xiv) a LC CDRl of SEQ ID NO: 453, LC CDR2 of SEQ ID NO: 467 and LC CDR3 of SEQ ID NO: 481 of 181286; and/or
(2) one, two, or three heavy chain (HC) CDRs from one of the following:
(i) a HC CDRl of SEQ ID NO: 398, HC CDR2 of SEQ ID NO: 412 and HC CDR3 of SEQ ID NO: 426 of CLL-1 CAR-1;
(ii) a HC CDRl of SEQ ID NO: 399, HC CDR2 of SEQ ID NO: 413 and HC CDR3 of SEQ ID NO: 427 of CLL-1 CAR-2;
(iii) a HC CDRl of SEQ ID NO: 400, HC CDR2 of SEQ ID NO: 414 and HC CDR3 of SEQ ID NO: 428 of CLL-1 CAR-3;
(iv) a HC CDRl of SEQ ID NO: 401, HC CDR2 of SEQ ID NO: 415 and HC CDR3 of
SEQ ID NO: 429 of CLL-1 CAR-4;
(v) a HC CDRl of SEQ ID NO: 402, HC CDR2 of SEQ ID NO: 416 and HC CDR3 of SEQ ID NO: 430 of CLL-1 CAR-5;
(vi) a HC CDRl of SEQ ID NO: 403, HC CDR2 of SEQ ID NO: 417 and HC CDR3 of SEQ ID NO: 431 of CLL-1 CAR-6;
(vii) a HC CDRl of SEQ ID NO: 404, HC CDR2 of SEQ ID NO: 418 and HC CDR3 of SEQ ID NO: 432 of CLL-1 CAR-7;
(viii) a HC CDRl of SEQ ID NO: 405, HC CDR2 of SEQ ID NO: 419 and HC CDR3 of SEQ ID NO: 433 of CLL-1 CAR-8; or
(ix) a HC CDRl of SEQ ID NO: 406, HC CDR2 of SEQ ID NO: 420 and HC CDR3 of
SEQ ID NO: 434 of CLL-1 CAR-9;
(x) a HC CDRl of SEQ ID NO: 407, HC CDR2 of SEQ ID NO: 421 and HC CDR3 of SEQ ID NO: 435 of CLL-1 CAR-10;
(xi) a HC CDRl of SEQ ID NO: 408, HC CDR2 of SEQ ID NO: 422 and HC CDR3 of SEQ ID NO: 436 of CLL-1 CAR-11;
(xii) a HC CDRl of SEQ ID NO: 409, HC CDR2 of SEQ ID NO: 423 and HC CDR3 of SEQ ID NO: 437 of CLL-1 CAR-12;
(xiii) a HC CDRl of SEQ ID NO: 410, HC CDR2 of SEQ ID NO: 424 and HC CDR3 of SEQ ID NO: 438 of CLL-1 CAR-13;
(xiv) a HC CDRl of SEQ ID NO: 411, HC CDR2 of SEQ ID NO: 425 and HC CDR3 of SEQ ID NO: 439 of 181286. In embodiments, fully human anti-CLL-1 single chain variable fragments are generated and cloned into lentiviral CAR expression vectors with the intracellular CD3zeta domain and the intracellular co- stimulatory domain of 4-lBBNames of exemplary fully human CLL-1 scFvs are depicted in Table 1. Table 1 : CAR-CLL-1 constructs
Figure imgf000087_0001
In embodiments, the order in which the VL and VH domains appear in the scFv is varied (i.e., VL-VH, or VH-VL orientation), and where either three or four copies of the "G4S' (SEQ ID NO:25) subunit, in which each subunit comprises the sequence GGGGS (SEQ ID NO:25) (e.g., (G4S)3 (SEQ ID NO:28) or (G4S)4(SEQ ID NO:27)), connect the variable domains to create the entirety of the scFv domain, as shown in Table 2. The amino acid and nucleic acid sequences of the CLL-1 scFv domains and CLL-1 CAR molecules are provided in Table 2. The amino acid sequences for the variable heavy chain and variable light chain for each scFv is also provided in Table 2 It is noted that the scFv fragments (SEQ ID NOs: 39-51) with a leader sequence (e.g., the amino acid sequence of SEQ ID NO: 1 or the nucleotide sequence of SEQ ID NO: 12) are also encompassed by the present invention.
Leader (amino acid sequence) (SEQ ID NO: 1)
MALPVTALLLPLALLLHAARP
Leader (nucleic acid sequence) (SEQ ID NO: 12)
ATGGCCCTGCCTGTGACAGCCCTGCTGCTGCCTCTGGCTCTGCTGCTGCATGCCGCTAG ACCC
CD8 hinge (amino acid sequence) (SEQ ID NO: 2)
TTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGLDFACD CD8 hinge (nucleic acid sequence) (SEQ ID NO: 13)
ACCACGACGCCAGCGCCGCGACCACCAACACCGGCGCCCACCATCGCGTCGCAGCCCC
TGTCCCTGCGCCCAGAGGCGTGCCGGCCAGCGGCGGGGGGCGCAGTGCACACGAGGG
GGCTGGACTTCGCCTGTGA CD8 transmembrane (amino acid sequence) (SEQ ID NO: 6)
IYIWAPLAGTCGVLLLSLVITLYC CD8 transmembrane (nucleic acid sequence) (SEQ ID NO: 17)
ATCTACATCTGGGCGCCCTTGGCCGGGACTTGTGGGGTCCTTCTCCTGTCACTGGTTATC ACCCTTTACTGC
4-1BB Intracellular domain (amino acid sequence) (SEQ ID NO: 7)
KRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCEL
4-1BB Intracellular domain (nucleic acid sequence) (SEQ ID NO: 18)
AAACGGGGCAGAAAGAAACTCCTGTATATATTCAAACAACCATTTATGAGACCAGTAC AAACTACTCAAGAGGAAGATGGCTGTAGCTGCCGATTTCCAGAAGAAGAAGAAGGAG GATGTGAACTG
CD28 Intracellular domain (amino acid sequence) (SEQ ID NO: 482) RSKRSRLLHSDYMNMTPRRPGPTRKHYQPYAPPRDFAAYRS (SEQ ID NO: 482)
CD28 Intracellular domain (nucleotide sequence) (SEQ ID NO: 483)
AGGAGTAAGAGGAGCAGGCTCCTGCACAGTGACTACATGAACATGACTCCCCG CCGCCCCGGGCCCACCCGCAAGCATTACCAGCCCTATGCCCCACCACGCGACTT CGCAGCCTATCGCTCC (SEQ ID NO: 483)
ICOS Intracellular domain (amino acid sequence) (SEQ ID NO: 484)
T K K K Y S S S V H D P N G E Y M F M R A V N T A K K S R L T D V T L
(SEQ ID NO: 484)
ICOS Intracellular domain (nucleotide sequence) (SEQ ID NO: 485)
ACAAAAAAGAAGTATTCATCCAGTGTGCACGACCCTAACGGTGAATACATGTTCATGA GAGCAGTGAACACAGCCAAAAAATCCAGACTCACAGATGTGACCCTA (SEQ ID NO: 485) CD3 zeta domain (amino acid sequence) (SEQ ID NO: 9)
RVKFSRSADAPAYKQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQEGLY NELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPR CD3 zeta (nucleic acid sequence) (SEQ ID NO: 20)
AGAGTGAAGTTCAGCAGGAGCGCAGACGCCCCCGCGTACAAGCAGGGCCAGAACCAG
GTGGCCGGGACCCTGAGATGGGGGGAAAGCCGAGAAGGAAGAACCCTCAGGAAGGCC TGTACAATGAACTGCAGAAAGATAAGATGGCGGAGGCCTACAGTGAGATTGGGATGA AAGGCGAGCGCCGGAGGGGCAAGGGGCACGATGGCCTTTACCAGGGTCTCAGTACAG CCACCAAGGACACCTACGACGCCCTTCACATGCAGGCCCTGCCCCCTCGC
CD3 zeta domain (amino acid sequence; NCBI Reference Sequence NM_000734.3) (SEQ ID NO:10)
RVKFSRSADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQEGLY NELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPR
CD3 zeta (nucleic acid sequence; NCBI Reference Sequence NM_000734.3); (SEQ ID
NO:21)
AGAGTGAAGTTCAGCAGGAGCGCAGACGCCCCCGCGTACCAGCAGGGCCAG
AACCAGCTCTATAACGAGCTCAATCTAGGACGAAGAGAGGAGTACGATGTTT
TGGACAAGAGACGTGGCCGGGACCCTGAGATGGGGGGAAAGCCGAGAAGGA AGAACCCTCAGGAAGGCCTGTACAATGAACTGCAGAAAGATAAGATGGCGG AGGCCTACAGTGAGATTGGGATGAAAGGCGAGCGCCGGAGGGGCAAGGGGC ACGATGGCCTTTACCAGGGTCTCAGTACAGCCACCAAGGACACCTACGACGC CCTTCACATGCAGGCCCTGCCCCCTCGC
IgG4 Hinge (amino acid sequence) (SEQ ID NO:36)
ESKYGPPCPPCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVD GVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAK GQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSD GSFFLYSRLT VDKSRWQEGNVFSCS VMHEALHNHYTQKSLSLSLGKM
IgG4 Hinge (nucleotide sequence) (SEQ ID NO:37)
GAGAGCAAGTACGGCCCTCCCTGCCCCCCTTGCCCTGCCCCCGAGTTCCTGGGCGGACC CAGCGTGTTCCTGTTCCCCCCCAAGCCCAAGGACACCCTGATGATCAGCCGGACCCCCG AGGTGACCTGTGTGGTGGTGGACGTGTCCCAGGAGGACCCCGAGGTCC AGTTCAACTG
GTACGTGGACGGCGTGGAGGTGCACAACGCCAAGACCAAGCCCCGGGAGGAGCAGTT CAATAGCACCTACCGGGTGGTGTCCGTGCTGACCGTGCTGCACCAGGACTGGCTGAAC GGCAAGGAATACAAGTGTAAGGTGTCCAACAAGGGCCTGCCCAGCAGCATCGAGAAA ACCATCAGCAAGGCCAAGGGCCAGCCTCGGGAGCCCCAGGTGTACACCCTGCCCCCTA GCCAAGAGGAGATGACCAAGAACCAGGTGTCCCTGACCTGCCTGGTGAAGGGCTTCTA CCCCAGCGACATCGCCGTGGAGTGGGAGAGCAACGGCCAGCCCGAGAACAACTACAA GACCACCCCCCCTGTGCTGGACAGCGACGGCAGCTTCTTCCTGTACAGCCGGCTGACCG TGGACAAGAGCCGGTGGCAGGAGGGCAACGTCTTTAGCTGCTCCGTGATGCACGAGGC CCTGCACAACCACTACACCCAGAAGAGCCTGAGCCTGTCCCTGGGCAAGATG
In embodiments, these clones (e.g., in Table 2) all contained a Q/K residue change in the signal domain of the co-stimulatory domain derived from CD3zeta chain.
Table 2: Amino Acid and Nucleic Acid Sequences of the anti-CLL-1 scFv domains and CLL-1 CAR molecules
Name/ SEQ Sequence
Description ID
NO:
146259
146259- aa 47 Q VQ L VQ S GAE VKE P GASVKVS CK AP ANTF SD HVMHWVRQAP GQRFEWMGY ScFv domain IHAANGGTHYSQKFQDRVTITRDTSANTVYMDLSSLRSEDTAVYYCARGG CLL-1 CAR 9 YNSDAFDIWGQGTMVTVSSGGGGSGGGGSGGGGSGGGGSDIVMTQSPSSV
SASVGDRVTITCRASQDISSWLAWYQQKPGKAPKLLIYAASSLQSGVPSR FNGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPLTFGGGTKVEIK
146259- nt 60 CAAGTGCAACTCGTCCAGTCCGGTGCAGAAGTCAAGGAACCCGGAGCCTC ScFv domain CGTGAAAGTGTCCTGCAAAGCTCCTGCCAACACTTTCTCGGACCACGTGA CLL-1 CAR 9 TGCACTGGGTGCGCCAGGCGCCGGGCCAGCGCTTCGAATGGATGGGATAC
ATTCATGCCGCCAATGGCGGTACCCACTACTCCCAAAAGTTCCAGGATAG AGTCACCATCACCCGGGACACCAGCGCCAACACCGTGTATATGGATCTGT CCAGCCTGAGGTCCGAGGATACCGCCGTGTACTACTGCGCCCGGGGCGGA TACAACTCAGACGCGTTCGACATTTGGGGACAGGGTACTATGGTCACCGT GTCATCCGGGGGCGGTGGCAGCGGGGGCGGAGGCTCTGGCGGAGGCGGAT CAGGGGGAGGAGGGTCCGACATCGTGATGACCCAGTCCCCGTCATCGGTG TCCGCGTCCGTGGGAGACAGAGTGACCATCACGTGTCGCGCCAGCCAGGA CATCTCCTCGTGGTTGGCATGGTACCAGCAGAAGCCTGGAAAGGCCCCGA AGCTGCTCATCTACGCCGCCTCCTCCCTTCAATCGGGAGTGCCCTCGCGG TTCAACGGAAGCGGAAGCGGGACAGATTTTACCCTGACTATTAGCTCGCT GCAGCCCGAGGACTTCGCTACTTACTACTGCCAACAGAGCTACTCCACCC CACTGACTTTCGGCGGGGGTACCAAGGTCGAGATCAAG
146259- aa 73 QVQLVQSGAEVKEPGASVKVSCKAPANTFSDHVMHWVRQAPGQRFEWMGY VH of ScFv IHAANGGTHYSQKFQDRVTITRDTSANTVYMDLSSLRSEDTAVYYCARGG CLL-1 CAR 9 YNSDAFDIWGQGTMVTVSS
146259- aa 86 DIVMTQSPSSVSASVGDRVTITCRASQDISSWLAWYQQKPGKAPKLLIYA VL of ScFv ASSLQSGVPSRFNGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPLTFGG CLL-1 CAR 9 GTKVEIK
146259- aa 99 MALPVTALLLPLALLLHAARPQVQLVQSGAEVKEPGASVKVSCKAPANTF Full CAR SDHVMHWVRQAPGQRFEWMGYIHAANGGTHYSQKFQDRVTITRDTSANTV CLL-1 CAR 9 YMDLSSLRSEDTAVYYCARGGYNSDAFDIWGQGTMVTVSSGGGGSGGGGS
GGGGSGGGGSDIVMTQSPSSVSASVGDRVTITCRASQDISSWLAWYQQKP GKAPKLLIYAASSLQSGVPSRFNGSGSGTDFTLTI SSLQPEDFATYYCQQ SYSTPLTFGGGTKVEIKTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGG AVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCKRGRKKLLYIFKQP FMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSADAPAYKQGQNQLYN ELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYS EIGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPR
146259- nt 112 ATGGCCCTCCCTGTCACCGCCCTGCTGCTTCCGCTGGCTCTTCTGCTCCA Full CAR CGCCGCTCGGCCCCAAGTGCAACTCGTCCAGTCCGGTGCAGAAGTCAAGG CLL-1 CAR 9 AACCCGGAGCCTCCGTGAAAGTGTCCTGCAAAGCTCCTGCCAACACTTTC
TCGGACCACGTGATGCACTGGGTGCGCCAGGCGCCGGGCCAGCGCTTCGA ATGGATGGGATACATTCATGCCGCCAATGGCGGTACCCACTACTCCCAAA AGTTCCAGGATAGAGTCACCATCACCCGGGACACCAGCGCCAACACCGTG TATATGGATCTGTCCAGCCTGAGGTCCGAGGATACCGCCGTGTACTACTG CGCCCGGGGCGGATACAACTCAGACGCGTTCGACATTTGGGGACAGGGTA CTATGGTCACCGTGTCATCCGGGGGCGGTGGCAGCGGGGGCGGAGGCTCT GGCGGAGGCGGATCAGGGGGAGGAGGGTCCGACATCGTGATGACCCAGTC CCCGTCATCGGTGTCCGCGTCCGTGGGAGACAGAGTGACCATCACGTGTC GCGCCAGCCAGGACATCTCCTCGTGGTTGGCATGGTACCAGCAGAAGCCT GGAAAGGCCCCGAAGCTGCTCATCTACGCCGCCTCCTCCCTTCAATCGGG AGTGCCCTCGCGGTTCAACGGAAGCGGAAGCGGGACAGATTTTACCCTGA CTATTAGCTCGCTGCAGCCCGAGGACTTCGCTACTTACTACTGCCAACAG AGCTACTCCACCCCACTGACTTTCGGCGGGGGTACCAAGGTCGAGATCAA GACCACTACCCCAGCACCGAGGCCACCCACCCCGGCTCCTACCATCGCCT CCCAGCCTCTGTCCCTGCGTCCGGAGGCATGTAGACCCGCAGCTGGTGGG GCCGTGCATACCCGGGGTCTTGACTTCGCCTGCGATATCTACATTTGGGC CCCTCTGGCTGGTACTTGCGGGGTCCTGCTGCTTTCACTCGTGATCACTC TTTACTGTAAGCGCGGTCGGAAGAAGCTGCTGTACATCTTTAAGCAACCC TTCATGAGGCCTGTGCAGACTACTCAAGAGGAGGACGGCTGTTCATGCCG GTTCCCAGAGGAGGAGGAAGGCGGCTGCGAACTGCGCGTGAAATTCAGCC GCAGCGCAGATGCTCCAGCCTACAAGCAGGGGCAGAACCAGCTCTACAAC GAACTCAATCTTGGTCGGAGAGAGGAGTACGACGTGCTGGACAAGCGGAG AGGACGGGACCCAGAAATGGGCGGGAAGCCGCGCAGAAAGAATCCCCAAG AGGGCCTGTACAACGAGCTCCAAAAGGATAAGATGGCAGAAGCCTATAGC GAGATTGGTATGAAAGGGGAACGCAGAAGAGGCAAAGGCCACGACGGACT GTACCAGGGACTCAGCACCGCCACCAAGGACACCTATGACGCTCTTCACA TGCAGGCCCTGCCGCCTCGG
139119
139119- aa 44 QVQLQESGAGLLKPSETLSLTCAVYGGSFSGYYWSWIRQPPGKGLEWVGE ScFv domain INHSGSTNYNPSLKSRVTI SVDTSKNQFSLKLSSVTAADTAVYYCARGSG CLL-1 CAR 6 LVVYAIRVGSGWFDYWGQGTLVTVSSGGGGSGGGDSGGGGSDIQMTQSPS
SLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLMYAASSLQSGVP SRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPPWTFGQGTKVDIK
139119- nt 57 CAAGTGCAACTTCAAGAATCAGGCGCAGGACTTCTCAAGCCATCCGAAAC ScFv domain ACTCTCCCTCACTTGCGCGGTGTACGGGGGAAGCTTCTCGGGATACTACT CLL-1 CAR 6 GGTCCTGGATTAGGCAGCCTCCCGGCAAAGGCCTGGAATGGGTCGGGGAG
ATCAACCACTCCGGTTCAACCAACTACAACCCGTCGCTGAAGTCCCGCGT GACCATTTCCGTGGACACCTCTAAGAATCAGTTCAGCCTGAAGCTCTCGT CCGTGACCGCGGCGGACACCGCCGTCTACTACTGCGCTCGGGGATCAGGA CTGGTGGTGTACGCCATCCGCGTGGGCTCGGGCTGGTTCGATTACTGGGG CCAGGGAACCCTGGTCACTGTGTCGTCCGGCGGAGGAGGTTCGGGGGGCG GAGACAGCGGTGGAGGGGGTAGCGACATCCAGATGACCCAGTCCCCGTCC TCGCTGTCCGCCTCCGTGGGAGATAGAGTGACCATCACCTGTCGGGCATC CCAGAGCATTTCCAGCTACCTGAACTGGTATCAGCAGAAGCCCGGAAAGG CCCCTAAGCTGTTGATGTACGCCGCCAGCAGCTTGCAGTCGGGCGTGCCG AGCCGGTTTTCCGGTTCCGGCTCCGGGACTGACTTCACCCTGACTATCTC ATCCCTGCAACCCGAGGACTTCGCCACTTATTACTGCCAGCAGTCCTACT CAACCCCTCCCTGGACGTTCGGACAGGGCACCAAGGTCGATATCAAG
139119- aa 70 QVQLQESGAGLLKPSETLSLTCAVYGGSFSGYYWSWIRQPPGKGLEWVGE VH of ScFv INHSGSTNYNPSLKSRVTI SVDTSKNQFSLKLSSVTAADTAVYYCARGSG CLL-1 CAR 6 LVVYAIRVGSGWFDYWGQGTLVTVSS
139119- aa 83 DIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLMYA VL of ScFv ASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPPWTFG CLL-1 CAR 6 QGTKVDIK
139119- aa 96 MALPVTALLLPLALLLHAARPQVQLQESGAGLLKPSETLSLTCAVYGGSF Full CAR SGYYWSWIRQPPGKGLEWVGEINHSGSTNYNPSLKSRVTISVDTSKNQFS CLL-1 CAR 6 LKLSSVTAADTAVYYCARGSGLVVYAIRVGSGWFDYWGQGTLVTVSSGGG
GSGGGDSGGGGSDIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQ KPGKAPKLLMYAASSLQSGVPSRFSGSGSGTDFTLTI SSLQPEDFATYYC QQSYSTPPWTFGQGTKVDIKTTTPAPRPPTPAPTIASQPLSLRPEACRPA AGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCKRGRKKLLYIF KQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSADAPAYKQGQNQ LYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAE AYSEIGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPR
139119- nt 109 ATGGCCCTCCCTGTCACCGCCCTGCTGCTTCCGCTGGCTCTTCTGCTCCA Full CAR CGCCGCTCGGCCCCAAGTGCAACTTCAAGAATCAGGCGCAGGACTTCTCA CLL-1 CAR 6 AGCCATCCGAAACACTCTCCCTCACTTGCGCGGTGTACGGGGGAAGCTTC TCGGGATACTACTGGTCCTGGATTAGGCAGCCTCCCGGCAAAGGCCTGGA ATGGGTCGGGGAGATCAACCACTCCGGTTCAACCAACTACAACCCGTCGC TGAAGTCCCGCGTGACCATTTCCGTGGACACCTCTAAGAATCAGTTCAGC CTGAAGCTCTCGTCCGTGACCGCGGCGGACACCGCCGTCTACTACTGCGC TCGGGGATCAGGACTGGTGGTGTACGCCATCCGCGTGGGCTCGGGCTGGT TCGATTACTGGGGCCAGGGAACCCTGGTCACTGTGTCGTCCGGCGGAGGA GGTTCGGGGGGCGGAGACAGCGGTGGAGGGGGTAGCGACATCCAGATGAC CCAGTCCCCGTCCTCGCTGTCCGCCTCCGTGGGAGATAGAGTGACCATCA CCTGTCGGGCATCCCAGAGCATTTCCAGCTACCTGAACTGGTATCAGCAG AAGCCCGGAAAGGCCCCTAAGCTGTTGATGTACGCCGCCAGCAGCTTGCA GTCGGGCGTGCCGAGCCGGTTTTCCGGTTCCGGCTCCGGGACTGACTTCA CCCTGACTATCTCATCCCTGCAACCCGAGGACTTCGCCACTTATTACTGC CAGCAGTCCTACTCAACCCCTCCCTGGACGTTCGGACAGGGCACCAAGGT CGATATCAAGACCACTACCCCAGCACCGAGGCCACCCACCCCGGCTCCTA CCATCGCCTCCCAGCCTCTGTCCCTGCGTCCGGAGGCATGTAGACCCGCA GCTGGTGGGGCCGTGCATACCCGGGGTCTTGACTTCGCCTGCGATATCTA CATTTGGGCCCCTCTGGCTGGTACTTGCGGGGTCCTGCTGCTTTCACTCG TGATCACTCTTTACTGTAAGCGCGGTCGGAAGAAGCTGCTGTACATCTTT AAGCAACCCTTCATGAGGCCTGTGCAGACTACTCAAGAGGAGGACGGCTG TTCATGCCGGTTCCCAGAGGAGGAGGAAGGCGGCTGCGAACTGCGCGTGA AATTCAGCCGCAGCGCAGATGCTCCAGCCTACAAGCAGGGGCAGAACCAG CTCTACAACGAACTCAATCTTGGTCGGAGAGAGGAGTACGACGTGCTGGA CAAGCGGAGAGGACGGGACCCAGAAATGGGCGGGAAGCCGCGCAGAAAGA ATCCCCAAGAGGGCCTGTACAACGAGCTCCAAAAGGATAAGATGGCAGAA GCCTATAGCGAGATTGGTATGAAAGGGGAACGCAGAAGAGGCAAAGGCCA CGACGGACTGTACCAGGGACTCAGCACCGCCACCAAGGACACCTATGACG CTCTTCACATGCAGGCCCTGCCGCCTCGG
146261
146261- aa 48 QVQLVQSGGGLVQPGGSLRLSCAASGFTFSSYSMNWVRQAPGKGLEWVSY ScFv domain ISSSSSTIYYADSVKGRFTI SRDNAKNSLYLQMNSLRAEDTAVYYCARDL CLL-1 CAR 10 SVRAIDAFDIWGQGTMVTVSSGGGGSGGGGSGGGGSGGGGSDIVLTQSPS
SLSASVGDRVTITCQASQDI SNYLNWYQQKPGKAPKLLIYDASNLETGVP SRFSGSGSGTDFTFTI SSLQPEDFATYYCQQAYSTPFTFGPGTKVEIK
146261- nt 61 CAAGTGCAACTTGTTCAATCCGGTGGAGGTCTTGTGCAGCCCGGAGGATC ScFv domain ACTCAGACTGTCGTGCGCCGCCTCTGGGTTCACTTTCTCCTCATACTCGA CLL-1 CAR 10 TGAACTGGGTGCGCCAGGCGCCGGGAAAGGGCCTGGAATGGGTGTCATAC
ATCTCCTCCTCATCCTCCACCATCTACTACGCCGATTCCGTGAAGGGCCG CTTCACTATTTCCCGGGACAACGCGAAAAACTCGCTCTATCTGCAAATGA ACTCCCTGCGCGCCGAGGACACCGCCGTGTACTACTGCGCCCGGGACCTG AGCGTGCGGGCTATTGATGCGTTCGACATCTGGGGACAGGGCACCATGGT CACAGTGTCCAGCGGAGGCGGCGGCAGCGGTGGAGGAGGATCAGGGGGAG GAGGTTCGGGGGGCGGTGGCTCCGATATCGTGCTGACCCAGAGCCCGTCG AGCCTCTCCGCCTCCGTCGGCGACAGAGTGACCATCACGTGTCAGGCATC CCAGGACATTAGCAACTACCTGAATTGGTACCAGCAGAAGCCTGGAAAGG CACCCAAGTTGCTGATCTACGACGCCTCCAACCTGGAAACCGGAGTGCCA TCCAGGTTCTCGGGCAGCGGCTCGGGAACCGACTTCACTTTTACTATCTC CTCCCTGCAACCCGAGGATTTCGCGACCTACTACTGCCAGCAGGCCTACA GCACCCCTTTCACCTTCGGGCCGGGAACTAAGGTCGAAATCAAG
146261- aa 74 QVQLVQSGGGLVQPGGSLRLSCAASGFTFSSYSMNWVRQAPGKGLEWVSY VH of ScFv ISSSSSTIYYADSVKGRFTI SRDNAKNSLYLQMNSLRAEDTAVYYCARDL CLL-1 CAR 10 SVRAIDAFDIWGQGTMVTVSS 146261- aa 87 DIVLTQSPSSLSASVGDRVTITCQASQDISNYLNWYQQKPGKAPKLLIYD VL of ScFv ASNLETGVPSRFSGSGSGTDFTFTISSLQPEDFATYYCQQAYSTPFTFGP CLL-1 CAR 10 GTKVEIK
146261- aa 100 MALPVTALLLPLALLLHAARPQVQLVQSGGGLVQPGGSLRLSCAASGFTF Full CAR SSYSMNWVRQAPGKGLEWVSYISSSSSTIYYADSVKGRFTISRDNAKNSL CLL-1 CAR 10 YLQMNSLRAEDTAVYYCARDLSVRAIDAFDIWGQGTMVTVSSGGGGSGGG
GSGGGGSGGGGSDIVLTQSPSSLSASVGDRVTITCQASQDISNYLNWYQQ KPGKAPKLLIYDASNLETGVPSRFSGSGSGTDFTFTISSLQPEDFATYYC QQAYSTPFTFGPGTKVEIKTTTPAPRPPTPAPTIASQPLSLRPEACRPAA GGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCKRGRKKLLYIFK QPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSADAPAYKQGQNQL YNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEA YSEIGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPR
146261- nt 113 ATGGCCCTCCCTGTCACCGCCCTGCTGCTTCCGCTGGCTCTTCTGCTCCA Full CAR CGCCGCTCGGCCCCAAGTGCAACTTGTTCAATCCGGTGGAGGTCTTGTGC CLL-1 CAR 10 AGCCCGGAGGATCACTCAGACTGTCGTGCGCCGCCTCTGGGTTCACTTTC
TCCTCATACTCGATGAACTGGGTGCGCCAGGCGCCGGGAAAGGGCCTGGA ATGGGTGTCATACATCTCCTCCTCATCCTCCACCATCTACTACGCCGATT CCGTGAAGGGCCGCTTCACTATTTCCCGGGACAACGCGAAAAACTCGCTC TATCTGCAAATGAACTCCCTGCGCGCCGAGGACACCGCCGTGTACTACTG CGCCCGGGACCTGAGCGTGCGGGCTATTGATGCGTTCGACATCTGGGGAC AGGGCACCATGGTCACAGTGTCCAGCGGAGGCGGCGGCAGCGGTGGAGGA GGATCAGGGGGAGGAGGTTCGGGGGGCGGTGGCTCCGATATCGTGCTGAC CCAGAGCCCGTCGAGCCTCTCCGCCTCCGTCGGCGACAGAGTGACCATCA CGTGTCAGGCATCCCAGGACATTAGCAACTACCTGAATTGGTACCAGCAG AAGCCTGGAAAGGCACCCAAGTTGCTGATCTACGACGCCTCCAACCTGGA AACCGGAGTGCCATCCAGGTTCTCGGGCAGCGGCTCGGGAACCGACTTCA CTTTTACTATCTCCTCCCTGCAACCCGAGGATTTCGCGACCTACTACTGC CAGCAGGCCTACAGCACCCCTTTCACCTTCGGGCCGGGAACTAAGGTCGA AATCAAGACCACTACCCCAGCACCGAGGCCACCCACCCCGGCTCCTACCA TCGCCTCCCAGCCTCTGTCCCTGCGTCCGGAGGCATGTAGACCCGCAGCT GGTGGGGCCGTGCATACCCGGGGTCTTGACTTCGCCTGCGATATCTACAT TTGGGCCCCTCTGGCTGGTACTTGCGGGGTCCTGCTGCTTTCACTCGTGA TCACTCTTTACTGTAAGCGCGGTCGGAAGAAGCTGCTGTACATCTTTAAG CAACCCTTCATGAGGCCTGTGCAGACTACTCAAGAGGAGGACGGCTGTTC ATGCCGGTTCCCAGAGGAGGAGGAAGGCGGCTGCGAACTGCGCGTGAAAT TCAGCCGCAGCGCAGATGCTCCAGCCTACAAGCAGGGGCAGAACCAGCTC TACAACGAACTCAATCTTGGTCGGAGAGAGGAGTACGACGTGCTGGACAA GCGGAGAGGACGGGACCCAGAAATGGGCGGGAAGCCGCGCAGAAAGAATC CCCAAGAGGGCCTGTACAACGAGCTCCAAAAGGATAAGATGGCAGAAGCC TATAGCGAGATTGGTATGAAAGGGGAACGCAGAAGAGGCAAAGGCCACGA CGGACTGTACCAGGGACTCAGCACCGCCACCAAGGACACCTATGACGCTC TTCACATGCAGGCCCTGCCGCCTCGG
146262
146262- aa 49 EVQLVQSGGGVVRSGRSLRLSCAASGFTFNSYGLHWVRQAPGKGLEWVAL ScFv domain IEYDGSNKYYGDSVKGRFTISRDKSKSTLYLQMDNLRAEDTAVYYCAREG CLL-1 CAR 11 NEDLAFDIWGQGTLVTVSSGGGGSGGGGSGGGGSGGGGSEIVLTQSPSSL
SASVGDRVTITCQASQFIKKNLNWYQHKPGKAPKLLIYDASSLQTGVPSR FSGNRSGTTFSFTISSLQPEDVATYYCQQHDNLPLTFGGGTKVEIK
146262- nt 62 GAAGTGCAATTGGTGCAATCAGGAGGAGGAGTGGTCAGATCTGGAAGAAG ScFv domain CCTGAGACTGTCATGCGCGGCTTCGGGCTTTACCTTCAACTCCTACGGCC CLL-1 CAR 11 TCCACTGGGTGCGCCAGGCCCCCGGAAAAGGCCTCGAATGGGTCGCACTG ATTGAGTACGACGGGTCCAACAAGTACTACGGAGATAGCGTGAAGGGCCG CTTCACCATCTCACGGGACAAGTCCAAGTCCACCCTGTATCTGCAAATGG ACAACCTGAGGGCCGAGGATACTGCCGTGTACTACTGCGCCCGCGAAGGA AACGAAGATCTGGCCTTCGATATTTGGGGCCAGGGTACTCTTGTGACCGT GTCGAGCGGAGGCGGAGGCTCCGGTGGAGGAGGATCGGGGGGTGGTGGTT CCGGCGGCGGGGGGAGCGAAATCGTGCTGACCCAGTCGCCTTCCTCCCTC TCCGCTTCCGTGGGGGACCGGGTCACTATTACGTGTCAGGCGTCCCAATT CATCAAGAAGAATCTGAACTGGTACCAGCACAAGCCGGGAAAGGCCCCCA AACTGCTCATCTACGACGCCAGCTCGCTGCAGACTGGCGTGCCTTCCCGG TTTTCCGGGAACCGGTCGGGAACCACCTTCTCATTCACCATCAGCAGCCT CCAGCCGGAGGACGTGGCGACCTACTACTGCCAGCAGCATGACAACCTTC CACTGACTTTCGGCGGGGGCACCAAGGTCGAGATTAAG
146262- aa 75 EVQLVQSGGGVVRSGRSLRLSCAASGFTFNSYGLHWVRQAPGKGLEWVAL VH of ScFv IEYDGSNKYYGDSVKGRFTISRDKSKSTLYLQMDNLRAEDTAVYYCAREG CLL-1 CAR 11 NEDLAFDIWGQGTLVTVSS
146262- aa 88 EIVLTQSPSSLSASVGDRVTITCQASQFIKKNLNWYQHKPGKAPKLLIYD VL of ScFv ASSLQTGVPSRFSGNRSGTTFSFTI SSLQPEDVATYYCQQHDNLPLTFGG CLL-1 CAR 11 GTKVEIK
146262- aa 101 MALPVTALLLPLALLLHAARPEVQLVQSGGGVVRSGRSLRLSCAASGFTF Full CAR NSYGLHWVRQAPGKGLEWVALIEYDGSNKYYGDSVKGRFTI SRDKSKSTL CLL-1 CAR 11 YLQMDNLRAEDTAVYYCAREGNEDLAFDIWGQGTLVTVSSGGGGSGGGGS
GGGGSGGGGSEIVLTQSPSSLSASVGDRVTITCQASQFIKKNLNWYQHKP GKAPKLLIYDASSLQTGVPSRFSGNRSGTTFSFTI SSLQPEDVATYYCQQ HDNLPLTFGGGTKVEIKTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGG AVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCKRGRKKLLYIFKQP FMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSADAPAYKQGQNQLYN ELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYS EIGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPR
146262- nt 114 ATGGCCCTCCCTGTCACCGCCCTGCTGCTTCCGCTGGCTCTTCTGCTCCA Full CAR CGCCGCTCGGCCCGAAGTGCAATTGGTGCAATCAGGAGGAGGAGTGGTCA CLL-1 CAR 11 GATCTGGAAGAAGCCTGAGACTGTCATGCGCGGCTTCGGGCTTTACCTTC
AACTCCTACGGCCTCCACTGGGTGCGCCAGGCCCCCGGAAAAGGCCTCGA ATGGGTCGCACTGATTGAGTACGACGGGTCCAACAAGTACTACGGAGATA GCGTGAAGGGCCGCTTCACCATCTCACGGGACAAGTCCAAGTCCACCCTG TATCTGCAAATGGACAACCTGAGGGCCGAGGATACTGCCGTGTACTACTG CGCCCGCGAAGGAAACGAAGATCTGGCCTTCGATATTTGGGGCCAGGGTA CTCTTGTGACCGTGTCGAGCGGAGGCGGAGGCTCCGGTGGAGGAGGATCG GGGGGTGGTGGTTCCGGCGGCGGGGGGAGCGAAATCGTGCTGACCCAGTC GCCTTCCTCCCTCTCCGCTTCCGTGGGGGACCGGGTCACTATTACGTGTC AGGCGTCCCAATTCATCAAGAAGAATCTGAACTGGTACCAGCACAAGCCG GGAAAGGCCCCCAAACTGCTCATCTACGACGCCAGCTCGCTGCAGACTGG CGTGCCTTCCCGGTTTTCCGGGAACCGGTCGGGAACCACCTTCTCATTCA CCATCAGCAGCCTCCAGCCGGAGGACGTGGCGACCTACTACTGCCAGCAG CATGACAACCTTCCACTGACTTTCGGCGGGGGCACCAAGGTCGAGATTAA GACCACTACCCCAGCACCGAGGCCACCCACCCCGGCTCCTACCATCGCCT CCCAGCCTCTGTCCCTGCGTCCGGAGGCATGTAGACCCGCAGCTGGTGGG GCCGTGCATACCCGGGGTCTTGACTTCGCCTGCGATATCTACATTTGGGC CCCTCTGGCTGGTACTTGCGGGGTCCTGCTGCTTTCACTCGTGATCACTC TTTACTGTAAGCGCGGTCGGAAGAAGCTGCTGTACATCTTTAAGCAACCC TTCATGAGGCCTGTGCAGACTACTCAAGAGGAGGACGGCTGTTCATGCCG GTTCCCAGAGGAGGAGGAAGGCGGCTGCGAACTGCGCGTGAAATTCAGCC GCAGCGCAGATGCTCCAGCCTACAAGCAGGGGCAGAACCAGCTCTACAAC GAACTCAATCTTGGTCGGAGAGAGGAGTACGACGTGCTGGACAAGCGGAG AGGACGGGACCCAGAAATGGGCGGGAAGCCGCGCAGAAAGAATCCCCAAG AGGGCCTGTACAACGAGCTCCAAAAGGATAAGATGGCAGAAGCCTATAGC GAGATTGGTATGAAAGGGGAACGCAGAAGAGGCAAAGGCCACGACGGACT GTACCAGGGACTCAGCACCGCCACCAAGGACACCTATGACGCTCTTCACA TGCAGGCCCTGCCGCCTCGG
Figure imgf000096_0001
146263- aa 50 QVQLVESGGGLVQPGGSLRLSCAASGFNVSSNYMTWVRQAPGKGLEWVSV ScFv domain IYSGGATYYGDSVKGRFTVSRDNSKNTVYLQMNRLTAEDTAVYYCARDRL CLL-1 CAR 12 YCGNNCYLYYYYGMDVWGQGTLVTVSSGGGGSGGGGSGGGGSGGGGSDIQ
VTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASS LQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPPLTFGQGT KVEIK
146263- nt 63 CAAGTGCAACTCGTGGAATCAGGCGGAGGACTCGTGCAACCCGGAGGTTC ScFv domain CCTTAGACTGTCATGTGCCGCTTCCGGGTTCAATGTGTCCAGCAACTACA CLL-1 CAR 12 TGACCTGGGTCAGACAGGCGCCGGGAAAGGGACTTGAATGGGTGTCCGTG
ATCTACTCCGGTGGAGCAACATACTACGGAGACTCCGTGAAAGGCCGCTT TACCGTGTCCCGCGATAACTCGAAGAACACCGTGTACTTGCAGATGAACA GGCTGACTGCCGAGGACACCGCCGTGTATTATTGCGCCCGGGACAGGCTG TACTGTGGAAACAACTGCTACCTGTACTACTACTACGGGATGGACGTGTG GGGACAGGGCACTCTCGTCACTGTGTCATCCGGGGGGGGCGGTAGCGGTG GCGGAGGGTCCGGCGGAGGAGGCTCAGGGGGAGGCGGAAGCGATATCCAG GTCACCCAGTCTCCCTCCTCGCTGTCCGCCTCCGTGGGCGACCGCGTCAC CATTACTTGCCGGGCGTCGCAGTCGATCAGCTCCTACCTGAACTGGTACC AGCAGAAGCCTGGAAAGGCCCCGAAGCTGCTGATCTACGCGGCCTCGTCC CTGCAAAGCGGCGTCCCGTCGCGGTTCAGCGGTTCCGGTTCGGGAACCGA CTTCACCCTGACTATTTCCTCCCTGCAACCCGAGGATTTCGCCACTTACT ACTGCCAGCAGTCCTACTCCACCCCACCTCTGACCTTCGGCCAAGGAACC AAGGTCGAAATCAAG
146263- aa 76 QVQLVESGGGLVQPGGSLRLSCAASGFNVSSNYMTWVRQAPGKGLEWVSV VH of ScFv IYSGGATYYGDSVKGRFTVSRDNSKNTVYLQMNRLTAEDTAVYYCARDRL CLL-1 CAR 12 YCGNNCYLYYYYGMDVWGQGTLVTVSS
146263- aa 89 DIQVTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYA VL of ScFv ASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPPLTFG CLL-1 CAR 12 QGTKVEIK
146263- aa 102 MALPVTALLLPLALLLHAARPQVQLVESGGGLVQPGGSLRLSCAASGFNV Full CAR SSNYMTWVRQAPGKGLEWVSVIYSGGATYYGDSVKGRFTVSRDNSKNTVY CLL-1 CAR 12 LQMNRLTAEDTAVYYCARDRLYCGNNCYLYYYYGMDVWGQGTLVTVSSGG
GGSGGGGSGGGGSGGGGSDIQVTQSPSSLSASVGDRVTITCRASQSISSY LNWYQQKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTISSLQPED FATYYCQQSYSTPPLTFGQGTKVEIKTTTPAPRPPTPAPTIASQPLSLRP EACRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCKRGRK KLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSADAPAY KQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQ KDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPR
146263- nt 115 ATGGCCCTCCCTGTCACCGCCCTGCTGCTTCCGCTGGCTCTTCTGCTCCA Full CAR CGCCGCTCGGCCCCAAGTGCAACTCGTGGAATCAGGCGGAGGACTCGTGC CLL-1 CAR 12 AACCCGGAGGTTCCCTTAGACTGTCATGTGCCGCTTCCGGGTTCAATGTG
TCCAGCAACTACATGACCTGGGTCAGACAGGCGCCGGGAAAGGGACTTGA ATGGGTGTCCGTGATCTACTCCGGTGGAGCAACATACTACGGAGACTCCG TGAAAGGCCGCTTTACCGTGTCCCGCGATAACTCGAAGAACACCGTGTAC TTGCAGATGAACAGGCTGACTGCCGAGGACACCGCCGTGTATTATTGCGC CCGGGACAGGCTGTACTGTGGAAACAACTGCTACCTGTACTACTACTACG GGATGGACGTGTGGGGACAGGGCACTCTCGTCACTGTGTCATCCGGGGGG GGCGGTAGCGGTGGCGGAGGGTCCGGCGGAGGAGGCTCAGGGGGAGGCGG AAGCGATATCCAGGTCACCCAGTCTCCCTCCTCGCTGTCCGCCTCCGTGG GCGACCGCGTCACCATTACTTGCCGGGCGTCGCAGTCGATCAGCTCCTAC CTGAACTGGTACCAGCAGAAGCCTGGAAAGGCCCCGAAGCTGCTGATCTA CGCGGCCTCGTCCCTGCAAAGCGGCGTCCCGTCGCGGTTCAGCGGTTCCG GTTCGGGAACCGACTTCACCCTGACTATTTCCTCCCTGCAACCCGAGGAT TTCGCCACTTACTACTGCCAGCAGTCCTACTCCACCCCACCTCTGACCTT CGGCCAAGGAACCAAGGTCGAAATCAAGACCACTACCCCAGCACCGAGGC CACCCACCCCGGCTCCTACCATCGCCTCCCAGCCTCTGTCCCTGCGTCCG GAGGCATGTAGACCCGCAGCTGGTGGGGCCGTGCATACCCGGGGTCTTGA CTTCGCCTGCGATATCTACATTTGGGCCCCTCTGGCTGGTACTTGCGGGG TCCTGCTGCTTTCACTCGTGATCACTCTTTACTGTAAGCGCGGTCGGAAG AAGCTGCTGTACATCTTTAAGCAACCCTTCATGAGGCCTGTGCAGACTAC TCAAGAGGAGGACGGCTGTTCATGCCGGTTCCCAGAGGAGGAGGAAGGCG GCTGCGAACTGCGCGTGAAATTCAGCCGCAGCGCAGATGCTCCAGCCTAC AAGCAGGGGCAGAACCAGCTCTACAACGAACTCAATCTTGGTCGGAGAGA GGAGTACGACGTGCTGGACAAGCGGAGAGGACGGGACCCAGAAATGGGCG GGAAGCCGCGCAGAAAGAATCCCCAAGAGGGCCTGTACAACGAGCTCCAA AAGGATAAGATGGCAGAAGCCTATAGCGAGATTGGTATGAAAGGGGAACG CAGAAGAGGCAAAGGCCACGACGGACTGTACCAGGGACTCAGCACCGCCA CCAAGGACACCTATGACGCTCTTCACATGCAGGCCCTGCCGCCTCGG
139115
139115- aa 39 EVQLQQSGAEVKKPGSSVKVSCKASGGTFSSYAISWVRQAPGQGLEWMGG ScFv domain I IP IFGTANYAQKFQGRVTITADESTSTAYMELSSLRSEDTAVYYCARDL CLL-1 CAR 1 EMATIMGGYWGQGTLVTVSSGGGGSGGGGSGGGGSQSALTQPASVSGSPG
QSITI SCTGTSSDVGGYNYVSWYQQHPGKAPKLMIYDVSNRPSGVSNRFS GSKSGNTASLTISGLQAEDEADYYCSSYTSSSTLDVVFGGGTKLTVL
139115- nt 52 GAAGTGCAACTCCAACAGTCAGGCGCAGAAGTCAAGAAGCCCGGATCGTC ScFv domain AGTGAAAGTGTCCTGCAAAGCCTCCGGCGGAACCTTCAGCTCCTACGCAA CLL-1 CAR 1 TCAGCTGGGTGCGGCAGGCGCCCGGACAGGGACTGGAGTGGATGGGCGGT
ATCATTCCGATCTTTGGCACCGCCAATTACGCCCAGAAGTTCCAGGGACG CGTCACAATCACCGCCGACGAATCGACTTCCACCGCCTACATGGAGCTGT CGTCCTTGAGGAGCGAAGATACCGCCGTGTACTACTGCGCTCGGGATCTG GAGATGGCCACTATCATGGGGGGTTACTGGGGCCAGGGGACCCTGGTCAC TGTGTCCTCGGGAGGAGGGGGATCAGGCGGCGGCGGTTCCGGGGGAGGAG GAAGCCAGTCCGCGCTGACTCAGCCAGCTTCCGTGTCTGGTTCGCCGGGA CAGTCCATCACTATTAGCTGTACCGGCACCAGCAGCGACGTGGGCGGCTA CAACTATGTGTCATGGTACCAGCAGCACCCGGGGAAGGCGCCTAAGCTGA TGATCTACGACGTGTCCAACCGCCCTAGCGGAGTGTCCAACAGATTCTCC GGTTCGAAGTCAGGGAACACTGCCTCCCTCACGATTAGCGGGCTGCAAGC CGAGGATGAAGCCGACTACTACTGCTCCTCCTATACCTCCTCCTCGACCC TGGACGTGGTGTTCGGAGGAGGCACCAAGCTCACCGTCCTT
139115- aa 65 EVQLQQSGAEVKKPGSSVKVSCKASGGTFSSYAISWVRQAPGQGLEWMGG VH of ScFv I IP IFGTANYAQKFQGRVTITADESTSTAYMELSSLRSEDTAVYYCARDL CLL-1 CAR 1 EMATIMGGYWGQGTLVTVSS
139115- aa 78 QSALTQPASVSGSPGQS ITISCTGTSSDVGGYNYVSWYQQHPGKAPKLMI VL of ScFv YDVSNRPSGVSNRFSGSKSGNTASLTI SGLQAEDEADYYCSSYTSSSTLD CLL-1 CAR 1 VVFGGGTKLTVL
139115- aa 91 MALPVTALLLPLALLLHAARPEVQLQQSGAEVKKPGSSVKVSCKASGGTF Full CAR SSYAISWVRQAPGQGLEWMGGIIPIFGTANYAQKFQGRVTITADESTSTA CLL-1 CAR 1 YMELSSLRSEDTAVYYCARDLEMATIMGGYWGQGTLVTVSSGGGGSGGGG SGGGGSQSALTQPASVSGSPGQSITISCTGTSSDVGGYNYVSWYQQHPGK APKLMIYDVSNRPSGVSNRFSGSKSGNTASLTI SGLQAEDEADYYCSSYT SSSTLDVVFGGGTKLTVLTTTPAPRPPTPAPTIASQPLSLRPEACRPAAG GAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCKRGRKKLLYIFKQ PFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSADAPAYKQGQNQLY NELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAY SEIGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPR
139115- nt 104 ATGGCCCTCCCTGTCACCGCCCTGCTGCTTCCGCTGGCTCTTCTGCTCCA Full CAR CGCCGCTCGGCCCGAAGTGCAACTCCAACAGTCAGGCGCAGAAGTCAAGA CLL-1 CAR 1 AGCCCGGATCGTCAGTGAAAGTGTCCTGCAAAGCCTCCGGCGGAACCTTC
AGCTCCTACGCAATCAGCTGGGTGCGGCAGGCGCCCGGACAGGGACTGGA GTGGATGGGCGGTATCATTCCGATCTTTGGCACCGCCAATTACGCCCAGA AGTTCCAGGGACGCGTCACAATCACCGCCGACGAATCGACTTCCACCGCC TACATGGAGCTGTCGTCCTTGAGGAGCGAAGATACCGCCGTGTACTACTG CGCTCGGGATCTGGAGATGGCCACTATCATGGGGGGTTACTGGGGCCAGG GGACCCTGGTCACTGTGTCCTCGGGAGGAGGGGGATCAGGCGGCGGCGGT TCCGGGGGAGGAGGAAGCCAGTCCGCGCTGACTCAGCCAGCTTCCGTGTC TGGTTCGCCGGGACAGTCCATCACTATTAGCTGTACCGGCACCAGCAGCG ACGTGGGCGGCTACAACTATGTGTCATGGTACCAGCAGCACCCGGGGAAG GCGCCTAAGCTGATGATCTACGACGTGTCCAACCGCCCTAGCGGAGTGTC CAACAGATTCTCCGGTTCGAAGTCAGGGAACACTGCCTCCCTCACGATTA GCGGGCTGCAAGCCGAGGATGAAGCCGACTACTACTGCTCCTCCTATACC TCCTCCTCGACCCTGGACGTGGTGTTCGGAGGAGGCACCAAGCTCACCGT CCTTACCACTACCCCAGCACCGAGGCCACCCACCCCGGCTCCTACCATCG CCTCCCAGCCTCTGTCCCTGCGTCCGGAGGCATGTAGACCCGCAGCTGGT GGGGCCGTGCATACCCGGGGTCTTGACTTCGCCTGCGATATCTACATTTG GGCCCCTCTGGCTGGTACTTGCGGGGTCCTGCTGCTTTCACTCGTGATCA CTCTTTACTGTAAGCGCGGTCGGAAGAAGCTGCTGTACATCTTTAAGCAA CCCTTCATGAGGCCTGTGCAGACTACTCAAGAGGAGGACGGCTGTTCATG CCGGTTCCCAGAGGAGGAGGAAGGCGGCTGCGAACTGCGCGTGAAATTCA GCCGCAGCGCAGATGCTCCAGCCTACAAGCAGGGGCAGAACCAGCTCTAC AACGAACTCAATCTTGGTCGGAGAGAGGAGTACGACGTGCTGGACAAGCG GAGAGGACGGGACCCAGAAATGGGCGGGAAGCCGCGCAGAAAGAATCCCC AAGAGGGCCTGTACAACGAGCTCCAAAAGGATAAGATGGCAGAAGCCTAT AGCGAGATTGGTATGAAAGGGGAACGCAGAAGAGGCAAAGGCCACGACGG ACTGTACCAGGGACTCAGCACCGCCACCAAGGACACCTATGACGCTCTTC ACATGCAGGCCCTGCCGCCTCGG
139116
139116- aa 40 EVQLVESGGGVVQPGGSLRLSCAASGFTFDDYAMHWVRQAPGKGLEWVSL ScFv domain ISGDGGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRVEDTAVYYCARVF CLL-1 CAR 2 DSYYMDVWGKGTTVTVSSGGGGSGGGGSGSGGSEIVLTQSPLSLPVTPGQ
PAS ISCRSSQSLVYTDGNTYLNWFQQRPGQSPRRLIYKVSNRDSGVPDRF SGSGSDTDFTLKI SRVEAEDVGIYYCMQGTHWSFTFGQGTRLEIK
139116- nt 53 GAAGTGCAATTGGTGGAAAGCGGAGGAGGAGTGGTGCAACCTGGAGGAAG ScFv domain CCTGAGACTGTCATGTGCCGCCTCGGGATTCACTTTCGATGACTACGCAA CLL-1 CAR 2 TGCACTGGGTCCGCCAGGCCCCCGGAAAGGGTCTGGAATGGGTGTCCCTC
ATCTCCGGCGATGGGGGTTCCACTTACTATGCGGATTCTGTGAAGGGCCG CTTCACAATCTCCCGGGACAATTCCAAGAACACTCTGTACCTTCAAATGA ACTCCCTGAGGGTGGAGGACACCGCTGTGTACTACTGCGCGAGAGTGTTT GACTCGTACTATATGGACGTCTGGGGAAAGGGCACCACCGTGACCGTGTC CAGCGGTGGCGGTGGATCGGGGGGCGGCGGCTCCGGGAGCGGAGGTTCCG AGATTGTGCTGACTCAGTCGCCGTTGTCACTGCCTGTCACCCCCGGGCAG CCGGCCTCCATTTCATGCCGGTCCAGCCAGTCCCTGGTCTACACCGATGG GAACACTTACCTCAACTGGTTCCAGCAGCGCCCAGGACAGTCCCCGCGGA GGCTGATCTACAAAGTGTCAAACCGGGACTCCGGCGTCCCCGATCGGTTC TCGGGAAGCGGCAGCGACACCGACTTCACGCTGAAGATTTCCCGCGTGGA AGCCGAGGACGTGGGCATCTACTACTGTATGCAGGGCACCCACTGGTCGT TTACCTTCGGACAAGGAACTAGGCTCGAGATCAAG
139116- aa 66 EVQLVESGGGVVQPGGSLRLSCAASGFTFDDYAMHWVRQAPGKGLEWVSL VH of ScFv ISGDGGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRVEDTAVYYCARVF CLL-1 CAR 2 DSYYMDVWGKGTTVTVSS
139116- aa 79 EIVLTQSPLSLPVTPGQPASISCRSSQSLVYTDGNTYLNWFQQRPGQSPR VL of ScFv RLIYKVSNRDSGVPDRFSGSGSDTDFTLKISRVEAEDVGIYYCMQGTHWS CLL-1 CAR 2 FTFGQGTRLEIK
139116- aa 92 MALPVTALLLPLALLLHAARPEVQLVESGGGVVQPGGSLRLSCAASGFTF Full CAR DDYAMHWVRQAPGKGLEWVSLISGDGGSTYYADSVKGRFTI SRDNSKNTL CLL-1 CAR 2 YLQMNSLRVEDTAVYYCARVFDSYYMDVWGKGTTVTVSSGGGGSGGGGSG
SGGSEIVLTQSPLSLPVTPGQPASISCRSSQSLVYTDGNTYLNWFQQRPG QSPRRLIYKVSNRDSGVPDRFSGSGSDTDFTLKISRVEAEDVGIYYCMQG THWSFTFGQGTRLEIKTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGA VHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCKRGRKKLLYIFKQPF MRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSADAPAYKQGQNQLYNE LNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSE IGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPR
139116- nt 105 ATGGCCCTCCCTGTCACCGCCCTGCTGCTTCCGCTGGCTCTTCTGCTCCA Full CAR CGCCGCTCGGCCCGAAGTGCAATTGGTGGAAAGCGGAGGAGGAGTGGTGC CLL-1 CAR 2 AACCTGGAGGAAGCCTGAGACTGTCATGTGCCGCCTCGGGATTCACTTTC
GATGACTACGCAATGCACTGGGTCCGCCAGGCCCCCGGAAAGGGTCTGGA ATGGGTGTCCCTCATCTCCGGCGATGGGGGTTCCACTTACTATGCGGATT CTGTGAAGGGCCGCTTCACAATCTCCCGGGACAATTCCAAGAACACTCTG TACCTTCAAATGAACTCCCTGAGGGTGGAGGACACCGCTGTGTACTACTG CGCGAGAGTGTTTGACTCGTACTATATGGACGTCTGGGGAAAGGGCACCA CCGTGACCGTGTCCAGCGGTGGCGGTGGATCGGGGGGCGGCGGCTCCGGG AGCGGAGGTTCCGAGATTGTGCTGACTCAGTCGCCGTTGTCACTGCCTGT CACCCCCGGGCAGCCGGCCTCCATTTCATGCCGGTCCAGCCAGTCCCTGG TCTACACCGATGGGAACACTTACCTCAACTGGTTCCAGCAGCGCCCAGGA CAGTCCCCGCGGAGGCTGATCTACAAAGTGTCAAACCGGGACTCCGGCGT CCCCGATCGGTTCTCGGGAAGCGGCAGCGACACCGACTTCACGCTGAAGA TTTCCCGCGTGGAAGCCGAGGACGTGGGCATCTACTACTGTATGCAGGGC ACCCACTGGTCGTTTACCTTCGGACAAGGAACTAGGCTCGAGATCAAGAC CACTACCCCAGCACCGAGGCCACCCACCCCGGCTCCTACCATCGCCTCCC AGCCTCTGTCCCTGCGTCCGGAGGCATGTAGACCCGCAGCTGGTGGGGCC GTGCATACCCGGGGTCTTGACTTCGCCTGCGATATCTACATTTGGGCCCC TCTGGCTGGTACTTGCGGGGTCCTGCTGCTTTCACTCGTGATCACTCTTT ACTGTAAGCGCGGTCGGAAGAAGCTGCTGTACATCTTTAAGCAACCCTTC ATGAGGCCTGTGCAGACTACTCAAGAGGAGGACGGCTGTTCATGCCGGTT CCCAGAGGAGGAGGAAGGCGGCTGCGAACTGCGCGTGAAATTCAGCCGCA GCGCAGATGCTCCAGCCTACAAGCAGGGGCAGAACCAGCTCTACAACGAA CTCAATCTTGGTCGGAGAGAGGAGTACGACGTGCTGGACAAGCGGAGAGG ACGGGACCCAGAAATGGGCGGGAAGCCGCGCAGAAAGAATCCCCAAGAGG GCCTGTACAACGAGCTCCAAAAGGATAAGATGGCAGAAGCCTATAGCGAG ATTGGTATGAAAGGGGAACGCAGAAGAGGCAAAGGCCACGACGGACTGTA CCAGGGACTCAGCACCGCCACCAAGGACACCTATGACGCTCTTCACATGC AGGCCCTGCCGCCTCGG
139118
139118- aa 41 QVQLQESGPGLVKPSETLSLTCTVSGGSISSSSYYWGWIRQPPGKGLEWI ScFv domain GSIYYSGSTYYNPSLKSRVSI SVDTSKNQFSLKLKYVTAADTAVYYCATP CLL-1 CAR 3 GTYYDFLSGYYPFYWGQGTLVTVSSGGGGSGGGGSGGGGSDIVMTQSPSS
LSASVGDRVTITCRASQGISSYLAWYQQKPGKAPKLLIYAASTLQSGVPS RFSGSGSGTDFTLTI SSLQPEDFATYYCQQLNSYPYTFGQGTKLEIK
139118- nt 54 CAAGTGCAGCTTCAAGAAAGCGGTCCAGGACTCGTCAAGCCATCAGAAAC ScFv domain TCTTTCCCTCACTTGTACCGTGTCGGGAGGCAGCATCTCCTCGAGCTCCT CLL-1 CAR 3 ACTACTGGGGTTGGATTAGACAGCCCCCGGGAAAGGGGTTGGAGTGGATC
GGTTCCATCTACTACTCCGGGTCGACCTACTACAACCCTTCCCTGAAATC TCGGGTGTCCATCTCCGTCGACACCTCCAAGAACCAGTTCAGCCTGAAGC TGAAATATGTGACCGCGGCCGATACTGCCGTGTACTATTGCGCCACCCCG GGAACCTACTACGACTTCCTCTCGGGGTACTACCCGTTTTACTGGGGACA GGGGACTCTCGTGACCGTGTCCTCGGGCGGCGGAGGTTCAGGCGGTGGCG GATCGGGGGGAGGAGGCTCAGACATTGTGATGACCCAGAGCCCGTCCAGC CTGAGCGCCTCCGTGGGCGATAGGGTCACGATTACTTGCCGGGCGTCCCA GGGAATCTCAAGCTACCTGGCCTGGTACCAACAGAAGCCCGGAAAGGCAC CCAAGTTGCTGATCTATGCCGCTAGCACTCTGCAGTCCGGGGTGCCTTCC CGCTTCTCCGGCTCCGGCTCGGGCACCGACTTCACCCTGACCATTTCCTC ACTGCAACCCGAGGACTTCGCCACTTACTACTGCCAGCAGCTGAACTCCT ACCCTTACACATTCGGACAGGGAACCAAGCTGGAAATCAAG
139118- aa 67 QVQLQESGPGLVKPSETLSLTCTVSGGSISSSSYYWGWIRQPPGKGLEWI VH of ScFv GSIYYSGSTYYNPSLKSRVSI SVDTSKNQFSLKLKYVTAADTAVYYCATP CLL-1 CAR 3 GTYYDFLSGYYPFYWGQGTLVTVSS
139118- aa 80 DIVMTQSPSSLSASVGDRVTITCRASQGISSYLAWYQQKPGKAPKLLIYA VL of ScFv ASTLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQLNSYPYTFGQ CLL-1 CAR 3 GTKLEIK
139118- aa 93 MALPVTALLLPLALLLHAARPQVQLQESGPGLVKPSETLSLTCTVSGGS I Full CAR SSSSYYWGWIRQPPGKGLEWIGS IYYSGSTYYNPSLKSRVS ISVDTSKNQ CLL-1 CAR 3 FSLKLKYVTAADTAVYYCATPGTYYDFLSGYYPFYWGQGTLVTVSSGGGG
SGGGGSGGGGSDIVMTQSPSSLSASVGDRVTITCRASQGISSYLAWYQQK PGKAPKLLIYAASTLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQ QLNSYPYTFGQGTKLEIKTTTPAPRPPTPAPTIASQPLSLRPEACRPAAG GAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCKRGRKKLLYIFKQ PFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSADAPAYKQGQNQLY NELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAY SEIGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPR
139118- nt 106 ATGGCCCTCCCTGTCACCGCCCTGCTGCTTCCGCTGGCTCTTCTGCTCCA Full CAR CGCCGCTCGGCCCCAAGTGCAGCTTCAAGAAAGCGGTCCAGGACTCGTCA CLL-1 CAR 3 AGCCATCAGAAACTCTTTCCCTCACTTGTACCGTGTCGGGAGGCAGCATC
TCCTCGAGCTCCTACTACTGGGGTTGGATTAGACAGCCCCCGGGAAAGGG GTTGGAGTGGATCGGTTCCATCTACTACTCCGGGTCGACCTACTACAACC CTTCCCTGAAATCTCGGGTGTCCATCTCCGTCGACACCTCCAAGAACCAG TTCAGCCTGAAGCTGAAATATGTGACCGCGGCCGATACTGCCGTGTACTA TTGCGCCACCCCGGGAACCTACTACGACTTCCTCTCGGGGTACTACCCGT TTTACTGGGGACAGGGGACTCTCGTGACCGTGTCCTCGGGCGGCGGAGGT TCAGGCGGTGGCGGATCGGGGGGAGGAGGCTCAGACATTGTGATGACCCA GAGCCCGTCCAGCCTGAGCGCCTCCGTGGGCGATAGGGTCACGATTACTT GCCGGGCGTCCCAGGGAATCTCAAGCTACCTGGCCTGGTACCAACAGAAG CCCGGAAAGGCACCCAAGTTGCTGATCTATGCCGCTAGCACTCTGCAGTC CGGGGTGCCTTCCCGCTTCTCCGGCTCCGGCTCGGGCACCGACTTCACCC TGACCATTTCCTCACTGCAACCCGAGGACTTCGCCACTTACTACTGCCAG CAGCTGAACTCCTACCCTTACACATTCGGACAGGGAACCAAGCTGGAAAT CAAGACCACTACCCCAGCACCGAGGCCACCCACCCCGGCTCCTACCATCG CCTCCCAGCCTCTGTCCCTGCGTCCGGAGGCATGTAGACCCGCAGCTGGT GGGGCCGTGCATACCCGGGGTCTTGACTTCGCCTGCGATATCTACATTTG GGCCCCTCTGGCTGGTACTTGCGGGGTCCTGCTGCTTTCACTCGTGATCA CTCTTTACTGTAAGCGCGGTCGGAAGAAGCTGCTGTACATCTTTAAGCAA CCCTTCATGAGGCCTGTGCAGACTACTCAAGAGGAGGACGGCTGTTCATG CCGGTTCCCAGAGGAGGAGGAAGGCGGCTGCGAACTGCGCGTGAAATTCA GCCGCAGCGCAGATGCTCCAGCCTACAAGCAGGGGCAGAACCAGCTCTAC AACGAACTCAATCTTGGTCGGAGAGAGGAGTACGACGTGCTGGACAAGCG GAGAGGACGGGACCCAGAAATGGGCGGGAAGCCGCGCAGAAAGAATCCCC AAGAGGGCCTGTACAACGAGCTCCAAAAGGATAAGATGGCAGAAGCCTAT AGCGAGATTGGTATGAAAGGGGAACGCAGAAGAGGCAAAGGCCACGACGG ACTGTACCAGGGACTCAGCACCGCCACCAAGGACACCTATGACGCTCTTC ACATGCAGGCCCTGCCGCCTCGG
139122
139122- aa 42 QVQLVESGGGLVQPGGSLRLSCAASGFTFSSYWMSWVRQAPGKGLEWVAN ScFv domain INEDGSAKFYVDSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVYFCARDL CLL-1 CAR 4 RSGRYWGQGTLVTVSSGGGGSGGGGSGGGGSEIVLTQSPGTLSLSPGGRA
TLSCRASQSISGSFLAWYQQKPGQAPRLLIYGASSRATGIPDRFSGSGSG TDFTLTI SRLEPEDFAVYYCQQYGSSPPTFGLGTKLEIK
139122- nt 55 CAAGTGCAACTCGTGGAATCTGGTGGAGGACTCGTGCAACCCGGAGGATC ScFv domain ATTGCGACTCTCGTGTGCGGCATCCGGCTTTACCTTTTCATCCTACTGGA CLL-1 CAR 4 TGTCCTGGGTCAGACAGGCCCCCGGGAAGGGACTGGAATGGGTCGCGAAC
ATCAACGAGGACGGCTCGGCCAAGTTCTACGTGGACTCCGTGAAGGGCCG CTTCACGATCTCACGGGATAACGCCAAGAATTCCCTGTATCTGCAAATGA ACAGCCTGAGGGCCGAGGACACTGCGGTGTACTTCTGCGCACGCGACCTG AGGTCCGGGAGATACTGGGGACAGGGCACCCTCGTGACCGTGTCGAGCGG AGGAGGGGGGTCGGGCGGCGGCGGTTCCGGTGGCGGCGGTAGCGAAATTG TGTTGACCCAGTCCCCTGGAACCCTGAGCCTGTCACCTGGAGGACGCGCC ACCCTGTCCTGCCGGGCCAGCCAGAGCATCTCAGGGTCCTTCCTGGCTTG GTACCAGCAGAAGCCGGGACAGGCTCCGAGACTTCTGATCTACGGCGCCT CCTCGCGGGCGACCGGAATCCCGGATCGGTTCTCCGGCTCGGGAAGCGGA ACTGACTTCACTCTTACCATTTCCCGCCTGGAGCCGGAAGATTTCGCCGT GTACTACTGCCAGCAGTACGGGTCATCCCCTCCAACCTTCGGCCTGGGAA CTAAGCTGGAAATCAAA
139122- aa 68 QVQLVESGGGLVQPGGSLRLSCAASGFTFSSYWMSWVRQAPGKGLEWVAN VH of ScFv INEDGSAKFYVDSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVYFCARDL CLL-1 CAR 4 RSGRYWGQGTLVTVSS
139122- aa 81 EIVLTQSPGTLSLSPGGRATLSCRASQSISGSFLAWYQQKPGQAPRLLIY VL of ScFv GASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSPPTFG CLL-1 CAR 4 LGTKLEIK
139122- aa 94 MALPVTALLLPLALLLHAARPQVQLVESGGGLVQPGGSLRLSCAASGFTF Full CAR SSYWMSWVRQAPGKGLEWVA INEDGSAKFYVDSVKGRFTI SRDNAKNSL CLL-1 CAR 4 YLQMNSLRAEDTAVYFCARDLRSGRYWGQGTLVTVSSGGGGSGGGGSGGG
GSEIVLTQSPGTLSLSPGGRATLSCRASQSISGSFLAWYQQKPGQAPRLL IYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSPPT FGLGTKLEIKTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGL DFACDIYIWAPLAGTCGVLLLSLVITLYCKRGRKKLLYIFKQPFMRPVQT TQEEDGCSCRFPEEEEGGCELRVKFSRSADAPAYKQGQNQLYNELNLGRR EEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGE RRRGKGHDGLYQGLSTATKDTYDALHMQALPPR
139122- nt 107 ATGGCCCTCCCTGTCACCGCCCTGCTGCTTCCGCTGGCTCTTCTGCTCCA Full CAR CGCCGCTCGGCCCCAAGTGCAACTCGTGGAATCTGGTGGAGGACTCGTGC CLL-1 CAR 4 AACCCGGAGGATCATTGCGACTCTCGTGTGCGGCATCCGGCTTTACCTTT
TCATCCTACTGGATGTCCTGGGTCAGACAGGCCCCCGGGAAGGGACTGGA ATGGGTCGCGAACATCAACGAGGACGGCTCGGCCAAGTTCTACGTGGACT CCGTGAAGGGCCGCTTCACGATCTCACGGGATAACGCCAAGAATTCCCTG TATCTGCAAATGAACAGCCTGAGGGCCGAGGACACTGCGGTGTACTTCTG CGCACGCGACCTGAGGTCCGGGAGATACTGGGGACAGGGCACCCTCGTGA CCGTGTCGAGCGGAGGAGGGGGGTCGGGCGGCGGCGGTTCCGGTGGCGGC GGTAGCGAAATTGTGTTGACCCAGTCCCCTGGAACCCTGAGCCTGTCACC TGGAGGACGCGCCACCCTGTCCTGCCGGGCCAGCCAGAGCATCTCAGGGT CCTTCCTGGCTTGGTACCAGCAGAAGCCGGGACAGGCTCCGAGACTTCTG ATCTACGGCGCCTCCTCGCGGGCGACCGGAATCCCGGATCGGTTCTCCGG CTCGGGAAGCGGAACTGACTTCACTCTTACCATTTCCCGCCTGGAGCCGG AAGATTTCGCCGTGTACTACTGCCAGCAGTACGGGTCATCCCCTCCAACC TTCGGCCTGGGAACTAAGCTGGAAATCAAAACCACTACCCCAGCACCGAG GCCACCCACCCCGGCTCCTACCATCGCCTCCCAGCCTCTGTCCCTGCGTC CGGAGGCATGTAGACCCGCAGCTGGTGGGGCCGTGCATACCCGGGGTCTT GACTTCGCCTGCGATATCTACATTTGGGCCCCTCTGGCTGGTACTTGCGG GGTCCTGCTGCTTTCACTCGTGATCACTCTTTACTGTAAGCGCGGTCGGA AGAAGCTGCTGTACATCTTTAAGCAACCCTTCATGAGGCCTGTGCAGACT ACTCAAGAGGAGGACGGCTGTTCATGCCGGTTCCCAGAGGAGGAGGAAGG CGGCTGCGAACTGCGCGTGAAATTCAGCCGCAGCGCAGATGCTCCAGCCT ACAAGCAGGGGCAGAACCAGCTCTACAACGAACTCAATCTTGGTCGGAGA GAGGAGTACGACGTGCTGGACAAGCGGAGAGGACGGGACCCAGAAATGGG CGGGAAGCCGCGCAGAAAGAATCCCCAAGAGGGCCTGTACAACGAGCTCC AAAAGGATAAGATGGCAGAAGCCTATAGCGAGATTGGTATGAAAGGGGAA CGCAGAAGAGGCAAAGGCCACGACGGACTGTACCAGGGACTCAGCACCGC CACCAAGGACACCTATGACGCTCTTCACATGCAGGCCCTGCCGCCTCGG
139117
139117- aa 43 EVQLQQSGPGLVRPSETLSLTCTVSGGPVRSGSHYWNWIRQPPGRGLEWI ScFv domain GYIYYSGSTNYNPSLENRVTI SIDTSNNHFSLKLSSVTAADTALYFCARG CLL-1 CAR 5 TATFDWNFPFDSWGQGTLVTVSSGGGGSGGGGSGSGGSDIQMTQSPSSLS
ASIGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASSLQSGVPSRF SGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPWTFGQGTKLEIK
139117- nt 56 GAAGTGCAACTCCAACAATCCGGTCCAGGACTCGTCAGACCCTCCGAAAC ScFv domain TCTCTCGCTTACATGCACTGTGTCCGGCGGCCCTGTGCGGTCCGGCTCTC CLL-1 CAR 5 ATTACTGGAACTGGATTCGCCAGCCCCCGGGACGCGGACTGGAGTGGATC
GGCTACATCTATTACTCGGGGTCGACTAACTACAACCCGAGCCTGGAAAA TAGAGTGACCATCTCAATCGACACGTCCAACAACCACTTCTCGCTGAAGT TGTCCTCCGTGACTGCCGCCGATACTGCCCTGTACTTCTGTGCTCGCGGA ACCGCCACCTTCGACTGGAACTTCCCTTTTGACTCATGGGGCCAGGGGAC CCTTGTGACCGTGTCCAGCGGAGGAGGAGGCTCCGGTGGTGGCGGGAGCG GTAGCGGCGGAAGCGACATCCAGATGACCCAGTCACCGTCCTCGCTGTCC GCATCCATTGGGGATCGGGTCACTATTACTTGCCGGGCGTCCCAGTCCAT CTCGTCCTACCTGAACTGGTATCAGCAGAAGCCAGGGAAAGCCCCCAAGC TGCTGATCTACGCGGCCAGCAGCCTGCAGTCAGGAGTGCCTTCAAGGTTT AGCGGCAGCGGATCGGGAACCGACTTCACCCTGACCATTTCCTCCCTCCA ACCCGAGGATTTCGCCACCTACTACTGCCAGCAGTCCTACTCCACCCCGT GGACCTTCGGACAGGGAACCAAGCTGGAGATCAAG
139117- aa 69 EVQLQQSGPGLVRPSETLSLTCTVSGGPVRSGSHYWNWIRQPPGRGLEWI VH of ScFv GYIYYSGSTNYNPSLENRVTI SIDTSNNHFSLKLSSVTAADTALYFCARG CLL-1 CAR 5 TATFDWNFPFDSWGQGTLVTVSS
139117- aa 82 DIQMTQSPSSLSASIGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYA VL of ScFv ASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPWTFGQ CLL-1 CAR 5 GTKLEIK
139117- aa 95 MALPVTALLLPLALLLHAARPEVQLQQSGPGLVRPSETLSLTCTVSGGPV Full CAR RSGSHYWNWIRQPPGRGLEWIGYIYYSGSTNYNPSLENRVTIS IDTSNNH CLL-1 CAR 5 FSLKLSSVTAADTALYFCARGTATFDWNFPFDSWGQGTLVTVSSGGGGSG
GGGSGSGGSDIQMTQSPSSLSASIGDRVTITCRASQSISSYLNWYQQKPG KAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQS YSTPWTFGQGTKLEIKTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGA VHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCKRGRKKLLYIFKQPF MRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSADAPAYKQGQNQLYNE LNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSE IGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPR
139117- nt 108 ATGGCCCTCCCTGTCACCGCCCTGCTGCTTCCGCTGGCTCTTCTGCTCCA Full CAR CGCCGCTCGGCCCGAAGTGCAACTCCAACAATCCGGTCCAGGACTCGTCA CLL-1 CAR 5 GACCCTCCGAAACTCTCTCGCTTACATGCACTGTGTCCGGCGGCCCTGTG
CGGTCCGGCTCTCATTACTGGAACTGGATTCGCCAGCCCCCGGGACGCGG ACTGGAGTGGATCGGCTACATCTATTACTCGGGGTCGACTAACTACAACC CGAGCCTGGAAAATAGAGTGACCATCTCAATCGACACGTCCAACAACCAC TTCTCGCTGAAGTTGTCCTCCGTGACTGCCGCCGATACTGCCCTGTACTT CTGTGCTCGCGGAACCGCCACCTTCGACTGGAACTTCCCTTTTGACTCAT GGGGCCAGGGGACCCTTGTGACCGTGTCCAGCGGAGGAGGAGGCTCCGGT GGTGGCGGGAGCGGTAGCGGCGGAAGCGACATCCAGATGACCCAGTCACC GTCCTCGCTGTCCGCATCCATTGGGGATCGGGTCACTATTACTTGCCGGG CGTCCCAGTCCATCTCGTCCTACCTGAACTGGTATCAGCAGAAGCCAGGG AAAGCCCCCAAGCTGCTGATCTACGCGGCCAGCAGCCTGCAGTCAGGAGT GCCTTCAAGGTTTAGCGGCAGCGGATCGGGAACCGACTTCACCCTGACCA TTTCCTCCCTCCAACCCGAGGATTTCGCCACCTACTACTGCCAGCAGTCC TACTCCACCCCGTGGACCTTCGGACAGGGAACCAAGCTGGAGATCAAGAC CACTACCCCAGCACCGAGGCCACCCACCCCGGCTCCTACCATCGCCTCCC AGCCTCTGTCCCTGCGTCCGGAGGCATGTAGACCCGCAGCTGGTGGGGCC GTGCATACCCGGGGTCTTGACTTCGCCTGCGATATCTACATTTGGGCCCC TCTGGCTGGTACTTGCGGGGTCCTGCTGCTTTCACTCGTGATCACTCTTT ACTGTAAGCGCGGTCGGAAGAAGCTGCTGTACATCTTTAAGCAACCCTTC ATGAGGCCTGTGCAGACTACTCAAGAGGAGGACGGCTGTTCATGCCGGTT CCCAGAGGAGGAGGAAGGCGGCTGCGAACTGCGCGTGAAATTCAGCCGCA GCGCAGATGCTCCAGCCTACAAGCAGGGGCAGAACCAGCTCTACAACGAA CTCAATCTTGGTCGGAGAGAGGAGTACGACGTGCTGGACAAGCGGAGAGG ACGGGACCCAGAAATGGGCGGGAAGCCGCGCAGAAAGAATCCCCAAGAGG GCCTGTACAACGAGCTCCAAAAGGATAAGATGGCAGAAGCCTATAGCGAG ATTGGTATGAAAGGGGAACGCAGAAGAGGCAAAGGCCACGACGGACTGTA CCAGGGACTCAGCACCGCCACCAAGGACACCTATGACGCTCTTCACATGC AGGCCCTGCCGCCTCGG
139120
139120- aa 45 EVQLVESGGGLVKPGGSLRLSCAASGFTFSSYSMNWVRQAPGKGLEWVSS ScFv domain ISSSSSYIYYADSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARDP CLL-1 CAR 7 SSSGSYYMEDSYYYGMDVWGQGTTVTVSSGGGGSGGGGSGGGGSNFMLTQ
PHSVSESPGKTVTISCTGSSGSIASNYVQWYQQRPGSAPTTVIYEDNQRP SGVPDRFSGSIDSSSNSASLTISGLKTEDEADYYCQSYDSSNQVVFGGGT KLTVL 139120- nt 58 GAAGTGCAATTGGTGGAATCTGGAGGAGGACTTGTGAAACCTGGTGGAAG ScFv domain CCTGAGACTTTCCTGTGCGGCCTCGGGATTCACTTTCTCCTCCTACTCCA CLL-1 CAR 7 TGAACTGGGTCAGACAGGCCCCTGGGAAGGGACTGGAATGGGTGTCATCC
ATCTCCTCCTCATCGTCGTACATCTACTACGCCGATAGCGTGAAGGGGCG GTTCACCATTTCCCGGGACAACGCTAAGAACAGCCTCTATCTGCAAATGA ATTCCCTCCGCGCCGAGGACACTGCCGTGTACTACTGCGCGAGGGACCCC TCATCAAGCGGCAGCTACTACATGGAGGACTCGTATTACTACGGAATGGA CGTCTGGGGCCAGGGAACCACTGTGACGGTGTCCTCCGGTGGAGGGGGCT CCGGGGGCGGGGGATCTGGCGGAGGAGGCTCCAACTTCATGCTGACCCAG CCGCACTCCGTGTCCGAAAGCCCCGGAAAGACCGTGACAATTTCCTGCAC CGGGTCCTCCGGCTCGATCGCATCAAACTACGTGCAGTGGTACCAGCAGC GCCCGGGCAGCGCCCCCACCACTGTCATCTACGAGGATAACCAGCGGCCG TCGGGTGTCCCAGACCGGTTTTCCGGTTCGATCGATAGCAGCAGCAACAG CGCCTCCCTGACCATTTCCGGCCTCAAGACCGAGGATGAGGCTGACTACT ACTGCCAGTCGTATGACTCCTCGAACCAAGTGGTGTTCGGTGGCGGCACC AAGCTGACTGTGCTG
139120- aa 71 EVQLVESGGGLVKPGGSLRLSCAASGFTFSSYSMNWVRQAPGKGLEWVSS VH of ScFv ISSSSSYIYYADSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARDP CLL-1 CAR 7 SSSGSYYMEDSYYYGMDVWGQGTTVTVSS
139120- aa 84 NFMLTQPHSVSESPGKTVTISCTGSSGSIASNYVQWYQQRPGSAPTTVIY VL of ScFv EDNQRPSGVPDRFSGSIDSSSNSASLTISGLKTEDEADYYCQSYDSSNQV CLL-1 CAR 7 VFGGGTKLTVL
139120- aa 97 MALPVTALLLPLALLLHAARPEVQLVESGGGLVKPGGSLRLSCAASGFTF Full CAR SSYSMNWVRQAPGKGLEWVSS ISSSSSYIYYADSVKGRFTI SRDNAKNSL CLL-1 CAR 7 YLQMNSLRAEDTAVYYCARDPSSSGSYYMEDSYYYGMDVWGQGTTVTVSS
GGGGSGGGGSGGGGSNFMLTQPHSVSESPGKTVTISCTGSSGSIASNYVQ WYQQRPGSAPTTVIYEDNQRPSGVPDRFSGS IDSSSNSASLTI SGLKTED EADYYCQSYDSSNQVVFGGGTKLTVLTTTPAPRPPTPAPTIASQPLSLRP EACRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCKRGRK KLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSADAPAY KQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQ KDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPR
139120- nt 110 ATGGCCCTCCCTGTCACCGCCCTGCTGCTTCCGCTGGCTCTTCTGCTCCA Full CAR CGCCGCTCGGCCCGAAGTGCAATTGGTGGAATCTGGAGGAGGACTTGTGA CLL-1 CAR 7 AACCTGGTGGAAGCCTGAGACTTTCCTGTGCGGCCTCGGGATTCACTTTC
TCCTCCTACTCCATGAACTGGGTCAGACAGGCCCCTGGGAAGGGACTGGA ATGGGTGTCATCCATCTCCTCCTCATCGTCGTACATCTACTACGCCGATA GCGTGAAGGGGCGGTTCACCATTTCCCGGGACAACGCTAAGAACAGCCTC TATCTGCAAATGAATTCCCTCCGCGCCGAGGACACTGCCGTGTACTACTG CGCGAGGGACCCCTCATCAAGCGGCAGCTACTACATGGAGGACTCGTATT ACTACGGAATGGACGTCTGGGGCCAGGGAACCACTGTGACGGTGTCCTCC GGTGGAGGGGGCTCCGGGGGCGGGGGATCTGGCGGAGGAGGCTCCAACTT CATGCTGACCCAGCCGCACTCCGTGTCCGAAAGCCCCGGAAAGACCGTGA CAATTTCCTGCACCGGGTCCTCCGGCTCGATCGCATCAAACTACGTGCAG TGGTACCAGCAGCGCCCGGGCAGCGCCCCCACCACTGTCATCTACGAGGA TAACCAGCGGCCGTCGGGTGTCCCAGACCGGTTTTCCGGTTCGATCGATA GCAGCAGCAACAGCGCCTCCCTGACCATTTCCGGCCTCAAGACCGAGGAT GAGGCTGACTACTACTGCCAGTCGTATGACTCCTCGAACCAAGTGGTGTT CGGTGGCGGCACCAAGCTGACTGTGCTGACCACTACCCCAGCACCGAGGC CACCCACCCCGGCTCCTACCATCGCCTCCCAGCCTCTGTCCCTGCGTCCG GAGGCATGTAGACCCGCAGCTGGTGGGGCCGTGCATACCCGGGGTCTTGA CTTCGCCTGCGATATCTACATTTGGGCCCCTCTGGCTGGTACTTGCGGGG TCCTGCTGCTTTCACTCGTGATCACTCTTTACTGTAAGCGCGGTCGGAAG AAGCTGCTGTACATCTTTAAGCAACCCTTCATGAGGCCTGTGCAGACTAC TCAAGAGGAGGACGGCTGTTCATGCCGGTTCCCAGAGGAGGAGGAAGGCG GCTGCGAACTGCGCGTGAAATTCAGCCGCAGCGCAGATGCTCCAGCCTAC AAGCAGGGGCAGAACCAGCTCTACAACGAACTCAATCTTGGTCGGAGAGA GGAGTACGACGTGCTGGACAAGCGGAGAGGACGGGACCCAGAAATGGGCG GGAAGCCGCGCAGAAAGAATCCCCAAGAGGGCCTGTACAACGAGCTCCAA AAGGATAAGATGGCAGAAGCCTATAGCGAGATTGGTATGAAAGGGGAACG CAGAAGAGGCAAAGGCCACGACGGACTGTACCAGGGACTCAGCACCGCCA CCAAGGACACCTATGACGCTCTTCACATGCAGGCCCTGCCGCCTCGG
139121
139121- aa 46 QVNLRESGGGLVQPGGSLRLSCAASGFTFSSYEMNWVRQAPGKGLEWVSY ScFv domain ISSSGSTIYYADSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCAREA CLL-1 CAR 8 LGSSWEWGQGTTVTVSSGGGGSGGGGSGGGGSDIQMTQSPSSLSASVGDR
VTITCQASQDISNYLNWYQQKPGKAPKLLIYDASNLETGVPSRFSGSGSG TDFTFTI SSLQPEDIATYYCQQYDNLPLTFGGGTKLEIK
139121- nt 59 CAAGTGAACCTGAGAGAAAGCGGCGGAGGACTTGTGCAACCTGGAGGAAG ScFv domain CCTGAGACTGTCATGTGCCGCGTCCGGCTTCACCTTCTCGTCCTACGAGA CLL-1 CAR 8 TGAACTGGGTCCGCCAGGCACCGGGCAAAGGACTGGAATGGGTGTCCTAC
ATTTCCTCGTCCGGGTCCACCATCTATTACGCCGACTCCGTGAAGGGACG GTTCACCATCTCCCGGGACAACGCCAAGAACTCCCTCTACCTCCAAATGA ACTCACTGAGGGCAGAGGACACTGCGGTCTACTACTGCGCCCGCGAAGCT TTGGGTAGCTCCTGGGAGTGGGGCCAGGGAACCACTGTGACCGTGTCCTC GGGTGGAGGGGGCTCCGGTGGCGGGGGTTCAGGGGGTGGCGGAAGCGATA TCCAGATGACTCAGTCACCAAGCTCCCTGAGCGCCTCAGTGGGAGATCGG GTCACAATCACGTGCCAGGCGTCCCAGGACATTTCTAACTACCTCAATTG GTACCAGCAGAAGCCGGGGAAGGCCCCCAAGCTTCTGATCTACGATGCCT CCAACCTGGAAACCGGCGTGCCCTCCCGCTTCTCGGGATCGGGCAGCGGC ACTGACTTCACCTTTACCATCTCGTCCCTGCAACCTGAGGACATCGCCAC CTATTACTGCCAGCAGTACGATAACCTCCCGCTGACTTTCGGAGGCGGAA CTAAGCTGGAGATTAAG
139121- aa 72 QVNLRESGGGLVQPGGSLRLSCAASGFTFSSYEMNWVRQAPGKGLEWVSY VH of ScFv ISSSGSTIYYADSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCAREA CLL-1 CAR 8 LGSSWEWGQGTTVTVSS
139121- aa 85 DIQMTQSPSSLSASVGDRVTITCQASQDISNYLNWYQQKPGKAPKLLIYD VL of ScFv ASNLETGVPSRFSGSGSGTDFTFTI SSLQPEDIATYYCQQYDNLPLTFGG CLL-1 CAR 8 GTKLEIK
139121- aa 98 MALPVTALLLPLALLLHAARPQVNLRESGGGLVQPGGSLRLSCAASGFTF Full CAR SSYEMNWVRQAPGKGLEWVSYISSSGSTIYYADSVKGRFTI SRDNAKNSL CLL-1 CAR 8 YLQMNSLRAEDTAVYYCAREALGSSWEWGQGTTVTVSSGGGGSGGGGSGG
GGSDIQMTQSPSSLSASVGDRVTITCQASQDISNYLNWYQQKPGKAPKLL IYDASNLETGVPSRFSGSGSGTDFTFTISSLQPEDIATYYCQQYDNLPLT FGGGTKLEIKTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGL DFACDIYIWAPLAGTCGVLLLSLVITLYCKRGRKKLLYIFKQPFMRPVQT TQEEDGCSCRFPEEEEGGCELRVKFSRSADAPAYKQGQNQLYNELNLGRR EEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGE RRRGKGHDGLYQGLSTATKDTYDALHMQALPPR
139121- nt 111 ATGGCCCTCCCTGTCACCGCCCTGCTGCTTCCGCTGGCTCTTCTGCTCCA Full CAR CGCCGCTCGGCCCCAAGTGAACCTGAGAGAAAGCGGCGGAGGACTTGTGC CLL-1 CAR 8 AACCTGGAGGAAGCCTGAGACTGTCATGTGCCGCGTCCGGCTTCACCTTC
TCGTCCTACGAGATGAACTGGGTCCGCCAGGCACCGGGCAAAGGACTGGA ATGGGTGTCCTACATTTCCTCGTCCGGGTCCACCATCTATTACGCCGACT CCGTGAAGGGACGGTTCACCATCTCCCGGGACAACGCCAAGAACTCCCTC TACCTCCAAATGAACTCACTGAGGGCAGAGGACACTGCGGTCTACTACTG CGCCCGCGAAGCTTTGGGTAGCTCCTGGGAGTGGGGCCAGGGAACCACTG TGACCGTGTCCTCGGGTGGAGGGGGCTCCGGTGGCGGGGGTTCAGGGGGT GGCGGAAGCGATATCCAGATGACTCAGTCACCAAGCTCCCTGAGCGCCTC AGTGGGAGATCGGGTCACAATCACGTGCCAGGCGTCCCAGGACATTTCTA ACTACCTCAATTGGTACCAGCAGAAGCCGGGGAAGGCCCCCAAGCTTCTG ATCTACGATGCCTCCAACCTGGAAACCGGCGTGCCCTCCCGCTTCTCGGG ATCGGGCAGCGGCACTGACTTCACCTTTACCATCTCGTCCCTGCAACCTG AGGACATCGCCACCTATTACTGCCAGCAGTACGATAACCTCCCGCTGACT TTCGGAGGCGGAACTAAGCTGGAGATTAAGACCACTACCCCAGCACCGAG GCCACCCACCCCGGCTCCTACCATCGCCTCCCAGCCTCTGTCCCTGCGTC CGGAGGCATGTAGACCCGCAGCTGGTGGGGCCGTGCATACCCGGGGTCTT GACTTCGCCTGCGATATCTACATTTGGGCCCCTCTGGCTGGTACTTGCGG GGTCCTGCTGCTTTCACTCGTGATCACTCTTTACTGTAAGCGCGGTCGGA AGAAGCTGCTGTACATCTTTAAGCAACCCTTCATGAGGCCTGTGCAGACT ACTCAAGAGGAGGACGGCTGTTCATGCCGGTTCCCAGAGGAGGAGGAAGG CGGCTGCGAACTGCGCGTGAAATTCAGCCGCAGCGCAGATGCTCCAGCCT ACAAGCAGGGGCAGAACCAGCTCTACAACGAACTCAATCTTGGTCGGAGA GAGGAGTACGACGTGCTGGACAAGCGGAGAGGACGGGACCCAGAAATGGG CGGGAAGCCGCGCAGAAAGAATCCCCAAGAGGGCCTGTACAACGAGCTCC AAAAGGATAAGATGGCAGAAGCCTATAGCGAGATTGGTATGAAAGGGGAA CGCAGAAGAGGCAAAGGCCACGACGGACTGTACCAGGGACTCAGCACCGC CACCAAGGACACCTATGACGCTCTTCACATGCAGGCCCTGCCGCCTCGG
146264
146264- aa 51 QVQLVQSGAEVKKSGASVKVSCKASGYPFTGYYIQWVRQAPGQGLEWMGW ScFv domain IDPNSGNTGYAQKFQGRVTMTRNTS ISTAYMELSSLRSEDTAVYYCASDS CLL-1 CAR 13 YGYYYGMDVWGQGTLVTVSSGGGGSGGGGSGGGGSGGGGSDIQMTQSPSS
LSASVGDRVTFTCRASQGI SSALAWYQQKPGKPPKLLIYDASSLESGVPS RFSGSGSGTDFTLTI SSLQPEDFATYYCQQFNNYPLTFGGGTKVEIK
146264- nt 64 CAAGTGCAACTCGTCCAGTCCGGTGCAGAAGTGAAAAAGAGCGGAGCCTC ScFv domain AGTGAAAGTGTCCTGCAAGGCCTCCGGTTACCCCTTCACTGGATACTACA CLL-1 CAR 13 TTCAGTGGGTCCGCCAAGCCCCGGGACAGGGTCTGGAGTGGATGGGGTGG
ATTGACCCTAACTCGGGAAATACGGGATACGCGCAGAAGTTCCAGGGCCG CGTGACCATGACCAGGAACACCTCGATCAGCACCGCCTACATGGAACTGT CCTCCCTGCGGTCGGAGGATACTGCCGTGTACTACTGCGCCTCCGATTCC TATGGGTACTACTACGGAATGGACGTCTGGGGACAGGGCACCCTCGTGAC CGTGTCCTCGGGAGGCGGAGGGAGCGGCGGGGGTGGATCGGGAGGAGGCG GCTCCGGCGGCGGCGGTAGCGACATCCAGATGACCCAGTCACCATCAAGC CTTAGCGCCTCCGTGGGCGACAGAGTGACATTCACTTGTCGGGCGTCCCA GGGAATCTCCTCCGCTCTGGCTTGGTATCAGCAGAAGCCTGGGAAGCCTC CGAAGCTGTTGATCTACGACGCGAGCAGCCTGGAATCAGGGGTGCCCTCC CGGTTTTCCGGGTCCGGTTCTGGCACCGATTTCACCCTGACCATTTCGTC CCTCCAACCCGAGGACTTCGCCACTTACTACTGCCAGCAGTTCAACAACT ACCCGCTGACCTTCGGAGGAGGCACTAAGGTCGAGATCAAG
146264- aa 77 QVQLVQSGAEVKKSGASVKVSCKASGYPFTGYYIQWVRQAPGQGLEWMGW VH of ScFv IDPNSGNTGYAQKFQGRVTMTRNTS ISTAYMELSSLRSEDTAVYYCASDS CLL-1 CAR 13 YGYYYGMDVWGQGTLVTVSS
146264- aa 90 DIQMTQSPSSLSASVGDRVTFTCRASQGISSALAWYQQKPGKPPKLLIYD VL of ScFv ASSLESGVPSRFSGSGSGTDFTLTI SSLQPEDFATYYCQQFNNYPLTFGG CLL-1 CAR 13 GTKVEIK
146264- aa 103 MALPVTALLLPLALLLHAARPQVQLVQSGAEVKKSGASVKVSCKASGYPF Full CAR TGYYIQWVRQAPGQGLEWMGWIDPNSGNTGYAQKFQGRVTMTRNTSISTA CLL-1 CAR 13 YMELSSLRSEDTAVYYCASDSYGYYYGMDVWGQGTLVTVSSGGGGSGGGG
SGGGGSGGGGSDIQMTQSPSSLSASVGDRVTFTCRASQGISSALAWYQQK PGKPPKLLIYDASSLESGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQ QFNNYPLTFGGGTKVEIKTTTPAPRPPTPAPTIASQPLSLRPEACRPAAG GAVHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCKRGRKKLLYIFKQ PFMRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSADAPAYKQGQNQLY NELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAY SEIGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPR
146264- nt 116 ATGGCCCTCCCTGTCACCGCCCTGCTGCTTCCGCTGGCTCTTCTGCTCCA Full CAR CGCCGCTCGGCCCCAAGTGCAACTCGTCCAGTCCGGTGCAGAAGTGAAAA CLL-1 CAR 13 AGAGCGGAGCCTCAGTGAAAGTGTCCTGCAAGGCCTCCGGTTACCCCTTC
ACTGGATACTACATTCAGTGGGTCCGCCAAGCCCCGGGACAGGGTCTGGA GTGGATGGGGTGGATTGACCCTAACTCGGGAAATACGGGATACGCGCAGA AGTTCCAGGGCCGCGTGACCATGACCAGGAACACCTCGATCAGCACCGCC TACATGGAACTGTCCTCCCTGCGGTCGGAGGATACTGCCGTGTACTACTG CGCCTCCGATTCCTATGGGTACTACTACGGAATGGACGTCTGGGGACAGG GCACCCTCGTGACCGTGTCCTCGGGAGGCGGAGGGAGCGGCGGGGGTGGA TCGGGAGGAGGCGGCTCCGGCGGCGGCGGTAGCGACATCCAGATGACCCA GTCACCATCAAGCCTTAGCGCCTCCGTGGGCGACAGAGTGACATTCACTT GTCGGGCGTCCCAGGGAATCTCCTCCGCTCTGGCTTGGTATCAGCAGAAG CCTGGGAAGCCTCCGAAGCTGTTGATCTACGACGCGAGCAGCCTGGAATC AGGGGTGCCCTCCCGGTTTTCCGGGTCCGGTTCTGGCACCGATTTCACCC TGACCATTTCGTCCCTCCAACCCGAGGACTTCGCCACTTACTACTGCCAG CAGTTCAACAACTACCCGCTGACCTTCGGAGGAGGCACTAAGGTCGAGAT CAAGACCACTACCCCAGCACCGAGGCCACCCACCCCGGCTCCTACCATCG CCTCCCAGCCTCTGTCCCTGCGTCCGGAGGCATGTAGACCCGCAGCTGGT GGGGCCGTGCATACCCGGGGTCTTGACTTCGCCTGCGATATCTACATTTG GGCCCCTCTGGCTGGTACTTGCGGGGTCCTGCTGCTTTCACTCGTGATCA CTCTTTACTGTAAGCGCGGTCGGAAGAAGCTGCTGTACATCTTTAAGCAA CCCTTCATGAGGCCTGTGCAGACTACTCAAGAGGAGGACGGCTGTTCATG CCGGTTCCCAGAGGAGGAGGAAGGCGGCTGCGAACTGCGCGTGAAATTCA GCCGCAGCGCAGATGCTCCAGCCTACAAGCAGGGGCAGAACCAGCTCTAC AACGAACTCAATCTTGGTCGGAGAGAGGAGTACGACGTGCTGGACAAGCG GAGAGGACGGGACCCAGAAATGGGCGGGAAGCCGCGCAGAAAGAATCCCC AAGAGGGCCTGTACAACGAGCTCCAAAAGGATAAGATGGCAGAAGCCTAT AGCGAGATTGGTATGAAAGGGGAACGCAGAAGAGGCAAAGGCCACGACGG ACTGTACCAGGGACTCAGCACCGCCACCAAGGACACCTATGACGCTCTTC ACATGCAGGCCCTGCCGCCTCGG
181268
181268- aa 195 EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYEMNWVRQAPGKGLEWVSY VH of ScFv ISSSGSTIYYADSVKGRFTI SRDNAKNSLYLQMNSLRAEDTAVYYCARDP
YSSSWHDAFDIWGQGTMVTVSS
181268- aa 196 EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIY VL of ScFv GASSRATGIPDRFSGSGSGTDFTLTI SRLEPEDFAVYYCQQYGSSPLTFG
GGTKVDIK
181268- aa 197 MALPVTALLLPLALLLHAARPEVQLVESGGGLVQPGGSLRLSCAASGFTF Full CAR SSYEMNWVRQAPGKGLEWVSYI SSSGSTIYYADSVKGRFTISRDNAKNSL
YLQMNSLRAEDTAVYYCARDPYSSSWHDAFDIWGQGTMVTVSSGGGGSGG GGSGGGGSEIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPG QAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTI SRLEPEDFAVYYCQQY GSSPLTFGGGTKVDIKTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGA
VHTRGLDFACDIYIWAPLAGTCGVLLLSLVITLYCKRGRKKLLYIFKQPF MRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSADAPAYKQGQNQLYNE LNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSE IGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPR
181268- nt 198 ATGGCCCTCCCTGTCACCGCCCTGCTGCTTCCGCTGGCTCTTCTGCTCCA Full CAR CGCCGCTCGGCCCGAAGTGCAACTCGTGGAAAGCGGTGGAGGTCTTGTGC
AACCTGGAGGTTCCTTGCGCCTGTCATGTGCAGCTTCCGGCTTCACTTTC TCCTCGTACGAGATGAATTGGGTGCGGCAGGCGCCTGGAAAGGGGCTGGA ATGGGTGTCCTACATCTCAAGCTCCGGCTCGACCATCTACTACGCGGACA GCGTGAAGGGGCGGTTCACGATTTCGAGGGACAACGCCAAGAACTCGCTC TATCTGCAAATGAACTCCCTGAGAGCCGAGGACACCGCTGTGTATTACTG CGCCCGGGACCCCTACTCCTCCTCATGGCACGACGCCTTTGATATCTGGG GCCAGGGAACCATGGTCACCGTCAGCAGCGGGGGCGGAGGTTCCGGGGGA GGGGGCTCCGGCGGAGGAGGCTCCGAGATTGTGTTGACTCAGAGCCCGGG TACCCTGTCGCTGAGCCCCGGAGAGCGGGCCACCCTTTCATGCCGCGCCA GCCAGTCCGTGTCCTCATCCTACCTCGCGTGGTACCAGCAGAAACCTGGC CAGGCCCCGCGGCTGCTGATCTACGGCGCCTCCTCGCGCGCAACCGGAAT CCCCGACCGGTTCTCCGGGTCTGGCAGCGGAACCGACTTCACTCTCACCA TTTCGAGGCTGGAGCCGGAAGATTTCGCCGTGTACTACTGCCAGCAGTAC GGCTCCTCGCCACTGACTTTCGGCGGAGGAACCAAGGTCGATATCAAGAC CACTACCCCAGCACCGAGGCCACCCACCCCGGCTCCTACCATCGCCTCCC AGCCTCTGTCCCTGCGTCCGGAGGCATGTAGACCCGCAGCTGGTGGGGCC GTGCATACCCGGGGTCTTGACTTCGCCTGCGATATCTACATTTGGGCCCC TCTGGCTGGTACTTGCGGGGTCCTGCTGCTTTCACTCGTGATCACTCTTT ACTGTAAGCGCGGTCGGAAGAAGCTGCTGTACATCTTTAAGCAACCCTTC ATGAGGCCTGTGCAGACTACTCAAGAGGAGGACGGCTGTTCATGCCGGTT CCCAGAGGAGGAGGAAGGCGGCTGCGAACTGCGCGTGAAATTCAGCCGCA GCGCAGATGCTCCAGCCTACAAGCAGGGGCAGAACCAGCTCTACAACGAA CTCAATCTTGGTCGGAGAGAGGAGTACGACGTGCTGGACAAGCGGAGAGG ACGGGACCCAGAAATGGGCGGGAAGCCGCGCAGAAAGAATCCCCAAGAGG GCCTGTACAACGAGCTCCAAAAGGATAAGATGGCAGAAGCCTATAGCGAG ATTGGTATGAAAGGGGAACGCAGAAGAGGCAAAGGCCACGACGGACTGTA CCAGGGACTCAGCACCGCCACCAAGGACACCTATGACGCTCTTCACATGC
AGGCCCTGCCGCCTCGG
In embodiments, the CAR scFv fragments were then cloned into lentiviral vectors to create a full length CAR construct in a single coding frame, and using the EF1 alpha promoter for expression (SEQ ID NO: 11).
EF1 alpha promoter
CGTGAGGCTCCGGTGCCCGTCAGTGGGCAGAGCGCACATCGCCCACAGTCCCCGAGAAGTTGGGGGGAGGGGTCGG CAATTGAACCGGTGCCTAGAGAAGGTGGCGCGGGGTAAACTGGGAAAGTGATGTCGTGTACTGGCTCCGCCTTTTT CCCGAGGGTGGGGGAGAACCGTATATAAGTGCAGTAGTCGCCGTGAACGTTCTTTTTCGCAACGGGTTTGCCGCCA GAACACAGGTAAGTGCCGTGTGTGGTTCCCGCGGGCCTGGCCTCTTTACGGGTTATGGCCCTTGCGTGCCTTGAAT TACTTCCACCTGGCTGCAGTACGTGATTCTTGATCCCGAGCTTCGGGTTGGAAGTGGGTGGGAGAGTTCGAGGCCT TGCGCTTAAGGAGCCCCTTCGCCTCGTGCTTGAGTTGAGGCCTGGCCTGGGCGCTGGGGCCGCCGCGTGCGAATCT GGTGGCACCTTCGCGCCTGTCTCGCTGCTTTCGATAAGTCTCTAGCCATTTAAAATTTTTGATGACCTGCTGCGAC GCTTTTTTTCTGGCAAGATAGTCTTGTAAATGCGGGCCAAGATCTGCACACTGGTATTTCGGTTTTTGGGGCCGCG GGCGGCGACGGGGCCCGTGCGTCCCAGCGCACATGTTCGGCGAGGCGGGGCCTGCGAGCGCGGCCACCGAGAATCG GACGGGGGTAGTCTCAAGCTGGCCGGCCTGCTCTGGTGCCTGGCCTCGCGCCGCCGTGTATCGCCCCGCCCTGGGC GGCAAGGCTGGCCCGGTCGGCACCAGTTGCGTGAGCGGAAAGATGGCCGCTTCCCGGCCCTGCTGCAGGGAGCTCA AAATGGAGGACGCGGCGCTCGGGAGAGCGGGCGGGTGAGTCACCCACACAAAGGAAAAGGGCCTTTCCGTCCTCAG CCGTCGCTTCATGTGACTCCACGGAGTACCGGGCGCCGTCCAGGCACCTCGATTAGTTCTCGAGCTTTTGGAGTAC GTCGTCTTTAGGTTGGGGGGAGGGGTTTTATGCGATGGAGTTTCCCCACACTGAGTGGGTGGAGACTGAAGTTAGG CCAGCTTGGCACTTGATGTAATTCTCCTTGGAATTTGCCCTTTTTGAGTTTGGATCTTGGTTCATTCTCAAGCCTC AGACAGTGGTTCAAAGTTTTTTTCTTCCATTTCAGGTGTCGTGA
Gly/Ser (SEQ ID NO:25)
GGGGS
Gly/Ser (SEQ ID NO:26): This sequence may encompass 1-6 "Gly Gly Gly Gly Ser" repeating units
GGGGSGGGGS GGGGS GGGGS GGGGS GGGGS
Gly/Ser (SEQ ID NO:27)
GGGGSGGGGS GGGGSGGGGS
Gly/Ser (SEQ ID NO:28)
GGGGSGGGGS GGGGS
Gly/Ser (SEQ ID NO:29)
GGGS
PolyA: (A)500o (SEQ ID NO:30)
This sequence may encompass 50-5000 adenines.
PolyA: (T)100 (SEQ ID NO:31)
PolyA: (T)500o (SEQ ID NO:32)
This sequence may encompass 50-5000 thymines.
PolyA: (A)500o (SEQ ID NO:33)
This sequence may encompass 100-5000 adenines.
PolyA: (A)400 (SEQ ID NO:34) PolyA: (A)2000 (SEQ ID NO:35) Gly/Ser (SEQ ID NO:38): This sequence may encompass 1-10 "Gly Gly Gly Ser" repeating units
GGGSGGGSGG GSGGGSGGGS GGGSGGGSGG GSGGGSGGGS In one embodiment, the CLL-1 CAR may comprise one or more, e.g., one, two, or three, CDRs of the heavy chain variable domain and/or one or more, e.g., one, two, or three, CDRs of the light chain variable domain, or the variable heavy chain (VH) or the variable light chain (VL) of of the anti-CLL-1 (CLEC12A) antibody disclosed in PCT Publication
WO2014/051433, the entire contents of which are hereby incorporated by reference. The CAR scFv fragments can be cloned into lenti viral vectors to create a full length
CAR construct in a single coding frame, and using the EFl alpha promoter for expression (SEQ ID NO: 11).
The CAR construct can include a Gly/Ser linker having one or more of the following sequences: GGGGS (SEQ ID NO:25); encompassing 1-6 "Gly Gly Gly Gly Ser" repeating units, e.g., GGGGSGGGGS GGGGSGGGGS GGGGSGGGGS (SEQ ID NO:26);
GGGGSGGGGS GGGGSGGGGS (SEQ ID NO:27); GGGGSGGGGS GGGGS (SEQ ID NO:28); GGGS (SEQ ID NO:29); or encompassing 1-10 "Gly Gly Gly Ser" repeating units, e.g., GGGSGGGSGG GSGGGSGGGS GGGSGGGSGG GSGGGSGGGS (SEQ ID NO:38). In embodiments, the CAR construct include a poly A sequence, e.g., a sequence encompassing 50-5000 or 100-5000 adenines (e.g., SEQ ID NO:30, SEQ ID NO:33, SEQ ID NO:34 or SEQ ID NO:35), or a sequence encompassing 50-5000 thymines (e.g., SEQ ID NO:31, SEQ ID NO:32). Alternatively, the CAR construct can include, for example, a linker including the sequence GSTSGSGKPGSGEGSTKG (SEQ ID NO: 486)
Bispecific CARs
In an embodiment a multispecific antibody molecule is a bispecific antibody molecule. A bispecific antibody has specificity for no more than two antigens. A bispecific antibody molecule is characterized by a first immunoglobulin variable domain sequence which has binding specificity for a first epitope and a second immunoglobulin variable domain sequence that has binding specificity for a second epitope. In an embodiment the first and second epitopes are on the same antigen, e.g., the same protein (or subunit of a multimeric protein). In an embodiment the first and second epitopes overlap. In an embodiment the first and second epitopes do not overlap. In an embodiment the first and second epitopes are on different antigens, e.g., different proteins (or different subunits of a multimeric protein). In an embodiment a bispecific antibody molecule comprises a heavy chain variable domain sequence and a light chain variable domain sequence which have binding specificity for a first epitope and a heavy chain variable domain sequence and a light chain variable domain sequence which have binding specificity for a second epitope. In an embodiment a bispecific antibody molecule comprises a half antibody having binding specificity for a first epitope and a half antibody having binding specificity for a second epitope. In an embodiment a bispecific antibody molecule comprises a half antibody, or fragment thereof, having binding specificity for a first epitope and a half antibody, or fragment thereof, having binding specificity for a second epitope. In an embodiment a bispecific antibody molecule comprises a scFv, or fragment thereof, have binding specificity for a first epitope and a scFv, or fragment thereof, have binding specificity for a second epitope. In certain embodiments, the antibody molecule is a multi- specific (e.g., a bispecific or a trispecific) antibody molecule. Protocols for generating bispecific or heterodimeric antibody molecules are known in the art; including but not limited to, for example, the "knob in a hole" approach described in, e.g., US 5731168; the electrostatic steering Fc pairing as described in, e.g., WO 09/089004, WO 06/106905 and WO 2010/129304; Strand Exchange Engineered Domains (SEED) heterodimer formation as described in, e.g., WO 07/110205; Fab arm exchange as described in, e.g., WO 08/119353, WO 2011/131746, and WO 2013/060867;
double antibody conjugate, e.g., by antibody cross-linking to generate a bi-specific structure using a heterobifunctional reagent having an amine-reactive group and a sulfhydryl reactive group as described in, e.g., US 4433059; bispecific antibody determinants generated by recombining half antibodies (heavy-light chain pairs or Fabs) from different antibodies through cycle of reduction and oxidation of disulfide bonds between the two heavy chains, as described in, e.g., US 4444878; Afunctional antibodies, e.g., three Fab' fragments cross-linked through sulfhdryl reactive groups, as described in, e.g., US5273743; biosynthetic binding proteins, e.g., pair of scFvs cross-linked through C-terminal tails preferably through disulfide or amine- reactive chemical cross-linking, as described in, e.g., US5534254; bifunctional antibodies, e.g., Fab fragments with different binding specificities dimerized through leucine zippers (e.g., c-fos and c-jun) that have replaced the constant domain, as described in, e.g., US5582996; bispecific and oligospecific mono-and oligovalent receptors, e.g., VH-CH1 regions of two antibodies (two Fab fragments) linked through a polypeptide spacer between the CHI region of one antibody and the VH region of the other antibody typically with associated light chains, as described in, e.g., US5591828; bispecific DNA-antibody conjugates, e.g., crosslinking of antibodies or Fab fragments through a double stranded piece of DNA, as described in, e.g., US5635602; bispecific fusion proteins, e.g., an expression construct containing two scFvs with a hydrophilic helical peptide linker between them and a full constant region, as described in, e.g., US5637481 ; multivalent and multispecific binding proteins, e.g., dimer of polypeptides having first domain with binding region of Ig heavy chain variable region, and second domain with binding region of Ig light chain variable region, generally termed diabodies (higher order structures are also encompassed creating for bispecifc, trispecific, or tetraspecific molecules, as described in, e.g., US5837242; minibody constructs with linked VL and VH chains further connected with peptide spacers to an antibody hinge region and CH3 region, which can be dimerized to form bispecific/multivalent molecules, as described in, e.g., US5837821 ; VH and VL domains linked with a short peptide linker (e.g., 5 or 10 amino acids) or no linker at all in either orientation, which can form dimers to form bispecific diabodies; trimers and tetramers, as described in, e.g., US5844094; String of VH domains (or VL domains in family members) connected by peptide linkages with crosslinkable groups at the C-terminus futher associated with VL domains to form a series of FVs (or scFvs), as described in, e.g., US5864019; and single chain binding polypeptides with both a VH and a VL domain linked through a peptide linker are combined into multivalent structures through non-covalent or chemical crosslinking to form, e.g., homobivalent, heterobivalent, trivalent, and tetravalent structures using both scFV or diabody type format, as described in, e.g., US5869620. Additional exemplary multispecific and bispecific molecules and methods of making the same are found, for example, in
US5910573, US5932448, US5959083, US5989830, US6005079, US6239259, US6294353, US6333396, US6476198, US6511663, US6670453, US6743896, US6809185, US6833441, US7129330, US7183076, US7521056, US7527787, US7534866, US7612181,
US2002004587A1, US2002076406A1, US2002103345A1, US2003207346A1,
US2003211078A1, US2004219643A1, US2004220388A1, US2004242847A1,
US2005003403A1, US2005004352A1, US2005069552A1, US2005079170A1,
US2005100543A1, US2005136049A1, US2005136051A1, US2005163782A1,
US2005266425A1, US2006083747A1, US2006120960A1, US2006204493A1, US2006263367A1, US2007004909A1, US2007087381A1, US2007128150A1, US2007141049A1, US2007154901A1, US2007274985A1, US2008050370A1,
US2008069820A1, US2008152645A1, US2008171855A1, US2008241884A1,
US2008254512A1, US2008260738A1, US2009130106A1, US2009148905A1,
US2009155275A1, US2009162359A1, US2009162360A1, US2009175851A1,
US2009175867A1, US2009232811A1, US2009234105A1, US2009263392A1,
US2009274649A1, EP346087A2, WO0006605A2, WO02072635A2, WO04081051A1, WO06020258A2, WO2007044887A2, WO2007095338A2, WO2007137760A2,
WO2008119353A1, WO2009021754A2, WO2009068630A1, WO9103493A1,
W09323537A1, WO9409131A1, W09412625A2, WO9509917A1, W09637621A2,
WO9964460A1. The contents of the above-referenced applications are incorporated herein by reference in their entireties.
Within each antibody or antibody fragment (e.g., scFv) of a bispecific antibody molecule, the VH can be upstream or downstream of the VL. In some embodiments, the upstream antibody or antibody fragment (e.g., scFv) is arranged with its VH (VHi) upstream of its VL (VLi) and the downstream antibody or antibody fragment (e.g., scFv) is arranged with its VL (VL2) upstream of its VH (VH2), such that the overall bispecific antibody molecule has the arrangement VHi-VLi-VL2-VH2. In other embodiments, the upstream antibody or antibody fragment (e.g., scFv) is arranged with its VL (VLi) upstream of its VH (VHi) and the downstream antibody or antibody fragment (e.g., scFv) is arranged with its VH (VH2) upstream of its VL (VL2), such that the overall bispecific antibody molecule has the arrangement VLi- VHi-VH2-VL2. Optionally, a linker is disposed between the two antibodies or antibody fragments (e.g., scFvs), e.g., between VLi and VL2 if the construct is arranged as VH VLi- VL2-VH2, or between VHi and VH2 if the construct is arranged as VLi-VH VH2-VL2. The linker may be a linker as described herein, e.g., a (Gly4-Ser)n linker, wherein n is 1, 2, 3, 4, 5, or 6, preferably 4 (SEQ ID NO: 64). In general, the linker between the two scFvs should be long enough to avoid mispairing between the domains of the two scFvs. Optionally, a linker is disposed between the VL and VH of the first scFv. Optionally, a linker is disposed between the VL and VH of the second scFv. In constructs that have multiple linkers, any two or more of the linkers can be the same or different. Accordingly, in some embodiments, a bispecific CAR comprises VLs, VHs, and optionally one or more linkers in an arrangement as described herein. In one aspect, the bispecific antibody molecule is characterized by a first immunoglobulin variable domain sequence, e.g., a scFv, which has binding specificity for CLL-1, e.g., comprises a scFv as described herein, e.g., as described in Table 2, or comprises the light chain CDRs and/or heavy chain CDRs from a CLL-1 scFv described herein, and a second immunoglobulin variable domain sequence that has binding specificity for a second epitope on a different antigen. In some aspects the second immunoglobulin variable domain sequence has binding specificity for an antigen expressed on AML cells, e.g., an antigen other than CLL-1. For example, the second immunoglobulin variable domain sequence has binding specificity for CD123. As another example, the second immunoglobulin variable domain sequence has binding specificity for CD33. As another example, the second immunoglobulin variable domain sequence has binding specificity for CD34. As another example, the second immunoglobulin variable domain sequence has binding specificity for FLT3. For example, the second immunoglobulin variable domain sequence has binding specificity for folate receptor beta. In some aspects, the second immunoglobulin variable domain sequence has binding specificity for an antigen expressed on B-cells, for example, CD19, CD20, CD22 or ROR1.
Chimeric TCR
In one aspect, the CLL-1 antibodies and antibody fragments of the present invention (for example, those disclosed in Tables 2) can be grafted to one or more constant domain of a T cell receptor ("TCR") chain, for example, a TCR alpha or TCR beta chain, to create an chimeric TCR that binds specificity to CLL-1. Without being bound by theory, it is believed that chimeric TCRs will signal through the TCR complex upon antigen binding. For example, a CLL-1 scFv as disclosed herein, can be grafted to the constant domain, e.g., at least a portion of the extracellular constant domain, the transmembrane domain and the cytoplasmic domain, of a TCR chain, for example, the TCR alpha chain and/or the TCR beta chain. As another example, a CLL-1 antibody fragment, for example a VL domain as described herein, can be grafted to the constant domain of a TCR alpha chain, and a CLL-1 antibody fragment, for example a VH domain as described herein, can be grafted to the constant domain of a TCR beta chain (or alternatively, a VL domain may be grafted to the constant domain of the TCR beta chain and a VH domain may be grafted to a TCR alpha chain). As another example, the CDRs of a CLL-1 antibody or antibody fragment, e.g., the CDRs of a CLL-1 antibody or antibody fragment as described in Tables 3, 4, 5, 6, 7 or 8 may be grafted into a TCR alpha and/or beta chain to create a chimeric TCR that binds specifically to CLL-1. For example, the LCDRs disclosed herein may be grafted into the variable domain of a TCR alpha chain and the HCDRs disclosed herein may be grafted to the variable domain of a TCR beta chain, or vice versa. Such chimeric TCRs may be produced by methods known in the art (For example, Willemsen RA et al, Gene Therapy 2000; 7: 1369-1377; Zhang T et al, Cancer Gene Ther 2004; 11 : 487- 496; Aggen et al, Gene Ther. 2012 Apr;19(4):365-74).
Transmembrane domain
With respect to the transmembrane domain, in various embodiments, a CAR can be designed to comprise a transmembrane domain that is attached to the extracellular domain of the CAR. A transmembrane domain can include one or more additional amino acids adjacent to the transmembrane region, e.g., one or more amino acid associated with the extracellular region of the protein from which the transmembrane was derived (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 up to 15 amino acids of the extracellular region) and/or one or more additional amino acids associated with the intracellular region of the protein from which the transmembrane protein is derived (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 up to 15 amino acids of the intracellular region). In one aspect, the transmembrane domain is one that is associated with one of the other domains of the CAR is used. In some instances, the transmembrane domain can be selected or modified by amino acid substitution to avoid binding of such domains to the transmembrane domains of the same or different surface membrane proteins, e.g., to minimize interactions with other members of the receptor complex. In one aspect, the transmembrane domain is capable of
homodimerization with another CAR on the CART cell surface. In a different aspect the amino acid sequence of the transmembrane domain may be modified or substituted so as to minimize interactions with the binding domains of the native binding partner present in the same CART. The transmembrane domain may be derived either from a natural or from a recombinant source. Where the source is natural, the domain may be derived from any membrane-bound or transmembrane protein. In one aspect the transmembrane domain is capable of signaling to the intracellular domain(s) whenever the CAR has bound to a target. A transmembrane domain of particular use in this invention may include at least the transmembrane region(s) of e.g., the alpha, beta or zeta chain of the T-cell receptor, CD28, CD3 epsilon, CD45, CD4, CD5, CD 8 (e.g., CD8 alpha, CD8 beta), CD9, CD16, CD22, CD33, CD37, CD64, CD80, CD86, CD134, CD137, CD154. In some embodiments, a transmembrane domain may include at least the transmembrane region(s) of a costimulatory molecule, e.g., a MHC class I molecule, TNF receptor proteins, Immunoglobulin-like proteins, cytokine receptors, integrins, signaling lymphocytic activation molecules (SLAM proteins), activating NK cell receptors, BTLA, a Toll ligand receptor, OX40, CD2, CD7, CD27, CD28, CD30, CD40, CDS, ICAM-1, LFA-1
(CDl la/CD18), 4-1BB (CD137), B7-H3, CDS, ICAM-1, ICOS (CD278), GITR, BAFFR, LIGHT, HVEM (LIGHTR), KIRDS2, SLAMF7, NKp80 (KLRF1), NKp44, NKp30, NKp46, CD19, CD4, CD8alpha, CD8beta, IL2R beta, IL2R gamma, IL7R alpha, ITGA4, VLA1, CD49a, ITGA4, IA4, CD49D, ITGA6, VLA-6, CD49f, ITGAD, CDl ld, ITGAE, CD103, ITGAL, CDl la, LFA-1, ITGAM, CDl lb, ITGAX, CDl lc, ITGB1, CD29, ΓΓϋΒ2, CD18,
LFA-1, ITGB7, NKG2D, NKG2C, TNFR2, TRANCE/RANKL, DNAM1 (CD226), SLAMF4 (CD244, 2B4), CD84, CD96 (Tactile), CEACAM1, CRTAM, Ly9 (CD229), CD160 (BY55), PSGL1, CD100 (SEMA4D), CD69, SLAMF6 (NTB-A, Lyl08), SLAM (SLAMF1, CD150, IPO-3), BLAME (SLAMF8), SELPLG (CD162), LTBR, LAT, GADS, SLP-76, PAG/Cbp, CD 19a, and a ligand that specifically binds with CD83.
In some instances, the transmembrane domain can be attached to the extracellular region of the CAR, e.g., the antigen binding domain of the CAR, via a hinge, e.g., a hinge from a human protein. For example, in one embodiment, the hinge can be a human Ig
(immunoglobulin) hinge, e.g., an IgG4 hinge, or a CD8a hinge. In one embodiment, the hinge or spacer comprises (e.g., consists of) the amino acid sequence of SEQ ID NO:2. In one aspect, the transmembrane domain comprises (e.g., consists of) a transmembrane domain of SEQ ID NO: 6.
In one aspect, the hinge or spacer comprises an IgG4 hinge. For example, in one embodiment, the hinge or spacer comprises a hinge of the amino acid sequence
ESKYGPPCPPCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNW YVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEK TISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYK TTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGKM
(SEQ ID NO:3). In some embodiments, the hinge or spacer comprises a hinge encoded by a nucleotide sequence of
GAGAGCAAGTACGGCCCTCCCTGCCCCCCTTGCCCTGCCCCCGAGTTCCTGGGCGG ACCCAGCGTGTTCCTGTTCCCCCCCAAGCCCAAGGACACCCTGATGATCAGCCGGA CCCCCGAGGTGACCTGTGTGGTGGTGGACGTGTCCCAGGAGGACCCCGAGGTCCA GTTCAACTGGTACGTGGACGGCGTGGAGGTGCACAACGCCAAGACCAAGCCCCGG GAGGAGCAGTTCAATAGCACCTACCGGGTGGTGTCCGTGCTGACCGTGCTGCACCA GGACTGGCTGAACGGCAAGGAATACAAGTGTAAGGTGTCCAACAAGGGCCTGCCC AGCAGCATCGAGAAAACCATCAGCAAGGCCAAGGGCCAGCCTCGGGAGCCCCAGG TGTACACCCTGCCCCCTAGCCAAGAGGAGATGACCAAGAACCAGGTGTCCCTGAC CTGCCTGGTGAAGGGCTTCTACCCCAGCGACATCGCCGTGGAGTGGGAGAGCAAC GGCCAGCCCGAGAACAACTACAAGACCACCCCCCCTGTGCTGGACAGCGACGGCA GCTTCTTCCTGTACAGCCGGCTGACCGTGGACAAGAGCCGGTGGCAGGAGGGCAA CGTCTTTAGCTGCTCCGTGATGCACGAGGCCCTGCACAACCACTACACCCAGAAGA GCCTGAGCCTGTCCCTGGGCAAGATG (SEQ ID NO: 14).
In one aspect, the hinge or spacer comprises an IgD hinge. For example, in one embodiment, the hinge or spacer comprises a hinge of the amino acid sequence
RWPESPKAQASS VPTAQPQAEGSLAKATTAPATTRNTGRGGEEKKKEKEKEEQEERET KTPECPSHTQPLGVYLLTPAVQDLWLRDKATFTCFVVGSDLKDAHLTWEVAGKVPTG GVEEGLLERHSNGSQSQHSRLTLPRSLWNAGTSVTCTLNHPSLPPQRLMALREPAAQA PVKLSLNLLASSDPPEAASWLLCEVSGFSPPNILLMWLEDQREVNTSGFAPARPPPQPG STTFWAWSVLRVPAPPSPQPATYTCVVSHEDSRTLLNASRSLEVSYVTDH (SEQ ID NO:4). In some embodiments, the hinge or spacer comprises a hinge encoded by a nucleotide sequence of
AGGTGGCCCGAAAGTCCCAAGGCCCAGGCATCTAGTGTTCCTACTGCACAGCCCCA
GGCAGAAGGCAGCCTAGCCAAAGCTACTACTGCACCTGCCACTACGCGCAATACT
GGCCGTGGCGGGGAGGAGAAGAAAAAGGAGAAAGAGAAAGAAGAACAGGAAGA GAGGGAGACCAAGACCCCTGAATGTCCATCCCATACCCAGCCGCTGGGCGTCTATC TCTTGACTCCCGCAGTACAGGACTTGTGGCTTAGAGATAAGGCCACCTTTACATGT TTCGTCGTGGGCTCTGACCTGAAGGATGCCCATTTGACTTGGGAGGTTGCCGGAAA GGTACCCACAGGGGGGGTTGAGGAAGGGTTGCTGGAGCGCCATTCCAATGGCTCT CAGAGCCAGCACTCAAGACTCACCCTTCCGAGATCCCTGTGGAACGCCGGGACCTC TGTCACATGTACTCTAAATCATCCTAGCCTGCCCCCACAGCGTCTGATGGCCCTTAG AGAGCCAGCCGCCCAGGCACCAGTTAAGCTTAGCCTGAATCTGCTCGCCAGTAGTG ATCCCCCAGAGGCCGCCAGCTGGCTCTTATGCGAAGTGTCCGGCTTTAGCCCGCCC AACATCTTGCTCATGTGGCTGGAGGACCAGCGAGAAGTGAACACCAGCGGCTTCG CTCCAGCCCGGCCCCCACCCCAGCCGGGTTCTACCACATTCTGGGCCTGGAGTGTC TTAAGGGTCCCAGCACCACCTAGCCCCCAGCCAGCCACATACACCTGTGTTGTGTC CCATGAAGATAGCAGGACCCTGCTAAATGCTTCTAGGAGTCTGGAGGTTTCCTACG TGACTGACCATT (SEQ ID NO: 15).
In one aspect, the transmembrane domain may be recombinant, in which case it will comprise predominantly hydrophobic residues such as leucine and valine. In one aspect a triplet of phenylalanine, tryptophan and valine can be found at each end of a recombinant
transmembrane domain. Optionally, a short oligo- or polypeptide linker, between 2 and 10 amino acids in length may form the linkage between the transmembrane domain and the cytoplasmic region of the CAR. A glycine- serine doublet provides a particularly suitable linker. For example, in one aspect, the linker comprises the amino acid sequence of GGGGSGGGGS (SEQ ID NO:5). In some embodiments, the linker is encoded by a nucleotide sequence of
GGTGGCGGAGGTTCTGGAGGTGGAGGTTCC (SEQ ID NO: 16).
In one aspect, the hinge or spacer comprises a KIR2DS2 hinge.
Cytoplasmic domain
The cytoplasmic domain or region of a CAR of the present invention includes an intracellular signaling domain. An intracellular signaling domain is generally responsible for activation of at least one of the normal effector functions of the immune cell in which the CAR has been introduced.
Examples of intracellular signaling domains for use in the CAR of the invention include the cytoplasmic sequences of the T cell receptor (TCR) and co-receptors that act in concert to initiate signal transduction following antigen receptor engagement, as well as any derivative or variant of these sequences and any recombinant sequence that has the same functional capability.
It is known that signals generated through the TCR alone are insufficient for full activation of the T cell and that a secondary and/or costimulatory signal is also required. Thus, T cell activation can be said to be mediated by two distinct classes of cytoplasmic signaling sequences: those that initiate antigen-dependent primary activation through the TCR (primary intracellular signaling domains) and those that act in an antigen-independent manner to provide a secondary or costimulatory signal (secondary cytoplasmic domain, e.g., a costimulatory domain). A primary signaling domain regulates primary activation of the TCR complex either in a stimulatory way, or in an inhibitory way. Primary intracellular signaling domains that act in a stimulatory manner may contain signaling motifs which are known as immunoreceptor tyrosine-based activation motifs or ITAMs.
Examples of IT AM containing primary intracellular signaling domains that are of particular use in the invention include those of TCR zeta, FcR gamma, FcR beta, CD3 gamma, CD3 delta , CD3 epsilon, CD5, CD22, CD79a, CD79b, , CD278 (also known as "ICOS"), FcsRI, DAP10, DAP12, and CD66d. In one embodiment, a CAR of the invention comprises an intracellular signaling domain, e.g., a primary signaling domain of CD3-zeta.
In one embodiment, a primary signaling domain comprises a modified ITAM domain, e.g., a mutated ITAM domain which has altered (e.g., increased or decreased) activity as compared to the native ITAM domain. In one embodiment, a primary signaling domain comprises a modified ITAM-containing primary intracellular signaling domain, e.g., an optimized and/or truncated ITAM-containing primary intracellular signaling domain. In an embodiment, a primary signaling domain comprises one, two, three, four or more ITAM motifs.
Further examples of molecules containing a primary intracellular signaling domain that are of particular use in the invention include those of DAP10, DAP12, and CD32.
The intracellular signalling domain of the CAR can comprise the primary signalling domain, e.g., CD3-zeta signaling domain, by itself or it can be combined with any other desired intracellular signaling domain(s) useful in the context of a CAR of the invention. For example, the intracellular signaling domain of the CAR can comprise a primary signalling domain, e.g., CD3 zeta chain portion, and a costimulatory signaling domain. The costimulatory signaling domain refers to a portion of the CAR comprising the intracellular domain of a costimulatory molecule. A costimulatory molecule is a cell surface molecule other than an antigen receptor or its ligands that is required for an efficient response of lymphocytes to an antigen. Examples of such molecules include a MHC class I molecule, TNF receptor proteins, Immunoglobulin-like proteins, cytokine receptors, integrins, signaling lymphocytic activation molecules (SLAM proteins), activating NK cell receptors, BTLA, a Toll ligand receptor, OX40, CD2, CD7, CD27, CD28, CD30, CD40, CDS, ICAM-1, LFA-1 (CDl la/CD18), 4-1BB (CD137), B7-H3, CDS, ICAM-1, ICOS (CD278), GITR, BAFFR, LIGHT, HVEM (LIGHTR), KIRDS2,
SLAMF7, NKp80 (KLRF1), NKp44, NKp30, NKp46, CD19, CD4, CD8alpha, CD8beta, IL2R beta, IL2R gamma, IL7R alpha, ITGA4, VLAl, CD49a, ITGA4, IA4, CD49D, ITGA6, VLA-6, CD49f, ITGAD, CDl ld, ITGAE, CD103, ITGAL, CDl la, LFA-1, ITGAM, CDl lb, ΓΓϋΑΧ, CDl lc, ITGB1, CD29, ITGB2, CD18, LFA-1, ITGB7, NKG2D, NKG2C, TNFR2,
TRANCE/RANKL, DNAM1 (CD226), SLAMF4 (CD244, 2B4), CD84, CD96 (Tactile), CEACAM1, CRT AM, Ly9 (CD229), CD160 (BY55), PSGL1, CD100 (SEMA4D), CD69, SLAMF6 (NTB-A, Lyl08), SLAM (SLAMF1, CD150, IPO-3), BLAME (SLAMF8), SELPLG (CD162), LTBR, LAT, GADS, SLP-76, PAG/Cbp, CD19a, and a ligand that specifically binds with CD83, and the like. For example, CD27 costimulation has been demonstrated to enhance expansion, effector function, and survival of human CART cells in vitro and augments human T cell persistence and antitumor activity in vivo (Song et al. Blood. 2012; 119(3):696-706). The intracellular signaling sequences within the cytoplasmic portion of the CAR of the invention may be linked to each other in a random or specified order. Optionally, a short oligo- or polypeptide linker, for example, between 2 and 10 amino acids (e.g., 2, 3, 4, 5, 6, 7, 8, 9, or 10 amino acids) in length may form the linkage between intracellular signaling sequence. In one embodiment, a glycine- serine doublet can be used as a suitable linker. In one embodiment, a single amino acid, e.g., an alanine, a glycine, can be used as a suitable linker.
In one aspect, the intracellular signaling domain is designed to comprise two or more, e.g., 2, 3, 4, 5, or more, costimulatory signaling domains. In an embodiment, the two or more, e.g., 2, 3, 4, 5, or more, costimulatory signaling domains, are separated by a linker molecule, e.g., a linker molecule described herein. In one embodiment, the intracellular signaling domain comprises two costimulatory signaling domains. In some embodiments, the linker molecule is a glycine residue. In some embodiments, the linker is an alanine residue.
In one aspect, the intracellular signaling domain is designed to comprise the signaling domain of CD3-zeta and the signaling domain of CD28. In one aspect, the intracellular signaling domain is designed to comprise the signaling domain of CD3-zeta and the signaling domain of 4-1BB. In one aspect, the signaling domain of 4-1BB is a signaling domain of SEQ ID NO: 7. In one aspect, the signaling domain of CD3-zeta is a signaling domain of SEQ ID NO: 9 (mutant CD3 zeta) or SEQ ID NO: 10 (wild- type human CD3 zeta).
In one aspect, the intracellular signaling domain is designed to comprise the signaling domain of CD3-zeta and the signaling domain of CD27. In one aspect, the signaling domain of CD27 comprises an amino acid sequence of
QRRKYRSNKGESPVEPAEPCRYSCPREEEGSTIPIQEDYRKPEPACSP (SEQ ID NO: 8). In one aspect, the signaling domain of CD27 is encoded by a nucleic acid sequence of
AGGAGTAAGAGGAGCAGGCTCCTGCACAGTGACTACATGAACATGACTCCCCGCC GCCCCGGGCCCACCCGCAAGCATTACCAGCCCTATGCCCCACCACGCGACTTCGCA GCCTATCGCTCC (SEQ ID NO: 19).
In one aspect, the intracellular is designed to comprise the signaling domain of CD3- zeta and the signaling domain of CD28. In one aspect, the signaling domain of CD28 comprises an amino acid sequence of SEQ ID NO: 482. In one aspect, the signaling domain of CD28 is encoded by a nucleic acid sequence of SEQ ID NO: 483.
In one aspect, the intracellular is designed to comprise the signaling domain of CD3- zeta and the signaling domain of ICOS. In one aspect, the signaling domain of CD28 comprises an amino acid sequence of SEQ ID NO: 484. In one aspect, the signaling domain of ICOS is encoded by a nucleic acid sequence of SEQ ID NO: 485. In one aspect, the CAR-expressing cell described herein can further comprise a second
CAR, e.g., a second CAR that includes a different antigen binding domain, e.g., to the same target (CLL-1) or a different target (e.g., CD123, CD33, CD34, FLT3, or folate receptor beta). In one embodiment, the second CAR includes an antigen binding domain to a target expressed on acute myeloid leukemia cells, such as, e.g., CD123, CD33, CD34, FLT3, or folate receptor beta. In one embodiment, the CAR-expressing cell comprises a first CAR that specifically binds a first antigen and includes an intracellular signaling domain having a costimulatory signaling domain but not a primary signaling domain, and a second CAR that specifically binds a second, different, antigen and includes an intracellular signaling domain having a primary signaling domain but not a costimulatory signaling domain. While not wishing to be bound by theory, placement of a costimulatory signaling domain, e.g., 4-1BB, CD28, CD27, ICOS, or OX-40, onto the first CAR, and the primary signaling domain, e.g.,CD3 zeta, on the second CAR can limit the CAR activity to cells where both targets are expressed. In one embodiment, the CAR expressing cell comprises a first CLL-1 CAR that includes a CLL-1 binding domain, a transmembrane domain and a costimulatory domain and a second CAR that specifically binds an antigen other than CLL-1 (e.g., an antigen expressed on AML cells, e.g., CD123, CD33, CD34, FLT3, or folate receptor beta) and includes an antigen binding domain, a transmembrane domain and a primary signaling domain. In another embodiment, the CAR expressing cell comprises a first CLL-1 CAR that includes a CLL-1 binding domain, a transmembrane domain and a primary signaling domain and a second CAR that specifically binds an antigen other than CLL-1 (e.g., an antigen expressed on AML cells, e.g., CD123, CD33, CD34, FLT3, or folate receptor beta) and includes an antigen binding domain to the antigen, a transmembrane domain and a costimulatory signaling domain.
In one embodiment, the CAR-expressing cell comprises a CLL-1 CAR described herein and an inhibitory CAR. In one embodiment, the inhibitory CAR comprises an antigen binding domain that binds an antigen found on normal cells but not cancer cells, e.g., normal cells that also express CLL. In one embodiment, the inhibitory CAR comprises the antigen binding domain, a transmembrane domain and an intracellular domain of an inhibitory molecule. For example, the intracellular domain of the inhibitory CAR can be an intracellular domain of PDl, PD-L1, PD-L2, CTLA4, TIM3, CEACAM (e.g., CEACAM-1, CEACAM-3 and/or CEACAM- 5), LAG3, VISTA, BTLA, TIGIT, LAIR1, CD160, 2B4, CD80, CD86, B7-H3 (CD276), B7- H4 (VTCN1), HVEM (TNFRSF14 or CD270), KIR, A2aR, MHC class I, MHC class II, GAL9, adenosine, and TGFR beta.
In one embodiment, when the CAR-expressing cell comprises two or more different CARs, the antigen binding domains of the different CARs can be such that the antigen binding domains do not interact with one another. For example, a cell expressing a first and second CAR can have an antigen binding domain of the first CAR, e.g., as a fragment, e.g., an scFv, that does not form an association with the antigen binding domain of the second CAR, e.g., the antigen binding domain of the second CAR is a VHH.
In some embodiments, the antigen binding domain comprises a single domain antigen binding (SDAB) molecules include molecules whose complementary determining regions are part of a single domain polypeptide. Examples include, but are not limited to, heavy chain variable domains, binding molecules naturally devoid of light chains, single domains derived from conventional 4-chain antibodies, engineered domains and single domain scaffolds other than those derived from antibodies. SDAB molecules may be any of the art, or any future single domain molecules. SDAB molecules may be derived from any species including, but not limited to mouse, human, camel, llama, lamprey, fish, shark, goat, rabbit, and bovine. This term also includes naturally occurring single domain antibody molecules from species other than Camelidae and sharks.
In one aspect, an SDAB molecule can be derived from a variable region of the immunoglobulin found in fish, such as, for example, that which is derived from the
immunoglobulin isotype known as Novel Antigen Receptor (NAR) found in the serum of shark. Methods of producing single domain molecules derived from a variable region of NAR ("IgNARs") are described in WO 03/014161 and Streltsov (2005) Protein Sci. 14:2901-2909.
According to another aspect, an SDAB molecule is a naturally occurring single domain antigen binding molecule known as heavy chain devoid of light chains. Such single domain molecules are disclosed in WO 9404678 and Hamers-Casterman, C. et al. (1993) Nature 363:446-448, for example. For clarity reasons, this variable domain derived from a heavy chain molecule naturally devoid of light chain is known herein as a VHH or nanobody to distinguish it from the conventional VH of four chain immunoglobulins. Such a VHH molecule can be derived from Camelidae species, for example in camel, llama, dromedary, alpaca and guanaco. Other species besides Camelidae may produce heavy chain molecules naturally devoid of light chain; such VHHs are within the scope of the invention.
The SDAB molecules can be recombinant, CDR-grafted, humanized, camelized, de- immunized and/or in vitro generated (e.g., selected by phage display).
It has also been discovered, that cells having a plurality of chimeric membrane embedded receptors comprising an antigen binding domain that interactions between the antigen binding domain of the receptors can be undesirable, e.g., because it inhibits the ability of one or more of the antigen binding domains to bind its cognate antigen. Accordingly, disclosed herein are cells having a first and a second non-naturally occurring chimeric membrane embedded receptor comprising antigen binding domains that minimize such interactions. Also disclosed herein are nucleic acids encoding a first and a second non-naturally occurring chimeric membrane embedded receptor comprising a antigen binding domains that minimize such interactions, as well as methods of making and using such cells and nucleic acids. In an embodiment the antigen binding domain of one of said first said second non- naturally occurring chimeric membrane embedded receptor, comprises an scFv, and the other comprises a single VH domain, e.g., a camelid, shark, or lamprey single VH domain, or a single VH domain derived from a human or mouse sequence. In some embodiments, the claimed invention comprises a first and second CAR, wherein the antigen binding domain of one of said first CAR said second CAR does not comprise a variable light domain and a variable heavy domain. In some embodiments, the antigen binding domain of one of said first CAR said second CAR is an scFv, and the other is not an scFv. In some embodiments, the antigen binding domain of one of said first CAR said second CAR comprises a single VH domain, e.g., a camelid, shark, or lamprey single VH domain, or a single VH domain derived from a human or mouse sequence. In some
embodiments, the antigen binding domain of one of said first CAR said second CAR comprises a nanobody. In some embodiments, the antigen binding domain of one of said first CAR said second CAR comprises a camelid VHH domain. In some embodiments, the antigen binding domain of one of said first CAR said second
CAR comprises an scFv, and the other comprises a single VH domain, e.g., a camelid, shark, or lamprey single VH domain, or a single VH domain derived from a human or mouse sequence. In some embodiments, the antigen binding domain of one of said first CAR said second CAR comprises an scFv, and the other comprises a nanobody. In some embodiments, the antigen binding domain of one of the first CAR or the second CAR comprises an scFv, and the other comprises a camelid VHH domain.
In some embodiments, when present on the surface of a cell, binding of the antigen binding domain of said first CAR to its cognate antigen is not substantially reduced by the presence of said second CAR. In some embodiments, binding of the antigen binding domain of said first CAR to its cognate antigen in the presence of said second CAR is 85%, 90%, 95%, 96%, 97%, 98% or 99% of binding of the antigen binding domain of said first CAR to its cognate antigen in the absence of said second CAR.
In some embodiments, when present on the surface of a cell, the antigen binding domains of said first CAR said second CAR, associate with one another less than if both were scFv antigen binding domains. In some embodiments, the antigen binding domains of said first CAR said second CAR, associate with one another 85%, 90%, 95%, 96%, 97%, 98% or 99% less than if both were scFv antigen binding domains.
In another aspect, the CAR-expressing cell described herein can further express another agent, e.g., an agent which enhances the activity of a CAR-expressing cell. For example, in one embodiment, the agent can be an agent which inhibits an inhibitory molecule. Inhibitory molecules, e.g., PDl, can, in some embodiments, decrease the ability of a CAR-expressing cell to mount an immune effector response. Examples of inhibitory molecules include PDl, PD-Ll, PD-L2, CTLA4, TIM3, CEACAM (e.g., CEACAM-1, CEACAM-3 and/or CEACAM-5), LAG3, VISTA, BTLA, TIGIT, LAIR1, CD160, 2B4, CD80, CD86, B7-H3 (CD276), B7-H4 (VTCNl), HVEM (TNFRSF14 or CD270), KIR, A2aR, MHC class I, MHC class II, GAL9, adenosine, and TGFR beta. In one embodiment, the agent which inhibits an inhibitory molecule comprises a first polypeptide, e.g., an inhibitory molecule, associated with a second polypeptide that provides a positive signal to the cell, e.g., an intracellular signaling domain described herein. In one embodiment, the agent comprises a first polypeptide, e.g., of an inhibitory molecule such as PDl, PD-Ll, PD-L2, CTLA4, TIM3, CEACAM (e.g., CEACAM- 1, CEACAM-3 and/or CEACAM-5), LAG3, VISTA, BTLA, TIGIT, LAIR1, CD160, 2B4, CD80, CD86, B7-H3 (CD276), B7-H4 (VTCNl), HVEM (TNFRSF14 or CD270), KIR, A2aR, MHC class I, MHC class II, GAL9, adenosine, and TGFR beta, or a fragment of any of these (e.g., at least a portion of an extracellular domain of any of these), and a second polypeptide which is an intracellular signaling domain described herein (e.g., comprising a costimulatory domain (e.g., 4-1BB, CD27, ICOS, or CD28, e.g., as described herein) and/or a primary signaling domain (e.g., a CD3 zeta signaling domain described herein). In one embodiment, the agent comprises a first polypeptide of PDl or a fragment thereof (e.g., at least a portion of an extracellular domain of PDl), and a second polypeptide of an intracellular signaling domain described herein (e.g., a CD28 signaling domain described herein and/or a CD3 zeta signaling domain described herein). In embodiments, the CAR-expressing cell described herein comprises a switch costimulatory receptor, e.g., as described in WO 2013/019615, which is incorporated herein by reference in its entirety. PDl is an inhibitory member of the CD28 family of receptors that also includes CD28, CTLA-4, ICOS, and BTLA. PD-1 is expressed on activated B cells, T cells and myeloid cells (Agata et al. 1996 Int. Immunol 8:765-75). Two ligands for PDl, PD-Ll and PD-L2 have been shown to downregulate T cell activation upon binding to PDl (Freeman et a. 2000 J Exp Med 192:1027-34; Latchman et al. 2001 Nat Immunol 2:261-8; Carter et al. 2002 Eur J Immunol 32:634-43). PD-L1 is abundant in human cancers (Dong et al. 2003 J Mol Med 81:281-7; Blank et al. 2005 Cancer Immunol.
Immunother 54:307-314; Konishi et al. 2004 Clin Cancer Res 10:5094). Immune suppression can be reversed by inhibiting the local interaction of PD1 with PD-L1. In one embodiment, the agent comprises the extracellular domain (ECD) of an inhibitory molecule, e.g., Programmed Death 1 (PD1), can be fused to a transmembrane domain and intracellular signaling domains such as 4 IBB and CD3 zeta (also referred to herein as a PD1 CAR). In one embodiment, the PD1 CAR, when used in combinations with a CLL-1 CAR described herein, improves the persistence of the CAR-expressing cell, e.g., T cell or NK cell. In one embodiment, the CAR is a PD1 CAR comprising the extracellular domain of PD1 indicated as underlined in SEQ ID NO: 24. In one embodiment, the PD1 CAR comprises the amino acid sequence of SEQ ID NO: 24.
Malpvtalllplalllhaarppgwfldspdrpwnpptfspallvvtegdnatftcsfsntsesfylnwyrmspsnqtdklaaf pedrsqpgqdcrfrvtqlpngrdfhmsvyrarrndsgtylcgaislapkaqikeslraelrvterraevptahpspsprpagqfqtlvttt paprpptpaptiasqplslrpeacrpaaggavhtrgldfacdiyiwaplagtcgvlllslvM
dgcscrfpeeeeggcelrvkfsrsadapaykqgqnqlynelnlgrreeydvldkrrgrdpemggkprrknpqeglynelqkdkma eayseigmkgerrrgkghdglyqglstatkdtydalhmqalppr (SEQ ID NO:24).
In one embodiment, the PD1 CAR comprises the amino acid sequence provided below (SEQ ID NO:22). pgwfldspdrpwnpptfspallvvtegdnatftcsfsntsesfylnwyrmspsnqtdklaafpedrsqpgqdcrfrvtqlp ngrdfhmsvyrarrndsgtylcgaislapkaqikeslraelrvterraevptahpspsprpagqfqtlvtttpaprpptpaptiasqplslr peacrpaaggavhtrgldfacdiyiwaplagtcgvlllslvitlyclfl-grldcllyifkqpfmrpvqttqeedgcscrfpeee kfsrsadapaykqgqnqlynelnlgrreeydvldkrrgrdpemggkprrknpqeglynelqkdkmaeayseigmkgerrrgkgh dglyqglstatkdtydalhmqalppr (SEQ ID NO:22). In one embodiment, the agent comprises a nucleic acid sequence encoding the PD1
CAR, e.g., the PD1 CAR described herein. In one embodiment, the nucleic acid sequence for the PD1 CAR is shown below, with the PD1 ECD underlined below in SEQ ID NO: 23 atggccctccctgtcactgccctgcttctccccctcgcactcctgctccacgccgctagaccacccggatggtttctggactctc cggatcgcccgtggaatcccccaaccttctcaccggcactcttggttgtgactgagggcgataatgcgaccttcacgtgctcgttctccaa cacctccgaatcattcgtgctgaactggtaccgcatgagcccgtcaaaccagaccgacaagctcgccgcgtttccggaagatcggtcgc aaccgggacaggattgtcggttccgcgtgactcaactgccgaatggcagagacttccacatgagcgtggtccgcgctaggcgaaacga ctccgggacctacctgtgcggagccatctcgctggcgcctaaggcccaaatcaaagagagcttgagggccgaactgagagtgaccga gcgcagagctgaggtgccaactgcacatccatccccatcgcctcggcctgcggggcagtttcagaccctggtcacgaccactccggcg ccgcgcccaccgactccggccccaactatcgcgagccagcccctgtcgctgaggccggaagcatgccgccctgccgccggaggtgc tgtgcatacccggggattggacttcgcatgcgacatctacatttgggctcctctcgccggaacttgtggcgtgctccttctgtccctggtcat caccctgtactgcaagcggggtcggaaaaagcttctgtacattttcaagcagcccttcatgaggcccgtgcaaaccacccaggaggagg acggttgctcctgccggttccccgaagaggaagaaggaggttgcgagctgcgcgtgaagttctcccggagcgccgacgcccccgcct ataagcagggccagaaccagctgtacaacgaactgaacctgggacggcgggaagagtacgatgtgctggacaagcggcgcggccg ggaccccgaaatgggcgggaagcctagaagaaagaaccctcaggaaggcctgtataacgagctgcagaaggacaagatggccgag gcctactccgaaattgggatgaagggagagcggcggaggggaaaggggcacgacggcctgtaccaaggactgtccaccgccacca aggacacatacgatgccctgcacatgcaggcccttccccctcgc (SEQ ID NO: 23).
In another aspect, the present invention provides a population of CAR-expressing cells, e.g., CART cells or CAR-expressing NK cells. In some embodiments, the population of CAR- expressing cells comprises a mixture of cells expressing different CARs. For example, in one embodiment, the population of CAR-expressing cells (e.g., CART cells or CAR-expressing NK cells) can include a first cell expressing a CAR having an anti- CLL-1 binding domain described herein, and a second cell expressing a CAR having a different anti- CLL-1 binding domain, e.g., an anti- CLL-1 binding domain described herein that differs from the anti- CLL-1 binding domain in the CAR expressed by the first cell. As another example, the population of CAR-expressing cells can include a first cell expressing a CAR that includes an anti- CLL-1 binding domain, e.g., as described herein, and a second cell expressing a CAR that includes an antigen binding domain to a target other than CLL-1 (e.g., CD123, CD33, CD34, FLT3, or folate receptor beta). In one embodiment, the population of CAR-expressing cells includes, e.g., a first cell expressing a CAR that includes a primary intracellular signaling domain, and a second cell expressing a CAR that includes a secondary signaling domain, e.g., a costimulatory signaling domain.
In another aspect, the present invention provides a population of cells wherein at least one cell in the population expresses a CAR having an anti- CLL-1 domain described herein, and a second cell expressing another agent, e.g., an agent which enhances the activity of a CAR-expressing cell. For example, in one embodiment, the agent can be an agent which inhibits an inhibitory molecule. Inhibitory molecules, e.g., can, in some embodiments, decrease the ability of a CAR-expressing cell to mount an immune effector response.
Examples of inhibitory molecules include PDl, PD-L1, PD-L2, CTLA4, TIM3, CEACAM (e.g., CEACAM- 1, CEACAM-3 and/or CEACAM-5), LAG3, VISTA, BTLA, TIGIT, LAIR1, CD160, 2B4, CD80, CD86, B7-H3 (CD276), B7-H4 (VTCN1), HVEM (TNFRSF14 or CD270), KIR, A2aR, MHC class I, MHC class II, GAL9, adenosine, and TGFR beta. In one embodiment, the agent which inhibits an inhibitory molecule comprises a first polypeptide, e.g., an inhibitory molecule, associated with a second polypeptide that provides a positive signal to the cell, e.g., an intracellular signaling domain described herein. In one embodiment, the agent comprises a first polypeptide, e.g., of an inhibitory molecule such as PDl, PD-L1, PD-L2, CTLA4, TIM3, CEACAM (e.g., CEACAM-1, CEACAM-3 and/or CEACAM-5), LAG3, VISTA, BTLA, TIGIT, LAIR1, CD160, 2B4, CD80, CD86, B7-H3 (CD276), B7-H4 (VTCN1), HVEM (TNFRSF14 or CD270), KIR, A2aR, MHC class I, MHC class II, GAL9, adenosine, and TGFR beta, or a fragment of any of these (e.g., at least a portion of an extracellular domain of any of these), and a second polypeptide which is an intracellular signaling domain described herein (e.g., comprising a costimulatory domain (e.g., 4-1BB, CD27 ICOS, or CD28, e.g., as described herein) and/or a primary signaling domain (e.g., a CD3 zeta signaling domain described herein). In one embodiment, the agent comprises a first polypeptide of PDl or a fragment thereof (e.g., at least a portion of the extracellular domain of PDl), and a second polypeptide of an intracellular signaling domain described herein (e.g., a CD28 signaling domain described herein and/or a CD3 zeta signaling domain described herein).
In one aspect, the present invention provides methods comprising administering a population of CAR-expressing cells (e.g., CART cells or CAR-expressing NK cells), e.g., a mixture of cells expressing different CARs, in combination with another agent, e.g., a kinase inhibitor, such as a kinase inhibitor described herein. In another aspect, the present invention provides methods comprising administering a population of cells wherein at least one cell in the population expresses a CAR having an anti- cancer associated antigen binding domain as described herein, and a second cell expressing another agent, e.g., an agent which enhances the activity of a CAR-expressing cell, in combination with another agent, e.g., a kinase inhibitor, such as a kinase inhibitor described herein.
Natural Killer Cell Receptor (NKR) CARs In an embodiment, the CAR molecule described herein comprises one or more components of a natural killer cell receptor (NKR), thereby forming an NKR-CAR. The NKR component can be a transmembrane domain, a hinge domain, or a cytoplasmic domain from any of the following natural killer cell receptors: killer cell immunoglobulin-like receptor (KIR), e.g., KIR2DL1, KIR2DL2/L3, KIR2DL4, KIR2DL5A, KIR2DL5B, KIR2DS1,
KIR2DS2, KIR2DS3, KIR2DS4, DIR2DS5, KIR3DL1/S1, KIR3DL2, KIR3DL3, KIR2DP1, and KIR3DP1; natural cyotoxicity receptor (NCR), e.g., NKp30, NKp44, NKp46; signaling lymphocyte activation molecule (SLAM) family of immune cell receptors, e.g., CD48, CD229, 2B4, CD84, NTB-A, CRACC, BLAME, and CD2F-10; Fc receptor (FcR), e.g., CD16, and CD64; and Ly49 receptors, e.g., LY49A, LY49C. The NKR-CAR molecules described herein may interact with an adaptor molecule or intracellular signaling domain, e.g., DAP12.
Exemplary configurations and sequences of CAR molecules comprising NKR components are described in International Publication No. WO2014/145252, the contents of which are hereby incorporated by reference.
Strategies for Regulating Chimeric Antigen Receptors
There are many ways CAR activities can be regulated. In some embodiments, a regulatable CAR (RCAR) where the CAR activity canbe controlled is desirable to optimize the safety and efficacy of a CAR therapy. For example, inducing apoptosis using, e.g., a caspase fused to a dimerization domain (see, e.g., Di et al., N Engl. J. Med. 2011 Nov. 3; 365(18):1673- 1683), can be used as a safety switch in the CAR therapy of the instant invention. In another example, CAR-expressing cells can also express an inducible Caspase-9 (iCaspase-9) molecule that, upon administration of a dimerizer drug (e.g., rimiducid (also called AP1903 (Bellicum Pharmaceuticals) or AP20187 (Ariad)) leads to activation of the Caspase-9 and apoptosis of the cells. The iCaspase-9 molecule contains a chemical inducer of dimerization (CID) binding domain that mediates dimerization in the presence of a CID. This results in inducible and selective depletion of CAR-expressing cells. In some cases, the iCaspase-9 molecule is encoded by a nucleic acid molecule separate from the CAR-encoding vector(s). In some cases, the iCaspase-9 molecule is encoded by the same nucleic acid molecule as the CAR-encoding vector. The iCaspase-9 can provide a safety switch to avoid any toxicity of CAR-expressing cells. See, e.g., Song et al. Cancer Gene Ther. 2008; 15(10):667-75; Clinical Trial Id. No. NCT02107963; and Di Stasi et al. N. Engl. J. Med. 2011; 365:1673-83.
Alternative strategies for regulating the CAR therapy of the instant invention include utilizing small molecules or antibodies that deactivate or turn off CAR activity, e.g., by deleting CAR-expressing cells, e.g., by inducing antibody dependent cell-mediated cytotoxicity
(ADCC). For example, CAR-expressing cells described herein may also express an antigen that is recognized by molecules capable of inducing cell death, e.g., ADCC or compliment-induced cell death. For example, CAR expressing cells described herein may also express a receptor capable of being targeted by an antibody or antibody fragment. Examples of such receptors include EpCAM, VEGFR, integrins (e.g., integrins ανβ3, α4, αΙ¾β3, α4β7, α5β1, ανβ3, αν), members of the TNF receptor superfamily (e.g., TRAIL-R1 , TRAIL-R2), PDGF Receptor, interferon receptor, folate receptor, GPNMB, ICAM-1 , HLA-DR, CEA, CA-125, MUC1 , TAG-72, IL-6 receptor, 5T4, GD2, GD3, CD2, CD3, CD4, CD5, CD1 1 , CD1 1 a/LFA-1 , CD15, CD18/ITGB2, CD19, CD20, CD22, CD23/lgE Receptor, CD25, CD28, CD30, CD33, CD38, CD40, CD41 , CD44, CD51 , CD52, CD62L, CD74, CD80, CD125, CD147/basigin, CD152/CTLA-4, CD154/CD40L, CD195/CCR5, CD319/SLAMF7 , and EGFR, and truncated versions thereof (e.g., versions preserving one or more extracellular epitopes but lacking one or more regions within the cytoplasmic domain). For example, CAR-expressing cells described herein may also express a truncated epidermal growth factor receptor (EGFR) which lacks signaling capacity but retains the epitope that is recognized by molecules capable of inducing ADCC, e.g., cetuximab (ERBITUX®), such that administration of cetuximab induces ADCC and subsequent depletion of the CAR-expressing cells (see, e.g., WO2011/056894, and
Jonnalagadda et al., Gene Ther. 2013; 20(8)853-860). Another strategy includes expressing a highly compact marker/suicide gene that combines target epitopes from both CD32 and CD20 antigens in the CAR-expressing cells described herein, which binds rituximab, resulting in selective depletion of the CAR-expressing cells, e.g., by ADCC (see, e.g., Philip et al., Blood. 2014; 124(8)1277-1287). Other methods for depleting CAR-expressing cells described herein include administration of CAMPATH, a monoclonal anti-CD52 antibody that selectively binds and targets mature lymphocytes, e.g., CAR-expressing cells, for destruction, e.g., by inducing ADCC. In other embodiments, the CAR-expressing cell can be selectively targeted using a
CAR ligand, e.g., an anti-idiotypic antibody. In some embodiments, the anti-idiotypic antibody can cause effector cell activity, e.g, ADCC or ADC activities, thereby reducing the number of CAR-expressing cells. In other embodiments, the CAR ligand, e.g., the anti-idiotypic antibody, can be coupled to an agent that induces cell killing, e.g., a toxin, thereby reducing the number of CAR-expressing cells. Alternatively, the CAR molecules themselves can be configured such that the activity can be regulated, e.g., turned on and off, as described below. In some embodiments, a RCAR comprises a set of polypeptides, typically two in the simplest embodiments, in which the components of a standard CAR described herein, e.g., an antigen binding domain and an intracellular signaling domain, are partitioned on separate polypeptides or members. In some embodiments, the set of polypeptides include a dimerization switch that, upon the presence of a dimerization molecule, can couple the polypeptides to one another, e.g., can couple an antigen binding domain to an intracellular signaling domain.
Additional description and exemplary configurations of such regulatable CARs are provided herein and in International Publiciation No. WO 2015/090229, hereby incorporated by reference in its entirety.
In an aspect, an RCAR comprises two polypeptides or members: 1) an intracellular signaling member comprising an intracellular signaling domain, e.g., a primary intracellular signaling domain described herein, and a first switch domain; 2) an antigen binding member comprising an antigen binding domain, e.g., that specifically binds a tumor antigen described herein, as described herein and a second switch domain. Optionally, the RCAR comprises a transmembrane domain described herein. In an embodiment, a transmembrane domain can be disposed on the intracellular signaling member, on the antigen binding member, or on both.
(Unless otherwise indicated, when members or elements of an RCAR are described herein, the order can be as provided, but other orders are included as well. In other words, in an embodiment, the order is as set out in the text, but in other embodiments, the order can be different. E.g., the order of elements on one side of a transmembrane region can be different from the example, e.g., the placement of a switch domain relative to a intracellular signaling domain can be different, e.g., reversed).
In an embodiment, the first and second switch domains can form an intracellular or an extracellular dimerization switch. In an embodiment, the dimerization switch can be a homodimerization switch, e.g., where the first and second switch domain are the same, or a heterodimerization switch, e.g., where the first and second switch domain are different from one another. In embodiments, an RCAR can comprise a "multi switch." A multi switch can comprise heterodimerization switch domains or homodimerization switch domains. A multi switch comprises a plurality of, e.g., 2, 3, 4, 5, 6, 7, 8, 9, or 10, switch domains, independently, on a first member, e.g., an antigen binding member, and a second member, e.g., an intracellular signaling member. In an embodiment, the first member can comprise a plurality of first switch domains, e.g., FKBP-based switch domains, and the second member can comprise a plurality of second switch domains, e.g., FRB-based switch domains. In an embodiment, the first member can comprise a first and a second switch domain, e.g., a FKBP-based switch domain and a FRB-based switch domain, and the second member can comprise a first and a second switch domain, e.g., a FKBP-based switch domain and a FRB-based switch domain.
In an embodiment, the intracellular signaling member comprises one or more intracellular signaling domains, e.g., a primary intracellular signaling domain and one or more costimulatory signaling domains.
In an embodiment, the antigen binding member may comprise one or more intracellular signaling domains, e.g., one or more costimulatory signaling domains. In an embodiment, the antigen binding member comprises a plurality, e.g., 2 or 3 costimulatory signaling domains described herein, e.g., selected from 4- IBB, CD28, CD27, ICOS, and OX40, and in
embodiments, no primary intracellular signaling domain. In an embodiment, the antigen binding member comprises the following costimulatory signaling domains, from the extracellular to intracellular direction: 4-1BB-CD27; 4-1BB-CD27; CD27-4-1BB; 4-1BB- CD28; CD28-4-1BB; OX40-CD28; CD28-OX40; CD28-4-1BB; or 4-1BB-CD28. In such embodiments, the intracellular binding member comprises a CD3zeta domain. In one such embodiment the RCAR comprises (1) an antigen binding member comprising, an antigen binding domain, a transmembrane domain, and two costimulatory domains and a first switch domain; and (2) an intracellular signaling domain comprising a transmembrane domain or membrane tethering domain and at least one primary intracellular signaling domain, and a second switch domain.
An embodiment provides RCARs wherein the antigen binding member is not tethered to the surface of the CAR cell. This allows a cell having an intracellular signaling member to be conveniently paired with one or more antigen binding domains, without transforming the cell with a sequence that encodes the antigen binding member. In such embodiments, the RCAR comprises: 1) an intracellular signaling member comprising: a first switch domain, a transmembrane domain, an intracellular signaling domain, e.g., a primary intracellular signaling domain, and a first switch domain; and 2) an antigen binding member comprising: an antigen binding domain, and a second switch domain, wherein the antigen binding member does not comprise a transmembrane domain or membrane tethering domain, and, optionally, does not comprise an intracellular signaling domain. In some embodiments, the RCAR may further comprise 3) a second antigen binding member comprising: a second antigen binding domain, e.g., a second antigen binding domain that binds a different antigen than is bound by the antigen binding domain; and a second switch domain. Also provided herein are RCARs wherein the antigen binding member comprises bispecific activation and targeting capacity. In this embodiment, the antigen binding member can comprise a plurality, e.g., 2, 3, 4, or 5 antigen binding domains, e.g., scFvs, wherein each antigen binding domain binds to a target antigen, e.g. different antigens or the same antigen, e.g., the same or different epitopes on the same antigen. In an embodiment, the plurality of antigen binding domains are in tandem, and optionally, a linker or hinge region is disposed between each of the antigen binding domains. Suitable linkers and hinge regions are described herein.
An embodiment provides RCARs having a configuration that allows switching of proliferation. In this embodiment, the RCAR comprises: 1) an intracellular signaling member comprising: optionally, a transmembrane domain or membrane tethering domain; one or more co-stimulatory signaling domain, e.g., selected from 4- IBB, CD28, CD27, ICOS, and OX40, and a switch domain; and 2) an antigen binding member comprising: an antigen binding domain, a transmembrane domain, and a primary intracellular signaling domain, e.g., a CD3zeta domain, wherein the antigen binding member does not comprise a switch domain, or does not comprise a switch domain that dimerizes with a switch domain on the intracellular signaling member. In an embodiment, the antigen binding member does not comprise a co- stimulatory signaling domain. In an embodiment, the intracellular signaling member comprises a switch domain from a homodimerization switch. In an embodiment, the intracellular signaling member comprises a first switch domain of a heterodimerization switch and the RCAR comprises a second intracellular signaling member which comprises a second switch domain of the heterodimerization switch. In such embodiments, the second intracellular signaling member comprises the same intracellular signaling domains as the intracellular signaling member. In an embodiment, the dimerization switch is intracellular. In an embodiment, the dimerization switch is extracellular.
In any of the RCAR configurations described here, the first and second switch domains comprise a FKBP-FRB based switch as described herein.
Also provided herein are cells comprising an RCAR described herein. Any cell that is engineered to express a RCAR can be used as a RCARX cell. In an embodiment the RCARX cell is a T cell, and is referred to as a RCART cell. In an embodiment the RCARX cell is an NK cell, and is referred to as a RCARN cell. Also provided herein are nucleic acids and vectors comprising RCAR encoding sequences. Sequence encoding various elements of an RCAR can be disposed on the same nucleic acid molecule, e.g., the same plasmid or vector, e.g., viral vector, e.g., lentiviral vector. In an embodiment, (i) sequence encoding an antigen binding member and (ii) sequence encoding an intracellular signaling member, can be present on the same nucleic acid, e.g., vector. Production of the corresponding proteins can be achieved, e.g., by the use of separate promoters, or by the use of a bicistronic transcription product (which can result in the production of two proteins by cleavage of a single translation product or by the translation of two separate protein products). In an embodiment, a sequence encoding a cleavable peptide, e.g., a P2A or F2A sequence, is disposed between (i) and (ii). In an embodiment, a sequence encoding an IRES, e.g., an EMCV or EV71 IRES, is disposed between (i) and (ii). In these embodiments, (i) and (ii) are transcribed as a single RNA. In an embodiment, a first promoter is operably linked to (i) and a second promoter is operably linked to (ii), such that (i) and (ii) are transcribed as separate mRNAs.
Alternatively, the sequence encoding various elements of an RCAR can be disposed on the different nucleic acid molecules, e.g., different plasmids or vectors, e.g., viral vector, e.g., lentiviral vector. E.g., the (i) sequence encoding an antigen binding member can be present on a first nucleic acid, e.g., a first vector, and the (ii) sequence encoding an intracellular signaling member can be present on the second nucleic acid, e.g., the second vector. Dimerization switches
Dimerization switches can be non-covalent or covalent. In a non-covalent dimerization switch, the dimerization molecule promotes a non-covalent interaction between the switch domains. In a covalent dimerization switch, the dimerization molecule promotes a covalent interaction between the switch domains.
In an embodiment, the RCAR comprises a FKBP/FRAP, or FKBP/FRB, -based dimerization switch. FKBP12 (FKBP, or FK506 binding protein) is an abundant cytoplasmic protein that serves as the initial intracellular target for the natural product immunosuppressive drug, rapamycin. Rapamycin binds to FKBP and to the large PI3K homolog FRAP (RAFT, mTOR). FRB is a 93 amino acid portion of FRAP, that is sufficient for binding the FKBP- rapamycin complex (Chen, J., Zheng, X. F., Brown, E. J. & Schreiber, S. L. (1995)
Identification of an 11-kDa FKBP 12-rapamycin-binding domain within the 289-kDa FKBP12- rapamycin-associated protein and characterization of a critical serine residue. Proc Natl Acad SciUS A 92: 4947-51.) In embodiments, an FKBP/FRAP, e.g., an FKBP/FRB, based switch can use a dimerization molecule, e.g., rapamycin or a rapamycin analog.
The amino acid sequence of FKBP is as follows:
DVPDYASLGGPSSPKKKRKVSRGVQVETISPGDGRTFPK RGQTCVVHYTGMLEDGKKFDSSRDRNKPFKFMLGKQEVIRG WEEGVAQMSVGQRAKLTISPDYAYGATGHPGIIPPHATLVFD VELLKLETSY (SEQ ID NO: 205)
In embodiments, an FKBP switch domain can comprise a fragment of FKBP having the ability to bind with FRB, or a fragment or analog thereof, in the presence of rapamycin or a rapalog, e.g., the underlined portion of SEQ ID NO: 205, which is: VQVETISPGDGRTFPKRGQTCVVHYTGMLEDGKKFDSSR DRNKPFKFMLGKQEVIRGWEEGVAQMSVGQRAKLTISPDYA YGATGHPGIIPPHATLVFDVELLKLETS (SEQ ID NO:206) The amino acid sequence of FRB is as follows:
ILWHEMWHEG LEEASRLYFG ERNVKGMFEV LEPLHAMMER GPQTLKETSF NQAYGRDLME AQEWCRKYMK SGNVKDLTQA WDLYYHVFRR ISK (SEQ ID NO: 207) "FKBP/FRAP, e.g., an FKBP/FRB, based switch" as that term is used herein, refers to a dimerization switch comprising: a first switch domain, which comprises an FKBP fragment or analog thereof having the ability to bind with FRB, or a fragment or analog thereof, in the presence of rapamycin or a rapalog, e.g., RAD001, and has at least 70, 75, 80, 85, 90, 95, 96, 97, 98, or 99% identity with, or differs by no more than 30, 25, 20, 15, 10, 5, 4, 3, 2, or 1 amino acid residues from, the FKBP sequence of SEQ ID NO: 54 or 55; and a second switch domain, which comprises an FRB fragment or analog thereof having the ability to bind with FRB, or a fragment or analog thereof, in the presence of rapamycin or a rapalog, and has at least 70, 75, 80, 85, 90, 95, 96, 97, 98, or 99% identity with, or differs by no more than 30, 25, 20, 15, 10, 5, 4, 3, 2, or 1 amino acid residues from, the FRB sequence of SEQ ID NO: 56. In an embodiment, a RCAR described herein comprises one switch domain comprises amino acid residues disclosed in SEQ ID NO: 205 (or SEQ ID NO: 206), and one switch domain comprises amino acid residues disclosed in SEQ ID NO: 207.
In embodiments, the FKBP/FRB dimerization switch comprises a modified FRB switch domain that exhibits altered, e.g., enhanced, complex formation between an FRB-based switch domain, e.g., the modified FRB switch domain, a FKBP-based switch domain, and the dimerization molecule, e.g., rapamycin or a rapalogue, e.g., RAD001. In an embodiment, the modified FRB switch domain comprises one or more mutations, e.g., 2, 3, 4, 5, 6, 7, 8, 9, 10 or more, selected from mutations at amino acid position(s) L2031, E2032, S2035, R2036, F2039, G2040, T2098, W2101, D2102, Y2105, and F2108, where the wild-type amino acid is mutated to any other naturally- occurring amino acid. In an embodiment, a mutant FRB comprises a mutation at E2032, where E2032 is mutated to phenylalanine (E2032F), methionine (E2032M), arginine (E2032R), valine (E2032V), tyrosine (E2032Y), isoleucine (E2032I), e.g., SEQ ID NO: 208, or leucine (E2032L), e.g., SEQ ID NO: 209. In an embodiment, a mutant FRB comprises a mutation at T2098, where T2098 is mutated to phenylalanine (T2098F) or leucine (T2098L), e.g., SEQ ID NO: 210. In an embodiment, a mutant FRB comprises a mutation at E2032 and at T2098, where E2032 is mutated to any amino acid, and where T2098 is mutated to any amino acid, e.g., SEQ ID NO: 211. In an embodiment, a mutant FRB comprises an E2032I and a T2098L mutation, e.g., SEQ ID NO: 212. In an embodiment, a mutant FRB comprises an E2032L and a T2098L mutation, e.g., SEQ ID NO: 213.
Table 9. Exemplary mutant FRB having increased affinity for a dimerization molecule.
Figure imgf000137_0001
Other suitable dimerization switches include a GyrB-GyrB based dimerization switch, a Gibberellin-based dimerization switch, a tag/binder dimerization switch, and a halo-tag/snap- tag dimerization switch. Following the guidance provided herein, such switches and relevant dimerization molecules will be apparent to one of ordinary skill. Dimerization molecule
Association between the switch domains is promoted by the dimerization molecule. In the presence of dimerization molecule interaction or association between switch domains allows for signal transduction between a polypeptide associated with, e.g., fused to, a first switch domain, and a polypeptide associated with, e.g., fused to, a second switch domain. In the presence of non-limiting levels of dimerization molecule signal transduction is increased by 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 5, 10, 50, 100 fold, e.g., as measured in a system described herein.
Rapamycin and rapamycin analogs (sometimes referred to as rapalogues), e.g., RAD001, can be used as dimerization molecules in a FKBP/FRB-based dimerization switch described herein. In an embodiment the dimerization molecule can be selected from rapamycin (sirolimus), RAD001 (everolimus), zotarolimus, temsirolimus, AP-23573 (ridaforolimus), biolimus and AP21967. Additional rapamycin analogs suitable for use with FKBP/FRB-based dimerization switches are further described in the section entitled "Combination Therapies", or in the subsection entitled "Combination with a low dose mTOR inhibitor".
Split CAR In some embodiments, the CAR-expressing cell uses a split CAR. The split CAR approach is described in more detail in publications WO2014/055442 and WO2014/055657, incorporated herein by reference. Briefly, a split CAR system comprises a cell expressing a first CAR having a first antigen binding domain and a costimulatory domain (e.g., 41BB), and the cell also expresses a second CAR having a second antigen binding domain and an intracellular signaling domain (e.g., CD3 zeta). When the cell encounters the first antigen, the costimulatory domain is activated, and the cell proliferates. When the cell encounters the second antigen, the intracellular signaling domain is activated and cell-killing activity begins. Thus, the CAR-expressing cell is only fully activated in the presence of both antigens. In embodiments the first antigen binding domain recognizes CLL-1, e.g., comprises an antigen binding domain described herein, and the second antigen binding domain recognizes an antigen expressed on acute myeloid leukemia cells, e.g., CD123, CD33, CD34, FLT3, or folate receptor beta. In embodiments the first antigen binding domain recognizes CLL-1, e.g., comprises an antigen binding domain described herein, and the second antigen binding domain recognizes an antigen expressed on B-cells, e.g., CD19, CD20, CD22 or ROR1.
Stability and Mutations
The stability of a CLL-1 binding domain, e.g., scFv molecules (e.g., soluble scFv) can be evaluated in reference to the biophysical properties (e.g., thermal stability) of a conventional control scFv molecule or a full length antibody. In one embodiment, the human scFv has a thermal stability that is greater than about 0.1, about 0.25, about 0.5, about 0.75, about 1, about 1.25, about 1.5, about 1.75, about 2, about 2.5, about 3, about 3.5, about 4, about 4.5, about 5, about 5.5, about 6, about 6.5, about 7, about 7.5, about 8, about 8.5, about 9, about 9.5, about 10 degrees, about 11 degrees, about 12 degrees, about 13 degrees, about 14 degrees, or about 15 degrees Celsius than a control binding molecule (e.g. a conventional scFv molecule) in the described assays. The improved thermal stability of the anti- CLL-1 binding domain, e.g., scFv is subsequently conferred to the entire CLL-1 CAR construct, leading to improved therapeutic properties of the CLL-1 CAR construct. The thermal stability of the anti- CLL-1 binding domain, e.g., scFv can be improved by at least about 2°C or 3°C as compared to a conventional antibody. In one embodiment, the anti- CLL-1 binding domain, e.g., scFv has a 1°C improved thermal stability as compared to a conventional antibody. In another embodiment, the anti- CLL-1 binding domain, e.g., scFv has a 2°C improved thermal stability as compared to a conventional antibody. In another embodiment, the scFv has a 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15°C improved thermal stability as compared to a conventional antibody. Comparisons can be made, for example, between the scFv molecules disclosed herein and full length antibodies. Thermal stability can be measured using methods known in the art. For example, in one embodiment, Tm can be measured. Methods for measuring Tm and other methods of determining protein stability are described in more detail below.
Mutations in scFv alter the stability of the scFv and improve the overall stability of the scFv and the CART CLL-1 construct. Stability of the human scFv is determined using measurements such as Tm, temperature denaturation and temperature aggregation.
The binding capacity of the mutant scFvs can be determined using assays described in the Examples.
In one embodiment, the anti-CLL-1 binding domain, e.g., scFv comprises at least one mutation such that the mutated scFv confers improved stability to the CLL-1 CAR construct. In another embodiment, the anti- CLL-1 binding domain, e.g., scFv comprises at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 mutations arising from the humanization process such that the mutated scFv confers improved stability to the CLL-1 CAR construct.
Methods of Evaluating Protein Stability
The stability of an antigen binding domain may be assessed using, e.g., the methods described below. Such methods allow for the determination of multiple thermal unfolding transitions where the least stable domain either unfolds first or limits the overall stability threshold of a multidomain unit that unfolds cooperatively (e.g., a multidomain protein which exhibits a single unfolding transition). The least stable domain can be identified in a number of additional ways. Mutagenesis can be performed to probe which domain limits the overall stability. Additionally, protease resistance of a multidomain protein can be performed under conditions where the least stable domain is known to be intrinsically unfolded via DSC or other spectroscopic methods (Fontana, et al., (1997) Fold. Des., 2: R17-26; Dimasi et al. (2009) J. Mol. Biol. 393: 672-692). Once the least stable domain is identified, the sequence encoding this domain (or a portion thereof) may be employed as a test sequence in the methods. a) Thermal Stability
The thermal stability of the compositions may be analyzed using a number of non- limiting biophysical or biochemical techniques known in the art. In certain embodiments, thermal stability is evaluated by analytical spectroscopy.
An exemplary analytical spectroscopy method is Differential Scanning Calorimetry (DSC). DSC employs a calorimeter which is sensitive to the heat absorbances that accompany the unfolding of most proteins or protein domains (see, e.g. Sanchez-Ruiz, et al., Biochemistry, 27: 1648-52, 1988). To determine the thermal stability of a protein, a sample of the protein is inserted into the calorimeter and the temperature is raised until the Fab or scFv unfolds. The temperature at which the protein unfolds is indicative of overall protein stability. Another exemplary analytical spectroscopy method is Circular Dichroism (CD) spectroscopy. CD spectrometry measures the optical activity of a composition as a function of increasing temperature. Circular dichroism (CD) spectroscopy measures differences in the absorption of left-handed polarized light versus right-handed polarized light which arise due to structural asymmetry. A disordered or unfolded structure results in a CD spectrum very different from that of an ordered or folded structure. The CD spectrum reflects the sensitivity of the proteins to the denaturing effects of increasing temperature and is therefore indicative of a protein's thermal stability (see van Mierlo and Steemsma, J. Biotechnol., 79(3):281-98, 2000).
Another exemplary analytical spectroscopy method for measuring thermal stability is Fluorescence Emission Spectroscopy (see van Mierlo and Steemsma, supra). Yet another exemplary analytical spectroscopy method for measuring thermal stability is Nuclear Magnetic Resonance (NMR) spectroscopy (see, e.g. van Mierlo and Steemsma, supra).
The thermal stability of a composition can be measured biochemically. An exemplary biochemical method for assessing thermal stability is a thermal challenge assay. In a "thermal challenge assay", a composition is subjected to a range of elevated temperatures for a set period of time. For example, in one embodiment, test scFv molecules or molecules comprising scFv molecules are subject to a range of increasing temperatures, e.g., for 1-1.5 hours. The activity of the protein is then assayed by a relevant biochemical assay. For example, if the protein is a binding protein (e.g. an scFv or scFv-containing polypeptide ) the binding activity of the binding protein may be determined by a functional or quantitative ELISA. Such an assay may be done in a high-throughput format and those disclosed in the
Examples using E. coli and high throughput screening. A library of anti- CLL-1 binding domain, e.g., scFv variants may be created using methods known in the art. Anti- CLL-1 binding domain, e.g., scFv expression may be induced and the anti- CLL-1 binding domain, e.g., scFv may be subjected to thermal challenge. The challenged test samples may be assayed for binding and those anti- CLL-1 binding domain, e.g., scFvs which are stable may be scaled up and further characterized.
Thermal stability is evaluated by measuring the melting temperature (Tm) of a composition using any of the above techniques (e.g. analytical spectroscopy techniques). The melting temperature is the temperature at the midpoint of a thermal transition curve wherein 50% of molecules of a composition are in a folded state (See e.g., Dimasi et al. (2009) J. Mol Biol. 393: 672-692). In one embodiment, Tm values for an anti- CLL-1 binding domain, e.g., scFv are about 40°C, 41 °C, 42°C, 43°C, 44°C, 45°C, 46°C, 47°C, 48°C, 49°C, 50°C, 51°C, 52°C, 53°C, 54°C, 55°C, 56°C, 57°C, 58°C, 59°C, 60°C, 61°C, 62°C, 63°C, 64°C, 65°C, 66°C, 67°C, 68°C, 69°C, 70°C, 71°C, 72°C, 73°C, 74°C, 75°C, 76°C, 77°C, 78°C, 79°C, 80°C, 81°C, 82°C, 83°C, 84°C, 85°C, 86°C, 87°C, 88°C, 89°C, 90°C, 91°C, 92°C, 93°C, 94°C, 95°C, 96°C, 97°C, 98°C, 99°C, 100°C. In one embodiment, Tm values for an IgG is about 40°C, 41°C, 42°C, 43°C, 44°C, 45°C, 46°C, 47°C, 48°C, 49°C, 50°C, 51°C, 52°C, 53°C, 54°C, 55°C, 56°C, 57°C, 58°C, 59°C, 60°C, 61°C, 62°C, 63°C, 64°C, 65°C, 66°C, 67°C, 68°C, 69°C, 70°C, 71°C, 72°C, 73°C, 74°C, 75°C, 76°C, 77°C, 78°C, 79°C, 80°C, 81°C, 82°C, 83°C, 84°C, 85°C, 86°C, 87°C, 88°C, 89°C, 90°C, 91°C, 92°C, 93°C, 94°C, 95°C, 96°C, 97°C, 98°C, 99°C, 100°C. In one embodiment, Tm values for an multivalent antibody is about 40°C, 41 °C, 42°C, 43°C, 44°C, 45°C, 46°C, 47°C, 48°C, 49°C, 50°C, 51°C, 52°C, 53°C, 54°C, 55°C, 56°C, 57°C, 58°C, 59°C, 60°C, 61°C, 62°C, 63°C, 64°C, 65°C, 66°C, 67°C, 68°C, 69°C, 70°C, 71°C, 72°C, 73°C, 74°C, 75°C, 76°C, 77°C, 78°C, 79°C, 80°C, 81°C, 82°C, 83°C, 84°C, 85°C, 86°C, 87°C, 88°C, 89°C, 90°C, 91°C, 92°C, 93°C, 94°C, 95°C, 96°C, 97°C, 98°C, 99°C, 100°C. Thermal stability is also evaluated by measuring the specific heat or heat capacity (Cp) of a composition using an analytical calorimetric technique (e.g. DSC). The specific heat of a composition is the energy (e.g. in kcal/mol) is required to rise by 1°C, the temperature of 1 mol of water. As large Cp is a hallmark of a denatured or inactive protein composition. The change in heat capacity (ACp) of a composition is measured by determining the specific heat of a composition before and after its thermal transition. Thermal stability may also be evaluated by measuring or determining other parameters of thermodynamic stability including Gibbs free energy of unfolding (AG), enthalpy of unfolding (ΔΗ), or entropy of unfolding (AS). One or more of the above biochemical assays (e.g. a thermal challenge assay) are used to determine the temperature (i.e. the Tc value) at which 50% of the composition retains its activity (e.g. binding activity).
In addition, mutations to the anti- CLL-1 binding domain, e.g., scFv alter the thermal stability of the anti- CLL-1 binding domain, e.g., scFv compared with the unmutated anti- CLL-1 binding domain, e.g., scFv. In one embodiment, the anti- CLL-1 binding domain, e.g., scFv comprises a single mutation that confers thermal stability to the anti- CLL-1 binding domain, e.g., scFv. In another embodiment, the anti- CLL-1 binding domain, e.g., scFv comprises multiple mutations that confer thermal stability to the anti- CLL-1 binding domain, e.g., scFv. In one embodiment, the multiple mutations in the anti- CLL-1 binding domain, e.g., scFv have an additive effect on thermal stability of the anti- CLL-1 binding domain, e.g., scFv. b) % Aggregation
The stability of a composition can be determined by measuring its propensity to aggregate. Aggregation can be measured by a number of non-limiting biochemical or biophysical techniques. For example, the aggregation of a composition may be evaluated using chromatography, e.g. Size-Exclusion Chromatography (SEC). SEC separates molecules on the basis of size. A column is filled with semi-solid beads of a polymeric gel that will admit ions and small molecules into their interior but not large ones. When a protein composition is applied to the top of the column, the compact folded proteins (i.e. non-aggregated proteins) are distributed through a larger volume of solvent than is available to the large protein aggregates. Consequently, the large aggregates move more rapidly through the column, and in this way the mixture can be separated or fractionated into its components. Each fraction can be separately quantified (e.g. by light scattering) as it elutes from the gel. Accordingly, the % aggregation of a composition can be determined by comparing the concentration of a fraction with the total concentration of protein applied to the gel. Stable compositions elute from the column as essentially a single fraction and appear as essentially a single peak in the elution profile or chromatogram. c) Binding Affinity
The stability of a composition can be assessed by determining its target binding affinity. A wide variety of methods for determining binding affinity are known in the art. An exemplary method for determining binding affinity employs surface plasmon resonance. Surface plasmon resonance is an optical phenomenon that allows for the analysis of real-time biospecific interactions by detection of alterations in protein concentrations within a biosensor matrix, for example using the BIAcore system (Pharmacia Biosensor AB, Uppsala, Sweden and
Piscataway, N.J.). For further descriptions, see Jonsson, U., et al. (1993) Ann. Biol. Clin.
51:19-26; Jonsson, U., i (1991) Biotechniques 11:620-627; Johnsson, B., et al. (1995) J. Mol. Recognit. 8:125-131; and Johnnson, B., et al. (1991) Anal. Biochem. 198:268-277. In one aspect, the antigen binding domain of the CAR comprises an amino acid sequence that is homologous to an antigen binding domain amino acid sequence described herein, and the antigen binding domain retains the desired functional properties of the anti- CLL-1 antibody fragments described herein. In one specific aspect, the CAR composition of the invention comprises an antibody fragment. In a further aspect, that antibody fragment comprises an scFv.
In various aspects, the antigen binding domain of the CAR is engineered by modifying one or more amino acids within one or both variable regions (e.g., VH and/or VL), for example within one or more CDR regions and/or within one or more framework regions. In one specific aspect, the CAR composition of the invention comprises an antibody fragment. In a further aspect, that antibody fragment comprises an scFv.
It will be understood by one of ordinary skill in the art that the antibody or antibody fragment of the invention may further be modified such that they vary in amino acid sequence (e.g., from wild-type), but not in desired activity. For example, additional nucleotide substitutions leading to amino acid substitutions at "non-essential" amino acid residues may be made to the protein For example, a nonessential amino acid residue in a molecule may be replaced with another amino acid residue from the same side chain family. In another embodiment, a string of amino acids can be replaced with a structurally similar string that differs in order and/or composition of side chain family members, e.g., a conservative substitution, in which an amino acid residue is replaced with an amino acid residue having a similar side chain, may be made. Families of amino acid residues having similar side chains have been defined in the art, including basic side chains (e.g., lysine, arginine, histidine), acidic side chains (e.g., aspartic acid, glutamic acid), uncharged polar side chains (e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine), nonpolar side chains (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), beta-branched side chains (e.g., threonine, valine, isoleucine) and aromatic side chains (e.g., tyrosine, phenylalanine, tryptophan, histidine).
Percent identity in the context of two or more nucleic acids or polypeptide sequences, refers to two or more sequences that are the same. Two sequences are "substantially identical" if two sequences have a specified percentage of amino acid residues or nucleotides that are the same (e.g., 60% identity, optionally 70%, 71%. 72%. 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%,81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% identity over a specified region, or, when not specified, over the entire sequence), when compared and aligned for maximum correspondence over a comparison window, or designated region as measured using one of the following sequence comparison algorithms or by manual alignment and visual inspection. Optionally, the identity exists over a region that is at least about 50 nucleotides (or 10 amino acids) in length, or more preferably over a region that is 100 to 500 or 1000 or more nucleotides (or 20, 50, 200 or more amino acids) in length.
For sequence comparison, typically one sequence acts as a reference sequence, to which test sequences are compared. When using a sequence comparison algorithm, test and reference sequences are entered into a computer, subsequence coordinates are designated, if necessary, and sequence algorithm program parameters are designated. Default program parameters can be used, or alternative parameters can be designated. The sequence comparison algorithm then calculates the percent sequence identities for the test sequences relative to the reference sequence, based on the program parameters. Methods of alignment of sequences for comparison are well known in the art. Optimal alignment of sequences for comparison can be conducted, e.g., by the local homology algorithm of Smith and Waterman, (1970) Adv. Appl. Math. 2:482c, by the homology alignment algorithm of Needleman and Wunsch, (1970) J. Mol. Biol. 48:443, by the search for similarity method of Pearson and Lipman, (1988) Proc. Nat'l. Acad. Sci. USA 85:2444, by computerized implementations of these algorithms (GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group, 575 Science Dr., Madison, WI), or by manual alignment and visual inspection (see, e.g., Brent et al., (2003) Current Protocols in Molecular Biology).
Two examples of algorithms that are suitable for determining percent sequence identity and sequence similarity are the BLAST and BLAST 2.0 algorithms, which are described in Altschul et al., (1977) Nuc. Acids Res. 25:3389-3402; and Altschul et al., (1990) J. Mol. Biol. 215:403-410, respectively. Software for performing BLAST analyses is publicly available through the National Center for Biotechnology Information.
The percent identity between two amino acid sequences can also be determined using the algorithm of E. Meyers and W. Miller, (1988) Comput. Appl. Biosci. 4:11-17) which has been incorporated into the ALIGN program (version 2.0), using a PAM120 weight residue table, a gap length penalty of 12 and a gap penalty of 4. In addition, the percent identity between two amino acid sequences can be determined using the Needleman and Wunsch (1970) J. Mol. Biol. 48:444-453) algorithm which has been incorporated into the GAP program in the GCG software package (available at www.gcg.com), using either a Blossom 62 matrix or a PAM250 matrix, and a gap weight of 16, 14, 12, 10, 8, 6, or 4 and a length weight of 1, 2, 3, 4, 5, or 6.
In one aspect, the present invention contemplates modifications of the starting antibody or fragment (e.g., scFv) amino acid sequence that generate functionally equivalent molecules. For example, the VH or VL of an anti- CLL-1 binding domain, e.g., scFv, comprised in the CAR can be modified to retain at least about 70%, 71%. 72%. 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%,81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% identity of the starting VH or VL framework region of the anti- CLL-1 binding domain, e.g., scFv. The present invention contemplates modifications of the entire CAR construct, e.g., modifications in one or more amino acid sequences of the various domains of the CAR construct in order to generate functionally equivalent molecules. The CAR construct can be modified to retain at least about 70%, 71%. 72%. 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% identity of the starting CAR construct.
RNA Transfection
Disclosed herein are methods for producing an in vitro transcribed RNA CAR. The present invention also includes a CAR encoding RNA construct that can be directly transfected into a cell. A method for generating mRNA for use in transfection can involve in vitro transcription (IVT) of a template with specially designed primers, followed by polyA addition, to produce a construct containing 3' and 5' untranslated sequence ("UTR"), a 5' cap and/or Internal Ribosome Entry Site (IRES), the nucleic acid to be expressed, and a polyA tail, typically 50-2000 bases in length (SEQ ID NO:35). RNA so produced can efficiently transfect different kinds of cells. In one aspect, the template includes sequences for the CAR.
In one aspect the anti- CLL-1 CAR is encoded by a messenger RNA (mRNA). In one aspect the mRNA encoding the anti- CLL-1 CAR is introduced into a T cell for production of a CART cell. In one embodiment, the in vitro transcribed RNA CAR can be introduced to a cell as a form of transient transfection. The RNA is produced by in vitro transcription using a polymerase chain reaction (PCR)-generated template. DNA of interest from any source can be directly converted by PCR into a template for in vitro mRNA synthesis using appropriate primers and RNA polymerase. The source of the DNA can be, for example, genomic DNA, plasmid DNA, phage DNA, cDNA, synthetic DNA sequence or any other appropriate source of DNA. The desired temple for in vitro transcription is a CAR of the present invention. For example, the template for the RNA CAR comprises an extracellular region comprising a single chain variable domain of an anti-tumor antibody; a hinge region, a transmembrane domain (e.g., a transmembrane domain of CD8a); and a cytoplasmic region that includes an
intracellular signaling domain, e.g., comprising the signaling domain of CD3-zeta and the signaling domain of 4- IBB.
In one embodiment, the DNA to be used for PCR contains an open reading frame. The DNA can be from a naturally occurring DNA sequence from the genome of an organism. In one embodiment, the nucleic acid can include some or all of the 5' and/or 3' untranslated regions (UTRs). The nucleic acid can include exons and introns. In one embodiment, the DNA to be used for PCR is a human nucleic acid sequence. In another embodiment, the DNA to be used for PCR is a human nucleic acid sequence including the 5' and 3' UTRs. The DNA can alternatively be an artificial DNA sequence that is not normally expressed in a naturally occurring organism. An exemplary artificial DNA sequence is one that contains portions of genes that are ligated together to form an open reading frame that encodes a fusion protein. The portions of DNA that are ligated together can be from a single organism or from more than one organism.
PCR is used to generate a template for in vitro transcription of mRNA which is used for transfection. Methods for performing PCR are well known in the art. Primers for use in PCR are designed to have regions that are substantially complementary to regions of the DNA to be used as a template for the PCR. "Substantially complementary," as used herein, refers to sequences of nucleotides where a majority or all of the bases in the primer sequence are complementary, or one or more bases are non-complementary, or mismatched. Substantially complementary sequences are able to anneal or hybridize with the intended DNA target under annealing conditions used for PCR. The primers can be designed to be substantially
complementary to any portion of the DNA template. For example, the primers can be designed to amplify the portion of a nucleic acid that is normally transcribed in cells (the open reading frame), including 5' and 3' UTRs. The primers can also be designed to amplify a portion of a nucleic acid that encodes a particular domain of interest. In one embodiment, the primers are designed to amplify the coding region of a human cDNA, including all or portions of the 5' and 3' UTRs. Primers useful for PCR can be generated by synthetic methods that are well known in the art. "Forward primers" are primers that contain a region of nucleotides that are substantially complementary to nucleotides on the DNA template that are upstream of the DNA sequence that is to be amplified. "Upstream" is used herein to refer to a location 5, to the DNA sequence to be amplified relative to the coding strand. "Reverse primers" are primers that contain a region of nucleotides that are substantially complementary to a double- stranded DNA template that are downstream of the DNA sequence that is to be amplified. "Downstream" is used herein to refer to a location 3' to the DNA sequence to be amplified relative to the coding strand.
Any DNA polymerase useful for PCR can be used in the methods disclosed herein. The reagents and polymerase are commercially available from a number of sources. Chemical structures with the ability to promote stability and/or translation efficiency may also be used. The RNA preferably has 5' and 3' UTRs. In one embodiment, the 5' UTR is between one and 3000 nucleotides in length. The length of 5' and 3' UTR sequences to be added to the coding region can be altered by different methods, including, but not limited to, designing primers for PCR that anneal to different regions of the UTRs. Using this approach, one of ordinary skill in the art can modify the 5' and 3' UTR lengths required to achieve optimal translation efficiency following transfection of the transcribed RNA.
The 5' and 3' UTRs can be the naturally occurring, endogenous 5' and 3' UTRs for the nucleic acid of interest. Alternatively, UTR sequences that are not endogenous to the nucleic acid of interest can be added by incorporating the UTR sequences into the forward and reverse primers or by any other modifications of the template. The use of UTR sequences that are not endogenous to the nucleic acid of interest can be useful for modifying the stability and/or translation efficiency of the RNA. For example, it is known that AU-rich elements in 3' UTR sequences can decrease the stability of mRNA. Therefore, 3' UTRs can be selected or designed to increase the stability of the transcribed RNA based on properties of UTRs that are well known in the art.
In one embodiment, the 5' UTR can contain the Kozak sequence of the endogenous nucleic acid. Alternatively, when a 5' UTR that is not endogenous to the nucleic acid of interest is being added by PCR as described above, a consensus Kozak sequence can be redesigned by adding the 5' UTR sequence. Kozak sequences can increase the efficiency of translation of some RNA transcripts, but does not appear to be required for all RNAs to enable efficient translation. The requirement for Kozak sequences for many mRNAs is known in the art. In other embodiments the 5' UTR can be 5'UTR of an RNA virus whose RNA genome is stable in cells. In other embodiments various nucleotide analogues can be used in the 3' or 5' UTR to impede exonuclease degradation of the mRNA.
To enable synthesis of RNA from a DNA template without the need for gene cloning, a promoter of transcription should be attached to the DNA template upstream of the sequence to be transcribed. When a sequence that functions as a promoter for an RNA polymerase is added to the 5' end of the forward primer, the RNA polymerase promoter becomes incorporated into the PCR product upstream of the open reading frame that is to be transcribed. In one preferred embodiment, the promoter is a T7 polymerase promoter, as described elsewhere herein. Other useful promoters include, but are not limited to, T3 and SP6 RNA polymerase promoters.
Consensus nucleotide sequences for T7, T3 and SP6 promoters are known in the art.
In a preferred embodiment, the mRNA has both a cap on the 5' end and a 3' poly(A) tail which determine ribosome binding, initiation of translation and stability mRNA in the cell. On a circular DNA template, for instance, plasmid DNA, RNA polymerase produces a long concatameric product which is not suitable for expression in eukaryotic cells. The transcription of plasmid DNA linearized at the end of the 3' UTR results in normal sized mRNA which is not effective in eukaryotic transfection even if it is polyadenylated after transcription.
On a linear DNA template, phage T7 RNA polymerase can extend the 3' end of the transcript beyond the last base of the template (Schenborn and Mierendorf, Nuc Acids Res., 13:6223-36 (1985); Nacheva and Berzal-Herranz, Eur. J. Biochem., 270:1485-65 (2003).
The conventional method of integration of polyA/T stretches into a DNA template is molecular cloning. However polyA/T sequence integrated into plasmid DNA can cause plasmid instability, which is why plasmid DNA templates obtained from bacterial cells are often highly contaminated with deletions and other aberrations. This makes cloning procedures not only laborious and time consuming but often not reliable. That is why a method which allows construction of DNA templates with polyA/T 3' stretch without cloning highly desirable.
The polyA/T segment of the transcriptional DNA template can be produced during PCR by using a reverse primer containing a polyT tail, such as 100T tail (SEQ ID NO: 31) (size can be 50-5000 T (SEQ ID NO: 32)), or after PCR by any other method, including, but not limited to, DNA ligation or in vitro recombination. Poly(A) tails also provide stability to RNAs and reduce their degradation. Generally, the length of a poly(A) tail positively correlates with the stability of the transcribed RNA. In one embodiment, the poly(A) tail is between 100 and 5000 adenosines (SEQ ID NO: 33). Poly(A) tails of RNAs can be further extended following in vitro transcription with the use of a poly(A) polymerase, such as E. coli polyA polymerase (E-PAP). In one embodiment, increasing the length of a poly(A) tail from 100 nucleotides to between 300 and 400
nucleotides (SEQ ID NO: 34) results in about a two-fold increase in the translation efficiency of the RNA. Additionally, the attachment of different chemical groups to the 3' end can increase mRNA stability. Such attachment can contain modified/artificial nucleotides, aptamers and other compounds. For example, ATP analogs can be incorporated into the poly(A) tail using poly(A) polymerase. ATP analogs can further increase the stability of the RNA.
5' caps on also provide stability to RNA molecules. In a preferred embodiment, RNAs produced by the methods disclosed herein include a 5' cap. The 5' cap is provided using techniques known in the art and described herein (Cougot, et al., Trends in Biochem. Sci.,
29:436-444 (2001); Stepinski, et al., RNA, 7:1468-95 (2001); Elango, et al., Biochim. Biophys. Res. Commun., 330:958-966 (2005)).
The RNAs produced by the methods disclosed herein can also contain an internal ribosome entry site (IRES) sequence. The IRES sequence may be any viral, chromosomal or artificially designed sequence which initiates cap-independent ribosome binding to mRNA and facilitates the initiation of translation. Any solutes suitable for cell electroporation, which can contain factors facilitating cellular permeability and viability such as sugars, peptides, lipids, proteins, antioxidants, and surfactants can be included.
RNA can be introduced into target cells using any of a number of different methods, for instance, commercially available methods which include, but are not limited to, electroporation (Amaxa Nucleofector-II (Amaxa Biosystems, Cologne, Germany)), (ECM 830 (BTX) (Harvard Instruments, Boston, Mass.) or the Gene Pulser II (BioRad, Denver, Colo.), Multiporator (Eppendort, Hamburg Germany), cationic liposome mediated transfection using lipofection, polymer encapsulation, peptide mediated transfection, or biolistic particle delivery systems such as "gene guns" (see, for example, Nishikawa, et al. Hum Gene Ther., 12(8):861-70 (2001).
Non-viral delivery methods
In some aspects, non-viral methods can be used to deliver a nucleic acid encoding a CAR described herein into a cell or tissue or a subject. In some embodiments, the non-viral method includes the use of a transposon (also called a transposable element). In some embodiments, a transposon is a piece of DNA that can insert itself at a location in a genome, for example, a piece of DNA that is capable of self- replicating and inserting its copy into a genome, or a piece of DNA that can be spliced out of a longer nucleic acid and inserted into another place in a genome. For example, a transposon comprises a DNA sequence made up of inverted repeats flanking genes for transposition. Exemplary methods of nucleic acid delivery using a transposon include a Sleeping Beauty transposon system (SBTS) and a piggyBac (PB) transposon system. See, e.g., Aronovich et al. Hum. Mol. Genet. 20.Rl(2011):R14-20; Singh et al. Cancer Res. 15(2008):2961-2971; Huang et al. Mol. Ther. 16(2008):580-589; Grabundzija et al. Mol. Ther. 18(2010):1200-1209; Kebriaei et al. Blood. 122.21(2013):166; Williams. Molecular Therapy 16.9(2008):1515-16; Bell et al. Nat. Protoc. 2.12(2007):3153-65; and Ding et al. Cell. 122.3(2005):473-83, all of which are incorporated herein by reference.
The SBTS includes two components: 1) a transposon containing a transgene and 2) a source of transposase enzyme. The transposase can transpose the transposon from a carrier plasmid (or other donor DNA) to a target DNA, such as a host cell chromosome/genome. For example, the transposase binds to the carrier plasmid/donor DNA, cuts the transposon (including transgene(s)) out of the plasmid, and inserts it into the genome of the host cell. See, e.g., Aronovich et al. supra.
Exemplary transposons include a pT2-based transposon. See, e.g., Grabundzija et al. Nucleic Acids Res. 41.3(2013):1829-47; and Singh et al. Cancer Res. 68.8(2008): 2961-2971, all of which are incorporated herein by reference. Exemplary transposases include a Tel /mariner- type transposase, e.g., the SB10 transposase or the SB11 transposase (a hyperactive transposase which can be expressed, e.g., from a cytomegalovirus promoter). See, e.g., Aronovich et al.; Kebriaei et al.; and Grabundzija et al., all of which are incorporated herein by reference.
Use of the SBTS permits efficient integration and expression of a transgene, e.g., a nucleic acid encoding a CAR described herein. Provided herein are methods of generating a cell, e.g., T cell or NK cell, that stably expresses a CAR described herein, e.g., using a transposon system such as SBTS. In accordance with methods described herein, in some embodiments, one or more nucleic acids, e.g., plasmids, containing the SBTS components are delivered to a cell (e.g., T or NK cell). For example, the nucleic acid(s) are delivered by standard methods of nucleic acid (e.g., plasmid DNA) delivery, e.g., methods described herein, e.g., electroporation, transfection, or lipofection. In some embodiments, the nucleic acid contains a transposon comprising a transgene, e.g., a nucleic acid encoding a CAR described herein. In some embodiments, the nucleic acid contains a transposon comprising a transgene (e.g., a nucleic acid encoding a CAR described herein) as well as a nucleic acid sequence encoding a transposase enzyme. In other embodiments, a system with two nucleic acids is provided, e.g., a dual-plasmid system, e.g., where a first plasmid contains a transposon comprising a transgene, and a second plasmid contains a nucleic acid sequence encoding a transposase enzyme. For example, the first and the second nucleic acids are co-delivered into a host cell.
In some embodiments, cells, e.g., T or NK cells, are generated that express a CAR described herein by using a combination of gene insertion using the SBTS and genetic editing using a nuclease (e.g., Zinc finger nucleases (ZFNs), Transcription Activator-Like Effector Nucleases (TALENs), the CRISPR/Cas system, or engineered meganuclease re-engineered homing endonucleases).
In some embodiments, use of a non-viral method of delivery permits reprogramming of cells, e.g., T or NK cells, and direct infusion of the cells into a subject. Advantages of non- viral vectors include but are not limited to the ease and relatively low cost of producing sufficient amounts required to meet a patient population, stability during storage, and lack of immunogenicity.
Nucleic Acid Constructs Encoding a CAR
The present invention also provides nucleic acid molecules encoding one or more CAR constructs described herein. In one aspect, the nucleic acid molecule is provided as a messenger RNA transcript. In one aspect, the nucleic acid molecule is provided as a DNA construct.
Accordingly, in one aspect, the invention pertains to an isolated nucleic acid molecule encoding a chimeric antigen receptor (CAR), wherein the CAR comprises a anti- CLL-1 binding domain (e.g., a human anti- CLL-1 binding domain), a transmembrane domain, and an intracellular signaling domain comprising a stimulatory domain, e.g., a costimulatory signaling domain and/or a primary signaling domain, e.g., zeta chain. In one embodiment, the anti- CLL-1 binding domain is an anti- CLL-1 binding domain described herein, e.g., an anti- CLL-1 binding domain which comprises a sequence selected from a group consisting of SEQ ID NO:39-51, or a sequence with 95-99% identity thereof. In one embodiment, the
transmembrane domain is transmembrane domain of a protein described herein, e.g., selected from the group consisting of the alpha, beta or zeta chain of the T-cell receptor, CD28, CD3 epsilon, CD45, CD4, CD5, CD8, CD9, CD16, CD22, CD33, CD37, CD64, CD80, CD86, CD 134, CD 137 and CD 154. In one embodiment, the transmembrane domain comprises a sequence of SEQ ID NO: 6, or a sequence with 95-99% identity thereof. In one embodiment, the anti- CLL-1 binding domain is connected to the transmembrane domain by a hinge region, e.g., a hinge described herein. In one embodiment, the hinge region comprises SEQ ID NO:2 or SEQ ID NO:3 or SEQ ID NO:4 or SEQ ID NO:5, or a sequence with 95-99% identity thereof. In one embodiment, the isolated nucleic acid molecule further comprises a sequence encoding a costimulatory domain. In one embodiment, the costimulatory domain is a functional signaling domain of a protein described herein, e.g., selected from the group consisting of a MHC class I molecule, TNF receptor proteins, Immunoglobulin-like proteins, cytokine receptors, integrins, signaling lymphocytic activation molecules (SLAM proteins), activating NK cell receptors, BTLA, a Toll ligand receptor, OX40, CD2, CD7, CD27, CD28, CD30, CD40, CDS, ICAM-1, LFA-1 (CDl la/CD18), 4-1BB (CD137), B7-H3, CDS, ICAM-1, ICOS (CD278), GITR, BAFFR, LIGHT, HVEM (LIGHTR), KIRDS2, SLAMF7, NKp80 (KLRF1), NKp44, NKp30, NKp46, CD 19, CD4, CD8alpha, CD8beta, IL2R beta, IL2R gamma, IL7R alpha, ITGA4, VLA1, CD49a, ITGA4, IA4, CD49D, ITGA6, VLA-6, CD49f, ITGAD, CDl ld, ITGAE, CD103, ITGAL, CDl la, LFA-1, ITGAM, CDl lb, ITGAX, CDl lc, ITGB1, CD29, ITGB2, CD18, LFA-1, ITGB7, NKG2D, NKG2C, TNFR2, TRANCE/RANKL, DNAM1 (CD226), SLAMF4 (CD244, 2B4), CD84, CD96 (Tactile), CEACAM1, CRT AM, Ly9 (CD229), CD160 (BY55), PSGL1, CD100 (SEMA4D), CD69, SLAMF6 (NTB-A, Lyl08), SLAM (SLAMF1, CD150, IPO-3), BLAME (SLAMF8), SELPLG (CD162), LTBR, LAT, GADS, SLP-76, PAG/Cbp, CD 19a, and a ligand that specifically binds with CD83.
In one embodiment, the costimulatory domain comprises a sequence of SEQ ID NO:7, or a sequence with 95-99% identity thereof. In one embodiment, the intracellular signaling domain comprises a functional signaling domain of 4-1BB and a functional signaling domain of CD3 zeta. In one embodiment, the intracellular signaling domain comprises the sequence of SEQ ID NO: 7 or SEQ ID NO:8, or a sequence with 95-99% identity thereof, and the sequence of SEQ ID NO: 9 or SEQ ID NO: 10, or a sequence with 95-99% identity thereof, wherein the sequences comprising the intracellular signaling domain are expressed in the same frame and as a single polypeptide chain. In another aspect, the invention pertains to an isolated nucleic acid molecule encoding a CAR construct comprising a leader sequence of SEQ ID NO: 1, a scFv domain having a sequence selected from the group consisting of SEQ ID NO:39-51, (or a sequence with 95- 99% identity thereof), a hinge region of SEQ ID NO:2 or SEQ ID NO:3 or SEQ ID NO:4 or SEQ ID NO:5 (or a sequence with 95-99% identity thereof), a transmembrane domain having a sequence of SEQ ID NO: 6 (or a sequence with 95-99% identity thereof), a 4- IBB
costimulatory domain having a sequence of SEQ ID NO:7 or a CD27 costimulatory domain having a sequence of SEQ ID NO: 8 (or a sequence with 95-99% identity thereof) or a CD28 costimulatory domain having a sequence of SEQ ID NO:482 (or a sequence with 95-99% identity thereof) or a ICOS costimulatory domain having a sequence of SEQ ID NO: 483 (or a sequence with 95-99% identity thereof),, and a CD3 zeta stimulatory domain having a sequence of SEQ ID NO:9 or SEQ ID NO: 10 (or a sequence with 95-99% identity thereof).
In another aspect, the invention pertains to an isolated polypeptide molecule encoded by the nucleic acid molecule. In one embodiment, the isolated polypeptide molecule comprises a sequence selected from the group consisting of SEQ ID NO:91-103, or a sequence with 95- 99% identity thereof.
In another aspect, the invention pertains to a nucleic acid molecule encoding a chimeric antigen receptor (CAR) molecule that comprises an anti- CLL-1 binding domain, a
transmembrane domain, and an intracellular signaling domain comprising a stimulatory domain, and wherein said anti- CLL-1 binding domain comprises a sequence selected from the group consisting of SEQ ID NO:39-51, or a sequence with 95-99% identity thereof.
In one embodiment, the encoded CAR molecule further comprises a sequence encoding a costimulatory domain. In one embodiment, the costimulatory domain is a functional signaling domain of a protein selected from the group consisting of a MHC class I molecule, TNF receptor proteins, Immunoglobulin-like proteins, cytokine receptors, integrins, signaling lymphocytic activation molecules (SLAM proteins), activating NK cell receptors, BTLA, a Toll ligand receptor, OX40, CD2, CD7, CD27, CD28, CD30, CD40, CDS, ICAM-1, LFA-1
(CDl la/CD18), 4-1BB (CD137), B7-H3, CDS, ICAM-1, ICOS (CD278), GITR, BAFFR, LIGHT, HVEM (LIGHTR), KIRDS2, SLAMF7, NKp80 (KLRF1), NKp44, NKp30, NKp46, CD19, CD4, CD8alpha, CD8beta, IL2R beta, IL2R gamma, IL7R alpha, ITGA4, VLA1, CD49a, ITGA4, IA4, CD49D, ITGA6, VLA-6, CD49f, ITGAD, CDl ld, ITGAE, CD103, ITGAL, CDl la, LFA-1, ITGAM, CDl lb, ITGAX, CDl lc, ITGB1, CD29, ITGB2, CD18, LFA-1, ITGB7, NKG2D, NKG2C, TNFR2, TRANCE/RANKL, DNAM1 (CD226), SLAMF4 (CD244, 2B4), CD84, CD96 (Tactile), CEACAM1, CRTAM, Ly9 (CD229), CD160 (BY55), PSGL1, CD100 (SEMA4D), CD69, SLAMF6 (NTB-A, Lyl08), SLAM (SLAMF1, CD150, IPO-3), BLAME (SLAMF8), SELPLG (CD162), LTBR, LAT, GADS, SLP-76, PAG/Cbp, CD19a, and a ligand that specifically binds with CD83. In one embodiment, the 4-1BB costimulatory domain comprises an amino acid sequence of SEQ ID NO:7. In one
embodiment, the CD27 costimulatory domain comprises an amino acid sequence of SEQ ID NO: 8. In one embodiment, the CD28 costimulatory domain comprises an amino acid sequence of SEQ ID NO:482. In one embodiment, the ICOS costimulatory domain comprises an amino acid sequence of SEQ ID NO:484.
In one embodiment, the transmembrane domain is a transmembrane domain of a protein selected from the group consisting of the alpha, beta or zeta chain of the T-cell receptor, CD28, CD3 epsilon, CD45, CD4, CD5, CD8, CD9, CD16, CD22, CD33, CD37, CD64, CD80, CD86, CD134, CD137, CD154, a MHC class I molecule, TNF receptor proteins, Immunoglobulin-like proteins, cytokine receptors, integrins, signaling lymphocytic activation molecules (SLAM proteins), activating NK cell receptors, BTLA, a Toll ligand receptor, OX40, CD2, CD7, CD27, CD28, CD30, CD40, CDS, ICAM-1, LFA-1 (CDl la/CD18), 4-1BB (CD137), B7-H3, CDS, ICAM-1, ICOS (CD278), GITR, BAFFR, LIGHT, HVEM (LIGHTR), KIRDS2,
SLAMF7, NKp80 (KLRF1), NKp44, NKp30, NKp46, CD19, CD4, CD8alpha, CD8beta, IL2R beta, IL2R gamma, IL7R alpha, ITGA4, VLAl, CD49a, ITGA4, IA4, CD49D, ITGA6, VLA-6, CD49f, ITGAD, CDl ld, ITGAE, CD103, ITGAL, CDl la, LFA-1, ITGAM, CDl lb, ITGAX, CDl lc, ITGB1, CD29, ITGB2, CD18, LFA-1, ITGB7, NKG2D, NKG2C, TNFR2,
TRANCE/RANKL, DNAM1 (CD226), SLAMF4 (CD244, 2B4), CD84, CD96 (Tactile), CEACAM1, CRTAM, Ly9 (CD229), CD160 (BY55), PSGL1, CD100 (SEMA4D), CD69,
SLAMF6 (NTB-A, Lyl08), SLAM (SLAMF1, CD150, IPO-3), BLAME (SLAMF8), SELPLG (CD162), LTBR, LAT, GADS, SLP-76, PAG/Cbp, CD19a, and a ligand that specifically binds with CD83. In one embodiment, the transmembrane domain comprises a sequence of SEQ ID NO:6. In one embodiment, the intracellular signaling domain comprises a functional signaling domain of 4- IBB and a functional signaling domain of zeta. In one embodiment, the intracellular signaling domain comprises the sequence of SEQ ID NO: 7 and the sequence of SEQ ID NO: 9, wherein the sequences comprising the intracellular signaling domain are expressed in the same frame and as a single polypeptide chain. In one embodiment, the anti- CLL-1 binding domain is connected to the transmembrane domain by a hinge region. In one embodiment, the hinge region comprises SEQ ID NO:2. In one embodiment, the hinge region comprises SEQ ID NO:3 or SEQ ID NO:4 or SEQ ID NO:5. In another aspect, the invention pertains to an encoded CAR molecule comprising a leader sequence of SEQ ID NO: 1, a scFv domain having a sequence selected from the group consisting of SEQ ID NO:59-51, or a sequence with 95-99% identity thereof, a hinge region of SEQ ID NO:2or SEQ ID NO:3 or SEQ ID NO:4 or SEQ ID NO:5, a transmembrane domain having a sequence of SEQ ID NO: 6, a 4- IBB costimulatory domain having a sequence of SEQ ID NO:7 or a CD27 costimulatory domain having a sequence of SEQ ID NO:8, and a CD3 zeta stimulatory domain having a sequence of SEQ ID NO:9 or SEQ ID NO: 10. In one
embodiment, the encoded CAR molecule comprises a sequence selected from a group consisting of SEQ ID NO:91-103, or a sequence with 95-99% identity thereof.
The nucleic acid sequences coding for the desired molecules can be obtained using recombinant methods known in the art, such as, for example by screening libraries from cells expressing the gene, by deriving the gene from a vector known to include the same, or by isolating directly from cells and tissues containing the same, using standard techniques.
Alternatively, the gene of interest can be produced synthetically, rather than cloned.
The present invention also provides vectors in which a DNA of the present invention is inserted. Vectors derived from retroviruses such as the lentivirus are suitable tools to achieve long-term gene transfer since they allow long-term, stable integration of a transgene and its propagation in daughter cells. Lentiviral vectors have the added advantage over vectors derived from onco-retroviruses such as murine leukemia viruses in that they can transduce non- proliferating cells, such as hepatocytes. They also have the added advantage of low
immunogenicity. A retroviral vector may also be, e.g., a gammaretro viral vector. A
gammaretroviral vector may include, e.g., a promoter, a packaging signal (ψ), a primer binding site (PBS), one or more (e.g., two) long terminal repeats (LTR), and a transgene of interest, e.g., a gene encoding a CAR. A gammaretroviral vector may lack viral structural gens such as gag, pol, and env. Exemplary gammaretroviral vectors include Murine Leukemia Virus (MLV), Spleen-Focus Forming Virus (SFFV), and Myeloproliferative Sarcoma Virus (MPSV), and vectors derived therefrom. Other gammaretroviral vectors are described, e.g., in Tobias Maetzig et al., "Gammaretro viral Vectors: Biology, Technology and Application" Viruses. 2011 Jun; 3(6): 677-713.
In another embodiment, the vector comprising the nucleic acid encoding the desired CAR of the invention is an adenoviral vector (A5/35). In another embodiment, the expression of nucleic acids encoding CARs can be accomplished using of transposons such as sleeping beauty, crisper, CAS9, and zinc finger nucleases. See below June et al. 2009Nature Reviews Immunology 9.10: 704-716, is incorporated herein by reference.
In brief summary, the expression of natural or synthetic nucleic acids encoding CARs is typically achieved by operably linking a nucleic acid encoding the CAR polypeptide or portions thereof to a promoter, and incorporating the construct into an expression vector. The vectors can be suitable for replication and integration eukaryotes. Typical cloning vectors contain transcription and translation terminators, initiation sequences, and promoters useful for regulation of the expression of the desired nucleic acid sequence.
The expression constructs of the present invention may also be used for nucleic acid immunization and gene therapy, using standard gene delivery protocols. Methods for gene delivery are known in the art. See, e.g., U.S. Pat. Nos. 5,399,346, 5,580,859, 5,589,466, incorporated by reference herein in their entireties. In another embodiment, the invention provides a gene therapy vector.
The nucleic acid can be cloned into a number of types of vectors. For example, the nucleic acid can be cloned into a vector including, but not limited to a plasmid, a phagemid, a phage derivative, an animal virus, and a cosmid. Vectors of particular interest include expression vectors, replication vectors, probe generation vectors, and sequencing vectors.
Further, the expression vector may be provided to a cell in the form of a viral vector. Viral vector technology is well known in the art and is described, for example, in Sambrook et al., 2012, MOLECULAR CLONING: A LABORATORY MANUAL, volumes 1 -4, Cold Spring Harbor Press, NY), and in other virology and molecular biology manuals. Viruses, which are useful as vectors include, but are not limited to, retroviruses, adenoviruses, adeno- associated viruses, herpes viruses, and lentiviruses. In general, a suitable vector contains an origin of replication functional in at least one organism, a promoter sequence, convenient restriction endonuclease sites, and one or more selectable markers, (e.g., WO 01/96584; WO 01/29058; and U.S. Pat. No. 6,326,193).
A number of viral based systems have been developed for gene transfer into
mammalian cells. For example, retroviruses provide a convenient platform for gene delivery systems. A selected gene can be inserted into a vector and packaged in retroviral particles using techniques known in the art. The recombinant virus can then be isolated and delivered to cells of the subject either in vivo or ex vivo. A number of retroviral systems are known in the art. In some embodiments, adenovirus vectors are used. A number of adenovirus vectors are known in the art. In one embodiment, lentivirus vectors are used. Additional promoter elements, e.g., enhancers, regulate the frequency of transcriptional initiation. Typically, these are located in the region 30-110 bp upstream of the start site, although a number of promoters have been shown to contain functional elements downstream of the start site as well. The spacing between promoter elements frequently is flexible, so that promoter function is preserved when elements are inverted or moved relative to one another. In the thymidine kinase (tk) promoter, the spacing between promoter elements can be increased to 50 bp apart before activity begins to decline. Depending on the promoter, it appears that individual elements can function either cooperatively or independently to activate transcription.
An example of a promoter that is capable of expressing a CAR transgene in a mammalian T cell is the EFla promoter. The native EFla promoter drives expression of the alpha subunit of the elongation factor- 1 complex, which is responsible for the enzymatic delivery of aminoacyl tRNAs to the ribosome. The EFla promoter has been extensively used in mammalian expression plasmids and has been shown to be effective in driving CAR expression from transgenes cloned into a lentiviral vector. See, e.g., Milone et al., Mol. Ther. 17(8): 1453-1464 (2009). In one aspect, the EFla promoter comprises the sequence provided as SEQ ID NO:l l.
Another example of a promoter is the immediate early cytomegalovirus (CMV) promoter sequence. This promoter sequence is a strong constitutive promoter sequence capable of driving high levels of expression of any polynucleotide sequence operatively linked thereto. However, other constitutive promoter sequences may also be used, including, but not limited to the simian virus 40 (SV40) early promoter, mouse mammary tumor virus (MMTV), human immunodeficiency virus (HIV) long terminal repeat (LTR) promoter, MoMuLV promoter, an avian leukemia virus promoter, an Epstein-Barr virus immediate early promoter, a Rous sarcoma virus promoter, as well as human gene promoters such as, but not limited to, the actin promoter, the myosin promoter, the elongation factor- la promoter, the hemoglobin promoter, and the creatine kinase promoter. Further, the invention should not be limited to the use of constitutive promoters. Inducible promoters are also contemplated as part of the invention. The use of an inducible promoter provides a molecular switch capable of turning on expression of the polynucleotide sequence which it is operatively linked when such expression is desired, or turning off the expression when expression is not desired. Examples of inducible promoters include, but are not limited to a metallothionine promoter, a glucocorticoid promoter, a progesterone promoter, and a tetracycline promoter.
Another example of a promoter is the phosphoglycerate kinase (PGK) promoter. In embodiments, a truncated PGK promoter (e.g., a PGK promoter with one or more, e.g., 1, 2, 5, 10, 100, 200, 300, or 400, nucleotide deletions when compared to the wild- type PGK promoter sequence) may be desired. The nucleotide sequences of exemplary PGK promoters are provided below.
WT PGK Promoter
ACCCCTCTCTCCAGCCACTAAGCCAGTTGCTCCCTCGGCTGACGGCTGCACGCGAGGCCTCCGAACGTCTTAC GCCTTGTGGCGCGCCCGTCCTTGTCCCGGGTGTGATGGCGGGGTGTGGGGCGGAGGGCGTGGCGGGGAAGGGC CGGCGACGAGAGCCGCGCGGGACGACTCGTCGGCGATAACCGGTGTCGGGTAGCGCCAGCCGCGCGACGGTAA CGAGGGACCGCGACAGGCAGACGCTCCCATGATCACTCTGCACGCCGAAGGCAAATAGTGCAGGCCGTGCGGC GCTTGGCGTTCCTTGGAAGGGCTGAATCCCCGCCTCGTCCTTCGCAGCGGCCCCCCGGGTGTTCCCATCGCCG CTTCTAGGCCCACTGCGACGCTTGCCTGCACTTCTTACACGCTCTGGGTCCCAGCCGCGGCGACGCAAAGGGC CTTGGTGCGGGTCTCGTCGGCGCAGGGACGCGTTTGGGTCCCGACGGAACCTTTTCCGCGTTGGGGTTGGGGC ACCATAAGCT
(SEQ ID NO: 487)
Exemplary truncated PGK Promoters: PGK100:
ACCCCTCTCTCCAGCCACTAAGCCAGTTGCTCCCTCGGCTGACGGCTGCACGCGAGGCCTCCGAACGTCTTAC GCCTTGTGGCGCGCCCGTCCTTGTCCCGGGTGTGATGGCGGGGTG
(SEQ ID NO: 488) PGK200:
ACCCCTCTCTCCAGCCACTAAGCCAGTTGCTCCCTCGGCTGACGGCTGCACGCGAGGCCTCCGAACGTCTTAC GCCTTGTGGCGCGCCCGTCCTTGTCCCGGGTGTGATGGCGGGGTGTGGGGCGGAGGGCGTGGCGGGGAAGGGC CGGCGACGAGAGCCGCGCGGGACGACTCGTCGGCGATAACCGGTGTCGGGTAGCGCCAGCCGCGCGACGGTAA CG
(SEQ ID NO: 489) PGK300:
ACCCCTCTCTCCAGCCACTAAGCCAGTTGCTCCCTCGGCTGACGGCTGCACGCGAGGCCTCCGAACGTCTTAC GCCTTGTGGCGCGCCCGTCCTTGTCCCGGGTGTGATGGCGGGGTGTGGGGCGGAGGGCGTGGCGGGGAAGGGC CGGCGACGAGAGCCGCGCGGGACGACTCGTCGGCGATAACCGGTGTCGGGTAGCGCCAGCCGCGCGACGGTAA CGAGGGACCGCGACAGGCAGACGCTCCCATGATCACTCTGCACGCCGAAGGCAAATAGTGCAGGCCGTGCGGC GCTTGGCGTTCCTTGGAAGGGCTGAATCCCCG
(SEQ ID NO: 490) PGK400:
ACCCCTCTCTCCAGCCACTAAGCCAGTTGCTCCCTCGGCTGACGGCTGCACGCGAGGCCTCCGAACGTCTTAC GCCTTGTGGCGCGCCCGTCCTTGTCCCGGGTGTGATGGCGGGGTGTGGGGCGGAGGGCGTGGCGGGGAAGGGC CGGCGACGAGAGCCGCGCGGGACGACTCGTCGGCGATAACCGGTGTCGGGTAGCGCCAGCCGCGCGACGGTAA CGAGGGACCGCGACAGGCAGACGCTCCCATGATCACTCTGCACGCCGAAGGCAAATAGTGCAGGCCGTGCGGC GCTTGGCGTTCCTTGGAAGGGCTGAATCCCCGCCTCGTCCTTCGCAGCGGCCCCCCGGGTGTTCCCATCGCCG CTTCTAGGCCCACTGCGACGCTTGCCTGCACTTCTTACACGCTCTGGGTCCCAGCCG
(SEQ ID NO: 491)
A vector may also include, e.g., a signal sequence to facilitate secretion, a polyadenylation signal and transcription terminator (e.g., from Bovine Growth Hormone (BGH) gene), an element allowing episomal replication and replication in prokaryotes (e.g. SV40 origin and ColEl or others known in the art) and/or elements to allow selection (e.g., ampicillin resistance gene and/or zeocin marker).
In order to assess the expression of a CAR polypeptide or portions thereof, the expression vector to be introduced into a cell can also contain either a selectable marker gene or a reporter gene or both to facilitate identification and selection of expressing cells from the population of cells sought to be transfected or infected through viral vectors. In other aspects, the selectable marker may be carried on a separate piece of DNA and used in a co- transfection procedure. Both selectable markers and reporter genes may be flanked with appropriate regulatory sequences to enable expression in the host cells. Useful selectable markers include, for example, antibiotic-resistance genes, such as neo and the like. Reporter genes are used for identifying potentially transfected cells and for evaluating the functionality of regulatory sequences. In general, a reporter gene is a gene that is not present in or expressed by the recipient organism or tissue and that encodes a polypeptide whose expression is manifested by some easily detectable property, e.g., enzymatic activity. Expression of the reporter gene is assayed at a suitable time after the DNA has been introduced into the recipient cells. Suitable reporter genes may include genes encoding luciferase, beta- galactosidase, chloramphenicol acetyl transferase, secreted alkaline phosphatase, or the green fluorescent protein gene (e.g., Ui-Tei et al., 2000 FEBS Letters 479: 79-82). Suitable expression systems are well known and may be prepared using known techniques or obtained commercially. In general, the construct with the minimal 5' flanking region showing the highest level of expression of reporter gene is identified as the promoter. Such promoter regions may be linked to a reporter gene and used to evaluate agents for the ability to modulate promoter- driven transcription.
In one embodiment, the vector can further comprise a nucleic acid encoding a second CAR. In one embodiment, the second CAR includes an antigen binding domain to a target expressed on acute myeloid leukemia cells, such as, e.g., CD123, CD33, CD34, FLT3, or folate receptor beta. In one embodiment, the vector comprises a nucleic acid sequence encoding a first CAR that specifically binds a first antigen and includes an intracellular signaling domain having a costimulatory signaling domain but not a primary signaling domain, and a nucleic acid encoding a second CAR that specifically binds a second, different, antigen and includes an intracellular signaling domain having a primary signaling domain but not a costimulatory signaling domain. In one embodiment, the vector comprises a nucleic acid encoding a first CLL-1 CAR that includes a CLL-1 binding domain, a transmembrane domain and a
costimulatory domain and a nucleic acid encoding a second CAR that specifically binds an antigen other than CLL-1 (e.g., an antigen expressed on AML cells, e.g., CD123, CD33, CD34, FLT3, or folate receptor beta) and includes an antigen binding domain, a transmembrane domain and a primary signaling domain. In another embodiment, the vector comprises a nucleic acid encoding a first CLL-1 CAR that includes a CLL-1 binding domain, a
transmembrane domain and a primary signaling domain and a nucleic acid encoding a second CAR that specifically binds an antigen other than CLL-1 (e.g., an antigen expressed on AML cells, e.g., CD123, CD33, CD34, FLT3, or folate receptor beta) and includes an antigen binding domain to the antigen, a transmembrane domain and a costimulatory signaling domain. In one embodiment, the vector comprises a nucleic acid encoding a CLL-1 CAR described herein and a nucleic acid encoding an inhibitory CAR. In one embodiment, the inhibitory CAR comprises an antigen binding domain that binds an antigen found on normal cells but not cancer cells, e.g., normal cells that also express CLL. In one embodiment, the inhibitory CAR comprises the antigen binding domain, a transmembrane domain and an intracellular domain of an inhibitory molecule. For example, the intracellular domain of the inhibitory CAR can be an intracellular domain of PD1, PD-L1, PD-L2, CTLA4, TIM3, CEACAM (e.g., CEACAM-1, CEACAM-3 and/or CEACAM-5), LAG3, VISTA, BTLA, TIGIT, LAIR1, CD160, 2B4, CD80, CD86, B7-H3 (CD276), B7-H4 (VTCN1), HVEM
(TNFRSF14 or CD270), KIR, A2aR, MHC class I, MHC class II, GAL9, adenosine, and TGFR beta. In embodiments, the vector may comprise two or more nucleic acid sequences encoding a CAR, e.g., a CLL-1 CAR described herein and a second CAR, e.g., an inhibitory CAR or a CAR that specifically binds to an antigen other than CLL-1 (e.g., an antigen expressed on AML cells, e.g., CD123, CD33, CD34, FLT3, or folate receptor beta). In such embodiments, the two or more nucleic acid sequences encoding the CAR are encoded by a single nucleic molecule in the same frame and as a single polypeptide chain. In this aspect, the two or more CARs, can, e.g., be separated by one or more peptide cleavage sites, (e.g., an auto-cleavage site or a substrate for an intracellular protease). Examples of peptide cleavage sites include the following, wherein the GSG residues are optional:
T2A: (GSG) EGRGSLLTCGDVEENPGP (SEQ ID NO: 492) P2A: (GSG) ATNFSLLKQAGDVEENPGP (SEQ ID NO: 493)
E2A: (GSG) QCTNYALLKLAGDVESNPGP (SEQ ID NO: 494)
F2A: (GSG) VKQTLNFDLLKLAGDVESNPGP (SEQ ID NO: 495)
Methods of introducing and expressing genes into a cell are known in the art. In the context of an expression vector, the vector can be readily introduced into a host cell, e.g., mammalian, bacterial, yeast, or insect cell by any method in the art. For example, the expression vector can be transferred into a host cell by physical, chemical, or biological means.
Physical methods for introducing a polynucleotide into a host cell include calcium phosphate precipitation, lipofection, particle bombardment, microinjection, electroporation, and the like. Methods for producing cells comprising vectors and/or exogenous nucleic acids are well-known in the art. See, for example, Sambrook et al., 2012, MOLECULAR CLONING: A LABORATORY MANUAL, volumes 1 -4, Cold Spring Harbor Press, NY). A preferred method for the introduction of a polynucleotide into a host cell is calcium phosphate transfection
Biological methods for introducing a polynucleotide of interest into a host cell include the use of DNA and RNA vectors. Viral vectors, and especially retroviral vectors, have become the most widely used method for inserting genes into mammalian, e.g., human cells. Other viral vectors can be derived from lentivirus, poxviruses, herpes simplex virus I, adenoviruses and adeno-associated viruses, and the like. See, for example, U.S. Pat. Nos. 5,350,674 and
5,585,362. Chemical means for introducing a polynucleotide into a host cell include colloidal dispersion systems, such as macromolecule complexes, nanocapsules, microspheres, beads, and lipid-based systems including oil-in-water emulsions, micelles, mixed micelles, and liposomes. An exemplary colloidal system for use as a delivery vehicle in vitro and in vivo is a liposome (e.g. , an artificial membrane vesicle). Other methods of state-of-the-art targeted delivery of nucleic acids are available, such as delivery of polynucleotides with targeted nanoparticles or other suitable sub-micron sized delivery system.
In the case where a non- viral delivery system is utilized, an exemplary delivery vehicle is a liposome. The use of lipid formulations is contemplated for the introduction of the nucleic acids into a host cell (in vitro, ex vivo or in vivo). In another aspect, the nucleic acid may be associated with a lipid. The nucleic acid associated with a lipid may be encapsulated in the aqueous interior of a liposome, interspersed within the lipid bilayer of a liposome, attached to a liposome via a linking molecule that is associated with both the liposome and the
oligonucleotide, entrapped in a liposome, complexed with a liposome, dispersed in a solution containing a lipid, mixed with a lipid, combined with a lipid, contained as a suspension in a lipid, contained or complexed with a micelle, or otherwise associated with a lipid. Lipid, lipid/DNA or lipid/expression vector associated compositions are not limited to any particular structure in solution. For example, they may be present in a bilayer structure, as micelles, or with a "collapsed" structure. They may also simply be interspersed in a solution, possibly forming aggregates that are not uniform in size or shape. Lipids are fatty substances which may be naturally occurring or synthetic lipids. For example, lipids include the fatty droplets that naturally occur in the cytoplasm as well as the class of compounds which contain long-chain aliphatic hydrocarbons and their derivatives, such as fatty acids, alcohols, amines, amino alcohols, and aldehydes.
Lipids suitable for use can be obtained from commercial sources. For example, dimyristyl phosphatidylcholine ("DMPC") can be obtained from Sigma, St. Louis, MO; dicetyl phosphate ("DCP") can be obtained from K & K Laboratories (Plainview, NY); cholesterol ("Choi") can be obtained from Calbiochem-Behring; dimyristyl phosphatidylglycerol
("DMPG") and other lipids may be obtained from Avanti Polar Lipids, Inc. (Birmingham, AL.). Stock solutions of lipids in chloroform or chloroform/methanol can be stored at about - 20°C. Chloroform is used as the only solvent since it is more readily evaporated than methanol. "Liposome" is a generic term encompassing a variety of single and multilamellar lipid vehicles formed by the generation of enclosed lipid bilayers or aggregates. Liposomes can be characterized as having vesicular structures with a phospholipid bilayer membrane and an inner aqueous medium. Multilamellar liposomes have multiple lipid layers separated by aqueous medium. They form spontaneously when phospholipids are suspended in an excess of aqueous solution. The lipid components undergo self -rearrangement before the formation of closed structures and entrap water and dissolved solutes between the lipid bilayers (Ghosh et al., 1991 Glycobiology 5: 505-10). However, compositions that have different structures in solution than the normal vesicular structure are also encompassed. For example, the lipids may assume a micellar structure or merely exist as nonuniform aggregates of lipid molecules. Also contemplated are lipofectamine-nucleic acid complexes.
Regardless of the method used to introduce exogenous nucleic acids into a host cell or otherwise expose a cell to the inhibitor of the present invention, in order to confirm the presence of the recombinant DNA sequence in the host cell, a variety of assays may be performed. Such assays include, for example, "molecular biological" assays well known to those of skill in the art, such as Southern and Northern blotting, RT-PCR and PCR;
"biochemical" assays, such as detecting the presence or absence of a particular peptide, e.g., by immunological means (ELISAs and Western blots) or by assays described herein to identify agents falling within the scope of the invention.
The present invention further provides a vector comprising a CAR encoding nucleic acid molecule. In one aspect, a CAR vector can be directly transduced into a cell, e.g., an immune effector cell, e.g., a T cell or NK cell. In one aspect, the vector is a cloning or expression vector, e.g., a vector including, but not limited to, one or more plasmids (e.g., expression plasmids, cloning vectors, minicircles, minivectors, double minute chromosomes), retroviral and lentiviral vector constructs. In one aspect, the vector is capable of expressing the CAR construct in mammalian T cells. In one aspect, the mammalian T cell is a human T cell. Sources of Cells
Prior to expansion and genetic modification, a source of cells (e.g., immune effector cells, e.g., T cells or NK cells) is obtained from a subject. The term "subject" is intended to include living organisms in which an immune response can be elicited (e.g., mammals).
Examples of subjects include humans, dogs, cats, mice, rats, and transgenic species thereof. T cells can be obtained from a number of sources, including peripheral blood mononuclear cells, bone marrow, lymph node tissue, cord blood, thymus tissue, tissue from a site of infection, ascites, pleural effusion, spleen tissue, and tumors.
In certain aspects of the present invention, any number of immune effector cell (e.g., T cell or NK cell) lines available in the art, may be used. In certain aspects of the present invention, T cells can be obtained from a unit of blood collected from a subject using any number of techniques known to the skilled artisan, such as Ficoll™ separation. In one preferred aspect, cells from the circulating blood of an individual are obtained by apheresis. The apheresis product typically contains lymphocytes, including T cells, monocytes, granulocytes, B cells, other nucleated white blood cells, red blood cells, and platelets. In one aspect, the cells collected by apheresis may be washed to remove the plasma fraction and to place the cells in an appropriate buffer or media for subsequent processing steps. In one aspect of the invention, the cells are washed with phosphate buffered saline (PBS). In an alternative aspect, the wash solution lacks calcium and may lack magnesium or may lack many if not all divalent cations. Initial activation steps in the absence of calcium can lead to magnified activation. As those of ordinary skill in the art would readily appreciate a washing step may be accomplished by methods known to those in the art, such as by using a semi- automated "flow-through" centrifuge (for example, the Cobe 2991 cell processor, the Baxter CytoMate, or the
Haemonetics Cell Saver 5) according to the manufacturer's instructions. After washing, the cells may be resuspended in a variety of biocompatible buffers, such as, for example, Ca-free, Mg-free PBS, PlasmaLyte A, or other saline solution with or without buffer. Alternatively, the undesirable components of the apheresis sample may be removed and the cells directly resuspended in culture media.
It is recognized that the methods of the application can utilize culture media conditions comprising 5% or less, for example 2%, human AB serum, and employ known culture media conditions and compositions, for example those described in Smith et al., "Ex vivo expansion of human T cells for adoptive immunotherapy using the novel Xeno-free CTS Immune Cell Serum Replacement" Clinical & Translational Immunology (2015) 4, e31;
doi:10.1038/cti.2014.31.
In one aspect, T cells are isolated from peripheral blood lymphocytes by lysing the red blood cells and depleting the monocytes, for example, by centrifugation through a
PERCOLLTM gradient or by counterflow centrifugal elutriation. A specific subpopulation of T cells, such as CD3+, CD28+, CD4+, CD8+, CD45RA+, and CD45RO+T cells, can be further isolated by positive or negative selection techniques. For example, in one aspect, T cells are isolated by incubation with anti-CD3/anti-CD28 (e.g., 3x28)-conjugated beads, such as DYNABEADS® M-450 CD3/CD28 T, for a time period sufficient for positive selection of the desired T cells. In one aspect, the time period is about 30 minutes. In a further aspect, the time period ranges from 30 minutes to 36 hours or longer and all integer values there between. In a further aspect, the time period is at least 1, 2, 3, 4, 5, or 6 hours. In yet another preferred aspect, the time period is 10 to 24 hours. In one aspect, the incubation time period is 24 hours. Longer incubation times may be used to isolate T cells in any situation where there are few T cells as compared to other cell types, such in isolating tumor infiltrating lymphocytes (TIL) from tumor tissue or from immunocompromised individuals. Further, use of longer incubation times can increase the efficiency of capture of CD8+ T cells. Thus, by simply shortening or lengthening the time T cells are allowed to bind to the CD3/CD28 beads and/or by increasing or decreasing the ratio of beads to T cells (as described further herein), subpopulations of T cells can be preferentially selected for or against at culture initiation or at other time points during the process. Additionally, by increasing or decreasing the ratio of anti-CD3 and/or anti-CD28 antibodies on the beads or other surface, subpopulations of T cells can be preferentially selected for or against at culture initiation or at other desired time points. The skilled artisan would recognize that multiple rounds of selection can also be used in the context of this invention. In certain aspects, it may be desirable to perform the selection procedure and use the "unselected" cells in the activation and expansion process. "Unselected" cells can also be subjected to further rounds of selection.
Enrichment of a T cell population by negative selection can be accomplished with a combination of antibodies directed to surface markers unique to the negatively selected cells. One method is cell sorting and/or selection via negative magnetic immunoadherence or flow cytometry that uses a cocktail of monoclonal antibodies directed to cell surface markers present on the cells negatively selected. For example, to enrich for CD4+ cells by negative selection, a monoclonal antibody cocktail typically includes antibodies to CD14, CD20, CDl lb, CD16, HLA-DR, and CD8. In certain aspects, it may be desirable to enrich for or positively select for regulatory T cells which typically express CD4+, CD25+, CD62Lhi, GITR+, and FoxP3+. Alternatively, in certain aspects, T regulatory cells are depleted by anti-C25 conjugated beads or other similar method of selection.
The methods described herein can include, e.g., selection of a specific subpopulation of immune effector cells, e.g., T cells, that are a T regulatory cell-depleted population, CD25+ depleted cells, using, e.g., a negative selection technique, e.g., described herein. Preferably, the population of T regulatory depleted cells contains less than 30%, 25%, 20%, 15%, 10%, 5%, 4%, 3%, 2%, 1% of CD25+ cells.
In one embodiment, T regulatory cells, e.g., CD25+ T cells, are removed from the population using an anti-CD25 antibody, or fragment thereof, or a CD25-binding ligand, IL-2. In one embodiment, the anti-CD25 antibody, or fragment thereof, or CD25 -binding ligand is conjugated to a substrate, e.g., a bead, or is otherwise coated on a substrate, e.g., a bead. In one embodiment, the anti-CD25 antibody, or fragment thereof, is conjugated to a substrate as described herein.
In one embodiment, the T regulatory cells, e.g., CD25+ T cells, are removed from the population using CD25 depletion reagent from Miltenyi™. In one embodiment, the ratio of cells to CD25 depletion reagent is le7 cells to 20 uL, or le7 cells to 15 uL, or le7 cells to 10 uL, or le7 cells to 5 uL, or le7 cells to 2.5 uL, or le7 cells to 1.25 uL. In one embodiment, e.g., for T regulatory cells, e.g., CD25+ depletion, greater than 500 million cells/ml is used. In a further aspect, a concentration of cells of 600, 700, 800, or 900 million cells/ml is used. In one embodiment, the population of immune effector cells to be depleted includes about 6 x 109 CD25+ T cells. In other aspects, the population of immune effector cells to be depleted include about 1 x 109 to lx 1010 CD25+ T cell, and any integer value in between. In one embodiment, the resulting population T regulatory depleted cells has 2 x 109 T regulatory cells, e.g., CD25+ cells, or less (e.g., 1 x 109, 5 x 108 , 1 x 108, 5 x 107, 1 x 107, or less CD25+ cells). In one embodiment, the T regulatory cells, e.g., CD25+ cells, are removed from the population using the CliniMAC system with a depletion tubing set, such as, e.g., tubing 162-01. In one embodiment, the CliniMAC system is run on a depletion setting such as, e.g.,
DEPLETION2.1. Without wishing to be bound by a particular theory, decreasing the level of negative regulators of immune cells (e.g., decreasing the number of unwanted immune cells, e.g., TREG cells), in a subject prior to apheresis or during manufacturing of a CAR-expressing cell product can reduce the risk of subject relapse. For example, methods of depleting TREG cells are known in the art. Methods of decreasing TREG cells include, but are not limited to, cyclophosphamide, anti-GITR antibody (an anti-GITR antibody described herein), CD25-depletion, and
combinations thereof.
In some embodiments, the manufacturing methods comprise reducing the number of (e.g., depleting) TREG cells prior to manufacturing of the CAR-expressing cell. For example, manufacturing methods comprise contacting the sample, e.g., the apheresis sample, with an anti-GITR antibody and/or an anti-CD25 antibody (or fragment thereof, or a CD25-binding ligand), e.g., to deplete TREG cells prior to manufacturing of the CAR-expressing cell (e.g., T cell, NK cell) product.
In an embodiment, a subject is pre-treated with one or more therapies that reduce TREG cells prior to collection of cells for CAR-expressing cell product manufacturing, thereby reducing the risk of subject relapse to CAR-expressing cell treatment. In an embodiment, methods of decreasing TREG cells include, but are not limited to, administration to the subject of one or more of cyclophosphamide, anti-GITR antibody, CD25-depletion, or a combination thereof. Administration of one or more of cyclophosphamide, anti-GITR antibody, CD25- depletion, or a combination thereof, can occur before, during or after an infusion of the CAR- expressing cell product.
In an embodiment, a subject is pre-treated with cyclophosphamide prior to collection of cells for CAR-expressing cell product manufacturing, thereby reducing the risk of subject relapse to CAR-expressing cell treatment. In an embodiment, a subject is pre-treated with an anti-GITR antibody prior to collection of cells for CAR-expressing cell product manufacturing, thereby reducing the risk of subject relapse to CAR-expressing cell treatment. In one embodiment, the population of cells to be removed are neither the regulatory T cells or tumor cells, but cells that otherwise negatively affect the expansion and/or function of CART cells, e.g. cells expressing CD14, CDl lb, CD33, CD15, or other markers expressed by potentially immune suppressive cells. In one embodiment, such cells are envisioned to be removed concurrently with regulatory T cells and/or tumor cells, or following said depletion, or in another order.
The methods described herein can include more than one selection step, e.g., more than one depletion step. Enrichment of a T cell population by negative selection can be
accomplished, e.g., with a combination of antibodies directed to surface markers unique to the negatively selected cells. One method is cell sorting and/or selection via negative magnetic immunoadherence or flow cytometry that uses a cocktail of monoclonal antibodies directed to cell surface markers present on the cells negatively selected. For example, to enrich for CD4+ cells by negative selection, a monoclonal antibody cocktail can include antibodies to CD 14, CD20, CDl lb, CD16, HLA-DR, and CD8. The methods described herein can further include removing cells from the population which express a tumor antigen, e.g., a tumor antigen that does not comprise CD25, e.g., CD19, CD30, CD38, CD123, CD20, CD14 or CDl lb, to thereby provide a population of T regulatory depleted, e.g., CD25+ depleted, and tumor antigen depleted cells that are suitable for expression of a CAR, e.g., a CAR described herein. In one embodiment, tumor antigen expressing cells are removed simultaneously with the T regulatory, e.g., CD25+ cells. For example, an anti-CD25 antibody, or fragment thereof, and an anti-tumor antigen antibody, or fragment thereof, can be attached to the same substrate, e.g., bead, which can be used to remove the cells or an anti-CD25 antibody, or fragment thereof, or the anti-tumor antigen antibody, or fragment thereof, can be attached to separate beads, a mixture of which can be used to remove the cells. In other embodiments, the removal of T regulatory cells, e.g., CD25+ cells, and the removal of the tumor antigen expressing cells is sequential, and can occur, e.g., in either order.
Also provided are methods that include removing cells from the population which express a check point inhibitor, e.g., a check point inhibitor described herein, e.g., one or more of PD1+ cells, LAG3+ cells, and TIM3+ cells, to thereby provide a population of T regulatory depleted, e.g., CD25+ depleted cells, and check point inhibitor depleted cells, e.g., PD1+, LAG3+ and/or TIM3+ depleted cells. Exemplary check point inhibitors include PD1, PD-L1, PD-L2, CTLA4, TIM3, CEACAM (e.g., CEACAM-1, CEACAM-3 and/or CEACAM-5), LAG3, VISTA, BTLA, TIGIT, LAIR1, CD160, 2B4, CD80, CD86, B7-H3 (CD276), B7-H4 (VTCN1), HVEM (TNFRSF14 or CD270), KIR, A2aR, MHC class I, MHC class II, GAL9, adenosine, and TGFR beta. In one embodiment, check point inhibitor expressing cells are removed simultaneously with the T regulatory, e.g., CD25+ cells. For example, an anti-CD25 antibody, or fragment thereof, and an anti-check point inhibitor antibody, or fragment thereof, can be attached to the same bead which can be used to remove the cells, or an anti-CD25 antibody, or fragment thereof, and the anti-check point inhibitor antibody, or fragment there, can be attached to separate beads, a mixture of which can be used to remove the cells. In other embodiments, the removal of T regulatory cells, e.g., CD25+ cells, and the removal of the check point inhibitor expressing cells is sequential, and can occur, e.g., in either order.
In one embodiment, a T cell population can be selected that expresses one or more of IFN-ΐ, TNFa, IL-17A, IL-2, IL-3, IL-4, GM-CSF, IL-10, IL-13, granzyme B, and perforin, or other appropriate molecules, e.g., other cytokines. Methods for screening for cell expression can be determined, e.g., by the methods described in PCT Publication No.: WO 2013/126712.
For isolation of a desired population of cells by positive or negative selection, the concentration of cells and surface (e.g., particles such as beads) can be varied. In certain aspects, it may be desirable to significantly decrease the volume in which beads and cells are mixed together (e.g., increase the concentration of cells), to ensure maximum contact of cells and beads. For example, in one aspect, a concentration of 2 billion cells/ml is used. In one aspect, a concentration of 1 billion cells/ml is used. In a further aspect, greater than 100 million cells/ml is used. In a further aspect, a concentration of cells of 10, 15, 20, 25, 30, 35, 40, 45, or 50 million cells/ml is used. In yet one aspect, a concentration of cells from 75, 80, 85, 90, 95, or 100 million cells/ml is used. In further aspects, concentrations of 125 or 150 million cells/ml can be used. Using high concentrations can result in increased cell yield, cell activation, and cell expansion. Further, use of high cell concentrations allows more efficient capture of cells that may weakly express target antigens of interest, such as CD28-negative T cells, or from samples where there are many tumor cells present (e.g., leukemic blood, tumor tissue, etc.). Such populations of cells may have therapeutic value and would be desirable to obtain. For example, using high concentration of cells allows more efficient selection of CD8+ T cells that normally have weaker CD28 expression.
In a related aspect, it may be desirable to use lower concentrations of cells. By significantly diluting the mixture of T cells and surface (e.g., particles such as beads), interactions between the particles and cells is minimized. This selects for cells that express high amounts of desired antigens to be bound to the particles. For example, CD4+ T cells express higher levels of CD28 and are more efficiently captured than CD8+ T cells in dilute concentrations. In one aspect, the concentration of cells used is 5 X 10e6/ml. In other aspects, the concentration used can be from about 1 X 105/ml to 1 X 106/ml, and any integer value in between.
In other aspects, the cells may be incubated on a rotator for varying lengths of time at varying speeds at either 2-10°C or at room temperature.
T cells for stimulation can also be frozen after a washing step. Wishing not to be bound by theory, the freeze and subsequent thaw step provides a more uniform product by removing granulocytes and to some extent monocytes in the cell population. After the washing step that removes plasma and platelets, the cells may be suspended in a freezing solution. While many freezing solutions and parameters are known in the art and will be useful in this context, one method involves using PBS containing 20% DMSO and 8% human serum albumin, or culture media containing 10% Dextran 40 and 5% Dextrose, 20% Human Serum Albumin and 7.5% DMSO, or 31.25% Plasmalyte-A, 31.25% Dextrose 5%, 0.45% NaCl, 10% Dextran 40 and 5% Dextrose, 20% Human Serum Albumin, and 7.5% DMSO or other suitable cell freezing media containing for example, Hespan and PlasmaLyte A, the cells then are frozen to -80°C at a rate of 1° per minute and stored in the vapor phase of a liquid nitrogen storage tank. Other methods of controlled freezing may be used as well as uncontrolled freezing immediately at -20° C or in liquid nitrogen.
In certain aspects, cryopreserved cells are thawed and washed as described herein and allowed to rest for one hour at room temperature prior to activation using the methods of the present invention.
Also contemplated in the context of the invention is the collection of blood samples or apheresis product from a subject at a time period prior to when the expanded cells as described herein might be needed. As such, the source of the cells to be expanded can be collected at any time point necessary, and desired cells, such as immune effector cells, e.g., T cells or NK cells, isolated and frozen for later use in cell therapy, e.g., T cell therapy, for any number of diseases or conditions that would benefit from cell therapy, e.g., T cell therapy, such as those described herein. In one aspect a blood sample or an apheresis is taken from a generally healthy subject. In certain aspects, a blood sample or an apheresis is taken from a generally healthy subject who is at risk of developing a disease, but who has not yet developed a disease, and the cells of interest are isolated and frozen for later use. In certain aspects, the immune effector cells, e.g., T cells or NK cells, may be expanded, frozen, and used at a later time. In certain aspects, samples are collected from a patient shortly after diagnosis of a particular disease as described herein but prior to any treatments. In a further aspect, the cells are isolated from a blood sample or an apheresis from a subject prior to any number of relevant treatment modalities, including but not limited to treatment with agents such as natalizumab, efalizumab, antiviral agents, chemotherapy, radiation, immunosuppressive agents, such as cyclosporin, azathioprine, methotrexate, mycophenolate, and FK506, antibodies, or other immunoablative agents such as CAMPATH, anti-CD3 antibodies, Cytoxan, fludarabine, cyclosporin, FK506, rapamycin, mycophenolic acid, steroids, FR901228, and irradiation.
In a further aspect of the present invention, T cells are obtained from a patient directly following treatment that leaves the subject with functional T cells. In this regard, it has been observed that following certain cancer treatments, in particular treatments with drugs that damage the immune system, shortly after treatment during the period when patients would normally be recovering from the treatment, the quality of T cells obtained may be optimal or improved for their ability to expand ex vivo. Likewise, following ex vivo manipulation using the methods described herein, these cells may be in a preferred state for enhanced engraftment and in vivo expansion. Thus, it is contemplated within the context of the present invention to collect blood cells, including T cells, dendritic cells, or other cells of the hematopoietic lineage, during this recovery phase. Further, in certain aspects, mobilization (for example, mobilization with GM-CSF) and conditioning regimens can be used to create a condition in a subject wherein repopulation, recirculation, regeneration, and/or expansion of particular cell types is favored, especially during a defined window of time following therapy. Illustrative cell types include T cells, B cells, dendritic cells, and other cells of the immune system. In one embodiment, the immune effector cells expressing a CAR molecule, e.g., a CAR molecule described herein, are obtained from a subject that has received a low, immune enhancing dose of an mTOR inhibitor. In an embodiment, the population of immune effector cells, e.g., T cells, to be engineered to express a CAR, are harvested after a sufficient time, or after sufficient dosing of the low, immune enhancing, dose of an mTOR inhibitor, such that the level of PDl negative immune effector cells, e.g., T cells, or the ratio of PDl negative immune effector cells, e.g., T cells/ PDl positive immune effector cells, e.g., T cells, in the subject or harvested from the subject has been, at least transiently, increased.
In other embodiments, population of immune effector cells, e.g., T cells, which have, or will be engineered to express a CAR, can be treated ex vivo by contact with an amount of an mTOR inhibitor that increases the number of PDl negative immune effector cells, e.g., T cells or increases the ratio of PDl negative immune effector cells, e.g., T cells/ PDl positive immune effector cells, e.g., T cells.
In one embodiment, a T cell population is diaglycerol kinase (DGK)-deficient. DGK- deficient cells include cells that do not express DGK RNA or protein, or have reduced or inhibited DGK activity. DGK-deficient cells can be generated by genetic approaches, e.g., administering RNA-interfering agents, e.g., siRNA, shRNA, miRNA, to reduce or prevent DGK expression. Alternatively, DGK-deficient cells can be generated by treatment with DGK inhibitors described herein. In one embodiment, a T cell population is Ikaros-deficient. Ikaros-deficient cells include cells that do not express Ikaros RNA or protein, or have reduced or inhibited Ikaros activity, Ikaros-deficient cells can be generated by genetic approaches, e.g., administering RNA-interfering agents, e.g., siRNA, shRNA, miRNA, to reduce or prevent Ikaros expression. Alternatively, Ikaros-deficient cells can be generated by treatment with Ikaros inhibitors, e.g., lenalidomide.
In embodiments, a T cell population is DGK-deficient and Ikaros-deficient, e.g., does not express DGK and Ikaros, or has reduced or inhibited DGK and Ikaros activity. Such DGK and Ikaros-deficient cells can be generated by any of the methods described herein.
In an embodiment, the NK cells are obtained from the subject. In another embodiment, the NK cells are an NK cell line, e.g., NK-92 cell line (Conkwest). Allogeneic CAR
In embodiments described herein, the immune effector cell can be an allogeneic immune effector cell, e.g., T cell or NK cell. For example, the cell can be an allogeneic T cell, e.g., an allogeneic T cell lacking expression of a functional T cell receptor (TCR) and/or human leukocyte antigen (HLA), e.g., HLA class I and/or HLA class II.
A T cell lacking a functional TCR can be, e.g., engineered such that it does not express any functional TCR on its surface, engineered such that it does not express one or more subunits that comprise a functional TCR (e.g., engineered such that it does not express (or exhibits reduced expression) of TCR alpha, TCR beta, TCR gamma, TCR delta, TCR epsilon, or TCR zeta)or engineered such that it produces very little functional TCR on its surface. Alternatively, the T cell can express a substantially impaired TCR, e.g., by expression of mutated or truncated forms of one or more of the subunits of the TCR. The term "substantially impaired TCR" means that this TCR will not elicit an adverse immune reaction in a host. A T cell described herein can be, e.g., engineered such that it does not express a functional HLA on its surface. For example, a T cell described herein, can be engineered such that cell surface expression HLA, e.g., HLA class 1 and/or HLA class II, is downregulated. In some aspects, downregulation of HLA may be accomplished by reducing or eliminating expression of beta- 2 microglobulin (B2M). In some embodiments, the T cell can lack a functional TCR and a functional HLA, e.g.,
HLA class I and/or HLA class II.
Modified T cells that lack expression of a functional TCR and/or HLA can be obtained by any suitable means, including a knock out or knock down of one or more subunit of TCR or HLA. For example, the T cell can include a knock down of TCR and/or HLA using siRNA, shRNA, clustered regularly interspaced short palindromic repeats (CRISPR) transcription- activator like effector nuclease (TALEN), or zinc finger endonuclease (ZFN).
In some embodiments, the allogeneic cell can be a cell which does not expresses or expresses at low levels an inhibitory molecule, e.g., a cell engineered by any mehod described herein. For example, the cell can be a cell that does not express or expresses at low levels an inhibitory molecule, e.g., that can decrease the ability of a CAR-expressing cell to mount an immune effector response. Examples of inhibitory molecules include PD1, PD-L1, PD-L2, CTLA4, TIM3, CEACAM (e.g., CEACAM-1, CEACAM-3 and/or CEACAM-5), LAG3, VISTA, BTLA, TIGIT, LAIR1, CD 160, 2B4, CD80, CD86, B7-H3 (CD276), B7-H4
(VTCN1), HVEM (TNFRSF14 or CD270), KIR, A2aR, MHC class I, MHC class II, GAL9, adenosine, and TGFR beta. Inhibition of an inhibitory molecule, e.g., by inhibition at the DNA, RNA or protein level, can optimize a CAR-expressing cell performance. In embodiments, an inhibitory nucleic acid, e.g., an inhibitory nucleic acid, e.g., a dsRNA, e.g., an siRNA or shRNA, a clustered regularly interspaced short palindromic repeats (CRISPR), a transcription- activator like effector nuclease (TALEN), or a zinc finger endonuclease (ZFN), e.g., as described herein, can be used. siRNA and shRNA to inhibit TCR or HLA
In some embodiments, TCR expression and/or HLA expression can be inhibited using siRNA or shRNA that targets a nucleic acid encoding a TCR and/or HLA, and/or an inhibitory molecule described herein (e.g., PD1, PD-L1, PD-L2, CTLA4, TIM3, CEACAM (e.g., CEACAM-1, CEACAM-3 and/or CEACAM-5), LAG3, VISTA, BTLA, TIGIT, LAIR1, CD160, 2B4, CD80, CD86, B7-H3 (CD276), B7-H4 (VTCN1), HVEM (TNFRSF14 or CD270), KIR, A2aR, MHC class I, MHC class II, GAL9, adenosine, and TGFR beta), in a cell.
Expression of siRNA and shRNAs in T cells can be achieved using any conventional expression system, e.g., such as a lentiviral expression system. Exemplary shRNAs that downregulate expression of components of the TCR are described, e.g., in US Publication No.: 2012/0321667. Exemplary siRNA and shRNA that downregulate expression of HLA class I and/or HLA class II genes are described, e.g., in U.S. publication No.: US 2007/0036773.
CRISPR to inhibit TCR or HLA "CRISPR" or "CRISPR to TCR and/or HLA" or "CRISPR to inhibit TCR and/or
HLA" as used herein refers to a set of clustered regularly interspaced short palindromic repeats, or a system comprising such a set of repeats. "Cas", as used herein, refers to a CRISPR- associated protein. A "CRISPR/Cas" system refers to a system derived from CRISPR and Cas which can be used to silence or mutate a TCR and/or HLA gene, and/or an inhibitory molecule described herein (e.g., PD1, PD-L1, PD-L2, CTLA4, TIM3, CEACAM (e.g., CEACAM-1, CEACAM-3 and/or CEACAM-5), LAG3, VISTA, BTLA, TIGIT, LAIRl, CD160, 2B4, CD80, CD86, B7-H3 (CD276), B7-H4 (VTCN1), HVEM (TNFRSF14 or CD270), KIR, A2aR, MHC class I, MHC class II, GAL9, adenosine, and TGFR beta).
Naturally- occurring CRISPR/Cas systems are found in approximately 40% of sequenced eubacteria genomes and 90% of sequenced archaea. Grissa et al. (2007) BMC Bioinformatics 8: 172. This system is a type of prokaryotic immune system that confers resistance to foreign genetic elements such as plasmids and phages and provides a form of acquired immunity. Barrangou et al. (2007) Science 315: 1709-1712; Marragini et al. ( 2008) Science 322: 1843-1845. The CRISPR/Cas system has been modified for use in gene editing (silencing, enhancing or changing specific genes) in eukaryotes such as mice or primates. Wiedenheft et al. (2012) Nature 482: 331-8. This is accomplished by introducing into the eukaryotic cell a plasmid containing a specifically designed CRISPR and one or more appropriate Cas.
The CRISPR sequence, sometimes called a CRISPR locus, comprises alternating repeats and spacers. In a naturally- occurring CRISPR, the spacers usually comprise sequences foreign to the bacterium such as a plasmid or phage sequence; in the TCR and/or HLA
CRISPR/Cas system, the spacers are derived from the TCR or HLA gene sequence.
RNA from the CRISPR locus is constitutively expressed and processed by Cas proteins into small RNAs. These comprise a spacer flanked by a repeat sequence. The RNAs guide other Cas proteins to silence exogenous genetic elements at the RNA or DNA level. Horvath et al. (2010) Science 327: 167-170; Makarova et al. (2006) Biology Direct 1: 7. The spacers thus serve as templates for RNA molecules, analogously to siRNAs. Pennisi (2013) Science 341: 833-836.
As these naturally occur in many different types of bacteria, the exact arrangements of the CRISPR and structure, function and number of Cas genes and their product differ somewhat from species to species. Haft et al. (2005) PLoS Comput. Biol. 1: e60; Kunin et al.
(2007) Genome Biol. 8: R61; Mojica et al. (2005) J. Mol. Evol. 60: 174-182; Bolotin et al.
(2005) Microbiol. 151: 2551-2561; Pourcel et al. (2005) Microbiol. 151: 653-663; and Stern et al. (2010) Trends. Genet. 28: 335-340. For example, the Cse (Cas subtype, E. coli) proteins (e.g., CasA) form a functional complex, Cascade, that processes CRISPR RNA transcripts into spacer-repeat units that Cascade retains. Brouns et al. (2008) Science 321: 960-964. In other prokaryotes, Cas6 processes the CRISPR transcript. The CRISPR-based phage inactivation in E. coli requires Cascade and Cas3, but not Casl or Cas2. The Cmr (Cas RAMP module) proteins in Pyrococcus furiosus and other prokaryotes form a functional complex with small CRISPR RNAs that recognizes and cleaves complementary target RNAs. A simpler CRISPR system relies on the protein Cas9, which is a nuclease with two active cutting sites, one for each strand of the double helix. Combining Cas9 and modified CRISPR locus RNA can be used in a system for gene editing. Pennisi (2013) Science 341: 833-836.
The CRISPR/Cas system can thus be used to edit a TCR and/or HLA gene (adding or deleting a basepair), or introducing a premature stop which thus decreases expression of a TCR and/or HLA. The CRISPR/Cas system can alternatively be used like RNA interference, turning off TCR and/or HLA gene in a reversible fashion. In a mammalian cell, for example, the RNA can guide the Cas protein to a TCR and/or HLA promoter, sterically blocking RNA
polymerases. Artificial CRISPR/Cas systems can be generated which inhibit TCR and/or HLA, using technology known in the art, e.g., that described in U.S. Publication No.20140068797 and Cong (2013) Science 339: 819-823. Other artificial CRISPR/Cas systems that are known in the art may also be generated which inhibit TCR and/or HLA, e.g., that described in Tsai (2014) Nature Biotechnol., 32:6 569-576, U.S. Patent No.: 8,871,445; 8,865,406; 8,795,965;
8,771,945; and 8,697,359.
TALEN to inhibit TCR and/or HLA
"TALEN" or "TALEN to HLA and/or TCR" or "TALEN to inhibit HLA and/or TCR" refers to a transcription activator-like effector nuclease, an artificial nuclease which can be used to edit the HLA and/or TCR gene, and/or an inhibitory molecule described herein (e.g., PD1, PD-L1, PD-L2, CTLA4, TIM3, CEACAM (e.g., CEACAM-1, CEACAM-3 and/or CEACAM- 5), LAG3, VISTA, BTLA, TIGIT, LAIR1, CD160, 2B4, CD80, CD86, B7-H3 (CD276), B7- H4 (VTCN1), HVEM (TNFRSF14 or CD270), KIR, A2aR, MHC class I, MHC class II, GAL9, adenosine, and TGFR beta).
TALENs are produced artificially by fusing a TAL effector DNA binding domain to a DNA cleavage domain. Transcription activator-like effects (TALEs) can be engineered to bind any desired DNA sequence, including a portion of the HLA or TCR gene. By combining an engineered TALE with a DNA cleavage domain, a restriction enzyme can be produced which is specific to any desired DNA sequence, including a HLA or TCR sequence. These can then be introduced into a cell, wherein they can be used for genome editing. Boch (2011) Nature Biotech. 29: 135-6; and Boch et al. (2009) Science 326: 1509-12; Moscou et al. (2009) Science 326: 3501.
TALEs are proteins secreted by Xanthomonas bacteria. The DNA binding domain contains a repeated, highly conserved 33-34 amino acid sequence, with the exception of the 12th and 13th amino acids. These two positions are highly variable, showing a strong correlation with specific nucleotide recognition. They can thus be engineered to bind to a desired DNA sequence.
To produce a TALEN, a TALE protein is fused to a nuclease (N), which is a wild-type or mutated Fokl endonuclease. Several mutations to Fokl have been made for its use in TALENs; these, for example, improve cleavage specificity or activity. Cermak et al. (2011) Nucl. Acids Res. 39: e82; Miller et al. (2011) Nature Biotech. 29: 143-8; Hockemeyer et al.
(2011) Nature Biotech. 29: 731-734; Wood et al. (2011) Science 333: 307; Doyon et al. (2010) Nature Methods 8: 74-79; Szczepek et al. (2007) Nature Biotech. 25: 786-793; and Guo et al. (2010) J. Mol. Biol. 200: 96.
The Fokl domain functions as a dimer, requiring two constructs with unique DNA binding domains for sites in the target genome with proper orientation and spacing. Both the number of amino acid residues between the TALE DNA binding domain and the Fokl cleavage domain and the number of bases between the two individual TALEN binding sites appear to be important parameters for achieving high levels of activity. Miller et al. (2011) Nature Biotech. 29: 143-8. A HLA or TCR TALEN can be used inside a cell to produce a double- stranded break
(DSB). A mutation can be introduced at the break site if the repair mechanisms improperly repair the break via non-homologous end joining. For example, improper repair may introduce a frame shift mutation. Alternatively, foreign DNA can be introduced into the cell along with the TALEN; depending on the sequences of the foreign DNA and chromosomal sequence, this process can be used to correct a defect in the HLA or TCR gene or introduce such a defect into a wt HLA or TCR gene, thus decreasing expression of HLA or TCR. TALENs specific to sequences in HLA or TCR can be constructed using any method known in the art, including various schemes using modular components. Zhang et al. (2011) Nature Biotech. 29: 149-53; Geibler et al. (2011) PLoS ONE 6: el9509.
Zinc finger nuclease to inhibit HLA and/or TCR "ZFN" or "Zinc Finger Nuclease" or "ZFN to HLA and/or TCR" or "ZFN to inhibit
HLA and/or TCR" refer to a zinc finger nuclease, an artificial nuclease which can be used to edit the HLA and/or TCR gene, and/or an inhibitory molecule described herein (e.g., PD1, PD- Ll, PD-L2, CTLA4, TIM3, CEACAM (e.g., CEACAM-1, CEACAM-3 and/or CEACAM-5), LAG3, VISTA, BTLA, TIGIT, LAIR1, CD160, 2B4, CD80, CD86, B7-H3 (CD276), B7-H4 (VTCN1), HVEM (TNFRSF14 or CD270), KIR, A2aR, MHC class I, MHC class II, GAL9, adenosine, and TGFR beta).
Like a TALEN, a ZFN comprises a Fokl nuclease domain (or derivative thereof) fused to a DNA-binding domain. In the case of a ZFN, the DNA-binding domain comprises one or more zinc fingers. Carroll et al. (2011) Genetics Society of America 188: 773-782; and Kim et al. (1996) Proc. Natl. Acad. Sci. USA 93: 1156-1160.
A zinc finger is a small protein structural motif stabilized by one or more zinc ions. A zinc finger can comprise, for example, Cys2His2, and can recognize an approximately 3 -bp sequence. Various zinc fingers of known specificity can be combined to produce multi-finger polypeptides which recognize about 6, 9, 12, 15 or 18-bp sequences. Various selection and modular assembly techniques are available to generate zinc fingers (and combinations thereof) recognizing specific sequences, including phage display, yeast one-hybrid systems, bacterial one-hybrid and two-hybrid systems, and mammalian cells.
Like a TALEN, a ZFN must dimerize to cleave DNA. Thus, a pair of ZFNs are required to target non-palindromic DNA sites. The two individual ZFNs must bind opposite strands of the DNA with their nucleases properly spaced apart. Bitinaite et al. (1998) Proc. Natl. Acad. Sci. USA 95: 10570-5.
Also like a TALEN, a ZFN can create a double-stranded break in the DNA, which can create a frame-shift mutation if improperly repaired, leading to a decrease in the expression and amount of HLA and/or TCR in a cell. ZFNs can also be used with homologous recombination to mutate in the HLA or TCR gene. ZFNs specific to sequences in HLA and/or TCR can be constructed using any method known in the art. See, e.g., Provasi (2011) Nature Med. 18: 807-815; Torikai (2013) Blood 122: 1341-1349; Cathomen et al. (2008) Mol. Ther. 16: 1200-7; Guo et al. (2010) J. Mol. Biol. 400: 96; U.S. Patent Publication 2011/0158957; and U.S. Patent Publication 2012/0060230. . Telomerase expression
While not wishing to be bound by any particular theory, in some embodiments, a therapeutic T cell has short term persistence in a patient, due to shortened telomeres in the T cell; accordingly, transfection with a telomerase gene can lengthen the telomeres of the T cell and improve persistence of the T cell in the patient. See Carl June, "Adoptive T cell therapy for cancer in the clinic", Journal of Clinical Investigation, 117:1466-1476 (2007). Thus, in an embodiment, an immune effector cell, e.g., a T cell, ectopically expresses a telomerase subunit, e.g., the catalytic subunit of telomerase, e.g., TERT, e.g., hTERT. In some aspects, this disclosure provides a method of producing a CAR-expressing cell, comprising contacting a cell with a nucleic acid encoding a telomerase subunit, e.g., the catalytic subunit of telomerase, e.g., TERT, e.g., hTERT. The cell may be contacted with the nucleic acid before, simultaneous with, or after being contacted with a construct encoding a CAR.
In one aspect, the disclosure features a method of making a population of immune effector cells (e.g., T cells, NK cells). In an embodiment, the method comprises: providing a population of immune effector cells (e.g., T cells or NK cells), contacting the population of immune effector cells with a nucleic acid encoding a CAR; and contacting the population of immune effector cells with a nucleic acid encoding a telomerase subunit, e.g., hTERT, under conditions that allow for CAR and telomerase expression.
In an embodiment, the nucleic acid encoding the telomerase subunit is DNA. In an embodiment, the nucleic acid encoding the telomerase subunit comprises a promoter capable of driving expression of the telomerase subunit.
In an embodiment, hTERT has the amino acid sequence of GenBank Protein ID
AAC51724.1 (Meyerson et al., "hEST2, the Putative Human Telomerase Catalytic Subunit Gene, Is Up-Regulated in Tumor Cells and during Immortalization" Cell Volume 90, Issue 4, 22 August 1997, Pages 785-795) as follows: MPRAPRCRAVRSLLRSHYREVLPLATFVRRLGPQGWRLVQRGDPAAFRALVA QCLVCVPWDARPPPAAPSFRQVSCLKELVARVLQRLCERGAKNVLAFGFALLDGARG GPPEAFTTSVRSYLPNTVTDALRGSGAWGLLLRRVGDDVLVHLLARCALFVLVAPSCA YQVCGPPLYQLGAATQARPPPHASGPRRRLGCERAWNHSVREAGVPLGLPAPGARRR GGSASRSLPLPKRPRRGAAPEPERTPVGQGSWAHPGRTRGPSDRGFCVVSPARPAEEA TSLEGALSGTRHSHPSVGRQHHAGPPSTSRPPRPWDTPCPPVYAETKHFLYSSGDKEQL RPSFLLSSLRPSLTGARRLVETIFLGSRPWMPGTPRRLPRLPQRYWQMRPLFLELLGNH AQCPYGVLLKTHCPLRAAVTPAAGVCAREKPQGSVAAPEEEDTDPRRLVQLLRQHSSP WQVYGFVRACLRRLVPPGLWGSRHNERRFLRNTKKFISLGKHAKLSLQELTWKMSVR GCAWLRRSPGVGCVPAAEHRLREEILAKFLHWLMSVYVVELLRSFFYVTETTFQKNRL FFYRKSVWSKLQSIGIRQHLKRVQLRELSEAEVRQHREARPALLTSRLRFIPKPDGLRPI VNMDYVVGARTFRREKRAERLTSRVKALFSVLNYERARRPGLLGASVLGLDDIHRAW RTFVLRVRAQDPPPELYFVKVDVTGAYDTIPQDRLTEVIASIIKPQNTYCVRRYAVVQK AAHGHVRKAFKSHVSTLTDLQPYMRQFVAHLQETSPLRDAVVIEQSSSLNEASSGLFD VFLRFMCHHAVRIRGKSYVQCQGIPQGSILSTLLCSLCYGDMENKLFAGIRRDGLLLRL VDDFLLVTPHLTHAKTFLRTLVRGVPEYGCVVNLRKTVVNFPVEDEALGGTAFVQMP AHGLFPWCGLLLDTRTLEVQSDYSSYARTSIRASLTFNRGFKAGRNMRRKLFGVLRLK CHSLFLDLQVNSLQTVCTNIYKILLLQAYRFHACVLQLPFHQQVWKNPTFFLRVISDTA SLCYSILKAKNAGMSLGAKGAAGPLPSEAVQWLCHQAFLLKLTRHRVTYVPLLGSLR TAQTQLSRKLPGTTLTALEAAANPALPSDFKTILD (SEQ ID NO: 214)
In an embodiment, the hTERT has a sequence at least 80%, 85%, 90%, 95%, 96Λ, 97%, 98%, or 99% identical to the sequence of SEQ ID NO: 214. In an embodiment, the hTERT has a sequence of SEQ ID NO: 214. In an embodiment, the hTERT comprises a deletion (e.g., of no more than 5, 10, 15, 20, or 30 amino acids) at the N-terminus, the C-terminus, or both. In an embodiment, the hTERT comprises a transgenic amino acid sequence (e.g., of no more than 5, 10, 15, 20, or 30 amino acids) at the N-terminus, the C-terminus, or both.
In an embodiment, the hTERT is encoded by the nucleic acid sequence of GenBank Accession No. AF018167 (Meyerson et al., "hEST2, the Putative Human Telomerase Catalytic Subunit Gene, Is Up-Regulated in Tumor Cells and during Immortalization" Cell Volume 90, Issue 4, 22 August 1997, Pages 785-795):
1 caggcagcgt ggtcctgctg cgcacgtggg aagccctggc cccggccacc cccgcgatgc 61 cgcgcgctcc ccgctgccga gccgtgcgct ccctgctgcg cagccactac cgcgaggtgc 121 tgccgctggc cacgttcgtg cggcgcctgg ggccccaggg ctggcggctg gtgcagcgcg 181 gggacccggc ggctttccgc gcgctggtgg cccagtgcct ggtgtgcgtg ccctgggacg 241 cacggccgcc ccccgccgcc ccctccttcc gccaggtgtc ctgcctgaag gagctggtgg 301 cccgagtgct gcagaggctg tgcgagcgcg gcgcgaagaa cgtgctggcc ttcggcttcg 361 cgctgctgga cggggcccgc gggggccccc ccgaggcctt caccaccagc gtgcgcagct 421 acctgcccaa cacggtgacc gacgcactgc gggggagcgg ggcgtggggg ctgctgttgc 481 gccgcgtggg cgacgacgtg ctggttcacc tgctggcacg ctgcgcgctc tttgtgctgg 541 tggctcccag ctgcgcctac caggtgtgcg ggccgccgct gtaccagctc ggcgctgcca 601 ctcaggcccg gcccccgcca cacgctagtg gaccccgaag gcgtctggga tgcgaacggg 661 cctggaacca tagcgtcagg gaggccgggg tccccctggg cctgccagcc ccgggtgcga 721 ggaggcgcgg gggcagtgcc agccgaagtc tgccgttgcc caagaggccc aggcgtggcg 781 ctgcccctga gccggagcgg acgcccgttg ggcaggggtc ctgggcccac ccgggcagga 841 cgcgtggacc gagtgaccgt ggtttctgtg tggtgtcacc tgccagaccc gccgaagaag 901 ccacctcttt ggagggtgcg ctctctggca cgcgccactc ccacccatcc gtgggccgcc 961 agcaccacgc gggcccccca tccacatcgc ggccaccacg tccctgggac acgccttgtc 1021 ccccggtgta cgccgagacc aagcacttcc tctactcctc aggcgacaag gagcagctgc 1081 ggccctcctt cctactcagc tctctgaggc ccagcctgac tggcgctcgg aggctcgtgg 1141 agaccatctt tctgggttcc aggccctgga tgccagggac tccccgcagg ttgccccgcc 1201 tgccccagcg ctactggcaa atgcggcccc tgtttctgga gctgcttggg aaccacgcgc 1261 agtgccccta cggggtgctc ctcaagacgc actgcccgct gcgagctgcg gtcaccccag 1321 cagccggtgt ctgtgcccgg gagaagcccc agggctctgt ggcggccccc gaggaggagg 1381 acacagaccc ccgtcgcctg gtgcagctgc tccgccagca cagcagcccc tggcaggtgt 1441 acggcttcgt gcgggcctgc ctgcgccggc tggtgccccc aggcctctgg ggctccaggc 1501 acaacgaacg ccgcttcctc aggaacacca agaagttcat ctccctgggg aagcatgcca 1561 agctctcgct gcaggagctg acgtggaaga tgagcgtgcg gggctgcgct tggctgcgca 1621 ggagcccagg ggttggctgt gttccggccg cagagcaccg tctgcgtgag gagatcctgg 1681 ccaagttcct gcactggctg atgagtgtgt acgtcgtcga gctgctcagg tctttctttt 1741 atgtcacgga gaccacgttt caaaagaaca ggctcttttt ctaccggaag agtgtctgga 1801 gcaagttgca aagcattgga atcagacagc acttgaagag ggtgcagctg cgggagctgt 1861 cggaagcaga ggtcaggcag catcgggaag ccaggcccgc cctgctgacg tccagactcc 1921 gcttcatccc caagcctgac gggctgcggc cgattgtgaa catggactac gtcgtgggag 1981 ccagaacgtt ccgcagagaa aagagggccg agcgtctcac ctcgagggtg aaggcactgt 2041 tcagcgtgct caactacgag cgggcgcggc gccccggcct cctgggcgcc tctgtgctgg 2101 gcctggacga tatccacagg gcctggcgca ccttcgtgct gcgtgtgcgg gcccaggacc 2161 cgccgcctga gctgtacttt gtcaaggtgg atgtgacggg cgcgtacgac accatccccc 2221 aggacaggct cacggaggtc atcgccagca tcatcaaacc ccagaacacg tactgcgtgc 2281 gtcggtatgc cgtggtccag aaggccgccc atgggcacgt ccgcaaggcc ttcaagagcc 2341 acgtctctac cttgacagac ctccagccgt acatgcgaca gttcgtggct cacctgcagg 2401 agaccagccc gctgagggat gccgtcgtca tcgagcagag ctcctccctg aatgaggcca 2461 gcagtggcct cttcgacgtc ttcctacgct tcatgtgcca ccacgccgtg cgcatcaggg 2521 gcaagtccta cgtccagtgc caggggatcc cgcagggctc catcctctcc acgctgctct 2581 gcagcctgtg ctacggcgac atggagaaca agctgtttgc ggggattcgg cgggacgggc 2641 tgctcctgcg tttggtggat gatttcttgt tggtgacacc tcacctcacc cacgcgaaaa 2701 ccttcctcag gaccctggtc cgaggtgtcc ctgagtatgg ctgcgtggtg aacttgcgga 2761 agacagtggt gaacttccct gtagaagacg aggccctggg tggcacggct tttgttcaga 2821 tgccggccca cggcctattc ccctggtgcg gcctgctgct ggatacccgg accctggagg 2881 tgcagagcga ctactccagc tatgcccgga cctccatcag agccagtctc accttcaacc 2941 gcggcttcaa ggctgggagg aacatgcgtc gcaaactctt tggggtcttg cggctgaagt 3001 gtcacagcct gtttctggat ttgcaggtga acagcctcca gacggtgtgc accaacatct 3061 acaagatcct cctgctgcag gcgtacaggt ttcacgcatg tgtgctgcag ctcccatttc 3121 atcagcaagt ttggaagaac cccacatttt tcctgcgcgt catctctgac acggcctccc 3181 tctgctactc catcctgaaa gccaagaacg cagggatgtc gctgggggcc aagggcgccg 3241 ccggccctct gccctccgag gccgtgcagt ggctgtgcca ccaagcattc ctgctcaagc 3301 tgactcgaca ccgtgtcacc tacgtgccac tcctggggtc actcaggaca gcccagacgc 3361 agctgagtcg gaagctcccg gggacgacgc tgactgccct ggaggccgca gccaacccgg 3421 cactgccctc agacttcaag accatcctgg actgatggcc acccgcccac agccaggccg 3481 agagcagaca ccagcagccc tgtcacgccg ggctctacgt cccagggagg gaggggcggc 3541 ccacacccag gcccgcaccg ctgggagtct gaggcctgag tgagtgtttg gccgaggcct 3601 gcatgtccgg ctgaaggctg agtgtccggc tgaggcctga gcgagtgtcc agccaagggc 3661 tgagtgtcca gcacacctgc cgtcttcact tccccacagg ctggcgctcg gctccacccc 3721 agggccagct tttcctcacc aggagcccgg cttccactcc ccacatagga atagtccatc 3781 cccagattcg ccattgttca cccctcgccc tgccctcctt tgccttccac ccccaccatc 3841 caggtggaga ccctgagaag gaccctggga gctctgggaa tttggagtga ccaaaggtgt 3901 gccctgtaca caggcgagga ccctgcacct ggatgggggt ccctgtgggt caaattgggg
3961 ggaggtgctg tgggagtaaa atactgaata tatgagtttt tcagttttga aaaaaaaaaa
4021 aaaaaaa (SEQ ID NO: 215)
In an embodiment, the hTERT is encoded by a nucleic acid having a sequence at least 80%, 85%, 90%, 95%, 96, 97%, 98%, or 99% identical to the sequence of SEQ ID NO: 215. In an embodiment, the hTERT is encoded by a nucleic acid of SEQ ID NO: 215.
Activation and Expansion of T Cells
T cells may be activated and expanded generally using methods as described, for example, in U.S. Patents 6,352,694; 6,534,055; 6,905,680; 6,692,964; 5,858,358; 6,887,466; 6,905,681; 7,144,575; 7,067,318; 7,172,869; 7,232,566; 7,175,843; 5,883,223; 6,905,874; 6,797,514; 6,867,041; and U.S. Patent Application Publication No. 20060121005.
Generally, the T cells of the invention may be expanded by contact with a surface having attached thereto an agent that stimulates a CD3/TCR complex associated signal and a ligand that stimulates a costimulatory molecule on the surface of the T cells. In particular, T cell populations may be stimulated as described herein, such as by contact with an anti-CD3 antibody, or antigen-binding fragment thereof, or an anti-CD2 antibody immobilized on a surface, or by contact with a protein kinase C activator (e.g., bryostatin) in conjunction with a calcium ionophore. For co- stimulation of an accessory molecule on the surface of the T cells, a ligand that binds the accessory molecule is used. For example, a population of T cells can be contacted with an anti-CD3 antibody and an anti-CD28 antibody, under conditions appropriate for stimulating proliferation of the T cells. To stimulate proliferation of either CD4+ T cells or CD8+ T cells, an anti-CD3 antibody and an anti-CD28 antibody can be used. Examples of an anti-CD28 antibody include 9.3, B-T3, XR-CD28 (Diaclone, Besancon, France) can be used as can other methods commonly known in the art (Berg et al., Transplant Proc. 30(8):3975-3977, 1998; Haanen et al., J. Exp. Med. 190(9):13191328, 1999; Garland et al., J. Immunol Meth. 227(l-2):53-63, 1999).
In certain aspects, the primary stimulatory signal and the costimulatory signal for the T cell may be provided by different protocols. For example, the agents providing each signal may be in solution or coupled to a surface. When coupled to a surface, the agents may be coupled to the same surface (i.e., in "cis" formation) or to separate surfaces (i.e., in "trans" formation). Alternatively, one agent may be coupled to a surface and the other agent in solution. In one aspect, the agent providing the costimulatory signal is bound to a cell surface and the agent providing the primary activation signal is in solution or coupled to a surface. In certain aspects, both agents can be in solution. In one aspect, the agents may be in soluble form, and then cross- linked to a surface, such as a cell expressing Fc receptors or an antibody or other binding agent which will bind to the agents. In this regard, see for example, U.S. Patent Application
Publication Nos. 20040101519 and 20060034810 for artificial antigen presenting cells (aAPCs) that are contemplated for use in activating and expanding T cells in the present invention. In one aspect, the two agents are immobilized on beads, either on the same bead, i.e.,
"cis," or to separate beads, i.e., "trans." By way of example, the agent providing the primary activation signal is an anti-CD3 antibody or an antigen-binding fragment thereof and the agent providing the costimulatory signal is an anti-CD28 antibody or antigen-binding fragment thereof; and both agents are co -immobilized to the same bead in equivalent molecular amounts. In one aspect, a 1:1 ratio of each antibody bound to the beads for CD4+ T cell expansion and T cell growth is used. In certain aspects of the present invention, a ratio of anti CD3:CD28 antibodies bound to the beads is used such that an increase in T cell expansion is observed as compared to the expansion observed using a ratio of 1:1. In one particular aspect an increase of from about 1 to about 3 fold is observed as compared to the expansion observed using a ratio of 1:1. In one aspect, the ratio of CD3:CD28 antibody bound to the beads ranges from 100:1 to 1:100 and all integer values there between. In one aspect of the present invention, more anti- CD28 antibody is bound to the particles than anti-CD3 antibody, i.e., the ratio of CD3:CD28 is less than one. In certain aspects of the invention, the ratio of anti CD28 antibody to anti CD3 antibody bound to the beads is greater than 2:1. In one particular aspect, a 1:100 CD3:CD28 ratio of antibody bound to beads is used. In one aspect, a 1:75 CD3:CD28 ratio of antibody bound to beads is used. In a further aspect, a 1:50 CD3:CD28 ratio of antibody bound to beads is used. In one aspect, a 1 :30 CD3:CD28 ratio of antibody bound to beads is used. In one preferred aspect, a 1:10 CD3:CD28 ratio of antibody bound to beads is used. In one aspect, a 1:3 CD3:CD28 ratio of antibody bound to the beads is used. In yet one aspect, a 3:1 CD3:CD28 ratio of antibody bound to the beads is used. Ratios of particles to cells from 1:500 to 500:1 and any integer values in between may be used to stimulate T cells or other target cells. As those of ordinary skill in the art can readily appreciate, the ratio of particles to cells may depend on particle size relative to the target cell. For example, small sized beads could only bind a few cells, while larger beads could bind many. In certain aspects the ratio of cells to particles ranges from 1:100 to 100:1 and any integer values in-between and in further aspects the ratio comprises 1:9 to 9:1 and any integer values in between, can also be used to stimulate T cells. The ratio of anti-CD3- and anti-CD28- coupled particles to T cells that result in T cell stimulation can vary as noted above, however certain preferred values include 1:100, 1:50, 1:40, 1:30, 1:20, 1:10, 1:9, 1:8, 1:7, 1:6, 1:5, 1:4, 1:3, 1:2, 1:1, 2:1, 3:1, 4:1, 5:1, 6:1, 7:1, 8:1, 9:1, 10:1, and 15:1 with one preferred ratio being at least 1:1 particles per T cell. In one aspect, a ratio of particles to cells of 1:1 or less is used. In one particular aspect, a preferred particle: cell ratio is 1:5. In further aspects, the ratio of particles to cells can be varied depending on the day of stimulation. For example, in one aspect, the ratio of particles to cells is from 1:1 to 10:1 on the first day and additional particles are added to the cells every day or every other day thereafter for up to 10 days, at final ratios of from 1:1 to 1:10 (based on cell counts on the day of addition). In one particular aspect, the ratio of particles to cells is 1:1 on the first day of stimulation and adjusted to 1:5 on the third and fifth days of stimulation. In one aspect, particles are added on a daily or every other day basis to a final ratio of 1:1 on the first day, and 1:5 on the third and fifth days of stimulation. In one aspect, the ratio of particles to cells is 2:1 on the first day of stimulation and adjusted to 1:10 on the third and fifth days of stimulation. In one aspect, particles are added on a daily or every other day basis to a final ratio of 1:1 on the first day, and 1:10 on the third and fifth days of stimulation. One of skill in the art will appreciate that a variety of other ratios may be suitable for use in the present invention. In particular, ratios will vary depending on particle size and on cell size and type. In one aspect, the most typical ratios for use are in the neighborhood of 1:1, 2:1 and 3:1 on the first day.
In further aspects of the present invention, the cells, such as T cells, are combined with agent-coated beads, the beads and the cells are subsequently separated, and then the cells are cultured. In an alternative aspect, prior to culture, the agent-coated beads and cells are not separated but are cultured together. In a further aspect, the beads and cells are first concentrated by application of a force, such as a magnetic force, resulting in increased ligation of cell surface markers, thereby inducing cell stimulation. By way of example, cell surface proteins may be ligated by allowing paramagnetic beads to which anti-CD3 and anti-CD28 are attached (3x28 beads) to contact the T cells. In one aspect the cells (for example, 104 to 109 T cells) and beads (for example, DYNABEADS® M- 450 CD3/CD28 T paramagnetic beads at a ratio of 1:1) are combined in a buffer, for example PBS (without divalent cations such as, calcium and magnesium). Again, those of ordinary skill in the art can readily appreciate any cell concentration may be used. For example, the target cell may be very rare in the sample and comprise only 0.01% of the sample or the entire sample (i.e., 100%) may comprise the target cell of interest. Accordingly, any cell number is within the context of the present invention. In certain aspects, it may be desirable to significantly decrease the volume in which particles and cells are mixed together (i.e., increase the concentration of cells), to ensure maximum contact of cells and particles. For example, in one aspect, a concentration of about 10 billion cells/ml, 9 billion/ml, 8 billion/ml, 7 billion/ml, 6 billion/ml, 5 billion/ml, or 2 billion cells/ml is used. In one aspect, greater than 100 million cells/ml is used. In a further aspect, a concentration of cells of 10, 15, 20, 25, 30, 35, 40, 45, or 50 million cells/ml is used. In yet one aspect, a concentration of cells from 75, 80, 85, 90, 95, or 100 million cells/ml is used. In further aspects, concentrations of 125 or 150 million cells/ml can be used. Using high concentrations can result in increased cell yield, cell activation, and cell expansion. Further, use of high cell concentrations allows more efficient capture of cells that may weakly express target antigens of interest, such as CD28-negative T cells. Such
populations of cells may have therapeutic value and would be desirable to obtain in certain aspects. For example, using high concentration of cells allows more efficient selection of CD8+ T cells that normally have weaker CD28 expression.
In one embodiment, cells transduced with a nucleic acid encoding a CAR, e.g., a CAR described herein, are expanded, e.g., by a method described herein. In one embodiment, the cells are expanded in culture for a period of several hours (e.g., about 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 18, 21 hours) to about 14 days (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 or 14 days). In one embodiment, the cells are expanded for a period of 4 to 9 days. In one embodiment, the cells are expanded for a period of 8 days or less, e.g., 7, 6 or 5 days. In one embodiment, the cells, e.g., a CLL-1 CAR cell described herein, are expanded in culture for 5 days, and the resulting cells are more potent than the same cells expanded in culture for 9 days under the same culture conditions. Potency can be defined, e.g., by various T cell functions, e.g.
proliferation, target cell killing, cytokine production, activation, migration, or combinations thereof. In one embodiment, the cells, e.g., a CLL-1 CAR cell described herein, expanded for 5 days show at least a one, two, three or four fold increase in cells doublings upon antigen stimulation as compared to the same cells expanded in culture for 9 days under the same culture conditions. In one embodiment, the cells, e.g., the cells expressing a CLL-1 CAR described herein, are expanded in culture for 5 days, and the resulting cells exhibit higher
proinflammatory cytokine production, e.g., IFN-γ and/or GM-CSF levels, as compared to the same cells expanded in culture for 9 days under the same culture conditions. In one
embodiment, the cells, e.g., a CLL-1 CAR cell described herein, expanded for 5 days show at least a one, two, three, four, five, ten fold or more increase in pg/ml of proinflammatory cytokine production, e.g., IFN-γ and/or GM-CSF levels, as compared to the same cells expanded in culture for 9 days under the same culture conditions.
In one aspect of the present invention, the mixture may be cultured for several hours (about 3 hours) to about 14 days or any hourly integer value in between. In one aspect, the mixture may be cultured for 21 days. In one aspect of the invention the beads and the T cells are cultured together for about eight days. In one aspect, the beads and T cells are cultured together for 2-3 days. Several cycles of stimulation may also be desired such that culture time of T cells can be 60 days or more. Conditions appropriate for T cell culture include an appropriate media (e.g., Minimal Essential Media or RPMI Media 1640 or, X-vivo 15, (Lonza)) that may contain factors necessary for proliferation and viability, including serum (e.g., fetal bovine or human serum), interleukin-2 (IL-2), insulin, IFN-γ, IL-4, IL-7, GM-CSF, IL-10, IL- 12, IL-15, TGFp, and TNF-a or any other additives for the growth of cells known to the skilled artisan. Other additives for the growth of cells include, but are not limited to, surfactant, plasmanate, and reducing agents such as N-acetyl-cysteine and 2-mercaptoethanol. Media can include RPMI 1640, AIM-V, DMEM, MEM, a-MEM, F-12, X-Vivo 15, and X-Vivo 20, Optimizer, with added amino acids, sodium pyruvate, and vitamins, either serum-free or supplemented with an appropriate amount of serum (or plasma) or a defined set of hormones, and/or an amount of cytokine(s) sufficient for the growth and expansion of T cells. Antibiotics, e.g., penicillin and streptomycin, are included only in experimental cultures, not in cultures of cells that are to be infused into a subject. The target cells are maintained under conditions necessary to support growth, for example, an appropriate temperature (e.g., 37° C) and atmosphere (e.g., air plus 5% C02). In one embodiment, the cells are expanded in an appropriate media (e.g., media described herein) that includes one or more interleukin that result in at least a 200-fold (e.g., 200-fold, 250-fold, 300-fold, 350-fold) increase in cells over a 14 day expansion period, e.g., as measured by a method described herein such as flow cytometry. In one embodiment, the cells are expanded in the presence of IL-15 and/or IL-7 (e.g., IL-15 and IL-7).
In embodiments, methods described herein, e.g., CAR-expressing cell manufacturing methods, comprise removing T regulatory cells, e.g., CD25+ T cells, from a cell population, e.g., using an anti-CD25 antibody, or fragment thereof, or a CD25-binding ligand, IL-2.
Methods of removing T regulatory cells, e.g., CD25+ T cells, from a cell population are described herein. In embodiments, the methods, e.g., manufacturing methods, further comprise contacting a cell population (e.g., a cell population in which T regulatory cells, such as CD25+ T cells, have been depleted; or a cell population that has previously contacted an anti-CD25 antibody, fragment thereof, or CD25-binding ligand) with IL-15 and/or IL-7. For example, the cell population (e.g., that has previously contacted an anti-CD25 antibody, fragment thereof, or CD25-binding ligand) is expanded in the presence of IL-15 and/or IL-7.
In some embodiments a CAR-expressing cell described herein is contacted with a composition comprising a interleukin- 15 (IL-15) polypeptide, a interleukin- 15 receptor alpha (IL-15Ra) polypeptide, or a combination of both a IL-15 polypeptide and a IL-15Ra polypeptide e.g., hetIL-15, during the manufacturing of the CAR-expressing cell, e.g., ex vivo. In embodiments, a CAR-expressing cell described herein is contacted with a composition comprising a IL-15 polypeptide during the manufacturing of the CAR-expressing cell, e.g., ex vivo. In embodiments, a CAR-expressing cell described herein is contacted with a composition comprising a combination of both a IL-15 polypeptide and a IL-15 Ra polypeptide during the manufacturing of the CAR-expressing cell, e.g., ex vivo. In embodiments, a CAR-expressing cell described herein is contacted with a composition comprising hetIL-15 during the manufacturing of the CAR-expressing cell, e.g., ex vivo.
In one embodiment the CAR-expressing cell described herein is contacted with a composition comprising hetIL-15 during ex vivo expansion. In an embodiment, the CAR- expressing cell described herein is contacted with a composition comprising an IL-15 polypeptide during ex vivo expansion. In an embodiment, the CAR-expressing cell described herein is contacted with a composition comprising both an IL-15 polypeptide and an IL-15Ra polypeptide during ex vivo expansion. In one embodiment the contacting results in the survival and proliferation of a lymphocyte subpopulation, e.g., CD8+ T cells.
T cells that have been exposed to varied stimulation times may exhibit different characteristics. For example, typical blood or apheresed peripheral blood mononuclear cell products have a helper T cell population (TH, CD4+) that is greater than the cytotoxic or suppressor T cell population (TC, CD8+). Ex vivo expansion of T cells by stimulating CD3 and CD28 receptors produces a population of T cells that prior to about days 8-9 consists predominately of TH cells, while after about days 8-9, the population of T cells comprises an increasingly greater population of TC cells. Accordingly, depending on the purpose of treatment, infusing a subject with a T cell population comprising predominately of TH cells may be advantageous. Similarly, if an antigen- specific subset of TC cells has been isolated it may be beneficial to expand this subset to a greater degree.
Further, in addition to CD4 and CD8 markers, other phenotypic markers vary significantly, but in large part, reproducibly during the course of the cell expansion process. Thus, such reproducibility enables the ability to tailor an activated T cell product for specific purposes.
Once a CLL-1 CAR is constructed, various assays can be used to evaluate the activity of the molecule, such as but not limited to, the ability to expand T cells following antigen stimulation, sustain T cell expansion in the absence of re- stimulation, and anti-cancer activities in appropriate in vitro and animal models. Assays to evaluate the effects of a CLL-1 CAR are described in further detail below
Western blot analysis of CAR expression in primary T cells can be used to detect the presence of monomers and dimers. See, e.g., Milone et al., Molecular Therapy 17(8): 1453- 1464 (2009). Very briefly, T cells (1:1 mixture of CD4+ and CD8+ T cells) expressing the CARs are expanded in vitro for more than 10 days followed by lysis and SDS-PAGE under reducing conditions. CARs containing the full length TCR-ζ cytoplasmic domain and the endogenous TCR-ζ chain are detected by western blotting using an antibody to the TCR-ζ chain. The same T cell subsets are used for SDS-PAGE analysis under non-reducing conditions to permit evaluation of covalent dimer formation. In vitro expansion of CAR+ T cells following antigen stimulation can be measured by flow cytometry. For example, a mixture of CD4+ and CD8+ T cells are stimulated with aCD3/aCD28 aAPCs followed by transduction with lentiviral vectors expressing GFP under the control of the promoters to be analyzed. Exemplary promoters include the CMV IE gene, EF-l , ubiquitin C, or phosphoglycerokinase (PGK) promoters. GFP fluorescence is evaluated on day 6 of culture in the CD4+ and/or CD8+ T cell subsets by flow cytometry. See, e.g., Milone et al., Molecular Therapy 17(8): 1453-1464 (2009). Alternatively, a mixture of CD4+ and CD8+ T cells are stimulated with aCD3/aCD28 coated magnetic beads on day 0, and transduced with CAR on day 1 using a bicistronic lentiviral vector expressing CAR along with eGFP using a 2A ribosomal skipping sequence. Cultures can be re-stimulated with CLL-1 expressing cells.
Sustained CAR+ T cell expansion in the absence of re- stimulation can also be measured. See, e.g., Milone et ah, Molecular Therapy 17(8): 1453-1464 (2009). Briefly, mean T cell volume (fl) is measured on day 8 of culture using a Coulter Multisizer III particle counter, a Nexcelom Cellometer Vision or Millipore Scepter, following stimulation with aCD3/aCD28 coated magnetic beads on day 0, and transduction with the indicated CAR on day 1.
Animal models can also be used to measure a CART activity. For example, xenograft model using human CLL-1 -specific CAR+ T cells to treat a primary human AML in
immunodeficient mice can be used. Very briefly, after establishment of the tumors, mice are randomized as to treatment groups. CLL-1 CART cells are injected into the immunodeficient mice, e.g., intravenously. Animals are assessed for cancer cellsat weekly intervals. Peripheral blood CLL-1 -expressing AML cell counts are measured in mice that are injected with CLL-1 CART cells or mock-transduced T cells. Survival curves for the groups are compared using the log-rank test. Cytotoxicity can be assessed by a standard 51Cr-release assay. See, e.g., Milone et ah,
Molecular Therapy 17(8): 1453-1464 (2009). Briefly, target cells are loaded with 51 Cr (as NaCr04, New England Nuclear, Boston, MA) at 37°C for 2 hours with frequent agitation, washed twice in complete RPMI and plated into microtiter plates. Effector T cells are mixed with target cells in the wells in complete RPMI at varying ratios of effector celktarget cell (E:T). Additional wells containing media only (spontaneous release, SR) or a 1% solution of triton-X 100 detergent (total release, TR) are also prepared. After 4 hours of incubation at 37°C, supernatant from each well is harvested. Released 51Cr is then measured using a gamma particle counter (Packard Instrument Co., Waltham, MA). Each condition is performed in at least triplicate, and the percentage of lysis is calculated using the formula: % Lysis = (ER- SR) / (TR - SR), where ER represents the average 51Cr released for each experimental condition. Imaging technologies can be used to evaluate specific trafficking and proliferation of
CARs in tumor-bearing animal models. Such assays have been described, for example, in Barrett et ah, Human Gene Therapy 22:1575-1586 (2011). Briefly, NOD/SCID/yc 7 (NSG) mice are injected IV with Nalm-6 cells followed 7 days later with T cells 4 hour after electroporation with the CAR constructs. The T cells are stably transfected with a lenti viral construct to express firefly luciferase, and mice are imaged for bioluminescence. Alternatively, therapeutic efficacy and specificity of a single injection of CAR+ T cells in Nalm-6 xenograft model can be measured as the following: NSG mice are injected with Nalm-6 transduced to stably express firefly luciferase, followed by a single tail-vein injection of T cells
electroporated with CLL-1 CAR 7 days later. Animals are imaged at various time points post injection. For example, photon-density heat maps of firefly luciferasepositive leukemia in representative mice at day 5 (2 days before treatment) and day 8 (24 hr post CAR+ PBLs) can be generated.
Other assays, including those described in the Example section herein as well as those that are known in the art can also be used to evaluate the CLL-1 CAR constructs of the invention.
Alternatively, or in combination to the methods disclosed herein, methods and compositions for one or more of: detection and/or quantification of CAR-expressing cells (e.g., in vitro or in vivo (e.g., clinical monitoring)); immune cell expansion and/or activation; and/or CAR-specific selection, that involve the use of a CAR ligand, are disclosed. In one exemplary embodiment, the CAR ligand is an antibody that binds to the CAR molecule, e.g., binds to the extracellular antigen binding domain of CAR (e.g., an antibody that binds to the antigen binding domain, e.g., an anti-idiotypic antibody; or an antibody that binds to a constant region of the extracellular binding domain). In other embodiments, the CAR ligand is a CAR antigen molecule (e.g., a CAR antigen molecule as described herein). In one aspect, a method for detecting and/or quantifying CAR-expressing cells is disclosed. For example, the CAR ligand can be used to detect and/or quantify CAR-expressing cells in vitro or in vivo (e.g., clinical monitoring of CAR-expressing cells in a patient, or dosing a patient). The method includes: providing the CAR ligand (optionally, a labelled CAR ligand, e.g., a CAR ligand that includes a tag, a bead, a radioactive or fluorescent label); acquiring the CAR-expressing cell (e.g., acquiring a sample containing CAR-expressing cells, such as a manufacturing sample or a clinical sample); contacting the CAR-expressing cell with the CAR ligand under conditions where binding occurs, thereby detecting the level (e.g., amount) of the CAR-expressing cells present. Binding of the CAR-expressing cell with the CAR ligand can be detected using standard techniques such as FACS, ELISA and the like.
In another aspect, a method of expanding and/or activating cells (e.g., immune effector cells) is disclosed. The method includes: providing a CAR-expressing cell (e.g., a first CAR-expressing cell or a transiently expressing CAR cell); contacting said CAR-expressing cell with a CAR ligand, e.g., a CAR ligand as described herein), under conditions where immune cell expansion and/or proliferation occurs, thereby producing the activated and/or expanded cell population.
In certain embodiments, the CAR ligand is present on (e.g., is immobilized or attached to a substrate, e.g., a non-naturally occurring substrate). In some embodiments, the substrate is a non-cellular substrate. The non-cellular substrate can be a solid support chosen from, e.g., a plate (e.g., a microtiter plate), a membrane (e.g., a nitrocellulose membrane), a matrix, a chip or a bead. In embodiments, the CAR ligand is present in the substrate (e.g., on the substrate surface). The CAR ligand can be immobilized, attached, or associated covalently or non- covalently (e.g., cross-linked) to the substrate. In one embodiment, the CAR ligand is attached (e.g., covalently attached) to a bead. In the aforesaid embodiments, the immune cell population can be expanded in vitro or ex vivo. The method can further include culturing the population of immune cells in the presence of the ligand of the CAR molecule, e.g., using any of the methods described herein.
In other embodiments, the method of expanding and/or activating the cells further comprises addition of a second stimulatory molecule, e.g., CD28. For example, the CAR ligand and the second stimulatory molecule can be immobilized to a substrate, e.g., one or more beads, thereby providing increased cell expansion and/or activation.
In yet another aspect, a method for selecting or enriching for a CAR expressing cell is provided. The method includes contacting the CAR expressing cell with a CAR ligand as described herein; and selecting the cell on the basis of binding of the CAR ligand.
In yet other embodiments, a method for depleting, reducing and/or killing a CAR expressing cell is provided. The method includes contacting the CAR expressing cell with a CAR ligand as described herein; and targeting the cell on the basis of binding of the CAR ligand, thereby reducing the number, and/or killing, the CAR-expressing cell. In one embodiment, the CAR ligand is coupled to a toxic agent (e.g., a toxin or a cell ablative drug). In another embodiment, the anti-idiotypic antibody can cause effector cell activity, e.g., ADCC or ADC activities.
Exemplary anti-CAR antibodies that can be used in the methods disclosed herein are described, e.g., in WO 2014/190273 and by Jena et al., "Chimeric Antigen Receptor (CAR)- Specific Monoclonal Antibody to Detect CD19-Specific T cells in Clinical Trials", PLOS March 2013 8:3 e57838, the contents of which are incorporated by reference. In one embodiment, the anti-idiotypic antibody molecule recognizes an anti-CD 19 antibody molecule, e.g., an anti-CD19 scFv. For instance, the anti-idiotypic antibody molecule can compete for binding with the CD19-specific CAR mAb clone no. 136.20.1 described in Jena et al., PLOS March 2013 8:3 e57838; may have the same CDRs (e.g., one or more of, e.g., all of, VH CDR1, VH CDR2, CH CDR3, VL CDR1, VL CDR2, and VL CDR3, using the Kabat definition, the Chothia definition, or a combination of tthe Kabat and Chothia definitions) as the CD19-specific CAR mAb clone no. 136.20.1; may have one or more (e.g., 2) variable regions as the CD19-specific CAR mAb clone no. 136.20.1, or may comprise the CD19- specific CAR mAb clone no. 136.20.1. In some embodiments, the anti-idiotypic antibody was made according to a method described in Jena et al. In another embodiment, the anti-idiotypic antibody molecule is an anti-idiotypic antibody molecule described in WO 2014/190273. In some embodiments, the anti-idiotypic antibody molecule has the same CDRs (e.g., one or more of, e.g., all of, VH CDR1, VH CDR2, CH CDR3, VL CDR1, VL CDR2, and VL CDR3) as an antibody molecule of WO 2014/190273 such as 136.20.1; may have one or more (e.g., 2) variable regions of an antibody molecule of WO 2014/190273, or may comprise an antibody molecule of WO 2014/190273 such as 136.20.1. In other embodiments, the anti-CAR antibody binds to a constant region of the extracellular binding domain of the CAR molecule, e.g., as described in WO 2014/190273. In some embodiments, the anti-CAR antibody binds to a constant region of the extracellular binding domain of the CAR molecule, e.g., a heavy chain constant region (e.g., a CH2-CH3 hinge region) or light chain constant region. For instance, in some embodiments the anti-CAR antibody competes for binding with the 2D3 monoclonal antibody described in WO 2014/190273, has the same CDRs (e.g., one or more of, e.g., all of, VH CDRl, VH CDR2, CH CDR3, VL CDRl, VL CDR2, and VL CDR3) as 2D3, or has one or more (e.g., 2) variable regions of 2D3, or comprises 2D3 as described in WO 2014/190273.
In some aspects and embodiments, the compositions and methods herein are optimized for a specific subset of T cells, e.g., as described in US Serial No. 62/031,699 filed July 31, 2014, the contents of which are incorporated herein by reference in their entirety. In some embodiments, the optimized subsets of T cells display an enhanced persistence compared to a control T cell, e.g., a T cell of a different type (e.g., CD8+ or CD4+) expressing the same construct.
In some embodiments, a CD4+ T cell comprises a CAR described herein, which CAR comprises an intracellular signaling domain suitable for (e.g., optimized for, e.g., leading to enhanced persistence in) a CD4+ T cell, e.g., an ICOS domain. In some embodiments, a CD8+ T cell comprises a CAR described herein, which CAR comprises an intracellular signaling domain suitable for (e.g., optimized for, e.g., leading to enhanced persistence of) a CD8+ T cell, e.g., a 4- IBB domain, a CD28 domain, or another costimulatory domain other than an ICOS domain. In some embodiments, the CAR described herein comprises an antigen binding domain described herein, e.g., a CAR comprising an antigen binding domain that specifically binds CLL-1, e.g., a CAR of Table 2.
In an aspect, described herein is a method of treating a subject, e.g., a subject having cancer. The method includes administering to said subject, an effective amount of:
1) a CD4+ T cell comprising a CAR (the CARCD4+)
comprising: an antigen binding domain, e.g., an antigen binding domain described herein, e.g., an antigen binding domain that specifically binds CLL-1, e.g., an antigen-binding domain of Table 2;
a transmembrane domain; and
an intracellular signaling domain, e.g., a first co stimulatory domain, e.g., an ICOS domain; and
2) a CD8+ T cell comprising a CAR (the CARCD8+) comprising: an antigen binding domain, e.g., an antigen binding domain described herein, e.g., an antigen binding domain that specifically binds CLL-1, e.g., an antigen-binding domain of Table 2;
a transmembrane domain; and
an intracellular signaling domain, e.g., a second costimulatory domain, e.g., a 4-1BB domain, a CD28 domain, or another costimulatory domain other than an ICOS domain;
wherein the CARCD4+ and the CARCD8+ differ from one another.
Optionally, the method further includes administering:
3) a second CD8+ T cell comprising a CAR (the second CAR CD8+ ) comprising:
an antigen binding domain, e.g., an antigen binding domain described herein, e.g., an antigen binding domain that specifically binds CLL-1, e.g., an antigen-binding domain of Table 2;
a transmembrane domain; and
an intracellular signaling domain, wherein the second CAR CD8+ comprises an intracellular signaling domain, e.g., a costimulatory signaling domain, not present on the CAR CD8+ , and, optionally, does not comprise an ICOS signaling domain.
Therapeutic Application
CLL-1 Associated Diseases and/or Disorders
The present invention provides, among other things, compositions and methods for treating cancer. In one aspect, the cancer is a hematologic cancer including but is not limited to leukemia (such as acute myelogenous leukemia (AML), chronic myelogenous leukemia (CML), acute lymphoid leukemia, chronic lymphoid leukemia, acute lymphoblastic B-cell leukemia (B-cell acute lymphoid leukemia, BALL), acute lymphoblastic T-cell leukemia (T- cell acute lymphoid leukemia (TALL), B-cell prolymphocytic leukemia, plasma cell myeloma, and myelodysplasia syndrome) and malignant lymphoproliferative conditions, including lymphoma (such as multiple myeloma, non-Hodgkin's lymphoma, Burkitt's lymphoma, and small cell- and large cell-follicular lymphoma). Therapeutic Applications
In one aspect, the invention provides methods for treating a disease associated with CLL-1 expression. In one aspect, the invention provides methods for treating a disease wherein part of the tumor is negative for CLL-1 and part of the tumor is positive for CLL-1. For example, the CAR of the invention is useful for treating subjects that have undergone treatment for a disease associated with elevated expression of CLL-1, wherein the subject that has undergone treatment for elevated levels of CLL-1 exhibits a disease associated with elevated levels of CLL-1. In embodiments, the CAR of the invention is useful for treating subjects that have undergone treatment for a disease associated with expression of CLL-1, wherein the subject that has undergone treatment related to expression of CLL-1 exhibits a disease associated with expression of CLL-1.
In one aspect, the invention pertains to a vector comprising CLL-1 CAR operably linked to promoter for expression in mammalian immune effector cells, e.g., T cells or NK cells. In one aspect, the invention provides a recombinant immune effector cells, e.g., T cells or NK cells expressing the CLL-1 CAR for use in treating CLL-1 -expressing tumors, wherein the recombinant immune effector cells, e.g., T cells or NK cells expressing the CLL-1 CAR is termed a CLL-1 CAR-expressing cell (e.g., CLL-1 CART or CLL-1 CAR-expressing NK cell). In one aspect, the CLL-1 CAR-expressing cell (e.g., CLL-1 CART or CLL-1 CAR- expressing NK cell). of the invention is capable of contacting a tumor cell with at least one CLL-1 CAR of the invention expressed on its surface such that the CLL-1 CAR-expressing cell (e.g., CLL-1 CART or CLL-1 CAR-expressing NK cell). targets the tumor cell and growth of the tumor is inhibited.
In one aspect, the invention pertains to a method of inhibiting growth of a CLL-1 - expressing tumor cell, comprising contacting the tumor cell with a CLL-1 CAR-expressing cell (e.g., CLL-1 CART or CLL-1 CAR-expressing NK cell). cell of the present invention such that the CLL-1 CAR-expressing cell (e.g., CLL-1 CART or CLL-1 CAR-expressing NK cell). is activated in response to the antigen and targets the cancer cell, wherein the growth of the tumor is inhibited.
In one aspect, the invention pertains to a method of treating cancer in a subject. The method comprises administering to the subject a CLL-1 CAR-expressing cell (e.g., CLL-1 CART or CLL-1 CAR-expressing NK cell) of the present invention such that the cancer is treated in the subject. An example of a cancer that is treatable by the CLL-1 CAR-expressing cell (e.g., CLL-1 CART or CLL-1 CAR-expressing NK cell) of the invention is a cancer associated with expression of CLL-1. In one aspect, the cancer associated with expression of CLL-1 is a hematological cancer. In one aspect, a hematologic cancer including but is not limited to leukemia (such as acute myelogenous leukemia, chronic myelogenous leukemia, acute lymphoid leukemia, chronic lymphoid leukemia and myelodysplasia syndrome) and malignant lymphoproliferative conditions, including lymphoma (such as multiple myeloma, non-Hodgkin's lymphoma, Burkitt's lymphoma, and small cell- and large cell-follicular lymphoma). In other embodiments, a hematologic cancer can include minimal residual disease, MRD, e.g., of a leukemia, e.g., of AML or MDS.
The invention includes a type of cellular therapy where immune effector cell, e.g., T cells or NK cells, are genetically modified to express a chimeric antigen receptor (CAR) and the CLL-1 CAR-expressing cell (e.g., CLL-1 CART or CLL-1 CAR-expressing NK cell). is infused to a recipient in need thereof. The infused cell is able to kill tumor cells in the recipient. Unlike antibody therapies, CAR-modified cells (e.g., T cells or NK cells) are able to replicate in vivo resulting in long-term persistence that can lead to sustained tumor control. In various aspects, the immune effector cells ( e.g., T cells or NK cells), administered to the patient, or their progeny, persist in the patient for at least four months, five months, six months, seven months, eight months, nine months, ten months, eleven months, twelve months, thirteen months, fourteen month, fifteen months, sixteen months, seventeen months, eighteen months, nineteen months, twenty months, twenty-one months, twenty-two months, twenty-three months, two years, three years, four years, or five years after administration of the immune effector cell (e.g., T cell or NK cell) to the patient.
The invention also includes a type of cellular therapy where immune effector cells (e.g., T cells or NK cells)are modified, e.g., by in vitro transcribed RNA, to transiently express a chimeric antigen receptor (CAR) and the CLL-1 CAR expressing cell (e.g., CLL-1 CAR T cell or CLL-1 CAR-expressing NK cell) is infused to a recipient in need thereof. The infused cell is able to kill tumor cells in the recipient. Thus, in various aspects, the immune effector cells (e.g., T cells or NK cells) administered to the patient, is present for less than one month, e.g., three weeks, two weeks, one week, after administration of the immune effector cells (e.g., T cells or NK cells) to the patient.
Without wishing to be bound by any particular theory, the anti-tumor immunity response elicited by the CAR-modified immune effector cells (e.g., T cells or NK cells) may be an active or a passive immune response, or alternatively may be due to a direct vs indirect immune response. In one aspect, the CAR transduced immune effector cells (e.g., T cells or NK cells) exhibit specific proinflammatory cytokine secretion and potent cytolytic activity in response to human cancer cells expressing the CLL-1, resist soluble CLL-1 inhibition, mediate bystander killing and mediate regression of an established human tumor. For example, antigen- less tumor cells within a heterogeneous field of CLL-1 -expressing tumor may be susceptible to indirect destruction by CLL-1 -redirected immune effector cells (e.g., T cells or NK cells) that has previously reacted against adjacent antigen -positive cancer cells.
In one aspect, the fully-human CAR-modified immune effector cells (e.g., T cells or NK cells) of the invention may be a type of vaccine for ex vivo immunization and/or in vivo therapy in a mammal. In one aspect, the mammal is a human.
With respect to ex vivo immunization, at least one of the following occurs in vitro prior to administering the cell into a mammal: i) expansion of the cells, ii) introducing a nucleic acid encoding a CAR to the cells or iii) cryopreservation of the cells.
Ex vivo procedures are well known in the art and are discussed more fully below.
Briefly, cells are isolated from a mammal (e.g., a human) and genetically modified (i.e., transduced or transfected in vitro) with a vector expressing a CAR disclosed herein. The CAR- modified cell can be administered to a mammalian recipient to provide a therapeutic benefit. The mammalian recipient may be a human and the CAR-modified cell can be autologous with respect to the recipient. Alternatively, the cells can be allogeneic, syngeneic or xenogeneic with respect to the recipient.
The procedure for ex vivo expansion of hematopoietic stem and progenitor cells is described in U.S. Pat. No. 5,199,942, incorporated herein by reference, can be applied to the cells of the present invention. Other suitable methods are known in the art, therefore the present invention is not limited to any particular method of ex vivo expansion of the cells. Briefly, ex vivo culture and expansion of T cells comprises: (1) collecting CD34+ hematopoietic stem and progenitor cells from a mammal from peripheral blood harvest or bone marrow explants; and (2) expanding such cells ex vivo. In addition to the cellular growth factors described in U.S. Pat. No. 5,199,942, other factors such as flt3-L, IL-1, IL-3 and c-kit ligand, can be used for culturing and expansion of the cells.
In addition to using a cell-based vaccine in terms of ex vivo immunization, the present invention also provides compositions and methods for in vivo immunization to elicit an immune response directed against an antigen in a patient.
Generally, the cells activated and expanded as described herein may be utilized in the treatment and prevention of diseases that arise in individuals who are immunocompromised. In particular, the CAR- modified immune effector cells (e.g., T cells or NK cells) of the invention are used in the treatment of diseases, disorders and conditions associated with expression of CLL-1. In certain aspects, the cells of the invention are used in the treatment of patients at risk for developing diseases, disorders and conditions associated with expression of CLL-1. Thus, the present invention provides methods for the treatment or prevention of diseases, disorders and conditions associated with expression of CLL-1 comprising administering to a subject in need thereof, a therapeutically effective amount of the CAR-modified immune effector cells (e.g., T cells or NK cells) of the invention. In one aspect the CAR-expressing cells, e.g., CART cells or CAR-expressing NK cells) of the inventions may be used to treat a proliferative disease such as a cancer or malignancy or is a precancerous condition such as a myelodysplasia, a myelodysplasia syndrome or a preleukemiahyperproliferative disorder, hyperplasia or a dysplasia, which is characterized by abnormal growth of cells. In one aspect, the CAR-expressing cells (e.g., CART cells or CAR-expressing NK cells)of the invention are used to treat a cancer, wherein the cancer is a hematological cancer. Hematological cancer conditions are the types of cancer such as leukemia and malignant lymphoproliferative conditions that affect blood, bone marrow and the lymphatic system.
In one aspect, the compositions and CAR-expressing cells (e.g., CART cells or CAR- expressing NK cells)of the present invention are particularly useful for treating myeloid leukemias, AML and its subtypes, chronic myeloid leukemia (CML), and myelodysplastic syndrome (MDS).
Leukemia can be classified as acute leukemia and chronic leukemia. Acute leukemia can be further classified as acute myelogenous leukemia (AML) and acute lymphoid leukemia (ALL). Chronic leukemia includes chronic myelogenous leukemia (CML) and chronic lymphoid leukemia (CLL). Other related conditions include myelodysplastic syndromes (MDS, formerly known as "preleukemia") which are a diverse collection of hematological conditions united by ineffective production (or dysplasia) of myeloid blood cells and risk of
transformation to AML. Lymphoma is a group of blood cell tumors that develop from lymphocytes. Exemplary lymphomas include non-Hodgkin lymphoma and Hodgkin lymphoma.
In AML, malignant transformation and uncontrolled proliferation of an abnormally differentiated, long-lived myeloid progenitor cell results in high circulating numbers of immature blood forms and replacement of normal marrow by malignant cells. Symptoms include fatigue, pallor, easy bruising and bleeding, fever, and infection; symptoms of leukemic infiltration are present in only about 5% of patients (often as skin manifestations). Examination of peripheral blood smear and bone marrow is diagnostic. Existing treatment includes induction chemotherapy to achieve remission and post-remission chemotherapy (with or without stem cell transplantation) to avoid relapse. AML has a number of subtypes that are distinguished from each other by morphology, immunophenotype, and cytochemistry. Five classes are described, based on predominant cell type, including myeloid, myeloid-monocytic, monocytic, erythroid, and megakaryocytic.
Remission induction rates range from 50 to 85%. Long-term disease-free survival reportedly occurs in 20 to 40% of patients and increases to 40 to 50% in younger patients treated with stem cell transplantation.
Prognostic factors help determine treatment protocol and intensity; patients with strongly negative prognostic features are usually given more intense forms of therapy, because the potential benefits are thought to justify the increased treatment toxicity. The most important prognostic factor is the leukemia cell karyotype; favorable karyotypes include t(15;17), t(8;21), and invl6 (pl3;q22). Negative factors include increasing age, a preceding myelodysplasia phase, secondary leukemia, high WBC count, and absence of Auer rods.
Initial therapy attempts to induce remission and differs most from ALL in that AML responds to fewer drugs. The basic induction regimen includes cytarabine by continuous IV infusion or high doses for 5 to 7 days; daunorubicin or idarubicin is given IV for 3 days during this time. Some regimens include 6-thioguanine, etoposide, vincristine, and prednisone, but their contribution is unclear. Treatment usually results in significant myelo suppression, with infection or bleeding; there is significant latency before marrow recovery. During this time, meticulous preventive and supportive care is vital.
Chronic myelogenous (or myeloid) leukemia (CML) is also known as chronic granulocytic leukemia, and is characterized as a cancer of the white blood cells. Common treatment regimens for CML include Bcr-Abl tyrosine kinase inhibitors, imatinib (Gleevec®), dasatinib and nilotinib. Bcr-Abl tyrosine kinase inhibitors are specifically useful for CML patients with the Philadelphia chromosome translocation.
Myelodysplasia syndromes (MDS) are hematological medical conditions characterized by disorderly and ineffective hematopoiesis, or blood production. Thus, the number and quality of blood-forming cells decline irreversibly. Some patients with MDS can develop severe anemia, while others are asymptomatic.
The classification scheme for MDS is known in the art, with criteria designating the ratio or frequency of particular blood cell types, e.g., myeloblasts, monocytes, and red cell precursors. MDS includes refractory anemia, refractory anemia with ring sideroblasts, refractory anemia with excess blasts, refractory anemia with excess blasts in transformation, chronic myelomonocytic leukemia (CMML).
Treatment for MDS vary with the severity of the symptoms. Aggressive forms of treatment for patients experiencing severe symptoms include bone marrow transplants and supportive care with blood product support (e.g., blood transfusions) and hematopoietic growth factors (e.g., erythropoietin). Other agents are frequently used to treat MDS: 5-azacytidine, decitabine, and lenalidomide. In some cases, iron chelators deferoxamine (Desferal®) and deferasirox (Exjade®) may also be administered. In another embodiment, the CAR-expressing cells (e.g., CART cells or CAR-expressing NK cells) of the present invention are used to treat cancers or leukemias with leukemia stem cells. For example, the leukemia stem cells are CD34+/CD38~ leukemia cells.
The present invention provides, among other things, compositions and methods for treating cancer. In one aspect, the cancer is a hematologic cancer including but is not limited to leukemia (such as acute myelogenous leukemia, chronic myelogenous leukemia, acute lymphoid leukemia, chronic lymphoid leukemia and myelodysplastic syndrome) and malignant lymphoproliferative conditions, including lymphoma (such as multiple myeloma, non- Hodgkin's lymphoma, Burkitt's lymphoma, and small cell- and large cell-follicular lymphoma). In one aspect, the CAR-expressing cells (e.g., CART cells or CAR-expressing NK cells) of the invention may be used to treat other cancers and malignancies such as, but not limited to, e.g., acute leukemias including but not limited to, e.g., B-cell acute lymphoid leukemia
("BALL"), T-cell acute lymphoid leukemia ("TALL"), acute lymphoid leukemia (ALL); one or more chronic leukemias including but not limited to, e.g., chronic myelogenous leukemia (CML), chronic lymphocytic leukemia (CLL); additional hematologic cancers or hematologic conditions including, but not limited to, e.g., B cell prolymphocytic leukemia, blastic plasmacytoid dendritic cell neoplasm, Burkitt's lymphoma, diffuse large B cell lymphoma, Follicular lymphoma, Hairy cell leukemia, small cell- or a large cell-follicular lymphoma, malignant lymphoproliferative conditions, MALT lymphoma, mantle cell lymphoma, Marginal zone lymphoma, multiple myeloma, myelodysplasia and myelodysplastic syndrome, non- Hodgkin's lymphoma, plasmablastic lymphoma, plasmacytoid dendritic cell neoplasm, Waldenstrom macroglobulinemia, and "preleukemia" which are a diverse collection of hematological conditions united by ineffective production (or dysplasia) of myeloid blood cells, and the like. The CAR-modified immune effector cells (e.g., T cells or NK cells) of the present invention may be administered either alone, or as a pharmaceutical composition in combination with diluents and/or with other components such as IL-2 or other cytokines or cell populations.
The present invention also provides methods for inhibiting the proliferation or reducing a CLL- 1 -expressing cell population, the methods comprising contacting a population of cells comprising a CLL- 1 -expressing cell with an CLL-1 CAR-expressing cell (e.g., CLL-1 CART cell or CLL-1 CAR-expressing NK cell) of the invention that binds to the CLL-1 -expressing cell. In a specific aspect, the present invention provides methods for inhibiting the proliferation or reducing the population of cancer cells expressing CLL-1, the methods comprising contacting the CLL-1 -expressing cancer cell population with a CLL-1 CAR-expressing cell (e.g., CLL-1 CART cell or CLL-1 CAR-expressing NK cell)of the invention that binds to the CLL-1 -expressing cell. In one aspect, the present invention provides methods for inhibiting the proliferation or reducing the population of cancer cells expressing CLL-1, the methods comprising contacting the CLL-1 -expressing cancer cell population with a CLL-1 CAR- expressing cell (e.g., CLL-1 CART cell or CLL-1 CAR-expressing NK cell)of the invention that binds to the CLL-1 -expressing cell. In certain aspects, the CLL-1 CAR-expressing cell (e.g., CLL-1 CART cell or CLL-1 CAR-expressing NK cell) cell of the invention reduces the quantity, number, amount or percentage of cells and/or cancer cells by at least 25%, at least 30%, at least 40%, at least 50%, at least 65%, at least 75%, at least 85%, at least 95%, or at least 99% in a subject with or animal model for myeloid leukemia or another cancer associated with CLL-1 -expressing cells relative to a negative control. In one aspect, the subject is a human. The present invention also provides methods for preventing, treating and/or managing a disease associated with CLL-1 -expressing cells (e.g., a hematologic cancer or atypical cancer expessing CLL-1), the methods comprising administering to a subject in need a CLL-1 CAR- expressing cell (e.g., CLL-1 CART cell or CLL-1 CAR-expressing NK cell)of the invention that binds to the CLL-1 -expressing cell. In one aspect, the subject is a human. Non-limiting examples of disorders associated with CLL-1 -expressing cells include autoimmune disorders (such as lupus), inflammatory disorders (such as allergies and asthma) and cancers (such as hematological cancers or atypical cancers expessing CLL-1).
The present invention also provides methods for preventing, treating and/or managing a disease associated with CLL-1 -expressing cells, the methods comprising administering to a subject in need an a CLL-1 CAR-expressing cell (e.g., CLL-1 CART cell or CLL-1 CAR- expressing NK cell)of the invention that binds to the CLL-1 -expressing cell. In one aspect, the subject is a human.
The present invention provides methods for preventing relapse of cancer associated with CLL-1 -expressing cells, the methods comprising administering to a subject in need thereof a CLL-1 CAR-expressing cell (e.g., CLL-1 CART cell or CLL-1 CAR-expressing NK cell)of the invention that binds to the CLL-1 -expressing cell. In one aspect, the methods comprise administering to the subject in need thereof an effective amount of a CLL-1 CAR-expressing cell (e.g., CLL-1 CART cell or CLL-1 CAR-expressing NK cell)described herein that binds to the CLL-1 -expressing cell in combination with an effective amount of another therapy.
Combination Therapies
A CAR-expressing cell described herein may be used in combination with other known agents and therapies. Administered "in combination", as used herein, means that two (or more) different treatments are delivered to the subject during the course of the subject's affliction with the disorder, e.g., the two or more treatments are delivered after the subject has been diagnosed with the disorder and before the disorder has been cured or eliminated or treatment has ceased for other reasons. In some embodiments, the delivery of one treatment is still occurring when the delivery of the second begins, so that there is overlap in terms of administration. This is sometimes referred to herein as "simultaneous" or "concurrent delivery". In other
embodiments, the delivery of one treatment ends before the delivery of the other treatment begins. In some embodiments of either case, the treatment is more effective because of combined administration. For example, the second treatment is more effective, e.g., an equivalent effect is seen with less of the second treatment, or the second treatment reduces symptoms to a greater extent, than would be seen if the second treatment were administered in the absence of the first treatment, or the analogous situation is seen with the first treatment. In some embodiments, delivery is such that the reduction in a symptom, or other parameter related to the disorder is greater than what would be observed with one treatment delivered in the absence of the other. The effect of the two treatments can be partially additive, wholly additive, or greater than additive. The delivery can be such that an effect of the first treatment delivered is still detectable when the second is delivered.
A CAR-expressing cell described herein and the at least one additional therapeutic agent can be administered simultaneously, in the same or in separate compositions, or sequentially. For sequential administration, the CAR-expressing cell described herein can be administered first, and the additional agent can be administered second, or the order of administration can be reversed.
The CAR therapy and/or other therapeutic agents, procedures or modalities can be administered during periods of active disorder, or during a period of remission or less active disease. The CAR therapy can be administered before the other treatment, concurrently with the treatment, post-treatment, or during remission of the disorder.
When administered in combination, the CAR therapy and the additional agent (e.g., second or third agent), or all, can be administered in an amount or dose that is higher, lower or the same than the amount or dosage of each agent used individually, e.g., as a monotherapy. In certain embodiments, the administered amount or dosage of the CAR therapy, the additional agent (e.g., second or third agent), or all, is lower (e.g., at least 20%, at least 30%, at least 40%, or at least 50%) than the amount or dosage of each agent used individually, e.g., as a monotherapy. In other embodiments, the amount or dosage of the CAR therapy, the additional agent (e.g., second or third agent), or all, that results in a desired effect (e.g., treatment of cancer) is lower (e.g., at least 20%, at least 30%, at least 40%, or at least 50% lower) than the amount or dosage of each agent used individually, e.g., as a monotherapy, required to achieve the same therapeutic effect.
In further aspects, a CAR-expressing cell described herein may be used in a treatment regimen in combination with surgery, chemotherapy, radiation, immunosuppressive agents, such as cyclosporin, azathioprine, methotrexate, mycophenolate, and FK506, antibodies, or other immunoablative agents such as CAMPATH, anti-CD3 antibodies or other antibody therapies, cytoxin, fludarabine, cyclosporin, FK506, rapamycin, mycophenolic acid, steroids, FR901228, cytokines, and irradiation, peptide vaccine, such as that described in Izumoto et al. 2008 J Neurosurg 108:963-971. In certain instances, compounds of the present invention are combined with other therapeutic agents, such as other anti-cancer agents, anti-allergic agents, anti-nausea agents (or anti-emetics), pain relievers, cytoprotective agents, and combinations thereof.
In one embodiment, a CAR-expressing cell described herein can be used in combination with a chemotherapeutic agent. Exemplary chemotherapeutic agents include an anthracycline (e.g., doxorubicin (e.g., liposomal doxorubicin)), a vinca alkaloid (e.g., vinblastine, vincristine, vindesine, vinorelbine), an alkylating agent (e.g., cyclophosphamide, decarbazine, melphalan, ifosfamide, temozolomide), an immune cell antibody (e.g., alemtuzamab, gemtuzumab, rituximab, ofatumumab, tositumomab, brentuximab), an antimetabolite (including, e.g., folic acid antagonists, pyrimidine analogs, purine analogs and adenosine deaminase inhibitors (e.g., fludarabine)), an mTOR inhibitor, a TNFR glucocorticoid induced TNFR related protein (GITR) agonist, a proteasome inhibitor (e.g., aclacinomycin A, gliotoxin or bortezomib), an immunomodulator such as thalidomide or a thalidomide derivative (e.g., lenalidomide).
General Chemotherapeutic agents considered for use in combination therapies include anastrozole (Arimidex®), bicalutamide (Casodex®), bleomycin sulfate (Blenoxane®), busulfan (Myleran®), busulfan injection (Busulfex®), capecitabine (Xeloda®), N4-pentoxycarbonyl-5- deoxy-5-fluorocytidine, carboplatin (Paraplatin®), carmustine (BiCNU®), chlorambucil (Leukeran®), cisplatin (Platinol®), cladribine (Leustatin®), cyclophosphamide (Cytoxan® or Neosar®), cytarabine, cytosine arabinoside (Cytosar-U®), cytarabine liposome injection (DepoCyt®), dacarbazine (DTIC-Dome®), dactinomycin (Actinomycin D, Cosmegan), daunorubicin hydrochloride (Cerubidine®), daunorubicin citrate liposome injection
(DaunoXome®), dexamethasone, docetaxel (Taxotere®), doxorubicin hydrochloride
(Adriamycin®, Rubex®), etoposide (Vepesid®), fludarabine phosphate (Fludara®), 5- fluorouracil (Adrucil®, Efudex®), flutamide (Eulexin®), tezacitibine, Gemcitabine
(difluorodeoxycitidine), hydroxyurea (Hydrea®), Idarubicin (Idamycin®), ifosfamide
(IFEX®), irinotecan (Camptosar®), L-asparaginase (ELSPAR®), leucovorin calcium, melphalan (Alkeran®), 6-mercaptopurine (Purinethol®), methotrexate (Folex®), mitoxantrone (Novantrone®), mylotarg, paclitaxel (Taxol®), phoenix (Yttrium90/MX-DTPA), pentostatin, polifeprosan 20 with carmustine implant (Gliadel®), tamoxifen citrate (Nolvadex®), teniposide (Vumon®), 6-thioguanine, thiotepa, tirapazamine (Tirazone®), topotecan hydrochloride for injection (Hycamptin®), vinblastine (Velban®), vincristine (Oncovin®), and vinorelbine (Navelbine®).
Treatment with a combination of a chemotherapeutic agent and a cell expressing a CLL-1 CAR molecule described herein can be used to treat a hematologic cancer described herein, e.g., AML. In embodiments, the combination of a chemotherapeutic agent and a CLL-1 CAR-expressing cell is useful for targeting, e.g., killing, cancer stem cells, e.g., leukemic stem cells, e.g., in subjects with AML. In embodiments, the combination of a chemotherapeutic agent and a CLL-1 CAR-expressing cell is useful for treating minimal residual disease (MRD). MRD refers to the small number of cancer cells that remain in a subject during treatment, e.g., chemotherapy, or after treatment. MRD is often a major cause for relapse. The present invention provides a method for treating cancer, e.g., MRD, comprising administering a chemotherapeutic agent in combination with a CLL-1 CAR-expressing cell, e.g., as described herein.
In an embodiment, the chemotherapeutic agent is administered prior to administration of the cell expressing a CAR molecule, e.g., a CAR molecule described herein. In
chemotherapeutic regimens where more than one administration of the chemotherapeutic agent is desired, the chemotherapeutic regimen is initiated or completed prior to administration of a cell expressing a CAR molecule, e.g., a CAR molecule described herein. In embodiments, the chemotherapeutic agent is administered at least 1 day, 2 days, 3 days, 4 days, 5 days, 6 days, 7 days, 8 days, 9 days, 10 days, 11 days, 12 days, 13 days, 14 days, 15 days, 20 days, 25 days, or 30 days prior to administration of the cell expressing the CAR molecule. In embodiments, the chemotherapeutic regimen is initiated or completed at least 1 day, 2 days, 3 days, 4 days, 5 days, 6 days, 7 days, 8 days, 9 days, 10 days, 11 days, 12 days, 13 days, 14 days, 15 days, 20 days, 25 days, or 30 days prior to administration of the cell expressing the CAR molecule. In embodiments, the chemotherapeutic agent is a chemotherapeutic agent that increases CLL-1 expression on the cancer cells, e.g., the tumor cells, e.g., as compared to CLL-1 expression on normal or non-cancer cells. CLL-1 expression can be determined, for example, by
immunohistochemical staining or flow cytometry analysis. For example, the chemotherapeutic agent is cytarabine (Ara-C). Anti-cancer agents of particular interest for combinations with the compounds of the present invention include: antimetabolites; drugs that inhibit either the calcium dependent phosphatase calcineurin or the p70S6 kinase FK506) or inhibit the p70S6 kinase; alkylating agents; mTOR inhibitors; immunomodulators; anthracyclines; vinca alkaloids; proteosome inhibitors; GrfR agonists; protein tyrosine phosphatase inhibitors; a CDK4 kinase inhibitor; a BTK kinase inhibitor; a MKN kinase inhibitor; a DGK kinase inhibitor; or an oncolytic virus.
Exemplary antimetabolites include, without limitation, folic acid antagonists (also referred to herein as antifolates), pyrimidine analogs, purine analogs and adenosine deaminase inhibitors): methotrexate (Rheumatrex®, Trexall®), 5-fluorouracil (Adrucil®, Efudex®, Fluoroplex®), floxuridine (FUDF®), cytarabine (Cytosar-U®, Tarabine PFS), 6- mercaptopurine (Puri-Nethol®)), 6-thioguanine (Thioguanine Tabloid®), fludarabine phosphate (Fludara®), pentostatin (Nipent®), pemetrexed (Alimta®), raltitrexed (Tomudex®), cladribine (Leustatin®), clofarabine (Clofarex®, Clolar®), mercaptopurine (Puri-Nethol®), capecitabine (Xeloda®), nelarabine (Arranon®), azacitidine (Vidaza®) and gemcitabine (Gemzar®). Preferred antimetabolites include, e.g., 5-fluorouracil (Adrucil®, Efudex®, Fluoroplex®), floxuridine (FUDF®), capecitabine (Xeloda®), pemetrexed (Alimta®), raltitrexed (Tomudex®) and gemcitabine (Gemzar®).
Exemplary alkylating agents include, without limitation, nitrogen mustards,
ethylenimine derivatives, alkyl sulfonates, nitrosoureas and triazenes): uracil mustard
(Aminouracil Mustard®, Chlorethaminacil®, Demethyldopan®, Desmethyldopan®,
Haemanthamine®, Nordopan®, Uracil nitrogen mustard®, Uracillost®, Uracilmostaza®, Uramustin®, Uramustine®), chlormethine (Mustargen®), cyclophosphamide (Cytoxan®, Neosar®, Clafen®, Endoxan®, Procytox®, Revimmune™), ifosfamide (Mitoxana®), melphalan (Alkeran®), Chlorambucil (Leukeran®), pipobroman (Amedel®, Vercyte®), triethylenemelamine (Hemel®, Hexalen®, Hexastat®), triethylenethiophosphoramine, Temozolomide (Temodar®), thiotepa (Thioplex®), busulfan (Busilvex®, Myleran®), carmustine (BiCNU®), lomustine (CeeNU®), streptozocin (Zanosar®), and Dacarbazine (DTIC-Dome®). Additional exemplary alkylating agents include, without limitation,
Oxaliplatin (Eloxatin®); Temozolomide (Temodar® and Temodal®); Dactinomycin (also known as actinomycin-D, Cosmegen®); Melphalan (also known as L-PAM, L-sarcolysin, and phenylalanine mustard, Alkeran®); Altretamine (also known as hexamethylmelamine (HMM), Hexalen®); Carmustine (BiCNU®); Bendamustine (Treanda®); Busulfan (Busulfex® and Myleran®); Carboplatin (Paraplatin®); Lomustine (also known as CCNU, CeeNU®);
Cisplatin (also known as CDDP, Platinol® and Platinol®-AQ); Chlorambucil (Leukeran®); Cyclophosphamide (Cytoxan® and Neosar®); Dacarbazine (also known as DTIC, DIC and imidazole carboxamide, DTIC-Dome®); Altretamine (also known as hexamethylmelamine (HMM), Hexalen®); Ifosfamide (Ifex®); Prednumustine; Procarbazine (Matulane®);
Mechlorethamine (also known as nitrogen mustard, mustine and mechloroethamine
hydrochloride, Mustargen®); Streptozocin (Zanosar®); Thiotepa (also known as
thiophosphoamide, TESPA and TSPA, Thioplex®); Cyclophosphamide (Endoxan®,
Cytoxan®, Neosar®, Procytox®, Revimmune®); and Bendamustine HC1 (Treanda®). In embodiments, a CAR-expressing cell described herein is administered to a subject in combination with fludarabine, cyclophosphamide, and/or rituximab. In embodiments, a CAR- expressing cell described herein is administered to a subject in combination with fludarabine, cyclophosphamide, and rituximab (FCR). In embodiments, the subject has CLL. For example, the subject has a deletion in the short arm of chromosome 17 (del(17p), e.g., in a leukemic cell). In other examples, the subject does not have a del(17p). In embodiments, the subject comprises a leukemic cell comprising a mutation in the immunoglobulin heavy-chain variable- region (IgVn) gene. In other embodiments, the subject does not comprise a leukemic cell comprising a mutation in the immunoglobulin heavy-chain variable-region (IgVn ) gene. In embodiments, the fludarabine is administered at a dosage of about 10-50 mg/m (e.g., about 10- 15, 15-20, 20-25, 25-30, 30-35, 35-40, 40-45, or 45-50 mg/m2), e.g., intravenously. In embodiments, the cyclophosphamide is administered at a dosage of about 200-300 mg/m (e.g., about 200-225, 225-250, 250-275, or 275-300 mg/m ), e.g., intravenously. In embodiments, the rituximab is administered at a dosage of about 400-600 mg/m2 (e.g., 400-450, 450-500,
500-550, or 550-600 mg/m ), e.g., intravenously.
In embodiments, a CAR-expressing cell described herein is administered to a subject in combination with bendamustine and rituximab. In embodiments, the subject has CLL. For example, the subject has a deletion in the short arm of chromosome 17 (del(17p), e.g., in a leukemic cell). In other examples, the subject does not have a del(17p). In embodiments, the subject comprises a leukemic cell comprising a mutation in the immunoglobulin heavy-chain variable-region (IgVn) gene. In other embodiments, the subject does not comprise a leukemic cell comprising a mutation in the immunoglobulin heavy-chain variable-region (IgVn) gene. In embodiments, the bendamustine is administered at a dosage of about 70-110 mg/m2 (e.g., 70- 80, 80-90, 90-100, or 100-110 mg/m2), e.g., intravenously. In embodiments, the rituximab is administered at a dosage of about 400-600 mg/m2 (e.g., 400-450, 450-500, 500-550, or 550-
600 mg/m ), e.g., intravenously. In embodiments, a CAR-expressing cell described herein is administered to a subject in combination with rituximab, cyclophosphamide, doxorubicine, vincristine, and/or a
corticosteroid (e.g., prednisone). In embodiments, a CAR-expressing cell described herein is administered to a subject in combination with rituximab, cyclophosphamide, doxorubicine, vincristine, and prednisone (R-CHOP). In embodiments, the subject has diffuse large B-cell lymphoma (DLBCL). In embodiments, the subject has nonbulky limited-stage DLBCL (e.g., comprises a tumor having a size/diameter of less than 7 cm). In embodiments, the subject is treated with radiation in combination with the R-CHOP. For example, the subject is administered R-CHOP (e.g., 1-6 cycles, e.g., 1, 2, 3, 4, 5, or 6 cycles of R-CHOP), followed by radiation. In some cases, the subject is administered R-CHOP (e.g., 1-6 cycles, e.g., 1, 2, 3, 4, 5, or 6 cycles of R-CHOP) following radiation. In embodiments, a CAR-expressing cell described herein is administered to a subject in combination with etoposide, prednisone, vincristine, cyclophosphamide, doxorubicin, and/or rituximab. In embodiments, a CAR-expressing cell described herein is administered to a subject in combination with etoposide, prednisone, vincristine, cyclophosphamide,
doxorubicin, and rituximab (EPOCH-R). In embodiments, a CAR-expressing cell described herein is administered to a subject in combination with dose-adjusted EPOCH-R (DA-EPOCH- R). In embodiments, the subject has a B cell lymphoma, e.g., a Myc-rearranged aggressive B cell lymphoma.
In embodiments, a CAR-expressing cell described herein is administered to a subject in combination with rituximab and/or lenalidomide. Lenalidomide ((RS)-3-(4-Amino-l-oxo 1,3- dihydro-2H-isoindol- 2-yl)piperidine-2,6-dione) is an immunomodulator. In embodiments, a CAR-expressing cell described herein is administered to a subject in combination with rituximab and lenalidomide. In embodiments, the subject has follicular lymphoma (FL) or mantle cell lymphoma (MCL). In embodiments, the subject has FL and has not previously been treated with a cancer therapy. In embodiments, lenalidomide is administered at a dosage of about 10-20 mg (e.g., 10-15 or 15-20 mg), e.g., daily. In embodiments, rituximab is administered at a dosage of about 350-550 mg/m2 (e.g., 350-375, 375-400, 400-425, 425-450, 450-475, or 475-500 mg/m ), e.g., intravenously.
Exemplary mTOR inhibitors include, e.g., temsirolimus; ridaforolimus (formally known as deferolimus, (lR,2R,45)-4-[(2R)-2 [(1R,95,125,15R,16E,18R,19R,21R,
235,24E,26E,28Z,305,325,35R)-l,18-dihydroxy-19,30-dimethoxy-15,17,21,23, 29,35- hexamethyl-2,3,10,14,20-pentaoxo-l l,36-dioxa-4-azatricyclo[30.3.1.04'9] hexatriaconta- 16,24,26,28-tetraen-12-yl]propyl]-2-methoxycyclohexyl dimethylphosphinate, also known as AP23573 and MK8669, and described in PCT Publication No. WO 03/064383); everolimus (Afinitor® or RADOOl); rapamycin (AY22989, Sirolimus®); simapimod (CAS 164301-51-3); emsirolimus, (5-{2,4-Bis[(35,)-3-methylmorpholin-4-yl]pyrido[2,3-(i]pyrimidin-7-yl}-2- methoxyphenyl)methanol (AZD8055); 2-Amino-8-[iraws,-4-(2-hydroxyethoxy)cyclohexyl]-6- (6-methoxy-3-pyridinyl)-4-methyl-pyrido[2,3-JJpyrimidin-7(8H)-one (PF04691502, CAS 1013101-36-4); and N2- [ 1 ,4-dioxo-4- [ [4-(4-oxo-8-phenyl-4H- 1 -benzopyran-2- yl)morpholinium-4-yl]methoxy]butyl]-L-arginylglycyl-L-a-aspartylL-serine- (SEQ ID NO: 313), inner salt (SF1126, CAS 936487-67-1), and XL765. Exemplary immunomodulators include, e.g., afutuzumab (available from Roche®); pegfilgrastim (Neulasta®); lenalidomide (CC-5013, Revlimid®); thalidomide (Thalomid®), actimid (CC4047); and IRX-2 (mixture of human cytokines including interleukin 1, interleukin 2, and interferon γ, CAS 951209-71-5, available from IRX Therapeutics).
Exemplary anthracyclines include, e.g., doxorubicin (Adriamycin® and Rubex®); bleomycin (lenoxane®); daunorubicin (dauorubicin hydrochloride, daunomycin, and rubidomycin hydrochloride, Cerubidine®); daunorubicin liposomal (daunorubicin citrate liposome, DaunoXome®); mitoxantrone (DHAD, Novantrone®); epirubicin (Ellence™); idarubicin (Idamycin®, Idamycin PFS®); mitomycin C (Mutamycin®); geldanamycin;
herbimycin; ravidomycin; and desacetylravidomycin. Exemplary vinca alkaloids include, e.g., vinorelbine tartrate (Navelbine®), Vincristine
(Oncovin®), and Vindesine (Eldisine®)); vinblastine (also known as vinblastine sulfate, vincaleukoblastine and VLB, Alkaban-AQ® and Velban®); and vinorelbine (Navelbine®).
Exemplary proteosome inhibitors include bortezomib (Velcade®); carfilzomib (PX- 171-007, (5)-4-Methyl-N-((5)-l-(((5)-4-methyl-l-((R)-2-methyloxiran-2-yl)-l-oxopentan-2- yl)amino)-l-oxo-3-phenylpropan-2-yl)-2-((5,)-2-(2-morpholinoacetamido)-4- phenylbutanamido)-pentanamide); marizomib (NPT0052); ixazomib citrate (MLN-9708); delanzomib (CEP-18770); and O-Methyl-N-[(2-methyl-5-thiazolyl)carbonyl]-L-seryl-O- methyl-N-[(llS')-2-[(2R)-2-methyl-2-oxiranyl]-2-oxo-l-(phenylmethyl)ethyl]- L-serinamide (ONX-0912). In embodiments, a CAR-expressing cell described herein is administered to a subject in combination with brentuximab. Brentuximab is an antibody-drug conjugate of anti-CD30 antibody and monomethyl auristatin E. In embodiments, the subject has Hodgkin's lymphoma (HL), e.g., relapsed or refractory HL. In embodiments, the subject comprises CD30+ HL. In embodiments, the subject has undergone an autologous stem cell transplant (ASCT). In embodiments, the subject has not undergone an ASCT. In embodiments, brentuximab is administered at a dosage of about 1-3 mg/kg (e.g., about 1-1.5, 1.5-2, 2-2.5, or 2.5-3 mg/kg), e.g., intravenously, e.g., every 3 weeks.
In embodiments, a CAR-expressing cell described herein is administered to a subject in combination with brentuximab and dacarbazine or in combination with brentuximab and bendamustine. Dacarbazine is an alkylating agent with a chemical name of 5 -(3, 3 -Dimethyl- 1- triazenyl)imidazole-4-carboxamide. Bendamustine is an alkylating agent with a chemical name of 4-[5-[Bis(2-chloroethyl)amino]-l-methylbenzimidazol-2-yl]butanoic acid. In embodiments, the subject has Hodgkin's lymphoma (HL). In embodiments, the subject has not previously been treated with a cancer therapy. In embodiments, the subject is at least 60 years of age, e.g., 60, 65, 70, 75, 80, 85, or older. In embodiments, dacarbazine is administered at a dosage of about 300-450 mg/m2 (e.g., about 300-325, 325-350, 350-375, 375-400, 400-425, or 425-450 mg/m ), e.g., intravenously. In embodiments, bendamustine is administered at a dosage of about 75-125 mg/m2 (e.g., 75-100 or 100-125 mg/m2, e.g., about 90 mg/m2), e.g.,
intravenously. In embodiments, brentuximab is administered at a dosage of about 1-3 mg/kg (e.g., about 1-1.5, 1.5-2, 2-2.5, or 2.5-3 mg/kg), e.g., intravenously, e.g., every 3 weeks.
In some embodiments, a CAR-expressing cell described herein is administered to a subject in combination with a CD20 inhibitor, e.g., an anti-CD20 antibody (e.g., an anti-CD20 mono- or bispecific antibody) or a fragment thereof. Exemplary anti-CD20 antibodies include but are not limited to rituximab, ofatumumab, ocrelizumab, veltuzumab, obinutuzumab, TRU- 015 (Trubion Pharmaceuticals), ocaratuzumab, and Prol31921 (Genentech). See, e.g., Lim et al. Haematologica. 95.1(2010):135-43.
In some embodiments, the anti-CD20 antibody comprises rituximab. Rituximab is a chimeric mouse/human monoclonal antibody IgGl kappa that binds to CD20 and causes cytolysis of a CD20 expressing cell, e.g., as described in
www.accessdata.fda.gov/drugsatfda_docs/label/2010/103705s53111bl.pdf. In embodiments, a CAR-expressing cell described herein is administered to a subject in combination with rituximab. In embodiments, the subject has CLL or SLL.
In some embodiments, rituximab is administered intravenously, e.g., as an intravenous infusion. For example, each infusion provides about 500-2000 mg (e.g., about 500-550, 550- 600, 600-650, 650-700, 700-750, 750-800, 800-850, 850-900, 900-950, 950-1000, 1000-1100, 1100-1200, 1200-1300, 1300-1400, 1400-1500, 1500-1600, 1600-1700, 1700-1800, 1800- 1900, or 1900-2000 mg) of rituximab. In some embodiments, rituximab is administered at a dose of 150 mg/m2 to 750 mg/m2, e.g., about 150-175 mg/m2, 175-200 mg/m2, 200-225 mg/m2, 225-250 mg/m2, 250-300 mg/m2, 300-325 mg/m2, 325-350 mg/m2, 350-375 mg/m2, 375-400 mg/m2, 400-425 mg/m2, 425-450 mg/m2, 450-475 mg/m2, 475-500 mg/m2, 500-525 mg/m2, 525-550 mg/m2, 550-575 mg/m2, 575-600 mg/m2, 600-625 mg/m2, 625-650 mg/m2, 650-675 mg/m 2 , or 675-700 mg/m 2 , where m 2 indicates the body surface area of the subject. In some embodiments, rituximab is administered at a dosing interval of at least 4 days, e.g., 4, 7, 14, 21, 28, 35 days, or more. For example, rituximab is administered at a dosing interval of at least 0.5 weeks, e.g., 0.5, 1, 2, 3, 4, 5, 6, 7, 8 weeks, or more. In some embodiments, rituximab is administered at a dose and dosing interval described herein for a period of time, e.g., at least 2 weeks, e.g., at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 weeks, or greater. For example, rituximab is administered at a dose and dosing interval described herein for a total of at least 4 doses per treatment cycle (e.g., at least 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, or more doses per treatment cycle). In some embodiments, the anti-CD20 antibody comprises ofatumumab. Ofatumumab is an anti-CD20 IgGlK human monoclonal antibody with a molecular weight of approximately 149 kDa. For example, ofatumumab is generated using transgenic mouse and hybridoma technology and is expressed and purified from a recombinant murine cell line (NSO). See, e.g., www.accessdata.fda.gov/drugsatfda_docs/label/2009/1253261bl.pdf; and Clinical Trial Identifier number NCT01363128, NCT01515176, NCT01626352, and NCT01397591. In embodiments, a CAR-expressing cell described herein is administered to a subject in combination with ofatumumab. In embodiments, the subject has CLL or SLL.
In some embodiments, ofatumumab is administered as an intravenous infusion. For example, each infusion provides about 150-3000 mg (e.g., about 150-200, 200-250, 250-300, 300-350, 350-400, 400-450, 450-500, 500-550, 550-600, 600-650, 650-700, 700-750, 750-800, 800-850, 850-900, 900-950, 950-1000, 1000-1200, 1200-1400, 1400-1600, 1600-1800, 1800- 2000, 2000-2200, 2200-2400, 2400-2600, 2600-2800, or 2800-3000 mg) of ofatumumab. In embodiments, ofatumumab is administered at a starting dosage of about 300 mg, followed by 2000 mg, e.g., for about 11 doses, e.g., for 24 weeks. In some embodiments, ofatumumab is administered at a dosing interval of at least 4 days, e.g., 4, 7, 14, 21, 28, 35 days, or more. For example, ofatumumab is administered at a dosing interval of at least 1 week, e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 24, 26, 28, 20, 22, 24, 26, 28, 30 weeks, or more. In some embodiments, ofatumumab is administered at a dose and dosing interval described herein for a period of time, e.g., at least 1 week, e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 24, 26, 28, 30, 40, 50, 60 weeks or greater, or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 months or greater, or 1, 2, 3, 4, 5 years or greater. For example, ofatumumab is administered at a dose and dosing interval described herein for a total of at least 2 doses per treatment cycle (e.g., at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 20, or more doses per treatment cycle).
In some cases, the anti-CD20 antibody comprises ocrelizumab. Ocrelizumab is a humanized anti-CD20 monoclonal antibody, e.g., as described in Clinical Trials Identifier Nos. NCT00077870, NCT01412333, NCT00779220, NCT00673920, NCTOl 194570, and Kappos et al. Lancet. 19.378(2011): 1779-87.
In some cases, the anti-CD20 antibody comprises veltuzumab. Veltuzumab is a humanized monoclonal antibody against CD20. See, e.g., Clinical Trial Identifier No.
NCT00547066, NCT00546793, NCTOl 101581, and Goldenberg et al. Leuk Lymphoma.
51(5)(2010):747-55.
In some cases, the anti-CD20 antibody comprises GAIOI. GAIOI (also called obinutuzumab or RO5072759) is a humanized and glyco-engineered anti-CD20 monoclonal antibody. See, e.g., Robak. Curr. Opin. Investig. Drugs. 10.6(2009):588-96; Clinical Trial Identifier Numbers: NCT01995669, NCT01889797, NCT02229422, and NCT01414205; and
www.accessdata.fda.gov/drugsatfda_docs/label/2013/125486s0001bl.pdf.
In some cases, the anti-CD20 antibody comprises AME-133v. AME-133v (also called LY2469298 or ocaratuzumab) is a humanized IgGl monoclonal antibody against CD20 with increased affinity for the FcyRIIIa receptor and an enhanced antibody dependent cellular cytotoxicity (ADCC) activity compared with rituximab. See, e.g., Robak et al. BioDrugs 25.1(2011):13-25; and Forero-Torres et al. Clin Cancer Res. 18.5(2012):1395-403.
In some cases, the anti-CD20 antibody comprises PR0131921. PR0131921 is a humanized anti-CD20 monoclonal antibody engineered to have better binding to FcyRIIIa and enhanced ADCC compared with rituximab. See, e.g., Robak et al. BioDrugs 25.1(2011):13-25; and Casulo et al. Clin Immunol. 154.1(2014):37-46; and Clinical Trial Identifier No.
NCT00452127. In some cases, the anti-CD20 antibody comprises TRU-015. TRU-015 is an anti-CD20 fusion protein derived from domains of an antibody against CD20. TRU-015 is smaller than monoclonal antibodies, but retains Fc-mediated effector functions. See, e.g., Robak et al. BioDrugs 25.1(2011): 13-25. TRU-015 contains an anti-CD20 single-chain variable fragment (scFv) linked to human IgGl hinge, CH2, and CH3 domains but lacks CHI and CL domains.
In some embodiments, an anti-CD20 antibody described herein is conjugated or otherwise bound to a therapeutic agent, e.g., a chemotherapeutic agent (e.g., Cytoxan, fludarabine, histone deacetylase inhibitor, demethylating agent, peptide vaccine, anti-tumor antibiotic, tyrosine kinase inhibitor, alkylating agent, anti-microtubule or anti-mitotic agent), anti-allergic agent, anti-nausea agent (or anti-emetic), pain reliever, or cytoprotective agent described herein.
In embodiments, a CAR-expressing cell described herein is administered to a subject in combination with a B-cell lymphoma 2 (BCL-2) inhibitor (e.g., venetoclax, also called ABT- 199 or GDC-0199;) and/or rituximab. In embodiments, a CAR-expressing cell described herein is administered to a subject in combination with venetoclax and rituximab. Venetoclax is a small molecule that inhibits the anti-apoptotic protein, BCL-2. The structure of venetoclax (4-(4- { [2-(4-chlorophenyl)-4,4-dimethylcyclohex- 1 -en- 1 -yl]methyl Jpiperazin- 1 -yl)-N-( { 3- nitro-4-[(tetrahydro-2H-pyran-4-ylmethyl)amino]phenyl}sulfonyl)-2-(lH-pyrrolo[2,3- b]pyridin-5-yloxy)benzamide) is shown below.
Figure imgf000216_0001
In embodiments, the subject has CLL. In embodiments, the subject has relapsed CLL, e.g., the subject has previously been administered a cancer therapy. In embodiments, venetoclax is administered at a dosage of about 15-600 mg (e.g., 15-20, 20-50, 50-75, 75-100, 100-200, 200-300, 300-400, 400-500, or 500-600 mg), e.g., daily. In embodiments, rituximab is administered at a dosage of about 350-550 mg/m2 (e.g., 350-375, 375-400, 400-425, 425- 450, 450-475, or 475-500 mg/m2), e.g., intravenously, e.g., monthly. In some embodiments, a CAR-expressing cell described herein is administered in combination with an oncolytic virus. In embodiments, oncolytic viruses are capable of selectively replicating in and triggering the death of or slowing the growth of a cancer cell. In some cases, oncolytic viruses have no effect or a minimal effect on non-cancer cells. An oncolytic virus includes but is not limited to an oncolytic adenovirus, oncolytic Herpes Simplex Viruses, oncolytic retrovirus, oncolytic parvovirus, oncolytic vaccinia virus, oncolytic Sinbis virus, oncolytic influenza virus, or oncolytic RNA virus (e.g., oncolytic reo virus, oncolytic Newcastle Disease Virus (NDV), oncolytic measles virus, or oncolytic vesicular stomatitis virus (VSV)). In some embodiments, the oncolytic virus is a virus, e.g., recombinant oncolytic virus, described in US2010/0178684 Al, which is incorporated herein by reference in its entirety. In some embodiments, a recombinant oncolytic virus comprises a nucleic acid sequence (e.g., heterologous nucleic acid sequence) encoding an inhibitor of an immune or inflammatory response, e.g., as described in US2010/0178684 Al, incorporated herein by reference in its entirety. In embodiments, the recombinant oncolytic virus, e.g., oncolytic NDV, comprises a pro-apoptotic protein (e.g., apoptin), a cytokine (e.g., GM-CSF, interferon-gamma, interleukin- 2 (IL-2), tumor necrosis factor-alpha), an immunoglobulin (e.g., an antibody against ED-B firbonectin), tumor associated antigen, a bispecific adapter protein (e.g., bispecific antibody or antibody fragment directed against NDV HN protein and a T cell co-stimulatory receptor, such as CD3 or CD28; or fusion protein between human IL-2 and single chain antibody directed against NDV HN protein). See, e.g., Zamarin et al. Future Microbiol. 7.3(2012):347-67, incorporated herein by reference in its entirety. In some embodiments, the oncolytic virus is a chimeric oncolytic NDV described in US 8591881 B2, US 2012/0122185 Al, or US
2014/0271677 Al, each of which is incorporated herein by reference in their entireties. In some embodiments, the oncolytic virus comprises a conditionally replicative adenovirus (CRAd), which is designed to replicate exclusively in cancer cells. See, e.g., Alemany et al. Nature Biotechnol. 18(2000):723-27. In some embodiments, an oncolytic adenovirus comprises one described in Table 1 on page 725 of Alemany et al., incorporated herein by reference in its entirety. Exemplary oncolytic viruses include but are not limited to the following: Group B Oncolytic Adenovirus (ColoAdl) (PsiOxus Therapeutics Ltd.) (see, e.g., Clinical Trial Identifier: NCT02053220);
ONCOS-102 (previously called CGTG-102), which is an adenovirus comprising granulocyte-macrophage colony stimulating factor (GM-CSF) (Oncos Therapeutics) (see, e.g., Clinical Trial Identifier: NCT01598129);
VCN-01, which is a genetically modified oncolytic human adenovirus encoding human PH20 hyaluronidase (VCN Biosciences, S.L.) (see, e.g., Clinical Trial Identifiers:
NCT02045602 and NCT02045589);
Conditionally Replicative Adenovirus ICOVIR-5, which is a virus derived from wild- type human adenovirus serotype 5 (Had5) that has been modified to selectively replicate in cancer cells with a deregulated retinoblastoma/E2F pathway (Institut Catala d'Oncologia) (see, e.g., Clinical Trial Identifier: NCT01864759);
Celyvir, which comprises bone marrow-derived autologous mesenchymal stem cells (MSCs) infected with ICOVIR5, an oncolytic adenovirus (Hospital Infantil Universitario Nino Jesus, Madrid, Spain/ Ramon Alemany) (see, e.g., Clinical Trial Identifier: NCT01844661);
CG0070, which is a conditionally replicating oncolytic serotype 5 adenovirus (Ad5) in which human E2F-1 promoter drives expression of the essential Ela viral genes, thereby restricting viral replication and cytotoxicity to Rb pathway-defective tumor cells (Cold
Genesys, Inc.) (see, e.g., Clinical Trial Identifier: NCT02143804); or
DNX-2401 (formerly named Delta- 24-RGD), which is an adenovirus that has been engineered to replicate selectively in retinoblastoma (Rb)-pathway deficient cells and to infect cells that express certain RGD-binding integrins more efficiently (Clinica Universidad de Navarra, Universidad de Navarra/ DNAtrix, Inc.) (see, e.g., Clinical Trial Identifier:
NCT01956734).
In some embodiments, an oncolytic virus described herein is administering by injection, e.g., subcutaneous, intra-arterial, intravenous, intramuscular, intrathecal, or intraperitoneal injection. In embodiments, an oncolytic virus described herein is administered intratumorally, transdermally, transmuco sally, orally, intranasally, or via pulmonary administration.
In an embodiment, cells expressing a CAR described herein are administered to a subject in combination with a molecule that decreases the Treg cell population. Methods that decrease the number of (e.g., deplete) Treg cells are known in the art and include, e.g., CD25 depletion, cyclophosphamide administration, modulating GITR function. Without wishing to be bound by theory, it is believed that reducing the number of Treg cells in a subject prior to apheresis or prior to administration of a CAR-expressing cell described herein reduces the number of unwanted immune cells (e.g., Tregs) in the tumor microenvironment and reduces the subject's risk of relapse. In one embodiment, a CAR expressing cell described herein is administered to a subject in combination with a molecule targeting GITR and/or modulating GITR functions, such as a GITR agonist and/or a GITR antibody that depletes regulatory T cells (Tregs). In
embodiments, cells expressing a CAR described herein are administered to a subject in combination with cyclophosphamide. In one embodiment, the GITR binding molecules and/or molecules modulating GITR functions (e.g., GITR agonist and/or Treg depleting GITR antibodies) are administered prior to administration of the CAR-expressing cell. For example, in one embodiment, the GITR agonist can be administered prior to apheresis of the cells. In embodiments, cyclophosphamide is administered to the subject prior to administration (e.g., infusion or re-infusion) of the CAR-expressing cell or prior to aphersis of the cells. In embodiments, cyclophosphamide and an anti-GITR antibody are administered to the subject prior to administration (e.g., infusion or re-infusion) of the CAR-expressing cell or prior to apheresis of the cells. In one embodiment, the subject has cancer (e.g., a solid cancer or a hematological cancer such as ALL or CLL). In an embodiment, the subject has CLL. In embodiments, the subject has ALL. In embodiments, the subject has a solid cancer, e.g., a solid cancer described herein. Exemplary GITR agonists include, e.g., GITR fusion proteins and anti-GITR antibodies (e.g., bivalent anti-GITR antibodies) such as, e.g., a GITR fusion protein described in U.S. Patent No.: 6,111,090, European Patent No.: 090505B1, U.S Patent No.: 8,586,023, PCT Publication Nos.: WO 2010/003118 and 2011/090754, or an anti-GITR antibody described, e.g., in U.S. Patent No.: 7,025,962, European Patent No.: 1947183B1, U.S. Patent No.: 7,812,135, U.S. Patent No.: 8,388,967, U.S. Patent No.: 8,591,886, European Patent No.: EP 1866339, PCT Publication No.: WO 2011/028683, PCT Publication No.:WO
2013/039954, PCT Publication No.: WO2005/007190, PCT Publication No.: WO
2007/133822, PCT Publication No.: WO2005/055808, PCT Publication No.: WO 99/40196, PCT Publication No.: WO 2001/03720, PCT Publication No.: WO99/20758, PCT Publication No.: WO2006/083289, PCT Publication No.: WO 2005/115451, U.S. Patent No.: 7,618,632, and PCT Publication No.: WO 2011/051726. In one embodiment, a CAR expressing cell described herein is administered to a subject in combination with an mTOR inhibitor, e.g., an mTOR inhibitor described herein, e.g., a rapalog such as everolimus. In one embodiment, the mTOR inhibitor is administered prior to the CAR-expressing cell. For example, in one embodiment, the mTOR inhibitor can be administered prior to apheresis of the cells.
In one embodiment, a CAR expressing cell described herein is administered to a subject in combination with a GITR agonist, e.g., a GITR agonist described herein. In one
embodiment, the GITR agonist is administered prior to the CAR-expressing cell. For example, in one embodiment, the GITR agonist can be administered prior to apheresis of the cells. In one embodiment, a CAR expressing cell described herein is administered to a subject in combination with a protein tyrosine phosphatase inhibitor, e.g., a protein tyrosine
phosphatase inhibitor described herein. In one embodiment, the protein tyrosine phosphatase inhibitor is an SHP-1 inhibitor, e.g., an SHP-1 inhibitor described herein, such as, e.g., sodium stibogluconate. In one embodiment, the protein tyrosine phosphatase inhibitor is an SHP-2 inhibitor, e.g., an SHP-2 inhibitor described herein.
In one embodiment, a CAR-expressing cell described herein can be used in combination with a kinase inhibitor. In one embodiment, the kinase inhibitor is a CDK4 inhibitor, e.g., a CDK4 inhibitor described herein, e.g., a CDK4/6 inhibitor, such as, e.g., 6-Acetyl-8- cyclopentyl-5-methyl-2-(5-piperazin-l-yl-pyridin-2-ylamino)-8H-pyrido[2,3-(i]pyrimidin-7- one, hydrochloride (also referred to as palbociclib or PD0332991). In one embodiment, the kinase inhibitor is a BTK inhibitor, e.g., a BTK inhibitor described herein, such as, e.g., ibrutinib. In one embodiment, the kinase inhibitor is an mTOR inhibitor, e.g., an mTOR inhibitor described herein, such as, e.g., rapamycin, a rapamycin analog, OSI-027. The mTOR inhibitor can be, e.g., an mTORCl inhibitor and/or an mTORC2 inhibitor, e.g., an mTORCl inhibitor and/or mTORC2 inhibitor described herein. In one embodiment, the kinase inhibitor is a MNK inhibitor, e.g., a MNK inhibitor described herein, such as, e.g., 4-amino-5-(4- fluoroanilino)-pyrazolo [3,4-JJ pyrimidine. The MNK inhibitor can be, e.g., a MNKla, MNKlb, MNK2a and/or MNK2b inhibitor. In one embodiment, the kinase inhibitor is a dual PI3K/mTOR inhibitor described herein, such as, e.g., PF-04695102. In one embodiment, the kinase inhibitor is a DGK inhibitor, e.g., a DGK inhibitor described herein, such as, e.g.,
DGKinhl (D5919) or DGKinh2 (D5794). In one embodiment, the kinase inhibitor is a CDK4 inhibitor selected from aloisine A; flavopiridol or HMR-1275, 2-(2-chlorophenyl)-5,7- dihydroxy-8-[(3S,4R)-3-hydroxy-l-methyl-4-piperidinyl]-4-chromenone; crizotinib (PF- 02341066; 2-(2-Chlorophenyl)-5,7-dihydroxy-8-[(2R,35)-2-(hydroxymethyl)-l-methyl-3- pyrrolidinyl]- 4H-l-bewzopyran-4-one, hydrochloride (P276-00); l-methyl-5-[[2-[5- (trifluoromethyl)-lH-imidazol-2-yl]-4-pyridinyl]oxy]-N-[4-(trifluoromethyl)phenyl]-lH- benzimidazol-2-amine (RAF265); indisulam (E7070); roscovitine (CYC202); palbociclib (PD0332991); dinaciclib (SCH727965); N-[5-[[(5-ieri-butyloxazol-2-yl)methyl]thio]thiazol- 2-yl]piperidine-4-carboxamide (BMS 387032); 4-[[9-chloro-7-(2,6-difluorophenyl)-5H- pyrimido[5,4-JJ[2]benzazepin-2-yl]amino]-benzoic acid (MLN8054); 5-[3-(4,6-difluoro-lH- benzimidazol-2-yl)-lH-indazol-5-yl]-N-ethyl-4-methyl-3-pyridinemethanamine (AG-024322); 4-(2,6-dichlorobenzoylamino)-lH-pyrazole-3-carboxylic acid N-(piperidin-4-yl)amide
(AT7519); 4-[2-methyl- 1 -( 1 -methylethyl)- lH-imidazol-5-yl] -N- [4- (methyl sulf onyl)phenyl] - 2- pyrimidinamine (AZD5438); and XL281 (BMS908662).
In one embodiment, the kinase inhibitor is a CDK4 inhibitor, e.g., palbociclib
(PD0332991), and the palbociclib is administered at a dose of about 50 mg, 60 mg, 70 mg, 75 mg, 80 mg, 90 mg, 100 mg, 105 mg, 110 mg, 115 mg, 120 mg, 125 mg, 130 mg, 135 mg (e.g., 75 mg, 100 mg or 125 mg) daily for a period of time, e.g., daily for 14-21 days of a 28 day cycle, or daily for 7-12 days of a 21 day cycle. In one embodiment, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 or more cycles of palbociclib are administered. In embodiments, a CAR-expressing cell described herein is administered to a subject in combination with a cyclin-dependent kinase (CDK) 4 or 6 inhibitor, e.g., a CDK4 inhibitor or a CDK6 inhibitor described herein. In embodiments, a CAR-expressing cell described herein is administered to a subject in combination with a CDK4/6 inhibitor (e.g., an inhibitor that targets both CDK4 and CDK6), e.g., a CDK4/6 inhibitor described herein. In an embodiment, the subject has MCL. MCL is an aggressive cancer that is poorly responsive to currently available therapies, i.e., essentially incurable. In many cases of MCL, cyclin Dl (a regulator of CDK4/6) is expressed (e.g., due to chromosomal translocation involving immunoglobulin and Cyclin Dl genes) in MCL cells. Thus, without being bound by theory, it is thought that MCL cells are highly sensitive to CDK4/6 inhibition with high specificity (i.e., minimal effect on normal immune cells). CDK4/6 inhibitors alone have had some efficacy in treating MCL, but have only achieved partial remission with a high relapse rate. An exemplary CDK4/6 inhibitor is LEE011 (also called ribociclib), the structure of which is shown below.
Figure imgf000222_0001
Without being bound by theory, it is believed that administration of a CAR-expressing cell described herein with a CDK4/6 inhibitor (e.g., LEE011 or other CDK4/6 inhibitor described herein) can achieve higher responsiveness, e.g., with higher remission rates and/or lower relapse rates, e.g., compared to a CDK4/6 inhibitor alone.
In one embodiment, the kinase inhibitor is a BTK inhibitor selected from ibrutinib (PCI- 32765); GDC-0834; RN-486; CGI-560; CGI-1764; HM-71224; CC-292; ONO-4059; CNX- 774; and LFM-A13. In a preferred embodiment, the BTK inhibitor does not reduce or inhibit the kinase activity of interleukin-2-inducible kinase (ITK), and is selected from GDC-0834; RN-486; CGI-560; CGI-1764; HM-71224; CC-292; ONO-4059; CNX-774; and LFM-A13.
In one embodiment, the kinase inhibitor is a BTK inhibitor, e.g., ibrutinib (PCI-32765). In embodiments, a CAR-expressing cell described herein is administered to a subject in combination with a BTK inhibitor (e.g., ibrutinib). In embodiments, a CAR-expressing cell described herein is administered to a subject in combination with ibrutinib (also called PCI- 32765). The structure of ibrutinib (l-[(3R)-3-[4-Amino-3-(4-phenoxyphenyl)-lH- pyrazolo[3,4-d]pyrimidin-l-yl]piperidin-l-yl]prop-2-en-l-one) is shown below.
Figure imgf000222_0002
In embodiments, the subject has CLL, mantle cell lymphoma (MCL), or small lymphocytic lymphoma (SLL). For example, the subject has a deletion in the short arm of chromosome 17 (del(17p), e.g., in a leukemic cell). In other examples, the subject does not have a del(17p). In embodiments, the subject has relapsed CLL or SLL, e.g., the subject has previously been administered a cancer therapy (e.g., previously been administered one, two, three, or four prior cancer therapies). In embodiments, the subject has refractory CLL or SLL. In other embodiments, the subject has follicular lymphoma, e.g., relapse or refractory follicular lymphoma. In some embodiments, ibrutinib is administered at a dosage of about 300-600 mg/day (e.g., about 300-350, 350-400, 400-450, 450-500, 500-550, or 550-600 mg/day, e.g., about 420 mg/day or about 560 mg/day), e.g., orally. In embodiments, the ibrutinib is administered at a dose of about 250 mg, 300 mg, 350 mg, 400 mg, 420 mg, 440 mg, 460 mg, 480 mg, 500 mg, 520 mg, 540 mg, 560 mg, 580 mg, 600 mg (e.g., 250 mg, 420 mg or 560 mg) daily for a period of time, e.g., daily for 21 day cycle cycle, or daily for 28 day cycle. In one embodiment, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 or more cycles of ibrutinib are administered. In some embodiments, ibrutinib is administered in combination with rituximab. See, e.g., Burger et al. (2013) Ibrutinib In Combination With Rituximab (iR) Is Well Tolerated and Induces a High Rate Of Durable Remissions In Patients With High-Risk Chronic Lymphocytic Leukemia (CLL): New, Updated Results Of a Phase II Trial In 40 Patients, Abstract 675 presented at 55th ASH Annual Meeting and Exposition, New Orleans, LA 7-10 Dec. Without being bound by theory, it is thought that the addition of ibrutinib enhances the T cell proliferative response and may shift T cells from a T-helper-2 (Th2) to T-helper-1 (Thl) phenotype. Thl and Th2 are phenotypes of helper T cells, with Thl versus Th2 directing different immune response pathways. A Thl phenotype is associated with proinflammatory responses, e.g., for killing cells, such as intracellular pathogens/viruses or cancerous cells, or perpetuating autoimmune responses. A Th2 phenotype is associated with eosinophil accumulation and anti-inflammatory responses.
In some embodiments of the methods, uses, and compositions herein, the BTK inhibitor is a BTK inhibitor described in International Application WO/2015/079417, which is herein incorporated by reference in its entirety. For instance, in some embodiments, the BTK inhibitor is a compound of formula (I) or a pharmaceutically acceptable salt thereof;
Figure imgf000224_0001
wherein,
Rl is hydrogen, C1-C6 alkyl optionally substituted by hydroxy;
R2 is hydrogen or halogen;
R3 is hydrogen or halogen;
R4 is hydrogen;
R5 is hydrogen or halogen;
or R4 and R5 are attached to each other and stand for a bond, -CH2-, -CH2-CH2- , - CH=CH-, -CH=CH-CH2-; -CH2-CH=CH-; or -CH2-CH2-CH2-;
R6 and R7 stand independently from each other for H, C1-C6 alkyl optionally substituted by hydroxyl, C3-C6 cycloalkyl optionally substituted by halogen or hydroxy, or halogen;
R8, R9, R, R', RIO and Rl l independently from each other stand for H, or C1-C6 alkyl optionally substituted by C1-C6 alkoxy; or any two of R8, R9, R, R' , RIO and Rl 1 together with the carbon atom to which they are bound may form a 3 - 6 membered saturated carbocyclic ring;
R12 is hydrogen or C1-C6 alkyl optionally substituted by halogen or C1-C6 alkoxy; or R12 and any one of R8, R9, R, R', RIO or Rl 1 together with the atoms to which they are bound may form a 4, 5, 6 or 7 membered azacyclic ring, which ring may optionally be substituted by halogen, cyano, hydroxyl, C1-C6 alkyl or C1-C6 alkoxy;
n is 0 or 1 ; and
R13 is C2-C6 alkenyl optionally substituted by C1-C6 alkyl, C1-C6 alkoxy or N,N-di- C1-C6 alkyl amino; C2-C6 alkynyl optionally substituted by C1-C6 alkyl or C1-C6 alkoxy; or C2-C6 alkylenyl oxide optionally substituted by C1-C6 alkyl. In some embodiments, the BTK inhibitor of Formula I is chosen from: N-(3-(5-((l- Acryloylazetidin-3-yl)oxy)-6-aminopyrimidin-4-yl)-5-fluoro-2-methylphenyl)-4-cyclopropyl- 2-fluorobenzamide; (E)-N-(3-(6-Amino-5-((l-(but-2-enoyl)azetidin-3-yl)oxy)pyrimidin-4-yl)- 5-fluoro-2-methylphenyl)-4-cyclopropyl-2-fluorobenzamide; N-(3-(6-Amino-5-((l- propioloylazetidin-3-yl)oxy)pyrimidin-4-yl)-5-fluoro-2-methylphenyl)-4-cyclopropyl-2- fluorobenzamide; N-(3-(6-Amino-5-((l-(but-2-ynoyl)azetidin-3-yl)oxy)pyrimidin-4-yl)-5- fluoro-2-methylphenyl)-4-cyclopropyl-2-fluorobenzamide; N-(3-(5-((l-Acryloylpiperidin-4- yl)oxy)-6-aminopyrimidin-4-yl)-5-fluoro-2-methylphenyl)-4-cyclopropyl-2-fluorobenzamide; N-(3-(6-Amino-5-(2-(N-methylacrylamido)ethoxy)pyrimidin-4-yl)-5-fluoro-2-methylphenyl)-
4- cyclopropyl-2-fluorobenzamide; (E)-N-(3-(6-Amino-5-(2-(N-methylbut-2- enamido)ethoxy)pyrimidin-4-yl)-5-fluoro-2-methylphenyl)-4-cyclopropyl-2-fluorobenzamide; N-(3-(6-Amino-5-(2-(N-methylpropiolamido)ethoxy)pyrimidin-4-yl)-5-fluoro-2- methylphenyl)-4-cyclopropyl-2-fluorobenzamide; (E)-N-(3-(6-Amino-5-(2-(4-methoxy-N- methylbut-2-enamido)ethoxy)pyrimidin-4-yl)-5-fluoro-2-methylphenyl)-4-cyclopropyl-2- fluorobenzamide; N-(3-(6-Amino-5-(2-(N-methylbut-2-ynamido)ethoxy)pyrimidin-4-yl)-5- fluoro-2-methylphenyl)-4-cyclopropyl-2-fluorobenzamide; N-(2-((4-Amino-6-(3-(4- cyclopropyl-2-fluorobenzamido)-5-fluoro-2-methylphenyl)pyrimidin-5-yl)oxy)ethyl)-N- methyloxirane-2-carboxamide; N-(2-((4-Amino-6-(3-(6-cyclopropyl-8-fluoro-l- oxoisoquinolin-2(lH)-yl)phenyl)pyrimidin-5-yl)oxy)ethyl)-N-methylacrylamide; N-(3-(5-(2- Acrylamidoethoxy)-6-aminopyrimidin-4-yl)-5-fluoro-2-methylphenyl)-4-cyclopropyl-2- fluorobenzamide; N-(3-(6-Amino-5-(2-(N-ethylacrylamido)ethoxy)pyrimidin-4-yl)-5-fluoro-2- methylphenyl)-4-cyclopropyl-2-fluorobenzamide; N-(3-(6-Amino-5-(2-(N-(2- fluoroethyl)acrylamido)ethoxy)pyrimidin-4-yl)-5-fluoro-2-methylphenyl)-4-cyclopropyl-2- fluorobenzamide; N-(3-(5-((l-Acrylamidocyclopropyl)methoxy)-6-aminopyrimidin-4-yl)-5- fluoro-2-methylphenyl)-4-cyclopropyl-2-fluorobenzamide; (S)-N-(3-(5-(2- Acrylamidopropoxy)-6-aminopyrimidin-4-yl)-5-fluoro-2-methylphenyl)-4-cyclopropyl-2- fluorobenzamide; (S)-N-(3-(6-Amino-5-(2-(but-2-ynamido)propoxy)pyrimidin-4-yl)-5-fluoro- 2-methylphenyl)-4-cyclopropyl-2-fluorobenzamide; (S)-N-(3-(6-Amino-5-(2-(N- methylacrylamido)propoxy)pyrimidin-4-yl)-5-fluoro-2-methylphenyl)-4-cyclopropyl-2- fluorobenzamide; (S)-N-(3-(6-Amino-5-(2-(N-methylbut-2-ynamido)propoxy)pyrimidin-4-yl)-
5- fluoro-2-methylphenyl)-4-cyclopropyl-2-fluorobenzamide; N-(3-(6-Amino-5-(3-(N- methylacrylamido)propoxy)pyrimidin-4-yl)-5-fluoro-2-methylphenyl)-4-cyclopropyl-2- fluorobenzamide; (S)-N-(3-(5-((l-Acryloylpyrrolidin-2-yl)methoxy)-6-aminopyrimidin-4-yl)- 5-fluoro-2-methylphenyl)-4-cyclopropyl-2-fluorobenzamide; (S)-N-(3-(6-Amino-5-((l-(but-2- ynoyl)pyrrolidin-2-yl)methoxy)pyrimidin-4-yl)-5-fluoro-2-methylphenyl)-4-cyclopropyl-2- fluorobenzamide; (S)-2-(3-(5-((l-Acryloylpyrrolidin-2-yl)methoxy)-6-aminopyrimidin-4-yl)-5- fluoro-2-(hydroxymethyl)phenyl)-6-cyclopropyl-3,4-dihydroisoquinolin-l(2H)-one; N-(2-((4- Amino-6-(3-(6-cyclopropyl-l-oxo-3,4-dihydroisoquinolin-2(lH)-yl)-5-fluoro-2- (hydroxymethyl)phenyl)pyrimidin-5-yl)oxy)ethyl)-N-methylacrylamide; N-(3-(5-(((2S,4R)-l- Acryloyl-4-methoxypyrrolidin-2-yl)methoxy)-6-aminopyrimidin-4-yl)-5-fluoro-2- methylphenyl)-4-cyclopropyl-2-fluorobenzamide; N-(3-(6-Amino-5-(((2S,4R)-l-(but-2-ynoyl)- 4-methoxypyrrolidin-2-yl)methoxy)pyrimidin-4-yl)-5-fluoro-2-methylphenyl)-4-cyclopropyl-2- fluorobenzamide; 2-(3-(5-(((2S,4R)-l-Acryloyl-4-methoxypyrrolidin-2-yl)methoxy)-6- aminopyrimidin-4-yl)-5-fluoro-2-(hydroxymethyl)phenyl)-6-cyclopropyl-3,4- dihydroisoquinolin-l(2H)-one; N-(3-(5-(((2S,4S)-l-Acryloyl-4-methoxypyrrolidin-2- yl)methoxy)-6-aminopyrimidin-4-yl)-5-fluoro-2-methylphenyl)-4-cyclopropyl-2- fluorobenzamide; N-(3-(6-Amino-5-(((2S,4S)-l-(but-2-ynoyl)-4-methoxypyrrolidin-2- yl)methoxy)pyrimidin-4-yl)-5-fluoro-2-methylphenyl)-4-cyclopropyl-2-fluorobenzamide; N- (3-(5-(((2S,4R)-l-Acryloyl-4-fluoropyrrolidin-2-yl)methoxy)-6-aminopyrimidin-4-yl)-5- fluoro-2-methylphenyl)-4-cyclopropyl-2-fluorobenzamide; N-(3-(6-Amino-5-(((2S,4R)-l-(but- 2-ynoyl)-4-fluoropyrrolidin-2-yl)methoxy)pyrimidin-4-yl)-5-fluoro-2-methylphenyl)-4- cyclopropyl-2-fluorobenzamide; (S)-N-(3-(5-((l-Acryloylazetidin-2-yl)methoxy)-6- aminopyrimidin-4-yl)-5-fluoro-2-methylphenyl)-4-cyclopropyl-2-fluorobenzamide; (S)-N-(3- (6-Amino-5-((l-propioloylazetidin-2-yl)methoxy)pyrimidin-4-yl)-5-fluoro-2-methylphenyl)-4- cyclopropyl-2-fluorobenzamide; (S)-2-(3-(5-((l-Acryloylazetidin-2-yl)methoxy)-6- aminopyrimidin-4-yl)-5-fluoro-2-(hydroxymethyl)phenyl)-6-cyclopropyl-3,4- dihydroisoquinolin-l(2H)-one; (R)-N-(3-(5-((l-Acryloylazetidin-2-yl)methoxy)-6- aminopyrimidin-4-yl)-5-fluoro-2-methylphenyl)-4-cyclopropyl-2-fluorobenzamide; (R)-N-(3- (5-((l-Acryloylpiperidin-3-yl)methoxy)-6-aminopyrimidin-4-yl)-5-fluoro-2-methylphenyl)-4- cyclopropyl-2-fluorobenzamide; N-(3-(5-(((2R,3S)-l-Acryloyl-3-methoxypyrrolidin-2- yl)methoxy)-6-aminopyrimidin-4-yl)-5-fluoro-2-methylphenyl)-4-cyclopropyl-2- fluorobenzamide; N-(3-(5-(((2S,4R)-l-Acryloyl-4-cyanopyrrolidin-2-yl)methoxy)-6- aminopyrimidin-4-yl)-5-fluoro-2-methylphenyl)-4-cyclopropyl-2-fluorobenzamide; or N-(3-(5- (((2S,4S)-l-Acryloyl-4-cyanopyrrolidin-2-yl)methoxy)-6-aminopyrimidin-4-yl)-5-fluoro-2- methylphenyl)-4-cyclopropyl-2-fluorobenzamide.
Unless otherwise provided, the chemical terms used above in describing the BTK inhibitor of Formula I are used according to their meanings as set out in International
Application WO/2015/079417, which is herein incorporated by reference in its entirety
In one embodiment, the kinase inhibitor is an mTOR inhibitor selected from
temsirolimus; ridaforolimus (lR,2R,45)-4-[(2R)-2 [(1R,95,125,15R,16E,18R,19R,21R, 235,24E,26E,28Z,305,325,35R)-l,18-dihydroxy-19,30-dimethoxy-15,17,21,23, 29,35- hexamethyl-2,3,10,14,20-pentaoxo-l l,36-dioxa-4-azatricyclo[30.3.1.04'9] hexatriaconta- 16,24,26,28-tetraen-12-yl]propyl]-2-methoxycyclohexyl dimethylphosphinate, also known as AP23573 and MK8669; everolimus (RAD001); rapamycin (A Y22989); simapimod; (5-{2,4- bis[(35,)-3-methylmorpholin-4-yl]pyrido[2,3-(i]pyrimidin-7-yl}-2-methoxyphenyl)methanol (AZD8055); 2-mmino-8-[iraw5,-4-(2-hydroxyethoxy)cyclohexyl]-6-(6-methoxy-3-pyridinyl)-4- methyl-pyrido[2,3-JJpyrimidin-7(8H)-one (PF04691502); and N2-[l,4-dioxo-4-[[4-(4-oxo-8- phenyl-4H-l-benzopyran-2-yl)morpholinium-4-yl]methoxy]butyl]-L-arginylglycyl-L-a- aspartylL- serine- (SEQ ID NO:313), inner salt (SF1126); and XL765.
In one embodiment, the kinase inhibitor is an mTOR inhibitor, e.g., rapamycin, and the rapamycin is administered at a dose of about 3 mg, 4 mg, 5 mg, 6 mg, 7 mg, 8 mg, 9 mg, 10 mg (e.g., 6 mg) daily for a period of time, e.g., daily for 21 day cycle cycle, or daily for 28 day cycle. In one embodiment, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 or more cycles of rapamycin are administered. In one embodiment, the kinase inhibitor is an mTOR inhibitor, e.g., everolimus and the everolimus is administered at a dose of about 2 mg, 2.5 mg, 3 mg, 4 mg, 5 mg, 6 mg, 7 mg, 8 mg, 9 mg, 10 mg, 11 mg, 12 mg, 13 mg, 14 mg, 15 mg (e.g., 10 mg) daily for a period of time, e.g., daily for 28 day cycle. In one embodiment, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 or more cycles of everolimus are administered.
In one embodiment, the kinase inhibitor is an MNK inhibitor selected from
CGP052088; 4-amino-3-(p-fluorophenylamino)-pyrazolo [3,4-JJ pyrimidine (CGP57380); cercosporamide; ETC-1780445-2; and 4-amino-5-(4-fluoroanilino)-pyrazolo [3,4-JJ pyrimidine. In embodiments, a CAR-expressing cell described herein is administered to a subject in combination with a phosphoinositide 3-kinase (PI3K) inhibitor (e.g., a PI3K inhibitor described herein, e.g., idelalisib or duvelisib) and/or rituximab. In embodiments, a CAR- expressing cell described herein is administered to a subject in combination with idelalisib and rituximab. In embodiments, a CAR-expressing cell described herein is administered to a subject in combination with duvelisib and rituximab. Idelalisib (also called GS-1101 or CAL- 101 ; Gilead) is a small molecule that blocks the delta isoform of PI3K. The structure of idelalisib (5-Fluoro-3-phenyl-2-[(llS')-l-(7H-purin-6-ylamino)propyl]-4(3H)-quinazolinone) is shown below.
Figure imgf000228_0001
Duvelisib (also called IPI-145; Infinity Pharmaceuticals and Abb vie) is a small molecule that blocks ΡΙ3Κ-δ,γ. The structure of duvelisib (8-Chloro-2-phenyl-3-[(lS)-l-(9H- purin-6-ylamino)ethyl]-l(2H)-isoquinolinone is shown below.
Figure imgf000228_0002
In embodiments, the subject has CLL. In embodiments, the subject has relapsed CLL, e.g., the subject has previously been administered a cancer therapy (e.g., previously been administered an anti-CD20 antibody or previously been administered ibrutinib). For example, the subject has a deletion in the short arm of chromosome 17 (del(17p), e.g., in a leukemic cell). In other examples, the subject does not have a del(17p). In embodiments, the subject comprises a leukemic cell comprising a mutation in the immunoglobulin heavy-chain variable- region (IgVn) gene. In other embodiments, the subject does not comprise a leukemic cell comprising a mutation in the immunoglobulin heavy-chain variable-region (IgVn ) gene. In embodiments, the subject has a deletion in the long arm of chromosome 11 (del(l lq)). In other embodiments, the subject does not have a del(l lq). In embodiments, idelalisib is administered at a dosage of about 100-400 mg (e.g., 100-125, 125-150, 150-175, 175-200, 200-225, 225-250, 250-275, 275-300, 325-350, 350-375, or 375-400 mg), e.g., BID. In embodiments, duvelisib is administered at a dosage of about 15-100 mg (e.g., about 15-25, 25-50, 50-75, or 75-100 mg), e.g., twice a day. In embodiments, rituximab is administered at a dosage of about 350-550 mg/m2 (e.g., 350-375, 375-400, 400-425, 425-450, 450-475, or 475-500 mg/m2), e.g., intravenously.
In one embodiment, the kinase inhibitor is a dual phosphatidylinositol 3-kinase (PI3K) and mTOR inhibitor selected from 2-Amino-8-[iraw5,-4-(2-hydroxyethoxy)cyclohexyl]-6-(6- methoxy-3-pyridinyl)-4-methyl-pyrido[2,3-JJpyrimidin-7(8H)-one (PF-04691502); N-[4-[[4- (Dimethylamino)-l-piperidinyl]carbonyl]phenyl]-N'-[4-(4,6-di-4-morpholinyl-l,3,5-triazin-2- yl)phenyl]urea (PF-05212384, PKI-587); 2-Methyl-2-{4-[3-methyl-2-oxo-8-(quinolin-3-yl)- 2,3-dihydro-lH-imidazo[4,5-c]quinolin-l-yl]phenyl}propanenitrile (BEZ-235); apitolisib (GDC-0980, RG7422); 2,4-Difluoro-N-{2-(methyloxy)-5-[4-(4-pyridazinyl)-6-quinolinyl]-3- pyridinyljbenzenesulfonamide (GSK2126458); 8-(6-methoxypyridin-3-yl)-3-methyl-l-(4- (piperazin-l-yl)-3-(trifluoromethyl)phenyl)-lH-imidazo[4,5-c]quinolin-2(3H)-one Maleic acid (NVP-BGT226); 3-[4-(4-Morpholinylpyrido[3',2':4,5]furo[3,2-d]pyrimidin-2-yl]phenol (PI- 103); 5-(9-isopropyl-8-methyl-2-morpholino-9H-purin-6-yl)pyrimidin-2-amine (VS-5584, SB2343); and N-[2-[(3,5-Dimethoxyphenyl)amino]quinoxalin-3-yl]-4-[(4-methyl-3- methoxyphenyl)carbonyl] aminophenylsulfonamide (XL765) . In embodiments, a CAR-expressing cell described herein is administered to a subject in combination with an anaplastic lymphoma kinase (ALK) inhibitor. Exemplary ALK kinases include but are not limited to crizotinib (Pfizer), ceritinib (Novartis), alectinib (Chugai), brigatinib (also called AP26113; Ariad), entrectinib (Ignyta), PF-06463922 (Pfizer), TSR-011 (Tesaro) (see, e.g., Clinical Trial Identifier No. NCT02048488), CEP-37440 (Teva), and X-396 (Xcovery). In some embodiments, the subject has a solid cancer, e.g., a solid cancer described herein, e.g., lung cancer. The chemical name of crizotinib is 3-[(lR)-l-(2,6-dichloro-3-fluorophenyl)ethoxy]-5-
(l-piperidin-4-ylpyrazol-4-yl)pyridin-2-amine. The chemical name of ceritinib is 5-Chloro-N - [2-isopropoxy-5-methyl-4-(4-piperidinyl)phenyl]-N4-[2-(isopropylsulfonyl)phenyl]-2,4- pyrimidinediamine. The chemical name of alectinib is 9-ethyl-6,6-dimethyl-8-(4- morpholinopiperidin-l-yl)-l l-oxo-6,1 l-dihydro-5H-benzo[b]carbazole-3-carbonitrile. The chemical name of brigatinib is 5-Chloro-N -{4-[4-(dimethylamino)-l-piperidinyl]-2- methoxyphenyl}-N4-[2-(dimethylphosphoryl)phenyl]-2,4-pyrimidinediamine. The chemical name of entrectinib is N-(5-(3,5-difluorobenzyl)-lH-indazol-3-yl)-4-(4-methylpiperazin-l-yl)- 2-((tetrahydro-2H-pyran-4-yl)amino)benzamide. The chemical name of PF-06463922 is (10R)-7-Amino-12-fluoro-2,10,16-trimethyl-15-oxo-10,15,16,17-tetrahydro-2H-8,4-
(metheno)pyrazolo[4,3-h][2,5,l l]-benzoxadiazacyclotetradecine-3-carbonitrile. The chemical structure of CEP-37440 is (S)-2-((5-chloro-2-((6-(4-(2-hydroxyethyl)piperazin-l-yl)-l- methoxy-6,7,8,9-tetrahydro-5H-benzo[7]annulen-2-yl)amino)pyrimidin-4-yl)amino)-N- methylbenzamide. The chemical name of X-396 is (R)-6-amino-5-(l-(2,6-dichloro-3- fluorophenyl)ethoxy)-N-(4-(4-methylpiperazine-l-carbonyl)phenyl)pyridazine-3-carboxamide.
Drugs that inhibit either the calcium dependent phosphatase calcineurin (cyclosporine and FK506) or inhibit the p70S6 kinase that is important for growth factor induced signaling (rapamycin). (Liu et al., Cell 66:807-815, 1991; Henderson et ah, Immun. 73:316-321, 1991; Bierer et al., Curr. Opin. Immun. 5:763-773, 1993) can also be used. In a further aspect, the cell compositions of the present invention may be administered to a patient in conjunction with
(e.g., before, simultaneously or following) bone marrow transplantation, T cell ablative therapy using chemotherapy agents such as, fludarabine, external-beam radiation therapy (XRT), cyclophosphamide, and/or antibodies such as OKT3 or CAMPATH. In one aspect, the cell compositions of the present invention are administered following B-cell ablative therapy such as agents that react with CD20, e.g., Rituxan. For example, in one embodiment, subjects may undergo standard treatment with high dose chemotherapy followed by peripheral blood stem cell transplantation. In certain embodiments, following the transplant, subjects receive an infusion of the expanded immune cells of the present invention. In an additional embodiment, expanded cells are administered before or following surgery. In embodiments, a CAR-expressing cell described herein is administered to a subject in combination with an indoleamine 2,3-dioxygenase (IDO) inhibitor. IDO is an enzyme that catalyzes the degradation of the amino acid, L-tryptophan, to kynurenine. Many cancers overexpress IDO, e.g., prostatic, colorectal, pancreatic, cervical, gastric, ovarian, head, and lung cancer. pDCs, macrophages, and dendritic cells (DCs) can express IDO. Without being bound by theory, it is thought that a decrease in L-tryptophan (e.g., catalyzed by IDO) results in an immunosuppressive milieu by inducing T-cell anergy and apoptosis. Thus, without being bound by theory, it is thought that an IDO inhibitor can enhance the efficacy of a CAR- expressing cell described herein, e.g., by decreasing the suppression or death of a CAR- expressing immune cell. In embodiments, the subject has a solid tumor, e.g., a solid tumor described herein, e.g., prostatic, colorectal, pancreatic, cervical, gastric, ovarian, head, or lung cancer. Exemplary inhibitors of IDO include but are not limited to 1-methyl-tryptophan, indoximod (NewLink Genetics) (see, e.g., Clinical Trial Identifier Nos. NCT01191216;
NCT01792050), and INCB024360 (Incyte Corp.) (see, e.g., Clinical Trial Identifier Nos.
NCT01604889; NCT01685255)
In embodiments, a CAR-expressing cell described herein is administered to a subject in combination with a modulator of myeloid-derived suppressor cells (MDSCs). MDSCs accumulate in the periphery and at the tumor site of many solid tumors. These cells suppress T cell responses, thereby hindering the efficacy of CAR-expressing cell therapy. Without being bound by theory, it is thought that administration of a MDSC modulator enhances the efficacy of a CAR-expressing cell described herein. In an embodiment, the subject has a solid tumor, e.g., a solid tumor described herein, e.g., glioblastoma. Exemplary modulators of MDSCs include but are not limited to MCSl 10 and BLZ945. MCSl 10 is a monoclonal antibody (mAb) against macrophage colony- stimulating factor (M-CSF). See, e.g., Clinical Trial Identifier No. NCT00757757. BLZ945 is a small molecule inhibitor of colony stimulating factor 1 receptor (CSF1R). See, e.g., Pyonteck et al. Nat. Med. 19(2013): 1264-72. The structure of BLZ945 is shown below.
Figure imgf000231_0001
In embodiments, a CAR-expressing cell described herein is administered to a subject in combination with a CD19 CART cell (e.g., CTL019, e.g., as described in WO2012/079000, incorporated herein by reference). In embodiments, the subject has acute myeloid leukemia (AML), e.g., a CD19 positive AML or a CD19 negative AML. In embodiments, the subject has a CD19+ lymphoma, e.g., a CD19+ Non-Hodgkin's Lymphoma (NHL), a CD19+ FL, or a CD 19+ DLBCL. In embodiments, the subject has a relapsed or refractory CD 19+ lymphoma. In embodiments, a lymphodepleting chemotherapy is administered to the subject prior to, concurrently with, or after administration (e.g., infusion) of CD19 CART cells. In an example, the lymphodepleting chemotherapy is administered to the subject prior to administration of CD19 CART cells. For example, the lymphodepleting chemotherapy ends 1-4 days (e.g,. 1, 2, 3, or 4 days) prior to CD19 CART cell infusion. In embodiments, multiple doses of CD19 CART cells are administered, e.g., as described herein. For example, a single dose comprises about 5 x 10 CD19 CART cells. In embodiments, a lymphodepleting chemotherapy is administered to the subject prior to, concurrently with, or after administration (e.g., infusion) of a CAR-expressing cell described herein, e.g., a non-CD19 CAR-expresing cell. In
embodiments, a CD 19 CART is administered to the subject prior to, concurrently with, or after administration (e.g., infusion) of a non-CD19 CAR-expressing cell, e.g., a non-CD19 CAR- expressing cell described herein.
In some embodiments, a CAR-expressing cell described herein is administered to a subject in combination with a CD19 CAR-expressing cell, e.g., CTL019, e.g., as described in WO2012/079000, incorporated herein by reference, for treatment of a disease associated with the expression of CLL-1, e.g., a cancer described herein. Without being bound by theory, it is believed that administering a CD 19 CAR-expressing cell in combination with a CAR- expressing cell improves the efficacy of a CAR-expressing cell described herein by targeting early lineage cancer cells, e.g., cancer stem cells, modulating the immune response, depleting regulatory B cells, and/or improving the tumor microenvironment. For example, a CD 19 CAR- expressing cell targets cancer cells that express early lineage markers, e.g., cancer stem cells and CD19-expressing cells, while the CAR-expressing cell described herein targets cancer cells that express later lineage markers, e.g., CLL-1. This preconditioning approach can improve the efficacy of the CAR-expressing cell described herein. In such embodiments, the CD 19 CAR- expressing cell is administered prior to, concurrently with, or after administration (e.g., infusion) of a CAR-expressing cell described herein. In embodiments, a CAR-expressing cell described herein also expresses a CAR targeting CD19, e.g., a CD19 CAR. In an embodiment, the cell expressing a CAR described herein and a CD 19 CAR is administered to a subject for treatment of a cancer described herein, e.g., AML. In an embodiment, the configurations of one or both of the CAR molecules comprise a primary intracellular signaling domain and a costimulatory signaling domain. In another embodiment, the configurations of one or both of the CAR molecules comprise a primary intracellular signaling domain and two or more, e.g., 2, 3, 4, or 5 or more,
costimulatory signaling domains. In such embodiments, the CAR molecule described herein and the CD 19 CAR may have the same or a different primary intracellular signaling domain, the same or different costimulatory signaling domains, or the same number or a different number of costimulatory signaling domains. Alternatively, the CAR described herein and the CD 19 CAR are configured as a split CAR, in which one of the CAR molecules comprises an antigen binding domain and a costimulatory domain (e.g., 4-1BB), while the other CAR molecule comprises an antigen binding domain and a primary intracellular signaling domain (e.g., CD3 zeta).
In some embodiments , a CAR-expressing cell described herein is administered to a subject in combination with a interleukin-15 (IL-15) polypeptide, a interleukin-15 receptor alpha (IL-15Ra) polypeptide, or a combination of both a IL-15 polypeptide and a IL-15Ra polypeptide e.g., hetIL-15 (Admune Therapeutics, LLC). hetIL-15 is a heterodimeric non- covalent complex of IL-15 and IL-15Ra. hetIL-15 is described in, e.g., U.S. 8,124,084, U.S. 2012/0177598, U.S. 2009/0082299, U.S. 2012/0141413, and U.S. 2011/0081311, incorporated herein by reference. In embodiments, het-IL-15 is administered subcutaneously. In
embodiments, the subject has a cancer, e.g., solid cancer, e.g., melanoma or colon cancer. In embodiments, the subject has a metastatic cancer. In embodiments, a subject having a disease described herein, e.g., a hematological disorder, e.g., AML or MDS, is administered a CAR-expressing cell described herein in combination with an agent, e.g., cytotoxic or chemotherapy agent, a biologic therapy (e.g., antibody, e.g., monoclonal antibody, or cellular therapy), or an inhibitor (e.g., kinase inhibitor). In embodiments, the subject is administered a CAR-expressing cell described herein in combination with a cytotoxic agent, e.g., CPX-351 (Celator Pharmaceuticals), cytarabine, daunorubicin, vosaroxin (Sunesis Pharmaceuticals), sapacitabine (Cyclacel Pharmaceuticals), idarubicin, or mitoxantrone. CPX-351 is a liposomal formulation comprising cytarabine and daunorubicin at a 5:1 molar ratio. In embodiments, the subject is administered a CAR- expressing cell described herein in combination with a hypomethylating agent, e.g., a DNA methyltransferase inhibitor, e.g., azacitidine or decitabine. In embodiments, the subject is administered a CAR-expressing cell described herein in combination with a biologic therapy, e.g., an antibody or cellular therapy, e.g., 225Ac-lintuzumab (Actimab-A; Actinium
Pharmaceuticals), IPH2102 (Innate Pharma/Bristol Myers Squibb), SGN-CD33A (Seattle Genetics), or gemtuzumab ozogamicin (Mylotarg; Pfizer). SGN-CD33A is an antibody-drug conjugate (ADC) comprising a pyrrolobenzodiazepine dimer that is attached to an anti-CD33 antibody. Actimab-A is an anti-CD33 antibody (lintuzumab) labeled with actinium. IPH2102 is a monoclonal antibody that targets killer immunoglobulin-like receptors (KIRs). In embodiments, the subject is administered a CAR-expressing cell described herein in combination a FLT3 inhibitor, e.g., sorafenib (Bayer), midostaurin (Novartis), quizartinib (Daiichi Sankyo), crenolanib (Arog Pharmaceuticals), PLX3397 (Daiichi Sankyo), AKN-028 (Akinion Pharmaceuticals), or ASP2215 (Astellas). In embodiments, the subject is administered a CAR-expressing cell described herein in combination with an isocitrate dehydrogenase (IDH) inhibitor, e.g., AG-221 (Celgene/ Agios) or AG-120 (Agios/Celgene). In embodiments, the subject is administered a CAR-expressing cell described herein in combination with a cell cycle regulator, e.g., inhibitor of polo-like kinase 1 (Plkl), e.g., volasertib (Boehringer Ingelheim); or an inhibitor of cyclin-dependent kinase 9 (Cdk9), e.g., alvocidib (Tolero Pharmaceuticals/Sanofi Aventis). In embodiments, the subject is administered a CAR-expressing cell described herein in combination with a B cell receptor signaling network inhibitor, e.g., an inihibitor of B-cell lymphoma 2 (Bcl-2), e.g., venetoclax (Abb vie/Roche); or an inhibitor of Bruton's tyrosine kinase (Btk), e.g., ibrutinib
(Pharmacyclics/Johnson & Johnson Janssen Pharmaceutical). In embodiments, the subject is administered a CAR-expressing cell described herein in combination with an inhibitor of Ml aminopeptidase, e.g., tosedostat (CTI BioPharma/Vernalis); an inhibitor of histone deacetylase (HDAC), e.g., pracinostat (MEI Pharma); a multi-kinase inhibitor, e.g., rigosertib (Onconova Therapeutics/Baxter/SymBio); or a peptidic CXCR4 inverse agonist, e.g., BL-8040
(BioLineRx). In embodiments, the subject is administered a CLL-1 -targeting CAR-expressing cell in combination with a CAR-expressing cell that specifically binds an antigen other than CLL-1, e.g., CLL, BCMA, CD123, CD19, FLT-3, or folate receptor beta . In another embodiment, the subjects receive an infusion of the CLL-1 expressing cell compositions of the present invention prior to transplantation, e.g., allogeneic stem cell transplant, of cells. In a preferred embodiment, CLL-1 expressing cells transiently express CLL-1 CAR, e.g., by electroporation of an mRNA CLL-1 CAR, whereby the expression of the CLL-1 is terminated prior to infusion of donor stem cells to avoid engraftment failure.
Some patients may experience allergic reactions to the compounds of the present invention and/or other anti-cancer agent(s) during or after administration; therefore, antiallergic agents are often administered to minimize the risk of an allergic reaction. Suitable antiallergic agents include corticosteroids, such as dexamethasone (e.g., Decadron®),
beclomethasone (e.g., Beclovent®), hydrocortisone (also known as cortisone, hydrocortisone sodium succinate, hydrocortisone sodium phosphate, and sold under the tradenames Ala-Cort®, hydrocortisone phosphate, Solu-Cortef®, Hydrocort Acetate® and Lanacort®), prednisolone (sold under the tradenames Delta-Cortel®, Orapred®, Pediapred® and Prelone®), prednisone (sold under the tradenames Deltasone®, Liquid Red®, Meticorten® and Orasone®), methylprednisolone (also known as 6-methylprednisolone, methylprednisolone acetate, methylprednisolone sodium succinate, sold under the tradenames Duralone®, Medralone®, Medrol®, M-Prednisol® and Solu-Medrol®); antihistamines, such as diphenhydramine (e.g., Benadryl®), hydroxyzine, and cyproheptadine; and bronchodilators, such as the beta- adrenergic receptor agonists, albuterol (e.g., Proventil®), and terbutaline (Brethine®). Some patients may experience nausea during and after administration of the compound of the present invention and/or other anti-cancer agent(s); therefore, anti-emetics are used in preventing nausea (upper stomach) and vomiting. Suitable anti-emetics include aprepitant (Emend®), ondansetron (Zofran®), granisetron HC1 (Kytril®), lorazepam (Ativan®, dexamethasone (Decadron®), prochlorperazine (Compazine®), casopitant (Rezonic® and Zunrisa®), and combinations thereof.
Medication to alleviate the pain experienced during the treatment period is often prescribed to make the patient more comfortable. Common over-the-counter analgesics, such Tylenol®, are often used. However, opioid analgesic drugs such as hydrocodone/paracetamol or hydrocodone/acetaminophen (e.g., Vicodin®), morphine (e.g., Astramorph® or Avinza®), oxycodone (e.g., OxyContin® or Percocet®), oxymorphone hydrochloride (Opana®), and fentanyl (e.g., Duragesic®) are also useful for moderate or severe pain. In an effort to protect normal cells from treatment toxicity and to limit organ toxicities, cytoprotective agents (such as neuroprotectants, free-radical scavengers, cardioprotectors, anthracycline extravasation neutralizers, nutrients and the like) may be used as an adjunct therapy. Suitable cytoprotective agents include Amifostine (Ethyol®), glutamine, dimesna (Tavocept®), mesna (Mesnex®), dexrazoxane (Zinecard® or Totect®), xaliproden (Xaprila®), and leucovorin (also known as calcium leucovorin, citrovorum factor and folinic acid).
The structure of the active compounds identified by code numbers, generic or trade names may be taken from the actual edition of the standard compendium "The Merck Index" or from databases, e.g. Patents International (e.g. IMS World Publications). The above-mentioned compounds, which can be used in combination with a compound of the present invention, can be prepared and administered as described in the art, such as in the documents cited above.
In one embodiment, the present invention provides pharmaceutical compositions comprising at least one compound of the present invention (e.g., a compound of the present invention) or a pharmaceutically acceptable salt thereof together with a pharmaceutically acceptable carrier suitable for administration to a human or animal subject, either alone or together with other anti-cancer agents.
In one embodiment, the present invention provides methods of treating human or animal subjects suffering from a cellular proliferative disease, such as cancer. The present invention provides methods of treating a human or animal subject in need of such treatment, comprising administering to the subject a therapeutically effective amount of a compound of the present invention (e.g., a compound of the present invention) or a pharmaceutically acceptable salt thereof, either alone or in combination with other anti-cancer agents.
In particular, compositions will either be formulated together as a combination therapeutic or administered separately.
In combination therapy, the compound of the present invention and other anti-cancer agent(s) may be administered either simultaneously, concurrently or sequentially with no specific time limits, wherein such administration provides therapeutically effective levels of the two compounds in the body of the patient. In a preferred embodiment, the compound of the present invention and the other anticancer agent(s) is generally administered sequentially in any order by infusion or orally. The dosing regimen may vary depending upon the stage of the disease, physical fitness of the patient, safety profiles of the individual drugs, and tolerance of the individual drugs, as well as other criteria well-known to the attending physician and medical practitioner (s) administering the combination. The compound of the present invention and other anti-cancer agent(s) may be administered within minutes of each other, hours, days, or even weeks apart depending upon the particular cycle being used for treatment. In addition, the cycle could include
administration of one drug more often than the other during the treatment cycle and at different doses per administration of the drug.
In another aspect of the present invention, kits that include one or more compound of the present invention and a combination partner as disclosed herein are provided.
Representative kits include (a) a compound of the present invention or a pharmaceutically acceptable salt thereof, (b) at least one combination partner, e.g., as indicated above, whereby such kit may comprise a package insert or other labeling including directions for
administration.
A compound of the present invention may also be used to advantage in combination with known therapeutic processes, for example, the administration of hormones or especially radiation. A compound of the present invention may in particular be used as a radiosensitizer, especially for the treatment of tumors which exhibit poor sensitivity to radiotherapy.
In one embodiment, the subject can be administered an agent which reduces or ameliorates a side effect associated with the administration of a CAR-expressing cell. Side effects associated with the administration of a CAR-expressing cell include, but are not limited to CRS, and hemophagocytic lymphohistiocytosis (HLH), also termed Macrophage Activation Syndrome (MAS). Symptoms of CRS include high fevers, nausea, transient hypotension, hypoxia, and the like. CRS may include clinical constitutional signs and symptoms such as fever, fatigue, anorexia, myalgias, arthalgias, nausea, vomiting, and headache. CRS may include clinical skin signs and symptoms such as rash. CRS may include clinical
gastrointestinal signs and symsptoms such as nausea, vomiting and diarrhea. CRS may include clinical respiratory signs and symptoms such as tachypnea and hypoxemia. CRS may include clinical cardiovascular signs and symptoms such as tachycardia, widened pulse pressure, hypotension, increased cardac output (early) and potentially diminished cardiac output (late). CRS may include clinical coagulation signs and symptoms such as elevated d-dimer, hypofibrinogenemia with or without bleeding. CRS may include clinical renal signs and symptoms such as azotemia. CRS may include clinical hepatic signs and symptoms such as transaminitis and hyperbilirubinemia. CRS may include clinical neurologic signs and symptoms such as headache, mental status changes, confusion, delirium, word finding difficulty or frank aphasia, hallucinations, tremor, dymetria, altered gait, and seizures.
Accordingly, the methods described herein can comprise administering a CAR-expressing cell described herein to a subject and further administering one or more agents to manage elevated levels of a soluble factor resulting from treatment with a CAR-expressing cell. In one embodiment, the soluble factor elevated in the subject is one or more of IFN-γ, TNFa, IL-2 and IL-6. In an embodiment, the factor elevated in the subject is one or more of IL-1, GM-CSF, IL- 10, IL-8, IL-5 and fraktalkine. Therefore, an agent administered to treat this side effect can be an agent that neutralizes one or more of these soluble factors. In one embodiment, the agent that neutralizes one or more of these soluble forms is an antibody or antibody thereof.
Examples of such agents include, but are not limited to a steroid (e.g., corticosteroid), an inhibitor of TNFa, and an inhibitor of IL-6. An example of a TNFa inhibitor is an anti-TNFa antibody molecule such as, infliximab, adalimumab, certolizumab pegol, and golimumab.
Another example of a TNFa inhibitor is a fusion protein such as entanercept. Small molecule inhibitor of TNFa include, but are not limited to, xanthine derivatives (e.g. pentoxifylline) and bupropion. An example of an IL-6 inhibitor is an anti-IL-6 antibody molecule such as tocilizumab (toe), sarilumab, elsilimomab, CNTO 328, ALD518/BMS-945429, CNTO 136, CPSI-2364, CDP6038, VX30, ARGX-109, FE301, and FM101. In one embodiment, the anti- IL-6 antibody molecule is tocilizumab. An example of an IL-1R based inhibitor is anakinra. In one embodiment, the subject can be administered an agent which enhances the activity of a CAR-expressing cell. For example, in one embodiment, the agent can be an agent which inhibits an inhibitory molecule, e.g., the agent is a checkpoint inhibitor. Inhibitory molecules, e.g., Programmed Death 1 (PD1), can, in some embodiments, decrease the ability of a CAR-expressing cell to mount an immune effector response. Examples of inhibitory molecules include PD1, PD-L1, PD-L2, CTLA4, TIM3, CEACAM (e.g., CEACAM-1,
CEACAM-3 and/or CEACAM-5), LAG3, VISTA, BTLA, TIGIT, LAIRl, CD160, 2B4, CD80, CD86, B7-H3 (CD276), B7-H4 (VTCN1), HVEM (TNFRSF14 or CD270), KIR, A2aR, MHC class I, MHC class II, GAL9, adenosine, and TGFR beta. Inhibition of an inhibitory molecule, e.g., by inhibition at the DNA, RNA or protein level, can optimize a CAR-expressing cell performance. In embodiments, an inhibitory nucleic acid, e.g., an inhibitory nucleic acid, e.g., a dsRNA, e.g., an siRNA or shRNA, can be used to inhibit expression of an inhibitory molecule in the CAR-expressing cell. In an embodiment the inhibitor is an shRNA. In an embodiment, the inhibitory molecule is inhibited within a CAR-expressing cell. In these embodiments, a dsRNA molecule that inhibits expression of the inhibitory molecule is linked to the nucleic acid that encodes a component, e.g., all of the components, of the CAR. In an embodiment, a nucleic acid molecule that encodes a dsRNA molecule that inhibits expression of the molecule that modulates or regulates, e.g., inhibits, T-cell function is operably linked to a promoter, e.g., a HI- or a U6-derived promoter such that the dsRNA molecule that inhibits expression of the molecule that modulates or regulates, e.g., inhibits, T-cell function is expressed, e.g., is expressed within a CAR-expressing cell. See e.g., Tiscornia G.,
"Development of Lentiviral Vectors Expressing siRNA," Chapter 3, in Gene Transfer:
Delivery and Expression of DNA and RNA (eds. Friedmann and Rossi). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA, 2007; Brummelkamp TR, et al. (2002) Science 296: 550-553; Miyagishi M, et al. (2002) Nat. Biotechnol. 19: 497-500. In an embodiment the nucleic acid molecule that encodes a dsRNA molecule that inhibits expression of the molecule that modulates or regulates, e.g., inhibits, T-cell function is present on the same vector, e.g., a lentiviral vector, that comprises a nucleic acid molecule that encodes a component, e.g., all of the components, of the CAR. In such an embodiment, the nucleic acid molecule that encodes a dsRNA molecule that inhibits expression of the molecule that modulates or regulates, e.g., inhibits, T-cell function is located on the vector, e.g., the lentiviral vector, 5'- or 3'- to the nucleic acid that encodes a component, e.g., all of the components, of the CAR. The nucleic acid molecule that encodes a dsRNA molecule that inhibits expression of the molecule that modulates or regulates, e.g., inhibits, T-cell function can be transcribed in the same or different direction as the nucleic acid that encodes a component, e.g., all of the components, of the CAR. In an embodiment the nucleic acid molecule that encodes a dsRNA molecule that inhibits expression of the molecule that modulates or regulates, e.g., inhibits, T- cell function is present on a vector other than the vector that comprises a nucleic acid molecule that encodes a component, e.g., all of the components, of the CAR. In an embodiment, the nucleic acid molecule that encodes a dsRNA molecule that inhibits expression of the molecule that modulates or regulates, e.g., inhibits, T-cell function it transiently expressed within a CAR- expressing cell. In an embodiment, the nucleic acid molecule that encodes a dsRNA molecule that inhibits expression of the molecule that modulates or regulates, e.g., inhibits, T-cell function is stably integrated into the genome of a CAR-expressing cell. Figures 29A-29E depicts examples of vectors for expressing a component, e.g., all of the components, of the CAR with a dsRNA molecule that inhibits expression of the molecule that modulates or regulates, e.g., inhibits, T-cell function.
Examples of dsRNA molecules useful for inhibiting expression of a molecule that modulates or regulates, e.g., inhibits, T-cell function, wherein the molecule that modulates or regulates, e.g., inhibits, T-cell function is PD-1 are provided below.
Provided in Table 10 below are the names of PDCD1 (PD1) RNAi agents (derived from their position in the mouse PDCD1 gene sequence NM_008798.2), along with the SEQ ID NOs: 216-263 representing the DNA sequence. Both sense (S) and antisense (AS) sequences are presented as 19mer and 21mer sequences are in this table. Also note that the position (PoS, e.g., 176) is derived from the position number in the mouse PDCD1 gene sequence
NM_008798.2. SEQ ID NOs are indicated in groups of 12 that correspond with "sense 19" SEQ ID NOs: 216-227; "sense 21" SEQ ID NOs: 228-239; "asense 21" SEQ ID NOs: 240- 251; "asense 19" SEQ ID NOs: 252-263.
Table 10. Mouse PDCD1 (PD1) shRNA sequences
Position Target Sense 19 Sense21 Asense21 Asense 19 on region
NM_008
798.2
176 CDS GGAGGTCCCT CTGGAGGTCC TAGAAGGTGA TAGAAGGTGA
CACCTTCTA CTCACCTTCT GGGACCTCCA GGGACCTCC
(SEQ ID NO: A G (SEQ ID NO:
216) (SEQ ID NO: (SEQ ID NO: 252)
228) 240)
260 CDS CGGAGGATCT GTCGGAGGAT TTCAGCATAA TTCAGCATAA
TATGCTGAA CTTATGCTGA GATCCTCCGA GATCCTCCG
(SEQ ID NO: A C (SEQ ID NO:
217) (SEQ ID NO: (SEQ ID NO: 253)
229) 241)
359 CDS CCCGCTTCCA TGCCCGCTTC TGTATGATCT TGTATGATCT
GATCATACA CAGATCATAC GGAAGCGGGC GGAAGCGGG
(SEQ ID NO: A A (SEQ ID NO:
Figure imgf000241_0001
Provided in Table 11 below are the names of PDCDl (PDl) RNAi agents (derived from their position in the human PDCDl gene sequence, along with the SEQ ID NOs. 264-311 representing the DNA sequence. Both sense (S) and antisense (AS) sequences are presented as 19mer and 21mer sequences. SEQ ID NOs are indicated in groups of 12 that correspond with "sense 19" SEQ ID NOs: 264-275; "sense 21" SEQ ID NOs: 276-287; "asense 21" SEQ ID NOs: 288-299; "asense 19" SEQ ID NOs: 300-311. Table 11. Human PDCD 1 (PD 1 ) shRNA sequences
Figure imgf000242_0001
Figure imgf000243_0001
In one embodiment, the inhibitor of an inhibitory signal can be, e.g., an antibody or antibody fragment that binds to an inhibitory molecule. For example, the agent can be an antibody or antibody fragment that binds to PD1, PD-L1, PD-L2 or CTLA4 (e.g., ipilimumab (also referred to as MDX-010 and MDX-101, and marketed as Yervoy®; Bristol-Myers Squibb; Tremelimumab (IgG2 monoclonal antibody available from Pfizer, formerly known as ticilimumab, CP-675,206).). In an embodiment, the agent is an antibody or antibody fragment that binds to TIM3. In an embodiment, the agent is an antibody or antibody fragment that binds to LAG3. In embodiments, the agent that enhances the activity of a CAR-expressing cell, e.g., inhibitor of an inhibitory molecule, is administered in combination with an allogeneic CAR, e.g., an allogeneic CAR described herein (e.g., described in the Allogeneic CAR section herein).
PD-1 is an inhibitory member of the CD28 family of receptors that also includes CD28, CTLA-4, ICOS, and BTLA. PD-1 is expressed on activated B cells, T cells and myeloid cells (Agata et al. 1996 Int. Immunol 8:765-75). Two ligands for PD-1, PD-L1 and PD-L2 have been shown to downregulate T cell activation upon binding to PD-1 (Freeman et a. 2000 J Exp Med 192:1027-34; Latchman et al. 2001 Nat Immunol 2:261-8; Carter et al. 2002 Eur J
Immunol 32:634-43). PD-L1 is abundant in human cancers (Dong et al. 2003 J Mol Med 81:281-7; Blank et al. 2005 Cancer Immunol. Immunother 54:307-314; Konishi et al. 2004 Clin Cancer Res 10:5094). Immune suppression can be reversed by inhibiting the local interaction of PD-1 with PD-L1. Antibodies, antibody fragments, and other inhibitors of PD-1, PD-L1 and PD-L2 are available in the art and may be used combination with a cars of the present invention described herein. For example, nivolumab (also referred to as BMS-936558 or MDX1106; Bristol-Myers Squibb) is a fully human IgG4 monoclonal antibody which specifically blocks PD-1. Nivolumab (clone 5C4) and other human monoclonal antibodies that specifically bind to PD-1 are disclosed in US 8,008,449 and WO2006/121168. Pidilizumab (CT-011; Cure Tech) is a humanized IgGlk monoclonal antibody that binds to PD-1. Pidilizumab and other humanized anti-PD-1 monoclonal antibodies are disclosed in WO2009/101611.
Pembrolizumab (formerly known as lambrolizumab, and also referred to as MK03475; Merck) is a humanized IgG4 monoclonal antibody that binds to PD-1. Pembrolizumab and other humanized anti-PD-1 antibodies are disclosed in US 8,354,509 and WO2009/114335.
MEDI4736 (Medimmune) is a human monoclonal antibody that binds to PDL1, and inhibits interaction of the ligand with PD1. MDPL3280A (Genentech / Roche) is a human Fc optimized IgGl monoclonal antibody that binds to PD-L1. MDPL3280A and other human monoclonal antibodies to PD-L1 are disclosed in U.S. Patent No.: 7,943,743 and U.S
Publication No.: 20120039906. Other anti-PD-Ll binding agents include YW243.55.S70 (heavy and light chain variable regions are shown in SEQ ID NOs 20 and 21 in
WO2010/077634) and MDX-1 105 (also referred to as BMS-936559, and, e.g., anti-PD-Ll binding agents disclosed in WO2007/005874). AMP-224 (B7-DCIg; Amplimmune; e.g., disclosed in WO2010/027827 and WO2011/066342), is a PD-L2 Fc fusion soluble receptor that blocks the interaction between PD-1 and B7-H1. Other anti-PD-1 antibodies include AMP 514 (Amplimmune), among others, e.g., anti-PD-1 antibodies disclosed in US 8,609,089, US 2010028330, and/or US 20120114649.
TIM3 (T cell immunoglobulin-3) also negatively regulates T cell function, particularly in IFN-g- secreting CD4+ T helper 1 and CD8+ T cytotoxic 1 cells, and plays a critical role in T cell exhaustion. Inhibition of the interaction between TIM3 and its ligands, e.g., galectin-9 (Gal9), phosphotidylserine (PS), and HMGB1, can increase immune response. Antibodies, antibody fragments, and other inhibitors of TIM3 and its ligands are available in the art and may be used combination with a CD 19 CAR described herein. For example, antibodies, antibody fragments, small molecules, or peptide inhibitors that target TIM3 binds to the IgV domain of TIM3 to inhibit interaction with its ligands. Antibodies and peptides that inhibit TIM3 are disclosed in WO2013/006490 and US20100247521. Other anti-TIM3 antibodies include humanized versions of RMT3-23 (disclosed in Ngiow et al., 2011, Cancer Res, 71:3540-3551), and clone 8B.2C12 (disclosed in Monney et al., 2002, Nature, 415:536-541). Bi-specific antibodies that inhibit TIM3 and PD-1 are disclosed in US20130156774.
In other embodiments, the agent which enhances the activity of a CAR-expressing cell is a CEACAM inhibitor (e.g., CEACAM-1, CEACAM-3, and/or CEACAM-5 inhibitor). In one embodiment, the inhibitor of CEACAM is an anti-CEACAM antibody molecule.
Exemplary anti-CEACAM-1 antibodies are described in WO 2010/125571, WO 2013/082366 WO 2014/059251 and WO 2014/022332, e.g., a monoclonal antibody 34B1, 26H7, and 5F4; or a recombinant form thereof, as described in, e.g., US 2004/0047858, US 7,132,255 and WO 99/052552. In other embodiments, the anti-CEACAM antibody binds to CEACAM-5 as described in, e.g., Zheng et al. PLoS One. 2010 Sep 2;5(9). pii: el2529
(DOI:10:1371/journal.pone.0021146), or crossreacts with CEACAM-1 and CEACAM-5 as described in, e.g., WO 2013/054331 and US 2014/0271618.
Without wishing to be bound by theory, carcinoembryonic antigen cell adhesion molecules (CEACAM), such as CEACAM-1 and CEACAM-5, are believed to mediate, at least in part, inhibition of an anti-tumor immune response (see e.g., Markel et al. J Immunol. 2002 Mar 15;168(6):2803-10; Markel et al. J Immunol. 2006 Nov 1;177(9):6062-71; Markel et al. Immunology . 2009 Feb;126(2):186-200; Markel et al. Cancer Immunol Immunother. 2010 Feb;59(2):215-30; Ortenberg et al. Mol Cancer Ther. 2012 Jun;l l(6):1300-10; Stern et al. / Immunol. 2005 Jun 1;174(11):6692-701; Zheng et al. PLoS One. 2010 Sep 2;5(9). pii: el2529). For example, CEACAM-1 has been described as a heterophilic ligand for TIM-3 and as playing a role in TIM-3-mediated T cell tolerance and exhaustion (see e.g., WO 2014/022332; Huang, et al. (2014) Nature doi:10.1038/naturel3848). In embodiments, co-blockade of CEACAM-1 and TIM-3 has been shown to enhance an anti-tumor immune response in xenograft colorectal cancer models (see e.g., WO 2014/022332; Huang, et al. (2014), supra). In other
embodiments, co-blockade of CEACAM-1 and PD-1 reduce T cell tolerance as described, e.g., in WO 2014/059251. Thus, CEACAM inhibitors can be used with the other
immunomodulators described herein (e.g., anti-PD-1 and/or anti-TIM-3 inhibitors) to enhance an immune response against a cancer, e.g., a melanoma, a lung cancer (e.g., NSCLC), a bladder cancer, a colon cancer an ovarian cancer, and other cancers as described herein.
LAG3 (lymphocyte activation gene-3 or CD223) is a cell surface molecule expressed on activated T cells and B cells that has been shown to play a role in CD8+ T cell exhaustion. Antibodies, antibody fragments, and other inhibitors of LAG3 and its ligands are available in the art and may be used combination with a CD 19 CAR described herein. For example, BMS- 986016 (Bristol-Myers Squib) is a monoclonal antibody that targets LAG3. IMP701
(Immutep) is an antagonist L.AG3 antibody and IMP731 (tmmutep and GlaxoSmithKline) is a depleting LAG3 antibody. Other LAG3 inhibitors include IM P321 (Immutep), which is a recombinant fusion protein of a soluble portion of LAG3 and Ig that binds to MHC class II molecules and activates antigen presenting cells (APC). Other antibodies are disclosed, e.g., in WO2010/019570.
In some embodiments, the agent which enhances the activity of a CAR-expressing cell can be, e.g., a fusion protein comprising a first domain and a second domain, wherein the first domain is an inhibitory molecule, or fragment thereof, and the second domain is a polypeptide that is associated with a positive signal, e.g., a polypeptide comrpsing an antracellular signaling domain as described herein. In some embodiments, the polypeptide that is associated with a positive signal can include a costimulatory domain of CD28, CD27, ICOS, e.g., an
intracellular signaling domain of CD28, CD27 and/or ICOS, and/or a primary signaling domain, e.g., of CD3 zeta, e.g., described herein. In one embodiment, the fusion protein is expressed by the same cell that expressed the CAR. In another embodiment, the fusion protein is expressed by a cell, e.g., a T cell that does not express an anti-CLL-1 CAR.
In one embodiment, the agent which enhances activity of a CAR-expressing cell described herein is miR- 17-92. In one embodiment, the agent which enhances activity of a CAR-described herein is a cytokine. Cytokines have important functions related to T cell expansion, differentiation, survival, and homeostatis. Cytokines that can be administered to the subject receiving a CAR- expressing cell described herein include: IL-2, IL-4, IL-7, IL-9, IL-15, IL-18, and IL-21, or a combination thereof. In preferred embodiments, the cytokine administered is IL-7, IL-15, or IL-21, or a combination thereof. The cytokine can be administered once a day or more than once a day, e.g., twice a day, three times a day, or four times a day. The cytokine can be administered for more than one day, e.g. the cytokine is administered for 2 days, 3 days, 4 days, 5 days, 6 days, 1 week, 2 weeks, 3 weeks, or 4 weeks. For example, the cytokine is
administered once a day for 7 days.
In embodiments, the cytokine is administered in combination with CAR-expressing T cells. The cytokine can be administered simultaneously or concurrently with the CAR- expressing T cells, e.g., administered on the same day. The cytokine may be prepared in the same pharmaceutical composition as the CAR-expressing T cells, or may be prepared in a separate pharmaceutical composition. Alternatively, the cytokine can be administered shortly after administration of the CAR-expressing T cells, e.g., 1 day, 2 days, 3 days, 4 days, 5 days, 6 days, or 7 days after administration of the CAR-expressing T cells. In embodiments where the cytokine is administered in a dosing regimen that occurs over more than one day, the first day of the cytokine dosing regimen can be on the same day as administration with the CAR- expressing T cells, or the first day of the cytokine dosing regimen can be 1 day, 2 days, 3 days, 4 days, 5 days, 6 days, or 7 days after administration of the CAR-expressing T cells. In one embodiment, on the first day, the CAR-expressing T cells are administered to the subject, and on the second day, a cytokine is administered once a day for the next 7 days. In a preferred embodiment, the cytokine to be administered in combination with CAR-expressing T cells is IL-7, IL-15, or IL-21.
In other embodiments, the cytokine is administered a period of time after administration of CAR-expressing cells, e.g., at least 2 weeks, 3 weeks, 4 weeks, 6 weeks, 8 weeks, 10 weeks, 12 weeks, 4 months, 5 months, 6 months, 7 months, 8 months, 9 months, 10 months, 11 months, or 1 year or more after administration of CAR-expressing cells. In one embodiment, the cytokine is administered after assessment of the subject's response to the CAR-expressing cells. For example, the subject is administered CAR-expressing cells according to the dosage and regimens described herein. The response of the subject to CAR-expressing cell therapy is assessed at 2 weeks, 3 weeks, 4 weeks, 6 weeks, 8 weeks, 10 weeks, 12 weeks, 4 months, 5 months, 6 months, 7 months, 8 months, 9 months, 10 months, 11 months, or 1 year or more after administration of CAR-expressing cells, using any of the methods described herein, including inhibition of tumor growth, reduction of circulating tumor cells, or tumor regression. Subjects that do not exhibit a sufficient response to CAR-expressing cell therapy can be administered a cytokine. Administration of the cytokine to the subject that has sub-optimal response to the CAR-expressing cell therapy improves CAR-expressing cell efficacy or anticancer activity. In a preferred embodiment, the cytokine administered after administration of CAR-expressing cells is IL-7.
COMBINATION WITH A Low, IMMUNE ENHANCING, DOSE OF AN MTOR INHIBITOR
Methods described herein use low, immune enhancing, doses of mTOR inhibitors, e.g., allosteric mTOR inhibitors, including rapalogs such as RAD001. Administration of a low, immune enhancing, dose of an mTOR inhibitor (e.g., a dose that is insufficient to completely suppress the immune system, but sufficient to improve immune function) can optimize the performance of immune effector cells, e.g., T cells or CAR-expressing cells, in the subject. Methods for measuring mTOR inhibition, dosages, treatment regimens, and suitable pharmaceutical compositions are described in U.S. Patent Application No. 2015/01240036, hereby incorporated by reference.
In an embodiment, administration of a low, immune enhancing, dose of an mTOR inhibitor can result in one or more of the following: i) a decrease in the number of PD-1 positive immune effector cells; ii) an increase in the number of PD-1 negative immune effector cells; iii) an increase in the ratio of PD-1 negative immune effector cells / PD-1 positive immune effector cells; iv) an increase in the number of naive T cells; v) an increase in the expression of one or more of the following markers: CD62Lhlgh, CD127high, CD27+, and BCL2, e.g., on memory T cells, e.g., memory T cell precursors; vi) a decrease in the expression of KLRG1, e.g., on memory T cells, e.g., memory T cell precursors; or vii) an increase in the number of memory T cell precursors, e.g., cells with any one or combination of the following characteristics: increased CD62Lhlgh, increased CD127hlgh, increased CD27+, decreased KLRG1, and increased BCL2; and wherein any of the foregoing, e.g., i), ii), iii), iv), v), vi), or vii), occurs e.g., at least transiently, e.g., as compared to a non-treated subject. In another embodiment, administration of a low, immune enhancing, dose of an mTOR inhibitor results in increased or prolonged proliferation or persistence of CAR-expressing cells, e.g., in culture or in a subject, e.g., as compared to non-treated CAR-expressing cells or a non- treated subject. In embodiments, increased proliferation is associated with in an increase in the number of CAR-expressing cells. Methods for measuring increased or prolonged proliferation are described in Examples 8 and 9. In another embodiment, administration of a low, immune enhancing, dose of an mTOR inhibitor results in increased killing of cancer cells by CAR- expressing cells, e.g., in culture or in a subject, e.g., as compared to non-treated CAR- expressing cells or a non-treated subject. In embodiments, increased killing of cancer cells is associated with in a decrease in tumor volume. Methods for measuring increased killing of cancer cells are described in Example 2.
In one embodiment, the cells expressing a CAR molecule, e.g., a CAR molecule described herein, are administered in combination with a low, immune enhancing dose of an mTOR inhibitor, e.g., an allosteric mTOR inhibitor, e.g., RAD001, or a catalytic mTOR inhibitor. For example, administration of the low, immune enhancing, dose of the mTOR inhibitor can be initiated prior to administration of a CAR-expressing cell described herein; completed prior to administration of a CAR-expressing cell described herein; initiated at the same time as administration of a CAR-expressing cell described herein; overlapping with administration of a CAR-expressing cell described herein; or continuing after administration of a CAR-expressing cell described herein.
Alternatively or in addition, administration of a low, immune enhancing, dose of an mTOR inhibitor can optimize immune effector cells to be engineered to express a CAR molecule described herein. In such embodiments, administration of a low, immune enhancing, dose of an mTOR inhibitor, e.g., an allosteric inhibitor, e.g., RAD001, or a catalytic inhibitor, is initiated or completed prior to harvest of immune effector cells, e.g., T cells or NK cells, to be engineered to express a CAR molecule described herein, from a subject.
In another embodiment, immune effector cells, e.g., T cells or NK cells, to be engineered to express a CAR molecule described herein, e.g., after harvest from a subject, or CAR-expressing immune effector cells, e.g., T cells or NK cells, e.g., prior to administration to a subject, can be cultured in the presence of a low, immune enhancing, dose of an mTOR inhibitor. In an embodiment, administering to the subject a low, immune enhancing, dose of an mTOR inhibitor comprises administering, e.g., once per week, e.g., in an immediate release dosage form, 0.1 to 20, 0.5 to 10, 2.5 to 7.5, 3 to 6, or about 5, mgs of RAD001, or a bioequivalent dose thereof. In an embodiment, administering to the subject a low, immune enhancing, dose of an mTOR inhibitor comprises administering, e.g., once per week, e.g., in a sustained release dosage form, 0.3 to 60, 1.5 to 30, 7.5 to 22.5, 9 to 18, or about 15 mgs of RAD001, or a bioequivalent dose thereof.
In an embodiment, a dose of an mTOR inhibitor is associated with, or provides, mTOR inhibition of at least 5 but no more than 90%, at least 10 but no more than 90%, at least 15, but no more than 90%, at least 20 but no more than 90%, at least 30 but no more than 90%, at least 40 but no more than 90%, at least 50 but no more than 90%, at least 60 but no more than 90%, at least 70 but no more than 90%, at least 5 but no more than 80%, at least 10 but no more than 80%, at least 15, but no more than 80%, at least 20 but no more than 80%, at least 30 but no more than 80%, at least 40 but no more than 80%, at least 50 but no more than 80%, at least 60 but no more than 80%, at least 5 but no more than 70%, at least 10 but no more than 70%, at least 15, but no more than 70%, at least 20 but no more than 70%, at least 30 but no more than 70%, at least 40 but no more than 70%, at least 50 but no more than 70%, at least 5 but no more than 60%, at least 10 but no more than 60%, at least 15, but no more than 60%, at least 20 but no more than 60%, at least 30 but no more than 60%, at least 40 but no more than 60%, at least 5 but no more than 50%, at least 10 but no more than 50%, at least 15, but no more than 50%, at least 20 but no more than 50%, at least 30 but no more than 50%, at least 40 but no more than 50%, at least 5 but no more than 40%, at least 10 but no more than 40%, at least 15, but no more than 40%, at least 20 but no more than 40%, at least 30 but no more than 40%, at least 35 but no more than 40%, at least 5 but no more than 30%, at least 10 but no more than 30%, at least 15, but no more than 30%, at least 20 but no more than 30%, or at least 25 but no more than 30%.
The extent of mTOR inhibition can be conveyed as, or corresponds to, the extent of P70 S6 kinase inhibition, e.g., the extent of mTOR inhibition can be determined by the level of decrease in P70 S6 kinase activity, e.g., by the decrease in phosphorylation of a P70 S6 kinase substrate. The level of mTOR inhibition can be evaluated by various methods, such as measuring P70 S6 kinase activity by the Boulay assay, as described in U.S. Patent Application No. 2015/01240036, hereby incorporated by reference, or as described in U.S. Patent No. 7,727,950, hereby incorporated by reference; measuring the level of phosphorylated S6 by western blot; or evaluating a change in the ratio of PDl negative immune effector cells to PDl positive immune effector cells.
As used herein, the term "mTOR inhibitor" refers to a compound or ligand, or a pharmaceutically acceptable salt thereof, which inhibits the mTOR kinase in a cell. In an embodiment, an mTOR inhibitor is an allosteric inhibitor. Allosteric mTOR inhibitors include the neutral tricyclic compound rapamycin (sirolimus), rapamycin-related compounds, that is compounds having structural and functional similarity to rapamycin including, e.g., rapamycin derivatives, rapamycin analogs (also referred to as rapalogs) and other macrolide compounds that inhibit mTOR activity. In an embodiment, an mTOR inhibitor is a catalytic inhibitor.
Rapamycin is a known macrolide antibiotic produced by Streptomyces hygroscopicus having the structure shown in Formula A.
Figure imgf000251_0001
(A)
See, e.g., McAlpine, J.B., et al., J. Antibiotics (1991) 44: 688; Schreiber, S.L., et al., J. Am. Chem. Soc. (1991) 113: 7433; U.S. Patent No. 3,929,992. There are various numbering schemes proposed for rapamycin. To avoid confusion, when specific rapamycin analogs are named herein, the names are given with reference to rapamycin using the numbering scheme of formula A. Rapamycin analogs useful in the invention are, for example, O-substituted analogs in which the hydroxyl group on the cyclohexyl ring of rapamycin is replaced by ORi in which Ri is hydroxyalkyl, hydroxyalkoxyalkyl, acylaminoalkyl, or aminoalkyl; e.g. RAD001, also known as, everolimus as described in US 5,665,772 and WO94/09010 the contents of which are incorporated by reference. Other suitable rapamycin analogs include those substituted at the 26- or 28-position. The rapamycin analog may be an epimer of an analog mentioned above, particularly an epimer of an analog substituted in position 40, 28 or 26, and may optionally be further hydrogenated, e.g. as described in US 6,015,815, WO95/14023 and WO99/15530 the contents of which are incorporated by reference, e.g. ABT578 also known as zotarolimus or a rapamycin analog described in US 7,091,213, WO98/02441 and WO01/14387 the contents of which are incorporated by reference, e.g. AP23573 also known as ridaforolimus.
Examples of rapamycin analogs suitable for use in the present invention from US 5,665,772 include, but are not limited to, 40-O-benzyl-rapamycin, 40-O-(4'- hydroxymethyl)benzyl-rapamycin, 40-O-[4'-(l,2-dihydroxyethyl)]benzyl-rapamycin, 40-O- allyl-rapamycin, 40-O-[3'-(2,2-dimethyl-l,3-dioxolan-4(S)-yl)-prop-2'-en- -yl]-rapamycin, (2'E,4'S)-40-O-(4',5'-dihydroxypent-2'-en-l'-yl)-rapamycin, 40-O-(2- hydroxy)ethoxycarbonylmethyl-rapamycin, 40-O-(2-hydroxy)ethyl-rapamycin , 40-O-(3- hydroxy)propyl-rapamycin, 40-O-(6-hydroxy)hexyl -rapamycin, 40-O-[2-(2- hydroxy)ethoxy]ethyl-rapamycin, 40-O-[(3S)-2,2-dimethyldioxolan-3-yl]methyl-rapamycin, 40-O-[(2S)-2,3-dihydroxyprop-l-yl] -rapamycin, 40-O-(2-acetoxy)ethyl-rapamycin, 40-O-(2- nicotinoyloxy)ethyl-rapamycin, 40-O-[2-(N-morpholino)acetoxy]ethyl-rapamycin, 40-O-(2-N- imidazolylacetoxy)ethyl-rapamycin, 40-O-[2-(N-methyl-N'-piperazinyl)acetoxy]ethyl- rapamycin, 39-O-desmethyl-39,40-O,O-ethylene-rapamycin, (26R)-26-dihydro-40-O-(2- hydroxy)ethyl-rapamycin, 40-O-(2-aminoethyl)-rapamycin, 40-O-(2-acetaminoethyl)- rapamycin, 40-O-(2-nicotinamidoethyl)-rapamycin, 40-O-(2-(N-methyl-imidazo-2'- ylcarbethoxamido)ethyl)-rapamycin, 40-O-(2-ethoxycarbonylaminoethyl)-rapamycin, 40-O-(2- tolylsulfonamidoethyl)-rapamycin and 40-O-[2-(4' ,5'-dicarboethoxy-l ' ,2' ,3'-triazol-l '-yl)- ethyl] -rap amycin .
Other rapamycin analogs useful in the present invention are analogs where the hydroxyl group on the cyclohexyl ring of rapamycin and/or the hydroxy group at the 28 position is replaced with an hydroxyester group are known, for example, rapamycin analogs found in US RE44,768, e.g. temsirolimus. Other rapamycin analogs useful in the preset invention include those wherein the methoxy group at the 16 position is replaced with another substituent, preferably (optionally hydroxy- substituted) alkynyloxy, benzyl, orthomethoxybenzyl or chlorobenzyl and/or wherein the mexthoxy group at the 39 position is deleted together with the 39 carbon so that the cyclohexyl ring of rapamycin becomes a cyclopentyl ring lacking the 39 position methyoxy group; e.g. as described in W095/16691 and WO96/41807 the contents of which are incorporated by reference. The analogs can be further modified such that the hydroxy at the 40-position of rapamycin is alkylated and/or the 32-carbonyl is reduced.
Rapamycin analogs from W095/16691 include, but are not limited to, 16-demthoxy-16- (pent-2-ynyl)oxy-rapamycin, 16-demthoxy-16-(but-2-ynyl)oxy-rapamycin, 16-demthoxy-16- (propargyl)oxy-rapamycin, 16-demethoxy- 16-(4-hydroxy-but-2-ynyl)oxy-rapamycin, 16- demthoxy- 16-benzyloxy-40-O- (2-hydroxyethyl)-rapamycin, 16-demthoxy- 16-benzyloxy- rapamycin, 16-demethoxy- 16-ortho-methoxybenzyl-rapamycin, 16-demethoxy-40-O-(2- methoxyethyl)-16-pent-2-ynyl)oxy-rapamycin, 39-demethoxy-40-desoxy-39-formyl-42-nor- rapamycin, 39-demethoxy-40-desoxy-39-hydroxymethyl-42-nor-rapamycin, 39-demethoxy-40- desoxy-39-carboxy-42-nor-rapamycin, 39-demethoxy-40-desoxy-39-(4-methyl-piperazin-l- yl)carbonyl-42-nor-rapamycin, 39-demethoxy-40-desoxy-39-(morpholin-4-yl)carbonyl-42-nor- rapamycin, 39-demethoxy-40-desoxy-39-[N-methyl, N-(2-pyridin-2-yl-ethyl)]carbamoyl-42- nor-rapamycin and 39-demethoxy-40-desoxy-39-(p-toluenesulfonylhydrazonomethyl)-42-nor- rapamycin.
Rapamycin analogs from WO96/41807 include, but are not limited to, 32-deoxo- rapamycin, 16-0-pent-2-ynyl-32-deoxo-rapamycin, 16-O-pent-2-ynyl-32-deoxo-40-O-(2- hydroxy-ethyl)-rapamycin, 16-O-pent-2-ynyl-32-(S)-dihydro-40-O-(2-hydroxyethyl)- rapamycin, 32(S)-dihydro-40-O-(2-methoxy)ethyl-rapamycin and 32(S)-dihydro-40-O-(2- hydroxyethyl)-rapamycin.
Another suitable rapamycin analog is umirolimus as described in US2005/0101624 the contents of which are incorporated by reference.
RAD001, otherwise known as everolimus (Afinitor®), has the chemical name
(lR,9S,12S,15R,16E,18R,19R,21R,23S,24E,26E,28E,30S,32S,35R)-l,18-dihydroxy-12-{ (lR)- 2-[(lS,3R,4R)-4-(2-hydroxyethoxy)-3-methoxycyclohexyl]-l-methylethyl}-19,30-dimethoxy- 15, 17,21, 23,29,35-hexamethyl-l l,36-dioxa-4-aza-tricyclo[30.3.1.04,9]hexatriaconta- 16,24,26,28-tetraene-2,3,10,14,20-pentaone, as described in US 5,665,772 and WO94/09010, the contents of each are incorporated by reference.
Further examples of allosteric mTOR inhibitors include sirolimus (rapamycin, AY- 22989), 40- [3-hydroxy-2-(hydroxymethyl)-2-methylpropanoate] -rapamycin (also called temsirolimus or CCI-779) and ridaforolimus (AP-23573/MK-8669). Other examples of allosteric mTor inhibtors include zotarolimus (ABT578) and umirolimus.
Alternatively or additionally, catalytic, ATP-competitive mTOR inhibitors have been found to target the mTOR kinase domain directly and target both mTORCl and mTORC2. These are also more effective inhibitors of mTORCl than such allosteric mTOR inhibitors as rapamycin, because they modulate rapamycin-resistant mTORCl outputs such as 4EBP1- T37/46 phosphorylation and cap-dependent translation.
Catalytic inhibitors include: BEZ235 or 2-methyl-2-[4-(3-methyl-2-oxo-8-quinolin-3- yl-2,3-dihydro-imidazo[4,5-c]quinolin-l-yl)-phenyl]-propionitrile, or the monotosylate salt form, the synthesis of BEZ235 is described in WO2006/122806; CCG168 (otherwise known as AZD-8055, Chresta, CM., et al., Cancer Res, 2010, 70(1), 288-298) which has the chemical name {5-[2,4-bis-((S)-3-methyl-morpholin-4-yl)-pyrido[2,3d]pyrimidin-7-yl]-2-methoxy- phenyl} -methanol; 3-[2,4-bis[(3S)-3-methylmorpholin-4-yl]pyrido[2,3-d]pyrimidin-7-yl]-N- methylbenzamide (WO09104019); 3-(2-aminobenzo[d]oxazol-5-yl)-l-isopropyl-lH- pyrazolo[3,4-d]pyrimidin-4-amine (WO10051043 and WO2013023184); A N-(3-(N-(3-((3,5- dimethoxyphenyl)amino)quinoxaline-2-yl)sulfamoyl)phenyl)-3-methoxy-4-methylbenzamide (WO07044729 and WO12006552); PKI-587 (Venkatesan, A.M., J. Med.Chem., 2010, 53, 2636-2645) which has the chemical name l-[4-[4-(dimethylamino)piperidine-l- carbonyl]phenyl]-3-[4-(4,6-dimorpholino-l,3,5-triazin-2-yl)phenyl]urea; GSK-2126458 (ACS Med. Chem. Lett., 2010, 1, 39-43) which has the chemical name 2,4-difluoro-N-{2-methoxy-5- [4-(4-pyridazinyl)-6-quinolinyl]-3-pyridinyl}benzenesulfonamide; ; 5-(9-isopropyl-8-methyl- 2-morpholino-9H-purin-6-yl)pyrimidin-2-amine (WO10114484); (E)-N-(8-(6-amino-5- (trifluoromethyl)pyridin-3-yl)-l-(6-(2-cyanopropan-2-yl)pyridin-3-yl)-3-methyl-lH- imidazo [4,5-c] quinolin-2(3H)-ylidene)cyanamide (WO 12007926) .
Further examples of catalytic mTOR inhibitors include 8-(6-methoxy-pyridin-3-yl)-3- methyl- l-(4-piperazin-l-yl-3-trifluoromethyl-phenyl)-l,3-dihydro-imidazo[4,5-c]quinolin-2- one (WO2006/122806) and Ku-0063794 (Garcia-Martinez JM, et al.,Biochem J., 2009, 421(1), 29-42.. Ku-0063794 is a specific inhibitor of the mammalian target of rapamycin (mTOR).) WYE-354 is another example of a catalytic mTor inhibitor (Yu K, et al. (2009). Biochemical, Cellular, and In vivo Activity of Novel ATP-Competitive and Selective Inhibitors of the Mammalian Target of Rapamycin. Cancer Res. 69(15): 6232-6240).
mTOR inhibitors useful according to the present invention also include prodrugs, derivatives, pharmaceutically acceptable salts, or analogs thereof of any of the foregoing. mTOR inhibitors, such as RAD001, may be formulated for delivery based on well- established methods in the art based on the particular dosages described herein. In particular, US Patent 6,004,973 (incorporated herein by reference) provides examples of formulations useable with the mTOR inhibitors described herein.
Methods and Biomarkers for Evaluating CAR-Effectiveness or Sample Suitability
In another aspect, the invention features a method of evaluating or monitoring the effectiveness of a CAR-expressing cell therapy (e.g., a CLL-1 CAR therapy), in a subject (e.g., a subject having a cancer, e.g., a hematological cancer), or the suitability of a sample (e.g., an apheresis sample) for a CAR therapy (e.g., a CLL-1 CAR therapy). The method includes acquiring a value of effectiveness to the CAR therapy, or sample suitability, wherein said value is indicative of the effectiveness or suitability of the CAR-expressing cell therapy.
In embodiments, the value of effectiveness to the CAR therapy, or sample suitability, comprises a measure of one, two, three, four, five, six or more (all) of the following:
(i) the level or activity of one, two, three, or more (e.g., all) of resting TEFF cells, resting
TREG cells, younger T cells (e.g., younger CD4 or CD8 cells, or gamma/delta T cells), or early memory T cells, or a combination thereof, in a sample (e.g., an apheresis sample or a manufactured CAR-expressing cell product sample);
(ii) the level or activity of one, two, three, or more (e.g., all) of activated TEFF cells, activated TREG cells, older T cells (e.g., older CD4 or CD8 cells), or late memory T cells, or a combination thereof, in a sample (e.g., an apheresis sample or a manufactured CAR-expressing cell product sample);
(iii) the level or activity of an immune cell exhaustion marker, e.g., one, two or more immune checkpoint inhibitors (e.g., PD-1, PD-L1, TIM-3 and/or LAG-3) in a sample (e.g., an apheresis sample or a manufactured CAR-expressing cell product sample). In one
embodiment, an immune cell has an exhausted phenotype, e.g., co-expresses at least two exhaustion markers, e.g., co-expresses PD-1 and TIM-3. In other embodiments, an immune cell has an exhausted phenotype, e.g., co-expresses at least two exhaustion markers, e.g., co- expresses PD-1 and LAG-3;
(iv) the level or activity of CD27 and/or CD45RO- (e.g., CD27+ CD45RO-) immune effector cells, e.g., in a CD4+ or a CD8+ T cell population, in a sample (e.g., an apheresis sample or a manufactured CAR-expressing cell product sample);
(v) the level or activity of one, two, three, four, five, ten, twenty or more of the biomarkers chosen from CCL20, IL-17a and/or IL-6, PD-1, PD-L1, LAG-3, TIM-3, CD57, CD27, CD122, CD62L, KLRG1 ;
(vi) a cytokine level or activity (e.g., quality of cytokine reportoire) in a CAR- expressing cell product sample, e.g., CLL-1- expressing cell product sample; or
(vii) a transduction efficiency of a CAR-expressing cell in a manufactured CAR- expressing cell product sample.
In some embodiments of any of the methods disclosed herein, the CAR-expressing cell therapy comprises a plurality (e.g., a population) of CAR-expressing immune effector cells, e.g., a plurality (e.g., a population) of T cells or NK cells, or a combination thereof. In one embodiment, the CAR-expressing cell therapy is a CLL-1 CAR therapy.
In some embodiments of any of the methods disclosed herein, the measure of one or more of (i)-(vii) is obtained from an apheresis sample acquired from the subject. The apheresis sample can be evaluated prior to infusion or re-infusion.
In some embodiments of any of the methods disclosed herein, the measure of one or more of (i)-(vii) is obtained from a manufactured CAR-expressing cell product sample, e.g., CLL-1 CAR- expressing cell product sample. The manufactured CAR-expressing cell product can be evaluated prior to infusion or re-infusion.
In some embodiments of any of the methods disclosed herein, the subject is evaluated prior to receiving, during, or after receiving, the CAR-expressing cell therapy.
In some embodiments of any of the methods disclosed herein, the measure of one or more of (i)-(vii) evaluates a profile for one or more of gene expression, flow cytometry or protein expression. In some embodiments of any of the methods disclosed herein, the method further comprises identifying the subject as a responder, a non-responder, a relapser or a non-relapser, based on a measure of one or more of (i)-(vii).
In some embodiments of any of the methods disclosed herein, a responder (e.g., a complete responder) has, or is identified as having, a greater level or activity of one, two, or more (all) of GZMK, PPF1BP2, or naive T cells as compared to a non-responder.
In some embodiments of any of the methods disclosed herein, a non-responder has, or is identified as having, a greater level or activity of one, two, three, four, five, six, seven, or more (e.g., all) of IL22, IL-2RA, IL-21, IRF8, IL8, CCL17, CCL22, effector T cells, or regulatory T cells, as compared to a responder.
In an embodiment, a relapser is a patient having, or who is identified as having, an increased level of expression of one or more of (e.g., 2, 3, 4, or all of) the following genes, compared to non relapsers: MIR199A1, MIR1203, uc021ovp, ITM2C, and HLA-DQB1 and/or a decreased levels of expression of one or more of (e.g., 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, or all of) the following genes, compared to non relapsers: PPIAL4D, TTTY10, TXLNG2P, MIR4650-1, KDM5D, USP9Y, PRKY, RPS4Y2, RPS4Y1, NCRNA00185, SULT1E1, and EIF1AY.
In some embodiments of any of the methods disclosed herein, a complete responder has, or is identified as having, a greater, e.g., a statistically significant greater, percentage of CD8+ T cells compared to a reference value, e.g., a non-responder percentage of CD8+ T cells.
In some embodiments of any of the methods disclosed herein, a complete responder has, or is identified as having, a greater percentage of CD27+ CD45RO- immune effector cells, e.g., in the CD8+ population, compared to a reference value, e.g., a non-responder number of CD27+ CD45RO- immune effector cells.
In some embodiments of any of the methods disclosed herein, a complete responder or a partial responder has, or is identified as having, a greater, e.g., a statistically significant greater, percentage of CD4+ T cells compared to a reference value, e.g., a non-responder percentage of CD4+ T cells.
In some embodiments of any of the methods disclosed herein, a complete responder has, or is identified as having, a greater percentage of one, two, three, or more (e.g., all) of resting TEFF cells, resting TREG cells, younger T cells (e.g., younger CD4 or CD8 cells, or gamma/delta T cells), or early memory T cells,, or a combination thereof, compared to a reference value, e.g., a non-responder number of resting TEFF cells, resting TREG cells, younger T cells (e.g., younger CD4 or CD8 cells), or early memory T cells.
In some embodiments of any of the methods disclosed herein, a non-responder has, or is identified as having, a greater percentage of one, two, three, or more (e.g., all) of activated TEFF cells, activated TREG cells, older T cells (e.g., older CD4 or CD8 cells), or late memory T cells, or a combination thereof, compared to a reference value, e.g., a responder number of activated TEFF cells, activated TREG cells, older T cells (e.g., older CD4 or CD8 cells), or late memory T cells.
In some embodiments of any of the methods disclosed herein, a non-responder has, or is identified as having, a greater percentage of an immune cell exhaustion marker, e.g., one, two or more immune checkpoint inhibitors (e.g., PD-1, PD-L1, TIM-3 and/or LAG-3). In one embodiment, a non-responder has, or is identified as having, a greater percentage of PD-1, PD- Ll, or LAG-3 expressing immune effector cells (e.g., CD4+ T cells and/or CD8+ T cells) (e.g., CAR-expressing CD4+ cells and/or CD8+ T cells) compared to the percentage of PD-1 or LAG-3 expressing immune effector cells from a responder.
In one embodiment, a non-responder has, or is identified as having, a greater percentage of immune cells having an exhausted phenotype, e.g., immune cells that co-express at least two exhaustion markers, e.g., co-expresses PD-1, PD-L1 and/or TIM-3. In other embodiments, a non-responder has, or is identified as having, a greater percentage of immune cells having an exhausted phenotype, e.g., immune cells that co-express at least two exhaustion markers, e.g., co-expresses PD-1 and LAG-3.
In some embodiments of any of the methods disclosed herein, a non-responder has, or is identified as having, a greater percentage of PD-1/ PD-L1+/LAG-3+ cells in the CAR- expressing cell population (e.g., a CLL-1 CAR+ cell population) compared to a responder (e.g., a complete responder) to the CAR-expressing cell therapy.
In some embodiments of any of the methods disclosed herein, a partial responder has, or is identified as having, a higher percentages of PD-1/ PD-L1+/LAG-3+ cells, than a responder, in the CAR-expressing cell population (e.g., a CLL-1 CAR+ cell population).
In some embodiments of any of the methods disclosed herein, a non-responder has, or is identified as having, an exhausted phenotype of PD1/ PD-L1+ CAR+ and co-expression of LAG3 in the CAR-expressing cell population (e.g., a CLL-1 CAR + cell population). In some embodiments of any of the methods disclosed herein, a non-responder has, or is identified as having, a greater percentage of PD-1/ PD-L1+/TIM-3+ cells in the CAR- expressing cell population (e.g., a CLL-1 CAR + cell population) compared to the responder (e.g., a complete responder).
In some embodiments of any of the methods disclosed herein, a partial responders has, or is identified as having, a higher percentage of PD-1/ PD-L1+/TIM-3+ cells, than responders, in the CAR-expressing cell population (e.g., a CLL-1 CAR + cell population).
In some embodiments of any of the methods disclosed herein, the presence of CD8+ CD27+ CD45RO- T cells in an apheresis sample is a positive predictor of the subject response to a CAR-expressing cell therapy (e.g., a CLL-1 CAR therapy).
In some embodiments of any of the methods disclosed herein, a high percentage of PD1+ CAR+ and LAG3+ or TIM3+ T cells in an apheresis sample is a poor prognostic predictor of the subject response to a CAR-expressing cell therapy (e.g., a CLL-1 CAR therapy).
In some embodiments of any of the methods disclosed herein, the responder (e.g., the complete or partial responder) has one, two, three or more (or all) of the following profile:
(i) has a greater number of CD27+ immune effector cells compared to a reference value, e.g., a non-responder number of CD27+ immune effector cells;
(ii) (i) has a greater number of CD8+ T cells compared to a reference value, e.g., a non- responder number of CD8+ T cells;
(iii) has a lower number of immune cells expressing one or more checkpoint inhibitors, e.g., a checkpoint inhibitor chosen from PD-1, PD-L1, LAG-3, TIM-3, or KLRG-1, or a combination, compared to a reference value, e.g., a non-responder number of cells expressing one or more checkpoint inhibitors; or
(iv) has a greater number of one, two, three, four or more (all) of resting TEFF cells, resting TREG cells, naive CD4 cells, unstimulated memory cells or early memory T cells, or a combination thereof, compared to a reference value, e.g., a non-responder number of resting TEFF cells, resting TREG cells, naive CD4 cells, unstimulated memory cells or early memory T cells.
In some embodiments of any of the methods disclosed herein, the cytokine level or activity of (vi) is chosen from one, two, three, four, five, six, seven, eight, or more (or all) of cytokine CCL20/MIP3a, IL17A, IL6, GM-CSF, IFNy, IL10, IL13, IL2, IL21, IL4, IL5, IL9 or TNFa, or a combination thereof. The cytokine can be chosen from one, two, three, four or more (all) of IL-17a, CCL20, IL2, IL6, or TNFa. In one embodiment, an increased level or activity of a cytokine is chosen from one or both of IL-17a and CCL20, is indicative of increased responsiveness or decreased relapse.
In some embodiments of any of the methods disclosed herein, a transduction efficiency of 15% or higher in (vii) is indicative of increased responsiveness or decreased relapse.
In some embodiments of any of the methods disclosed herein, a transduction efficiency of less than 15% in (vii) is indicative of decreased responsiveness or increased relapse.
In embodiments, the responder, a non-responder, a relapser or a non-relapser identified by the methods herein can be further evaluated according to clinical criteria. For example, a complete responder has, or is identified as, a subject having a disease, e.g., a cancer, who exhibits a complete response, e.g., a complete remission, to a treatment. A complete response may be identified, e.g., using the NCCN Guidelines®, or Cheson et al, J Clin Oncol 17:1244 (1999) and Cheson et al., "Revised Response Criteria for Malignant Lymphoma", J Clin Oncol 25:579-586 (2007) (both of which are incorporated by reference herein in their entireties), as described herein. A partial responder has, or is identified as, a subject having a disease, e.g., a cancer, who exhibits a partial response, e.g., a partial remission, to a treatment. A partial response may be identified, e.g., using the NCCN Guidelines®, or Cheson criteria as described herein. A non-responder has, or is identified as, a subject having a disease, e.g., a cancer, who does not exhibit a response to a treatment, e.g., the patient has stable disease or progressive disease. A non-responder may be identified, e.g., using the NCCN Guidelines®, or Cheson criteria as described herein.
Alternatively, or in combination with the methods disclosed herein, responsive to said value, performing one, two, three four or more of: administering e.g., to a responder or a non-relapser, a CAR-expressing cell therapy; administered an altered dosing of a CAR-expressing cell therapy;
altering the schedule or time course of a CAR-expressing cell therapy;
administering, e.g., to a non-responder or a partial responder, an additional agent in combination with a CAR-expressing cell therapy, e.g., a checkpoint inhibitor, e.g., a checkpoint inhibitor described herein; administering to a non-responder or partial responder a therapy that increases the number of younger T cells in the subject prior to treatment with a CAR-expressing cell therapy; modifying a manufacturing process of a CAR-expressing cell therapy, e.g., enriching for younger T cells prior to introducing a nucleic acid encoding a CAR, or increasing the transduction efficiency, e.g., for a subject identified as a non-responder or a partial responder; administering an alternative therapy, e.g., for a non-responder or partial responder or relapser; or
if the subject is, or is identified as, a non-responder or a relapser, decreasing the TREG cell population and/or TREG gene signature, e.g., by one or more of CD25 depletion, administration of cyclophosphamide, anti-GITR antibody, or a combination thereof.
In certain embodiments, the subject is pre-treated with an anti-GITR antibody. In certain embodiment, the subject is treated with an anti-GITR antibody prior to infusion or re- infusion.
Biopolymer delivery methods
In some embodiments, one or more CAR-expressing cells as disclosed herein can be administered or delivered to the subject via a biopolymer scaffold, e.g., a biopolymer implant. Biopolymer scaffolds can support or enhance the delivery, expansion, and/or dispersion of the CAR-expressing cells described herein. A biopolymer scaffold comprises a biocompatible (e.g., does not substantially induce an inflammatory or immune response) and/or a
biodegradable polymer that can be naturally occurring or synthetic.
Examples of suitable biopolymers include, but are not limited to, agar, agarose, alginate, alginate/calcium phosphate cement (CPC), beta-galactosidase (β-GAL), (1 ,2,3,4,6- pentaacetyl a-D-galactose), cellulose, chitin, chitosan, collagen, elastin, gelatin, hyaluronic acid collagen, hydroxyapatite, poly(3-hydroxybutyrate-co-3-hydroxy-hexanoate) (PHBHHx), poly(lactide), poly(caprolactone) (PCL), poly(lactide-co-glycolide) (PLG), polyethylene oxide (PEO), poly(lactic-co-glycolic acid) (PLGA), polypropylene oxide (PPO), polyvinyl alcohol) (PVA), silk, soy protein, and soy protein isolate, alone or in combination with any other polymer composition, in any concentration and in any ratio. The biopolymer can be augmented or modified with adhesion- or migration-promoting molecules, e.g., collagen-mimetic peptides that bind to the collagen receptor of lymphocytes, and/or stimulatory molecules to enhance the delivery, expansion, or function, e.g., anti-cancer activity, of the cells to be delivered. The biopolymer scaffold can be an injectable, e.g., a gel or a semi-solid, or a solid composition.
In some embodiments, CAR-expressing cells described herein are seeded onto the biopolymer scaffold prior to delivery to the subject. In embodiments, the biopolymer scaffold further comprises one or more additional therapeutic agents described herein (e.g., another CAR-expressing cell, an antibody, or a small molecule) or agents that enhance the activity of a CAR-expressing cell, e.g., incorporated or conjugated to the biopolymers of the scaffold. In embodiments, the biopolymer scaffold is injected, e.g., intratumorally, or surgically implanted at the tumor or within a proximity of the tumor sufficient to mediate an anti-tumor effect. Additional examples of biopolymer compositions and methods for their delivery are described in Stephan et al., Nature Biotechnology, 2015, 33:97-101; and WO2014/110591.
Pharmaceutical compositions and treatments
Pharmaceutical compositions of the present invention may comprise a CAR-expressing cell, e.g., a plurality of CAR-expressing cells, as described herein, in combination with one or more pharmaceutically or physiologically acceptable carriers, diluents or excipients. Such compositions may comprise buffers such as neutral buffered saline, phosphate buffered saline and the like; carbohydrates such as glucose, mannose, sucrose or dextrans, mannitol; proteins; polypeptides or amino acids such as glycine; antioxidants; chelating agents such as EDTA or glutathione; adjuvants (e.g., aluminum hydroxide); and preservatives. Compositions of the present invention are in one aspect formulated for intravenous administration.
Pharmaceutical compositions of the present invention may be administered in a manner appropriate to the disease to be treated (or prevented). The quantity and frequency of administration will be determined by such factors as the condition of the patient, and the type and severity of the patient's disease, although appropriate dosages may be determined by clinical trials.
In one embodiment, the pharmaceutical composition is substantially free of, e.g., there are no detectable levels of a contaminant, e.g., selected from the group consisting of endotoxin, mycoplasma, replication competent lenti virus (RCL), p24, VSV-G nucleic acid, ΗΓ gag, residual anti-CD3/anti-CD28 coated beads, mouse antibodies, pooled human serum, bovine serum albumin, bovine serum, culture media components, vector packaging cell or plasmid components, a bacterium and a fungus. In one embodiment, the bacterium is at least one selected from the group consisting of Alcaligenes faecalis, Candida albicans, Escherichia coli, Haemophilus influenza, Neisseria meningitides, Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus pneumonia, and Streptococcus pyogenes group A. When "an immunologically effective amount," "an anti-tumor effective amount," "a tumor-inhibiting effective amount," or "therapeutic amount" is indicated, the precise amount of the compositions of the present invention to be administered can be determined by a physician with consideration of individual differences in age, weight, tumor size, extent of infection or metastasis, and condition of the patient (subject). It can generally be stated that a
pharmaceutical composition comprising the T cells described herein may be administered at a dosage of 104 to 109 cells/kg body weight, in some instances 105 to 106 cells/kg body weight, including all integer values within those ranges. T cell compositions may also be administered multiple times at these dosages. The cells can be administered by using infusion techniques that are commonly known in immunotherapy (see, e.g., Rosenberg et al., New Eng. J. of Med. 319:1676, 1988).
In certain aspects, it may be desired to administer activated T cells to a subject and then subsequently redraw blood (or have an apheresis performed), activate T cells therefrom according to the present invention, and reinfuse the patient with these activated and expanded T cells. This process can be carried out multiple times every few weeks. In certain aspects, T cells can be activated from blood draws of from lOcc to 400cc. In certain aspects, T cells are activated from blood draws of 20cc, 30cc, 40cc, 50cc, 60cc, 70cc, 80cc, 90cc, or lOOcc.
The administration of the subject compositions may be carried out in any convenient manner, including by aerosol inhalation, injection, ingestion, transfusion, implantation or transplantation. The compositions described herein may be administered to a patient trans arterially, subcutaneously, intradermally, intratumorally, intranodally, intramedullary, intramuscularly, by intravenous (i.v.) injection, or intraperitoneally. In one aspect, the T cell compositions of the present invention are administered to a patient by intradermal or subcutaneous injection. In one aspect, the CAR-expressing cell (e.g., T cell or NK cell) compositions of the present invention are administered by i.v. injection. The compositions of CAR-expressing cells (e.g., T cell or NK cell) may be injected directly into a tumor, lymph node, or site of infection. In a particular exemplary aspect, subjects may undergo leukapheresis, wherein leukocytes are collected, enriched, or depleted ex vivo to select and/or isolate the cells of interest, e.g., immune effector cells (e.g., T cells or NK cells). These immune effector cells (e.g., T cells or NK cells) isolates may be expanded by methods known in the art and treated such that one or more CAR constructs of the invention may be introduced, thereby creating a CAR-expressing cell (e.g., CAR T cell or CAR-expressing NK cell)of the invention. Subjects in need thereof may subsequently undergo standard treatment with high dose chemotherapy followed by peripheral blood stem cell transplantation. In certain aspects, following or concurrent with the transplant, subjects receive an infusion of the expanded CAR-expressing cell (e.g., CAR T cell or CAR-expressing NK cell)of the present invention. In an additional aspect, expanded cells are administered before or following surgery.
The dosage of the above treatments to be administered to a patient will vary with the precise nature of the condition being treated and the recipient of the treatment. The scaling of dosages for human administration can be performed according to art-accepted practices. The dose for CAMPATH, for example, will generally be in the range 1 to about 100 mg for an adult patient, usually administered daily for a period between 1 and 30 days. The preferred daily dose is 1 to 10 mg per day although in some instances larger doses of up to 40 mg per day may be used (described in U.S. Patent No. 6,120,766).
In one embodiment, the CAR is introduced into immune effector cells (e.g., T cells or NK cells), e.g., using in vitro transcription, and the subject (e.g., human) receives an initial administration of CAR-expressing immune effector cells (e.g., T cells, NK cells) cells of the invention, and one or more subsequent administrations of the CAR-expressing immune effector cells (e.g., T cells, NK cells) cells of the invention, wherein the one or more subsequent administrations are administered less than 15 days, e.g., 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, or 2 days after the previous administration. In one embodiment, more than one administration of the CAR-expressing immune effector cells (e.g., T cells, NK cells)of the invention are administered to the subject (e.g., human) per week, e.g., 2, 3, or 4 administrations of the CAR- expressing immune effector cells (e.g., T cells, NK cells)of the invention are administered per week. In one embodiment, the subject (e.g., human subject) receives more than one
administration of the CAR-expressing immune effector cells (e.g., T cells, NK cells) cells per week (e.g., 2, 3 or 4 administrations per week) (also referred to herein as a cycle), followed by a week of no CAR-expressing immune effector cells (e.g., T cells, NK cells) administrations, and then one or more additional administration of the CAR-expressing immune effector cells (e.g., T cells, NK cells)(e.g., more than one administration of the CAR-expressing immune effector cells (e.g., T cells, NK cells)per week) is administered to the subject. In another embodiment, the subject (e.g., human subject) receives more than one cycle of CAR-expressing immune effector cells (e.g., T cells, NK cells), and the time between each cycle is less than 10, 9, 8, 7, 6, 5, 4, or 3 days. In one embodiment, the CAR-expressing immune effector cells (e.g., T cells, NK cells)are administered every other day for 3 administrations per week. In one embodiment, the CAR-expressing immune effector cells (e.g., T cells, NK cells) of the invention are administered for at least two, three, four, five, six, seven, eight or more weeks.
In one aspect, CLL-1 CAR-expressing cells, e.g., CLL-1 CARTs or CLL-1 CAR- expressing NK cells) are generated using lentiviral viral vectors, such as lentivirus. CAR- expressing cells, e.g., CLL-1 CARTs or CAR expressing NK cells, generated that way will have stable CAR expression. In one aspect, CAR-expressing cells, e.g., CARTs or CAR-expressing NK cells, are generated using a viral vector such as a gammaretro viral vector, e.g., a gammaretro viral vector described herein. CAR-expressing cells, e.g., CARTs or CAR-expressing NK cells, generated using these vectors can have stable CAR expression.
In one aspect, CAR-expressing cells, e.g., CARTs or CAR-expressing NK cells, transiently express CAR vectors for 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 days after
transduction. Transient expression of CARs can be effected by RNA CAR vector delivery. In one aspect, the CAR RNA is transduced into the T cell by electroporation.
A potential issue that can arise in patients being treated using transiently expressing CAR-expressing cells, e.g., CARTs or CAR-expressing NK cells, (particularly with murine scFv bearing CARTs) is anaphylaxis after multiple treatments.
Without being bound by this theory, it is believed that such an anaphylactic response might be caused by a patient developing humoral anti-CAR response, i.e., anti-CAR antibodies having an anti-IgE isotype. It is thought that a patient's antibody producing cells undergo a class switch from IgG isotype (that does not cause anaphylaxis) to IgE isotype when there is a ten to fourteen day break in exposure to antigen. If a patient is at high risk of generating an anti-CAR antibody response during the course of transient CAR therapy (such as those generated by RNA transductions), CART infusion breaks should not last more than ten to fourteen days.
EXAMPLES
The invention is further described in detail by reference to the following experimental examples. These examples are provided for purposes of illustration only, and are not intended to be limiting unless otherwise specified. Thus, the invention should in no way be construed as being limited to the following examples, but rather, should be construed to encompass any and all variations which become evident as a result of the teaching provided herein.
Without further description, it is believed that one of ordinary skill in the art can, using the preceding description and the following illustrative examples, make and utilize the compounds of the present invention and practice the claimed methods. The following working examples specifically point out various aspects of the present invention, and are not to be construed as limiting in any way the remainder of the disclosure.
Example 1: Generating CAR constructs
Fully human anti-CD33 single chain variable fragments (scFv) were generated and cloned into a lentiviral expression vector with the intracellular CD3zeta chain and the intracellular co- stimulatory domain of 4- IBB and given the names depicted in Table 1 (which is shown in the Detailed Description).
The order in which the VL and VH domains appear in the scFv was varied (i.e., VL- VH, or VH-VL orientation), and where either three or four copies of the "G4S" (SEQ ID NO:25) subunit, in which each subunit comprises the sequence GGGGS (SEQ ID NO:25) (e.g., (G4S)3 (SEQ ID NO:28) or (G4S)4(SEQ ID NO:27)), connect the variable domains to create the entirety of the scFv domain, as shown in Table 2.
The sequences of the human scFv fragments (SEQ ID NOS: 39-51) are provided herein in Table 2 (in the Detailed Description). These clones all contained a Q/K residue change in the signal domain of the co-stimulatory domain derived from CD3zeta chain. The CAR scFv fragments were then cloned into lentiviral vectors to create a full length CAR construct in a single coding frame, and using the EF1 alpha promoter for expression (SEQ ID NO: 11). Sequences of CAR constructs and their domain sequences are listed in the Detailed Description. Analysis of the human CAR constructs was conducted as described in Examples 2-5.
Example 2: Analysis and in vitro activity of human scFv bearing CARTs
Anti-CLL-1 CAR constructs were evaluated for activity using a Jurkat cell line containing the luciferase reporter driven by the NFAT promoter (termed JNL cells). CAR activity is measured as activation of this NFAT-driven reporter. Lentiviral supernatants containing the CART constructs were added to JNL cells for transduction. 4-6 days after transduction, JNL cells were either evaluated for CAR expression by FACS as described below (Fig. 2A, 2B, and 2C) or mixed with target-positive (PL21, THP1, HL60, U937) or target- negative (K562) cell lines at the indicated effector (JNL) to target cell line (E:T) ratio to trigger activation. After 20 hours of co-incubation, luciferase signal was measured using the Bright- Glo™ Luciferase Assay on the En Vision instrument (Fig 1A, IB, and 2C).
Optimal anti-CLL-1 CAR constructs are selected based on the quantity and quality of the effector T cell responses of CLL- 1 CAR transduced T cells ("CART-CLL- 1 " or "CART- CLL-1 T cells") in response to CLL-1 expressing ("CLL-1+") targets. Effector T cell responses include, but are not limited to, cellular expansion, proliferation, doubling, cytokine production and target cell killing or cytolytic activity (degranulation).
Generation of CART-CLL-1 The human scFv encoding lentiviral transfer vectors were used to produce the genomic material packaged into the VSVg pseudotyped lentiviral particles. Lentiviral transfer vector DNA was mixed with the three packaging components of VSVg, gag/pol and rev in
combination with lipofectamine reagent to transfect them together in to Lenti-X 293T cells (Clontech). After 30 hours, the media was collected, filtered and stored at -80C. The therapeutic
CART-CLL-1 were generated by starting with the blood from a normal apheresed donor whose naive T cells are obtained by negative selection for T cells, CD4+ and CD8+ lymphocytes. These cells were activated by CD3x28 beads (Dynabeads® Human T- Expander CD3/CD28, Invitrogen) at a ratio of 1 :3 in RPMI 1640, 10% heat-inactivated fetal calf serum (FCS), 2 mM L-glutamine, lx Penicillin/Streptomycin, 100 μΜ non-essential amino acids, 1 mM NaPyruvate, 10 mM Hepes, and 55 μΜ 2-mercaptoethanol at 37°C, 5% C02. T cells were cultured at lxlO6 T cells in 0.5 mL medium per well of a 24-well plate. After 24 hours, the T cells are blasting and 0.5 mL of viral supernatant was added. The T cells began to divide in a logarithmic growth pattern, which was monitored by measuring the cell counts per mL, and T cells were diluted in fresh medium every two days. As the T cells began to rest down after approximately 10 days, the logarithmic growth waned. The combination of slowing growth rate and T cell size approaching -300 fl determines the state for T cells to be cryopreserved for later analysis.
Before cryopreserving, percentage of cells transduced (expressing the anti-CLL-1 CAR on the cell surface) and their relative fluorescence intensity of expression were determined by flow cytometric analysis on a BD LSRFortessa or BD-FACSCanto using either Protein L (Fig. 3Aand 22A) or biotinylated recombinant human CLL-1 protein as detection reagents (Fig. 3B and 22B). Histogram plots of relative fluorescent intensity from that FACS showed the percentage of transduced T cells. Transduction result in a range of CART positive cells from 10-50%.
Evaluating cytolytic activity and cytokine secretion of CART-CLL-1 redirected T cells.
To evaluate the functional abilities of CART-CLL-1 T cells to kill and secrete cytokines, the cells were thawed and allowed to recover overnight.
T cell killing was directed towards CLL-1 -expressing PL21 (Fig. 4A) and HL-60 (Fig. 4B) acute myelogenous leukemia cell lines stably expressing luciferase. Non-CLL-1 expressing U87 cells were used as a control (Fig. 4C) and untransduced T cells were used to determine non-specific background killing levels. The cytolytic activities of CART-CLL-1 were measured as a titration of effector: target cell ratios of 10:1 and 3-fold downward dilutions of T cells where effectors were defined as T cells expressing the anti-CLL-1 chimeric receptor. Assays were initiated by mixing an appropriate number of T cells with a constant number of targets cells. After 20 hours luciferase signal was measured using the Bright-Glo™ Luciferase Assay on the En Vision instrument.
Comparing these killing curves, titrating the amount of effector cells shows that those cells expressing CLL-1 were destroyed. T cells from the same donor that were transduced with either human scFv bearing CAR-CLL-1 cells were able to kill selectively CLL-1 + targets. Interestingly, not all CART-CLL-1 cells were active. CART cells containing clone 13 were inactive in this assay even in the presence of target-expressing cells.
For measuring cytokine production of CART-CLL-1 cells, cells were thawed and allowed to recover overnight. Untransduced T cells (UTD) were used as a non-specific control for background T cell effects. The T cells were directed towards HL-60, PL21, or U87 cells. The assay tested an effector: target ratio of 1:1 or 10:1 as noted where effectors were defined as T cells expressing the anti-CLL-1 CAR. The assay was run 24 hours after mixing of the cells, when the media is removed for analysis of cytokines TNF-alpha (Fig. 5A), IL-2 (Fig. 5B), and INF-gamma (Fig. 5C) using the CBA-Flex kit for human cytokine detection. When CART-CLL-1 T cells were cultured with cancer cells endogenously expressing
CLL-1, all CLL-l-CARTs except CLL-1-13 produced cytokines in response to target- expressing cells. The difference in reactivity of the various CLL-1 -CART clones toward low CLL-1 -expressing target cells may translate to better clinical efficacy of CART cells transduced with these constructs. Evaluating proliferative capacity of CART-CLL-1
CART-CLL1 T cells were tested for their ability to proliferate in response to exposure to antigen on target cells. Multiple CLL-1 CAR constructs were tested, CLL-6, CLL-9, CLL- 10, CLL-11, CLL-12, and CLL-13. Target cells included U937, PL-21, HL60, and Molml3 cells. On the day of assay (Day 0), target cells were counted and transferred to a 50ml tube in 6 mL of T cell media at 3e6 cells/ml. Target cells were irradiated on ice at 10,000 rad. After irradiation, target cells were washed twice in T cell media, counted, and resuspended to 5e5 cells/ml in T cell media on ice.
Frozen transduced T cells were thawed, washed in lOmL complete T cell media, spun at 300g for lOmin, and resuspended gently in 3mL of complete T cell media at RT. T-cells were then counted in a cellometer and resuspended to 2.5e6/mL in 10 mL of media. In a 96 well U- bottom plate, 25,000 irradiated target cells and 25,000 transduced CAR T cells (1:1 ratio) were combined in duplicate wells. In a separate well, 75,000 Anti-CD3/CD28 beads were added in ΙΟΟμΙ of medium to 25,000 transduced T cells to create a 1:3 cells-to-beads ratio as positive control; in another well, ΙΟΟμΙ of medium was added to 25,000 transduced T cells alone as media-only control. Cells were incubated for 4 days at 37°C, 5% C02. On day 4, cells were harvested and duplicates were combined by pipetting and transferring into the same well on the U-bottom plate for staining for FACS of CD4, CD8, and CAR using protein L or recombinant human CLL1 protein. After staining, cells were resuspended in 120μ1 MACS+0.5 BSA buffer and 20μ1Λνε11 countbright beads were added to each well. Proliferation was measured as the number of FACS positive cells detected in the period of time used to count 2500 beads.
As shown in Figures 23A and 23B, cells expressing CLL-1 CAR constructs CLL-6, CLL-9, CLL-10, CLL-11, and CLL-12 proliferated in the presence of different target cells.
Example 3: CLL-1 Toxicity Studies
CLL-1 was measured by flow cytometry using a commercially available antibody
(clone HIM3-4, eBioscience). The results herein demonstrate that CLL-1 was expressed in most primary patient samples with AML (AML blasts were gated using standard side scatter low CD45dim characteristics) (Fig. 6).
T cells from two different donors were transduced with CLL-1 (Fig. 6) and resulted in transduction efficiency of 35-45%. T cells were first stimulated with CD3/CD28 Dynabeads (Invitrogen) and maintained in serum free T cell media, along with IL-2 support. T cell were then transduced with CLL-1 (Fig. 6) CAR using a lentiviral vector the following day and were expanded in media for about 10 days. T cells were then frozen when the median cell volume approached 300 fl. CAR expression on T cells was detected by flow cytometry using a biotinylated CLL-1 protein (Sino Biological) with secondary staining using streptavidin. The results presented herein demonstrate transduction efficiency of T cells transduced with CAR (Fig. 7A and 7B).
CART123, CLLl-CART cells and untransduced T cells were incubated with the CD123+/CLL1+ cell line THP-1, two primary AML samples that are CLLl+/CD123+and a control ALL cell line NALM6 for 4 hours. CD 107a degranulation was measured by flow cytometry (8A). CLL-1 CART cells underwent specific degranulation to THP1 and primary AML samples and not to the control cell line (Fig. 8B). The results presented herein demonstrate that CLLl-CART cells underwent specific degranulation to CLL1+ cell lines and primary AML samples. CART123, CLL1-CART cells and untransduced T cells were incubated with the CD123+/CLL1+ cell line THP-1, two primary AML samples that are CLLl+/CD123+and a control ALL cell line NALM6 for 4 hours. Cells were then harvested and intracytoplasmic TNFa were measured by flow cytometry. More CLL-1 CART cells produced TNF-cc after incubation specifically with THP1 and primary AML samples and not to the control cell line. The results presented herein demonstrate that CLL1-CART cells produced TNF-a after incubation with CLL1+ cell line and primary AML samples (Fig. 9A and 9B).
CART123, CLL1-CART cells and untransduced T cells were incubated with the CD123+/CLL1+ cell line THP-1, two primary AML samples that are CLLl+/CD123+and a control ALL cell line NALM6 for 4 hours. Cells were then harvested and intracytoplasmic IL-2 were measured by flow cytometry. More CLL-1 CART cells produced IL-2 after incubation specifically with THP1 and primary AML samples and not to the control cell line. The results presented herein demonstrate that CLL1-CART cells produced IL-2 after incubation with CLL1+ cell line and primary AML samples (Fig. 10A and 10B). CART123, CLL1-CART cells and untransduced T cells were incubated with the
CD123+/CLL1+ cell lines THP-1 and MOLM14, a primary AML sample that is
CLLl+/CD123+and a control mantle cell lymphoma cell line JEKO for 24 hours. Cells were then harvested and 7-AAD and counting beads were added. Killing was then measured using a flow cytometry based assay after CFSE-labeling of the tumor cells (e.g. Cao et al, Cytometry Part A 2010;7&A:534-545) or by incubating CART cells with luciferase-expressing target cells at various effector-to-target ratios for up to 20 hours, followed by optical imaging for photons emitted by the target cells. In this latter assay, number of live target cells correlates positively with the number of photons emitted. CLL1-CART cells results in specific lysis of MOLM14 (Fig. 11D), THP-1 (Fig. 11 A) and the primary AML sample (Fig. 11B) and not to the control cell line JEKO (Fig. 11C), at the indicated E:T ratios. The results presented herein demonstrate that CLL1-CART cells specifically killed the CLL-1+ cell lines MOLM14 and THP-1 and primary AML samples (Fig. 11A-11D).
Proliferation of CART123, CART33 and CLL1-CART cells was measured in response to MOLM14, THP-1, and two primary AML samples. T cells were labeled with CFSE and incubated with targets for 120 hour at an effector: target ratio of 1:1. CLL1-CART cells underwent specific proliferation in response to MOLM14, THP1 and primary AML samples. Un-proliferated T cells retained a single bright peak of CFSE expression (by green fluorescence in the FITC channel), whereas proliferating CART cells had more than one CFSE peak and expression that was lower than baseline. The results presented herein demonstrate that CLL1- CART cells proliferated in response to MOLM14, THP-1 and primary AML samples (Fig. 12A and 12B).
Figure 13 presents a schematic diagram for assaying hematopoietic stem cell cyoxicity of CLL-1 CART cells using autologous xenografts. NSGS (NOD-SCID-gamma mice that are transgenic for IL-3, GM-CSF, stem cell factor) mice received busulfan i.p. followed by T cell depleted bone marrow from a normal donor the following day. Engraftment was confirmed by flow cytometric analysis of peripheral blood after 4 weeks and defined as circulating CD45 positive cells of >1 . Mice were then treated with autologous T cells by intravenous tail vain injection. T cells were derived from the same donor and were transduced with CART33, CLL1- CAR or UTD. A forth group received no treatment. Mice were then followed with retro-orbital bleeding on day 7, day 14 and day 21. CLL-1 expression was measured on different peripheral blood cells from humanized xenografts. Mice were bled through the retro-orbital vein after being anesthetized, using standard techniques. A standard volume of 50-60ul blood was then lysed in 1ml of ACK lysis buffer. The blood was then stained using fluorescently-labelled antibodies and the expression of CLL-1 on different peripheral blood cells was detected using flow cytometry. This analysis was performed at baseline, after engraftment with T cell depleted normal donor bone marrow and prior to any treatments. A representative FACS plots of the peripheral blood analysis of one mouse is shown (Fig. 14A). CLL-1 is expressed on monocytes (CD 14+ cells), myeloid cells (CD33+ and CD123+ cells), B cells (CD19+ cells), but not on platelets (CD41+ cells) or T cells (CD3+ cells). A representative histogram presentation is shown (Fig. 14B). A shcematic plot representation of peripheral blood analysis from 24 mice is shown (Fig. 14C). The results presented herein demonstrate that CLL-1 was expressed on different myeloid lineage cells and B cells in humanized mice.
Hematopoietic stem cell toxicity of CLL1-CART cells was determined using an autologous model. Representative plot of peripheral blood analysis by flow cytometry.
Treatment with CART33 or CLL1-CART cells resulted in significant reduction in Myloid cells (CD123+,CD33+, CLL1+), and in CD14+ monocytes. The results presented herein demonstrate that CLL-1 was expressed on different myeloid lineage cells and B cells in humanized mice.
CLL-1 expression on different bone marrow progenitor cells from humanized xenografts was assayed. After 4 weeks of treatment with T cells, mice were euthanized and bone marrow was harvested and analyzed. Bone marrow was harvested by flushing of the femur bones. Bone marrow samples from the control untreated animals were used as a reference to analyze expression of CLL-1 on different progenitors. The samples were then stained using fluorescently-labelled antibodies and the expression of CLL-1 on different progenitor cells was detected using flow cytometry. CLL-1 was expressed on the CD34+CD38- hematopoietic stem cells, CD123 bright, CD123 dim and CD33 positive cells. Gated on
CD45dim, LIN", live cells. The results presented herein demonstrate that CLL-1 was expressed on different myeloid progenitors and on hematopoietic stem cells in humanized mice (Fig. 16A-16D).
Figure 17 illustrates a schematic diagram for assaying hematopoietic stem cell toxicity of CLL-1 CART cells using a Humanized Immune System (HIS) xenografts. HIS mice were bled retro-orbitally 6-8 weeks after injection of CD34+ fetal liver, to confirm engraftment of human cells and then treated with either CLLl-CARTs, CART 123, CART33-CD8 hinge, CART33-IgG4 hinge, untransduced T cells or with no treatment. Mice were then followed by serial weekly retro-orbital bleedings. Mice were then euthanized on day 28 and organs were harvested and analyzed.
Bone marrow was analyzed 4 weeks post T cell infusion. Hematopoietic stem cell toxicity of CLL1-CART cells was measured using HIS xenografts. Mice were euthanized 4 weeks after T cell infusion, femur bones were harvested and flushed for bone marrow. The samples were then stained using fluorescently-labelled antibodies. Schematic plots of all mice treated with different CART cells. Treatment with CLL1-CART cells resulted in significant reduction in the CD34+CD38- component (hematopoietic stem cells) (Fig. 18A) and
CD34+CD38+ component (Progenitor cells) (Fig. 18B). Representative plots of bone marrows from mice treated with different CART cells are shown. Gated on live CD45dim LIN- cells (Fig. 19A-19E). Bone marrow was analyzed in HIS mice 4 weeks post T cell infusion. Hematopoietic stem cell toxicity of CLL1-CART cells using HIS xenografts. Mice were euthanized 4 weeks after T cell infusion, femur bones were harvested and flushed for bone marrow. The samples were then stained using fluorescently-labelled antibodies. A schematic plots is shown of all mice treated with different CART cells (Fig. 20). Treatment with CLL1-CART cells did not result in significant reduction in the CD123 bright population. The samples were then stained using fluorescently-labelled antibodies. Representative plots of bone marrows from mice treated with different CART cells are shown (Fig. 21).
Example 4: Evaluation of CLL-1 CART cells in vivo
PL-21 is a human acute myeloid leukemia cell line isolated from the peripheral blood of a 24 year old male patient with refractory acute promyelocytic leukemia, and can be grown as a xenograft in immune compromised mice. The xenograft mimics disease in the bone marrow as seen in humans, establishing a model with which to test the efficacy of therapies on AMLs in the bone. These mice can be used to test the efficacy of chimeric antigen receptor (CAR) T cells specific for cellular markers found on acute myeloid (or promyelocytic) leukemia cells, such as CLL-1 (a C-type lectin-type molecule). PL-21 cells were tagged with a firefly luciferase reporter gene and used in an orthotopic model of acute myeloid leukemia (AML) in NOO.Cg-PrkdcscidIl2rgtmlWjl/SzJ (NSG) mice to test the efficacy of CAR T cells specific for CLL-1.
CLL-1 expression was tested on PL-21 cells and these cells were used in in vitro assays to look at the ability of CLL-1 -specific CAR T cells to recognize and respond to the target. In vivo PL-21 cells grow when implanted intravenously via the tail vein and growth is limited primarily to the bone marrow. One week after the tumor cells are implanted, the disease shifts fully to the bones and begins to grow at an exponential rate. Left untreated, mice will start to display clinical symptoms and hind limb paralysis 4-6 weeks after tumor implantation. The study described in this example investigates whether any of the CLL-1 specific scFv clones from the in vitro screen show activity against tumors in this in vivo xenograft model.
The following materials and methods were used in the experiments described herein.
Materials and Methods:
PL-21 cell line: The PL-21 human AML cell line was developed from the peripheral blood of a patient with acute promyelocytic leukemia. The cells were then tagged with firefly luciferase. These suspension cells grow in RPMI supplemented with 10% heat inactivated fetal bovine serum.
Mice: 6 week old NSG NOD.Cg-PrkdcscidIl2rgtmlWjl/Sz ) mice were received from the Jackson Laboratory (stock number 005557). Animals were allowed to acclimate to the
Novartis NIBRI animal facility for at least 3 days prior to experimentation. Animals were handled in accordance with Novartis ACUC regulations and guidelines.
Tumor implantation: PL-21-luc cells were grown and expanded in vitro in RPMI supplemented with 10% heat inactivated fetal bovine serum. The cells were then transferred to a 50 ml conical tube and washed twice with cold sterile PBS. The PL-21-luc cells were then counted and resuspended at a concentration of lOxlO6 cells per milliliter of PBS. The cells were placed on ice and immediately (within one hour) implanted in mice. PL-21-luc cells were injected intravenously via the tail vein in a 100 μΐ volume, for a total of lxlO6 cells per mouse.
CAR T cell dosing: Mice were administered 5xl06 CAR+ T cells 8 days after tumor implantation. Cells were partially thawed in a 37 degree Celsius water bath and then completely thawed by the addition of 1 ml of cold sterile PBS to the tube containing the cells. The thawed cells were transferred to a 15 ml falcon tube and adjusted to a final volume of 10 mis with PBS. The cells were washed twice at lOOOrpm for 10 minutes each time and then counted on a hemocytometer. The CAR T cells were normalized for CAR transduction so that each group has the same percentage of CAR+ T cells. The 5xl06 CAR+ T cells were then resuspended at a concentration of 50x106 CAR+ T cells per ml of cold PBS and kept on ice until the mice were dosed. The mice were injected intravenously via the tail vein with 100 μΐ of the CAR T cells for a dose of 5xl06 CAR+ T cells per mouse.
Eight mice per group were treated either with 100 μΐ of PBS alone (PBS), CD19 control CAR T cells (CD19), CLL-1-6 (clone 6) CAR T cells, CLL-1-9 (clone 9) CAR T cells, CLL-1- 10 (clone 10) CAR T cells, CLL-1-11 (clone 11) CAR T cells, and CLL-1-12 (clone 12) CAR T cells. The T cells were all prepared from the same human donor in parallel.
Animal monitoring: The health status of the mice was monitored daily, including twice weekly body weight measurements. The percent change in body weight was calculated as (BWcurrent - BWinitiai)/(BWinitiai) x 100%. Tumor burden was monitored twice weekly by bioluminescent imaging. Mice were intraperitoneally injected with D-luciferin 10 minutes prior to anesthetizing and imaging the mice with a Xenogen. Disease burden was calculated by calculating the bioluminescence of the tumor cells (photons/second).
Percent treatment/control (T/C) values were calculated using the following formula:
% T/C = 100 x ΔΤ/AC if ΔΤ > 0 ;
% Regression = 100 x ΔΤ/Τίιώίαι if ΔΤ < 0 ;
where T = mean bioluminescence of the drug-treated group on the final day of the study; Xinitiai = = mean bioluminescence of the drug-treated group on initial day of dosing; ΔΤ = = mean bioluminescence of the drug-treated group on the final day of the study - = mean bioluminescence of the drug treated group on the initial day of dosing; C = = mean
bioluminescence of the control group on the final day of the study; and AC = = mean bioluminescence of the control group on the final day of the study - = mean bioluminescence of the control group on the initial day of dosing.
T/C values in the range of 100% to 42% are interpreted to have no or minimal antitumor activity; T/C values that are < 42% and > 10% are interpreted to have anti-tumor activity or tumor growth inhibition. T/C values < 10% or regression values > -10% are interpreted to be tumor stasis. Regression values < -10% are reported as regression.
Peripheral blood FACS analysis: T cells in the peripheral blood of the mice were also monitored. Mice were bled weekly via the tail vein into EDTA coated tubes that were kept on ice. ΙΟμΙ of blood was plated from the tubes into 96 well plates on ice. Red blood cells were lysed with ACK red blood cell lysis buffer (Life Technologies, catalog number A10492-01) and then washed twice with cold PBS. The cells were incubated with an Fc blocking mix of human and mouse Fc block (Miltenyi Biotec, catalog numbers 130-059-901 and 130-092-575) for 30 minutes and then incubated with anti-mouse CDl lb, anti-human CD45, anti-human CD4, anti-human CD8, and CLL-l-Fc or Protein L antibodies, followed by a secondary. The cells were fixed with a 2% paraformaldehyde solution for 20 minutes, washed and stored in
PBS + 2% FBS overnight prior to analysis on a BD Fortessa, followed by further analysis using the FlowJo FACS analysis software. The cells were analyzed to determine the number of CAR+ CD4+ and CD8+ T cells per milliliter of blood in the PL-21-luc tumor-bearing NSG mice. T cell numbers in the blood are reported as the mean + standard error of the mean (SEM).
Results: The anti-tumor activity of a panel of CLL-1 specific CAR T cells (clone 6, 9 10, 11, and 12) were evaluated and directly compared in the PL-21 model of human AML. Following tumor implantation on day 0, mice were randomized into treatment groups and treated with 5xl06 CAR+ T cells intravenously on day 8. AML disease burden and animal health were monitored until animals achieved endpoint. The mice in the control PBS and CD 19 groups along with the CLL-1-11 and CLL-1-12 groups were euthanized on day 18 post-CAR T cell dosing (26 days post-tumor implantation) when disease burden in the control groups was nearing maximum luminescence via imaging. The mice in the remaining CLL-1 CAR T cell treated groups (CLL-1-6, CLL-1-9, and CLL-1-10) were euthanized on day 25 post-CAR T cell dosing (33 days post-tumor implantation) to enable comparison of all of the groups terminal samples.
A delay in disease progression was observed between the control groups and the CLL- 1-6, CLL-1-9, and CLL-1-10 treated groups and slowing in tumor growth at late time points with the CLL-1-11 and CLL-1-12 CAR T cell treated groups. Calculated at the last time point with all the groups represented (day 18 post CAR T cell dose), all of the CLL-1 CAR T cells groups were significantly different from the control groups. Compared to the PBS treated mice, the CD 19 CAR T cell treated group did not demonstrate significance with a P value of 0.496. All of the CLL-1 CAR T cell treated groups compared to PBS had a P < 0.01 (clone 6 P = 0.0008; clone 9 P = 0.0006; clone 10 P = 0.0006; clone 11 P = 0.0013; clone 12 P = 0.0109). The three CLL-1 clones that showed an initial delay in tumor progression, clones 6, 9, and 10, showed stasis in tumor growth on day 18 post CAR T cell dose. The other two CLL-1 clones, clones 11 and 12, showed anti-tumor activity by this time point, although at the earlier time points they did not show any delay in disease progression. Calculated on day 18 post- T cell dose, the percent delta T/C values for each treatment group compared to the PBS control group were as follows: 98.38% for CD19, 3.15% for CLL-1-6, 2.04% for CLL-1-9, 4.92% for CLL-1- 10, 13.42% for CLL-1-11, and 25.19% for CLL-1-12. Based on these values, the CD19 CAR T cell treated group showed no activity, the CLL-1-6, -9, and -10 CAR T cell treated groups showed stasis in tumor growth, and the CLL-1-11, and -12 CAR T cell treated groups demonstrated anti-tumor activity. The bioluminescence imaging results of this study are shown in Figure 24. The PBS treatment group, which did not receive any T cells, demonstrated baseline PL-21 tumor growth kinetics in intravenously implanted NSG mice. The CD 19 treatment group received control CD19 CAR T cells, not specific for PL-21 cells, which underwent the same in vitro expansion process as the CAR T cells. These cells served as a T cell control to show the non-specific response of the T cells in this tumor model. Both the PBS and the CD 19 CAR T cell treatment groups demonstrated continuous tumor progression throughout the experiment.
In addition to monitoring the disease burden via bioluminescence, the CAR+ T cell numbers in each group was also monitored via peripheral blood FACS analysis. The FACS results of this study are shown in Figure 25 A and 25B. The groups that showed the greatest anti-tumor activity and a delay in tumor growth after CAR T cell treatment showed an increase in both CD4+CAR+ (Figure 25A) and CD8+CAR+ T cells (Figure 25B) in the peripheral blood at late time points. Limited numbers of cells were observed in the peripheral blood at early time point. The AML was primarily in the bone marrow and the CAR T cells may also be in the bone marrow at these time points. However, this group showed no anti-tumor activity. At the final time point, there was an expanding population of CAR T cells in the peripheral blood for of the CLL-1-6, CLL-1-9, and CLL-1-10 groups.
At the end of the study, spleen and bone marrow cells were harvested from the mice and analyzed to determine if the CAR T cells persist. As seen in Figures 26A-26D, CD4 and CD8 CAR+ T cells were seen in appreciable numbers in the CLL-1-9 and CLL-1-10 treated groups. An expansion of T cells was also seen in some of the other groups, in particular the CLL-1-12 CAR T cell treated group. However, although large numbers of both CD4+ and CD8+ T cells were seen in the bone marrow of this group, the cells are not CAR+, indicating a non-specific expansion of T cells in these mice. CLL-1-6, CLL-1-9, and CLL-10, showed the greatest antitumor effect and delay in tumor growth and this corresponded to the terminal bone marrow CAR+ T cell numbers. Of note, the CLL-1-6 CAR was not well detected, so the CAR+ numbers in this group may be underestimated. A slight persistence of both CD4 and CD8 T cells in the CLL-1-11 group and larger numbers of these cells in the CLL-1-12 group may correlate to a non-specific late stage activity on the tumors resulting in the slight dip in tumor burden seen at the late time points in Figure 24.
At the termination of the study, the phenotype of the cells in the spleen was also determined. Similar to what was observed in the bone marrow samples of these mice, the only groups with appreciable numbers of CD4 and CD8 CAR+ T cells in the spleen were the CLL-1- 9 and CLL-1-10 groups, as shown in Figures 27A-27D. These were also the only groups that had large numbers of CD4+ and CD8+ T cells in the spleen. The CLL-1-11 and CLL-12 groups did not show the non-CAR accumulation of T cells in the spleen that was observed in the bone marrow samples. Due to the large variation in CAR+ T cells detected in the spleen samples of the CLL-1-10 mice, this group did not correlate as significantly different when compared to the control groups.
Discussion:
The anti-tumor activity of novel CLL-1 CAR transduced T cells was assessed in an efficacy study in NSG mice bearing a xenograft model of human AML. These studies showed that the PL-21-luc model recapitulates human AML in the NSG mouse and is capable of being targeted by CLL-1 CAR T cells (Figure 24). This study demonstrated that the three of the CLL-1 CARs (CLL-1 -6, CLL-1-9, and CLL-1-10) were capable of mounting an anti-tumor response in a xenograft model of AML (Figure 24). Minimal numbers of CAR T cells were detected in the blood for all of the groups, however at late time points, CAR T cells were seen in increasing numbers in the CLL-1-6, CLL-1-9, and CLL-1-10 groups (Figures 25A and 25B). The groups treated with these three CAR T cells showed a delay in tumor growth, and in particular, the CLL-1-9 and CLL-1-10 groups showed significant numbers of CAR T cells in the terminal bone marrow and spleen samples at the end of the study (Figures 26A-26D and 27A-27D). The CLL-1-6 group also showed an initial and prolonged delay in tumor growth, but the terminal CAR T cell numbers could not accurately be calculated due to difficulties in detecting the expression of the scFv on the surface of the T cells. Taken together, the CLL-1-9 and CLL-1-10 groups showed a delay in tumor growth, an increase in CD4+CAR+ T cells and CD8+CAR+ T cells in the peripheral blood, along with significant numbers of CD4+CAR+ T cells and CD8+CAR+ T cells in the terminal bone marrow and spleen samples. Only the CLL- 1-9 group had significantly different amounts of CD4+CAR+ and CD8+CAR+ T cells as compared to the control groups in both the bone marrow and spleen.
Example 5: Chemotherapy and CLL1-CAR combined therapy
The effect of CLL-1 CAR therapy combined with chemotherapy was examined using an in vivo AML mouse model. Treatment with induction chemotherapy followed by CLLl-CART cells (clone 6) result in leukemic eradication in primary AML xenografts. NSG mice that are additionally transgenic for stem cell factor, GM-CSF and IL-3 (NSG-S) were injected with primary AML blasts (3xl06 via tail vain injection, day 0). After 4- 6 weeks, peripheral blood (PB) was collected to confirm engraftment, which was defined as the presence of >1 circulating leukemic cells (live human CD45dim cells). AML xenografts were then treated with cytarabine (Ara-C, 60 mg/kg by intra-peritoneal injection, daily between days 35-39). Peripheral blood counts were monitored and then these xenografts were randomized to receive CLL1 directed CART cells or control untransduced T cells (lxlO5 I.V.) on day 55. Following that, serial retro-orbital bleedings were performed and absolute leukemic blast count was calculated as a measure of disease burden and the xenografts were followed up for survival.
Figure 33B comprises representative plots of the mean fluorescence intensity (MFI) of CLL1 in leukemic cells (live huCD45dim compartment), and demonstrates that treatment with chemotherapy results in upregulation of CLL-1 antigen in the residual AML. There was a significant increase in CLL1-MFI in AML xenografts two weeks after treatment with cytarabine chemotherapy.
Mice that were treated with induction chemotherapy followed by untransduced T cells did not show reduction of peripheral blood leukemic blast count. In contrast, mice treated with induction chemotherapy followed by CLL-1 -CARTs resulted in significant reduction of the peripheral blood leukemic blast count and eradication of leukemia in AML xenografts, as shown in Figure 33C. Plots are representative of the peripheral blood absolute leukemic blast count per 1 ul of peripheral blood (mean +/- SD) at different time points post AML injection as indicated. Analysis of overall survival also showed that induction chemotherapy followed by CLL1 -CARTs, but not by untransduced T cells results in a significant advantage in overall survival in AML xenografts (Figure 33D). Example 6: Low dose RAD001 stimulates CART proliferation in a cell culture model
The effect of low doses of RAD001 on CAR T cell proliferation in vitro was evaluated by co-culturing CART-expressing cells with target cells in the presence of different concentrations of RAD001.
Materials and Methods
Generation of CAR-transduced T cells A humanized, anti-human CD 19 CAR (huCART19) lentiviral transfer vector was used to produce the genomic material packaged into VSVg pseudotyped lentiviral particles. The amino acid and nucleotide sequence of the humanized anti-human CD 19 CAR (huCART19) is CAR 1, ID 104875 described in PCT publication, WO2014/153270, filed March 15, 2014, and is designated SEQ ID NOs. 85 and 31 therein,
Lentiviral transfer vector DNA is mixed with the three packaging components VSVg env, gag/pol and rev in combination with lipofectamine reagent to transfect Lenti-X 293T cells. Medium is changed after 24h and 30h thereafter, the virus-containing media is collected, filtered and stored at -80°C. CARTs are generated by transduction of fresh or frozen naive T cells obtained by negative magnetic selection of healthy donor blood or leukopak. T cells are activated by incubation with anti-CD3/anti-CD28 beads for 24h, after which viral supernatant or concentrated virus (MOI=2 or 10, respectively) is added to the cultures. The modified T cells are allowed to expand for about 10 days. The percentage of cells transduced (expressing the CARs on the cell surface) and the level of CAR expression (relative fluorescence intensity, Geo Mean) are determined by flow cytometric analysis between days 7 and 9. The
combination of slowing growth rate and T cell size approaching -350 fL determines the state for T cells to be cryopreserved for later analysis.
Evaluating proliferation of CARTs
To evaluate the functionality of CARTs, the T cells are thawed and counted, and viability is assessed by Cellometer. The number of CAR-positive cells in each culture is normalized using non-transduced T cells (UTD). The impact of RADOOl on CARTs was tested in titrations with RADOOl, starting at 50nM. The target cell line used in all co-culture experiments is Nalm-6, a human pre-B cell acute lymphoblastic leukemia (ALL) cell line expressing CD 19 and transduced to express luciferase. For measuring the proliferation of CARTs, T cells are cultured with target cells at a ratio of 1:1. The assay is run for 4 days, when cells are stained for CD3, CD4, CD8 and CAR expression. The number of T cells is assessed by flow cytometry using counting beads as reference.
Results
The proliferative capacity of CART cells was tested in a 4 day co-culture assay. The number of CAR-positive CD3-positive T cells (dark bars) and total CD3-positive T cells (light bars) was assessed after culturing the CAR-transduced and non-transduced T cells with Nalm-6 (Fig. 31). huCART19 cells expanded when cultured in the presence of less than 0.016 nM of RADOOl, and to a lesser extent at higher concentrations of the compound. Importantly, both at 0.0032 and 0.016 nM RADOOl the proliferation was higher than observed without the addition of RADOOl. The non-transduced T cells (UTD) did not show detectable expansion.
Example 7: Low dose RADOOl stimulates CART expansion in vivo
This example evaluates the ability of huCAR19 cells to proliferate in vivo with different concentrations of RADOOl. Materials and Methods:
NALM6-luc cells: The NALM6 human acute lymphoblastic leukemia (ALL) cell line was developed from the peripheral blood of a patient with relapsed ALL. The cells were then tagged with firefly luciferase. These suspension cells grow in RPMI supplemented with 10% heat inactivated fetal bovine serum. Mice: 6 week old NSG NOD.Cg-PrkdcscidIl2rgtmlWjl/Sz ) mice were received from the
Jackson Laboratory (stock number 005557).
Tumor implantation: NALM6-luc cells were grown and expanded in vitro in RPMI supplemented with 10% heat inactivated fetal bovine serum. The cells were then transferred to a 15 ml conical tube and washed twice with cold sterile PBS. NALM6-luc cells were then counted and resuspended at a concentration of lOxlO6 cells per milliliter of PBS. The cells were placed on ice and immediately (within one hour) implanted in the mice. NALM6-luc cells were injected intravenously via the tail vein in a 100 μΐ volume, for a total of lxlO6 cells per mouse.
CAR T cell dosing: Mice were administered 5xl06 CAR T cells 7 days after tumor implantation. Cells were partially thawed in a 37 degree Celsius water bath and then completely thawed by the addition of 1 ml of cold sterile PBS to the tube containing the cells. The thawed cells were transferred to a 15 ml falcon tube and adjusted to a final volume of 10 mis with PBS. The cells were washed twice at lOOOrpm for 10 minutes each time and then counted on a hemocytometer. T cells were then resuspended at a concentration of 50x106 CAR T cells per ml of cold PBS and kept on ice until the mice were dosed. The mice were injected intravenously via the tail vein with 100 μΐ of the CAR T cells for a dose of 5xl06 CAR T cells per mouse. Eight mice per group were treated either with 100 μΐ of PBS alone (PBS), or humanized CD 19 CAR T cells.
RADOOl dosing: A concentrated micro-emulsion of 50mg equal to lmg RADOOl was formulated and then resuspended in D5W (dextrose 5% in water) at the time of dosing. Mice were orally dosed daily (via oral gavage) with 200 μΐ of the desired doses of RADOOl.
PK analysis: Mice were dosed daily with RADOOl starting 7 days post tumor implantation. Dosing groups were as follows: 0.3 mg/kg, 1 mg/kg, 3 mg/kg, and 10 mg/kg. Mice were bled on days 0 and 14 following the first and last dose of RADOOl, at the following time points for PK analysis: 15 minutes, 30 minutes, 1 hour, 2 hours, 4 hours, 8 hours, 12 hours, and 24 hours.
Results:
The expansion and pharmacokinetics of RADOOl was tested in NSG mice with
NALM6-luc tumors. Daily oral dosing of RADOOl alone did not have an impact on the growth of NALM6-luc tumors (Figure 32). The pharmacokinetic analysis of RADOOl shows that it is fairly stable in the blood of tumor bearing mice (Figure 33 A and 33B). Both the day 0 and day 14 PK analyses show that the RADOOl concentrations in the blood is above lOnm even 24 hours after dosing at the lowest dose tested (0.3 mg/kg).
Based on these doses, huCAR19 CAR T cells were dosed with and without RADOOl to determine the proliferative ability of these cells. The highest dose used was 3 mg/kg based on the levels of RADOOl in the blood 24 hours after dosing. As the concentration of RADOOl was above ΙΟηΜ 24 hours after the final dose of RADOOl, several lower doses of RADOOl were used in the in vivo study with CAR T cells. The CAR T cells were dosed IV one day prior to the start of the daily oral RADOOl dosing. Mice were monitored via FACS for T cell expansion.
The lowest doses of RADOOl show an enhanced proliferation of the CAR T cells (Figure 34). This enhanced proliferation is more evident and prolonged with the CD4+ CAR T cells than the CD8+ CAR T cells. However, with the CD8+ CAR T cells, enhanced
proliferation can be seen at early time points following the CAR T cell dose. EQUIVALENTS
The disclosures of each and every patent, patent application, and publication cited herein are hereby incorporated herein by reference in their entirety. While this invention has been disclosed with reference to specific aspects, it is apparent that other aspects and variations of this invention may be devised by others skilled in the art without departing from the true spirit and scope of the invention. The appended claims are intended to be construed to include all such aspects and equivalent variations.

Claims

What is claimed is:
1. An isolated nucleic acid molecule encoding a chimeric antigen receptor (CAR), wherein the CAR comprises a human anti-CLL-1 binding domain, a transmembrane domain, and an intracellular signaling domain, and wherein said anti-CLL-1 binding domain comprises a heavy chain complementary determining region 1 (HC CDR1), a heavy chain complementary determining region 2 (HC CDR2), and a heavy chain complementary determining region 3 (HC CDR3) of any CLL-1 heavy chain binding domain amino acid sequences listed in Table 2.
2. The isolated nucleic acid molecule of claim 1, wherein said anti-CLL-1 binding domain further comprises a light chain complementary determining region 1 (LC CDR1), a light chain complementary determining region 2 (LC CDR2), and a light chain complementary determining region 3 (LC CDR3) of any anti-CLL-1 light chain binding domain amino acid sequences listed in Table 2.
3. The isolated nucleic acid molecule of claim 2, wherein said LC CDR1, LC CDR2, and LC CDR3 are the LC CDR sequences listed in Table 6, 8, or 4.
4. The isolated nucleic acid molecules of any of claims 1-3, wherein said HC CDR1, HC CDR2, and HC CDR3 are the HC CDR sequences listed in Table 5, 7, or 2.
5. The isolated nucleic acid molecule of any of claims 1-4, which encodes a CAR comprising:
(i) the amino acid sequence of any light chain variable region listed in Table 2;
(ii) an amino acid sequence having at least one, two or three modifications but not more than 30, 20 or 10 modifications of the amino acid sequence of any of the light chain variable regions provided in Table 2; or
(iii) an amino acid sequence with 95-99% identity to the amino acid sequence of any of the light chain variable regions provided in Table 2.
6. The isolated nucleic acid molecule of any of claims 1-5, which encodes a CAR comprising:
(i) the amino acid sequence of any heavy chain variable region listed in Table 2;
(ii) an amino acid sequence having at least one, two or three modifications but not more than 30, 20 or 10 modifications of the amino acid sequence of any of the heavy chain variable regions provided in Table 2: or
(iii) an amino acid sequence with 95-99% identity to the amino acid sequence of any of the heavy chain variable regions provided in Table 2.
7. The isolated nucleic acid molecule of any of claims 1-6, which encodes a CAR comprising the amino acid sequence of any light chain variable region listed in Table 2, and the amino acid sequence of any heavy chain variable region listed Table 2.
8. The isolated nucleic acid molecule of any of the preceding claims, wherein the encoded CLL-1 binding domain comprises:
(i) the amino acid sequence selected from a group consisting of SEQ ID NO:47, 44, 48,
49, 50, 39, 40, 41, 42, 43, 45, 46, 51, 73, 70, 74, 75, 76, 65, 66, 67, 68, 69, 71, 72, 77, 195, 86, 83, 87, 88, 89, 78, 79, 80, 81, 82, 84, 85, 90, or 196;
(ii) an amino acid sequence having at least one, two or three modifications but not more than 30, 20 or 10 modifications to any of SEQ ID NO: 47, 44, 48, 49, 50, 39, 40, 41, 42, 43, 45, 46, 51, 73, 70, 74, 75, 76, 65, 66, 67, 68, 69, 71, 72, 77, 195, 86, 83, 87, 88, 89, 78, 79, 80, 81, 82, 84, 85, 90, or 196; or
(iii) an amino acid sequence with 95-99% identity to any of SEQ ID NO: 47, 44, 48, 49,
50, 39, 40, 41, 42, 43, 45, 46, 51, 73, 70, 74, 75, 76, 65, 66, 67, 68, 69, 71, 72, 77, 195, 86, 83, 87, 88, 89, 78, 79, 80, 81, 82, 84, 85, 90, or 196.
9. The isolated nucleic acid molecule of any of the preceding claims, wherein the CLL- 1 binding domain comprises a nucleotide sequence selected from a group consisting of SEQ ID NO: 60, 44, 61, 62, or 63, or a sequence with 95-99% identity thereof.
10. The isolated nucleic acid molecule of any of the preceding claims, wherein the encoded CAR includes a transmembrane domain that comprises a transmembrane domain of a protein selected from the group consisting of the alpha, beta or zeta chain of the T-cell receptor, CD28, CD3 epsilon, CD45, CD4, CD5, CD8, CD9, CD16, CD22, CD33, CD37, CD64, CD80, CD86, CD 134, CD 137 and CD 154.
11. The isolated nucleic acid molecule of any of the preceding claims, wherein:
(i) the encoded transmembrane domain comprises the amino acid sequence of SEQ ID NO: 6, an amino acid sequence comprises at least one, two or three modifications but not more than 20, 10 or 5 modifications of the amino acid sequence of SEQ ID NO:6, or a sequence with 95-99% identity to the amino acid sequence of SEQ ID NO:6; or
(ii) the nucleic acid sequence encoding the transmembrane domain comprises a sequence of SEQ ID NO: 17, or a sequence with 95-99% identity thereof.
12. The isolated nucleic acid molecule of any of the preceding claims, wherein the encoded CLL-1 binding domain is connected to the transmembrane domain by a hinge region.
13. The nucleic acid molecule of claim 12, wherein:
(i) the encoded hinge region comprises the amino acid sequence of SEQ ID NO:2, or a sequence with 95-99% identity thereof; or
(ii the nucleic acid sequence encoding the hinge region comprises the nucleotide sequence of SEQ ID NO: 13, or a sequence with 95-99% identity thereof.
14. The isolated nucleic acid molecule of any of the preceding claims, wherein the encoded costimulatory domain is a functional signaling domain obtained from a protein selected from the group consisting of a MHC class I molecule, TNF receptor proteins,
Immunoglobulin-like proteins, cytokine receptors, integrins, signaling lymphocytic activation molecules (SLAM proteins), activating NK cell receptors, BTLA, a Toll ligand receptor, OX40, CD2, CD7, CD27, CD28, CD30, CD40, CDS, ICAM-1, LFA-1 (CDl la/CD18), 4-1BB (CD137), B7-H3, CDS, ICAM-1, ICOS (CD278), GITR, BAFFR, LIGHT, HVEM (LIGHTR), KIRDS2, SLAMF7, NKp80 (KLRF1), NKp44, NKp30, NKp46, CD19, CD4, CD8alpha, CD8beta, IL2R beta, IL2R gamma, IL7R alpha, ITGA4, VLA1, CD49a, ITGA4, IA4, CD49D, ITGA6, VLA-6, CD49f, ITGAD, CDl ld, ITGAE, CD103, ITGAL, CDl la, LFA-1, ITGAM, CDl lb, ITGAX, CDl lc, ITGB1, CD29, ITGB2, CD18, LFA-1, ITGB7, NKG2D, NKG2C, TNFR2, TRANCE/RANKL, DNAM1 (CD226), SLAMF4 (CD244, 2B4), CD84, CD96 (Tactile), CEACAM1, CRT AM, Ly9 (CD229), CD160 (BY55), PSGL1, CD100 (SEMA4D), CD69, SLAMF6 (NTB-A, Lyl08), SLAM (SLAMF1, CD150, IPO-3), BLAME (SLAMF8), SELPLG (CD162), LTBR, LAT, GADS, SLP-76, PAG/Cbp, CD19a, and a ligand that specifically binds with CD83.
15. The isolated nucleic acid molecule of claim 14, wherein the encoded costimulatory domain comprises the amino acid sequence of SEQ ID NO:7, or an amino acid sequence having at least one, two or three modifications but not more than 20, 10 or 5 modifications of the amino acid sequence of SEQ ID NO:7, or a sequence with 95-99% identity to the amino acid sequence of SEQ ID NO:7.
16. The isolated nucleic acid molecule of claim 14, wherein the nucleic acid sequence encoding the costimulatory domain comprises the nucleotide sequence of SEQ ID NO: 18, or a sequence with 95-99% identity thereof.
17. The isolated nucleic acid molecule of any of the preceding claims, wherein the encoded intracellular signaling domain comprises a functional signaling domain of 4-1BB and/or a functional signaling domain of CD3 zeta.
18. The isolated nucleic acid molecule of any of the preceding claims, wherein the encoded intracellular signaling domain comprises the amino acid sequence of SEQ ID NO: 7 and/or the sequence of SEQ ID NO:9 or SEQ ID NO: 10; or an amino acid sequence having at least one, two or three modifications but not more than 20, 10 or 5 modifications of the amino acid sequence of SEQ ID NO:7 and/or the amino acid sequence of SEQ ID NO:9 or SEQ ID NO: 10; or a sequence with 95-99% identity to the amino acid sequence of SEQ ID NO:7 and/or the amino acid sequence of SEQ ID NO:9 or SEQ ID NO: 10.
19. The isolated nucleic acid molecule of any of the preceding claims, wherein the encoded intracellular signaling domain comprises the sequence of SEQ ID NO:7 and the sequence of SEQ ID NO:9 or SEQ ID NO: 10, wherein the sequences comprising the intracellular signaling domain are expressed in the same frame and as a single polypeptide chain.
20. The isolated nucleic acid molecule of any of the preceding claims, wherein the nucleic acid sequence encoding the intracellular signaling domain comprises the sequence of SEQ ID NO: 18, or a sequence with 95-99% identity thereof, and/or the sequence of SEQ ID NO:20 or SEQ ID NO:21, or a sequence with 95-99% identity thereof.
21. The isolated nucleic acid molecule of any of the preceding claims, further comprising a leader sequence which encodes the amino acid sequence of SEQ ID NO:l.
22. The isolated nucleic acid molecule of any of the preceding claims, which encodes a CAR comprising:
(i) the amino acid sequence of any of SEQ ID NOs:99, 96, 100, 101, 102, 91, 92, 93,
94, 95, 97, 98, 103, or 197;
(ii) an amino acid sequence having at least one, two or three modifications but not more than 30, 20 or 10 modifications to any of SEQ ID NOs: 99, 96, 100, 101, 102, 91, 92, 93, 94,
95, 97, 98, 103, or 197; or
(iii) an amino acid sequence with 95-99% identity to any of SEQ ID NOs: 99, 96, 100, 101, 102, 91, 92, 93, 94, 95, 97, 98, 103, or 197.
23. The isolated nucleic acid molecule of any of the preceding claims, comprising the nucleotide sequence of any of SEQ ID NOs: 112, 109, 113, 114, 115, 104, 105, 106, 107, 108, 110, 111, 116, or 198, or a nucleotide sequence with 95-99% identity to any of SEQ ID NOs: 112, 109, 113, 114, 115, 104, 105, 106, 107, 108, 110, 111, 116,or 198.
24. An isolated polypeptide molecule encoded by the nucleic acid molecule of any one of claims 1-23.
25. An isolated chimeric antigen receptor (CAR) polypeptide, wherein the CAR comprises an antibody or antibody fragment which includes a human anti-CLL-1 binding domain, a transmembrane domain, and an intracellular signaling domain comprising a costimulatory domain and/or a primary signaling domain, and wherein said anti-CLL-1 binding domain comprises a heavy chain complementary determining region 1 (HC CDR1), a heavy chain complementary determining region 2 (HC CDR2), and a heavy chain complementary determining region 3 (HC CDR3) of any CLL-1 heavy chain binding domain amino acid sequences listed in Table 2.
26. The isolated CAR polypeptide of claim 25, wherein said anti-CLL-1 binding domain further comprises a light chain complementary determining region 1 (LC CDR1), a light chain complementary determining region 2 (LC CDR2), and a light chain complementary determining region 3 (LC CDR3) of any anti-CLL-1 light chain binding domain amino acid sequences listed in Table 2.
27. The isolated nucleic acid molecule of claim 26, wherein said LC CDR1, LC CDR2, and LC CDR3 are the LC CDR sequences listed in Table 6, 8, or 4.
28. The isolated nucleic acid molecules of any of claims 25-27, wherein said HC CDR1, HC CDR2, and HC CDR3 are the HC CDR sequences listed in Table 5, 7, or 3.
29. The isolated CAR polypeptide of any of claims 25-28, comprising:
(i) the amino acid sequence of any light chain variable region listed in Table 2;
(ii) an amino acid sequence having at least one, two or three modifications but not more than 30, 20 or 10 modifications of the amino acid sequence of any of the light chain variable region provided in Table 2; or
(iii) an amino acid sequence with 95-99% identity to the amino acid sequence of any of the light chain variable region provided in Table 2.
30. The isolated CAR polypeptide of any of claims 25-29, comprising:
(i) the amino acid sequence of any heavy chain variable region listed in Table 2; (ii) an amino acid sequence having at least one, two or three modifications but not more than 30, 20 or 10 modifications of the amino acid sequence of any of the heavy chain variable region provided in Table 2: or
(iii) an amino acid sequence with 95-99% identity to the amino acid sequence of any of the heavy chain variable region provided in Table 2.
31. The isolated CAR polypeptide of any of claims 25-30, comprising the amino acid sequence of any light chain variable region listed in Table 2, and the amino acid sequence of any heavy chain variable region listed Table 2.
32. The isolated CAR polypeptide of any of claims 25-31, comprising:
(i) the amino acid sequence selected from a group consisting of SEQ ID NO: 47, 44, 48,
49, 50, 39, 40, 41, 42, 43, 45, 46, 51, 73, 70, 74, 75, 76, 65, 66, 67, 68, 69, 71, 72, 77, 195, 86, 83, 87, 88, 89, 78, 79, 80, 81, 82, 84, 85, 90, or 196;
(ii) an amino acid sequence having at least one, two or three modifications but not more than 30, 20 or 10 modifications to any of SEQ ID NO: 47, 44, 48, 49, 50, 39, 40, 41, 42, 43, 45, 46, 51, 73, 70, 74, 75, 76, 65, 66, 67, 68, 69, 71, 72, 77, 195, 86, 83, 87, 88, 89, 78, 79, 80, 81, 82, 84, 85, 90, or 196; or
(iii) an amino acid sequence with 95-99% identity to any of SEQ ID NO: 47, 44, 48, 49,
50, 39, 40, 41, 42, 43, 45, 46, 51, 73, 70, 74, 75, 76, 65, 66, 67, 68, 69, 71, 72, 77, 195, 86, 83, 87, 88, 89, 78, 79, 80, 81, 82, 84, 85, 90, or 196.
33. The isolated CAR polypeptide of any of claims 25-32, wherein the transmembrane domain comprises a transmembrane domain from a protein selected from the group consisting of the alpha, beta or zeta chain of the T-cell receptor, CD28, CD3 epsilon, CD45, CD4, CD5, CD8, CD9, CD16, CD22, CD33, CD37, CD64, CD80, CD86, CD134, CD137 and CD154.
34. The isolated CAR polypeptide of any of claims 25-33, wherein:
(i) the transmembrane domain comprises the amino acid sequence of SEQ ID NO: 6,
(ii) an amino acid sequence comprises at least one, two or three modifications but not more than 20, 10 or 5 modifications of the amino acid sequence of SEQ ID NO:6, or
(iii) a sequence with 95-99% identity to the amino acid sequence of SEQ ID NO:6.
35. The isolated CAR polypeptide of any of claims 25-34, wherein the CLL-1 binding domain is connected to the transmembrane domain by a hinge region.
36. The isolated CAR polypeptide of claim 35, wherein the hinge region comprises SEQ ID NO:2, or a sequence with 95-99% identity thereof.
37. The isolated CAR polypeptide of any of claims 25-36, wherein the costimulatory domain is a functional signaling domain obtained from a protein selected from the group consisting of a MHC class I molecule, TNF receptor proteins, Immunoglobulin-like proteins, cytokine receptors, integrins, signaling lymphocytic activation molecules (SLAM proteins), activating NK cell receptors, BTLA, a Toll ligand receptor, OX40, CD2, CD7, CD27, CD28, CD30, CD40, CDS, ICAM-1, LFA-1 (CDl la/CD18), 4-lBB (CD137), B7-H3, CDS, ICAM-1, ICOS (CD278), GITR, BAFFR, LIGHT, HVEM (LIGHTR), KIRDS2, SLAMF7, NKp80 (KLRF1), NKp44, NKp30, NKp46, CD19, CD4, CD8alpha, CD8beta, IL2R beta, IL2R gamma, IL7R alpha, ITGA4, VLA1, CD49a, ITGA4, IA4, CD49D, ITGA6, VLA-6, CD49f, ITGAD, CDl ld, ITGAE, CD103, ITGAL, CDl la, LFA-1, ITGAM, CDl lb, ITGAX, CDl lc, ITGBl, CD29, ITGB2, CD18, LFA-1, ITGB7, NKG2D, NKG2C, TNFR2, TRANCE/RANKL, DNAM1 (CD226), SLAMF4 (CD244, 2B4), CD84, CD96 (Tactile), CEACAM1, CRT AM, Ly9 (CD229), CD160 (BY55), PSGL1, CD100 (SEMA4D), CD69, SLAMF6 (NTB-A, Lyl08), SLAM (SLAMF1, CD150, IPO-3), BLAME (SLAMF8), SELPLG (CD162), LTBR, LAT, GADS, SLP-76, PAG/Cbp, CD19a, and a ligand that specifically binds with CD83.
38. The isolated CAR polypeptide of any of claims 25-37, wherein the costimulatory domain comprises the amino acid sequence of SEQ ID NO:7, or an amino acid sequence having at least one, two or three modifications but not more than 20, 10 or 5 modifications of the amino acid sequence of SEQ ID NO:7, or a sequence with 95-99% identity to the amino acid sequence of SEQ ID NO:7.
39. The isolated CAR polypeptide of any of claims 25-37, wherein the intracellular signaling domain comprises a functional signaling domain of 4-lBB and/or a functional signaling domain of CD3 zeta.
40. The isolated CAR polypeptide of any of claims 25-39, wherein the intracellular signaling domain comprises the amino acid sequence of SEQ ID NO: 7 and/or the sequence of SEQ ID NO:9 or SEQ ID NO: 10; or an amino acid sequence having at least one, two or three modifications but not more than 20, 10 or 5 modifications of the amino acid sequence of SEQ ID NO:7 and/or the amino acid sequence of SEQ ID NO:9 or SEQ ID NO: 10; or a sequence with 95-99% identity to the amino acid sequence of SEQ ID NO:7 and/or the amino acid sequence of SEQ ID NO:9 or SEQ ID NO: 10.
41. The isolated CAR polypeptide of any of claims 25-40, wherein the intracellular signaling domain comprises the sequence of SEQ ID NO:7 and the sequence of SEQ ID NO:9 or SEQ ID NO: 10, wherein the sequences comprising the intracellular signaling domain are expressed in the same frame and as a single polypeptide chain.
42. The isolated CAR polypeptide of any of claims 25-41, further comprising a leader sequence which comprises the amino acid sequence of SEQ ID NO:l.
43. The isolated CAR polypeptide of any of claims 25-42, comprising:
(i) the amino acid sequence of any of SEQ ID NOs: 99, 96, 100, 101, 102, 91, 92, 93,
94, 95, 97, 98, 103, or 197;
(ii) an amino acid sequence having at least one, two or three modifications but not more than 30, 20 or 10 modifications to any of SEQ ID NOs: 99, 96, 100, 101, 102, 91, 92, 93, 94,
95, 97, 98, 103, or 197; or
(iii) an amino acid sequence with 95-99% identity to any of SEQ ID NOs: 99, 96, 100, 101, 102, 91, 92, 93, 94, 95, 97, 98, 103, or 197.
44. A vector comprising a nucleic acid molecule encoding a CAR or an anti- CLL-1 binding domain of any of the preceding claims, wherein the vector is selected from the group consisting of a DNA vector, an RNA vector, a plasmid, a lentivirus vector, adenoviral vector, or a retrovirus vector.
45. The vector of claim 44, further comprising an EF-1 promoter comprising the sequence of SEQ ID NO: 11.
46. A cell, e.g., an immune effector cell, comprising nucleic acid of any of claims 1-23, the CAR polypeptide of any of claims 24-43, or the vector of claim 44 or 45.
47. A method of making a cell, e.g., an immune effector cell, comprising transducing an immune effector cell with a vector of either of claim 44 or 45.
48. A method of generating a population of RNA-engineered cells, comprising introducing an in vitro transcribed RNA or synthetic RNA into a cell, where the RNA comprises a nucleic acid encoding a CAR polypeptide of any of the preceding claims.
49. A method of providing an anti-tumor immunity in a mammal, comprising administering to the mammal an effective amount of a cell, e.g., a population of immune effector cells, comprising the CAR nucleic acid of any of claims 1-23, or the CAR polypeptide of any of claims 24-43.
50. The method of claim 49, wherein the cell is an autologous T cell or an allogeneic T cell.
51. A method of treating a mammal having a disease associated with expression of CLL-1, comprising administering to the mammal an effective amount of a cell, e.g., a population of immune effector cells, comprising the CAR nucleic acid of any of claims 1-23, or the CAR polypeptide of any of claims 24-43.
52. The method of claim 51, wherein the disease associated with CLL-1 expression is:
(i) a cancer or malignancy, or a precancerous condition chosen from one or more of a myelodysplasia, a myelodysplastic syndrome or a preleukemia, or
(ii) a non-cancer related indication associated with expression of CLL-1.
53. The method of claim 51 or 52, wherein the disease is a hematologic cancer.
54. The method of any of claims 51-53, wherein the disease is an acute leukemia chosen from one or more of acute myeloid leukemia (AML); acute lymphoblastic B-cell leukemia (B-cell acute lymphoid leukemia, BALL), acute lymphoblastic T-cell leukemia (T- cell acute lymphoid leukemia (TALL), B-cell prolymphocytic leukemia, chronic lymphocytic leukemia, chronic myeloid leukemia (CML), myelodysplasia syndrome, plasma cell myeloma, or a combination thereof.
55. The method of any of claims 51-54, wherein the cell, e.g., the population of immune effector cells, are administered in combination with one or more of:
(i) an agent that increases the efficacy of the cell comprising the CAR nucleic acid or CAR polypeptide;
(ii) an agent that ameliorates one or more side effects associated with administration of the cell comprising the CAR nucleic acid or CAR polypeptide; or
(iii) an agent that treats the disease associated with the expression of CLL-1.
56. The isolated nucleic acid molecule of any of claims 1-23, the isolated CAR polypeptide molecule of any of claims 24-43, , the vector of either of claim 44 or 45, or the cell of claim 46 for use as a medicament.
57. The isolated nucleic acid molecule of any of claims 1-23, the isolated CAR polypeptide molecule of any of claims 24-43, , the vector of either of claim 44 or 45, or the cell of claim 46 for use in the treatment of a disease associated with expression of CLL-1.
58. A cell, e.g., a population of immune effector cells, of claim 46, further expressing an inhibitory molecule that comprises a first polypeptide that comprises at least a portion of an inhibitory molecule, associated with a second polypeptide that comprises a positive signal from an intracellular signaling domain.
59. The cell of claim 58, wherein the inhibitory molecule comprise first polypeptide that comprises at least a portion of PD1 and a second polypeptide comprising a costimulatory domain and primary signaling domain.
60. The method of claim 55, wherein the agent is an mTOR inhibitor and the subject is administered a low, immune enhancing, dose of an mTOR inhibitor, e.g., RAD001 or rapamycin.
61. The method of claim 60, wherein the mTOR inhibitor is administered for an amount of time sufficient to decrease the proportion of PD-1 positive T cells, increase the proportion of PD-1 negative T cells, or increase the ratio of PD-1 negative T cells/ PD-1 positive T cells, in the peripheral blood of the subject, or in a preparation of T cells isolated from the subject.
62. A method of conditioning a subject prior to cell transplantation comprising administering to the subject an effective amount of the cell comprising the CAR nucleic acid molecule of any of claims 1-23 or the CAR polypeptide of any of claims 24-43.
63. The method of claim 62, wherein the cell transplantation is a stem cell
transplantation, e.g., a hematopoietic stem cell transplantation, or a bone marrow
transplantation.
64. The method of either of claim 62 or 63, wherein conditioning a subject prior to cell transplantation comprises reducing the number of CLL-1 -expressing cells in a subject, e.g., CLL-1 -expressing normal cells or CLL-1 -expressing cancer cells.
65. The method of any of claims 51-54, wherein a chemotherapeutic agent is administered prior to administration of the cell, e.g., the population of immune effector cells; and optionally, wherein the chemotherapeutic agent increases CLL-1 expression on the cancer cell or wherein the chemotherapeutic agent is cytarabine.
PCT/US2015/041337 2014-07-21 2015-07-21 Treatment of cancer using a cll-1 chimeric antigen receptor WO2016014535A1 (en)

Priority Applications (13)

Application Number Priority Date Filing Date Title
CA2955465A CA2955465A1 (en) 2014-07-21 2015-07-21 Treatment of cancer using a cll-1 chimeric antigen receptor
JP2017503488A JP6736540B2 (en) 2014-07-21 2015-07-21 Treatment of cancer using CLL-1 chimeric antigen receptor
KR1020177004392A KR20170037625A (en) 2014-07-21 2015-07-21 Treatment of cancer using a cll-1 chimeric antigen receptor
CN201580050589.9A CN107109420A (en) 2014-07-21 2015-07-21 Use the treatment of cancer of CLL-1 Chimeric antigen receptors
AU2015292811A AU2015292811B2 (en) 2014-07-21 2015-07-21 Treatment of cancer using a CLL-1 chimeric antigen receptor
EP15744448.0A EP3171882A1 (en) 2014-07-21 2015-07-21 Treatment of cancer using a cll-1 chimeric antigen receptor
BR112017000939A BR112017000939A2 (en) 2014-07-21 2015-07-21 cancer treatment using a cll-1 chimeric antigen receptor
SG11201700418VA SG11201700418VA (en) 2014-07-21 2015-07-21 Treatment of cancer using a cll-1 chimeric antigen receptor
RU2017105161A RU2741120C2 (en) 2014-07-21 2015-07-21 Treating cancer using a chimeric antigenic cll-1 receptor
MX2017001013A MX2017001013A (en) 2014-07-21 2015-07-21 Treatment of cancer using a cll-1 chimeric antigen receptor.
IL250116A IL250116B (en) 2014-07-21 2017-01-15 Treatment of cancer using a cll-1 chimeric antigen receptor
CONC2017/0000506A CO2017000506A2 (en) 2014-07-21 2017-01-20 Chimeric cll-1 antigen receptor
AU2020201939A AU2020201939A1 (en) 2014-07-21 2020-03-18 Treatment of cancer using a CLL-1 chimeric antigen receptor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CNPCT/CN2014/082602 2014-07-21
CN2014082602 2014-07-21
CNPCT/CN2014/090500 2014-11-06
CN2014090500 2014-11-06

Publications (1)

Publication Number Publication Date
WO2016014535A1 true WO2016014535A1 (en) 2016-01-28

Family

ID=53761606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2015/041337 WO2016014535A1 (en) 2014-07-21 2015-07-21 Treatment of cancer using a cll-1 chimeric antigen receptor

Country Status (16)

Country Link
US (2) US10568947B2 (en)
EP (1) EP3171882A1 (en)
JP (2) JP6736540B2 (en)
KR (1) KR20170037625A (en)
CN (1) CN107109420A (en)
AR (1) AR101829A1 (en)
AU (2) AU2015292811B2 (en)
BR (1) BR112017000939A2 (en)
CA (1) CA2955465A1 (en)
CO (1) CO2017000506A2 (en)
IL (1) IL250116B (en)
MX (1) MX2017001013A (en)
RU (1) RU2741120C2 (en)
SG (2) SG11201700418VA (en)
TW (1) TWI718992B (en)
WO (1) WO2016014535A1 (en)

Cited By (101)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016115482A1 (en) * 2015-01-16 2016-07-21 Novartis Pharma Ag Phosphoglycerate kinase 1 (pgk) promoters and methods of use for expressing chimeric antigen receptor
WO2017001572A1 (en) 2015-06-30 2017-01-05 Cellectis Methods for improving functionality in nk cell by gene inactivation using specific endonuclease
WO2017015427A1 (en) 2015-07-21 2017-01-26 Novartis Ag Methods for improving the efficacy and expansion of immune cells
WO2017040930A2 (en) 2015-09-03 2017-03-09 The Trustees Of The University Of Pennsylvania Biomarkers predictive of cytokine release syndrome
WO2017114497A1 (en) 2015-12-30 2017-07-06 Novartis Ag Immune effector cell therapies with enhanced efficacy
WO2017125897A1 (en) * 2016-01-21 2017-07-27 Novartis Ag Multispecific molecules targeting cll-1
US9745368B2 (en) 2013-03-15 2017-08-29 The Trustees Of The University Of Pennsylvania Targeting cytotoxic cells with chimeric receptors for adoptive immunotherapy
WO2017149515A1 (en) 2016-03-04 2017-09-08 Novartis Ag Cells expressing multiple chimeric antigen receptor (car) molecules and uses therefore
WO2017165683A1 (en) 2016-03-23 2017-09-28 Novartis Ag Cell secreted minibodies and uses thereof
US9777061B2 (en) 2014-07-21 2017-10-03 Novartis Ag Treatment of cancer using a CD33 chimeric antigen receptor
WO2017173256A1 (en) 2016-04-01 2017-10-05 Kite Pharma, Inc. Chimeric antigen and t cell receptors and methods of use
WO2017181119A2 (en) 2016-04-15 2017-10-19 Novartis Ag Compositions and methods for selective protein expression
US9815901B2 (en) 2014-08-19 2017-11-14 Novartis Ag Treatment of cancer using a CD123 chimeric antigen receptor
WO2017211900A1 (en) * 2016-06-07 2017-12-14 Max-Delbrück-Centrum für Molekulare Medizin Chimeric antigen receptor and car-t cells that bind bcma
WO2018013918A2 (en) 2016-07-15 2018-01-18 Novartis Ag Treatment and prevention of cytokine release syndrome using a chimeric antigen receptor in combination with a kinase inhibitor
WO2018023025A1 (en) 2016-07-28 2018-02-01 Novartis Ag Combination therapies of chimeric antigen receptors adn pd-1 inhibitors
WO2018026819A2 (en) 2016-08-01 2018-02-08 Novartis Ag Treatment of cancer using a chimeric antigen receptor in combination with an inhibitor of a pro-m2 macrophage molecule
WO2018064387A1 (en) 2016-09-28 2018-04-05 Novartis Ag Porous membrane-based macromolecule delivery system
KR20180129889A (en) * 2016-04-01 2018-12-05 카이트 파마 인코포레이티드 Chimeric receptors and methods for their use
KR20180130534A (en) * 2016-03-29 2018-12-07 유니버시티 오브 써던 캘리포니아 Chimeric antigen receptor targeting cancer
WO2019000146A1 (en) * 2017-06-26 2019-01-03 深圳市博奥康生物科技有限公司 Sirna of human programmed cell death receptor 1 and use thereof
US10174095B2 (en) 2014-07-21 2019-01-08 Novartis Ag Nucleic acid encoding a humanized anti-BCMA chimeric antigen receptor
US10221245B2 (en) 2013-03-16 2019-03-05 Novartis Ag Treatment of cancer using humanized anti-CD19 chimeric antigen receptor
US10253086B2 (en) 2015-04-08 2019-04-09 Novartis Ag CD20 therapies, CD22 therapies, and combination therapies with a CD19 chimeric antigen receptor (CAR)-expressing cell
WO2019079569A1 (en) 2017-10-18 2019-04-25 Novartis Ag Compositions and methods for selective protein degradation
US10273300B2 (en) 2014-12-29 2019-04-30 The Trustees Of The University Of Pennsylvania Methods of making chimeric antigen receptor-expressing cells
WO2019084288A1 (en) 2017-10-25 2019-05-02 Novartis Ag Methods of making chimeric antigen receptor-expressing cells
US10287354B2 (en) 2013-12-20 2019-05-14 Novartis Ag Regulatable chimeric antigen receptor
US10308717B2 (en) 2013-02-20 2019-06-04 Novartis Ag Treatment of cancer using humanized anti-EGFRvIII chimeric antigen receptor
WO2019122046A1 (en) * 2017-12-21 2019-06-27 F. Hoffmann-La Roche Ag Universal reporter cell assay for specificity test of novel antigen binding moieties
WO2019122060A1 (en) * 2017-12-21 2019-06-27 F. Hoffmann-La Roche Ag Car-t cell assay for specificity test of novel antigen binding moieties
US10357514B2 (en) 2014-04-07 2019-07-23 The Trustees Of The University Of Pennsylvania Treatment of cancer using anti-CD19 Chimeric Antigen Receptor
WO2019210153A1 (en) 2018-04-27 2019-10-31 Novartis Ag Car t cell therapies with enhanced efficacy
WO2019213282A1 (en) 2018-05-01 2019-11-07 Novartis Ag Biomarkers for evaluating car-t cells to predict clinical outcome
WO2019227003A1 (en) 2018-05-25 2019-11-28 Novartis Ag Combination therapy with chimeric antigen receptor (car) therapies
WO2019237035A1 (en) 2018-06-08 2019-12-12 Intellia Therapeutics, Inc. Compositions and methods for immunooncology
WO2019241315A1 (en) 2018-06-12 2019-12-19 Obsidian Therapeutics, Inc. Pde5 derived regulatory constructs and methods of use in immunotherapy
US10525083B2 (en) 2016-10-07 2020-01-07 Novartis Ag Nucleic acid molecules encoding chimeric antigen receptors comprising a CD20 binding domain
WO2020012337A1 (en) 2018-07-10 2020-01-16 Novartis Ag 3-(5-amino-1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives and their use in the treatment of i karos family zinc finger 2 (ikzf2)-dependent diseases
US10568947B2 (en) 2014-07-21 2020-02-25 Novartis Ag Treatment of cancer using a CLL-1 chimeric antigen receptor
US10577417B2 (en) 2014-09-17 2020-03-03 Novartis Ag Targeting cytotoxic cells with chimeric receptors for adoptive immunotherapy
WO2020047449A2 (en) 2018-08-31 2020-03-05 Novartis Ag Methods of making chimeric antigen receptor-expressing cells
WO2020047452A2 (en) 2018-08-31 2020-03-05 Novartis Ag Methods of making chimeric antigen receptor-expressing cells
WO2020086742A1 (en) 2018-10-24 2020-04-30 Obsidian Therapeutics, Inc. Er tunable protein regulation
US10640569B2 (en) 2013-12-19 2020-05-05 Novartis Ag Human mesothelin chimeric antigen receptors and uses thereof
WO2020123716A1 (en) 2018-12-11 2020-06-18 Obsidian Therapeutics, Inc. Membrane bound il12 compositions and methods for tunable regulation
US10689450B2 (en) 2016-04-01 2020-06-23 Kite Pharma, Inc BCMA binding molecules and methods of use thereof
WO2020128972A1 (en) 2018-12-20 2020-06-25 Novartis Ag Dosing regimen and pharmaceutical combination comprising 3-(1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives
WO2020165833A1 (en) 2019-02-15 2020-08-20 Novartis Ag 3-(1-oxo-5-(piperidin-4-yl)isoindolin-2-yl)piperidine-2,6-dione derivatives and uses thereof
WO2020165834A1 (en) 2019-02-15 2020-08-20 Novartis Ag Substituted 3-(1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives and uses thereof
WO2020176397A1 (en) 2019-02-25 2020-09-03 Novartis Ag Mesoporous silica particles compositions for viral delivery
US10774388B2 (en) 2014-10-08 2020-09-15 Novartis Ag Biomarkers predictive of therapeutic responsiveness to chimeric antigen receptor therapy and uses thereof
WO2020185632A1 (en) 2019-03-08 2020-09-17 Obsidian Therapeutics, Inc. Human carbonic anhydrase 2 compositions and methods for tunable regulation
EP3515503A4 (en) * 2016-09-23 2020-09-23 The Regents Of The University Of Michigan Engineered lymphocytes
WO2020210678A1 (en) 2019-04-12 2020-10-15 Novartis Ag Methods of making chimeric antigen receptor-expressing cells
WO2020219742A1 (en) 2019-04-24 2020-10-29 Novartis Ag Compositions and methods for selective protein degradation
EP3250606B1 (en) * 2015-01-26 2020-11-25 Cellectis Anti-cll1 specific single-chain chimeric antigen receptors (sccars) for cancer immunotherapy
WO2020252405A1 (en) 2019-06-12 2020-12-17 Obsidian Therapeutics, Inc. Ca2 compositions and methods for tunable regulation
WO2020252404A1 (en) 2019-06-12 2020-12-17 Obsidian Therapeutics, Inc. Ca2 compositions and methods for tunable regulation
WO2021026266A1 (en) * 2019-08-05 2021-02-11 Distributed Bio, Inc. Antigen binding molecules and methods of screening thereof
WO2021046451A1 (en) 2019-09-06 2021-03-11 Obsidian Therapeutics, Inc. Compositions and methods for dhfr tunable protein regulation
CN112673022A (en) * 2018-09-10 2021-04-16 南京传奇生物科技有限公司 Single domain antibodies against CD33 and constructs thereof
WO2021108661A2 (en) 2019-11-26 2021-06-03 Novartis Ag Chimeric antigen receptors and uses thereof
US11028177B2 (en) 2013-02-20 2021-06-08 Novartis Ag Effective targeting of primary human leukemia using anti-CD123 chimeric antigen receptor engineered T cells
US11028143B2 (en) 2014-01-21 2021-06-08 Novartis Ag Enhanced antigen presenting ability of RNA CAR T cells by co-introduction of costimulatory molecules
WO2021123996A1 (en) 2019-12-20 2021-06-24 Novartis Ag Uses of anti-tgf-beta antibodies and checkpoint inhibitors for the treatment of proliferative diseases
WO2021173995A2 (en) 2020-02-27 2021-09-02 Novartis Ag Methods of making chimeric antigen receptor-expressing cells
WO2021173985A2 (en) 2020-02-27 2021-09-02 Novartis Ag Methods of making chimeric antigen receptor-expressing cells
CN113461818A (en) * 2021-06-30 2021-10-01 徐州医科大学 CD 276-targeted fully human antibody scFv, chimeric antigen receptor, engineered immune cell and preparation method thereof
EP3737400A4 (en) * 2018-01-09 2021-10-27 H. Lee Moffitt Cancer Center & Research Institute, Inc. Compositions and methods for targeting clec12a-expressing cancers
US11161907B2 (en) 2015-02-02 2021-11-02 Novartis Ag Car-expressing cells against multiple tumor antigens and uses thereof
WO2021252920A1 (en) 2020-06-11 2021-12-16 Novartis Ag Zbtb32 inhibitors and uses thereof
WO2021260528A1 (en) 2020-06-23 2021-12-30 Novartis Ag Dosing regimen comprising 3-(1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives
WO2022029573A1 (en) 2020-08-03 2022-02-10 Novartis Ag Heteroaryl substituted 3-(1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives and uses thereof
WO2022040586A2 (en) 2020-08-21 2022-02-24 Novartis Ag Compositions and methods for in vivo generation of car expressing cells
US20220089737A1 (en) * 2020-09-11 2022-03-24 Janssen Biotech, Inc. Multi-specific immune targeting molecules and uses thereof
CN114650830A (en) * 2019-09-13 2022-06-21 纪念斯隆-凯特琳癌症中心 Antigen recognition receptor targeting CD371 and uses thereof
US11413340B2 (en) 2015-12-22 2022-08-16 Novartis Ag Mesothelin chimeric antigen receptor (CAR) and antibody against PD-L1 inhibitor for combined use in anticancer therapy
EP4043485A1 (en) 2017-01-26 2022-08-17 Novartis AG Cd28 compositions and methods for chimeric antigen receptor therapy
US11446398B2 (en) 2016-04-11 2022-09-20 Obsidian Therapeutics, Inc. Regulated biocircuit systems
WO2022215011A1 (en) 2021-04-07 2022-10-13 Novartis Ag USES OF ANTI-TGFβ ANTIBODIES AND OTHER THERAPEUTIC AGENTS FOR THE TREATMENT OF PROLIFERATIVE DISEASES
WO2022229853A1 (en) 2021-04-27 2022-11-03 Novartis Ag Viral vector production system
RU2786699C1 (en) * 2021-10-04 2022-12-23 Федеральное государственное бюджетное учреждение «Национальный медицинский исследовательский центр детской гематологии, онкологии и иммунологии имени Дмитрия Рогачева» Министерства здравоохранения Российской Федерации A method for the treatment of primary refractory form and early recurrence of hodgkin's lymphoma in children
US11542488B2 (en) 2014-07-21 2023-01-03 Novartis Ag Sortase synthesized chimeric antigen receptors
WO2023021477A1 (en) 2021-08-20 2023-02-23 Novartis Ag Methods of making chimeric antigen receptor–expressing cells
US11608382B2 (en) 2018-06-13 2023-03-21 Novartis Ag BCMA chimeric antigen receptors and uses thereof
EP3966249A4 (en) * 2019-05-08 2023-05-10 2seventy bio, Inc. Cll-1 targeted immunotherapies
US11667691B2 (en) 2015-08-07 2023-06-06 Novartis Ag Treatment of cancer using chimeric CD3 receptor proteins
US11725210B2 (en) 2017-03-17 2023-08-15 Fred Hutchinson Cancer Center Immunomodulatory fusion proteins and uses thereof
WO2023201238A1 (en) * 2022-04-11 2023-10-19 Vor Biopharma Inc. Binding agents and methods of use thereof
WO2023214325A1 (en) 2022-05-05 2023-11-09 Novartis Ag Pyrazolopyrimidine derivatives and uses thereof as tet2 inhibitors
US11851659B2 (en) 2017-03-22 2023-12-26 Novartis Ag Compositions and methods for immunooncology
US11883432B2 (en) 2020-12-18 2024-01-30 Century Therapeutics, Inc. Chimeric antigen receptor system with adaptable receptor specificity
US11896614B2 (en) 2015-04-17 2024-02-13 Novartis Ag Methods for improving the efficacy and expansion of chimeric antigen receptor-expressing cells
WO2024044670A1 (en) 2022-08-26 2024-02-29 Kite Pharma, Inc. Improving immune cell function
WO2024089639A1 (en) 2022-10-26 2024-05-02 Novartis Ag Lentiviral formulations
US11975026B2 (en) 2019-11-26 2024-05-07 Novartis Ag CD19 and CD22 chimeric antigen receptors and uses thereof
US12012443B2 (en) 2015-03-05 2024-06-18 Fred Hutchinson Cancer Center Immunomodulatory fusion proteins and uses thereof
US12038441B2 (en) 2018-04-04 2024-07-16 Hoffmann-La Roche Inc. CAR-T reporter based diagnostic assays to detect tumor antigens in cancer patients
US12037583B2 (en) 2015-12-04 2024-07-16 Novartis Ag Compositions and methods for immunooncology
US12043667B2 (en) 2019-05-04 2024-07-23 Inhibrx Biosciences, Inc. CLEC12a binding polypeptides and uses thereof

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150140036A1 (en) 2013-11-13 2015-05-21 Novartis Institutes For Biomedical Research, Inc. Low, immune enhancing, dose mtor inhibitors and uses thereof
CN107847491A (en) 2015-05-20 2018-03-27 诺华公司 Everolimus (EVEROLIMUS) and the medicinal combination up to Tuoli former times cloth (DACTOLISIB)
DK3523326T3 (en) * 2016-10-04 2020-08-03 Prec Biosciences Inc COSTIMULATING DOMAINS FOR USE IN GENETICALLY MODIFIED CELLS
RS62463B1 (en) * 2016-10-21 2021-11-30 Inst Nat Sante Rech Med Methods for promoting t cells response
TW201825090A (en) 2016-11-23 2018-07-16 瑞士商諾華公司 Methods of enhancing immune response
EP3579870A4 (en) 2017-02-07 2020-12-30 Seattle Children's Hospital (DBA Seattle Children's Research Institute) Phospholipid ether (ple) car t cell tumor targeting (ctct) agents
EP3589647A1 (en) 2017-02-28 2020-01-08 Novartis AG Shp inhibitor compositions and uses for chimeric antigen receptor therapy
RU2019130504A (en) 2017-02-28 2021-03-30 Вор Байофарма, Инк. COMPOSITIONS AND METHODS FOR INHIBITING LINE-SPECIFIC PROTEINS
JP7178355B2 (en) 2017-02-28 2022-11-25 エンドサイト・インコーポレイテッド Compositions and methods for CAR T cell therapy
WO2019089798A1 (en) 2017-10-31 2019-05-09 Novartis Ag Anti-car compositions and methods
WO2019108900A1 (en) * 2017-11-30 2019-06-06 Novartis Ag Bcma-targeting chimeric antigen receptor, and uses thereof
EP3717008A1 (en) * 2017-12-01 2020-10-07 Merus N.V. Use of bispecific antibody and il-15 for combination therapy
US11311576B2 (en) 2018-01-22 2022-04-26 Seattle Children's Hospital Methods of use for CAR T cells
WO2019222579A1 (en) * 2018-05-17 2019-11-21 St. Jude Children's Research Hospital, Inc. Chimeric antigen receptors with myd88 and cd40 costimulatory domains
CN108866088B (en) * 2018-06-20 2023-06-09 上海恒润达生生物科技股份有限公司 Targeting CLL-1 chimeric antigen receptor and uses thereof
GB201813178D0 (en) * 2018-08-13 2018-09-26 Autolus Ltd Cell
JP2022520138A (en) 2018-08-28 2022-03-29 ブイオーアール バイオファーマ インコーポレーテッド Genetically engineered hematopoietic stem cells and their use
EP3875484A4 (en) * 2018-10-26 2022-07-20 CRAGE medical Co., Limited Cll1-targeting antibody and application thereof
KR102335799B1 (en) * 2018-12-05 2021-12-08 주식회사 헤지호그 Antibodies regulating functions of an endothelin receptor type A
US20220088075A1 (en) 2019-02-22 2022-03-24 The Trustees Of The University Of Pennsylvania Combination therapies of egfrviii chimeric antigen receptors and pd-1 inhibitors
AU2020248097A1 (en) * 2019-03-27 2021-11-18 Research Institute At Nationwide Children's Hospital Generation of chimeric antigen receptor (CAR)-primary NK cells for cancer immunotherapy using a combination of Cas9/RNP and AAV viruses
US20230077716A1 (en) * 2020-02-07 2023-03-16 Washington University Antibodies protective against influenza b
WO2023006117A1 (en) * 2021-07-30 2023-02-02 Nanjing Legend Biotech Co., Ltd. Antibodies against cll1 and constructs thereof
US20230119119A1 (en) 2021-10-18 2023-04-20 Cilag Gmbh International Cable-driven actuation system for robotic surgical tool attachment
WO2023212676A1 (en) * 2022-04-29 2023-11-02 Baylor College Of Medicine Terminal deoxynucleotidyl transferase antibodies and uses thereof
WO2023225641A2 (en) * 2022-05-20 2023-11-23 H. Lee Moffitt Cancer Center And Research Institute Inc. Compositions and methods for targeting clec12a-expressing cancers
GB202214132D0 (en) 2022-09-27 2022-11-09 Coding Bio Ltd CLL1 binding molecules
WO2024149225A1 (en) * 2023-01-10 2024-07-18 合源康华医药科技(北京)有限公司 Humanized cll1 antibody, chimeric antigen receptor and use thereof
GB202301949D0 (en) 2023-02-10 2023-03-29 Coding Bio Ltd CLL1 and/or CD33 binding molecules

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005000894A2 (en) * 2003-06-25 2005-01-06 Crucell Holland B.V. Binding molecules for the treatment of myeloid cell malignancies
WO2014130635A1 (en) * 2013-02-20 2014-08-28 Novartis Ag Effective targeting of primary human leukemia using anti-cd123 chimeric antigen receptor engineered t cells
WO2015142675A2 (en) * 2014-03-15 2015-09-24 Novartis Ag Treatment of cancer using chimeric antigen receptor

Family Cites Families (177)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5906936A (en) 1988-05-04 1999-05-25 Yeda Research And Development Co. Ltd. Endowing lymphocytes with antibody specificity
US6303121B1 (en) 1992-07-30 2001-10-16 Advanced Research And Technology Method of using human receptor protein 4-1BB
DE69123241T2 (en) 1990-12-14 1997-04-17 Cell Genesys Inc CHIMERIC CHAINS FOR TRANSDUCTING RECEPTOR-RELATED SIGNAL PATHS
US6319494B1 (en) 1990-12-14 2001-11-20 Cell Genesys, Inc. Chimeric chains for receptor-associated signal transduction pathways
US6004811A (en) 1991-03-07 1999-12-21 The Massachussetts General Hospital Redirection of cellular immunity by protein tyrosine kinase chimeras
IL101147A (en) 1991-03-07 2004-06-20 Gen Hospital Corp Redirection of cellular immunity by receptor chimeras
US7049136B2 (en) 1991-03-07 2006-05-23 The General Hospital Corporation Redirection of cellular immunity by receptor chimeras
WO1992022653A1 (en) 1991-06-14 1992-12-23 Genentech, Inc. Method for making humanized antibodies
US8211422B2 (en) 1992-03-18 2012-07-03 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Chimeric receptor genes and cells transformed therewith
IL104570A0 (en) 1992-03-18 1993-05-13 Yeda Res & Dev Chimeric genes and cells transformed therewith
US7211259B1 (en) 1993-05-07 2007-05-01 Immunex Corporation 4-1BB polypeptides and DNA encoding 4-1BB polypeptides
NZ285395A (en) 1994-05-02 1998-10-28 Novartis Ag Chimeric antibody, cancer treatment
US5712149A (en) 1995-02-03 1998-01-27 Cell Genesys, Inc. Chimeric receptor molecules for delivery of co-stimulatory signals
US6103521A (en) 1995-02-06 2000-08-15 Cell Genesys, Inc. Multispecific chimeric receptors
DK0871495T3 (en) 1995-02-24 2005-10-17 Gen Hospital Corp Redirecting cellular immunity with receptor chimeras
GB9526131D0 (en) 1995-12-21 1996-02-21 Celltech Therapeutics Ltd Recombinant chimeric receptors
US5874240A (en) 1996-03-15 1999-02-23 Human Genome Sciences, Inc. Human 4-1BB receptor splicing variant
US5792648A (en) 1996-07-31 1998-08-11 Incyte Pharmaceuticals, Inc. Human macrophage antigen
US20030060444A1 (en) 1997-06-25 2003-03-27 Celltech Therapeutics, Ltd. Cell activation process and reagents therefor
EP1109921A4 (en) 1998-09-04 2002-08-28 Sloan Kettering Inst Cancer Fusion receptors specific for prostate-specific membrane antigen and uses thereof
AU2472400A (en) 1998-10-20 2000-05-08 City Of Hope CD20-specific redirected T cells and their use in cellular immunotherapy of CD20+ malignancies
AU4418900A (en) 1999-04-16 2000-11-02 Celltech Therapeutics Limited Synthetic transmembrane components
GB9925848D0 (en) 1999-11-01 1999-12-29 Celltech Therapeutics Ltd Biological products
AU2001239857B9 (en) 2000-02-25 2006-07-27 Duke University Anti-EGFRvIII SCFVS with improved cytotoxicity and yield, immunotoxins based thereon, and methods of use thereof
CA2895884C (en) 2000-03-06 2019-04-23 University Of Kentucky Research Foundation A compound that selectively binds to cd123 and use thereof to kill hematologic cancer progenitor cells
AU5979201A (en) 2000-03-29 2001-10-08 Univ Ohio State Res Found Methods of blocking tissue destruction by autoreactive t cells
IL136511A0 (en) 2000-06-01 2001-06-14 Gavish Galilee Bio Appl Ltd Genetically engineered mhc molecules
GB0025307D0 (en) 2000-10-16 2000-11-29 Celltech Chiroscience Ltd Biological products
AU2001297703B2 (en) 2000-11-07 2006-10-19 City Of Hope CD19-specific redirected immune cells
US7177912B1 (en) 2000-12-22 2007-02-13 Datacore Software Corporation SCSI transport protocol via TCP/IP using existing network hardware and software
US7070995B2 (en) 2001-04-11 2006-07-04 City Of Hope CE7-specific redirected immune cells
US20090257994A1 (en) 2001-04-30 2009-10-15 City Of Hope Chimeric immunoreceptor useful in treating human cancers
AU2002256390B2 (en) 2001-04-30 2007-08-30 City Of Hope Chimeric immunoreceptor useful in treating human cancers
US7514537B2 (en) 2001-04-30 2009-04-07 City Of Hope Chimeric immunoreceptor useful in treating human gliomas
WO2003013598A2 (en) 2001-08-09 2003-02-20 Lam Dominic M K Novel vaccine compositions and methods of vaccine preparation for veterinary and human diseases
US20030148982A1 (en) 2001-11-13 2003-08-07 Brenner Malcolm K. Bi-spcific chimeric T cells
US7745140B2 (en) 2002-01-03 2010-06-29 The Trustees Of The University Of Pennsylvania Activation and expansion of T-cells using an engineered multivalent signaling platform as a research tool
US7638326B2 (en) 2002-01-03 2009-12-29 The Trustees Of The University Of Pennsylvania Activation and expansion of T-cells using an engineered multivalent signaling platform
WO2003057171A2 (en) 2002-01-03 2003-07-17 The Trustees Of The University Of Pennsylvania Activation and expansion of t-cells using an engineered multivalent signaling platform
US7446190B2 (en) 2002-05-28 2008-11-04 Sloan-Kettering Institute For Cancer Research Nucleic acids encoding chimeric T cell receptors
US20050129671A1 (en) 2003-03-11 2005-06-16 City Of Hope Mammalian antigen-presenting T cells and bi-specific T cells
US20040242504A1 (en) 2003-05-30 2004-12-02 Vadim Ivanov Novel composition and method for the treatment of hypertension
AU2004242846A1 (en) 2003-05-31 2004-12-09 Micromet Ag Pharmaceutical compositions comprising bispecific anti-CD3, anti-CD19 antibody constructs for the treatment of B-cell related disorders
KR101531400B1 (en) 2003-06-27 2015-06-26 암젠 프레몬트 인코포레이티드 Antibodies directed to the deletion mutants of epidermal growth factor receptor and uses thereof
WO2005019429A2 (en) 2003-08-22 2005-03-03 Potentia Pharmaceuticals, Inc. Compositions and methods for enhancing phagocytosis or phagocyte activity
SG146624A1 (en) 2003-09-11 2008-10-30 Kemia Inc Cytokine inhibitors
EP2280286A1 (en) 2003-09-15 2011-02-02 Oklahoma Medical Research Foundation Method of using cytokine assays to diagnose, treat, and evaluate systemic lupus erythematosus
US20050113564A1 (en) 2003-11-05 2005-05-26 St. Jude Children's Research Hospital Chimeric receptors with 4-1BB stimulatory signaling domain
US7435596B2 (en) 2004-11-04 2008-10-14 St. Jude Children's Research Hospital, Inc. Modified cell line and method for expansion of NK cell
KR20070001930A (en) 2004-01-23 2007-01-04 사노피 파스퇴르 인크 Cytotoxicity assay
WO2005118788A2 (en) 2004-05-27 2005-12-15 The Trustees Of The University Of Pennsylvania Novel artificial antigen presenting cells and uses therefor
US7994298B2 (en) 2004-09-24 2011-08-09 Trustees Of Dartmouth College Chimeric NK receptor and methods for treating cancer
ES2766123T3 (en) 2004-12-10 2020-06-11 Peter Maccallum Cancer Inst Methods and compositions for adoptive immunotherapy
US20060171929A1 (en) 2005-01-31 2006-08-03 The University Of Washington Regulation of dendritic cell functions by the DCAL-2 receptor
US20070014720A1 (en) 2005-06-02 2007-01-18 Gadi Gazit-Bornstein Antibodies directed to CD20 and uses thereof
US20070036773A1 (en) 2005-08-09 2007-02-15 City Of Hope Generation and application of universal T cells for B-ALL
EP1795588A1 (en) 2005-12-07 2007-06-13 Cellerix, S.L. Use of adipose tissue derived mesenchymal stem cells for the treatment of graft versus host disease
WO2008045437A2 (en) 2006-10-09 2008-04-17 The General Hospital Corporation Chimeric t-cell receptors and t-cells targeting egfrviii on tumors
US20080131415A1 (en) 2006-11-30 2008-06-05 Riddell Stanley R Adoptive transfer of cd8 + t cell clones derived from central memory cells
WO2008110491A2 (en) 2007-03-09 2008-09-18 University Of Basel Chemotherapy of neoplastic diseases using combinations of rapamycin and compounds modulating mtor pathway alone or in combination with heat
JP2008228690A (en) 2007-03-23 2008-10-02 Mitsukan Group Honsha:Kk Protein having sweetness
CA2682527C (en) 2007-03-30 2017-07-11 Memorial Sloan-Kettering Cancer Center Constitutive expression of costimulatory ligands on adoptively transferred t lymphocytes
US8163279B2 (en) 2007-04-13 2012-04-24 Stemline Therapeutics, Inc. IL3Rα antibody conjugates and uses thereof
EP2014680A1 (en) 2007-07-10 2009-01-14 Friedrich-Alexander-Universität Erlangen-Nürnberg Recombinant, single-chain, trivalent tri-specific or bi-specific antibody derivatives
US20090088373A1 (en) 2007-09-28 2009-04-02 Gallo Richard L Use of compositions to enhance innate immune response
WO2009051974A1 (en) 2007-10-17 2009-04-23 Nuvelo, Inc. Antibodes to cll-1
WO2009097140A1 (en) 2008-01-30 2009-08-06 Memorial Sloan-Kettering Cancer Center Methods for off -the -shelf tumor immunotherapy using allogeneic t-cell precursors
US8379824B2 (en) 2008-03-06 2013-02-19 At&T Intellectual Property I, Lp Methods and apparatus to provide a network-based caller identification service in a voice over internet protocol network
EP2318434A1 (en) 2008-07-31 2011-05-11 Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH) Her2/neu specific t cell receptors
EP2318002A4 (en) 2008-08-05 2012-11-28 Univ Emory Use of mtor inhibitors to enhance t cell immune responses
PT3006459T (en) 2008-08-26 2021-11-26 Hope City Method and compositions for enhanced anti-tumor effector functioning of t cells
PT2365802T (en) 2008-11-11 2017-11-14 Univ Texas Microcapsules of rapamycin and use for treating cancer
US20100196311A1 (en) 2009-01-14 2010-08-05 Kim Hyung L METHODS AND COMPOSITIONS CONTAINING mTOR INHIBITORS FOR ENHANCING IMMUNE RESPONSES
EP2389443B1 (en) 2009-01-23 2018-11-14 Roger Williams Hospital Retroviral vectors encoding multiple highly homologous non-viral polypeptides and the use of same
BRPI1011389A2 (en) * 2009-04-17 2018-07-10 Biogen Idec Inc method for treating acute myelogenous leukemia (aml) in a patient
WO2011038467A1 (en) 2009-10-01 2011-04-07 Csl Limited Method of treatment of philadelphia chromosome positive leukaemia
AU2010301042B2 (en) 2009-10-01 2014-03-20 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Anti-vascular endothelial growth factor receptor-2 chimeric antigen receptors and use of same for the treatment of cancer
US9181527B2 (en) 2009-10-29 2015-11-10 The Trustees Of Dartmouth College T cell receptor-deficient T cell compositions
ES2724451T3 (en) 2010-02-04 2019-09-11 Univ Pennsylvania ICOS fundamentally regulates the expansion and function of inflammatory human Th17 lymphocytes
SE535129C2 (en) 2010-07-13 2012-04-24 Bostik Ab Composition for adhesion of a flooring material
MX340558B (en) 2010-08-24 2016-07-14 F Hoffmann-La Roche Ag * Bispecific antibodies comprising a disulfide stabilized - fv fragment.
US9493740B2 (en) 2010-09-08 2016-11-15 Baylor College Of Medicine Immunotherapy of cancer using genetically engineered GD2-specific T cells
EP2632482A4 (en) 2010-10-27 2015-05-27 Baylor College Medicine Chimeric cd27 receptors for redirecting t cells to cd70-positive malignancies
JP2014500879A (en) 2010-11-16 2014-01-16 ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング Factors and methods for treating diseases correlated with BCMA expression
US9358233B2 (en) * 2010-11-29 2016-06-07 Boehringer Ingelheim International Gmbh Method for treating acute myeloid leukemia
KR101400194B1 (en) 2010-12-01 2014-05-27 제일모직 주식회사 Photosensitive resin composition for color filter, and color filter using the same
SG190997A1 (en) 2010-12-09 2013-07-31 Univ Pennsylvania Use of chimeric antigen receptor-modified t cells to treat cancer
WO2012082841A2 (en) 2010-12-14 2012-06-21 University Of Maryland, Baltimore Universal anti-tag chimeric antigen receptor-expressing t cells and methods of treating cancer
SG192010A1 (en) 2011-01-18 2013-08-30 Univ Pennsylvania Compositions and methods for treating cancer
WO2012127464A2 (en) 2011-03-23 2012-09-27 Gavish-Galilee Bio Applications Ltd Constitutively activated t cells for use in adoptive cell therapy
CN106074601A (en) 2011-03-23 2016-11-09 弗雷德哈钦森癌症研究中心 Method and composition for cellular immunotherapy
MY160662A (en) 2011-04-01 2017-03-15 Memorial Sloan Kettering Cancer Center T cell receptor-like antibodies specific for a wt1 peptide presented by hla-a2
DK2694640T3 (en) 2011-04-08 2017-11-20 Baylor College Medicine REVERSION OF THE EFFECTS OF TUMOR MICRO-ENVIRONMENT USING CHEMICAL CYTOKIN RECEPTORS
JP6076963B2 (en) 2011-04-08 2017-02-15 アメリカ合衆国 Anti-epidermal growth factor receptor variant III chimeric antigen receptor and its use for the treatment of cancer
US20130071414A1 (en) 2011-04-27 2013-03-21 Gianpietro Dotti Engineered cd19-specific t lymphocytes that coexpress il-15 and an inducible caspase-9 based suicide gene for the treatment of b-cell malignancies
US20140105915A1 (en) 2011-05-27 2014-04-17 Glaxo Group Limited Bcma (cd269/tnfrsf17) - binding proteins
CN103764668B (en) 2011-07-09 2016-08-17 加利福尼亚大学董事会 Leukemic stem cells targeting ligand and application process
EP3290055B1 (en) 2011-07-25 2024-08-28 Nationwide Children's Hospital, Inc. Recombinant virus products and methods for inhibition of expression of dux4
CN107266584B (en) 2011-07-29 2022-05-13 宾夕法尼亚大学董事会 Transducible co-stimulatory receptors
WO2013026837A1 (en) 2011-08-23 2013-02-28 Roche Glycart Ag Bispecific t cell activating antigen binding molecules
EP2747781B1 (en) 2011-08-23 2017-11-15 Roche Glycart AG Bispecific antibodies specific for t-cell activating antigens and a tumor antigen and methods of use
PE20141521A1 (en) 2011-08-23 2014-10-25 Roche Glycart Ag T-CELL ACTIVATING ANTIGEN-BINDING BI-SPECIFIC MOLECULES
WO2013033626A2 (en) 2011-08-31 2013-03-07 Trustees Of Dartmouth College Nkp30 receptor targeted therapeutics
ES2795023T3 (en) 2011-09-16 2020-11-20 Baylor College Medicine Specific recognition of the tumor microenvironment using engineered NKT cells
SG11201400527XA (en) 2011-09-16 2014-04-28 Univ Pennsylvania Rna engineered t cells for the treatment of cancer
JP6267644B2 (en) 2011-10-20 2018-01-24 アメリカ合衆国 Anti-CD22 chimeric antigen receptor
US9688740B2 (en) 2011-10-26 2017-06-27 National Cancer Center Mutant CTLA4 gene transfected T cell and composition including same for anticancer immunotherapy
US9272002B2 (en) 2011-10-28 2016-03-01 The Trustees Of The University Of Pennsylvania Fully human, anti-mesothelin specific chimeric immune receptor for redirected mesothelin-expressing cell targeting
US10391126B2 (en) 2011-11-18 2019-08-27 Board Of Regents, The University Of Texas System CAR+ T cells genetically modified to eliminate expression of T-cell receptor and/or HLA
HUE033245T2 (en) 2011-12-19 2017-11-28 Synimmune Gmbh Bispecific antibody molecule
JP6850528B2 (en) 2012-02-13 2021-03-31 シアトル チルドレンズ ホスピタル ドゥーイング ビジネス アズ シアトル チルドレンズ リサーチ インスティテュート Bispecific chimeric antigen receptor and its therapeutic use
JP2015509717A (en) 2012-02-22 2015-04-02 ザ トラスティーズ オブ ザ ユニバーシティ オブ ペンシルバニア Use of ICOS-based CAR to enhance antitumor activity and CAR persistence
WO2013126726A1 (en) 2012-02-22 2013-08-29 The Trustees Of The University Of Pennsylvania Double transgenic t cells comprising a car and a tcr and their methods of use
MX2014010183A (en) 2012-02-22 2015-03-20 Univ Pennsylvania Compositions and methods for generating a persisting population of t cells useful for the treatment of cancer.
CA2864489C (en) 2012-02-22 2023-08-08 The Trustees Of The University Of Pennsylvania Use of the cd2 signaling domain in second-generation chimeric antigen receptors
EP2827878A1 (en) 2012-03-21 2015-01-28 Erytech Pharma Medicament for the treatment of acute myeloid leukemia (aml)
WO2013142034A1 (en) 2012-03-23 2013-09-26 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Anti-mesothelin chimeric antigen receptors
EA033110B1 (en) 2012-04-11 2019-08-30 Дзе Юнайтед Стейтс Оф Америка, Эз Репрезентед Бай Дзе Секретари, Департмент Оф Хелс Энд Хьюман Сёрвисез Chimeric antigen receptor targeting b-cell maturation antigen, nucleic acid encoding same, corresponding expression vector, host cell, uses and methods
US20130271355A1 (en) 2012-04-13 2013-10-17 Nokia Corporation Multi-segment wearable accessory
US9163090B2 (en) 2012-05-07 2015-10-20 Cellerant Therapeutics, Inc. Antibodies specific for CLL-1
ES2924722T3 (en) 2012-05-18 2022-10-10 Aptevo Res & Development Llc Immunofusion binding of bispecific scFv (BIf) to CD123 and CD3
CN103483452B (en) 2012-06-12 2021-08-13 上海细胞治疗集团有限公司 Dual signal independent chimeric antigen receptors and uses thereof
IN2014DN11156A (en) 2012-07-13 2015-10-02 Univ Pennsylvania
AU2013289984B2 (en) 2012-07-13 2018-03-08 The Trustees Of The University Of Pennsylvania Use of CART19 to deplete normal B cells to induce tolerance
EP2872617A4 (en) 2012-07-13 2015-12-09 Univ Pennsylvania Epitope spreading associated with car t-cells
CA2876730A1 (en) 2012-07-13 2014-01-16 The Trustees Of The University Of Pennsylvania Enhancing activity of car t cells by co-introducing a bispecific antibody
MX2015000428A (en) 2012-07-13 2015-03-12 Univ Pennsylvania Compositions and methods for regulating car t cells.
HUE061555T2 (en) 2012-07-13 2023-07-28 Univ Pennsylvania Toxicity management for anti-tumor activity of cars
RU2700765C2 (en) 2012-08-20 2019-09-19 Фред Хатчинсон Кансэр Рисёч Сентер Method and compositions for cell immunotherapy
WO2014039513A2 (en) 2012-09-04 2014-03-13 The Trustees Of The University Of Pennsylvania Inhibition of diacylglycerol kinase to augment adoptive t cell transfer
ES2692951T3 (en) 2012-09-27 2018-12-05 Merus N.V. Bispecific IgG antibodies as T cell couplers
CN102875685B (en) 2012-09-29 2013-12-25 郑骏年 Chimeric antigen receptor hFVIIL-CD8-OX40-CD3zeta and application thereof
US9365641B2 (en) 2012-10-01 2016-06-14 The Trustees Of The University Of Pennsylvania Compositions and methods for targeting stromal cells for the treatment of cancer
WO2014055657A1 (en) 2012-10-05 2014-04-10 The Trustees Of The University Of Pennsylvania Use of a trans-signaling approach in chimeric antigen receptors
EP2914628A1 (en) 2012-11-01 2015-09-09 Max-Delbrück-Centrum für Molekulare Medizin An antibody that binds cd269 (bcma) suitable for use in the treatment of plasma cell diseases such as multiple myeloma and autoimmune diseases
AU2013204922B2 (en) 2012-12-20 2015-05-14 Celgene Corporation Chimeric antigen receptors
AU2014214850C1 (en) 2013-02-06 2018-12-06 Celgene Corporation Modified T lymphocytes having improved specificity
RU2708032C2 (en) 2013-02-20 2019-12-03 Новартис Аг CANCER TREATMENT USING CHIMERIC ANTIGEN-SPECIFIC RECEPTOR BASED ON HUMANISED ANTI-EGFRvIII ANTIBODY
CN103113470B (en) 2013-02-27 2015-04-22 四川大学 Genetically engineered lymphocyte targeting Human EGFR (Epidermal Growth Factor Receptor), preparation method and application of genetically engineered lymphocyte
WO2014145252A2 (en) 2013-03-15 2014-09-18 Milone Michael C Targeting cytotoxic cells with chimeric receptors for adoptive immunotherapy
US9657105B2 (en) 2013-03-15 2017-05-23 City Of Hope CD123-specific chimeric antigen receptor redirected T cells and methods of their use
TWI654206B (en) 2013-03-16 2019-03-21 諾華公司 Treatment of cancer with a humanized anti-CD19 chimeric antigen receptor
EP3470423B1 (en) 2013-04-17 2021-10-06 Baylor College of Medicine Immunosuppressive tgf-beta signal converter
CN105408473B9 (en) 2013-05-14 2021-09-17 得克萨斯州大学系统董事会 Human applications of engineered Chimeric Antigen Receptor (CAR) T cells
CN116478927A (en) 2013-12-19 2023-07-25 诺华股份有限公司 Human mesothelin chimeric antigen receptor and application thereof
EP3087101B1 (en) 2013-12-20 2024-06-05 Novartis AG Regulatable chimeric antigen receptor
US11028143B2 (en) 2014-01-21 2021-06-08 Novartis Ag Enhanced antigen presenting ability of RNA CAR T cells by co-introduction of costimulatory molecules
EP3811970A1 (en) 2014-03-15 2021-04-28 Novartis AG Regulatable chimeric antigen receptor
US11542488B2 (en) 2014-07-21 2023-01-03 Novartis Ag Sortase synthesized chimeric antigen receptors
WO2016014576A1 (en) 2014-07-21 2016-01-28 Novartis Ag Treatment of cancer using a cd33 chimeric antigen receptor
EP3193915A1 (en) 2014-07-21 2017-07-26 Novartis AG Combinations of low, immune enhancing. doses of mtor inhibitors and cars
US20170226495A1 (en) 2014-07-21 2017-08-10 Novartis Ag Sortase molecules and uses thereof
BR112017000939A2 (en) 2014-07-21 2017-11-14 Novartis Ag cancer treatment using a cll-1 chimeric antigen receptor
MY181834A (en) 2014-07-21 2021-01-08 Novartis Ag Treatment of cancer using humanized anti-bcma chimeric antigen receptor
US20170274014A1 (en) 2014-07-21 2017-09-28 Jennifer Brogdon Combinations of low, immune enhancing, doses of mtor inhibitors and cars
EP4205749A1 (en) 2014-07-31 2023-07-05 Novartis AG Subset-optimized chimeric antigen receptor-containing cells
JP6919118B2 (en) 2014-08-14 2021-08-18 ノバルティス アーゲー Treatment of cancer with GFRα-4 chimeric antigen receptor
RU2724999C2 (en) 2014-08-19 2020-06-29 Новартис Аг Chimeric antigenic (car) receptor against cd123 for use in treating malignant tumors
WO2016044605A1 (en) 2014-09-17 2016-03-24 Beatty, Gregory Targeting cytotoxic cells with chimeric receptors for adoptive immunotherapy
WO2016057705A1 (en) 2014-10-08 2016-04-14 Novartis Ag Biomarkers predictive of therapeutic responsiveness to chimeric antigen receptor therapy and uses thereof
US20170239294A1 (en) 2014-10-15 2017-08-24 Novartis Ag Compositions and methods for treating b-lymphoid malignancies
IL253149B2 (en) 2014-12-29 2023-11-01 Novartis Ag Methods of making chimeric antigen receptor-expressing cells
US11459390B2 (en) 2015-01-16 2022-10-04 Novartis Ag Phosphoglycerate kinase 1 (PGK) promoters and methods of use for expressing chimeric antigen receptor
US11161907B2 (en) 2015-02-02 2021-11-02 Novartis Ag Car-expressing cells against multiple tumor antigens and uses thereof
US20180140602A1 (en) 2015-04-07 2018-05-24 Novartis Ag Combination of chimeric antigen receptor therapy and amino pyrimidine derivatives
DK3280729T3 (en) 2015-04-08 2022-07-25 Novartis Ag CD20 TREATMENTS, CD22 TREATMENTS AND COMBINATION TREATMENTS WITH A CD19 CHIMERIC ANTIGEN RECEPTOR (CAR) EXPRESSING CELL
AU2016249005B2 (en) 2015-04-17 2022-06-16 Novartis Ag Methods for improving the efficacy and expansion of chimeric antigen receptor-expressing cells
US20180298068A1 (en) 2015-04-23 2018-10-18 Novartis Ag Treatment of cancer using chimeric antigen receptor and protein kinase a blocker
CN109476722A (en) 2015-07-21 2019-03-15 诺华股份有限公司 The method of the effect of for improving immunocyte and expansion
WO2017027392A1 (en) 2015-08-07 2017-02-16 Novartis Ag Treatment of cancer using chimeric cd3 receptor proteins
US11747346B2 (en) 2015-09-03 2023-09-05 Novartis Ag Biomarkers predictive of cytokine release syndrome
IL297003A (en) 2015-09-17 2022-12-01 Novartis Ag Car t cell therapies with enhanced efficacy
MA44140A (en) 2015-12-22 2021-05-19 Dana Farber Cancer Inst Inc CHEMERICAL ANTIGEN RECEPTOR (CAR) AGAINST MESOTHELIN AND ANTIBODY AGAINST PD-L1 INHIBITOR FOR COMBINED USE IN ANTI-CANCER THERAPY
WO2017114497A1 (en) 2015-12-30 2017-07-06 Novartis Ag Immune effector cell therapies with enhanced efficacy
CN118021943A (en) 2016-07-28 2024-05-14 诺华股份有限公司 Combination therapy of chimeric antigen receptor and PD-1 inhibitor
US20190161542A1 (en) 2016-08-01 2019-05-30 Novartis Ag Treatment of cancer using a chimeric antigen receptor in combination with an inhibitor of a pro-m2 macrophage molecule
TW202340473A (en) 2016-10-07 2023-10-16 瑞士商諾華公司 Treatment of cancer using chimeric antigen receptors

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005000894A2 (en) * 2003-06-25 2005-01-06 Crucell Holland B.V. Binding molecules for the treatment of myeloid cell malignancies
WO2014130635A1 (en) * 2013-02-20 2014-08-28 Novartis Ag Effective targeting of primary human leukemia using anti-cd123 chimeric antigen receptor engineered t cells
WO2015142675A2 (en) * 2014-03-15 2015-09-24 Novartis Ag Treatment of cancer using chimeric antigen receptor

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
A RAMBALDI ET AL: "Cell-based strategies to manage leukemia relapse: efficacy and feasibility of immunotherapy approaches", LEUKEMIA., vol. 29, no. 1, 12 June 2014 (2014-06-12), US, pages 1 - 10, XP055219137, ISSN: 0887-6924, DOI: 10.1038/leu.2014.189 *
ALEXANDER B H BAKKER ET AL: "C-type lectin-like molecule-1: a novel myeloid cell surface marker associated with acute myeloid leukemia", CANCER RESEARCH, AMERICAN ASSOCIATION FOR CANCER RESEARCH, US, vol. 64, no. 22, 15 November 2004 (2004-11-15), pages 8443 - 8450, XP002632478, ISSN: 0008-5472, DOI: 10.1158/0008-5472.CAN-04-1659 *
CASUCCI MONICA ET AL: "CD44v6-targeted T cells mediate potent antitumor effects against acute myeloid leukemia and multiple myeloma", BLOOD, vol. 122, no. 20, November 2013 (2013-11-01), pages 3461 - 3472, XP055205273, ISSN: 0006-4971 *
PIZZITOLA I ET AL: "Chimeric antigen receptors against CD33/CD123 antigens efficiently target primary acute myeloid leukemia cells in vivo", LEUKEMIA, MACMILLAN PRESS LTD, US, vol. 28, no. 8, 21 February 2014 (2014-02-21), pages 1596 - 1605, XP002727950, ISSN: 0887-6924, [retrieved on 20140207] *
S. GILL ET AL: "Preclinical targeting of human acute myeloid leukemia and myeloablation using chimeric antigen receptor-modified T cells", BLOOD, vol. 123, no. 15, 10 April 2014 (2014-04-10), pages 2343 - 2354, XP055196068, ISSN: 0006-4971, DOI: 10.1182/blood-2013-09-529537 *
X. ZHAO ET AL: "Targeting C-type lectin-like molecule-1 for antibody-mediated immunotherapy in acute myeloid leukemia", HAEMATOLOGICA, vol. 95, no. 1, 31 July 2009 (2009-07-31), pages 71 - 78, XP055094666, ISSN: 0390-6078, DOI: 10.3324/haematol.2009.009811 *

Cited By (162)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11865167B2 (en) 2013-02-20 2024-01-09 Novartis Ag Treatment of cancer using humanized anti-EGFRvIII chimeric antigen receptor
US10308717B2 (en) 2013-02-20 2019-06-04 Novartis Ag Treatment of cancer using humanized anti-EGFRvIII chimeric antigen receptor
US11028177B2 (en) 2013-02-20 2021-06-08 Novartis Ag Effective targeting of primary human leukemia using anti-CD123 chimeric antigen receptor engineered T cells
US9745368B2 (en) 2013-03-15 2017-08-29 The Trustees Of The University Of Pennsylvania Targeting cytotoxic cells with chimeric receptors for adoptive immunotherapy
US10640553B2 (en) 2013-03-15 2020-05-05 Novartis Ag Targeting cytotoxic cells with chimeric receptors for adoptive immunotherapy
US11919946B2 (en) 2013-03-15 2024-03-05 Novartis Ag Targeting cytotoxic cells with chimeric receptors for adoptive immunotherapy
US10927184B2 (en) 2013-03-16 2021-02-23 Novartis Ag Treatment of cancer using humanized anti-CD19 chimeric antigen receptor
US10221245B2 (en) 2013-03-16 2019-03-05 Novartis Ag Treatment of cancer using humanized anti-CD19 chimeric antigen receptor
US11999794B2 (en) 2013-12-19 2024-06-04 Novartis Ag Human mesothelin chimeric antigen receptors and uses thereof
US10640569B2 (en) 2013-12-19 2020-05-05 Novartis Ag Human mesothelin chimeric antigen receptors and uses thereof
US10287354B2 (en) 2013-12-20 2019-05-14 Novartis Ag Regulatable chimeric antigen receptor
US11578130B2 (en) 2013-12-20 2023-02-14 Novartis Ag Regulatable chimeric antigen receptor
US11028143B2 (en) 2014-01-21 2021-06-08 Novartis Ag Enhanced antigen presenting ability of RNA CAR T cells by co-introduction of costimulatory molecules
US10357514B2 (en) 2014-04-07 2019-07-23 The Trustees Of The University Of Pennsylvania Treatment of cancer using anti-CD19 Chimeric Antigen Receptor
US11084880B2 (en) 2014-07-21 2021-08-10 Novartis Ag Anti-BCMA chimeric antigen receptor
US10568947B2 (en) 2014-07-21 2020-02-25 Novartis Ag Treatment of cancer using a CLL-1 chimeric antigen receptor
US10851166B2 (en) 2014-07-21 2020-12-01 Novartis Ag Treatment of cancer using a CD33 chimeric antigen receptor
US11542488B2 (en) 2014-07-21 2023-01-03 Novartis Ag Sortase synthesized chimeric antigen receptors
US10174095B2 (en) 2014-07-21 2019-01-08 Novartis Ag Nucleic acid encoding a humanized anti-BCMA chimeric antigen receptor
US9777061B2 (en) 2014-07-21 2017-10-03 Novartis Ag Treatment of cancer using a CD33 chimeric antigen receptor
US10703819B2 (en) 2014-08-09 2020-07-07 The Trustees Of The University Of Pennsylvania Treatment of cancer using a CD123 chimeric antigen receptor
US9815901B2 (en) 2014-08-19 2017-11-14 Novartis Ag Treatment of cancer using a CD123 chimeric antigen receptor
US11591404B2 (en) 2014-08-19 2023-02-28 Novartis Ag Treatment of cancer using a CD123 chimeric antigen receptor
US10577417B2 (en) 2014-09-17 2020-03-03 Novartis Ag Targeting cytotoxic cells with chimeric receptors for adoptive immunotherapy
US11981731B2 (en) 2014-09-17 2024-05-14 The Trustees Of The University Of Pennsylvania Targeting cytotoxic cells with chimeric receptors for adoptive immunotherapy
US10774388B2 (en) 2014-10-08 2020-09-15 Novartis Ag Biomarkers predictive of therapeutic responsiveness to chimeric antigen receptor therapy and uses thereof
US10273300B2 (en) 2014-12-29 2019-04-30 The Trustees Of The University Of Pennsylvania Methods of making chimeric antigen receptor-expressing cells
US11459390B2 (en) 2015-01-16 2022-10-04 Novartis Ag Phosphoglycerate kinase 1 (PGK) promoters and methods of use for expressing chimeric antigen receptor
WO2016115482A1 (en) * 2015-01-16 2016-07-21 Novartis Pharma Ag Phosphoglycerate kinase 1 (pgk) promoters and methods of use for expressing chimeric antigen receptor
EP3250606B1 (en) * 2015-01-26 2020-11-25 Cellectis Anti-cll1 specific single-chain chimeric antigen receptors (sccars) for cancer immunotherapy
US11014989B2 (en) 2015-01-26 2021-05-25 Cellectis Anti-CLL1 specific single-chain chimeric antigen receptors (scCARs) for cancer immunotherapy
AU2016212160B2 (en) * 2015-01-26 2021-04-15 Cellectis Anti-CLL1 specific single-chain Chimeric Antigen Receptors (scCARs) for cancer immunotherapy
US11161907B2 (en) 2015-02-02 2021-11-02 Novartis Ag Car-expressing cells against multiple tumor antigens and uses thereof
US12012443B2 (en) 2015-03-05 2024-06-18 Fred Hutchinson Cancer Center Immunomodulatory fusion proteins and uses thereof
US11149076B2 (en) 2015-04-08 2021-10-19 Novartis Ag CD20 therapies, CD22 therapies, and combination therapies with a CD19 chimeric antigen receptor (CAR)-expressing cell
US10253086B2 (en) 2015-04-08 2019-04-09 Novartis Ag CD20 therapies, CD22 therapies, and combination therapies with a CD19 chimeric antigen receptor (CAR)-expressing cell
US11896614B2 (en) 2015-04-17 2024-02-13 Novartis Ag Methods for improving the efficacy and expansion of chimeric antigen receptor-expressing cells
WO2017001572A1 (en) 2015-06-30 2017-01-05 Cellectis Methods for improving functionality in nk cell by gene inactivation using specific endonuclease
US10829735B2 (en) 2015-07-21 2020-11-10 The Trustees Of The University Of Pennsylvania Methods for improving the efficacy and expansion of immune cells
WO2017015427A1 (en) 2015-07-21 2017-01-26 Novartis Ag Methods for improving the efficacy and expansion of immune cells
US11667691B2 (en) 2015-08-07 2023-06-06 Novartis Ag Treatment of cancer using chimeric CD3 receptor proteins
US11747346B2 (en) 2015-09-03 2023-09-05 Novartis Ag Biomarkers predictive of cytokine release syndrome
WO2017040930A2 (en) 2015-09-03 2017-03-09 The Trustees Of The University Of Pennsylvania Biomarkers predictive of cytokine release syndrome
US12037583B2 (en) 2015-12-04 2024-07-16 Novartis Ag Compositions and methods for immunooncology
US11413340B2 (en) 2015-12-22 2022-08-16 Novartis Ag Mesothelin chimeric antigen receptor (CAR) and antibody against PD-L1 inhibitor for combined use in anticancer therapy
WO2017114497A1 (en) 2015-12-30 2017-07-06 Novartis Ag Immune effector cell therapies with enhanced efficacy
EP4219689A2 (en) 2015-12-30 2023-08-02 Novartis AG Immune effector cell therapies with enhanced efficacy
WO2017125897A1 (en) * 2016-01-21 2017-07-27 Novartis Ag Multispecific molecules targeting cll-1
EP3851457A1 (en) * 2016-01-21 2021-07-21 Novartis AG Multispecific molecules targeting cll-1
WO2017149515A1 (en) 2016-03-04 2017-09-08 Novartis Ag Cells expressing multiple chimeric antigen receptor (car) molecules and uses therefore
US11549099B2 (en) 2016-03-23 2023-01-10 Novartis Ag Cell secreted minibodies and uses thereof
WO2017165683A1 (en) 2016-03-23 2017-09-28 Novartis Ag Cell secreted minibodies and uses thereof
KR102584300B1 (en) 2016-03-29 2023-10-05 유니버시티 오브 써던 캘리포니아 Chimeric antigen receptor targets cancer
EP3436070A4 (en) * 2016-03-29 2019-11-27 University of Southern California Chimeric antigen receptors targeting cancer
JP2019510498A (en) * 2016-03-29 2019-04-18 ユニバーシティ オブ サザン カリフォルニア Chimeric antigen receptor targeting cancer
JP7208010B2 (en) 2016-03-29 2023-01-18 ユニバーシティ オブ サザン カリフォルニア Chimeric antigen receptor targeting cancer
KR20180130534A (en) * 2016-03-29 2018-12-07 유니버시티 오브 써던 캘리포니아 Chimeric antigen receptor targeting cancer
US11505613B2 (en) 2016-04-01 2022-11-22 Kite Pharma, Inc. BCMA binding molecules and methods of use thereof
WO2017173256A1 (en) 2016-04-01 2017-10-05 Kite Pharma, Inc. Chimeric antigen and t cell receptors and methods of use
EP3436030A4 (en) * 2016-04-01 2019-11-06 Kite Pharma, Inc. Chimeric receptors and methods of use thereof
JP7451627B2 (en) 2016-04-01 2024-03-18 カイト ファーマ インコーポレイテッド Chimeric receptor and its use
EP3984559A1 (en) 2016-04-01 2022-04-20 Kite Pharma, Inc. Chimeric antigen and t cell receptors and methods of use
JP2019513370A (en) * 2016-04-01 2019-05-30 カイト ファーマ インコーポレイテッドKite Pha Chimeric receptor and method of using the same
JP7134204B2 (en) 2016-04-01 2022-09-09 カイト ファーマ インコーポレイテッド Chimeric receptors and methods of use thereof
CN109641008B (en) * 2016-04-01 2021-03-23 凯德药业股份有限公司 Chimeric receptors and methods and uses thereof
US10603380B2 (en) 2016-04-01 2020-03-31 Kite Pharma, Inc. Chimeric antigen and T cell receptors and methods of use
JP2022169740A (en) * 2016-04-01 2022-11-09 カイト ファーマ インコーポレイテッド Chimeric receptors and use methods thereof
KR20180129889A (en) * 2016-04-01 2018-12-05 카이트 파마 인코포레이티드 Chimeric receptors and methods for their use
EP3436079A4 (en) * 2016-04-01 2019-12-04 Kite Pharma, Inc. Chimeric antigen and t cell receptors and methods of use
KR102120815B1 (en) 2016-04-01 2020-06-12 카이트 파마 인코포레이티드 Chimeric receptors and methods of use
EP4180449A1 (en) * 2016-04-01 2023-05-17 Kite Pharma, Inc. Chimeric receptors and methods of use thereof
CN109641008A (en) * 2016-04-01 2019-04-16 凯德药业股份有限公司 Chimeric receptors and methods and uses thereof
US10689450B2 (en) 2016-04-01 2020-06-23 Kite Pharma, Inc BCMA binding molecules and methods of use thereof
US10597456B2 (en) 2016-04-01 2020-03-24 Amgen Inc. Chimeric receptors and methods of use thereof
JP2020202867A (en) * 2016-04-01 2020-12-24 カイト ファーマ インコーポレイテッドKite Pharma, Inc Chimeric receptors and methods of use thereof
US11446398B2 (en) 2016-04-11 2022-09-20 Obsidian Therapeutics, Inc. Regulated biocircuit systems
EP4219721A2 (en) 2016-04-15 2023-08-02 Novartis AG Compositions and methods for selective protein expression
WO2017181119A2 (en) 2016-04-15 2017-10-19 Novartis Ag Compositions and methods for selective protein expression
JP2019527537A (en) * 2016-06-07 2019-10-03 マックス−デルブリュック−セントルム フュール モレキュラー メディツィン イン デア ヘルムホルツ−ゲマインシャフト Chimeric antigen receptor and CAR-T cell binding to BCMA
JP2022141700A (en) * 2016-06-07 2022-09-29 マックス-デルブリュック-セントルム フュール モレキュラー メディツィン イン デア ヘルムホルツ-ゲマインシャフト Chimeric antigen receptor and car-t cells that bind bcma
US12048718B2 (en) 2016-06-07 2024-07-30 Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Geminschaft Chimeric antigen receptor and CAR-T cells that bind BCMA
WO2017211900A1 (en) * 2016-06-07 2017-12-14 Max-Delbrück-Centrum für Molekulare Medizin Chimeric antigen receptor and car-t cells that bind bcma
WO2018013918A2 (en) 2016-07-15 2018-01-18 Novartis Ag Treatment and prevention of cytokine release syndrome using a chimeric antigen receptor in combination with a kinase inhibitor
WO2018023025A1 (en) 2016-07-28 2018-02-01 Novartis Ag Combination therapies of chimeric antigen receptors adn pd-1 inhibitors
WO2018026819A2 (en) 2016-08-01 2018-02-08 Novartis Ag Treatment of cancer using a chimeric antigen receptor in combination with an inhibitor of a pro-m2 macrophage molecule
EP3515503A4 (en) * 2016-09-23 2020-09-23 The Regents Of The University Of Michigan Engineered lymphocytes
WO2018064387A1 (en) 2016-09-28 2018-04-05 Novartis Ag Porous membrane-based macromolecule delivery system
USRE49847E1 (en) 2016-10-07 2024-02-27 Novartis Ag Nucleic acid molecules encoding chimeric antigen receptors comprising a CD20 binding domain
US10525083B2 (en) 2016-10-07 2020-01-07 Novartis Ag Nucleic acid molecules encoding chimeric antigen receptors comprising a CD20 binding domain
US11026976B2 (en) 2016-10-07 2021-06-08 Novartis Ag Nucleic acid molecules encoding chimeric antigen receptors comprising a CD20 binding domain
US11872249B2 (en) 2016-10-07 2024-01-16 Novartis Ag Method of treating cancer by administering immune effector cells expressing a chimeric antigen receptor comprising a CD20 binding domain
US11535662B2 (en) 2017-01-26 2022-12-27 Novartis Ag CD28 compositions and methods for chimeric antigen receptor therapy
EP4043485A1 (en) 2017-01-26 2022-08-17 Novartis AG Cd28 compositions and methods for chimeric antigen receptor therapy
US11725210B2 (en) 2017-03-17 2023-08-15 Fred Hutchinson Cancer Center Immunomodulatory fusion proteins and uses thereof
US11851659B2 (en) 2017-03-22 2023-12-26 Novartis Ag Compositions and methods for immunooncology
WO2019000146A1 (en) * 2017-06-26 2019-01-03 深圳市博奥康生物科技有限公司 Sirna of human programmed cell death receptor 1 and use thereof
US11999802B2 (en) 2017-10-18 2024-06-04 Novartis Ag Compositions and methods for selective protein degradation
WO2019079569A1 (en) 2017-10-18 2019-04-25 Novartis Ag Compositions and methods for selective protein degradation
WO2019084288A1 (en) 2017-10-25 2019-05-02 Novartis Ag Methods of making chimeric antigen receptor-expressing cells
WO2019122046A1 (en) * 2017-12-21 2019-06-27 F. Hoffmann-La Roche Ag Universal reporter cell assay for specificity test of novel antigen binding moieties
US12000064B2 (en) 2017-12-21 2024-06-04 Hoffmann-La Roche Inc. Universal reporter cell assay for specificity test of novel antigen binding moieties
CN111247429A (en) * 2017-12-21 2020-06-05 豪夫迈·罗氏有限公司 Universal reporter cell assay for specific testing of novel antigen binding modules
WO2019122060A1 (en) * 2017-12-21 2019-06-27 F. Hoffmann-La Roche Ag Car-t cell assay for specificity test of novel antigen binding moieties
US11788205B2 (en) 2017-12-21 2023-10-17 Hoffmann-La Roche Inc. Car-t cell assay for specificity test of novel antigen binding moieties
EP3737400A4 (en) * 2018-01-09 2021-10-27 H. Lee Moffitt Cancer Center & Research Institute, Inc. Compositions and methods for targeting clec12a-expressing cancers
US11951129B2 (en) 2018-01-09 2024-04-09 H. Lee Moffitt Cancer Center And Research Institute, Inc. Compositions and methods for targeting CLEC12A-expressing cancers
US12038441B2 (en) 2018-04-04 2024-07-16 Hoffmann-La Roche Inc. CAR-T reporter based diagnostic assays to detect tumor antigens in cancer patients
WO2019210153A1 (en) 2018-04-27 2019-10-31 Novartis Ag Car t cell therapies with enhanced efficacy
WO2019213282A1 (en) 2018-05-01 2019-11-07 Novartis Ag Biomarkers for evaluating car-t cells to predict clinical outcome
WO2019227003A1 (en) 2018-05-25 2019-11-28 Novartis Ag Combination therapy with chimeric antigen receptor (car) therapies
WO2019237035A1 (en) 2018-06-08 2019-12-12 Intellia Therapeutics, Inc. Compositions and methods for immunooncology
WO2019241315A1 (en) 2018-06-12 2019-12-19 Obsidian Therapeutics, Inc. Pde5 derived regulatory constructs and methods of use in immunotherapy
US11608382B2 (en) 2018-06-13 2023-03-21 Novartis Ag BCMA chimeric antigen receptors and uses thereof
US11939389B2 (en) 2018-06-13 2024-03-26 Novartis Ag BCMA chimeric antigen receptors and uses thereof
US11952428B2 (en) 2018-06-13 2024-04-09 Novartis Ag BCMA chimeric antigen receptors and uses thereof
WO2020012337A1 (en) 2018-07-10 2020-01-16 Novartis Ag 3-(5-amino-1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives and their use in the treatment of i karos family zinc finger 2 (ikzf2)-dependent diseases
WO2020047449A2 (en) 2018-08-31 2020-03-05 Novartis Ag Methods of making chimeric antigen receptor-expressing cells
WO2020047452A2 (en) 2018-08-31 2020-03-05 Novartis Ag Methods of making chimeric antigen receptor-expressing cells
CN112673022A (en) * 2018-09-10 2021-04-16 南京传奇生物科技有限公司 Single domain antibodies against CD33 and constructs thereof
US12097219B2 (en) 2018-09-10 2024-09-24 Legend Biotech Ireland Limited Single-domain antibodies against CLL1 and constructs thereof
EP3850013A4 (en) * 2018-09-10 2022-10-05 Nanjing Legend Biotech Co., Ltd. Single-domain antibodies against cll1 and constructs thereof
EP3850011A4 (en) * 2018-09-10 2022-10-19 Nanjing Legend Biotech Co., Ltd. Single-domain antibodies against cd33 and constructs thereof
RU2812481C2 (en) * 2018-10-19 2024-01-30 Риджентс Оф Дзе Юниверсити Оф Миннесота Nk involving molecules and methods of their use
WO2020086742A1 (en) 2018-10-24 2020-04-30 Obsidian Therapeutics, Inc. Er tunable protein regulation
WO2020123716A1 (en) 2018-12-11 2020-06-18 Obsidian Therapeutics, Inc. Membrane bound il12 compositions and methods for tunable regulation
WO2020128972A1 (en) 2018-12-20 2020-06-25 Novartis Ag Dosing regimen and pharmaceutical combination comprising 3-(1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives
WO2020165834A1 (en) 2019-02-15 2020-08-20 Novartis Ag Substituted 3-(1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives and uses thereof
WO2020165833A1 (en) 2019-02-15 2020-08-20 Novartis Ag 3-(1-oxo-5-(piperidin-4-yl)isoindolin-2-yl)piperidine-2,6-dione derivatives and uses thereof
WO2020176397A1 (en) 2019-02-25 2020-09-03 Novartis Ag Mesoporous silica particles compositions for viral delivery
WO2020185632A1 (en) 2019-03-08 2020-09-17 Obsidian Therapeutics, Inc. Human carbonic anhydrase 2 compositions and methods for tunable regulation
WO2020210678A1 (en) 2019-04-12 2020-10-15 Novartis Ag Methods of making chimeric antigen receptor-expressing cells
WO2020219742A1 (en) 2019-04-24 2020-10-29 Novartis Ag Compositions and methods for selective protein degradation
US12043667B2 (en) 2019-05-04 2024-07-23 Inhibrx Biosciences, Inc. CLEC12a binding polypeptides and uses thereof
EP3966249A4 (en) * 2019-05-08 2023-05-10 2seventy bio, Inc. Cll-1 targeted immunotherapies
WO2020252404A1 (en) 2019-06-12 2020-12-17 Obsidian Therapeutics, Inc. Ca2 compositions and methods for tunable regulation
WO2020252405A1 (en) 2019-06-12 2020-12-17 Obsidian Therapeutics, Inc. Ca2 compositions and methods for tunable regulation
EP4010697A4 (en) * 2019-08-05 2022-10-12 Charles River Laboratories, Inc. Antigen binding molecules and methods of screening thereof
WO2021026266A1 (en) * 2019-08-05 2021-02-11 Distributed Bio, Inc. Antigen binding molecules and methods of screening thereof
WO2021046451A1 (en) 2019-09-06 2021-03-11 Obsidian Therapeutics, Inc. Compositions and methods for dhfr tunable protein regulation
CN114650830A (en) * 2019-09-13 2022-06-21 纪念斯隆-凯特琳癌症中心 Antigen recognition receptor targeting CD371 and uses thereof
EP4028031A4 (en) * 2019-09-13 2023-09-06 Memorial Sloan Kettering Cancer Center Antigen recognizing receptors targeting cd371 and uses thereof
US11975026B2 (en) 2019-11-26 2024-05-07 Novartis Ag CD19 and CD22 chimeric antigen receptors and uses thereof
WO2021108661A2 (en) 2019-11-26 2021-06-03 Novartis Ag Chimeric antigen receptors and uses thereof
WO2021123996A1 (en) 2019-12-20 2021-06-24 Novartis Ag Uses of anti-tgf-beta antibodies and checkpoint inhibitors for the treatment of proliferative diseases
WO2021173995A2 (en) 2020-02-27 2021-09-02 Novartis Ag Methods of making chimeric antigen receptor-expressing cells
WO2021173985A2 (en) 2020-02-27 2021-09-02 Novartis Ag Methods of making chimeric antigen receptor-expressing cells
WO2021252920A1 (en) 2020-06-11 2021-12-16 Novartis Ag Zbtb32 inhibitors and uses thereof
WO2021260528A1 (en) 2020-06-23 2021-12-30 Novartis Ag Dosing regimen comprising 3-(1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives
WO2022029573A1 (en) 2020-08-03 2022-02-10 Novartis Ag Heteroaryl substituted 3-(1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives and uses thereof
WO2022040586A2 (en) 2020-08-21 2022-02-24 Novartis Ag Compositions and methods for in vivo generation of car expressing cells
US20220089737A1 (en) * 2020-09-11 2022-03-24 Janssen Biotech, Inc. Multi-specific immune targeting molecules and uses thereof
US11883432B2 (en) 2020-12-18 2024-01-30 Century Therapeutics, Inc. Chimeric antigen receptor system with adaptable receptor specificity
WO2022215011A1 (en) 2021-04-07 2022-10-13 Novartis Ag USES OF ANTI-TGFβ ANTIBODIES AND OTHER THERAPEUTIC AGENTS FOR THE TREATMENT OF PROLIFERATIVE DISEASES
WO2022229853A1 (en) 2021-04-27 2022-11-03 Novartis Ag Viral vector production system
CN113461818B (en) * 2021-06-30 2022-01-21 徐州医科大学 CD 276-targeted fully human antibody scFv, chimeric antigen receptor, engineered immune cell and preparation method thereof
CN113461818A (en) * 2021-06-30 2021-10-01 徐州医科大学 CD 276-targeted fully human antibody scFv, chimeric antigen receptor, engineered immune cell and preparation method thereof
WO2023021477A1 (en) 2021-08-20 2023-02-23 Novartis Ag Methods of making chimeric antigen receptor–expressing cells
RU2786699C1 (en) * 2021-10-04 2022-12-23 Федеральное государственное бюджетное учреждение «Национальный медицинский исследовательский центр детской гематологии, онкологии и иммунологии имени Дмитрия Рогачева» Министерства здравоохранения Российской Федерации A method for the treatment of primary refractory form and early recurrence of hodgkin's lymphoma in children
WO2023201238A1 (en) * 2022-04-11 2023-10-19 Vor Biopharma Inc. Binding agents and methods of use thereof
WO2023214325A1 (en) 2022-05-05 2023-11-09 Novartis Ag Pyrazolopyrimidine derivatives and uses thereof as tet2 inhibitors
WO2024044670A1 (en) 2022-08-26 2024-02-29 Kite Pharma, Inc. Improving immune cell function
WO2024089639A1 (en) 2022-10-26 2024-05-02 Novartis Ag Lentiviral formulations

Also Published As

Publication number Publication date
JP2017522879A (en) 2017-08-17
RU2017105161A3 (en) 2019-04-01
EP3171882A1 (en) 2017-05-31
BR112017000939A2 (en) 2017-11-14
IL250116A0 (en) 2017-03-30
CO2017000506A2 (en) 2017-06-30
US20160051651A1 (en) 2016-02-25
US20200215171A1 (en) 2020-07-09
SG10201913782UA (en) 2020-03-30
KR20170037625A (en) 2017-04-04
RU2741120C2 (en) 2021-01-22
AR101829A1 (en) 2017-01-18
AU2020201939A1 (en) 2020-04-09
CA2955465A1 (en) 2016-01-28
JP2020185001A (en) 2020-11-19
CN107109420A (en) 2017-08-29
TW201619380A (en) 2016-06-01
AU2015292811B2 (en) 2019-12-19
JP6736540B2 (en) 2020-08-05
TWI718992B (en) 2021-02-21
MX2017001013A (en) 2018-02-21
RU2017105161A (en) 2018-08-21
AU2015292811A1 (en) 2017-02-02
US10568947B2 (en) 2020-02-25
IL250116B (en) 2021-06-30
SG11201700418VA (en) 2017-02-27

Similar Documents

Publication Publication Date Title
US20210139595A1 (en) Treatment of cancer using a cd33 chimeric antigen receptor
US20220064316A1 (en) Treatment of cancer using humanized anti-bcma chimeric antigen receptor
US20200215171A1 (en) Treatment of cancer using a cll-1 chimeric antigen receptor
AU2015305531B2 (en) Anti-CD123 chimeric antigen receptor (CAR) for use in cancer treatment
IL297003A (en) Car t cell therapies with enhanced efficacy
WO2019089798A1 (en) Anti-car compositions and methods

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15744448

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 250116

Country of ref document: IL

ENP Entry into the national phase

Ref document number: 2955465

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2017503488

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: NC2017/0000506

Country of ref document: CO

Ref document number: MX/A/2017/001013

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017000939

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2015292811

Country of ref document: AU

Date of ref document: 20150721

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015744448

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015744448

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177004392

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017105161

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112017000939

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170117