WO2016013670A1 - Compound thin film solar cell, method for manufacturing compound thin film solar cell, and light absorption layer - Google Patents

Compound thin film solar cell, method for manufacturing compound thin film solar cell, and light absorption layer Download PDF

Info

Publication number
WO2016013670A1
WO2016013670A1 PCT/JP2015/071155 JP2015071155W WO2016013670A1 WO 2016013670 A1 WO2016013670 A1 WO 2016013670A1 JP 2015071155 W JP2015071155 W JP 2015071155W WO 2016013670 A1 WO2016013670 A1 WO 2016013670A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat treatment
light absorption
absorption layer
solar cell
film solar
Prior art date
Application number
PCT/JP2015/071155
Other languages
French (fr)
Japanese (ja)
Inventor
毅聞 張
明 殷
山田 明
Original Assignee
凸版印刷株式会社
国立大学法人 東京工業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 凸版印刷株式会社, 国立大学法人 東京工業大学 filed Critical 凸版印刷株式会社
Priority to JP2016536001A priority Critical patent/JPWO2016013670A1/en
Publication of WO2016013670A1 publication Critical patent/WO2016013670A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F10/00Individual photovoltaic cells, e.g. solar cells
    • H10F10/10Individual photovoltaic cells, e.g. solar cells having potential barriers
    • H10F10/16Photovoltaic cells having only PN heterojunction potential barriers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F71/00Manufacture or treatment of devices covered by this subclass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a compound thin-film solar cell including a light absorption layer that is a CZTS-based compound semiconductor layer, a manufacturing method thereof, and a light absorption layer.
  • the CZTS-based compound thin film solar cell includes a CZTS-based compound semiconductor layer (Cu 2 ZnSnS 4 , Cu 2 ZnSnSe 4 , Cu 2 ZnSn (S, Se) 4, etc.) as a light absorption layer.
  • CZTS-based compound semiconductor layer Cu 2 ZnSnS 4 , Cu 2 ZnSnSe 4 , Cu 2 ZnSn (S, Se) 4, etc.
  • Such CZTS-based compound thin film solar cells do not use rare metals in the light absorption layer compared to CIGS-based (CuInGaSe 2 etc.) compound thin-film solar cells that are being industrially produced. Is possible. Therefore, research and development of CZTS-based compound thin film solar cells are being activated as next-generation solar cells.
  • Patent Document 1 discloses that the photoelectric conversion efficiency can be improved by controlling the composition ratio of the entire light absorption layer.
  • An object of the present invention is to provide a compound thin film solar cell, a method for manufacturing a compound thin film solar cell, and a light absorption layer that can increase the photoelectric conversion efficiency.
  • the compound thin film solar cell that solves the above problem is a compound thin film solar cell including a light absorption layer, and the light absorption layer includes at least one element of S and Se, and Cu, Zn, and Sn.
  • the inside of the crystal grains included in the polycrystal preferably has a composition satisfying Zn / Sn ⁇ 1.
  • the inside of the crystal grains included in the polycrystal preferably has a composition satisfying Cu / (Zn + Sn) ⁇ 1.
  • each of the two or more crystal grains adjacent to each other at the crystal grain boundary portion has a particle diameter of 0.1 ⁇ m or more.
  • the grain boundary part composed of crystal grains having a particle size of 0.1 ⁇ m or more is larger than the crystal grain boundary part composed of crystal grains having a particle diameter of less than 0.1 ⁇ m, and therefore, the photoelectric conversion efficiency
  • the composition of the crystal grain boundary portion having a high correlation with the photoelectric conversion efficiency satisfies Cu / (Zn + Sn) ⁇ 1.11, the photoelectric conversion efficiency can be accurately increased.
  • the rate of change of the Zn / Sn ratio in the film thickness direction of the light absorption layer, the maximum value of the Zn / Sn ratio in the film thickness direction of the light absorption layer is Rmax, and the film of the light absorption layer
  • the composition of the entire light absorption layer preferably satisfies 0.9 ⁇ Zn / Sn ⁇ 1.2. According to the above arrangement, since Zn / Sn ratio of the entire light absorbing layer is 0.9 or more, formation of defects due to Cu Zn is suppressed. On the other hand, since the Zn / Sn ratio of the entire light absorption layer is 1.2 or less, uneven distribution of Zn can be suppressed. As a result, the photoelectric conversion efficiency is increased.
  • the compound thin-film solar cell further includes a front electrode and a back electrode, and the light absorption layer is located between the front electrode and the back electrode and is close to the front electrode in the light absorption layer
  • the Zn / Sn ratio of the part is preferably lower than the Zn / Sn ratio of the part close to the back electrode.
  • a method for manufacturing a compound thin-film solar cell that solves the above-described problem is a precursor of a light absorption layer, and includes at least one element of S and Se, and three elements of Cu, Zn, and Sn.
  • a heat treatment step of forming the light absorption layer is a precursor of a light absorption layer, and includes at least one element of S and Se, and three elements of Cu, Zn, and Sn.
  • a light absorption layer including a crystal grain boundary part having a composition satisfying Cu / (Zn + Sn) ⁇ 1.11 is formed, and a compound thin film solar cell including this light absorption layer is obtained. Therefore, the photoelectric conversion efficiency is increased in the compound thin film solar cell.
  • the precursor forming step includes an ink containing fine particles made of a compound containing at least one element of S and Se and three elements of Cu, Zn, and Sn. It is preferable to form a coating film which is the precursor by coating.
  • a light absorption layer can be formed easily.
  • the heat treatment is performed in an atmosphere containing sulfur and selenium.
  • the heat treatment in the heat treatment step, is preferably performed in an atmosphere containing hydrogen and selenium, and the temperature of the heat treatment is preferably 523 ° C. or lower.
  • heat treatment in the heat treatment step, heat treatment is performed in an atmosphere containing sulfur and nitrogen, the heat treatment temperature is 580 ° C., and the heat treatment time is preferably 20 minutes or more. .
  • the heat treatment step includes a first step heat treatment step and a second step heat treatment step.
  • the first step heat treatment step the heat treatment is performed in an atmosphere containing sulfur.
  • the second heat treatment step the heat treatment is preferably performed in an atmosphere containing selenium.
  • the heat treatment step in each of the above methods since the Cu / (Zn + Sn) ratio is suppressed from increasing at the crystal grain boundary portion of the light absorption layer, a crystal having a composition satisfying Cu / (Zn + Sn) ⁇ 1.11.
  • the light absorption layer including the grain boundary part can be suitably formed.
  • the rate of change of the Zn / Sn ratio in the film thickness direction of the light absorption layer formed in the heat treatment step is expressed as
  • the maximum value is Rmax
  • the minimum value of the Zn / Sn ratio in the film thickness direction of the light absorption layer is Rmin
  • a compound thin film solar cell including a light absorption layer having a Zn / Sn ratio change rate of 16% or less is obtained. Therefore, the photoelectric conversion efficiency is increased in the compound thin film solar cell.
  • the precursor forming step includes an ink containing fine particles made of a compound containing at least one element of S and Se and three elements of Cu, Zn, and Sn. It is preferable to form a coating film which is the precursor by coating.
  • a light absorption layer can be formed easily.
  • the heat treatment is performed in an atmosphere containing sulfur and selenium.
  • the heat treatment step includes a first step heat treatment step and a second step heat treatment step.
  • the first step heat treatment step the heat treatment is performed in an atmosphere containing sulfur.
  • the second heat treatment step the heat treatment is preferably performed in an atmosphere containing selenium.
  • the change rate of the Zn / Sn ratio can be suppressed according to the heat treatment step in each of the above methods, the light absorption layer having the change rate of 16% or less can be suitably formed.
  • the fine particles are preferably amorphous particles. According to the above method, the denseness of the formed light absorption layer can be improved.
  • the light absorption layer that solves the above problem includes a polycrystal including at least one element of S and Se and three elements of Cu, Zn, and Sn, and the polycrystal includes Cu / A crystal grain boundary portion having a composition satisfying (Zn + Sn) ⁇ 1.11 is included.
  • photoelectric conversion efficiency can be increased in a compound thin film solar cell.
  • the compound thin film solar cell includes a substrate 10. On the substrate 10, the back electrode 11, the light absorption layer 12, the buffer layer 13, the semi-insulating layer 14, the window layer 15, and the surface electrode 16 are positioned in this order.
  • a glass plate, a metal plate, or a resin film such as plastic is used as the substrate 10.
  • a metal such as Mo, Ni, Cu, Ti, Fe, Al, titania, stainless steel, or the like is used.
  • a carbon-based electrode such as carbon or graphene, or a transparent conductive film such as ITO (Indium Tin Oxide) or ZnO may be used.
  • the light absorption layer 12 is a p-type compound semiconductor.
  • the light absorption layer 12 is composed of a CZTS-based compound semiconductor, that is, a CZTS semiconductor.
  • the CZTS compound semiconductor comprises at least one element of group VIB (group 16) S and group VIB (group 16) Se, group IB (group 11) Cu, group IIB (group 12) Zn, and , And a compound semiconductor containing three elements of Sn of group IVB (group 14). That is, the CZTS semiconductor is a IB 2- (IIB-IVB) -VIB Group 4 compound semiconductor.
  • the light absorption layer 12 is a thin film made of a polycrystal.
  • the crystal grain boundary part in the light absorption layer 12, that is, the crystal grain boundary part included in the polycrystal has a composition satisfying Cu / (Zn + Sn) ⁇ 1.11.
  • the crystal grain boundary part is a region including a crystal grain boundary that is an interface between two or more adjacent crystal grains, and is a region included in a range of a radius of 10 nm or less centering on the crystal grain boundary. .
  • composition analysis by energy dispersive X-ray spectroscopy (EDS) using a scanning transmission electron microscope (STEM) with respect to the light absorption layer 12 cut into a flaky shape, This is a region to be analyzed by irradiating the grain boundary with an electron beam.
  • EDS energy dispersive X-ray spectroscopy
  • STEM scanning transmission electron microscope
  • the crystal grain boundary part whose composition ratio is to be measured is a region that is 70 nm or more away from the surface in contact with the light absorption layer 12 in the buffer layer 13 and 70 nm or more away from the surface in contact with the light absorption layer 12 in the back electrode 11. It is preferable that it is a crystal grain boundary part contained in.
  • the crystal grain boundary part whose composition ratio is to be measured is the light in the layer located between the back electrode 11 and the light absorption layer 12. Any crystal grain boundary portion included in a region separated by 70 nm or more from the surface in contact with the absorption layer 12 may be used.
  • the crystal grain boundary part that is the measurement target of the composition ratio is Any crystal grain boundary portion included in a region separated by 70 nm or more from the surface in contact with the light absorption layer 12 in the layer made of MoSe 2 may be used.
  • composition of the crystal grain boundary portion satisfies Cu / (Zn + Sn) ⁇ 1.11, in other words, in the portion having the highest value of the Cu / (Zn + Sn) ratio in the region including the crystal grain boundary. , Cu / (Zn + Sn) ⁇ 1.11 is satisfied.
  • the concentration of Cu contained in the crystal grains is higher as the surface of the crystal grains, and the Cu of the portion constituting the grain boundary portion in the crystal grains is higher.
  • the concentration is higher than the inside of the crystal grain.
  • the inside of the crystal grain in the light absorption layer 12 that is, the inside of the crystal grain included in the polycrystal has a composition satisfying Zn / Sn ⁇ 1.
  • the inside of the crystal grain is a region that is different from the crystal grain boundary portion and does not include the crystal grain boundary. If the Zn / Sn ratio is 1 or less inside the crystal grains, ZnS x Se 1-x (0 ⁇ x ⁇ 1) is difficult to precipitate in the light absorption layer 12. When ZnS x Se 1-x is precipitated, ZnS x Se 1-x exists as a heterogeneous phase in the polycrystal, resulting in a decrease in photoelectric conversion efficiency. However, if the Zn / Sn ratio is 1 or less in the crystal grains, This phenomenon is suppressed.
  • the inside of the crystal grains in the light absorption layer 12 preferably has a composition satisfying Cu / (Zn + Sn) ⁇ 1. If the Cu / (Zn + Sn) ratio is 1 or less inside the crystal grains, the carrier concentration inside the crystal grains can be prevented from becoming too high, so that a decrease in photoelectric conversion efficiency can be suppressed.
  • the Cu / (Zn + Sn) ratio and the Zn / Sn ratio are both atomic ratios, and the atomic percentage of Cu with respect to the sum of atomic percentage of Zn and atomic percentage of Sn is Cu / (Zn + Sn). ), And the atomic% of Zn with respect to the atomic% of Sn is Zn / Sn.
  • the crystal grain boundary included in the crystal grain boundary part having a composition satisfying Cu / (Zn + Sn) ⁇ 1.11 is an interface between two or more crystal grains having a grain size of 0.1 ⁇ m or more. preferable.
  • the particle size indicates the maximum diameter of crystal grains. Since the crystal grain having a grain size of less than 0.1 ⁇ m does not progress sufficiently, the analysis of Cu / (Zn + Sn) is performed at the crystal grain boundary portion formed by the crystal grain having a grain size of 0.1 ⁇ m or more. The result is highly correlated with the photoelectric conversion efficiency. That is, the photoelectric conversion efficiency is accurately increased in the configuration in which the Cu / (Zn + Sn) ratio is 1.11 or less in the crystal grain boundary portion formed by the crystal grains having a grain size of 0.1 ⁇ m or more.
  • the crystal grain boundary part included in the light absorbing layer 12 includes a crystal grain boundary part with a Cu / (Zn + Sn) ratio exceeding 1.11, the Cu / (Zn + Sn) ratio is 1.11. Since the presence of the following crystal grain boundary part prevents the leakage path from being connected, the photoelectric conversion efficiency is improved as compared with the configuration in which the Cu / (Zn + Sn) ratio exceeds 1.11 in all the crystal grain boundary parts. Is possible.
  • the Zn / Sn ratio in the portion close to the front electrode 16 is preferably lower than the Zn / Sn ratio in the portion close to the back electrode 11. According to such a configuration, the photoelectric conversion efficiency is further increased.
  • the thickness of the light absorption layer 12 is preferably 0.3 ⁇ m or more and 10 ⁇ m or less, and preferably 2 ⁇ m, for example.
  • the buffer layer 13 is an n-type compound semiconductor.
  • the buffer layer 13 for example, CdS, Zn (S, O, OH), ZnS, ZnSe, In 2 S 3 or the like is used.
  • the semi-insulating layer 14 is an i-type compound semiconductor.
  • the window layer 15 is an n-type compound semiconductor. As the window layer 15, for example, ZnO or ITO to which Al, Ga, B or the like is added is used.
  • the surface electrode 16 is laminated on a part of the upper surface of the window layer 15.
  • a material of the surface electrode 16 for example, a metal such as Al or Ag is used.
  • a carbon-based electrode such as carbon or graphene, or a transparent conductive film such as ITO or ZnO may be used.
  • the compound thin film solar cell may have layers other than said each layer.
  • an antireflection film may be laminated on the window layer 15. Since the antireflection film has a function of suppressing light reflection, the light absorption layer 12 can absorb more light by providing the antireflection film.
  • the antireflection film is made of MgF 2 to a thickness of about 100 nm, for example.
  • an intermediate layer having a composition for increasing the photoelectric conversion efficiency may be provided between the back electrode 11 and the light absorption layer 12.
  • Method for producing compound thin-film solar cell As an example of a method for producing a compound thin film solar cell, a method for producing a light absorption layer by applying ink containing fine particles will be described.
  • the compound thin film solar cell is formed by laminating a back electrode 11, a light absorption layer 12, a buffer layer 13, a semi-insulating layer 14, a window layer 15, and a surface electrode 16 in this order on a substrate 10.
  • the back electrode 11 is formed on the upper surface of the substrate 10 by using, for example, sputtering, vapor deposition, CVD (Chemical Vapor Deposition), or the like.
  • the light absorption layer 12 is formed using a light absorption layer forming ink containing fine particles composed of the constituent elements of the light absorption layer 12.
  • the fine particles are nano-sized particles.
  • the fine particles are generated by a reaction between a solution containing a metal salt or a metal complex and a solution containing a chalcogenide salt.
  • the fine particles are, for example, particles made of a compound represented by a composition formula of Cu 2-x Zn 1 + y SnS z Se 4-Z (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 4).
  • the ink for forming the light absorption layer is formed of Cu 2-x S y Se 2-y (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 2), Zn 2-x as fine particles in addition to the particles composed of the above compound.
  • the light absorption layer forming ink is represented by a composition formula of Cu 2 ⁇ x Zn 1 + y SnS z Se 4 ⁇ Z (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 4) as fine particles.
  • the particles made of the compound the particles made of three kinds of compounds included in the group may be included.
  • amorphous particles As the fine particles, it is preferable to use amorphous particles. Since crystalline particles are in a stable state with respect to energy, each atom contained in the particles is likely to be fixed at a certain position, that is, difficult to diffuse. Easy to diffuse. Therefore, the use of amorphous particles improves the density of the light absorption layer 12.
  • the solvent for dispersing the fine particles in the light absorbing layer forming ink is not particularly limited as long as it is an organic solvent.
  • the organic solvent can be selected from, for example, alcohols, ethers, esters, aliphatic hydrocarbons, alicyclic hydrocarbons, or aromatic hydrocarbons.
  • alcohols having less than 10 carbon atoms such as methanol, ethanol, butanol, pyridine, diethyl ether, pentane, hexane, cyclohexane, and toluene are preferable, and methanol, pyridine, toluene, and hexane are particularly preferable.
  • the light absorbing layer forming ink preferably contains a binder in order to improve leveling properties during coating.
  • the content of the binder is preferably 5% by mass or more and 70% by mass or less, and more preferably 20% by mass or more and 60% by mass or less of the fine particles contained in the light absorbing layer forming ink.
  • the binder content is 5% by mass or more, formation of cavities in the coating film after heat treatment is suppressed.
  • the binder content is 70% by mass or less, an increase in the surface roughness of the coating film after the heat treatment is suppressed.
  • a thiol organic substance, a selenol organic substance, or an alcohol having 10 or more carbon atoms can be used.
  • Se particles, S particles, Se compounds, S compounds, or the like may be used as the binder.
  • sodium sulfide, sodium selenide, potassium selenide, sodium selenate, thiosulfate, or the like may be used as the binder.
  • it is preferable to use a thiol organic substance as the binder it is preferable to use a thiol organic substance as the binder, and it is more preferable to use thiourea.
  • the light absorption layer 12 formed from the light absorption layer forming ink has a trace amount of about 0.3 atomic% to 0.5 atomic% with respect to the entire light absorption layer 12. Of carbon remains.
  • a precursor formation process of the light absorption layer 12 is performed.
  • the light absorbing layer forming ink is applied to the upper surface of the back electrode 11 to form a film containing fine particles.
  • membrane is removed by drying the coated film
  • a heat treatment step is performed, and the coating film is heat treated in the heat treatment step, whereby sintering and crystallization of the fine particles proceed to form the light absorption layer 12.
  • Examples of the coating method of the light absorbing layer forming ink include a doctor blade method, a spin coating method, a slit coating method, a coating method such as a spray method, a gravure printing method, a screen printing method, a reverse offset printing method, Or printing methods, such as a relief printing method, are mentioned.
  • the heat treatment is performed, for example, by annealing using a heating furnace or rapid thermal annealing (RTA).
  • the atmosphere of the heat treatment is at least selected from the group consisting of H 2 S gas, H 2 Se gas, nitrogen gas, Ar gas, Se vapor, S vapor, hydrogen gas, and a mixed gas of hydrogen and an inert gas. Preferably one is included.
  • the heat treatment temperature is preferably 250 ° C. or higher.
  • the temperature of the heat treatment is a temperature that the glass can withstand, specifically, 650 ° C. or less is preferable, and 600 ° C. or less is more preferable.
  • any one of the following conditions 1 to 4 It is preferred that one is satisfied.
  • Condition 1 The atmosphere of heat treatment contains sulfur and selenium.
  • Condition 2 The atmosphere of the heat treatment includes hydrogen and selenium, and the temperature of the heat treatment is 523 ° C. or lower.
  • Condition 3 The atmosphere of the heat treatment includes sulfur and nitrogen, the temperature of the heat treatment is 580 ° C., and the time of the heat treatment is 20 minutes or more.
  • Condition 4 The heat treatment step includes a first-stage heat treatment step performed in an atmosphere containing sulfur and a second-stage heat treatment step performed in an atmosphere containing selenium.
  • condition 1 by adding sulfur to the heat treatment atmosphere in addition to selenium, the Cu / (Zn + Sn) ratio is suppressed from becoming too high at the crystal grain boundary, and the photoelectric conversion efficiency is increased. It is done.
  • the Cu / (Zn + Sn) ratio at the crystal grain boundary can be lowered by lowering the heat treatment temperature, but if the heat treatment temperature is low Crystal growth is difficult to proceed.
  • the temperature of the heat treatment is set to 523 ° C. or less at which the precipitation of CuSe is suppressed, and about 3% of hydrogen gas is added to the atmosphere of the heat treatment.
  • the progress of crystal growth can be promoted while suppressing the Cu / (Zn + Sn) ratio from becoming too high at the crystal grain boundary.
  • the progress of crystal growth is promoted by performing the heat treatment at 580 ° C. for 20 minutes or more.
  • the progress of crystal growth can be promoted while suppressing the Cu / (Zn + Sn) ratio from becoming too high at the crystal grain boundary.
  • the atmosphere of the heat treatment contains selenium and sulfur at the same time.
  • the heat treatment is performed in an atmosphere containing sulfur by the first heat treatment step, Even if the heat treatment is performed in an atmosphere containing selenium by the two-stage heat treatment process, it is possible to prevent the Cu / (Zn + Sn) value from becoming too high at the crystal grain boundary part.
  • the light absorption layer 12 formed from the light absorption layer forming ink is preferably subjected to a surface cleaning treatment with an acid such as hydrochloric acid or pure water.
  • an acid such as hydrochloric acid or pure water.
  • Zn atoms in the vicinity of the upper surface of the light absorption layer 12 are dissolved, so that the Zn / Sn ratio in the portion near the front electrode 16 in the light absorption layer 12 is higher than the Zn / Sn ratio in the portion near the back electrode 11.
  • an acid a well-known inorganic acid and organic acid can be used.
  • the buffer layer 13 is formed on the upper surface of the light absorption layer 12 using, for example, a CBD (Chemical Bath Deposition) method, a MOCVD (Metal Organic Chemical Vapor Deposition) method, or an ALD (Atomic Layer Deposition) method.
  • CBD Chemical Bath Deposition
  • MOCVD Metal Organic Chemical Vapor Deposition
  • ALD Atomic Layer Deposition
  • the semi-insulating layer 14 is formed on the upper surface of the buffer layer 13 by using, for example, MOCVD or sputtering.
  • the window layer 15 is formed on the upper surface of the semi-insulating layer 14 by using, for example, MOCVD or sputtering.
  • the surface electrode 16 is formed on a part of the upper surface of the window layer 15 by using, for example, sputtering, vapor deposition, CVD, or the like.
  • the light absorption layer 12 can also be formed by heat-processing with respect to the film
  • the crystallization of the film during heat treatment The process is different. That is, when sputtering is used, first, as a precursor, a layer for each metal constituting the light absorption layer or one layer containing these metals is formed by sputtering.
  • the polycrystalline body constituting the light absorption layer is the same as when the light absorption layer is formed from a coating film containing fine particles. And having a structure including a crystal grain boundary part.
  • the photoelectric conversion efficiency can be improved if the light absorption layer has a crystal grain boundary part having a composition satisfying Cu / (Zn + Sn) ⁇ 1.11. is there.
  • the photoelectric conversion efficiency can be improved if the light absorption layer 12 includes a crystal grain boundary portion having a composition satisfying Cu / (Zn + Sn) ⁇ 1.11 regardless of the manufacturing method.
  • such a compound thin film solar cell has a precursor forming step of forming a precursor of the light absorption layer 12 and crystallizing the precursor by heat-treating the precursor, so that Cu / (Zn + Sn) ⁇ 1.11. And a heat treatment step for forming the light absorption layer 12 including the crystal grain boundary portion having the composition to be satisfied.
  • Example 2 The compound thin film solar cell, the manufacturing method thereof, and the light absorption layer of the first embodiment will be described using specific examples and comparative examples.
  • Example 1 (Adjustment of light absorbing layer forming ink) CuI, ZnI 2 , and SnI 4 were dissolved in pyridine such that the molar ratio of Cu: Zn: Sn was 1.8: 1.1: 1 to prepare a first solution.
  • a second solution was prepared by dissolving Na 2 Se in methanol.
  • the first solution and the second solution were mixed to obtain a mixed solution having a Cu: Zn: Sn: Se molar ratio of 1.8: 1.1: 1: 4.
  • This mixed solution was reacted at 0 ° C. in an inert gas atmosphere to produce Cu—Zn—Sn—Se fine particles.
  • the solution after the reaction is filtered and the residue is washed with methanol, and then the washed Cu—Zn—Sn—Se fine particles and thiourea are mixed so that the mass ratio of the fine particles to thiourea is 3: 2.
  • pyridine and methanol were further added to the mixture to prepare a light absorption layer forming ink containing Cu—Zn—Sn—Se fine particles.
  • the solid content contained in the light absorbing layer forming ink is 2% by mass.
  • a light absorbing layer forming ink was applied to the upper surface of the back electrode by a spray method, and the solvent was evaporated in an oven at 250 ° C., followed by a heat treatment step.
  • a coating film which is a precursor formed on the upper surface of the back electrode, is placed in a quartz case containing 48 mg of sulfur and 10 mg of selenium, and is placed at 580 ° C. for 20 minutes in an atmosphere introduced with nitrogen gas. The heat treatment was performed. Thereby, the light absorption layer comprised from the CZTS thin film with a film thickness of about 2 micrometers was obtained.
  • a semi-insulating layer made of ZnO having a thickness of 50 nm was formed on the buffer layer by MOCVD using diethyl zinc and water as raw materials.
  • a window layer made of ZnO: B having a thickness of 1 ⁇ m was formed on the semi-insulating layer by MOCVD using diethyl zinc, water, and diborane as raw materials.
  • Example 2 A compound thin-film solar cell of Example 2 was obtained by the same process as Example 1 except that the conditions in the heat treatment step when forming the light absorption layer were changed as follows.
  • a coating film which is a precursor formed on the upper surface of the back electrode, is placed in a quartz case containing 40 mg of selenium, and an atmosphere in which about 3% of hydrogen gas is added to nitrogen gas is used.
  • a heat treatment was performed at 500 ° C. for 30 minutes.
  • Example 3 A compound thin-film solar cell of Example 3 was obtained by the same process as Example 1 except that the conditions in the heat treatment step when forming the light absorption layer were changed as follows.
  • the coating film which is a precursor formed on the upper surface of the back electrode, is put in a quartz case containing 48 mg of sulfur, and at 580 ° C. for 20 minutes in an atmosphere introduced with nitrogen gas. The heat treatment was performed.
  • Comparative Example 1 A compound thin-film solar cell of Comparative Example 1 was obtained by the same process as Example 1 except that the conditions in the heat treatment step when forming the light absorption layer were changed as follows.
  • the coating film which is a precursor formed on the upper surface of the back electrode, is put in a quartz case containing 40 mg of selenium, and the atmosphere is introduced at 580 ° C. for 20 minutes in an atmosphere introduced with nitrogen gas. Heat treatment was performed.
  • composition ratio For each of the examples and comparative examples, the light absorbing layer was cut into a thin piece by the FIB method ( ⁇ -sampling method), and then energy dispersive X-ray spectroscopy using a scanning transmission electron microscope (Hitachi High-Technologies HD-2700). Composition analysis was performed by the method (EDS). Detailed conditions of the composition analysis are shown below.
  • FIG. 2 shows a cross-sectional STEM image of the compound thin film solar cell of Example 1.
  • P1 in FIG. 2 shows the measurement location of the composition of a crystal grain boundary part
  • P2 shows the measurement location of the composition inside a crystal grain.
  • FIG. 3 shows a STEM image of a cross section of the compound thin film solar cell of Example 2, FIG. 4 Example 3 and FIG. P3 in FIG.
  • P5 in FIG. 4, and P7 in FIG. 5 indicate the measurement points of the composition of the crystal grain boundaries.
  • P4 in FIG. 3, P6 in FIG. 4, and P8 in FIG. Indicates the measurement location.
  • 2, 4, and 5 are bright field STEM images, and FIG. 3 is a dark field STEM image.
  • Table 1 shows the calculation result of the composition ratio of the crystal grain boundary and the crystal grain and the calculation result of the photoelectric conversion efficiency for each example and comparative example.
  • the present inventor has obtained the knowledge that the concentration of Cu tends to be high at the crystal grain boundaries in the light absorption layer, and this is one of the factors that lower the photoelectric conversion efficiency. Focusing on the Cu / (Zn + Sn) ratio in the crystal grain boundary, the inventors have found a configuration that can increase the photoelectric conversion efficiency.
  • the effects listed below can be obtained. (1) Since the light absorption layer 12 after the heat treatment includes a crystal grain boundary part having a composition satisfying Cu / (Zn + Sn) ⁇ 1.11, in the light absorption layer due to a decrease in resistance at the crystal grain boundary part. The formation of a leak path is suppressed. As a result, the photoelectric conversion efficiency is increased.
  • a compound thin film solar cell including the light absorption layer 12 including the crystal grain boundary part having the above composition can be formed.
  • the light absorption layer 12 can be easily formed as compared with the case where the precursor is formed using sputtering or the like.
  • the effect of increasing the photoelectric conversion efficiency is high.
  • the Cu / (Zn + Sn) ratio is increased at the crystal grain boundary portion of the light absorption layer 12 by performing the heat treatment under the condition according to any one of the above conditions 1 to 4. Can be suppressed. As a result, the light absorption layer 12 including the crystal grain boundary part having the above composition can be suitably formed.
  • the light absorption layer 12 of the compound thin film solar cell of the second embodiment is a thin film made of a polycrystalline body and is made of a CZTS semiconductor. Similar to the first embodiment, the crystal grain boundary portion in the light absorption layer 12 has a composition satisfying Cu / (Zn + Sn) ⁇ 1.11, and the light absorption layer 12 has a composition ratio in the film thickness direction.
  • Features include the following features.
  • the rate of change Rver of the Zn / Sn ratio in the film thickness direction of the light absorption layer 12 the maximum value of the Zn / Sn ratio in the film thickness direction of the light absorption layer 12 is Rmax, and the Zn / Sn in the film thickness direction of the light absorption layer 12.
  • Rmin the minimum value of the ratio
  • the rate of change Rver is 16% or less.
  • the Zn / Sn ratio is an atomic ratio, and the atomic% of Zn with respect to the atomic% of Sn is Zn / Sn.
  • Rver (Rmax ⁇ Rmin ⁇ 1) ⁇ 100 (1)
  • the maximum value Rmax and the minimum value Rmin are obtained by performing composition analysis on a plurality of regions having different positions in the film thickness direction in the light absorption layer 12. As a result of composition analysis, the maximum value of the obtained Zn / Sn ratios in each region is the maximum value Rmax, and the minimum value is the minimum value Rmin.
  • the composition analysis is performed on the polished cross section of the light absorption layer 12 by energy dispersive X-ray spectroscopy (EDS) using a scanning electron microscope (SEM).
  • the composition analysis region which is a region to be subjected to composition analysis, is all or part of each region obtained by equally dividing the cross section of the light absorption layer 12 in the film thickness direction.
  • the cross section of the light absorption layer 12 is divided into three, and each of these three regions is a composition analysis region, or a part of each of these three regions is a composition analysis region, and the three regions One composition analysis region is set for each.
  • the composition analysis region may be a rectangular region having a size of 100 nm or more in the film thickness direction when viewed from the direction facing the cross section of the light absorption layer 12.
  • the composition analysis region includes a plurality of crystal grains and a plurality of crystal grain boundaries.
  • the change rate Rver is 16% or less, the deviation of the Zn / Sn ratio in the light absorption layer 12 is suppressed, so that ZnS or the like segregates in the light absorption layer 12 to form a heterogeneous phase, or light absorption. The formation of defects in the layer 12 is suppressed. As a result, the photoelectric conversion efficiency is increased.
  • the direction of change of the Zn / Sn ratio in the film thickness direction of the light absorption layer 12 is not particularly limited, and the Zn / Sn ratio may decrease from a portion close to the back electrode 11 toward a portion close to the front electrode 16. And it may become large toward the part near the surface electrode 16 from the part close to the back surface electrode 11, and may become the maximum or the minimum at the center part in the film thickness direction.
  • the Zn / Sn ratio in the part close to the front electrode 16 is lower than the Zn / Sn ratio in the part close to the back electrode 11, and the Zn / Sn ratio is changed from the part close to the back electrode 11 to the front electrode 16. It is more preferable that it becomes smaller toward the near part.
  • the composition of the light absorption layer 12 as a whole satisfies 0.9 ⁇ Zn / Sn ⁇ 1.2.
  • the Zn / Sn ratio is 0.9 or more in the entire light absorption layer 12, the formation of defects due to Cu Zn is suppressed.
  • the Zn / Sn ratio is 1.2 or less in the entire light absorption layer 12, the uneven distribution of Zn is suppressed. As a result, the photoelectric conversion efficiency is increased.
  • the Zn / Sn ratio in the entire light absorption layer 12 is calculated from data obtained by mapping by EDS on the entire cross-section of the polished light absorption layer.
  • the composition of each composition analysis region satisfies 0.9 ⁇ Zn / Sn ⁇ 1.2, the above effect is enhanced.
  • the rate of change Rver is 16% or less, it is difficult to completely prevent the segregation of Zn even though the segregation of Zn as ZnS or the like in the light absorption layer 12 is suppressed.
  • the Zn / Sn ratio in the composition analysis region and the Zn / Sn ratio in the entire light absorption layer 12 may be larger than 1, If the composition of the entire absorption layer 12 satisfies 0.9 ⁇ Zn / Sn ⁇ 1.2, the above-described effect can be obtained.
  • the thickness of the light absorption layer 12 is preferably 0.3 ⁇ m or more and 10 ⁇ m or less, and for example, preferably 2 ⁇ m.
  • Condition 5 The atmosphere of heat treatment contains sulfur and selenium.
  • Condition 6 The heat treatment step includes a first-stage heat treatment step performed in an atmosphere containing sulfur and a second-stage heat treatment step performed in an atmosphere containing selenium.
  • the present inventor has found that the Cu / (Zn + Sn) ratio at the crystal grain boundary portion becomes too high as described in the first embodiment. Although it can be suppressed, in particular, Zn is unevenly distributed near the surface electrode 16 in the light absorption layer 12 and the change rate Rver of the Zn / Sn ratio is increased. As a result, the short-circuit current is reduced and the photoelectric conversion efficiency is reduced. Found that the decline.
  • the back surface electrode 11 contains Mo
  • Se / S ratio (molar ratio) in the atmosphere of heat processing is 4 or less. If the ratio of selenium to sulfur is 4 or less, selenium in the heat treatment atmosphere reacts with Mo of the back electrode 11 to suppress the formation of a high-resistance MoSe 2 layer. As a result, the photoelectric conversion efficiency is increased.
  • condition 6 sulfur and selenium are simultaneously contained in the heat treatment atmosphere, but as in condition 6, the heat treatment is performed in an atmosphere containing sulfur by the first stage heat treatment process, The heat treatment may be performed in an atmosphere containing selenium by a two-step heat treatment step.
  • the unevenly distributed Zn is rediffused in the light absorption layer 12 in the second stage heat treatment process.
  • An increase in the change rate Rver of the / Sn ratio can be suppressed.
  • Condition 5 corresponds to condition 1 of the first embodiment
  • condition 6 corresponds to condition 4 of the first embodiment. That is, when any one of the conditions 5 and 6 is satisfied, the composition of the crystal grain boundary portion satisfies Cu / (Zn + Sn) ⁇ 1.11, and the change rate Rver of the Zn / Sn ratio is 16% or less. A certain light absorption layer 12 can be obtained.
  • the light absorbing layer 12 may be subjected to a surface cleaning treatment with an acid such as hydrochloric acid or pure water.
  • an acid such as hydrochloric acid or pure water.
  • Zn atoms in the vicinity of the upper surface of the light absorption layer 12 are dissolved, so that the Zn / Sn ratio in the portion near the front electrode 16 in the light absorption layer 12 is higher than the Zn / Sn ratio in the portion near the back electrode 11.
  • an acid a well-known inorganic acid and organic acid can be used.
  • the change rate Rver of the Zn / Sn ratio being 16% or less brings particularly high photoelectric conversion efficiency when the light absorption layer is formed from the coating film containing fine particles.
  • Such a compound thin-film solar cell includes a precursor forming step for forming a precursor of the light absorption layer 12, and a heat treatment step for forming the light absorption layer 12 satisfying the change rate Rver by heat-treating the precursor. May be manufactured by a manufacturing method including:
  • Example 2 The compound thin film solar cell, the manufacturing method thereof, and the light absorption layer of the second embodiment will be described using specific examples and comparative examples.
  • Example 4 (Adjustment of light absorbing layer forming ink) CuI, ZnI 2 , and SnI 4 were dissolved in pyridine such that the molar ratio of Cu: Zn: Sn was 1.8: 1.1: 1 to prepare a first solution. In addition, a second solution was prepared by dissolving Na 2 Se in methanol.
  • the first solution and the second solution were mixed to obtain a mixed solution having a Cu: Zn: Sn: Se molar ratio of 1.8: 1.1: 1: 4.
  • This mixed solution was reacted at 0 ° C. in an inert gas atmosphere to produce Cu—Zn—Sn—Se fine particles.
  • the solution after the reaction is filtered and the residue is washed with methanol, and then the washed Cu—Zn—Sn—Se fine particles and thiourea are mixed so that the mass ratio of the fine particles to thiourea is 3: 2.
  • pyridine and methanol were further added to the mixture to prepare a light absorption layer forming ink containing Cu—Zn—Sn—Se fine particles.
  • the solid content contained in the light absorbing layer forming ink is 2% by mass.
  • a light absorbing layer forming ink was applied to the upper surface of the back electrode by a spray method, and the solvent was evaporated in an oven at 250 ° C., followed by a heat treatment step.
  • a coating film which is a precursor formed on the upper surface of the back electrode, is placed in a quartz case containing 48 mg of sulfur and 10 mg of selenium, and is placed at 580 ° C. for 20 minutes in an atmosphere introduced with nitrogen gas. The heat treatment was performed. Thereby, the light absorption layer comprised from the CZTS thin film with a film thickness of about 2 micrometers was obtained.
  • a semi-insulating layer made of ZnO having a thickness of 50 nm was formed on the buffer layer by MOCVD using diethyl zinc and water as raw materials.
  • a window layer made of ZnO: B having a thickness of 1 ⁇ m was formed on the semi-insulating layer by MOCVD using diethyl zinc, water, and diborane as raw materials.
  • Example 5 A compound thin-film solar cell of Example 5 was obtained by the same process as Example 4 except that the conditions in the heat treatment step when forming the light absorption layer were changed as follows.
  • a coating film which is a precursor formed on the upper surface of the back electrode, was placed in a quartz case containing 48 mg of sulfur, and nitrogen gas was introduced. Heat treatment was performed at 500 ° C. for 60 minutes in an atmosphere.
  • the precursor that has undergone the first heat treatment step is placed in a quartz case containing 40 mg of selenium, and heat treatment is performed at 520 ° C. for 20 minutes in an atmosphere introduced with nitrogen gas. Went.
  • Example 6 A compound thin-film solar cell of Example 6 was obtained by the same process as Example 4 except that the conditions in the heat treatment step for forming the light absorption layer were changed as follows.
  • a coating film which is a precursor formed on the upper surface of the back electrode, is placed in a quartz case containing 8 mg of sulfur and 79 mg of selenium, and in an atmosphere where nitrogen gas is introduced, 580 Heat treatment was carried out at 20 ° C. for 20 minutes.
  • Comparative Example 2 A compound thin-film solar cell of Comparative Example 2 was obtained by the same process as in Example 4 except that the conditions in the heat treatment step when forming the light absorption layer were changed as follows.
  • the coating film which is a precursor formed on the upper surface of the back electrode, is placed in a quartz case containing 48 mg of sulfur, and at 600 ° C. for 20 minutes in an atmosphere introduced with nitrogen gas. The heat treatment was performed.
  • Comparative Example 3 A compound thin-film solar cell of Comparative Example 3 was obtained by the same process as Example 4 except that the conditions in the heat treatment step when forming the light absorption layer were changed as follows.
  • the coating film which is a precursor formed on the upper surface of the back electrode, is placed in a quartz case containing 48 mg of sulfur, and at 540 ° C. for 20 minutes in an atmosphere introduced with nitrogen gas. The heat treatment was performed.
  • composition ratio For the compound thin film solar cells of each example and each comparative example, after the cross section of the light absorption layer was polished flat with Ar ions, evaluation by SEM-EDS (energy dispersive X-ray analysis for scanning electron microscope) was performed, The Zn / Sn ratio in the three regions of the upper, middle, and lower portions of the light absorption layer was calculated.
  • the upper part is a part directed in the direction in which light is incident, that is, a part close to the surface electrode in the light absorption layer.
  • a lower part is a part close
  • the middle part is a central part of the light absorption layer in the film thickness direction, and is a part between the upper part and the lower part. Then, the change rate Rver of the Zn / Sn ratio was calculated based on the Zn / Sn ratios of the upper, middle, and lower parts.
  • [result] 6 shows a scanning electron microscope (SEM) image of a cross section of the compound thin film solar cell of Example 4.
  • SEM scanning electron microscope
  • FIG. 6 The area indicated by A1 in FIG. 6 indicates the upper composition analysis area, the area indicated by B1 indicates the middle composition analysis area, and the area indicated by C1 indicates the lower composition analysis area.
  • a region indicated by D1 in FIG. 6 indicates a region used for calculating the Zn / Sn ratio of the entire light absorption layer.
  • FIG. 7 shows an SEM image of a cross section of the compound thin film solar cell of Example 5, FIG. 8 shows Example 6, FIG. 9 shows Comparative Example 2, FIG. 10 shows Comparative Example 3, and FIG.
  • Each of the area indicated by A2 in FIG. 7, the area indicated by A3 in FIG. 8, the area indicated by A4 in FIG. 9, and the area indicated by A5 in FIG. 10 is the upper part in each example or each comparative example.
  • the composition analysis region is shown.
  • Each of the area indicated by B2 in FIG. 7, the area indicated by B3 in FIG. 8, the area indicated by B4 in FIG. 9, and the area indicated by B5 in FIG. 10 is the middle part in each example or each comparative example.
  • the composition analysis region is shown.
  • each of the area indicated by D2 in FIG. 7, the area indicated by D3 in FIG. 8, the area indicated by D4 in FIG. 9, and the area indicated by D5 in FIG. 10 is the light in each example or each comparative example.
  • region used for calculation of Zn / Sn ratio of the whole absorption layer is shown.
  • Table 2 shows the proportion of Sn atoms and the proportion of Zn atoms in the composition analysis regions in the upper, middle, and lower portions, and the upper, middle, and lower portions calculated from these values for each example and each comparative example.
  • the Zn / Sn ratio in the composition analysis region is shown.
  • the Zn / Sn ratio indicates a value obtained by rounding off the third decimal place.
  • Table 3 shows the regions where the Zn / Sn ratio in Table 2 is the maximum and the change rates calculated using the Sn atom ratio and the Zn atom ratio in the minimum region in Table 2 for each Example and each Comparative Example.
  • the ratio of Sn atoms and the ratio of Zn atoms in the entire light absorption layer the Zn / Sn ratio of the entire light absorption layer calculated from these values, and the calculation result of the photoelectric conversion efficiency are shown.
  • Table 3 the Zn / Sn ratio of the entire light absorption layer shows a value obtained by rounding off the third decimal place.
  • Example 4 and Example 6 manufactured according to Condition 5 in the heat treatment step of the manufacturing method of the second embodiment and in Example 5 manufactured according to Condition 6, the Zn / Sn ratio
  • the minimum value Rmin is controlled to 0.867 or more of the maximum value Rmax, and the difference between the minimum value Rmin and the maximum value Rmax is suppressed from increasing.
  • the change rate Rver of the Zn / Sn ratio exceeds 16%
  • Examples 4 to 6 in which the change rate Rver is 16% or less high photoelectric conversion efficiency is obtained. It was done.
  • Example 5 where the Zn / Sn ratio near the front electrode is lower than the Zn / Sn ratio near the back electrode, particularly high photoelectric conversion efficiency can be obtained.
  • the composition of the upper composition analysis region in Example 6 does not satisfy 0.9 ⁇ Zn / Sn ⁇ 1.2, and such Example 6 has a higher photoelectric conversion efficiency than Comparative Examples 2 and 3.
  • the photoelectric conversion efficiency was low as compared with Examples 4 and 5.
  • the Zn / Sn ratio of the entire light absorption layer in Example 6 is the same as that of the entire light absorption layer in Examples 4 and 5. It is higher than the Zn / Sn ratio. Specifically, the composition of the entire light absorption layer in each of Examples 4 to 6 satisfies 0.9 ⁇ Zn / Sn ⁇ 1.2.
  • the photoelectric conversion efficiency is higher than that of Example 6 in which the Zn / Sn ratio of the entire light absorbing layer exceeds 1.1. can get. That is, when the composition of the whole light absorption layer satisfy
  • fills Zn / Sn ⁇ 1.1, it was shown that especially photoelectric conversion efficiency is improved.
  • the inventor pays attention to the change rate Rver of the Zn / Sn ratio in the film thickness direction of the light absorption layer as a parameter deeply related to the uneven distribution of Zn inside the light absorption layer, and can increase the photoelectric conversion efficiency. I came to find the composition.
  • Examples 4 to 6 are manufactured according to Condition 5 or Condition 6 in the heat treatment step of the manufacturing method of the second embodiment. That is, since Examples 4 to 6 are manufactured according to Condition 1 or Condition 4 in the heat treatment step of the manufacturing method of the first embodiment, the light absorption layers of Examples 4 to 6 have Cu / (Zn + Sn) ⁇ 1. .11 including a grain boundary portion having a composition satisfying .11.
  • Example 3 described as an example of the first embodiment is manufactured according to the condition that the change rate Rver of the Zn / Sn ratio tends to be large as described in the second embodiment. However, the photoelectric conversion efficiency of Example 3 is lower than the photoelectric conversion efficiency of Examples 4 to 6, but is higher than the photoelectric conversion efficiency of Comparative Examples 1 to 3.
  • Comparative Examples 1 to 3 are manufactured by a manufacturing method that does not satisfy both the conditions 1 to 4 of the first embodiment and the conditions 5 and 6 of the second embodiment. Therefore, it is suggested that Comparative Examples 1 to 3 do not satisfy the condition of the numerical range described in the above embodiment with respect to both the composition of the crystal grain boundary part and the change rate Rver of the Zn / Sn ratio.
  • the effects listed below can be obtained as described using the examples. (8) Since the change rate Rver of the Zn / Sn ratio in the film thickness direction of the light absorption layer 12 after the heat treatment is 16% or less, Zn is unevenly distributed in the light absorption layer 12, The formation of defects is suppressed. As a result, the photoelectric conversion efficiency is increased.
  • the Zn / Sn ratio in the portion close to the front electrode 16 is lower than the Zn / Sn ratio in the portion close to the back electrode 11. According to such a configuration, it is possible to suppress the movement of carriers due to the uneven distribution of Zn in the portion near the surface electrode 16 of the light absorption layer, thereby further improving the photoelectric conversion efficiency.
  • the rate of change Rver is 16% by a manufacturing method including a precursor forming step of forming a precursor of the light absorption layer 12 and a heat treatment step of forming the light absorption layer 12 by heat-treating the precursor.
  • a compound thin film solar cell including the light absorption layer 12 as described below can be formed.
  • the light absorption layer 12 can be easily formed as compared with the case where the precursor is formed using sputtering or the like.
  • the effect of increasing the photoelectric conversion efficiency is high.

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

This light absorption layer of a compound thin film solar cell contains a polycrystalline body that contains S and/or Se and three elements, namely Cu, Zn and Sn. This polycrystalline body comprises a crystal grain boundary part that has a composition satisfying Cu/(Zn + Sn) ≤ 1.11.

Description

化合物薄膜太陽電池、化合物薄膜太陽電池の製造方法、および、光吸収層Compound thin film solar cell, method for producing compound thin film solar cell, and light absorption layer

 本発明は、CZTS系の化合物半導体層である光吸収層を備える化合物薄膜太陽電池、その製造方法、および、光吸収層に関する。 The present invention relates to a compound thin-film solar cell including a light absorption layer that is a CZTS-based compound semiconductor layer, a manufacturing method thereof, and a light absorption layer.

 CZTS系化合物薄膜太陽電池は、CZTS系(CuZnSnS、CuZnSnSe、CuZnSn(S,Se)等)の化合物半導体層を光吸収層として備えている。こうしたCZTS系化合物薄膜太陽電池は、工業生産が進められているCIGS系(CuInGaSe等)化合物薄膜太陽電池と比較して、光吸収層に希少金属を使用しないため、製造にかかるコストの低減が可能である。それゆえ、次世代の太陽電池として、CZTS系化合物薄膜太陽電池の研究開発が活性化している。 The CZTS-based compound thin film solar cell includes a CZTS-based compound semiconductor layer (Cu 2 ZnSnS 4 , Cu 2 ZnSnSe 4 , Cu 2 ZnSn (S, Se) 4, etc.) as a light absorption layer. Such CZTS-based compound thin film solar cells do not use rare metals in the light absorption layer compared to CIGS-based (CuInGaSe 2 etc.) compound thin-film solar cells that are being industrially produced. Is possible. Therefore, research and development of CZTS-based compound thin film solar cells are being activated as next-generation solar cells.

 CZTS系化合物薄膜太陽電池における光電変換効率の向上は、最も重要な課題である。例えば、特許文献1には、光吸収層全体の組成比を制御することによって、光電変換効率の向上が可能であることが開示されている。 Improvement of photoelectric conversion efficiency in CZTS compound thin film solar cells is the most important issue. For example, Patent Document 1 discloses that the photoelectric conversion efficiency can be improved by controlling the composition ratio of the entire light absorption layer.

特開2010-215497号公報JP 2010-215497 A

 しかしながら、CZTS系化合物薄膜太陽電池の光電変換効率を変化させるメカニズムは完全には解明されておらず、光電変換効率に影響を与える因子について十分な知見が得られているとは言い難い。したがって、依然として、光電変換効率の向上の余地は残されている。 However, the mechanism for changing the photoelectric conversion efficiency of the CZTS-based compound thin film solar cell has not been completely elucidated, and it is difficult to say that sufficient knowledge about factors affecting the photoelectric conversion efficiency has been obtained. Therefore, there is still room for improvement in photoelectric conversion efficiency.

 本発明は、光電変換効率を高めることのできる化合物薄膜太陽電池、化合物薄膜太陽電池の製造方法、および、光吸収層を提供することを目的とする。 An object of the present invention is to provide a compound thin film solar cell, a method for manufacturing a compound thin film solar cell, and a light absorption layer that can increase the photoelectric conversion efficiency.

 上記課題を解決する化合物薄膜太陽電池は、光吸収層を備える化合物薄膜太陽電池であって、前記光吸収層は、S、および、Seの少なくとも1つの元素と、Cu、Zn、および、Snの3つの元素とを含む多結晶体を含み、前記多結晶体は、Cu/(Zn+Sn)≦1.11を満たす組成を有する結晶粒界部を含む。 The compound thin film solar cell that solves the above problem is a compound thin film solar cell including a light absorption layer, and the light absorption layer includes at least one element of S and Se, and Cu, Zn, and Sn. A polycrystalline body including three elements, and the polycrystalline body includes a crystal grain boundary portion having a composition satisfying Cu / (Zn + Sn) ≦ 1.11.

 上記構成によれば、結晶粒界部における抵抗の低下に起因して光吸収層中にリークパスが形成されることが抑えられる。その結果、光電変換効率が高められる。
 上記化合物薄膜太陽電池において、前記多結晶体が含む結晶粒の内部は、Zn/Sn≦1を満たす組成を有することが好ましい。
According to the above configuration, it is possible to suppress a leak path from being formed in the light absorption layer due to a decrease in resistance at the crystal grain boundary. As a result, the photoelectric conversion efficiency is increased.
In the compound thin-film solar cell, the inside of the crystal grains included in the polycrystal preferably has a composition satisfying Zn / Sn ≦ 1.

 上記構成によれば、光吸収層中に、異相となるZnSSe1-x(0≦x≦1)が析出し難くなる。その結果、光電変換効率が高められる。
 上記化合物薄膜太陽電池において、前記多結晶体が含む結晶粒の内部は、Cu/(Zn+Sn)≦1を満たす組成を有することが好ましい。
According to the above configuration, ZnS x Se 1-x (0 ≦ x ≦ 1) that becomes a different phase is difficult to be precipitated in the light absorption layer. As a result, the photoelectric conversion efficiency is increased.
In the compound thin-film solar cell, the inside of the crystal grains included in the polycrystal preferably has a composition satisfying Cu / (Zn + Sn) ≦ 1.

 上記構成によれば、結晶粒内部において、キャリアの濃度が高くなりすぎることが抑えられる。その結果、光電変換効率が高められる。
 上記化合物薄膜太陽電池において、前記結晶粒界部にて互いに隣り合う2以上の結晶粒の各々の粒径が0.1μm以上であることが好ましい。
According to the above configuration, it is possible to suppress the carrier concentration from becoming too high inside the crystal grains. As a result, the photoelectric conversion efficiency is increased.
In the compound thin-film solar cell, it is preferable that each of the two or more crystal grains adjacent to each other at the crystal grain boundary portion has a particle diameter of 0.1 μm or more.

 粒径が0.1μm以上である結晶粒から構成される結晶粒界部は、粒径が0.1μm未満である結晶粒から構成される結晶粒界部よりも大きく、それゆえに、光電変換効率に及ぼす影響も大きい。したがって、上記構成によれば、光電変換効率との相関性が高い結晶粒界部の組成が、Cu/(Zn+Sn)≦1.11を満たすため、光電変換効率が的確に高められる。 The grain boundary part composed of crystal grains having a particle size of 0.1 μm or more is larger than the crystal grain boundary part composed of crystal grains having a particle diameter of less than 0.1 μm, and therefore, the photoelectric conversion efficiency The impact on the Therefore, according to the above configuration, since the composition of the crystal grain boundary portion having a high correlation with the photoelectric conversion efficiency satisfies Cu / (Zn + Sn) ≦ 1.11, the photoelectric conversion efficiency can be accurately increased.

 上記化合物薄膜太陽電池において、前記光吸収層の膜厚方向におけるZn/Sn比の変化率を、前記光吸収層の膜厚方向におけるZn/Sn比の最大値をRmax、前記光吸収層の膜厚方向におけるZn/Sn比の最小値をRmin、前記変化率をRvarとして、Rvar=(Rmax÷Rmin-1)×100で表すとき、前記変化率は、16%以下であることが好ましい。 In the compound thin film solar cell, the rate of change of the Zn / Sn ratio in the film thickness direction of the light absorption layer, the maximum value of the Zn / Sn ratio in the film thickness direction of the light absorption layer is Rmax, and the film of the light absorption layer When the minimum value of the Zn / Sn ratio in the thickness direction is Rmin and the rate of change is Rvar, the rate of change is preferably 16% or less when Rvar = (Rmax ÷ Rmin−1) × 100.

 上記構成によれば、光吸収層中におけるZn/Sn比の偏りが抑えられるため、光吸収層中におけるZnの偏在や、光吸収層中での欠陥の形成が抑えられる。その結果、光電変換効率が高められる。 According to the above configuration, since the deviation of the Zn / Sn ratio in the light absorption layer can be suppressed, the uneven distribution of Zn in the light absorption layer and the formation of defects in the light absorption layer can be suppressed. As a result, the photoelectric conversion efficiency is increased.

 上記化合物薄膜太陽電池において、前記光吸収層全体の組成は、0.9≦Zn/Sn≦1.2を満たすことが好ましい。
 上記構成によれば、光吸収層全体のZn/Sn比が0.9以上であるため、CuZnによる欠陥の形成が抑えられる。一方、光吸収層全体のZn/Sn比が1.2以下であるため、Znの偏在が抑えられる。その結果、光電変換効率が高められる。
In the compound thin-film solar cell, the composition of the entire light absorption layer preferably satisfies 0.9 ≦ Zn / Sn ≦ 1.2.
According to the above arrangement, since Zn / Sn ratio of the entire light absorbing layer is 0.9 or more, formation of defects due to Cu Zn is suppressed. On the other hand, since the Zn / Sn ratio of the entire light absorption layer is 1.2 or less, uneven distribution of Zn can be suppressed. As a result, the photoelectric conversion efficiency is increased.

 上記化合物薄膜太陽電池において、表面電極と裏面電極とをさらに備え、前記光吸収層は、前記表面電極と前記裏面電極との間に位置し、前記光吸収層の中で、前記表面電極に近い部分の前記Zn/Sn比は、前記裏面電極に近い部分の前記Zn/Sn比よりも低いことが好ましい。 The compound thin-film solar cell further includes a front electrode and a back electrode, and the light absorption layer is located between the front electrode and the back electrode and is close to the front electrode in the light absorption layer The Zn / Sn ratio of the part is preferably lower than the Zn / Sn ratio of the part close to the back electrode.

 上記構成によれば、光吸収層の表面電極に近い部分にZnが偏在することによってキャリアの移動が制限されることが抑えられるため、光電変換効率がさらに高められる。
 上記課題を解決する化合物薄膜太陽電池の製造方法は、光吸収層の前駆体であって、S、および、Seの少なくとも1つの元素と、Cu、Zn、および、Snの3つの元素とを含む前記前駆体を形成する前駆体形成工程と、前記前駆体を熱処理することによって、前記前駆体を結晶化させて、Cu/(Zn+Sn)≦1.11を満たす組成を有する結晶粒界部を含む前記光吸収層を形成する熱処理工程と、を含む。
According to the said structure, since the movement of a carrier is suppressed by being unevenly distributed in the part near the surface electrode of a light absorption layer, a photoelectric conversion efficiency is raised further.
A method for manufacturing a compound thin-film solar cell that solves the above-described problem is a precursor of a light absorption layer, and includes at least one element of S and Se, and three elements of Cu, Zn, and Sn. A precursor forming step for forming the precursor, and a crystal grain boundary part having a composition satisfying Cu / (Zn + Sn) ≦ 1.11 by crystallizing the precursor by heat-treating the precursor. A heat treatment step of forming the light absorption layer.

 上記方法によれば、Cu/(Zn+Sn)≦1.11を満たす組成を有する結晶粒界部を含む光吸収層が形成され、この光吸収層を備える化合物薄膜太陽電池が得られる。したがって、化合物薄膜太陽電池にて、光電変換効率が高められる。 According to the above method, a light absorption layer including a crystal grain boundary part having a composition satisfying Cu / (Zn + Sn) ≦ 1.11 is formed, and a compound thin film solar cell including this light absorption layer is obtained. Therefore, the photoelectric conversion efficiency is increased in the compound thin film solar cell.

 上記化合物薄膜太陽電池の製造方法において、前記前駆体形成工程では、S、および、Seの少なくとも1つの元素と、Cu、Zn、および、Snの3つの元素とを含む化合物からなる微粒子を含むインクの塗工によって、前記前駆体である塗膜を成膜することが好ましい。 In the method for manufacturing a compound thin film solar cell, the precursor forming step includes an ink containing fine particles made of a compound containing at least one element of S and Se and three elements of Cu, Zn, and Sn. It is preferable to form a coating film which is the precursor by coating.

 上記方法によれば、光吸収層を容易に形成することができる。
 上記化合物薄膜太陽電池の製造方法において、前記熱処理工程では、硫黄とセレンとを含む雰囲気下で熱処理が行われることが好ましい。
According to the said method, a light absorption layer can be formed easily.
In the method for manufacturing the compound thin-film solar cell, it is preferable that the heat treatment is performed in an atmosphere containing sulfur and selenium.

 上記化合物薄膜太陽電池の製造方法において、前記熱処理工程では、水素とセレンとを含む雰囲気下で熱処理が行われ、熱処理の温度が523℃以下であることが好ましい。
 上記化合物薄膜太陽電池の製造方法において、前記熱処理工程では、硫黄と窒素とを含む雰囲気下で熱処理が行われ、熱処理の温度が580℃であり、熱処理の時間が20分間以上であることが好ましい。
In the method for manufacturing a compound thin film solar cell, in the heat treatment step, the heat treatment is preferably performed in an atmosphere containing hydrogen and selenium, and the temperature of the heat treatment is preferably 523 ° C. or lower.
In the method for manufacturing a compound thin-film solar cell, in the heat treatment step, heat treatment is performed in an atmosphere containing sulfur and nitrogen, the heat treatment temperature is 580 ° C., and the heat treatment time is preferably 20 minutes or more. .

 上記化合物薄膜太陽電池の製造方法において、前記熱処理工程は、第1段階の熱処理工程と、第2段階の熱処理工程とを含み、前記第1段階の熱処理工程では、硫黄を含む雰囲気下で熱処理が行われ、前記第2段階の熱処理工程では、セレンを含む雰囲気下で熱処理が行われることが好ましい。 In the method for manufacturing a compound thin-film solar cell, the heat treatment step includes a first step heat treatment step and a second step heat treatment step. In the first step heat treatment step, the heat treatment is performed in an atmosphere containing sulfur. In the second heat treatment step, the heat treatment is preferably performed in an atmosphere containing selenium.

 上記各方法における熱処理工程によれば、光吸収層の結晶粒界部にて、Cu/(Zn+Sn)比が高くなることが抑えられるため、Cu/(Zn+Sn)≦1.11を満たす組成の結晶粒界部を含む光吸収層の形成を好適に行うことができる。 According to the heat treatment step in each of the above methods, since the Cu / (Zn + Sn) ratio is suppressed from increasing at the crystal grain boundary portion of the light absorption layer, a crystal having a composition satisfying Cu / (Zn + Sn) ≦ 1.11. The light absorption layer including the grain boundary part can be suitably formed.

 上記化合物薄膜太陽電池の製造方法において、前記熱処理工程にて形成される前記光吸収層の膜厚方向におけるZn/Sn比の変化率を、前記光吸収層の膜厚方向におけるZn/Sn比の最大値をRmax、前記光吸収層の膜厚方向におけるZn/Sn比の最小値をRmin、前記変化率をRvarとして、Rvar=(Rmax÷Rmin-1)×100で表すとき、前記変化率は、16%以下であることが好ましい。 In the method for manufacturing the compound thin-film solar cell, the rate of change of the Zn / Sn ratio in the film thickness direction of the light absorption layer formed in the heat treatment step is expressed as When the maximum value is Rmax, the minimum value of the Zn / Sn ratio in the film thickness direction of the light absorption layer is Rmin, and the change rate is Rvar, the change rate is expressed as Rvar = (Rmax ÷ Rmin−1) × 100. 16% or less is preferable.

 上記方法によれば、Zn/Sn比の変化率が16%以下である光吸収層を備える化合物薄膜太陽電池が得られる。したがって、化合物薄膜太陽電池にて、光電変換効率が高められる。 According to the above method, a compound thin film solar cell including a light absorption layer having a Zn / Sn ratio change rate of 16% or less is obtained. Therefore, the photoelectric conversion efficiency is increased in the compound thin film solar cell.

 上記化合物薄膜太陽電池の製造方法において、前記前駆体形成工程では、S、および、Seの少なくとも1つの元素と、Cu、Zn、および、Snの3つの元素とを含む化合物からなる微粒子を含むインクの塗工によって、前記前駆体である塗膜を成膜することが好ましい。 In the method for manufacturing a compound thin film solar cell, the precursor forming step includes an ink containing fine particles made of a compound containing at least one element of S and Se and three elements of Cu, Zn, and Sn. It is preferable to form a coating film which is the precursor by coating.

 上記方法によれば、光吸収層を容易に形成することができる。
 上記化合物薄膜太陽電池の製造方法において、前記熱処理工程では、硫黄とセレンとを含む雰囲気下で熱処理が行われることが好ましい。
According to the said method, a light absorption layer can be formed easily.
In the method for manufacturing the compound thin-film solar cell, it is preferable that the heat treatment is performed in an atmosphere containing sulfur and selenium.

 上記化合物薄膜太陽電池の製造方法において、前記熱処理工程は、第1段階の熱処理工程と、第2段階の熱処理工程とを含み、前記第1段階の熱処理工程では、硫黄を含む雰囲気下で熱処理が行われ、前記第2段階の熱処理工程では、セレンを含む雰囲気下で熱処理が行われることが好ましい。 In the method for manufacturing a compound thin-film solar cell, the heat treatment step includes a first step heat treatment step and a second step heat treatment step. In the first step heat treatment step, the heat treatment is performed in an atmosphere containing sulfur. In the second heat treatment step, the heat treatment is preferably performed in an atmosphere containing selenium.

 上記各方法における熱処理工程によれば、Zn/Sn比の変化率が大きくなることを抑えることができるため、上記変化率が16%以下である光吸収層の形成を好適に行うことができる。 Since the change rate of the Zn / Sn ratio can be suppressed according to the heat treatment step in each of the above methods, the light absorption layer having the change rate of 16% or less can be suitably formed.

 上記化合物薄膜太陽電池の製造方法において、前記微粒子は非晶質の粒子であることが好ましい。
 上記方法によれば、形成される光吸収層の緻密性を高めることができる。
In the method for manufacturing a compound thin film solar cell, the fine particles are preferably amorphous particles.
According to the above method, the denseness of the formed light absorption layer can be improved.

 上記課題を解決する光吸収層は、S、および、Seの少なくとも1つの元素と、Cu、Zn、および、Snの3つの元素とを含む多結晶体を含み、前記多結晶体は、Cu/(Zn+Sn)≦1.11を満たす組成を有する結晶粒界部を含む。 The light absorption layer that solves the above problem includes a polycrystal including at least one element of S and Se and three elements of Cu, Zn, and Sn, and the polycrystal includes Cu / A crystal grain boundary portion having a composition satisfying (Zn + Sn) ≦ 1.11 is included.

 上記構成によれば、結晶粒界部における抵抗の低下に起因して光吸収層中にリークパスが形成されることが抑えられる。その結果、上記光吸収層を備える化合物薄膜太陽電池における光電変換効率が高められる。 According to the above configuration, it is possible to suppress the formation of a leak path in the light absorption layer due to a decrease in resistance at the crystal grain boundary. As a result, the photoelectric conversion efficiency in the compound thin film solar cell including the light absorption layer is increased.

 本発明によれば、化合物薄膜太陽電池において、光電変換効率を高めることができる。 According to the present invention, photoelectric conversion efficiency can be increased in a compound thin film solar cell.

第1および第2実施形態の化合物薄膜太陽電池の全体構成を示す断面図である。It is sectional drawing which shows the whole structure of the compound thin film solar cell of 1st and 2nd embodiment. 実施例1の化合物薄膜太陽電池における断面のSTEM画像を、組成分析の対象箇所とともに示す図である。It is a figure which shows the STEM image of the cross section in the compound thin film solar cell of Example 1 with the target location of a composition analysis. 実施例2の化合物薄膜太陽電池における断面のSTEM画像を、組成分析の対象箇所とともに示す図である。It is a figure which shows the STEM image of the cross section in the compound thin film solar cell of Example 2 with the object location of a composition analysis. 実施例3の化合物薄膜太陽電池における断面のSTEM画像を、組成分析の対象箇所とともに示す図である。It is a figure which shows the STEM image of the cross section in the compound thin film solar cell of Example 3 with the object location of a composition analysis. 比較例1の化合物薄膜太陽電池における断面のSTEM画像を、組成分析の対象箇所とともに示す図である。It is a figure which shows the STEM image of the cross section in the compound thin film solar cell of the comparative example 1 with the object location of a composition analysis. 実施例4の化合物薄膜太陽電池における断面のSEM画像を、組成分析領域とともに示す図である。It is a figure which shows the SEM image of the cross section in the compound thin film solar cell of Example 4 with a composition analysis area | region. 実施例5の化合物薄膜太陽電池における断面のSEM画像を、組成分析領域とともに示す図である。It is a figure which shows the SEM image of the cross section in the compound thin film solar cell of Example 5 with a composition analysis area | region. 実施例6の化合物薄膜太陽電池における断面のSEM画像を、組成分析領域とともに示す図である。It is a figure which shows the SEM image of the cross section in the compound thin film solar cell of Example 6 with a composition analysis area | region. 比較例2の化合物薄膜太陽電池における断面のSEM画像を、組成分析の対象領域とともに示す図である。It is a figure which shows the SEM image of the cross section in the compound thin film solar cell of the comparative example 2 with the object area | region of a composition analysis. 比較例3の化合物薄膜太陽電池における断面のSEM画像を、組成分析の対象領域とともに示す図である。It is a figure which shows the SEM image of the cross section in the compound thin film solar cell of the comparative example 3 with the object area | region of a composition analysis.

 (第1実施形態)
 図1を参照して、化合物薄膜太陽電池、その製造方法、および、光吸収層の第1実施形態について説明する。
(First embodiment)
With reference to FIG. 1, 1st Embodiment of a compound thin film solar cell, its manufacturing method, and a light absorption layer is described.

 [化合物薄膜太陽電池の構成]
 図1に示されるように、化合物薄膜太陽電池は、基板10を備える。基板10の上には、裏面電極11、光吸収層12、バッファ層13、半絶縁層14、窓層15、および、表面電極16がこの順に位置している。
[Configuration of Compound Thin Film Solar Cell]
As shown in FIG. 1, the compound thin film solar cell includes a substrate 10. On the substrate 10, the back electrode 11, the light absorption layer 12, the buffer layer 13, the semi-insulating layer 14, the window layer 15, and the surface electrode 16 are positioned in this order.

 基板10としては、例えば、ガラス板、金属板、または、プラスチック等の樹脂フィルムが用いられる。
 裏面電極11の材料としては、例えば、Mo、Ni、Cu、Ti、Fe、Al、チタニア、ステンレス等の金属が用いられる。あるいは、裏面電極11として、カーボンやグラフェン等のカーボン系電極、または、ITO(Indium Tin Oxide)やZnO等の透明導電膜が用いられてもよい。
For example, a glass plate, a metal plate, or a resin film such as plastic is used as the substrate 10.
As the material of the back electrode 11, for example, a metal such as Mo, Ni, Cu, Ti, Fe, Al, titania, stainless steel, or the like is used. Alternatively, as the back electrode 11, a carbon-based electrode such as carbon or graphene, or a transparent conductive film such as ITO (Indium Tin Oxide) or ZnO may be used.

 光吸収層12は、p型化合物半導体である。光吸収層12は、CZTS系の化合物半導体、すなわちCZTS半導体から構成される。CZTS化合物半導体は、VIB族(16族)のS、および、VIB族(16族)のSeの少なくとも1つの元素と、IB族(11族)のCu、IIB族(12族)のZn、および、IVB族(14族)のSnの3つの元素とを含む化合物半導体である。すなわち、CZTS半導体は、IB-(IIB-IVB)-VIB族の化合物半導体である。 The light absorption layer 12 is a p-type compound semiconductor. The light absorption layer 12 is composed of a CZTS-based compound semiconductor, that is, a CZTS semiconductor. The CZTS compound semiconductor comprises at least one element of group VIB (group 16) S and group VIB (group 16) Se, group IB (group 11) Cu, group IIB (group 12) Zn, and , And a compound semiconductor containing three elements of Sn of group IVB (group 14). That is, the CZTS semiconductor is a IB 2- (IIB-IVB) -VIB Group 4 compound semiconductor.

 光吸収層12は、多結晶体からなる薄膜である。光吸収層12における結晶粒界部、すなわち多結晶体が含む結晶粒界部は、Cu/(Zn+Sn)≦1.11を満たす組成を有する。なお、結晶粒界部は、互いに隣り合う2以上の結晶粒の間の界面である結晶粒界を含む領域であって、結晶粒界を中心とする半径10nm以下の範囲に含まれる領域である。例えば、結晶粒界部は、薄片状に切られた光吸収層12に対して走査透過電子顕微鏡(STEM)を用いたエネルギー分散型X線分光法(EDS)によって組成分析が行われるとき、結晶粒界への電子線の照射によって分析対象とされる領域である。組成分析は、例えば、以下の条件で行われる。 The light absorption layer 12 is a thin film made of a polycrystal. The crystal grain boundary part in the light absorption layer 12, that is, the crystal grain boundary part included in the polycrystal has a composition satisfying Cu / (Zn + Sn) ≦ 1.11. Note that the crystal grain boundary part is a region including a crystal grain boundary that is an interface between two or more adjacent crystal grains, and is a region included in a range of a radius of 10 nm or less centering on the crystal grain boundary. . For example, when the crystal grain boundary portion is subjected to composition analysis by energy dispersive X-ray spectroscopy (EDS) using a scanning transmission electron microscope (STEM) with respect to the light absorption layer 12 cut into a flaky shape, This is a region to be analyzed by irradiating the grain boundary with an electron beam. The composition analysis is performed, for example, under the following conditions.

 走査透過電子顕微鏡:日立ハイテクノロジーズ製 HD-2700
 加速電圧:200kV
 ビーム径:約1nmφ
 元素分析装置:NORAN製 VOYAGER III M3100
 X線検出器:Si/Li半導体検出器
 エネルギー分解能:137eV(仕様値)
 X線取出角:22°(Side take off 方式)
 立体角:0.12sr
 取込時間:30秒
 なお、走査透過電子顕微鏡に代えて透過電子顕微鏡(TEM)が用いられてもよい。
Scanning transmission electron microscope: HD-2700 manufactured by Hitachi High-Technologies
Accelerating voltage: 200kV
Beam diameter: about 1nmφ
Elemental analyzer: VOYAGER III M3100 manufactured by NORAN
X-ray detector: Si / Li semiconductor detector Energy resolution: 137 eV (specification value)
X-ray extraction angle: 22 ° (Side take off method)
Solid angle: 0.12 sr
Capture time: 30 seconds A transmission electron microscope (TEM) may be used instead of the scanning transmission electron microscope.

 また、組成比の測定対象である結晶粒界部は、バッファ層13における光吸収層12と接する面から70nm以上離れ、かつ、裏面電極11における光吸収層12と接する面から70nm以上離れた領域に含まれる結晶粒界部であることが好ましい。裏面電極11と光吸収層12との間に他の層が存在する場合、組成比の測定対象である結晶粒界部は、裏面電極11と光吸収層12との間に位置する層における光吸収層12と接する面から70nm以上離れた領域に含まれる結晶粒界部であればよい。例えば、裏面電極11がMoから構成され、裏面電極11と光吸収層12との間にMoSeから構成される層が挟まれている場合、組成比の測定対象である結晶粒界部は、MoSeからなる層における光吸収層12と接する面から70nm以上離れた領域に含まれる結晶粒界部であればよい。 In addition, the crystal grain boundary part whose composition ratio is to be measured is a region that is 70 nm or more away from the surface in contact with the light absorption layer 12 in the buffer layer 13 and 70 nm or more away from the surface in contact with the light absorption layer 12 in the back electrode 11. It is preferable that it is a crystal grain boundary part contained in. When another layer is present between the back electrode 11 and the light absorption layer 12, the crystal grain boundary part whose composition ratio is to be measured is the light in the layer located between the back electrode 11 and the light absorption layer 12. Any crystal grain boundary portion included in a region separated by 70 nm or more from the surface in contact with the absorption layer 12 may be used. For example, when the back electrode 11 is made of Mo, and a layer made of MoSe 2 is sandwiched between the back electrode 11 and the light absorption layer 12, the crystal grain boundary part that is the measurement target of the composition ratio is Any crystal grain boundary portion included in a region separated by 70 nm or more from the surface in contact with the light absorption layer 12 in the layer made of MoSe 2 may be used.

 なお、結晶粒界部の組成がCu/(Zn+Sn)≦1.11を満たすことは、換言すれば、結晶粒界を含む領域のなかで、Cu/(Zn+Sn)比の値が最も高い部分において、Cu/(Zn+Sn)≦1.11が満たされることを示す。 Note that the composition of the crystal grain boundary portion satisfies Cu / (Zn + Sn) ≦ 1.11, in other words, in the portion having the highest value of the Cu / (Zn + Sn) ratio in the region including the crystal grain boundary. , Cu / (Zn + Sn) ≦ 1.11 is satisfied.

 CZTSの結晶性を得るための熱処理が施された結晶粒においては、結晶粒に含まれるCuの濃度が結晶粒の表面ほど高く、結晶粒のなかで結晶粒界部を構成する部位のCuの濃度が、結晶粒の内部よりも高い。そして、結晶粒界部において、Cu/(Zn+Sn)比が1.11を超えると、結晶粒界部の抵抗が小さくなり、その結果、光吸収層12中にリークパスが形成され易くなる。このことは、曲線因子の顕著な低下を招き、光電変換効率の低下につながる。これに対し、結晶粒界部において、Cu/(Zn+Sn)比が1.11以下であれば、こうした現象が抑えられるため、光電変換効率を向上させることができる。 In the crystal grains subjected to heat treatment for obtaining the crystallinity of CZTS, the concentration of Cu contained in the crystal grains is higher as the surface of the crystal grains, and the Cu of the portion constituting the grain boundary portion in the crystal grains is higher. The concentration is higher than the inside of the crystal grain. When the Cu / (Zn + Sn) ratio exceeds 1.11 in the crystal grain boundary part, the resistance of the crystal grain boundary part decreases, and as a result, a leak path is easily formed in the light absorption layer 12. This leads to a significant decrease in fill factor and a decrease in photoelectric conversion efficiency. On the other hand, if the Cu / (Zn + Sn) ratio is 1.11 or less at the crystal grain boundary part, such a phenomenon can be suppressed, so that the photoelectric conversion efficiency can be improved.

 また、光吸収層12における結晶粒内部、すなわち多結晶体が含む結晶粒の内部は、Zn/Sn≦1を満たす組成を有することが好ましい。結晶粒内部は、結晶粒界部とは異なる領域であって、結晶粒界を含まない領域である。結晶粒内部において、Zn/Sn比が1以下であると、光吸収層12の中に、ZnSSe1-x(0≦x≦1)が析出し難くなる。ZnSSe1-xが析出すると、ZnSSe1-xは多結晶中で異相として存在するため、光電変換効率が低下するが、結晶粒内部において、Zn/Sn比が1以下であれば、こうした現象が抑えられる。 Moreover, it is preferable that the inside of the crystal grain in the light absorption layer 12, that is, the inside of the crystal grain included in the polycrystal has a composition satisfying Zn / Sn ≦ 1. The inside of the crystal grain is a region that is different from the crystal grain boundary portion and does not include the crystal grain boundary. If the Zn / Sn ratio is 1 or less inside the crystal grains, ZnS x Se 1-x (0 ≦ x ≦ 1) is difficult to precipitate in the light absorption layer 12. When ZnS x Se 1-x is precipitated, ZnS x Se 1-x exists as a heterogeneous phase in the polycrystal, resulting in a decrease in photoelectric conversion efficiency. However, if the Zn / Sn ratio is 1 or less in the crystal grains, This phenomenon is suppressed.

 また、光吸収層12における結晶粒内部は、Cu/(Zn+Sn)≦1を満たす組成を有することが好ましい。結晶粒内部において、Cu/(Zn+Sn)比が1以下であると、結晶粒内部におけるキャリアの濃度が高くなりすぎることが抑えられるため、光電変換効率の低下が抑えられる。 In addition, the inside of the crystal grains in the light absorption layer 12 preferably has a composition satisfying Cu / (Zn + Sn) ≦ 1. If the Cu / (Zn + Sn) ratio is 1 or less inside the crystal grains, the carrier concentration inside the crystal grains can be prevented from becoming too high, so that a decrease in photoelectric conversion efficiency can be suppressed.

 なお、上記構成において、Cu/(Zn+Sn)比、および、Zn/Sn比は、いずれも原子比であり、Znの原子%とSnの原子%との総和に対するCuの原子%をCu/(Zn+Sn)とし、Snの原子%に対するZnの原子%をZn/Snとする。 In the above configuration, the Cu / (Zn + Sn) ratio and the Zn / Sn ratio are both atomic ratios, and the atomic percentage of Cu with respect to the sum of atomic percentage of Zn and atomic percentage of Sn is Cu / (Zn + Sn). ), And the atomic% of Zn with respect to the atomic% of Sn is Zn / Sn.

 ここで、Cu/(Zn+Sn)≦1.11を満たす組成を有する結晶粒界部が含む結晶粒界は、粒径が0.1μm以上である2以上の結晶粒の間の界面であることが好ましい。粒径は、結晶粒における最大径を示す。粒径が0.1μm未満の結晶粒は、結晶成長の進行が十分ではないため、粒径が0.1μm以上である結晶粒が構成する結晶粒界部において、Cu/(Zn+Sn)の分析を行う方が、光電変換効率との相関性の高い結果が得られる。すなわち、粒径が0.1μm以上である結晶粒が構成する結晶粒界部において、Cu/(Zn+Sn)比が1.11以下である構成では、光電変換効率が的確に高められる。 Here, the crystal grain boundary included in the crystal grain boundary part having a composition satisfying Cu / (Zn + Sn) ≦ 1.11 is an interface between two or more crystal grains having a grain size of 0.1 μm or more. preferable. The particle size indicates the maximum diameter of crystal grains. Since the crystal grain having a grain size of less than 0.1 μm does not progress sufficiently, the analysis of Cu / (Zn + Sn) is performed at the crystal grain boundary portion formed by the crystal grain having a grain size of 0.1 μm or more. The result is highly correlated with the photoelectric conversion efficiency. That is, the photoelectric conversion efficiency is accurately increased in the configuration in which the Cu / (Zn + Sn) ratio is 1.11 or less in the crystal grain boundary portion formed by the crystal grains having a grain size of 0.1 μm or more.

 なお、光吸収層12が含む結晶粒界部のなかに、Cu/(Zn+Sn)比が1.11を超える結晶粒界部が含まれていたとしても、Cu/(Zn+Sn)比が1.11以下である結晶粒界部の存在によって、リークパスが繋がることが抑えられるため、結晶粒界部のすべてにおいてCu/(Zn+Sn)比が1.11を超える構成と比較して、光電変換効率の向上は可能である。 Even if the crystal grain boundary part included in the light absorbing layer 12 includes a crystal grain boundary part with a Cu / (Zn + Sn) ratio exceeding 1.11, the Cu / (Zn + Sn) ratio is 1.11. Since the presence of the following crystal grain boundary part prevents the leakage path from being connected, the photoelectric conversion efficiency is improved as compared with the configuration in which the Cu / (Zn + Sn) ratio exceeds 1.11 in all the crystal grain boundary parts. Is possible.

 光吸収層12において、表面電極16に近い部分のZn/Sn比は、裏面電極11に近い部分のZn/Sn比よりも低いことが好ましい。こうした構成によれば、光電変換効率がさらに高められる。光吸収層12の厚さは、0.3μm以上10μm以下であることが好ましく、例えば、2μmであることが好ましい。 In the light absorption layer 12, the Zn / Sn ratio in the portion close to the front electrode 16 is preferably lower than the Zn / Sn ratio in the portion close to the back electrode 11. According to such a configuration, the photoelectric conversion efficiency is further increased. The thickness of the light absorption layer 12 is preferably 0.3 μm or more and 10 μm or less, and preferably 2 μm, for example.

 バッファ層13は、n型化合物半導体である。バッファ層13としては、例えば、CdS、Zn(S,O,OH)、ZnS、ZnSe、または、In等が用いられる。半絶縁層14は、i型化合物半導体である。半絶縁層14としては、例えば、ZnO等の金属酸化物が用いられる。窓層15は、n型化合物半導体である。窓層15としては、例えば、Al、Ga、B等が添加されたZnOやITOが用いられる。 The buffer layer 13 is an n-type compound semiconductor. As the buffer layer 13, for example, CdS, Zn (S, O, OH), ZnS, ZnSe, In 2 S 3 or the like is used. The semi-insulating layer 14 is an i-type compound semiconductor. As the semi-insulating layer 14, for example, a metal oxide such as ZnO is used. The window layer 15 is an n-type compound semiconductor. As the window layer 15, for example, ZnO or ITO to which Al, Ga, B or the like is added is used.

 表面電極16は、窓層15の上面の一部に積層されている。表面電極16の材料としては、例えば、Al、Ag等の金属が用いられる。あるいは、表面電極16として、カーボンやグラフェン等のカーボン系電極、または、ITOやZnO等の透明導電膜が用いられてもよい。 The surface electrode 16 is laminated on a part of the upper surface of the window layer 15. As a material of the surface electrode 16, for example, a metal such as Al or Ag is used. Alternatively, as the surface electrode 16, a carbon-based electrode such as carbon or graphene, or a transparent conductive film such as ITO or ZnO may be used.

 なお、バッファ層13、半絶縁層14、および、窓層15の少なくとも1つが省略されてもよい。また、化合物薄膜太陽電池は、上記各層以外の他の層を有していてもよい。例えば、窓層15の上に、反射防止膜が積層されていてもよい。反射防止膜は光の反射を抑える機能を有するため、反射防止膜を設けることによって、光吸収層12はより多くの光を吸収することができる。反射防止膜は、例えば、100nm程度の厚さに、MgFから形成される。また例えば、裏面電極11と光吸収層12との間に、光電変換効率を高めるための組成を有する中間層が設けられていてもよい。 Note that at least one of the buffer layer 13, the semi-insulating layer 14, and the window layer 15 may be omitted. Moreover, the compound thin film solar cell may have layers other than said each layer. For example, an antireflection film may be laminated on the window layer 15. Since the antireflection film has a function of suppressing light reflection, the light absorption layer 12 can absorb more light by providing the antireflection film. The antireflection film is made of MgF 2 to a thickness of about 100 nm, for example. Further, for example, an intermediate layer having a composition for increasing the photoelectric conversion efficiency may be provided between the back electrode 11 and the light absorption layer 12.

 [化合物薄膜太陽電池の製造方法]
 化合物薄膜太陽電池の製造方法の一例として、微粒子を含むインクの塗工によって光吸収層を形成する製造方法について説明する。
[Method for producing compound thin-film solar cell]
As an example of a method for producing a compound thin film solar cell, a method for producing a light absorption layer by applying ink containing fine particles will be described.

 化合物薄膜太陽電池は、基板10の上に、裏面電極11、光吸収層12、バッファ層13、半絶縁層14、窓層15、表面電極16が、この順に積層されることによって形成される。 The compound thin film solar cell is formed by laminating a back electrode 11, a light absorption layer 12, a buffer layer 13, a semi-insulating layer 14, a window layer 15, and a surface electrode 16 in this order on a substrate 10.

 裏面電極11は、基板10の上面に、例えば、スパッタリング、蒸着法、CVD(Chemical Vapor Deposition)法等を用いて形成される。
 光吸収層12は、光吸収層12の構成元素から構成される微粒子を含む光吸収層形成用インクを用いて形成される。
The back electrode 11 is formed on the upper surface of the substrate 10 by using, for example, sputtering, vapor deposition, CVD (Chemical Vapor Deposition), or the like.
The light absorption layer 12 is formed using a light absorption layer forming ink containing fine particles composed of the constituent elements of the light absorption layer 12.

 微粒子は、ナノサイズの粒子である。微粒子は、金属塩または金属錯体を含む溶液と、カルコゲニド塩を含む溶液との反応によって生成される。微粒子は、例えば、Cu2-xZn1+ySnSSe4-Z(0≦x≦1、0≦y≦1、0≦z≦4)の組成式で表される化合物からなる粒子である。また、光吸収層形成用インクは、微粒子として、上記化合物からなる粒子に加えて、Cu2-xSe2-y(0≦x≦1、0≦y≦2)、Zn2-xSe2-y(0≦x≦1、0≦y≦2)、Sn2-xSe2-y(0≦x≦1、0≦y≦2)の組成式で表される化合物からなる群から選択される少なくとも1種以上の化合物からなる粒子を含んでいてもよい。あるいは、光吸収層形成用インクは、微粒子として、Cu2-xZn1+ySnSSe4-Z(0≦x≦1、0≦y≦1、0≦z≦4)の組成式で表される化合物からなる粒子に代えて、上記群に含まれる3種類の化合物からなる粒子を含んでいてもよい。 The fine particles are nano-sized particles. The fine particles are generated by a reaction between a solution containing a metal salt or a metal complex and a solution containing a chalcogenide salt. The fine particles are, for example, particles made of a compound represented by a composition formula of Cu 2-x Zn 1 + y SnS z Se 4-Z (0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0 ≦ z ≦ 4). In addition, the ink for forming the light absorption layer is formed of Cu 2-x S y Se 2-y (0 ≦ x ≦ 1, 0 ≦ y ≦ 2), Zn 2-x as fine particles in addition to the particles composed of the above compound. S y Se 2-y (0 ≦ x ≦ 1, 0 ≦ y ≦ 2), Sn 2-x S y Se 2-y (0 ≦ x ≦ 1, 0 ≦ y ≦ 2) Particles composed of at least one compound selected from the group consisting of compounds may be included. Alternatively, the light absorption layer forming ink is represented by a composition formula of Cu 2−x Zn 1 + y SnS z Se 4−Z (0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0 ≦ z ≦ 4) as fine particles. Instead of the particles made of the compound, the particles made of three kinds of compounds included in the group may be included.

 微粒子としては、非晶質の粒子を用いることが好ましい。結晶性の粒子は、エネルギーについて安定な状態にあるため、粒子に含まれる各原子が一定の位置に固定されやすい、すなわち、拡散しにくいが、非晶質の粒子の各組成成分は、熱処理によって拡散しやすい。そのため、非晶質の粒子が用いられることによって、光吸収層12の緻密性が向上する。 As the fine particles, it is preferable to use amorphous particles. Since crystalline particles are in a stable state with respect to energy, each atom contained in the particles is likely to be fixed at a certain position, that is, difficult to diffuse. Easy to diffuse. Therefore, the use of amorphous particles improves the density of the light absorption layer 12.

 光吸収層形成用インクにて微粒子を分散させる溶媒は、有機溶媒であれば、特に制限されない。有機溶媒は、例えば、アルコール、エーテル、エステル、脂肪族炭化水素、脂環族炭化水素、または、芳香族炭化水素等から選択することができる。有機溶媒としては、メタノール、エタノール、ブタノール等の炭素数10未満のアルコール、ピリジン、ジエチールエーテル、ペンタン、ヘキサン、シクロヘキサン、および、トルエンが好ましく、メタノール、ピリジン、トルエン、および、ヘキサンが特に好ましい。 The solvent for dispersing the fine particles in the light absorbing layer forming ink is not particularly limited as long as it is an organic solvent. The organic solvent can be selected from, for example, alcohols, ethers, esters, aliphatic hydrocarbons, alicyclic hydrocarbons, or aromatic hydrocarbons. As the organic solvent, alcohols having less than 10 carbon atoms such as methanol, ethanol, butanol, pyridine, diethyl ether, pentane, hexane, cyclohexane, and toluene are preferable, and methanol, pyridine, toluene, and hexane are particularly preferable.

 光吸収層形成用インクは、塗工時のレベリング性を高めるために、バインダを含むことが好ましい。バインダの含有量は、光吸収層形成用インクが含む微粒子の5質量%以上70質量%以下であることが好ましく、20質量%以上60質量%以下であることがさらに好ましい。バインダの含有量が5質量%以上であることによって、熱処理後の塗膜に空洞が形成されることが抑えられる。バインダの含有量が70質量%以下であることによって、熱処理後の塗膜の表面粗さが大きくなることが抑えられる。 The light absorbing layer forming ink preferably contains a binder in order to improve leveling properties during coating. The content of the binder is preferably 5% by mass or more and 70% by mass or less, and more preferably 20% by mass or more and 60% by mass or less of the fine particles contained in the light absorbing layer forming ink. When the binder content is 5% by mass or more, formation of cavities in the coating film after heat treatment is suppressed. When the binder content is 70% by mass or less, an increase in the surface roughness of the coating film after the heat treatment is suppressed.

 バインダとしては、チオール有機物、セレノール有機物、または、炭素数10以上のアルコール類等を用いることができる。また、バインダとして、Se粒子、S粒子、Se化合物、あるいは、S化合物等が用いられてもよい。さらには、バインダとして、硫化ナトリウム、セレン化ナトリウム、セレン化カリウム、セレン酸ナトリウム、あるいは、チオ硫酸塩等が用いられてもよい。これらの物質の中で、バインダとしては、チオール有機物を用いることが好ましく、チオ尿素を用いることがさらに好ましい。バインダとして有機化合物が用いられた場合、光吸収層形成用インクから形成された光吸収層12には、光吸収層12の全体に対して0.3原子%~0.5原子%程度の微量の炭素が残留する。 As the binder, a thiol organic substance, a selenol organic substance, or an alcohol having 10 or more carbon atoms can be used. Further, Se particles, S particles, Se compounds, S compounds, or the like may be used as the binder. Furthermore, sodium sulfide, sodium selenide, potassium selenide, sodium selenate, thiosulfate, or the like may be used as the binder. Among these substances, it is preferable to use a thiol organic substance as the binder, and it is more preferable to use thiourea. When an organic compound is used as the binder, the light absorption layer 12 formed from the light absorption layer forming ink has a trace amount of about 0.3 atomic% to 0.5 atomic% with respect to the entire light absorption layer 12. Of carbon remains.

 光吸収層12の形成工程では、まず、光吸収層12の前駆体形成工程が行われる。前駆体形成工程では、光吸収層形成用インクが、裏面電極11の上面に塗工されて、微粒子を含む膜が形成される。そして、塗工された膜が乾燥されることによって、膜に含まれる溶媒が除去され、光吸収層12の前駆体である塗膜が形成される。次いで、熱処理工程が行われ、熱処理工程にて塗膜が熱処理されることによって、微粒子同士の焼結と結晶化とが進行して、光吸収層12が形成される。 In the formation process of the light absorption layer 12, first, a precursor formation process of the light absorption layer 12 is performed. In the precursor forming step, the light absorbing layer forming ink is applied to the upper surface of the back electrode 11 to form a film containing fine particles. And the solvent contained in a film | membrane is removed by drying the coated film | membrane, and the coating film which is a precursor of the light absorption layer 12 is formed. Next, a heat treatment step is performed, and the coating film is heat treated in the heat treatment step, whereby sintering and crystallization of the fine particles proceed to form the light absorption layer 12.

 光吸収層形成用インクの塗工方法としては、例えば、ドクターブレード法、スピンコーティング法、スリットコーティング法、または、スプレー法等の塗布法や、グラビア印刷法、スクリーン印刷法、反転オフセット印刷法、または、凸版印刷法等の印刷法が挙げられる。 Examples of the coating method of the light absorbing layer forming ink include a doctor blade method, a spin coating method, a slit coating method, a coating method such as a spray method, a gravure printing method, a screen printing method, a reverse offset printing method, Or printing methods, such as a relief printing method, are mentioned.

 熱処理は、例えば、加熱炉を用いたアニール処理や、ラピッドサーマルアニール(RTA)によって行われる。熱処理の雰囲気は、HSガス、HSeガス、窒素ガス、Arガス、Se蒸気、S蒸気、水素ガス、および、水素と不活性ガスの混合ガスから構成される群から選択される少なくとも1つを含むことが好ましい。熱処理の温度は250℃以上が好ましい。基板10としてガラスが用いられる場合には、熱処理の温度は、ガラスが耐え得る温度、具体的には、650℃以下が好ましく、600℃以下がより好ましい。 The heat treatment is performed, for example, by annealing using a heating furnace or rapid thermal annealing (RTA). The atmosphere of the heat treatment is at least selected from the group consisting of H 2 S gas, H 2 Se gas, nitrogen gas, Ar gas, Se vapor, S vapor, hydrogen gas, and a mixed gas of hydrogen and an inert gas. Preferably one is included. The heat treatment temperature is preferably 250 ° C. or higher. When glass is used as the substrate 10, the temperature of the heat treatment is a temperature that the glass can withstand, specifically, 650 ° C. or less is preferable, and 600 ° C. or less is more preferable.

 こうした条件下で行われる熱処理工程において、結晶粒界部の組成がCu/(Zn+Sn)≦1.11を満たす光吸収層12を得るためには、特に、下記条件1~条件4のいずれか1つが満たされることが好ましい。 In order to obtain the light absorption layer 12 in which the composition of the crystal grain boundary portion satisfies Cu / (Zn + Sn) ≦ 1.11 in the heat treatment step performed under such conditions, in particular, any one of the following conditions 1 to 4 It is preferred that one is satisfied.

 条件1:熱処理の雰囲気が、硫黄とセレンとを含む。
 条件2:熱処理の雰囲気が、水素とセレンとを含み、熱処理の温度が、523℃以下である。
Condition 1: The atmosphere of heat treatment contains sulfur and selenium.
Condition 2: The atmosphere of the heat treatment includes hydrogen and selenium, and the temperature of the heat treatment is 523 ° C. or lower.

 条件3:熱処理の雰囲気が、硫黄と窒素とを含み、熱処理の温度が、580℃であり、熱処理の時間が、20分間以上である。
 条件4:熱処理工程が、硫黄を含む雰囲気下で行われる第1段階の熱処理工程と、セレンを含む雰囲気下で行われる第2段階の熱処理工程とを含む。
Condition 3: The atmosphere of the heat treatment includes sulfur and nitrogen, the temperature of the heat treatment is 580 ° C., and the time of the heat treatment is 20 minutes or more.
Condition 4: The heat treatment step includes a first-stage heat treatment step performed in an atmosphere containing sulfur and a second-stage heat treatment step performed in an atmosphere containing selenium.

 従来から行われている熱処理工程の一例では、窒素ガスにセレンのみが添加された雰囲気下で熱処理が行われる。本発明者は、こうした従来の条件下では、光吸収層12の結晶粒界にCuSeが析出しやすくなり、その結果、結晶粒界部のCu/(Zn+Sn)比が高くなりすぎてリークパスが形成され易くなること、そして、こうした現象が、曲線因子と光電変換効率の低下を招くことを見出した。 In an example of a conventional heat treatment process, heat treatment is performed in an atmosphere in which only selenium is added to nitrogen gas. Under such conventional conditions, the present inventor tends to precipitate CuSe at the crystal grain boundary of the light absorption layer 12, and as a result, the Cu / (Zn + Sn) ratio at the crystal grain boundary part becomes too high to form a leak path. It has been found that this phenomenon is easily performed, and that this phenomenon leads to a decrease in fill factor and photoelectric conversion efficiency.

 これに対し、条件1では、熱処理の雰囲気に、セレンに加えて硫黄が添加されることによって、結晶粒界部でCu/(Zn+Sn)比が高くなりすぎることが抑えられ、光電変換効率が高められる。 On the other hand, in condition 1, by adding sulfur to the heat treatment atmosphere in addition to selenium, the Cu / (Zn + Sn) ratio is suppressed from becoming too high at the crystal grain boundary, and the photoelectric conversion efficiency is increased. It is done.

 また、セレンのみが添加された雰囲気下で熱処理が行われる場合、熱処理温度を下げることによって、結晶粒界部におけるCu/(Zn+Sn)比を低下させることが可能であるものの、熱処理温度が低いと、結晶成長が進み難くなる。 In addition, when heat treatment is performed in an atmosphere containing only selenium, the Cu / (Zn + Sn) ratio at the crystal grain boundary can be lowered by lowering the heat treatment temperature, but if the heat treatment temperature is low Crystal growth is difficult to proceed.

 これに対し、条件2では、熱処理の温度が、CuSeの析出が抑えられる523℃以下にされ、かつ、熱処理の雰囲気に水素ガスが3%程度添加される。これにより、結晶粒界部でCu/(Zn+Sn)比が高くなりすぎることを抑えつつ、結晶成長の進行も促進することができる。 On the other hand, under condition 2, the temperature of the heat treatment is set to 523 ° C. or less at which the precipitation of CuSe is suppressed, and about 3% of hydrogen gas is added to the atmosphere of the heat treatment. Thereby, the progress of crystal growth can be promoted while suppressing the Cu / (Zn + Sn) ratio from becoming too high at the crystal grain boundary.

 また、窒素ガスに硫黄のみが添加された雰囲気下で熱処理が行われると、結晶粒界におけるCuSeの析出が抑えられて、結晶粒界部のCu/(Zn+Sn)比が高くなりすぎることが抑えられるものの、こうした条件下では、結晶成長が進み難い。 In addition, when heat treatment is performed in an atmosphere in which only sulfur is added to nitrogen gas, precipitation of CuSe at the grain boundary is suppressed, and the Cu / (Zn + Sn) ratio at the crystal grain boundary is prevented from becoming too high. However, crystal growth is difficult to proceed under these conditions.

 これに対し、条件3では、580℃で20分間以上熱処理が行われることによって、結晶成長の進行が促進される。その結果、結晶粒界部でCu/(Zn+Sn)比が高くなりすぎることを抑えつつ、結晶成長の進行も促進することができる。 On the other hand, under the condition 3, the progress of crystal growth is promoted by performing the heat treatment at 580 ° C. for 20 minutes or more. As a result, the progress of crystal growth can be promoted while suppressing the Cu / (Zn + Sn) ratio from becoming too high at the crystal grain boundary.

 また、上記条件1では、熱処理の雰囲気に、セレンと硫黄とが同時に含まれているが、条件4のように、第1段階の熱処理工程によって、硫黄を含む雰囲気下で熱処理が行われ、第2段階の熱処理工程によって、セレンを含む雰囲気下で熱処理が行われることによっても、結晶粒界部でCu/(Zn+Sn)の値が高くなりすぎることを抑えることができる。 In the condition 1, the atmosphere of the heat treatment contains selenium and sulfur at the same time. However, as in the condition 4, the heat treatment is performed in an atmosphere containing sulfur by the first heat treatment step, Even if the heat treatment is performed in an atmosphere containing selenium by the two-stage heat treatment process, it is possible to prevent the Cu / (Zn + Sn) value from becoming too high at the crystal grain boundary part.

 光吸収層形成用インクから形成された光吸収層12には、塩酸等の酸または純水による表面洗浄処理が施されることが好ましい。これによって、光吸収層12の上面付近のZn原子が溶け出すため、光吸収層12の中で表面電極16に近い部分のZn/Sn比を、裏面電極11に近い部分のZn/Sn比よりも積極的に低くすることができる。なお、酸としては、公知の無機酸や有機酸を用いることができる。 The light absorption layer 12 formed from the light absorption layer forming ink is preferably subjected to a surface cleaning treatment with an acid such as hydrochloric acid or pure water. As a result, Zn atoms in the vicinity of the upper surface of the light absorption layer 12 are dissolved, so that the Zn / Sn ratio in the portion near the front electrode 16 in the light absorption layer 12 is higher than the Zn / Sn ratio in the portion near the back electrode 11. Can also be actively lowered. In addition, as an acid, a well-known inorganic acid and organic acid can be used.

 バッファ層13は、光吸収層12の上面に、例えば、CBD(Chemical Bath Deposition)法、MOCVD(Metal Organic Chemical Vapor Deposition)法、または、ALD(Atomic Layer Deposition)法等を用いて形成される。 The buffer layer 13 is formed on the upper surface of the light absorption layer 12 using, for example, a CBD (Chemical Bath Deposition) method, a MOCVD (Metal Organic Chemical Vapor Deposition) method, or an ALD (Atomic Layer Deposition) method.

 半絶縁層14は、バッファ層13の上面に、例えば、MOCVD法やスパッタリングを用いて形成される。窓層15は、半絶縁層14の上面に、例えば、MOCVD法やスパッタリングを用いて形成される。 The semi-insulating layer 14 is formed on the upper surface of the buffer layer 13 by using, for example, MOCVD or sputtering. The window layer 15 is formed on the upper surface of the semi-insulating layer 14 by using, for example, MOCVD or sputtering.

 表面電極16は、窓層15の上面の一部に、例えば、スパッタリング、蒸着法、CVD法等を用いて形成される。
 なお、光吸収層12は、スパッタリングを用いて形成された前駆体である膜に対して熱処理を行うことによって形成することも可能である。ただし、スパッタリングによって形成された膜から光吸収層が形成される場合と、本実施形態のように微粒子を含む塗膜から光吸収層が形成される場合とでは、熱処理時における膜の結晶化の過程が異なる。すなわち、スパッタリングが利用される場合、まず、前駆体として、光吸収層を構成する金属ごとの層、あるいは、これらの金属を含む1つの層がスパッタリングによって形成される。そして、熱処理工程においては、これらの金属が、これらの金属の合金を形成した後に、熱処理の雰囲気に含まれる元素と反応し、結晶化が進行する。一方、微粒子を含む塗膜から光吸収層が形成される場合、こうした合金の形成をほとんど経ずに、結晶化が進行する。
The surface electrode 16 is formed on a part of the upper surface of the window layer 15 by using, for example, sputtering, vapor deposition, CVD, or the like.
In addition, the light absorption layer 12 can also be formed by heat-processing with respect to the film | membrane which is the precursor formed using sputtering. However, when the light absorption layer is formed from a film formed by sputtering and when the light absorption layer is formed from a coating film containing fine particles as in this embodiment, the crystallization of the film during heat treatment The process is different. That is, when sputtering is used, first, as a precursor, a layer for each metal constituting the light absorption layer or one layer containing these metals is formed by sputtering. In the heat treatment step, after these metals form an alloy of these metals, they react with elements contained in the atmosphere of the heat treatment, and crystallization proceeds. On the other hand, when a light absorption layer is formed from a coating film containing fine particles, crystallization proceeds with little formation of such an alloy.

 こうした結晶化の進行の違いに起因して、スパッタリングを利用して形成された光吸収層と、微粒子を含む塗膜から形成された光吸収層とでは、光吸収層中における各組成成分の分布の傾向が異なる。そのため、光吸収層が、Cu/(Zn+Sn)≦1.11を満たす組成の結晶粒界部を有することは、微粒子を含む塗膜から光吸収層が形成される場合において、特に高い光電変換効率をもたらす。 Due to the difference in the progress of crystallization, the distribution of each composition component in the light absorption layer between the light absorption layer formed by sputtering and the light absorption layer formed from a coating film containing fine particles. The tendency is different. Therefore, the light absorption layer having a crystal grain boundary part having a composition satisfying Cu / (Zn + Sn) ≦ 1.11 is particularly high in photoelectric conversion efficiency when the light absorption layer is formed from a coating film containing fine particles. Bring.

 具体的には、微粒子を含む塗膜から光吸収層が形成される場合、微粒子が含む原子の拡散が微粒子ごとに生じるため、Cuの濃度が結晶粒の表面ほど高くなり、結晶粒界部にCuが偏析し易い。一方で、光吸収層を構成する金属ごとの層がスパッタリングによって形成される場合には、こうした結晶粒界部におけるCuの偏析は起こりにくい。Cuの偏析は、上述のように光電変換効率の低下の要因であるため、微粒子を含む塗膜から形成された光吸収層にて結晶粒界部のCu/(Zn+Sn)比に着目して、結晶粒界部のCu/(Zn+Sn)比を低く抑えることは、光電変換効率の向上に大きく寄与する。 Specifically, when a light absorption layer is formed from a coating film containing fine particles, diffusion of atoms contained in the fine particles occurs for each fine particle, so that the concentration of Cu increases as the surface of the crystal grains increases, Cu is easily segregated. On the other hand, when the layer for each metal constituting the light absorption layer is formed by sputtering, Cu segregation at the crystal grain boundary portion hardly occurs. Since the segregation of Cu is a factor in reducing the photoelectric conversion efficiency as described above, paying attention to the Cu / (Zn + Sn) ratio of the crystal grain boundary portion in the light absorption layer formed from the coating film containing fine particles, Suppressing the Cu / (Zn + Sn) ratio in the crystal grain boundary part greatly contributes to improvement in photoelectric conversion efficiency.

 ただし、スパッタリングによって形成された膜から光吸収層が形成される場合であっても、光吸収層を構成する多結晶体は、微粒子を含む塗膜から光吸収層が形成される場合と同様に、結晶粒界部を含む構造を有する。光吸収層が結晶粒界部を含む構造を有する以上、光吸収層が、Cu/(Zn+Sn)≦1.11を満たす組成の結晶粒界部を有すれば、光電変換効率の向上は可能である。 However, even when the light absorption layer is formed from a film formed by sputtering, the polycrystalline body constituting the light absorption layer is the same as when the light absorption layer is formed from a coating film containing fine particles. And having a structure including a crystal grain boundary part. As long as the light absorption layer has a structure including a crystal grain boundary part, the photoelectric conversion efficiency can be improved if the light absorption layer has a crystal grain boundary part having a composition satisfying Cu / (Zn + Sn) ≦ 1.11. is there.

 要は、製造方法に関わりなく、光吸収層12が、Cu/(Zn+Sn)≦1.11を満たす組成を有する結晶粒界部を含めば、光電変換効率の向上は可能である。そして、こうした化合物薄膜太陽電池は、光吸収層12の前駆体を形成する前駆体形成工程と、前駆体を熱処理することによって前駆体を結晶化させて、Cu/(Zn+Sn)≦1.11を満たす組成を有する結晶粒界部を含む光吸収層12を形成する熱処理工程と、を含む製造方法によって製造されればよい。 In short, the photoelectric conversion efficiency can be improved if the light absorption layer 12 includes a crystal grain boundary portion having a composition satisfying Cu / (Zn + Sn) ≦ 1.11 regardless of the manufacturing method. Then, such a compound thin film solar cell has a precursor forming step of forming a precursor of the light absorption layer 12 and crystallizing the precursor by heat-treating the precursor, so that Cu / (Zn + Sn) ≦ 1.11. And a heat treatment step for forming the light absorption layer 12 including the crystal grain boundary portion having the composition to be satisfied.

 (実施例)
 第1実施形態の化合物薄膜太陽電池、その製造方法、および、光吸収層について、具体的な実施例および比較例を用いて説明する。
(Example)
The compound thin film solar cell, the manufacturing method thereof, and the light absorption layer of the first embodiment will be described using specific examples and comparative examples.

 [実施例1]
 (光吸収層形成用インクの調整)
 CuI、ZnI、および、SnIを、Cu:Zn:Snのモル比が1.8:1.1:1となるようにピリジンに溶解して、第1の溶液を調製した。また、NaSeをメタノールに溶解して、第2の溶液を調製した。
[Example 1]
(Adjustment of light absorbing layer forming ink)
CuI, ZnI 2 , and SnI 4 were dissolved in pyridine such that the molar ratio of Cu: Zn: Sn was 1.8: 1.1: 1 to prepare a first solution. In addition, a second solution was prepared by dissolving Na 2 Se in methanol.

 第1の溶液と第2の溶液とを混合し、Cu:Zn:Sn:Seのモル比が1.8:1.1:1:4である混合液を得た。この混合液を不活性ガス雰囲気下、0℃で反応させてCu-Zn-Sn-Se微粒子を製造した。反応後の溶液を濾過して残渣をメタノールで洗浄した後、洗浄後のCu-Zn-Sn-Se微粒子とチオ尿素とを、微粒子とチオ尿素との質量比が3:2となるように混合し、この混合物にピリジンとメタノールとをさらに加えて、Cu-Zn-Sn-Se微粒子を含む光吸収層形成用インクを調整した。光吸収層形成用インクに含まれる固形分は2質量%である。 The first solution and the second solution were mixed to obtain a mixed solution having a Cu: Zn: Sn: Se molar ratio of 1.8: 1.1: 1: 4. This mixed solution was reacted at 0 ° C. in an inert gas atmosphere to produce Cu—Zn—Sn—Se fine particles. The solution after the reaction is filtered and the residue is washed with methanol, and then the washed Cu—Zn—Sn—Se fine particles and thiourea are mixed so that the mass ratio of the fine particles to thiourea is 3: 2. Then, pyridine and methanol were further added to the mixture to prepare a light absorption layer forming ink containing Cu—Zn—Sn—Se fine particles. The solid content contained in the light absorbing layer forming ink is 2% by mass.

 (裏面電極の形成)
 基板としてソーダライムガラスを用い、スパッタリングによってMoから構成される裏面電極を形成した。
(Formation of back electrode)
Using soda lime glass as a substrate, a back electrode composed of Mo was formed by sputtering.

 (光吸収層の形成)
 裏面電極の上面にスプレー法によって光吸収層形成用インクを塗布し、250℃のオーブンで溶媒を蒸発させた後に、熱処理工程を行った。熱処理工程では、裏面電極の上面に形成された前駆体である塗膜を、硫黄48mgとセレン10mgとが入れられた石英ケースに入れて、窒素ガスが導入された雰囲気下、580℃で20分間の熱処理を行った。これにより、膜厚約2μmのCZTS薄膜から構成される光吸収層が得られた。
(Formation of light absorption layer)
A light absorbing layer forming ink was applied to the upper surface of the back electrode by a spray method, and the solvent was evaporated in an oven at 250 ° C., followed by a heat treatment step. In the heat treatment step, a coating film, which is a precursor formed on the upper surface of the back electrode, is placed in a quartz case containing 48 mg of sulfur and 10 mg of selenium, and is placed at 580 ° C. for 20 minutes in an atmosphere introduced with nitrogen gas. The heat treatment was performed. Thereby, the light absorption layer comprised from the CZTS thin film with a film thickness of about 2 micrometers was obtained.

 (バッファ層の形成)
 0.0015Mの硫酸カドミウム(CdSO)、0.0075Mのチオ尿素(NHCSNH)、および、1.5Mのアンモニア水(NHOH)を含有する混合液を67℃に加熱した。この混合液中に、上述の光吸収層が形成された構造体を浸漬することによって、光吸収層上に膜厚が100nmのCdSから構成されるバッファ層が形成された。
(Formation of buffer layer)
A mixture containing 0.0015 M cadmium sulfate (CdSO 4 ), 0.0075 M thiourea (NH 2 CSNH 2 ), and 1.5 M aqueous ammonia (NH 4 OH) was heated to 67 ° C. A buffer layer made of CdS having a film thickness of 100 nm was formed on the light absorption layer by immersing the structure in which the above light absorption layer was formed in this mixed solution.

 (半絶縁層の形成)
 ジエチル亜鉛と水とを原料としたMOCVD法によって、膜厚が50nmのZnOから構成される半絶縁層をバッファ層の上に形成した。
(Formation of semi-insulating layer)
A semi-insulating layer made of ZnO having a thickness of 50 nm was formed on the buffer layer by MOCVD using diethyl zinc and water as raw materials.

 (窓層の形成)
 ジエチル亜鉛、水、および、ジボランを原料としたMOCVD法によって、膜厚が1μmのZnO:Bから構成される窓層を半絶縁層の上に形成した。
(Formation of window layer)
A window layer made of ZnO: B having a thickness of 1 μm was formed on the semi-insulating layer by MOCVD using diethyl zinc, water, and diborane as raw materials.

 (表面電極の形成)
 蒸着法を用いて、膜厚が0.3μmのAlから構成される表面電極を窓層の上に形成した。これによって、実施例1の化合物薄膜太陽電池が得られた。
(Formation of surface electrode)
A surface electrode made of Al having a film thickness of 0.3 μm was formed on the window layer by vapor deposition. Thereby, the compound thin film solar cell of Example 1 was obtained.

 [実施例2]
 光吸収層を形成する際の熱処理工程における条件を下記のように変更した以外は、実施例1と同様の工程によって、実施例2の化合物薄膜太陽電池を得た。実施例2における熱処理工程では、裏面電極の上面に形成された前駆体である塗膜を、セレン40mgが入れられた石英ケースに入れて、窒素ガスに水素ガスが約3%添加された雰囲気下、500℃で30分間の熱処理を行った。
[Example 2]
A compound thin-film solar cell of Example 2 was obtained by the same process as Example 1 except that the conditions in the heat treatment step when forming the light absorption layer were changed as follows. In the heat treatment step in Example 2, a coating film, which is a precursor formed on the upper surface of the back electrode, is placed in a quartz case containing 40 mg of selenium, and an atmosphere in which about 3% of hydrogen gas is added to nitrogen gas is used. A heat treatment was performed at 500 ° C. for 30 minutes.

 [実施例3]
 光吸収層を形成する際の熱処理工程における条件を下記のように変更した以外は、実施例1と同様の工程によって、実施例3の化合物薄膜太陽電池を得た。実施例3における熱処理工程では、裏面電極の上面に形成された前駆体である塗膜を、硫黄48mgが入れられた石英ケースに入れて、窒素ガスが導入された雰囲気下、580℃で20分間の熱処理を行った。
[Example 3]
A compound thin-film solar cell of Example 3 was obtained by the same process as Example 1 except that the conditions in the heat treatment step when forming the light absorption layer were changed as follows. In the heat treatment step in Example 3, the coating film, which is a precursor formed on the upper surface of the back electrode, is put in a quartz case containing 48 mg of sulfur, and at 580 ° C. for 20 minutes in an atmosphere introduced with nitrogen gas. The heat treatment was performed.

 [比較例1]
 光吸収層を形成する際の熱処理工程における条件を下記のように変更した以外は、実施例1と同様の工程によって、比較例1の化合物薄膜太陽電池を得た。比較例における熱処理工程では、裏面電極の上面に形成された前駆体である塗膜を、セレン40mgが入れられた石英ケースに入れて、窒素ガスが導入された雰囲気下、580℃で20分間の熱処理を行った。
[Comparative Example 1]
A compound thin-film solar cell of Comparative Example 1 was obtained by the same process as Example 1 except that the conditions in the heat treatment step when forming the light absorption layer were changed as follows. In the heat treatment step in the comparative example, the coating film, which is a precursor formed on the upper surface of the back electrode, is put in a quartz case containing 40 mg of selenium, and the atmosphere is introduced at 580 ° C. for 20 minutes in an atmosphere introduced with nitrogen gas. Heat treatment was performed.

 [評価方法]
 (光電変換効率)
 各実施例および比較例の化合物薄膜太陽電池について、標準太陽光シミュレータ(光強度:100mW/cm、エアマス:1.5)を用いて、光電変換効率を評価した。
[Evaluation methods]
(Photoelectric conversion efficiency)
About the compound thin film solar cell of each Example and the comparative example, photoelectric conversion efficiency was evaluated using the standard sunlight simulator (light intensity: 100 mW / cm < 2 >, air mass: 1.5).

 (組成比)
 各実施例および比較例について、光吸収層をFIB法(μ-サンプリング法)によって薄片状に切った後に、走査透過電子顕微鏡(日立ハイテクノロジーズ製 HD-2700)を用いたエネルギー分散型X線分光法(EDS)によって、組成分析を行った。組成分析の詳細な条件を以下に示す。
(Composition ratio)
For each of the examples and comparative examples, the light absorbing layer was cut into a thin piece by the FIB method (μ-sampling method), and then energy dispersive X-ray spectroscopy using a scanning transmission electron microscope (Hitachi High-Technologies HD-2700). Composition analysis was performed by the method (EDS). Detailed conditions of the composition analysis are shown below.

 加速電圧:200kV
 ビーム径:約1nmφ
 元素分析装置:NORAN製 VOYAGER III M3100
 X線検出器:Si/Li半導体検出器
 エネルギー分解能:137eV(仕様値)
 X線取出角:22°(Side take off 方式)
 立体角:0.12sr
 取込時間:30秒
 [結果]
 図2は、実施例1の化合物薄膜太陽電池における断面のSTEM画像を示す。図2におけるP1は、結晶粒界部の組成の測定箇所を示し、P2は、結晶粒内部の組成の測定箇所を示す。同様に、図3に実施例2、図4に実施例3、図5に比較例1の化合物薄膜太陽電池における断面のSTEM画像を示す。図3におけるP3、図4におけるP5、図5におけるP7は、結晶粒界部の組成の測定箇所を示し、図3におけるP4、図4におけるP6、図5におけるP8は、結晶粒内部の組成の測定箇所を示す。なお、図2、図4、図5は、明視野STEM像であり、図3は、暗視野STEM像である。
Accelerating voltage: 200kV
Beam diameter: about 1nmφ
Elemental analyzer: VOYAGER III M3100 manufactured by NORAN
X-ray detector: Si / Li semiconductor detector Energy resolution: 137 eV (specification value)
X-ray extraction angle: 22 ° (Side take off method)
Solid angle: 0.12 sr
Acquisition time: 30 seconds [Result]
FIG. 2 shows a cross-sectional STEM image of the compound thin film solar cell of Example 1. P1 in FIG. 2 shows the measurement location of the composition of a crystal grain boundary part, and P2 shows the measurement location of the composition inside a crystal grain. Similarly, FIG. 3 shows a STEM image of a cross section of the compound thin film solar cell of Example 2, FIG. 4 Example 3 and FIG. P3 in FIG. 3, P5 in FIG. 4, and P7 in FIG. 5 indicate the measurement points of the composition of the crystal grain boundaries. P4 in FIG. 3, P6 in FIG. 4, and P8 in FIG. Indicates the measurement location. 2, 4, and 5 are bright field STEM images, and FIG. 3 is a dark field STEM image.

 表1は、各実施例および比較例について、結晶粒界部および結晶粒内部の組成比の算出結果と、光電変換効率の算出結果とを示す。 Table 1 shows the calculation result of the composition ratio of the crystal grain boundary and the crystal grain and the calculation result of the photoelectric conversion efficiency for each example and comparative example.

Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

 表1に示されるように、結晶粒界部において、Cu/(Zn+Sn)比が1.11を超える比較例1に対して、Cu/(Zn+Sn)比が1.11以下である実施例1~3では、高い光電変換効率が得られることが示された。なお、比較例1に含まれる結晶粒界部において、P7以外の他の部位においても、P7と同様に、Cu/(Zn+Sn)比が1.11を越える大きさであった。 As shown in Table 1, in the grain boundary part, in comparison example 1 in which the Cu / (Zn + Sn) ratio exceeds 1.11, the Cu / (Zn + Sn) ratio is 1.11 or less. 3 showed that high photoelectric conversion efficiency was obtained. In addition, in the grain boundary part included in Comparative Example 1, the Cu / (Zn + Sn) ratio exceeded 1.11 in other parts other than P7 as well as P7.

 このように、本発明者は、研究により、光吸収層中の結晶粒界ではCuの濃度が高くなり易く、このことが光電変換効率を低下させる要因の1つであるという知見を得て、結晶粒界部におけるCu/(Zn+Sn)比に着目し、光電変換効率を高められる構成を見出すに至った。 Thus, the present inventor has obtained the knowledge that the concentration of Cu tends to be high at the crystal grain boundaries in the light absorption layer, and this is one of the factors that lower the photoelectric conversion efficiency. Focusing on the Cu / (Zn + Sn) ratio in the crystal grain boundary, the inventors have found a configuration that can increase the photoelectric conversion efficiency.

 以上、実施例を用いて説明したように、第1実施形態によれば、以下に列挙する効果を得ることができる。
 (1)熱処理後の光吸収層12が、Cu/(Zn+Sn)≦1.11を満たす組成を有する結晶粒界部を含むため、結晶粒界部における抵抗の低下に起因して光吸収層中にリークパスが形成されることが抑えられる。その結果、光電変換効率が高められる。
As described above using the examples, according to the first embodiment, the effects listed below can be obtained.
(1) Since the light absorption layer 12 after the heat treatment includes a crystal grain boundary part having a composition satisfying Cu / (Zn + Sn) ≦ 1.11, in the light absorption layer due to a decrease in resistance at the crystal grain boundary part. The formation of a leak path is suppressed. As a result, the photoelectric conversion efficiency is increased.

 (2)熱処理後の光吸収層12が含む結晶粒の内部が、Zn/Sn≦1を満たす組成を有するため、光吸収層12中に、異相となるZnSSe1-x(0≦x≦1)が析出し難くなる。その結果、光電変換効率が高められる。 (2) Since the inside of the crystal grains included in the light absorption layer 12 after the heat treatment has a composition satisfying Zn / Sn ≦ 1, ZnS x Se 1-x (0 ≦ x) that becomes a different phase in the light absorption layer 12 ≦ 1) is difficult to precipitate. As a result, the photoelectric conversion efficiency is increased.

 (3)熱処理後の光吸収層12が含む結晶粒の内部が、Cu/(Zn+Sn)≦1を満たす組成を有するため、結晶粒内部において、キャリアの濃度が高くなりすぎることが抑えられる。その結果、光電変換効率が高められる。 (3) Since the inside of the crystal grains included in the light absorption layer 12 after the heat treatment has a composition satisfying Cu / (Zn + Sn) ≦ 1, it is possible to suppress the carrier concentration from becoming too high inside the crystal grains. As a result, the photoelectric conversion efficiency is increased.

 (4)結晶粒界部を構成する結晶粒の粒径が0.1μm以上であると、結晶粒界部の組成が光電変換効率に及ぼす影響が大きい。こうした結晶粒界部の組成がCu/(Zn+Sn)≦1.11を満たすため、光電変換効率が的確に高められる。 (4) When the grain size of the crystal grain constituting the crystal grain boundary part is 0.1 μm or more, the influence of the composition of the crystal grain boundary part on the photoelectric conversion efficiency is great. Since the composition of the crystal grain boundary portion satisfies Cu / (Zn + Sn) ≦ 1.11, the photoelectric conversion efficiency can be accurately increased.

 (5)光吸収層12の前駆体を形成する前駆体形成工程と、前駆体を熱処理することによって前駆体を結晶化させて光吸収層12を形成する熱処理工程と、を含む製造方法によって、上記組成の結晶粒界部を含む光吸収層12を備える化合物薄膜太陽電池を形成することができる。特に、微粒子を含むインクの塗工によって、前駆体である塗膜を成膜すると、スパッタリング等を用いて前駆体を形成する場合と比較して、光吸収層12を容易に形成することが可能であり、また、光電変換効率を高める効果が高い。 (5) By a manufacturing method including a precursor forming step of forming a precursor of the light absorbing layer 12 and a heat treatment step of crystallizing the precursor by heat treating the precursor to form the light absorbing layer 12, A compound thin film solar cell including the light absorption layer 12 including the crystal grain boundary part having the above composition can be formed. In particular, when a coating film that is a precursor is formed by applying ink containing fine particles, the light absorption layer 12 can be easily formed as compared with the case where the precursor is formed using sputtering or the like. In addition, the effect of increasing the photoelectric conversion efficiency is high.

 (6)熱処理工程において、上述の条件1~4のいずれかに従った条件で熱処理を行うことによって、光吸収層12の結晶粒界部にて、Cu/(Zn+Sn)比が高くなることを抑えることができる。その結果、上記組成の結晶粒界部を含む光吸収層12の形成を好適に行うことができる。 (6) In the heat treatment step, the Cu / (Zn + Sn) ratio is increased at the crystal grain boundary portion of the light absorption layer 12 by performing the heat treatment under the condition according to any one of the above conditions 1 to 4. Can be suppressed. As a result, the light absorption layer 12 including the crystal grain boundary part having the above composition can be suitably formed.

 (7)前駆体形成工程にて用いられる光吸収層形成用インクに含まれる微粒子が、非晶質の粒子であるため、形成される光吸収層12の緻密性を高めることができる。
 (第2実施形態)
 化合物薄膜太陽電池、その製造方法、および、光吸収層の第2実施形態について説明する。なお、第2実施形態の化合物薄膜太陽電池において、光吸収層12以外の構成は第1実施形態の構成と同様である。以下では、光吸収層12の構成およびその製造方法を中心に説明し、第1実施形態と同様の構成については説明を省略する。
(7) Since the fine particles contained in the light absorbing layer forming ink used in the precursor forming step are amorphous particles, the denseness of the formed light absorbing layer 12 can be improved.
(Second Embodiment)
A compound thin-film solar cell, a manufacturing method thereof, and a second embodiment of the light absorption layer will be described. In addition, in the compound thin film solar cell of 2nd Embodiment, the structures other than the light absorption layer 12 are the same as the structure of 1st Embodiment. Below, it demonstrates centering around the structure of the light absorption layer 12, and its manufacturing method, and abbreviate | omits description about the structure similar to 1st Embodiment.

 [化合物薄膜太陽電池の構成]
 第2実施形態の化合物薄膜太陽電池の光吸収層12は、第1実施形態と同様に、多結晶体からなる薄膜であり、CZTS半導体から構成される。光吸収層12における結晶粒界部は、第1実施形態と同様に、Cu/(Zn+Sn)≦1.11を満たす組成を有し、かつ、光吸収層12は、膜厚方向における組成比の特徴として、下記の特徴を有する。
[Configuration of Compound Thin Film Solar Cell]
Similar to the first embodiment, the light absorption layer 12 of the compound thin film solar cell of the second embodiment is a thin film made of a polycrystalline body and is made of a CZTS semiconductor. Similar to the first embodiment, the crystal grain boundary portion in the light absorption layer 12 has a composition satisfying Cu / (Zn + Sn) ≦ 1.11, and the light absorption layer 12 has a composition ratio in the film thickness direction. Features include the following features.

 光吸収層12の膜厚方向におけるZn/Sn比の変化率Rverを、光吸収層12の膜厚方向におけるZn/Sn比の最大値をRmax、光吸収層12の膜厚方向におけるZn/Sn比の最小値をRminとして、下記式(1)で表すとき、変化率Rverは、16%以下となる。なお、Zn/Sn比は原子比であって、Snの原子%に対するZnの原子%をZn/Snとする。 The rate of change Rver of the Zn / Sn ratio in the film thickness direction of the light absorption layer 12, the maximum value of the Zn / Sn ratio in the film thickness direction of the light absorption layer 12 is Rmax, and the Zn / Sn in the film thickness direction of the light absorption layer 12. When the minimum value of the ratio is represented by Rmin and expressed by the following formula (1), the rate of change Rver is 16% or less. The Zn / Sn ratio is an atomic ratio, and the atomic% of Zn with respect to the atomic% of Sn is Zn / Sn.

 Rver=(Rmax÷Rmin-1)×100・・・式(1)
 最大値Rmaxおよび最小値Rminは、光吸収層12にて、膜厚方向の位置が異なる複数の領域について組成分析が行われることによって求められる。組成分析の結果、求められた各領域のZn/Sn比のうちの最大値が最大値Rmaxであり、最小値が最小値Rminである。
Rver = (Rmax ÷ Rmin−1) × 100 (1)
The maximum value Rmax and the minimum value Rmin are obtained by performing composition analysis on a plurality of regions having different positions in the film thickness direction in the light absorption layer 12. As a result of composition analysis, the maximum value of the obtained Zn / Sn ratios in each region is the maximum value Rmax, and the minimum value is the minimum value Rmin.

 組成分析は、研磨した光吸収層12の断面に対して、走査電子顕微鏡(SEM)を用いたエネルギー分散型X線分光法(EDS)によって行われる。
 組成分析の対象となる領域である組成分析領域は、光吸収層12の上記断面を膜厚方向に均等に分割した各領域の全部もしくは一部である。例えば、光吸収層12の上記断面が3分割され、これら3つの領域の各々が組成分析領域であるか、もしくは、これら3つの領域の各々の一部が組成分析領域であり、3つの領域の各々に対して1つずつの組成分析領域が設定される。
The composition analysis is performed on the polished cross section of the light absorption layer 12 by energy dispersive X-ray spectroscopy (EDS) using a scanning electron microscope (SEM).
The composition analysis region, which is a region to be subjected to composition analysis, is all or part of each region obtained by equally dividing the cross section of the light absorption layer 12 in the film thickness direction. For example, the cross section of the light absorption layer 12 is divided into three, and each of these three regions is a composition analysis region, or a part of each of these three regions is a composition analysis region, and the three regions One composition analysis region is set for each.

 具体的には、組成分析領域は、光吸収層12の上記断面と対向する方向から見て、膜厚方向に100nm以上の大きさを有する矩形領域であればよい。組成分析領域は、複数の結晶粒を含むとともに、複数の結晶粒界部を含む。 Specifically, the composition analysis region may be a rectangular region having a size of 100 nm or more in the film thickness direction when viewed from the direction facing the cross section of the light absorption layer 12. The composition analysis region includes a plurality of crystal grains and a plurality of crystal grain boundaries.

 変化率Rverが16%以下であると、光吸収層12中におけるZn/Sn比の偏りが抑えられるため、光吸収層12中にZnS等が偏析して異相が形成されることや、光吸収層12中での欠陥の形成が抑えられる。その結果、光電変換効率が高められる。 When the change rate Rver is 16% or less, the deviation of the Zn / Sn ratio in the light absorption layer 12 is suppressed, so that ZnS or the like segregates in the light absorption layer 12 to form a heterogeneous phase, or light absorption. The formation of defects in the layer 12 is suppressed. As a result, the photoelectric conversion efficiency is increased.

 光吸収層12の膜厚方向におけるZn/Sn比の変化の方向は特に限定されず、Zn/Sn比は、裏面電極11に近い部分から表面電極16に近い部分に向けて小さくなってもよいし、裏面電極11に近い部分から表面電極16に近い部分に向けて大きくなってもよいし、膜厚方向の中央部分で最大もしくは最小となってもよい。 The direction of change of the Zn / Sn ratio in the film thickness direction of the light absorption layer 12 is not particularly limited, and the Zn / Sn ratio may decrease from a portion close to the back electrode 11 toward a portion close to the front electrode 16. And it may become large toward the part near the surface electrode 16 from the part close to the back surface electrode 11, and may become the maximum or the minimum at the center part in the film thickness direction.

 ただし、光吸収層12の特に表面電極16に近い部分にZnS等が偏析すると、バンドギャップの差に起因して、キャリアの移動が制限され易くなる。したがって、表面電極16に近い部分のZn/Sn比は、裏面電極11に近い部分のZn/Sn比よりも低いことが好ましく、Zn/Sn比は、裏面電極11に近い部分から表面電極16に近い部分に向けて小さくなることがより好ましい。 However, when ZnS or the like segregates in the portion of the light absorption layer 12 that is particularly close to the surface electrode 16, the movement of carriers is likely to be limited due to the difference in the band gap. Therefore, it is preferable that the Zn / Sn ratio in the part close to the front electrode 16 is lower than the Zn / Sn ratio in the part close to the back electrode 11, and the Zn / Sn ratio is changed from the part close to the back electrode 11 to the front electrode 16. It is more preferable that it becomes smaller toward the near part.

 また、光吸収層12全体の組成は、0.9≦Zn/Sn≦1.2を満たすことが好ましい。光吸収層12全体において、Zn/Sn比が0.9以上であると、CuZnによる欠陥の形成が抑えられる。一方、光吸収層12全体において、Zn/Sn比が1.2以下であると、Znの偏在が抑えられる。その結果、光電変換効率が高められる。なお、光吸収層12全体におけるZn/Sn比は、研磨した光吸収層の断面の全面に対してEDSによるマッピングを行ったデータから算出される。 Moreover, it is preferable that the composition of the light absorption layer 12 as a whole satisfies 0.9 ≦ Zn / Sn ≦ 1.2. When the Zn / Sn ratio is 0.9 or more in the entire light absorption layer 12, the formation of defects due to Cu Zn is suppressed. On the other hand, when the Zn / Sn ratio is 1.2 or less in the entire light absorption layer 12, the uneven distribution of Zn is suppressed. As a result, the photoelectric conversion efficiency is increased. The Zn / Sn ratio in the entire light absorption layer 12 is calculated from data obtained by mapping by EDS on the entire cross-section of the polished light absorption layer.

 さらに、各組成分析領域の組成が、0.9≦Zn/Sn≦1.2を満たすと、上記効果が高められる。
 なお、変化率Rverが16%以下であることにより、光吸収層12中にZnS等としてZnが偏析することが抑えられてはいても、Znの偏析を完全に防ぐことは困難であり、Znは、光吸収層12における結晶粒と結晶粒との間に偏析する。上記組成分析領域には、複数の結晶粒とその間の領域とが含まれるため、組成分析領域のZn/Sn比や光吸収層12全体のZn/Sn比は、結晶粒内部のZn/Sn比よりも大きくなり得る。すなわち、結晶粒内部において、Zn/Sn比が1以下であっても、組成分析領域のZn/Sn比や光吸収層12全体のZn/Sn比は1よりも大きいことがあり得るが、光吸収層12全体の組成が、0.9≦Zn/Sn≦1.2を満たしていれば、上述の効果が得られる。
Furthermore, when the composition of each composition analysis region satisfies 0.9 ≦ Zn / Sn ≦ 1.2, the above effect is enhanced.
Note that when the rate of change Rver is 16% or less, it is difficult to completely prevent the segregation of Zn even though the segregation of Zn as ZnS or the like in the light absorption layer 12 is suppressed. Segregates between crystal grains in the light absorption layer 12. Since the composition analysis region includes a plurality of crystal grains and a region between them, the Zn / Sn ratio of the composition analysis region and the Zn / Sn ratio of the entire light absorption layer 12 are the Zn / Sn ratio inside the crystal grains. Can be larger. That is, even if the Zn / Sn ratio is 1 or less inside the crystal grains, the Zn / Sn ratio in the composition analysis region and the Zn / Sn ratio in the entire light absorption layer 12 may be larger than 1, If the composition of the entire absorption layer 12 satisfies 0.9 ≦ Zn / Sn ≦ 1.2, the above-described effect can be obtained.

 また、光吸収層12の厚さは、0.3μm以上10μm以下であることが好ましく、例えば、2μmであることが好ましい。
 [化合物薄膜太陽電池の製造方法]
 第2実施形態の化合物薄膜太陽電池の製造方法における熱処理工程について説明する。なお、熱処理工程以外の製造方法は第1実施形態の製造方法と同様である。
Further, the thickness of the light absorption layer 12 is preferably 0.3 μm or more and 10 μm or less, and for example, preferably 2 μm.
[Method for producing compound thin-film solar cell]
The heat treatment step in the method for producing the compound thin film solar cell of the second embodiment will be described. The manufacturing method other than the heat treatment step is the same as the manufacturing method of the first embodiment.

 Zn/Sn比の変化率Rverが16%以下である光吸収層12を得るためには、熱処理工程において、特に、下記条件5、または、条件6のいずれかが満たされることが好ましい。 In order to obtain the light absorption layer 12 with a change rate Rver of Zn / Sn ratio of 16% or less, it is particularly preferable that either of the following conditions 5 or 6 is satisfied in the heat treatment step.

 条件5:熱処理の雰囲気が、硫黄とセレンとを含む。
 条件6:熱処理工程が、硫黄を含む雰囲気下で行われる第1段階の熱処理工程と、セレンを含む雰囲気下で行われる第2段階の熱処理工程とを含む。
Condition 5: The atmosphere of heat treatment contains sulfur and selenium.
Condition 6: The heat treatment step includes a first-stage heat treatment step performed in an atmosphere containing sulfur and a second-stage heat treatment step performed in an atmosphere containing selenium.

 本発明者は、窒素ガスに硫黄のみが添加された雰囲気下で熱処理が行われる場合、第1実施形態に記載のように、結晶粒界部のCu/(Zn+Sn)比が高くなりすぎることは抑えられるものの、特に、光吸収層12における表面電極16に近い部分にZnの偏在が生じて、Zn/Sn比の変化率Rverが大きくなること、その結果、短絡電流が小さくなって光電変換効率が低下することを見出した。 In the case where the heat treatment is performed in an atmosphere in which only sulfur is added to nitrogen gas, the present inventor has found that the Cu / (Zn + Sn) ratio at the crystal grain boundary portion becomes too high as described in the first embodiment. Although it can be suppressed, in particular, Zn is unevenly distributed near the surface electrode 16 in the light absorption layer 12 and the change rate Rver of the Zn / Sn ratio is increased. As a result, the short-circuit current is reduced and the photoelectric conversion efficiency is reduced. Found that the decline.

 これに対し、条件5では、熱処理の雰囲気に、硫黄に加えてセレンが添加されることによって、Zn/Sn比の変化率Rverが大きくなることが抑えられ、光電変換効率が高められる。 On the other hand, under condition 5, by adding selenium to the atmosphere of the heat treatment in addition to sulfur, the change rate Rver of the Zn / Sn ratio is suppressed, and the photoelectric conversion efficiency is increased.

 なお、裏面電極11がMoを含む場合には、熱処理の雰囲気中におけるSe/S比(モル比)は、4以下であることが好ましい。セレンの硫黄に対する割合が4以下であれば、熱処理の雰囲気中のセレンが裏面電極11のMoと反応して高抵抗なMoSe層が形成されることが抑えられる。その結果、光電変換効率が高められる。 In addition, when the back surface electrode 11 contains Mo, it is preferable that Se / S ratio (molar ratio) in the atmosphere of heat processing is 4 or less. If the ratio of selenium to sulfur is 4 or less, selenium in the heat treatment atmosphere reacts with Mo of the back electrode 11 to suppress the formation of a high-resistance MoSe 2 layer. As a result, the photoelectric conversion efficiency is increased.

 また、上記条件5では、熱処理の雰囲気に、硫黄とセレンとが同時に含まれているが、条件6のように、第1段階の熱処理工程によって、硫黄を含む雰囲気下で熱処理が行われ、第2段階の熱処理工程によって、セレンを含む雰囲気下で熱処理が行われてもよい。この場合、第1段階の熱処理工程の際に、Znの偏在が生じたとしても、第2段階の熱処理工程の際に、偏在していたZnが光吸収層12中に再拡散する結果、Zn/Sn比の変化率Rverが大きくなることを抑えることができる。 Further, in condition 5 above, sulfur and selenium are simultaneously contained in the heat treatment atmosphere, but as in condition 6, the heat treatment is performed in an atmosphere containing sulfur by the first stage heat treatment process, The heat treatment may be performed in an atmosphere containing selenium by a two-step heat treatment step. In this case, even if the uneven distribution of Zn occurs in the first stage heat treatment process, the unevenly distributed Zn is rediffused in the light absorption layer 12 in the second stage heat treatment process. An increase in the change rate Rver of the / Sn ratio can be suppressed.

 条件5は第1実施形態の条件1に相当し、条件6は第1実施形態の条件4に相当する。すなわち、条件5および条件6のいずれかが満たされることによって、結晶粒界部の組成がCu/(Zn+Sn)≦1.11を満たし、かつ、Zn/Sn比の変化率Rverが16%以下である光吸収層12を得ることができる。 Condition 5 corresponds to condition 1 of the first embodiment, and condition 6 corresponds to condition 4 of the first embodiment. That is, when any one of the conditions 5 and 6 is satisfied, the composition of the crystal grain boundary portion satisfies Cu / (Zn + Sn) ≦ 1.11, and the change rate Rver of the Zn / Sn ratio is 16% or less. A certain light absorption layer 12 can be obtained.

 なお、光吸収層12に、塩酸等の酸または純水による表面洗浄処理が施されてもよい。これによって、光吸収層12の上面付近のZn原子が溶け出すため、光吸収層12の中で表面電極16に近い部分のZn/Sn比を、裏面電極11に近い部分のZn/Sn比よりも積極的に低くすることができる。なお、酸としては、公知の無機酸や有機酸を用いることができる。 Note that the light absorbing layer 12 may be subjected to a surface cleaning treatment with an acid such as hydrochloric acid or pure water. As a result, Zn atoms in the vicinity of the upper surface of the light absorption layer 12 are dissolved, so that the Zn / Sn ratio in the portion near the front electrode 16 in the light absorption layer 12 is higher than the Zn / Sn ratio in the portion near the back electrode 11. Can also be actively lowered. In addition, as an acid, a well-known inorganic acid and organic acid can be used.

 第1実施形態にて述べたように、スパッタリングを利用して形成された光吸収層と、微粒子を含む塗膜から形成された光吸収層とでは、光吸収層中における各組成成分の分布の傾向が異なる。そのため、Zn/Sn比の変化率Rverが16%以下であることは、微粒子を含む塗膜から光吸収層が形成される場合において、特に高い光電変換効率をもたらす。 As described in the first embodiment, in the light absorption layer formed using sputtering and the light absorption layer formed from a coating film containing fine particles, the distribution of each composition component in the light absorption layer The trend is different. Therefore, the change rate Rver of the Zn / Sn ratio being 16% or less brings particularly high photoelectric conversion efficiency when the light absorption layer is formed from the coating film containing fine particles.

 ただし、製造方法に関わりなく、光吸収層12の膜厚方向におけるZn/Sn比の変化率Rverが16%以下であれば、光電変換効率の向上は可能である。そして、こうした化合物薄膜太陽電池は、光吸収層12の前駆体を形成する前駆体形成工程と、前駆体を熱処理することによって、上記変化率Rverを満たす光吸収層12を形成する熱処理工程と、を含む製造方法によって製造されればよい。 However, irrespective of the manufacturing method, if the change rate Rver of the Zn / Sn ratio in the film thickness direction of the light absorption layer 12 is 16% or less, the photoelectric conversion efficiency can be improved. Such a compound thin-film solar cell includes a precursor forming step for forming a precursor of the light absorption layer 12, and a heat treatment step for forming the light absorption layer 12 satisfying the change rate Rver by heat-treating the precursor. May be manufactured by a manufacturing method including:

 (実施例)
 第2実施形態の化合物薄膜太陽電池、その製造方法、および、光吸収層について、具体的な実施例および比較例を用いて説明する。
(Example)
The compound thin film solar cell, the manufacturing method thereof, and the light absorption layer of the second embodiment will be described using specific examples and comparative examples.

 [実施例4]
 (光吸収層形成用インクの調整)
 CuI、ZnI、および、SnIを、Cu:Zn:Snのモル比が1.8:1.1:1となるようにピリジンに溶解して、第1の溶液を調製した。また、NaSeをメタノールに溶解して、第2の溶液を調製した。
[Example 4]
(Adjustment of light absorbing layer forming ink)
CuI, ZnI 2 , and SnI 4 were dissolved in pyridine such that the molar ratio of Cu: Zn: Sn was 1.8: 1.1: 1 to prepare a first solution. In addition, a second solution was prepared by dissolving Na 2 Se in methanol.

 第1の溶液と第2の溶液とを混合し、Cu:Zn:Sn:Seのモル比が1.8:1.1:1:4である混合液を得た。この混合液を不活性ガス雰囲気下、0℃で反応させてCu-Zn-Sn-Se微粒子を製造した。反応後の溶液を濾過して残渣をメタノールで洗浄した後、洗浄後のCu-Zn-Sn-Se微粒子とチオ尿素とを、微粒子とチオ尿素との質量比が3:2となるように混合し、この混合物にピリジンとメタノールとをさらに加えて、Cu-Zn-Sn-Se微粒子を含む光吸収層形成用インクを調整した。光吸収層形成用インクに含まれる固形分は2質量%である。 The first solution and the second solution were mixed to obtain a mixed solution having a Cu: Zn: Sn: Se molar ratio of 1.8: 1.1: 1: 4. This mixed solution was reacted at 0 ° C. in an inert gas atmosphere to produce Cu—Zn—Sn—Se fine particles. The solution after the reaction is filtered and the residue is washed with methanol, and then the washed Cu—Zn—Sn—Se fine particles and thiourea are mixed so that the mass ratio of the fine particles to thiourea is 3: 2. Then, pyridine and methanol were further added to the mixture to prepare a light absorption layer forming ink containing Cu—Zn—Sn—Se fine particles. The solid content contained in the light absorbing layer forming ink is 2% by mass.

 (裏面電極の形成)
 基板としてソーダライムガラスを用い、スパッタリングによってMoから構成される裏面電極を形成した。
(Formation of back electrode)
Using soda lime glass as a substrate, a back electrode composed of Mo was formed by sputtering.

 (光吸収層の形成)
 前駆体形成工程として、裏面電極の上面にスプレー法によって光吸収層形成用インクを塗布し、250℃のオーブンで溶媒を蒸発させた後に、熱処理工程を行った。熱処理工程では、裏面電極の上面に形成された前駆体である塗膜を、硫黄48mgとセレン10mgとが入れられた石英ケースに入れて、窒素ガスが導入された雰囲気下、580℃で20分間の熱処理を行った。これにより、膜厚約2μmのCZTS薄膜から構成される光吸収層が得られた。
(Formation of light absorption layer)
As the precursor forming step, a light absorbing layer forming ink was applied to the upper surface of the back electrode by a spray method, and the solvent was evaporated in an oven at 250 ° C., followed by a heat treatment step. In the heat treatment step, a coating film, which is a precursor formed on the upper surface of the back electrode, is placed in a quartz case containing 48 mg of sulfur and 10 mg of selenium, and is placed at 580 ° C. for 20 minutes in an atmosphere introduced with nitrogen gas. The heat treatment was performed. Thereby, the light absorption layer comprised from the CZTS thin film with a film thickness of about 2 micrometers was obtained.

 (バッファ層の形成)
 0.0015Mの硫酸カドミウム(CdSO)、0.0075Mのチオ尿素(NHCSNH)、および、1.5Mのアンモニア水(NHOH)を含有する混合液を67℃に加熱した。この混合液中に、上述の光吸収層が形成された構造体を浸漬することによって、光吸収層上に膜厚が100nmのCdSから構成されるバッファ層が形成された。
(Formation of buffer layer)
A mixture containing 0.0015 M cadmium sulfate (CdSO 4 ), 0.0075 M thiourea (NH 2 CSNH 2 ), and 1.5 M aqueous ammonia (NH 4 OH) was heated to 67 ° C. A buffer layer made of CdS having a film thickness of 100 nm was formed on the light absorption layer by immersing the structure in which the above light absorption layer was formed in this mixed solution.

 (半絶縁層の形成)
 ジエチル亜鉛と水とを原料としたMOCVD法によって、膜厚が50nmのZnOから構成される半絶縁層をバッファ層の上に形成した。
(Formation of semi-insulating layer)
A semi-insulating layer made of ZnO having a thickness of 50 nm was formed on the buffer layer by MOCVD using diethyl zinc and water as raw materials.

 (窓層の形成)
 ジエチル亜鉛、水、および、ジボランを原料としたMOCVD法によって、膜厚が1μmのZnO:Bから構成される窓層を半絶縁層の上に形成した。
(Formation of window layer)
A window layer made of ZnO: B having a thickness of 1 μm was formed on the semi-insulating layer by MOCVD using diethyl zinc, water, and diborane as raw materials.

 (表面電極の形成)
 蒸着法を用いて、膜厚が0.3μmのAlから構成される表面電極を窓層の上に形成した。これによって、実施例4の化合物薄膜太陽電池が得られた。
(Formation of surface electrode)
A surface electrode made of Al having a film thickness of 0.3 μm was formed on the window layer by vapor deposition. Thereby, the compound thin film solar cell of Example 4 was obtained.

 [実施例5]
 光吸収層を形成する際の熱処理工程における条件を下記のように変更した以外は、実施例4と同様の工程によって、実施例5の化合物薄膜太陽電池を得た。実施例5における熱処理工程では、第1段階の熱処理工程として、裏面電極の上面に形成された前駆体である塗膜を、硫黄48mgが入れられた石英ケースに入れて、窒素ガスが導入された雰囲気下、500℃で60分間の熱処理を行った。その後、第2段階の熱処理工程として、第1段階の熱処理工程を経た前駆体を、セレン40mgが入れられた石英ケースに入れて、窒素ガスが導入された雰囲気下、520℃で20分間の熱処理を行った。
[Example 5]
A compound thin-film solar cell of Example 5 was obtained by the same process as Example 4 except that the conditions in the heat treatment step when forming the light absorption layer were changed as follows. In the heat treatment step in Example 5, as a first heat treatment step, a coating film, which is a precursor formed on the upper surface of the back electrode, was placed in a quartz case containing 48 mg of sulfur, and nitrogen gas was introduced. Heat treatment was performed at 500 ° C. for 60 minutes in an atmosphere. Thereafter, as a second heat treatment step, the precursor that has undergone the first heat treatment step is placed in a quartz case containing 40 mg of selenium, and heat treatment is performed at 520 ° C. for 20 minutes in an atmosphere introduced with nitrogen gas. Went.

 [実施例6]
 光吸収層を形成する際の熱処理工程における条件を下記のように変更した以外は、実施例4と同様の工程によって、実施例6の化合物薄膜太陽電池を得た。実施例6における熱処理工程では、裏面電極の上面に形成された前駆体である塗膜を、硫黄8mgとセレン79mgとが入れられた石英ケースに入れて、窒素ガスが導入された雰囲気下、580℃で20分間の熱処理を行った。
[Example 6]
A compound thin-film solar cell of Example 6 was obtained by the same process as Example 4 except that the conditions in the heat treatment step for forming the light absorption layer were changed as follows. In the heat treatment step in Example 6, a coating film, which is a precursor formed on the upper surface of the back electrode, is placed in a quartz case containing 8 mg of sulfur and 79 mg of selenium, and in an atmosphere where nitrogen gas is introduced, 580 Heat treatment was carried out at 20 ° C. for 20 minutes.

 [比較例2]
 光吸収層を形成する際の熱処理工程における条件を下記のように変更した以外は、実施例4と同様の工程によって、比較例2の化合物薄膜太陽電池を得た。比較例2における熱処理工程では、裏面電極の上面に形成された前駆体である塗膜を、硫黄48mgが入れられた石英ケースに入れて、窒素ガスが導入された雰囲気下、600℃で20分間の熱処理を行った。
[Comparative Example 2]
A compound thin-film solar cell of Comparative Example 2 was obtained by the same process as in Example 4 except that the conditions in the heat treatment step when forming the light absorption layer were changed as follows. In the heat treatment step in Comparative Example 2, the coating film, which is a precursor formed on the upper surface of the back electrode, is placed in a quartz case containing 48 mg of sulfur, and at 600 ° C. for 20 minutes in an atmosphere introduced with nitrogen gas. The heat treatment was performed.

 [比較例3]
 光吸収層を形成する際の熱処理工程における条件を下記のように変更した以外は、実施例4と同様の工程によって、比較例3の化合物薄膜太陽電池を得た。比較例3における熱処理工程では、裏面電極の上面に形成された前駆体である塗膜を、硫黄48mgが入れられた石英ケースに入れて、窒素ガスが導入された雰囲気下、540℃で20分間の熱処理を行った。
[Comparative Example 3]
A compound thin-film solar cell of Comparative Example 3 was obtained by the same process as Example 4 except that the conditions in the heat treatment step when forming the light absorption layer were changed as follows. In the heat treatment step in Comparative Example 3, the coating film, which is a precursor formed on the upper surface of the back electrode, is placed in a quartz case containing 48 mg of sulfur, and at 540 ° C. for 20 minutes in an atmosphere introduced with nitrogen gas. The heat treatment was performed.

 [評価方法]
 (光電変換効率)
 各実施例および各比較例の化合物薄膜太陽電池について、標準太陽光シミュレータ(光強度:100mW/cm、エアマス:1.5)を用いて、光電変換効率を評価した。
[Evaluation methods]
(Photoelectric conversion efficiency)
About the compound thin film solar cell of each Example and each comparative example, photoelectric conversion efficiency was evaluated using the standard sunlight simulator (light intensity: 100 mW / cm < 2 >, air mass: 1.5).

 (組成比)
 各実施例および各比較例の化合物薄膜太陽電池について、Arイオンで光吸収層の断面を平らに研磨した後に、SEM-EDS(走査電子顕微鏡用エネルギー分散型X線分析)による評価を行って、光吸収層の上部、中部、下部の3つの領域におけるZn/Sn比を算出した。上部は、光の入射される方向に向けられる部分、すなわち、光吸収層のなかで表面電極に近い部分である。下部は、光吸収層のなかで裏面電極に近い部分である。中部は、光吸収層における膜厚方向の中央部分であって、上部と下部との間の部分である。そして、上部、中部、下部の各々のZn/Sn比に基づいて、Zn/Sn比の変化率Rverを算出した。
(Composition ratio)
For the compound thin film solar cells of each example and each comparative example, after the cross section of the light absorption layer was polished flat with Ar ions, evaluation by SEM-EDS (energy dispersive X-ray analysis for scanning electron microscope) was performed, The Zn / Sn ratio in the three regions of the upper, middle, and lower portions of the light absorption layer was calculated. The upper part is a part directed in the direction in which light is incident, that is, a part close to the surface electrode in the light absorption layer. A lower part is a part close | similar to a back surface electrode in a light absorption layer. The middle part is a central part of the light absorption layer in the film thickness direction, and is a part between the upper part and the lower part. Then, the change rate Rver of the Zn / Sn ratio was calculated based on the Zn / Sn ratios of the upper, middle, and lower parts.

 また、光吸収層の上記断面の全面に対するマッピングに基づいて、光吸収層全体のZn/Sn比を算出した。
 [結果]
 図6は、実施例4の化合物薄膜太陽電池における断面の走査電子顕微鏡(SEM)による画像を示す。図6におけるA1で示される領域は、上部の組成分析領域を示し、B1で示される領域は、中部の組成分析領域を示し、C1で示される領域は、下部の組成分析領域を示す。また、図6におけるD1で示される領域は、光吸収層全体のZn/Sn比の算出に用いた領域を示す。
Moreover, based on the mapping with respect to the whole surface of the said cross section of a light absorption layer, Zn / Sn ratio of the whole light absorption layer was computed.
[result]
6 shows a scanning electron microscope (SEM) image of a cross section of the compound thin film solar cell of Example 4. FIG. The area indicated by A1 in FIG. 6 indicates the upper composition analysis area, the area indicated by B1 indicates the middle composition analysis area, and the area indicated by C1 indicates the lower composition analysis area. In addition, a region indicated by D1 in FIG. 6 indicates a region used for calculating the Zn / Sn ratio of the entire light absorption layer.

 同様に、図7に実施例5、図8に実施例6、図9に比較例2、図10に比較例3の化合物薄膜太陽電池における断面のSEM画像を示す。図7におけるA2で示される領域、図8におけるA3で示される領域、図9におけるA4で示される領域、および、図10におけるA5で示される領域のそれぞれは、各実施例または各比較例における上部の組成分析領域を示す。図7におけるB2で示される領域、図8におけるB3で示される領域、図9におけるB4で示される領域、および、図10におけるB5で示される領域のそれぞれは、各実施例または各比較例における中部の組成分析領域を示す。図7におけるC2で示される領域、図8におけるC3で示される領域、図9におけるC4で示される領域、および、図10におけるC5で示される領域のそれぞれは、各実施例または各比較例における下部の組成分析領域を示す。図7におけるD2で示される領域、図8におけるD3で示される領域、図9におけるD4で示される領域、および、図10におけるD5で示される領域のそれぞれは、各実施例または各比較例における光吸収層全体のZn/Sn比の算出に用いた領域を示す。 Similarly, FIG. 7 shows an SEM image of a cross section of the compound thin film solar cell of Example 5, FIG. 8 shows Example 6, FIG. 9 shows Comparative Example 2, FIG. 10 shows Comparative Example 3, and FIG. Each of the area indicated by A2 in FIG. 7, the area indicated by A3 in FIG. 8, the area indicated by A4 in FIG. 9, and the area indicated by A5 in FIG. 10 is the upper part in each example or each comparative example. The composition analysis region is shown. Each of the area indicated by B2 in FIG. 7, the area indicated by B3 in FIG. 8, the area indicated by B4 in FIG. 9, and the area indicated by B5 in FIG. 10 is the middle part in each example or each comparative example. The composition analysis region is shown. Each of the area indicated by C2 in FIG. 7, the area indicated by C3 in FIG. 8, the area indicated by C4 in FIG. 9, and the area indicated by C5 in FIG. 10 is a lower part in each example or each comparative example. The composition analysis region is shown. Each of the area indicated by D2 in FIG. 7, the area indicated by D3 in FIG. 8, the area indicated by D4 in FIG. 9, and the area indicated by D5 in FIG. 10 is the light in each example or each comparative example. The area | region used for calculation of Zn / Sn ratio of the whole absorption layer is shown.

 表2は、各実施例および各比較例について、上部、中部、下部の各々の組成分析領域におけるSn原子の割合とZn原子の割合、および、これらの値から算出した上部、中部、下部の各々の組成分析領域におけるZn/Sn比を示す。なお、表2にて、Zn/Sn比は、小数第3位を四捨五入した値を示している。表3は、各実施例および各比較例について、表2のZn/Sn比が最大となる領域、および、最少となる領域のSn原子の割合とZn原子の割合とを用いて算出した変化率Rverと、光吸収層全体におけるSn原子の割合とZn原子の割合と、これらの値から算出した光吸収層全体のZn/Sn比と、光電変換効率の算出結果とを示す。なお、表3にて、光吸収層全体のZn/Sn比は、小数第3位を四捨五入した値を示している。 Table 2 shows the proportion of Sn atoms and the proportion of Zn atoms in the composition analysis regions in the upper, middle, and lower portions, and the upper, middle, and lower portions calculated from these values for each example and each comparative example. The Zn / Sn ratio in the composition analysis region is shown. In Table 2, the Zn / Sn ratio indicates a value obtained by rounding off the third decimal place. Table 3 shows the regions where the Zn / Sn ratio in Table 2 is the maximum and the change rates calculated using the Sn atom ratio and the Zn atom ratio in the minimum region in Table 2 for each Example and each Comparative Example. Rver, the ratio of Sn atoms and the ratio of Zn atoms in the entire light absorption layer, the Zn / Sn ratio of the entire light absorption layer calculated from these values, and the calculation result of the photoelectric conversion efficiency are shown. In Table 3, the Zn / Sn ratio of the entire light absorption layer shows a value obtained by rounding off the third decimal place.

Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002

Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003

 表3に示されるように、第2実施形態の製造方法の熱処理工程における条件5に従って製造された実施例4と実施例6、および、条件6に従って製造された実施例5では、Zn/Sn比の最小値Rminが、最大値Rmaxの0.867以上に制御され、最小値Rminと最大値Rmaxとの差が大きくなることが抑えられている。そして、Zn/Sn比の変化率Rverが16%を超える比較例2,3に対して、変化率Rverが16%以下である実施例4~6では、高い光電変換効率が得られることが示された。 As shown in Table 3, in Example 4 and Example 6 manufactured according to Condition 5 in the heat treatment step of the manufacturing method of the second embodiment, and in Example 5 manufactured according to Condition 6, the Zn / Sn ratio The minimum value Rmin is controlled to 0.867 or more of the maximum value Rmax, and the difference between the minimum value Rmin and the maximum value Rmax is suppressed from increasing. Further, in comparison examples 2 and 3 in which the change rate Rver of the Zn / Sn ratio exceeds 16%, in Examples 4 to 6 in which the change rate Rver is 16% or less, high photoelectric conversion efficiency is obtained. It was done.

 また、表面電極に近い部分のZn/Sn比が、裏面電極に近い部分のZn/Sn比よりも低い実施例5では、特に高い光電変換効率が得られることが示された。
 また、実施例6における上部の組成分析領域の組成は、0.9≦Zn/Sn≦1.2を満たしておらず、こうした実施例6は、比較例2,3と比較すると高い光電変換効率が得られるものの、実施例4,5と比較すると、光電変換効率が低いことが示された。
Moreover, it was shown that in Example 5 where the Zn / Sn ratio near the front electrode is lower than the Zn / Sn ratio near the back electrode, particularly high photoelectric conversion efficiency can be obtained.
Further, the composition of the upper composition analysis region in Example 6 does not satisfy 0.9 ≦ Zn / Sn ≦ 1.2, and such Example 6 has a higher photoelectric conversion efficiency than Comparative Examples 2 and 3. However, it was shown that the photoelectric conversion efficiency was low as compared with Examples 4 and 5.

 そして、実施例6における上部の組成分析領域のZn/Sn比が高いことに起因して、実施例6における光吸収層全体のZn/Sn比は、実施例4,5における光吸収層全体のZn/Sn比よりも高い。詳細には、実施例4~6の各々における光吸収層全体の組成は、0.9≦Zn/Sn≦1.2を満たしているが、実施例4,5と実施例6とを比較すると、光吸収層全体のZn/Sn比が1.1以下である実施例4,5では、光吸収層全体のZn/Sn比が1.1を超える実施例6と比べて高い光電変換効率が得られる。すなわち、光吸収層全体の組成が、Zn/Sn≦1.1を満たすと、特に光電変換効率が高められることが示された。 Then, due to the high Zn / Sn ratio in the upper composition analysis region in Example 6, the Zn / Sn ratio of the entire light absorption layer in Example 6 is the same as that of the entire light absorption layer in Examples 4 and 5. It is higher than the Zn / Sn ratio. Specifically, the composition of the entire light absorption layer in each of Examples 4 to 6 satisfies 0.9 ≦ Zn / Sn ≦ 1.2. When Examples 4 and 5 are compared with Example 6, In Examples 4 and 5 in which the Zn / Sn ratio of the entire light absorbing layer is 1.1 or less, the photoelectric conversion efficiency is higher than that of Example 6 in which the Zn / Sn ratio of the entire light absorbing layer exceeds 1.1. can get. That is, when the composition of the whole light absorption layer satisfy | fills Zn / Sn <= 1.1, it was shown that especially photoelectric conversion efficiency is improved.

 従来から、光吸収層全体の組成と光電変換効率との関係は注目されてきたが、光吸収層内部におけるZnの偏在の状態と光電変換効率との関係については有益な知見は得られていなかった。 Conventionally, the relationship between the composition of the entire light absorption layer and the photoelectric conversion efficiency has attracted attention, but no useful knowledge has been obtained about the relationship between the state of uneven distribution of Zn in the light absorption layer and the photoelectric conversion efficiency. It was.

 これに対し、本発明者は、光吸収層内部におけるZnの偏在と関連の深いパラメータとして、光吸収層の膜厚方向におけるZn/Sn比の変化率Rverに着目し、光電変換効率を高められる構成を見出すに至った。 On the other hand, the inventor pays attention to the change rate Rver of the Zn / Sn ratio in the film thickness direction of the light absorption layer as a parameter deeply related to the uneven distribution of Zn inside the light absorption layer, and can increase the photoelectric conversion efficiency. I came to find the composition.

 なお、実施例4~6は、第2実施形態の製造方法の熱処理工程における条件5または条件6に従って製造されている。すなわち、実施例4~6は、第1実施形態の製造方法の熱処理工程における条件1または条件4に従って製造されているため、実施例4~6の光吸収層は、Cu/(Zn+Sn)≦1.11を満たす組成を有する結晶粒界部を含む。一方、第1実施形態の実施例として説明した実施例3は、第2実施形態に記載のようにZn/Sn比の変化率Rverが大きくなりやすい条件に従って製造されている。しかし、実施例3の光電変換効率は、実施例4~6の光電変換効率よりも低いものの、比較例1~3の光電変換効率よりは高い。すなわち、Zn/Sn比の変化率Rverが16%を超えていたとしても、光吸収層における結晶粒界部が、Cu/(Zn+Sn)≦1.11を満たす組成を有すれば、光電変換効率の向上が可能である。 In addition, Examples 4 to 6 are manufactured according to Condition 5 or Condition 6 in the heat treatment step of the manufacturing method of the second embodiment. That is, since Examples 4 to 6 are manufactured according to Condition 1 or Condition 4 in the heat treatment step of the manufacturing method of the first embodiment, the light absorption layers of Examples 4 to 6 have Cu / (Zn + Sn) ≦ 1. .11 including a grain boundary portion having a composition satisfying .11. On the other hand, Example 3 described as an example of the first embodiment is manufactured according to the condition that the change rate Rver of the Zn / Sn ratio tends to be large as described in the second embodiment. However, the photoelectric conversion efficiency of Example 3 is lower than the photoelectric conversion efficiency of Examples 4 to 6, but is higher than the photoelectric conversion efficiency of Comparative Examples 1 to 3. That is, even if the change rate Rver of the Zn / Sn ratio exceeds 16%, if the crystal grain boundary portion in the light absorption layer has a composition satisfying Cu / (Zn + Sn) ≦ 1.11, the photoelectric conversion efficiency Can be improved.

 なお、比較例1~3の各々は、第1実施形態の条件1~4、および、第2実施形態の条件5,6のいずれも満たさない製造方法によって製造されている。したがって、比較例1~3は、結晶粒界部の組成とZn/Sn比の変化率Rverとの双方について、上記実施形態に記載の数値範囲の条件を満たしていないことが示唆される。 Each of Comparative Examples 1 to 3 is manufactured by a manufacturing method that does not satisfy both the conditions 1 to 4 of the first embodiment and the conditions 5 and 6 of the second embodiment. Therefore, it is suggested that Comparative Examples 1 to 3 do not satisfy the condition of the numerical range described in the above embodiment with respect to both the composition of the crystal grain boundary part and the change rate Rver of the Zn / Sn ratio.

 以上、実施例を用いて説明したように、第2実施形態によれば、以下に列挙する効果を得ることができる。
 (8)熱処理後の光吸収層12の膜厚方向におけるZn/Sn比の変化率Rverが16%以下であるため、光吸収層12中にZnが偏在することや、光吸収層12中での欠陥の形成が抑えられる。その結果、光電変換効率が高められる。
As described above, according to the second embodiment, the effects listed below can be obtained as described using the examples.
(8) Since the change rate Rver of the Zn / Sn ratio in the film thickness direction of the light absorption layer 12 after the heat treatment is 16% or less, Zn is unevenly distributed in the light absorption layer 12, The formation of defects is suppressed. As a result, the photoelectric conversion efficiency is increased.

 (9)熱処理後の光吸収層12全体の組成が、0.9≦Zn/Sn≦1.2を満たす。光吸収層12全体において、Zn/Sn比が0.9以上であるため、CuZnによる欠陥の形成が抑えられる。一方、光吸収層12全体において、Zn/Sn比が1.2以下であるため、Znの偏在が抑えられる。その結果、光電変換効率が高められる。 (9) The composition of the entire light absorption layer 12 after the heat treatment satisfies 0.9 ≦ Zn / Sn ≦ 1.2. Since the Zn / Sn ratio is 0.9 or more in the entire light absorption layer 12, the formation of defects due to Cu 2 Zn is suppressed. On the other hand, since the Zn / Sn ratio is 1.2 or less in the entire light absorption layer 12, uneven distribution of Zn can be suppressed. As a result, the photoelectric conversion efficiency is increased.

 (10)熱処理後の光吸収層12の中で、表面電極16に近い部分のZn/Sn比は、裏面電極11に近い部分のZn/Sn比よりも低い。こうした構成によれば、光吸収層の表面電極16に近い部分にZnが偏在することによってキャリアの移動が制限されることが抑えられるため、光電変換効率がさらに高められる。 (10) In the light absorption layer 12 after the heat treatment, the Zn / Sn ratio in the portion close to the front electrode 16 is lower than the Zn / Sn ratio in the portion close to the back electrode 11. According to such a configuration, it is possible to suppress the movement of carriers due to the uneven distribution of Zn in the portion near the surface electrode 16 of the light absorption layer, thereby further improving the photoelectric conversion efficiency.

 (11)光吸収層12の前駆体を形成する前駆体形成工程と、前駆体を熱処理することによって光吸収層12を形成する熱処理工程と、を含む製造方法によって、上記変化率Rverが16%以下である光吸収層12を備える化合物薄膜太陽電池を形成することができる。特に、微粒子を含むインクの塗工によって、前駆体である塗膜を成膜すると、スパッタリング等を用いて前駆体を形成する場合と比較して、光吸収層12を容易に形成することが可能であり、また、光電変換効率を高める効果が高い。 (11) The rate of change Rver is 16% by a manufacturing method including a precursor forming step of forming a precursor of the light absorption layer 12 and a heat treatment step of forming the light absorption layer 12 by heat-treating the precursor. A compound thin film solar cell including the light absorption layer 12 as described below can be formed. In particular, when a coating film that is a precursor is formed by applying ink containing fine particles, the light absorption layer 12 can be easily formed as compared with the case where the precursor is formed using sputtering or the like. In addition, the effect of increasing the photoelectric conversion efficiency is high.

 (12)熱処理工程において、上述の条件5または条件6のいずれかに従った条件で熱処理を行うことによって、Zn/Sn比の変化率Rverが大きくなることを抑えることができる。その結果、上記変化率Rverが16%以下である光吸収層12の形成を好適に行うことができる。 (12) In the heat treatment step, it is possible to suppress the Zn / Sn ratio change rate Rver from increasing by performing the heat treatment under the condition according to either of the above condition 5 or condition 6. As a result, the light absorption layer 12 having the change rate Rver of 16% or less can be suitably formed.

 10…基板、11…裏面電極、12…光吸収層、13…バッファ層、14…半絶縁層、15…窓層、16…表面電極。 DESCRIPTION OF SYMBOLS 10 ... Board | substrate, 11 ... Back electrode, 12 ... Light absorption layer, 13 ... Buffer layer, 14 ... Semi-insulating layer, 15 ... Window layer, 16 ... Surface electrode.

Claims (19)

 光吸収層を備える化合物薄膜太陽電池であって、
 前記光吸収層は、S、および、Seの少なくとも1つの元素と、Cu、Zn、および、Snの3つの元素とを含む多結晶体を含み、
 前記多結晶体は、Cu/(Zn+Sn)≦1.11を満たす組成を有する結晶粒界部を含む
 化合物薄膜太陽電池。
A compound thin film solar cell comprising a light absorption layer,
The light absorption layer includes a polycrystal including at least one element of S and Se and three elements of Cu, Zn, and Sn;
The polycrystalline body includes a crystal grain boundary portion having a composition satisfying Cu / (Zn + Sn) ≦ 1.11.
 前記多結晶体が含む結晶粒の内部は、Zn/Sn≦1を満たす組成を有する
 請求項1に記載の化合物薄膜太陽電池。
The compound thin film solar cell according to claim 1, wherein the inside of the crystal grains included in the polycrystal has a composition satisfying Zn / Sn ≦ 1.
 前記多結晶体が含む結晶粒の内部は、Cu/(Zn+Sn)≦1を満たす組成を有する
 請求項1または2に記載の化合物薄膜太陽電池。
The compound thin-film solar cell according to claim 1 or 2, wherein the inside of the crystal grains included in the polycrystal has a composition satisfying Cu / (Zn + Sn) ≤1.
 前記結晶粒界部にて互いに隣り合う2以上の結晶粒の各々の粒径が0.1μm以上である
 請求項1~3のいずれか一項に記載の化合物薄膜太陽電池。
The compound thin-film solar cell according to any one of claims 1 to 3, wherein each of the two or more crystal grains adjacent to each other at the crystal grain boundary part has a grain size of 0.1 µm or more.
 前記光吸収層の膜厚方向におけるZn/Sn比の変化率を、前記光吸収層の膜厚方向におけるZn/Sn比の最大値をRmax、前記光吸収層の膜厚方向におけるZn/Sn比の最小値をRmin、前記変化率をRvarとして、下記式(1)で表すとき、
 Rvar=(Rmax÷Rmin-1)×100・・・式(1)
 前記変化率は、16%以下である
 請求項1~4のいずれか一項に記載の化合物薄膜太陽電池。
The rate of change of the Zn / Sn ratio in the film thickness direction of the light absorption layer, the maximum value of the Zn / Sn ratio in the film thickness direction of the light absorption layer is Rmax, and the Zn / Sn ratio in the film thickness direction of the light absorption layer Assuming that the minimum value of Rmin is Rmin and the rate of change is Rvar,
Rvar = (Rmax ÷ Rmin−1) × 100 (1)
The compound thin-film solar cell according to any one of claims 1 to 4, wherein the rate of change is 16% or less.
 前記光吸収層全体の組成は、0.9≦Zn/Sn≦1.2を満たす
 請求項5に記載の化合物薄膜太陽電池。
The compound thin film solar cell according to claim 5, wherein a composition of the entire light absorption layer satisfies 0.9 ≦ Zn / Sn ≦ 1.2.
 表面電極と裏面電極とをさらに備え、
 前記光吸収層は、前記表面電極と前記裏面電極との間に位置し、
 前記光吸収層の中で、前記表面電極に近い部分の前記Zn/Sn比は、前記裏面電極に近い部分の前記Zn/Sn比よりも低い
 請求項5または6に記載の化合物薄膜太陽電池。
It further comprises a front electrode and a back electrode,
The light absorption layer is located between the front electrode and the back electrode,
7. The compound thin-film solar cell according to claim 5, wherein the Zn / Sn ratio in a portion near the front electrode in the light absorption layer is lower than the Zn / Sn ratio in a portion close to the back electrode.
 光吸収層の前駆体であって、S、および、Seの少なくとも1つの元素と、Cu、Zn、および、Snの3つの元素とを含む前記前駆体を形成する前駆体形成工程と、
 前記前駆体を熱処理することによって、前記前駆体を結晶化させて、Cu/(Zn+Sn)≦1.11を満たす組成を有する結晶粒界部を含む前記光吸収層を形成する熱処理工程と、
 を含む化合物薄膜太陽電池の製造方法。
A precursor forming step of forming a precursor of a light absorption layer, the precursor including at least one element of S and Se, and three elements of Cu, Zn, and Sn;
Heat-treating the precursor to crystallize the precursor to form the light absorption layer including a crystal grain boundary portion having a composition satisfying Cu / (Zn + Sn) ≦ 1.11;
The manufacturing method of the compound thin film solar cell containing this.
 前記前駆体形成工程では、S、および、Seの少なくとも1つの元素と、Cu、Zn、および、Snの3つの元素とを含む化合物からなる微粒子を含むインクの塗工によって、前記前駆体である塗膜を成膜する
 請求項8に記載の化合物薄膜太陽電池の製造方法。
In the precursor forming step, the precursor is formed by applying an ink containing fine particles made of a compound containing at least one element of S and Se and three elements of Cu, Zn, and Sn. The manufacturing method of the compound thin film solar cell of Claim 8 which forms a coating film.
 前記熱処理工程では、硫黄とセレンとを含む雰囲気下で熱処理が行われる
 請求項9に記載の化合物薄膜太陽電池の製造方法。
The method for manufacturing a compound thin-film solar cell according to claim 9, wherein the heat treatment is performed in an atmosphere containing sulfur and selenium.
 前記熱処理工程では、水素とセレンとを含む雰囲気下で熱処理が行われ、熱処理の温度が523℃以下である
 請求項9に記載の化合物薄膜太陽電池の製造方法。
The method for producing a compound thin-film solar cell according to claim 9, wherein in the heat treatment step, heat treatment is performed in an atmosphere containing hydrogen and selenium, and the temperature of the heat treatment is 523 ° C or lower.
 前記熱処理工程では、硫黄と窒素とを含む雰囲気下で熱処理が行われ、熱処理の温度が580℃であり、熱処理の時間が20分間以上である
 請求項9に記載の化合物薄膜太陽電池の製造方法。
The method for producing a compound thin-film solar cell according to claim 9, wherein in the heat treatment step, heat treatment is performed in an atmosphere containing sulfur and nitrogen, the temperature of the heat treatment is 580 ° C, and the time of the heat treatment is 20 minutes or more. .
 前記熱処理工程は、第1段階の熱処理工程と、第2段階の熱処理工程とを含み、
 前記第1段階の熱処理工程では、硫黄を含む雰囲気下で熱処理が行われ、
 前記第2段階の熱処理工程では、セレンを含む雰囲気下で熱処理が行われる
 請求項9に記載の化合物薄膜太陽電池の製造方法。
The heat treatment process includes a first stage heat treatment process and a second stage heat treatment process,
In the first stage heat treatment step, heat treatment is performed in an atmosphere containing sulfur,
The method for manufacturing a compound thin-film solar cell according to claim 9, wherein in the second heat treatment step, heat treatment is performed in an atmosphere containing selenium.
 前記熱処理工程にて形成される前記光吸収層の膜厚方向におけるZn/Sn比の変化率を、前記光吸収層の膜厚方向におけるZn/Sn比の最大値をRmax、前記光吸収層の膜厚方向におけるZn/Sn比の最小値をRmin、前記変化率をRvarとして、下記式(1)で表すとき、
 Rvar=(Rmax÷Rmin-1)×100・・・式(1)
 前記変化率は、16%以下である
 請求項8に記載の化合物薄膜太陽電池の製造方法。
The rate of change of the Zn / Sn ratio in the film thickness direction of the light absorption layer formed in the heat treatment step is represented by Rmax, the maximum value of the Zn / Sn ratio in the film thickness direction of the light absorption layer is represented by Rmax. When the minimum value of the Zn / Sn ratio in the film thickness direction is represented by Rmin and the rate of change is represented by Rvar, the following formula (1):
Rvar = (Rmax ÷ Rmin−1) × 100 (1)
The said change rate is 16% or less. The manufacturing method of the compound thin film solar cell of Claim 8.
 前記前駆体形成工程では、S、および、Seの少なくとも1つの元素と、Cu、Zn、および、Snの3つの元素とを含む化合物からなる微粒子を含むインクの塗工によって、前記前駆体である塗膜を成膜する
 請求項14に記載の化合物薄膜太陽電池の製造方法。
In the precursor forming step, the precursor is formed by applying an ink containing fine particles made of a compound containing at least one element of S and Se and three elements of Cu, Zn, and Sn. The manufacturing method of the compound thin film solar cell of Claim 14 which forms a coating film into a film.
 前記熱処理工程では、硫黄とセレンとを含む雰囲気下で熱処理が行われる
 請求項15に記載の化合物薄膜太陽電池の製造方法。
The method for manufacturing a compound thin-film solar cell according to claim 15, wherein in the heat treatment step, heat treatment is performed in an atmosphere containing sulfur and selenium.
 前記熱処理工程は、第1段階の熱処理工程と、第2段階の熱処理工程とを含み、
 前記第1段階の熱処理工程では、硫黄を含む雰囲気下で熱処理が行われ、
 前記第2段階の熱処理工程では、セレンを含む雰囲気下で熱処理が行われる
 請求項15に記載の化合物薄膜太陽電池の製造方法。
The heat treatment process includes a first stage heat treatment process and a second stage heat treatment process,
In the first stage heat treatment step, heat treatment is performed in an atmosphere containing sulfur,
The method for manufacturing a compound thin-film solar cell according to claim 15, wherein in the second heat treatment step, heat treatment is performed in an atmosphere containing selenium.
 前記微粒子は非晶質の粒子である
 請求項9~13,15~17のいずれか一項に記載の化合物薄膜太陽電池の製造方法。
The method for producing a compound thin-film solar cell according to any one of claims 9 to 13 and 15 to 17, wherein the fine particles are amorphous particles.
 光吸収層であって、
 前記光吸収層は、S、および、Seの少なくとも1つの元素と、Cu、Zn、および、Snの3つの元素とを含む多結晶体を含み、
 前記多結晶体は、Cu/(Zn+Sn)≦1.11を満たす組成を有する結晶粒界部を含む
 光吸収層。
A light absorbing layer,
The light absorption layer includes a polycrystal including at least one element of S and Se and three elements of Cu, Zn, and Sn;
The polycrystal is a light absorption layer including a crystal grain boundary having a composition satisfying Cu / (Zn + Sn) ≦ 1.11.
PCT/JP2015/071155 2014-07-25 2015-07-24 Compound thin film solar cell, method for manufacturing compound thin film solar cell, and light absorption layer WO2016013670A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016536001A JPWO2016013670A1 (en) 2014-07-25 2015-07-24 Compound thin film solar cell, method for producing compound thin film solar cell, and light absorption layer

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014152379 2014-07-25
JP2014152378 2014-07-25
JP2014-152378 2014-07-25
JP2014-152379 2014-07-25

Publications (1)

Publication Number Publication Date
WO2016013670A1 true WO2016013670A1 (en) 2016-01-28

Family

ID=55163192

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/071155 WO2016013670A1 (en) 2014-07-25 2015-07-24 Compound thin film solar cell, method for manufacturing compound thin film solar cell, and light absorption layer

Country Status (2)

Country Link
JP (1) JPWO2016013670A1 (en)
WO (1) WO2016013670A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009537997A (en) * 2006-05-24 2009-10-29 アトーテヒ ドイッチュラント ゲゼルシャフト ミット ベシュレンクテル ハフツング Metal plating composition and method for copper-zinc-tin deposition suitable for manufacturing thin film solar cells
WO2012172999A1 (en) * 2011-06-16 2012-12-20 昭和シェル石油株式会社 Czts thin film solar cell and manufacturing method thereof
JP2013004743A (en) * 2011-06-16 2013-01-07 Showa Shell Sekiyu Kk Czts based thin film solar cell manufacturing method and czts based thin film solar cell
WO2013047461A1 (en) * 2011-09-30 2013-04-04 凸版印刷株式会社 Ink for forming compound semiconductor thin film and method for producing same
JP2013070031A (en) * 2011-09-23 2013-04-18 Delsolar Co Ltd Photovoltaic device including czts absorber layer and method of manufacturing the same
WO2013129557A1 (en) * 2012-03-02 2013-09-06 Tdk株式会社 Compound semiconductor solar cell and method for producing light absorption layer of compound semiconductor solar cell

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009537997A (en) * 2006-05-24 2009-10-29 アトーテヒ ドイッチュラント ゲゼルシャフト ミット ベシュレンクテル ハフツング Metal plating composition and method for copper-zinc-tin deposition suitable for manufacturing thin film solar cells
WO2012172999A1 (en) * 2011-06-16 2012-12-20 昭和シェル石油株式会社 Czts thin film solar cell and manufacturing method thereof
JP2013004743A (en) * 2011-06-16 2013-01-07 Showa Shell Sekiyu Kk Czts based thin film solar cell manufacturing method and czts based thin film solar cell
JP2013070031A (en) * 2011-09-23 2013-04-18 Delsolar Co Ltd Photovoltaic device including czts absorber layer and method of manufacturing the same
WO2013047461A1 (en) * 2011-09-30 2013-04-04 凸版印刷株式会社 Ink for forming compound semiconductor thin film and method for producing same
WO2013129557A1 (en) * 2012-03-02 2013-09-06 Tdk株式会社 Compound semiconductor solar cell and method for producing light absorption layer of compound semiconductor solar cell

Also Published As

Publication number Publication date
JPWO2016013670A1 (en) 2017-04-27

Similar Documents

Publication Publication Date Title
Vanalakar et al. Fabrication of Cu2SnS3 thin film solar cells using pulsed laser deposition technique
Maeda et al. Influence of H2S concentration on the properties of Cu2ZnSnS4 thin films and solar cells prepared by sol–gel sulfurization
CA2535703C (en) Group i-iii-vi quaternary or higher alloy semiconductor films
Tanaka et al. Chemical composition dependence of morphological and optical properties of Cu2ZnSnS4 thin films deposited by sol–gel sulfurization and Cu2ZnSnS4 thin film solar cell efficiency
Kim et al. Optimization of sputtered ZnS buffer for Cu2ZnSnS4 thin film solar cells
Arepalli et al. Photovoltaic behavior of the room temperature grown RF-Sputtered SnS thin films
He et al. Influence of sulfurization temperature on photovoltaic properties of Ge alloyed Cu2SnS3 (CTGS) thin film solar cells
Ge et al. The interfacial reaction at ITO back contact in kesterite CZTSSe bifacial solar cells
US20120222742A1 (en) Compound thin film solar cell and method for manufacturing the same
JP5967837B2 (en) Method for producing ink for forming compound semiconductor thin film
Liu et al. Exploring the application of metastable wurtzite nanocrystals in pure-sulfide Cu 2 ZnSnS 4 solar cells by forming nearly micron-sized large grains
JP2011129631A (en) Method of manufacturing cis thin film solar cell
Vigil-Galán et al. Optimization of CBD-CdS physical properties for solar cell applications considering a MIS structure
Kim et al. Role of hydrazine in the enhanced growth of zinc sulfide thin films using chemical bath deposition for Cu (In, Ga) Se2 solar cell application
WO2013077417A1 (en) Czts thin-film solar cell, and method for producing same
WO2012090938A1 (en) Compound semiconductor thin film solar cell, and process for production thereof
WO2012172999A1 (en) Czts thin film solar cell and manufacturing method thereof
JP6035122B2 (en) Photoelectric conversion element and method for producing buffer layer of photoelectric conversion element
Chaudhari et al. Effects of complexing agent on earth-abundant environmentally friendly Cu2ZnSnS4 thin film solar cells prepared by sol–gel deposition
Akcay et al. Effect of post-thermal annealing on the structural, morphological, and optical properties of RF-sputtered In2S3 thin films
JP2014130858A (en) Photoelectric conversion element and process of manufacturing buffer layer of the same
WO2016013670A1 (en) Compound thin film solar cell, method for manufacturing compound thin film solar cell, and light absorption layer
JP2017183466A (en) Member for czts compound thin-film solar battery, czts compound thin-film solar battery, and manufacturing methods thereof
JP2016225335A (en) Compound thin film solar cell substrate, compound thin film solar cell, compound thin film solar cell module, method for producing compound thin film solar cell substrate, and method for producing compound thin film solar cell
KR102513863B1 (en) Flexible CZTSSe thin film solar cells and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15824211

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016536001

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15824211

Country of ref document: EP

Kind code of ref document: A1