WO2016013918A1 - Accelerateurs biologiques de la mechanisation des dechets organique. - Google Patents

Accelerateurs biologiques de la mechanisation des dechets organique. Download PDF

Info

Publication number
WO2016013918A1
WO2016013918A1 PCT/MA2015/000008 MA2015000008W WO2016013918A1 WO 2016013918 A1 WO2016013918 A1 WO 2016013918A1 MA 2015000008 W MA2015000008 W MA 2015000008W WO 2016013918 A1 WO2016013918 A1 WO 2016013918A1
Authority
WO
WIPO (PCT)
Prior art keywords
fermentation
mixture
bacterial
weight
process according
Prior art date
Application number
PCT/MA2015/000008
Other languages
English (en)
Inventor
Moha AROUCH
Original Assignee
Universite Hassan 1Er De Settat
BAKASSE, Mina
BERAICH, Fatima Zahra
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universite Hassan 1Er De Settat, BAKASSE, Mina, BERAICH, Fatima Zahra filed Critical Universite Hassan 1Er De Settat
Publication of WO2016013918A1 publication Critical patent/WO2016013918A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P5/00Preparation of hydrocarbons or halogenated hydrocarbons
    • C12P5/02Preparation of hydrocarbons or halogenated hydrocarbons acyclic
    • C12P5/023Methane
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Definitions

  • the present invention relates to a method of treating organic waste such as agricultural waste, by anaerobic digestion for the production of methane at high yield and in a reduced time, using biological accelerators of the fermentation process.
  • the invention also relates to the preparation of biological leaven, suitable for cattle waste and agricultural waste, the effluents concerned are composed especially of a mixture of green waste, cattle dung and rumen contents with the addition of bicarbonate NaHC03 soda which promotes C02 conversion to CH4, the production of methane is optimal at a temperature between 35 to 45 ° C, stirring now.
  • This anaerobic biological fermentation involves a specialized and diversified microflora that requires specific and adapted conditions. Like all biological reactions, the reactions involved in the anaerobic degradation are carried out in the presence of water, that is to say in an aqueous medium (Moletta and Cansell, 2003).
  • the anaerobic biodegradation process can be subdivided into four biochemical steps: hydrolysis: during which the biopolymers (proteins, lipids, carbohydrates, etc.) are hydrolysed into water-soluble monomers and oligomers by means of extracellular enzymes excreted by microorganisms.
  • hydrolysis during which the biopolymers (proteins, lipids, carbohydrates, etc.) are hydrolysed into water-soluble monomers and oligomers by means of extracellular enzymes excreted by microorganisms.
  • VFAs volatile fatty acids
  • organic acids lactic, succinic, etc.
  • Methanogenesis the last stage of the degradation process, forms methane following two metabolisms.
  • the acetotrophic methanogens convert the acetate to methane and CO2, while the hydrogenotrophic methanogenesis combines hydrogen and CO2 to form methane and water.
  • the first industrial digester was built in 1859 in India, in a colony of Bombay.
  • the gas from the fermentation of the sanitary effluents of a leprosarium (Matinga Leper) was used for lighting in 1897, whereas in 1896 the gas from the sludge was used for lighting the streets of Morris in England.
  • thermophilic industrial digester was built in Los Angeles but biogas production was very low and the residence time very long.
  • Coulter proposed another concept to replace the stirred continuous reactor: the fixed-bed reactor, for the treatment of liquid effluents.
  • landfill gas extraction began in the United States in the early 1970s and was widely followed in Europe, mainly in the United Kingdom and Germany. This was the birth of a new management of landfills that we would call the "sanitary landfills" for the burial of solid waste.
  • the principle of this approach is effective management of solid, liquid and gas in landfills for the reduction of environmental impacts.
  • Pohland and Gosh separated the two main bacterial populations involved in anaerobic digestion: acetogens and methanogens. This sealed the rise of two-stage industrial processes.
  • the present invention aims to overcome the disadvantages of the state of technology by proposing a technique for optimizing and accelerating the methanation process, by conditioning an active mixed microbial culture with the various agricultural effluents.
  • the bacterial leaven consists of bacteria of the genus thermophilic and mesophilic, being obtained by a symbiosis of microorganisms that develops in a medium enriched according to the content of nitrogen, carbon, assimilable mineral salts.
  • the process for the preparation of bacterial leaven comprises the following points: - Mixture of 70% by weight of goat's or sheep's milk, 25% by weight of organic flour, 5% of bacterial starter, the mixture is incubated at a temperature of 25 ° C for 24 hours, temporarily brewed for to improve the homogeneity of the product, the grains obtained are separated from the culture liquor.
  • the culture obtained is inoculated in a mixture of cow dung 30% by weight and rumen content of 70% by weight at a temperature of 25 ° C. for 24 to 36 hours, thus the leaven enriched with bacteria is obtained.
  • the process according to the invention consists of mixing and homogenizing: from 48 to 50% by weight of solid waste (cattle dung, crushed agricultural waste, grinded herbs ...) with 50 to 45% of waste water (gray water, urine , stable water ...) and the bacterial starter which is introduced into the fermenter at a rate of 2 to 5% by weight, the fermentation temperature varies between 35 and 45 ° C and favorable pH between 6.2 to 8 .
  • the installation is equipped with a coil containing the coolant that serves to heat the mixture and maintain the desired temperature range, the heating system is installed in the mixing basin, for reasons of safety and maintenance, the heat transfer liquid used is an oil heat with a part of methane produced, the heating is not used only in the cold periods of the year.
  • the installation includes a system for monitoring the parameters of control and optimization of the fermentation directly linked to a database (T, pH, flow rate, COD, composition of the product gas, etc.).
  • a temporary brewing system is essential. to homogenize the system and also allows the escape of gas bubbles.
  • the object of the invention makes it possible to carry out a fermentation of the agricultural waste which begins in the second to the third week of the introduction of the mixture, the invention is useful for all types of methanisation plant, it is preferable to add to the mixture a little baking soda which promotes the conversion of CO2 into methane.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)

Abstract

La presente invention concerne un procede de traitement des dechets organiques, par digestion anaerobie permettant la production de methane a rendement eleve et dans un temps reduit qui commence des la deuxieme semaine de fermentation, on utilisant des accelerateurs biologique du processus de la fermentation. L'invention concerne egalement La preparation et le conditionnement d'une culture microbienne mixte active avec les differents effluents agricoles,

Description

Accélérateurs biologiques de la méthanisation des déchets organique.
Description
La présente invention concerne un procédé de traitement des déchets organiques tel que les déchets agricoles, par digestion anaérobie permettant la production de méthane à rendement élevé et dans un temps réduit, on utilisant des accélérateurs biologique du processus de la fermentation.
L'invention concerne également La préparation de levain biologique, adapté aux déchets de bovins et déchets agricoles, les effluents concernés sont composés spécialement d'un mélange de déchets verts, des bouses de bovins et des contenus de rumens avec l'ajout de bicarbonate de soude NaHC03 qui favorise la transformation C02 en CH4, la production de méthane est optimale à une température comprise entre 35 à 45 °C, on maintenant l'agitation.
Le traitement des composés organiques par fermentation est utilisé depuis plusieurs années, les matières organiques sont dégradées par voie aérobie ou anaérobie en fonction de la présence ou de l'absence d'oxygène. Dans le second cas peuvent se constituer de véritables chaînes de minéralisation anaérobie au cours desquelles divers groupes de bactéries se relayent pour transformer les polymères organiques à des molécules plus simples comme C02, H2, H20, CH4...
Cette fermentation biologique anaérobie implique une microflore spécialisée et diversifiée qui exige des conditions spécifiques et adaptées. Comme la totalité des réactions biologiques, les réactions impliquées dans la dégradation anaérobie sont réalisées en présence d'eau, c'est-à-dire en milieu aqueux (Moletta et Cansell, 2003).
Le processus de biodégradation anaérobie peut être subdivisé en quatre étapes biochimiques : -l'hydrolyse : durant laquelle les biopolymères (protéines, lipides, hydrates de carbone,...) sont hydrolysés en monomères et oligomères hydrosolubles grâce à des enzymes extracellulaires excrétées par des microorganismes.
-l'acidogènes : qui est réalisée par des bactéries dites acidogènes, durant laquelle les produits de l'hydrolyse sont transformés en acides gras volatils (AGV) tels que acétate, butyrate, etc., en acides organiques (lactique, succinique,...) en hydrogène et C02.
-l'acétogenèse : qui transforme les produits de l'acidogenèse (sauf l'acétate) en acétate.
Elle se déroule suivant deux métabolismes : les acétogènes transforment les acides organiques en acétate, C02 et H2 ; les homoacéto gènes combinent l'hydrogène et le C02 en acétate.
-la méthanogenèse : dernière étape du processus de dégradation, forme le méthane suivant deux métabolismes. Les méthanogènes acétotrophes transforment l'acétate en méthane et C02 alors que les méthanogenèse hydrogénotrophes combinent hydrogène et C02 pour former du méthane et de l'eau.
Bien que la méthanisation soit redevenue attractive de nos jours grâce aux préoccupations liées au traitement et à la valorisation des déchets, cette technologie est connue depuis très longtemps et possède une histoire particulière.
Le premier digesteur industriel fut construit en 1859 en Inde, dans une colonie de Bombay. Le gaz issu de la fermentation des effluents sanitaires d'une léproserie (Matinga Leper) fut utilisé pour l'éclairage dès 1897 alors qu'en 1896, le gaz issu des boues était utilisé pour l'éclairage des rues d'Exeter en Angleterre.
La recherche appliquée relative à la digestion anaérobie commence avec Buswell en 1920. Il établît la stoechiométrie de fermentation, les métabolismes de transformation de l'azote et développa des digesteurs à l'échelle de la ferme (Lusk, et al., 1996).
En 1953, le premier digesteur industriel fonctionnant en régime thermophile fut construit à Los Angeles mais la production de biogaz était très faible et le temps de séjour très long. En 1957, Coulter proposa un autre concept pour remplacer le réacteur continu agité : le réacteur à lit fixe, pour le traitement des effluents liquides.
Durant les années 1960, la production de méthane et le développement de projets de recherches relatifs à la digestion anaérobie ont connu un recul à cause du bas prix du pétrole et du charbon. Ce n'est qu'à partir des années 1970 et des deux crises pétrolières que cette ressource a connu son véritable essor.
Dans le même temps, les connaissances acquises au sujet de la digestion anaérobie ont été adaptées à d'autres applications que la digestion en méthaniseur. Des milliers de tonnes de déchets étaient enfouis en décharge et des millions de mètres cubes de gaz s'échappaient de ces centres d'enfouissement. Sans extraction, ce gaz présentait des risques importants d'explosion ainsi qu'une forte menace à cause de sa forte contribution à l'effet de serre.
Pour des raisons économiques et environnementales, l'extraction des gaz de décharge commença aux Etats-Unis au début des années 1970 et fut largement suivie en Europe, principalement au Royaume Uni et en Allemagne. Ce fut la naissance d'une nouvelle gestion des centres d'enfouissement que l'on appellerait les « décharges sanitaires » pour l'enfouissement des déchets solides. Le principe de cette démarche est une gestion efficace des solides, liquides et gaz dans les centres d'enfouissement pour la réduction des impacts environnementaux. En 1971, Pohland et Gosh séparèrent les deux principales populations bactériennes impliquées dans la digestion anaérobie : les acétogènes et les méthanogènes. Ceci scella l'essor des procédés industriels à deux étapes.
Durant les années 1980 la recherche concernant la digestion anaérobie a connu un large développement, en particulier sur la conception des réacteurs, leur suivi et la modélisation. Alors que la digestion anaérobie a été largement dédiée à la digestion en milieu dilué (teneur en matière sèche inférieure à 15 %), des études menées dans les années 1980 ont montré que le rendement en méthane aussi bien que la production de méthane étaient tout aussi efficace dans les systèmes à fort taux de solide (15-40 % de matière sèche).
La présente invention vise à remédier aux inconvénients de l'état de la technologie en proposant une technique permettant l'optimisation et l'accélération du processus de méthanisation, par le conditionnement d'une culture microbienne mixte active avec les différents effluents agricoles.
Le procédé dans lequel le levain bactérien est constitué des bactéries du genre thermophile et mésophile, étant obtenu par une symbiose des microorganismes qui se développe dans un milieu enrichi en fonction de la teneur en azote, carbone, sels minéraux assimilables.
Selon l'invention le procédé de la préparation du levain bactérien comprend les points suivants : - Mélange de 70% en poids du lait de vache de chèvre ou de brebis, 25 % en poids de la farine biologique, 5% de levain bactérien, le mélange est incubé à une température de 25 °C pendant 24 heures, temporairement brasser pour améliorer l'homogénéité du produit, les grains obtenus sont séparer de la liqueur de culture .
- La culture mère est inoculé de nouveau dans un mélange lait - farine dans les mêmes conditions susmentionnées.
- La culture obtenue est inoculé dans un mélange de bouse de Vache 30% en poids et de contenue de panse 70% poids à une température de 25 °C pendant 24 à 36 heures, ainsi le levain enrichi en bactéries est obtenu.
Selon un exemple préféré de la réalisation, il est prévu de travailler sur des installations de méthanisation bétonnés enterrés à dôme fixe, caractérisées par la stabilité physique et thermique, par le coût faible de construction et d'entretient et par leurs étanchéités, le procédé selon l'invention consiste à mélanger et homogénéiser : de 48 à 50% en poids de déchets solides (bouses de bovins, broyats des déchets agricoles, broyais des herbes...) avec 50 à 45 % d'eau usée (eaux grises , urines, eaux d'étables... ) et le levain bactérien qui est introduit dans le fermenteur à raison de 2 à 5% en poids, la température de fermentation varie entre 35 et 45 °C et pH favorable compris entre 6,2 à 8.
L'installation est muni de serpentin contenant le liquide caloporteur qui sert au chauffage du mélange et maintenir l'intervalle de température désiré, le système de chauffage est installé dans le bassin de mélangeage, pour des raisons de sécurité et maintenance, le liquide caloporteur utilisé est une huile chauffer par une partie de méthane produit, le chauffage n'est pas utilisé que dans les périodes froides de l'année. L'installation comporte un système de suivi des paramètres de contrôle et d'optimisation de la fermentation lié directement une base de données (T, pH, débit, DCO, Composition du gaz produit...), un système de brassage temporaire est indispensable permettant d'homogénéiser le système et permet aussi l'échappement des bulles de gaz.
L'objet de l'invention permet de réaliser une fermentation des déchets agricoles dans qui débute dans la deuxième à la troisième semaine de l'introduction du mélange, l'invention est utiles pour tous types d'installation de méthanisation, il est préférable d'ajouter au mélange un peu de bicarbonate de soude qui favorise la transformation de C02 en méthane.

Claims

Revendications
1 - procédé de traitement des déchets organiques, caractérisé en ce que la dégradation de la matière se fait dans un temps réduit, on utilisant des accélérateurs biologiques du processus de la fermentation suivant les étapes :
étape 1 : Préparation du levain bactérien mixte
étape 2 : culture des bactéries
étape 3 : utilisation des cultures bactérienne
2- Procédé selon la revendication 1 est caractérisé en ce que dans l'étape 1, le levain bactérien contient, points suivants :
Mélange de 70% en poids du lait de vache de chèvre ou de brebis, 25 % en poids de la farine biologique, 5% de levain bactérien
le mélange est incubé à une température de 25 °C pendant 24 heures, temporairement brasser pour améliorer l'homogénéité du produit, les grains obtenus sont séparer de la liqueur de culture.
3- Procédé selon la revendication 1 est caractérisé en ce que dans l'étape 2, La culture mère est inoculé de nouveau dans un mélange lait - farine dans les mêmes conditions susmentionnées. La culture obtenue est inoculé dans un mélange de bouse de Vache 30% en poids et de contenue de panse 70% poids à une température de 25 °C pendant 24 à 36 heures, ainsi le levain enrichi en bactéries est obtenu.
4- Procédé selon la revendication 1 est caractérisé en ce que dans l'étape 3, le mélange est introduit dans une installation de fermentation et comprend : de 48 à 50% en poids de déchets solides (bouses de bovins, broyats des déchets agricoles, broyats des herbes...) avec 50 à 45 % d'eau usée (eaux grises, urines, eaux d'étables...) et le levain bactérien qui est introduit dans le fermenteur à raison de 2 à 5% en poids,
5- Procédé selon la revendication 1 est caractérisé en ce que l'on ajoute au mélange dans l'étape 3, une faible quantité de bicarbonate de soude qui favorise la formation de CH4.
6- Selon la revendication 4 la température de fermentation dans l'installation de fermentation varie entre 35 et 45 °C et pH favorable compris entre 6,2 à 8.
7- Procédé selon la revendication 1 et 4 caractérisé en ce que l'installation de fermentation est munie d'un système de chauffage qui peut être installé dans le bassin de mélangeage, ou dans le réacteur de digestion 8- Procédé selon la revendication 1 et 4 caractérisé en ce que L'installation de fermentation comporte un système de suivi des paramètres de contrôle et d'optimisation de la fermentation lié directement une base de données (T, pH, débit, DCO, Composition du gaz produit...), un système de brassage temporaire est indispensable permettant d'homogénéiser le système et permet aussi l'échappement des bulles de gaz.
9- L'invention selon les revendications 1 à 8 est caractérisé en ce que fermentation des déchets agricoles et la production de gaz débute dans la deuxième à la troisième semaine de l'introduction du mélange.
10- Selon les revendications 2 et 3 la culture bactérienne produite est applicable sur tous types de fermentation aérobie et anaérobie.
11- Selon les revendications 2 et 3 la culture bactérienne produite accélère le procédé de compostage des matières organiques.
PCT/MA2015/000008 2014-07-25 2015-07-10 Accelerateurs biologiques de la mechanisation des dechets organique. WO2016013918A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
MA37238A MA37238B1 (fr) 2014-07-25 2014-07-25 Accélérateurs biologiques de la methanisation des déchets organique , procédé et unité de mise en ouevre
MA37238 2014-07-25

Publications (1)

Publication Number Publication Date
WO2016013918A1 true WO2016013918A1 (fr) 2016-01-28

Family

ID=54249550

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MA2015/000008 WO2016013918A1 (fr) 2014-07-25 2015-07-10 Accelerateurs biologiques de la mechanisation des dechets organique.

Country Status (2)

Country Link
MA (1) MA37238B1 (fr)
WO (1) WO2016013918A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114162977A (zh) * 2021-12-13 2022-03-11 南京德润环保科技有限公司 一种具备提升微生物活性的生物增效激活剂

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003066664A2 (fr) * 2002-02-06 2003-08-14 Green Earth Industries, Llc Technologies complexes utilisant un hydrolysat enzymatique de proteine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003066664A2 (fr) * 2002-02-06 2003-08-14 Green Earth Industries, Llc Technologies complexes utilisant un hydrolysat enzymatique de proteine

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
COMINO E ET AL: "Development of a pilot scale anaerobic digester for biogas production from cow manure and whey mix", BIORESOURCE TECHNOLOGY, ELSEVIER BV, GB, vol. 100, no. 21, 1 November 2009 (2009-11-01), pages 5072 - 5078, XP026321200, ISSN: 0960-8524, [retrieved on 20090625], DOI: 10.1016/J.BIORTECH.2009.05.059 *
ELENA COMINO ET AL: "Biogas production by anaerobic co-digestion of cattle slurry and cheese whey", BIORESOURCE TECHNOLOGY, ELSEVIER BV, GB, vol. 114, 17 February 2012 (2012-02-17), pages 46 - 53, XP028422548, ISSN: 0960-8524, [retrieved on 20120228], DOI: 10.1016/J.BIORTECH.2012.02.090 *
PETER WEILAND: "Biogas production: current state and perspectives", APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, SPRINGER, BERLIN, DE, vol. 85, no. 4, 24 September 2009 (2009-09-24), pages 849 - 860, XP019778569, ISSN: 1432-0614 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114162977A (zh) * 2021-12-13 2022-03-11 南京德润环保科技有限公司 一种具备提升微生物活性的生物增效激活剂

Also Published As

Publication number Publication date
MA37238B1 (fr) 2016-09-30
MA37238A1 (fr) 2016-02-29

Similar Documents

Publication Publication Date Title
Kurade et al. Microbial community acclimatization for enhancement in the methane productivity of anaerobic co-digestion of fats, oil, and grease
Kumar et al. A comprehensive overview on light independent fermentative hydrogen production from wastewater feedstock and possible integrative options
Salminen et al. Anaerobic batch degradation of solid poultry slaughterhouse waste
Angelidaki et al. Biomethanation and its potential
Vlyssides et al. Thermal-alkaline solubilization of waste activated sludge as a pre-treatment stage for anaerobic digestion
Wang et al. Chain elongation performances with anaerobic fermentation liquid from sewage sludge with high total solid as electron acceptor
Zahedi et al. Mesophilic anaerobic co-digestion of sewage sludge with glycerine: Effect of solids retention time
Gavala et al. Kinetics and modeling of anaerobic digestion process
Fernández et al. Thermophilic anaerobic digestion of cheese whey: Coupling H2 and CH4 production
Alzate-Gaviria et al. Comparison of two anaerobic systems for hydrogen production from the organic fraction of municipal solid waste and synthetic wastewater
Steinbusch et al. Selective inhibition of methanogenesis to enhance ethanol and n-butyrate production through acetate reduction in mixed culture fermentation
Montalvo et al. Microaerobic pretreatment of sewage sludge: Effect of air flow rate, pretreatment time and temperature on the aerobic process and methane generation
US20170101616A1 (en) Sonicated biological hydrogen reactor
CN102300977A (zh) 用于从工业有机废弃物和生物质生产氢和甲烷的集成系统
Ferreira et al. HRT control as a strategy to enhance continuous hydrogen production from sugarcane juice under mesophilic and thermophilic conditions in AFBRs
Montalvo et al. Increase in biogas production in anaerobic sludge digestion by combining aerobic hydrolysis and addition of metallic wastes
Sánchez-Hernández et al. The effect of biogas sparging on cow manure characteristics and its subsequent anaerobic biodegradation
CN107363076A (zh) 一种有机废弃物资源化处理方法
Weijma et al. Methanol conversion in high-rate anaerobic reactors
Sani et al. Effectiveness of using two-stage anaerobic digestion to recover bio-energy from high strength palm oil mill effluents with simultaneous treatment
Sivamani et al. A comprehensive review on microbial technology for biogas production
Fu et al. One-stage anaerobic fermentation of excess sludge for caproate production by supplementing chain elongation enrichments with ethanol as electron donor
Li et al. The effect of pH on continuous biohydrogen production from swine wastewater supplemented with glucose
de Oliveira et al. Microaerophilic treatment enhanced organic matter removal and methane production rates during swine wastewater treatment: A long-term engineering evaluation
US20180282770A1 (en) Methods and systems for converting volatile fatty acids to lipids

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15774724

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15774724

Country of ref document: EP

Kind code of ref document: A1