WO2016013631A1 - Method for creating analysis model for specific substances, computer program for creating analysis model for specific substances, simulation method for specific substances, and computer program for simulation of specific substances - Google Patents

Method for creating analysis model for specific substances, computer program for creating analysis model for specific substances, simulation method for specific substances, and computer program for simulation of specific substances Download PDF

Info

Publication number
WO2016013631A1
WO2016013631A1 PCT/JP2015/071019 JP2015071019W WO2016013631A1 WO 2016013631 A1 WO2016013631 A1 WO 2016013631A1 JP 2015071019 W JP2015071019 W JP 2015071019W WO 2016013631 A1 WO2016013631 A1 WO 2016013631A1
Authority
WO
WIPO (PCT)
Prior art keywords
model
substance
specific substance
creating
filler
Prior art date
Application number
PCT/JP2015/071019
Other languages
French (fr)
Japanese (ja)
Inventor
隆嗣 小島
Original Assignee
横浜ゴム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横浜ゴム株式会社 filed Critical 横浜ゴム株式会社
Publication of WO2016013631A1 publication Critical patent/WO2016013631A1/en

Links

Images

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16CCOMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
    • G16C10/00Computational theoretical chemistry, i.e. ICT specially adapted for theoretical aspects of quantum chemistry, molecular mechanics, molecular dynamics or the like
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/44Resins; rubber; leather
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16ZINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS, NOT OTHERWISE PROVIDED FOR
    • G16Z99/00Subject matter not provided for in other main groups of this subclass

Definitions

  • the present invention relates to a method for creating a model for analyzing a specific substance, a computer program for creating a model for analyzing a specific substance, a simulation method for a specific substance, and a computer program for simulating a specific substance.
  • the present invention relates to a method for creating a model for analyzing a specific substance, a computer program for creating a model for analyzing a specific substance, a simulation method for a specific substance, and a computer program for simulating a specific substance.
  • the present invention has been made in view of such circumstances, can create an analysis model of an arbitrary shape, and can create an analysis model of a specific substance that can accurately analyze the effect on the material properties of the specific substance, It is an object to provide a computer program for creating a model for analyzing a specific substance, a simulation method for the specific substance, and a computer program for simulating the specific substance.
  • the method for creating a model for analyzing a specific substance of the present invention is a method for creating a model for analyzing a specific substance that creates a model for analyzing a specific substance containing at least two substances by a molecular dynamics method using a computer.
  • a first step of setting a model creation region for creating a model for analysis of a specific substance a second step of placing a model of a first material composed of a plurality of particles in the model creation region, and the model
  • a fourth step of creating a model for analyzing the specific substance by arranging the model of the second substance outside
  • a model of a first substance is arranged in a designated model creation area, and then a second substance particle is arranged outside the arrangement area of the first substance. Therefore, even if the model of the first substance has a complicated shape, the model of the second substance can be easily created.
  • This makes it possible to easily create a model for analyzing a specific substance having an arbitrary shape, thereby realizing a method for creating a model for analyzing a specific substance that can accurately analyze the influence of the specific substance on the material characteristics.
  • the second step it is preferable to designate an arrangement position of the first substance by a simulation by a molecular dynamics method using a computer.
  • this method it becomes easy to specify the arrangement position of the first substance in the model creation region, so that the first substance can be arranged efficiently even when a plurality of models of the first substance are used. Become.
  • the model of the second substance is sequentially added so as not to overlap with the model of the second substance existing in the model creation region. It is preferable. According to this method, since the second substance can be arranged by utilizing the molecular motion of the second substance added sequentially, the second substance can be arranged uniformly.
  • the model of the second substance is created in a state where the size of the model creation area is enlarged, and then the model creation area It is preferable to reduce the size.
  • the particles of the second substance can be arranged in the model creation area in a state where the model creation area is larger than the designated size, so that the second substance can be arranged efficiently.
  • the first substance is preferably a filler. This method makes it possible to create a model for analyzing a specific substance containing a filler.
  • the second substance is preferably a polymer material. This method makes it possible to create a model for analysis of a specific substance containing a polymer material.
  • the specific substance analysis model is preferably a filler model.
  • a filler model having a complicated shape can be arbitrarily created. Therefore, it is possible to accurately evaluate the influence of the shape of the filler model in the polymer material on the material characteristics.
  • the computer program for creating a model for analyzing a specific substance is characterized by causing a computer to execute the method for creating a model for analyzing a specific substance.
  • the first substance model is placed in the designated model creation area, and then the second substance particles are placed outside the first substance placement area. Therefore, even if the model of the first substance has a complicated shape, the model of the second substance can be easily created. As a result, an analysis model of a specific substance having an arbitrary shape can be easily created, so that a model for analysis of a specific substance that can accurately analyze the influence of the specific substance on the material characteristics can be created.
  • the specific substance simulation method of the present invention includes a molecular dynamics method in which an interaction is set between the model of the first substance and the model of the second substance created by the method for creating the model for analyzing the specific substance.
  • the relaxation calculation is performed using
  • the method for simulating a specific substance of the present invention is characterized in that a deformation analysis is executed using the analysis model for a specific substance created by the method for creating an analysis model for the specific substance.
  • the deformation analysis is executed using the analysis model of the specific substance containing the first substance and the second substance, so that the influence of the shape of the specific substance on the material characteristics is analyzed. It becomes possible to obtain the mechanical characteristics of the compound.
  • the computer program for simulation of a specific substance of the present invention is characterized by causing a computer to execute the simulation method of the specific substance.
  • This computer program for simulating a specific substance can easily create a model for analyzing a specific substance of any shape, so that the influence of the specific substance on the material properties can be analyzed accurately.
  • the analytical model of the specific substance which can create the analytical model of arbitrary shapes and can analyze accurately the influence which it has on the material characteristic of a specific substance
  • the computer program for creation of the analytical model of a specific substance The simulation method of the specific substance and the computer program for simulation of the specific substance can be realized.
  • FIG. 1A is a conceptual diagram showing an example of an analysis model created by the method for creating an analysis model for a specific substance according to the present embodiment.
  • FIG. 1B is a conceptual diagram showing another example of an analysis model created by the method for creating an analysis model for a specific substance according to the present embodiment.
  • FIG. 1C is a conceptual diagram showing another example of an analysis model created by the method for creating an analysis model for a specific substance according to the present embodiment.
  • FIG. 2A is an explanatory diagram of a method for creating an analysis model for a specific substance according to the present embodiment.
  • FIG. 2B is an explanatory diagram of a method for creating an analysis model for a specific substance according to the present embodiment.
  • FIG. 2C is an explanatory diagram of a method for creating a specific substance analysis model according to the present embodiment.
  • FIG. 2D is an explanatory diagram of a method for creating an analysis model for a specific substance according to the present embodiment.
  • FIG. 3 is an explanatory diagram of the arrangement of the polymer model according to the present embodiment.
  • FIG. 4 is a functional block diagram of an analysis apparatus that executes a method for creating a model for analyzing a specific substance and a simulation method for the specific substance according to the embodiment of the present invention.
  • FIG. 5 is a flowchart showing an outline of an example of a method for creating a specific substance analysis model according to the present embodiment.
  • the method for creating a model for analyzing a specific substance is to create a model for analyzing a specific substance that creates a model for analyzing a specific substance containing at least two substances by a molecular dynamics method using a computer.
  • a method a first step of setting a model creation region for creating a model for analysis of a specific substance, a second step of placing a model of a first substance composed of a plurality of particles in the model creation region, The third step of setting the creation conditions of the model of the second substance to be created in the model creation area, and placing the particles of the second substance outside the placement area of the first substance in the model creation area based on the set creation conditions And a fourth step of creating a model for analyzing the specific substance by creating a model for the second substance.
  • FIG. 1A is a conceptual diagram showing an example of an analysis model 1 created by the method for creating an analysis model for a specific substance according to the present embodiment.
  • a model 1 for analyzing a specific substance according to the present embodiment includes a filler model 11 and a polymer model in a model creation region A1 which is a substantially cubic virtual space whose one side is a distance L1. 12 is arranged and a specific substance to be analyzed is modeled.
  • the specific substance to be analyzed is a composite material containing a filler (first substance) and a polymer (second substance) that is a polymer material will be described.
  • the present invention can be applied to various materials.
  • FIG. 1B is a conceptual diagram showing another example of an analysis model created by the method for creating an analysis model for a specific substance according to the present embodiment.
  • the first filler model 11A and the second filler model 11B are converted into filler models in the model creation area A1. ing.
  • the first filler model 11A and the second filler model 11B are configured by a plurality of filler particles 11a being assembled into a substantially spherical body. Further, the first filler model 11A and the second filler model 11B are agglomerated with each other and a part of the outer edge portion is connected (shared).
  • FIG. 1C is a conceptual diagram showing another example of an analysis model created by the method for creating an analysis model for a specific substance according to the present embodiment.
  • the analysis model 3 shown in FIG. 1C instead of the filler model of the analysis model 1 shown in FIG. 1, the first filler model 11A, the second filler model 11B, and the third filler model in the model creation region A1.
  • 11C and the fourth filler model 11D are modeled.
  • the first filler model 11A, the second filler model 11B, the third filler model 11C, and the fourth filler model 11D are configured by a plurality of filler particles 11a that are each assembled into a substantially spherical body.
  • the analysis model 2 having a complicated shape in which the two first filler models 11A and the second filler model 11B are aggregated, the four first filler models 11A, the second It is also possible to create the analysis model 3 having a complicated shape in which the filler model 11B, the third filler model 11C, and the fourth filler model 11D are aggregated.
  • fillers examples include carbon black, silica, and alumina.
  • the filler model 11 is modeled as a substantially spherical body in which a plurality of filler atoms and filler particles 11a as an aggregate of a plurality of filler atoms are aggregated.
  • the relative position of the filler particles 11a is specified by a bond chain (not shown) between the plurality of filler particles 11a.
  • This binding chain (not shown) has a function as a spring in which an equilibrium length, which is a binding distance between filler particles 11a, and a spring constant are defined, and binds between the filler particles 11a.
  • the bond chain is a bond in which the relative position of the filler particle 11a and the potential at which force is generated by twisting, bending, or the like are defined.
  • the filler model 11 is numerical data (including the mass, volume, diameter, initial coordinates, and the like of the filler particles 11a) for handling the filler by molecular dynamics. Numerical data of the filler model 11 is input to the computer.
  • the polymer examples include rubber, resin, and elastomer.
  • the polymer model 12 is modeled by filling a plurality of polymer atoms and polymer particles 12a, which are aggregates of a plurality of polymer atoms, into the model creation region A1 at a predetermined density.
  • the relative position of the polymer particle 12a is specified by the bonding chain 12b between the plurality of polymer particles 12a.
  • the binding chain 12b functions as a spring in which an equilibrium length, which is a binding distance between the polymer particles 12a, and a spring constant are defined, and restrains the polymer particles 12a.
  • the bond chain 12b is a bond in which the relative position of the polymer particle 12a and the potential at which force is generated by twisting, bending, or the like are defined.
  • the polymer model 12 is numerical data (including the mass, volume, diameter, initial coordinates, and the like of the polymer particle 12a) for handling the polymer by molecular dynamics. Numerical data of the polymer model 12 is input to a computer.
  • a modifier is added to the polymer as needed to enhance the affinity with the filler.
  • the modifier include a hydroxyl group, a carbonyl group, and a functional group of an atomic group.
  • 2A to 2D are explanatory diagrams of a method for creating a model for analyzing a specific substance according to the present embodiment.
  • 2A to 2D show a part of the front of the substantially cubic model creation region A1 shown in FIG. 1A.
  • a model creation area A1 is set in a calculation area A2 that is a virtual space in which a model of a specific substance to be analyzed is created.
  • This model creation area A1 can be set to an arbitrary shape according to the shape of the model of the specific substance to be created. Examples of the shape of the model creation region A1 include a substantially spherical shape, an ellipsoidal shape, a conical shape, a cylindrical shape, a triangular prism shape, a cubic shape, a rectangular parallelepiped shape, and a polyhedral shape.
  • the model creation area A1 may be designated as, for example, a substantially spherical body having a predetermined radius with a specific point designated in the model creation area A1 as a central coordinate.
  • the model creation area A1 may be designated as a polyhedron having a plurality of specific points designated in the model creation area A1 as vertex coordinates. Further, the model creation area A1 may be specified based on a three-dimensional shape created by drawing with CAD or the like.
  • the filler model 11 composed of a plurality of filler particles 12a is arranged in the model creation region A1.
  • the shape of the filler arranged in the model creation region A1 there is no particular limitation on the shape of the filler arranged in the model creation region A1, and for example, the substantially spherical filler model 11 shown in FIG. 1 may be arranged, and the two filler models 11A and filler shown in FIG. 1B may be arranged.
  • a filler to which the model 11B is connected may be arranged, or a filler having a shape in which the four filler models 11A, the filler model 11B, the filler model 11C, and the filler model 11D shown in FIG. 1C are connected may be arranged.
  • the shape of the filler may be a polyhedron.
  • region A1 may be used.
  • the second step it is preferable to designate the arrangement position of the filler model 11 by simulation using a molecular dynamics method using a computer.
  • This facilitates the designation of the arrangement position of the filler model 11 in the model creation area A1, and therefore, even when a plurality of filler models 11 are arranged, the filler can be arranged efficiently.
  • Examples of the simulation for designating the position of the filler model 11 include a Monte Carlo method using random numbers. In the case where a plurality of filler models 11 are arranged by this simulation, when fillers contact and overlap each other, the arrangement position of the filler model 11 may be designated again by a random number. 11 may be combined to form one filler model 11.
  • the creation conditions of the polymer model 12 include the molecular chain length of the polymer to be created, the number of molecular chains of the polymer model 12, the density of the molecular chains of the polymer model 12, and the like.
  • the polymer is arranged outside the arrangement region of the filler model 11 in the model creation region A1 based on the creation conditions of the polymer model 12 set in the third step.
  • a model 12 is created.
  • the polymer model 12 is sequentially added to the model creation region A1 in a state where molecular chains in which a plurality of polymer particles 12a are connected via a bonding chain 12b or the like are gathered.
  • FIG. 2D the molecular chain length of the polymer, the number of molecular chains of the polymer model 12 and the density of the molecular chains of the polymer model 12 set as the creation conditions of the polymer model 12 are satisfied.
  • An analysis model is created.
  • the polymer is sequentially added as a molecular chain in which a plurality of polymer particles 12a are connected in a bead shape so as not to overlap with the polymer particles 12a already arranged in the model creation region A1.
  • the fact that the polymer particles 12a do not overlap each other means that the polymer particles 12a exist at a distance where the interparticle interaction between the polymer particles 12a does not act.
  • the polymer model 11 can be arranged outside the arrangement area of the filler model 11 in the model area A1 by utilizing the molecular motion of the polymer added sequentially, the polymer model 12 can be arranged uniformly. It becomes.
  • the polymer model 12 may be arranged in a state where the volume of the model creation region A1 is enlarged.
  • one side of the model creation area is expanded to the distance L2 with respect to the model creation area A1 whose one side shown in FIG. 2A is the distance L1.
  • the model creation region A1 it is preferable that the distance of one side is reduced from the distance L2 to the distance L1 after the polymer model 12 is created.
  • the polymer particles 12a can be arranged in the model creation region A1 in a state where the model creation region A1 is larger than the specified size, so that the polymer can be arranged efficiently. It becomes possible.
  • the volume of the model creation area A1 is preferably 3 times the specified volume, and more preferably 5 times, from the viewpoint of efficiently arranging the polymer and the viewpoint of calculation efficiency.
  • the polymer model 12 may be arranged in a state where the pressure in the model creation region A1 is reduced. Thereby, since the inside of the model creation region A1 becomes a low pressure, the polymer model 12 can be arranged efficiently.
  • the pressure in the model creation region A1 is preferably 1/3 of the specified pressure before the change, from the viewpoint of efficiently arranging the polymer model 12 and the viewpoint of calculation efficiency, and should be 1/5. Is more preferable.
  • the simulation method according to the present embodiment is a simulation method using the analysis model created by the method for creating the analysis model for the specific substance according to the above embodiment.
  • Examples of the simulation method include a simulation method in which an interaction is set between the filler model 11 and the polymer model 12 and relaxation calculation is performed using a molecular dynamics method, and deformation analysis using a model for analyzing a specific substance. It is done.
  • the relaxation calculation when the relaxation calculation is performed, it is preferable to use a potential for which the full length of the distance between the polymer particles 12a is not defined. Thereby, even if the adjacent polymer model 12 is entangled between the polymer particles 12a, it is easy to be unraveled, so that a large force acting due to the entanglement of the polymer model 12 can be suppressed, so that occurrence of calculation failure can be prevented.
  • FIG. 4 is a functional block diagram of an analysis apparatus that executes a method for creating a model for analyzing a specific substance and a simulation method for the specific substance according to the embodiment of the present invention.
  • the analysis method 50 which is a computer including a processing unit 52 and a storage unit 54, implements the method for creating a specific substance analysis model and the specific material simulation method according to the present embodiment.
  • This analysis device 50 is electrically connected to an input / output device 51 having an input means 53.
  • the input means 53 inputs, to the processing unit 52 or the storage unit 54, various physical property values of the polymer and filler for which the analysis model for the specific substance is to be created, boundary conditions in the analysis, and the like.
  • an input device such as a keyboard and a mouse is used.
  • the processing unit 52 includes, for example, a central processing unit (CPU: Central Processing Unit) and a memory.
  • the processing unit 52 reads a computer program from the storage unit 54 and develops it in a memory when executing various processes.
  • the computer program expanded in the memory executes various processes.
  • the processing unit 52 expands data related to various processes stored in advance from the storage unit 54 to an area allocated to itself on the memory as necessary, and for analyzing a specific substance based on the expanded data.
  • Various processes related to simulation of a specific substance using a model for model creation and a model for analysis of the specific substance are executed.
  • the processing unit 52 includes a model creation unit 52a, a condition setting unit 52b, and an analysis unit 52c.
  • the model creation unit 52a is based on the data stored in the storage unit 54 in advance, and the number of particles, the number of molecules, the molecular weight of the specific material such as filler and polymer when creating a model for analysis of the specific material by the molecular dynamics method, Molecular chain length, number of molecular chains, branching, shape, size, reaction time, reaction conditions, and the number of molecules included in the analysis model to be created Set coarse-grained models and initial conditions for various calculation parameters such as interactions between molecular chains.
  • ⁇ and ⁇ of Leonard-Jones potential expressed by the following formula (1) are used, and these are adjusted.
  • the interaction parameter between the filler particles 11a and the interaction between the polymer particles 12a are sequentially reduced until the interaction between the filler particles 11a and the interaction between the polymer particles 12a reach a constant value.
  • the model creation unit 52a performs balancing calculation after setting initial conditions.
  • molecular dynamics calculation is performed at a predetermined temperature, density, and pressure for a predetermined time for various components after the initial setting to reach an equilibrium state. Then, after the initial condition setting and equilibration calculation processing, the model creation unit 52a sets the model creation region A1 for creating the analysis model of the specific substance in the calculation region A2 as an arbitrarily shaped region.
  • the model creation unit 52a includes, as the model creation region A1, for example, a region having an arbitrary shape such as a substantially spherical shape, an ellipsoidal shape, a conical shape, a cylindrical shape, a triangular prism shape, a cubic shape, a rectangular parallelepiped shape, and a polyhedral shape. specify.
  • the model creation unit 52a places the filler model 11 constituted by a plurality of filler particles 11a in the created model creation region A1.
  • the model creation unit 52a may arrange the filler model 11 created separately in the model creation area A1, or create the filler model 11 in the model creation area A1.
  • the model creation unit 52a may designate the arrangement position of the filler model 11 by a simulation by a molecular dynamics method using a computer such as a Monte Carlo method using a random number.
  • the model creation unit 52a sets conditions for creating the polymer model 12 to be created in the model creation area A1.
  • the model creation unit 52a sets the molecular chain length of the polymer, the number of molecular chains of the polymer model 12, and the density of the molecular chains in the polymer model 12 set as the creation conditions of the polymer model 12.
  • the model creation unit 52a creates a model for analyzing a specific substance by placing the polymer particles 12a outside the placement area of the filler model 11 in the model creation area A1 based on the created creation conditions of the polymer model 12. .
  • the model creation unit 52a creates a model for analyzing a specific substance by placing the polymer particles 12a outside the placement region of the filler model 11 until the creation condition of the set polymer model 12 is satisfied.
  • the model creation unit 52a may create the polymer model 12 in a state where the volume of the model creation region A1 is enlarged, and reduce the volume of the model creation region A1 after creation.
  • model creation part 52a may arrange
  • model creation part 52a may mix
  • the model creation unit 52a When the model creation unit 52a performs analysis using the created filler model 11 and the polymer model 12 using a polymer such as rubber, resin, and elastomer, the model creation unit 52a creates the model after creating the filler model 11.
  • a model for analysis is created by filling the creation area A1 with polymer particles 12a and / or polymer models 12 that are aggregates of polymer atoms and a plurality of polymer atoms in the model creation area A1 at a predetermined density.
  • the model creation unit 52a creates a polymer particle removal region A4 that is a region having a shape corresponding to the analysis model 2 of the filler model 11 by removing a part of the polymer particles 12a of the polymer model 12.
  • a filler analysis model is placed in the polymer particle removal region A4.
  • the condition setting unit 52b sets various conditions for executing a motion simulation (analysis) by the molecular dynamics method using the model for analyzing the specific substance created by the model creating unit 52a and the polymer model 12.
  • the condition setting unit 52 b sets various conditions based on the input from the input unit 53 and the information stored in the storage unit 54.
  • Various conditions include the position and number of fillers to be analyzed, the position and number of filler atoms, filler atomic groups, filler particles and filler particles, filler particle number, the position and number of polymer molecular chains, polymer atoms, and polymers.
  • the position and number of atomic groups, polymer particles, and polymer particle groups, polymer particle numbers, stress strain curves that are preset physical quantity histories, and fixed values that do not change conditions are included.
  • the analysis unit 52c performs deformation calculations such as relaxation calculation by a molecular dynamics method using a model for analyzing a specific substance including the filler model 11 and the polymer model 12 created by the model creation unit 52a, elongation analysis, deformation analysis such as shear analysis, and the like.
  • Various physical quantities are acquired by executing motion simulation. Examples of the physical quantity here include a motion displacement obtained as a result of simulation and a nominal strain obtained by calculating a nominal stress or motion displacement.
  • the arbitrarily created filler model 11 having a complicated shape is arranged in the polymer model 12, it is possible to analyze the influence of the filler shape on the polymer, and the instability caused by the insertion of the filler model 11 is possible. Equilibrium is obtained by eliminating the structure.
  • deformation analysis is performed using an arbitrarily created model for analyzing a specific substance with a complex shape, so it is possible to analyze the effect of the shape of the specific substance on the material properties and obtain the mechanical properties of the compound. It becomes possible.
  • the storage unit 54 is a non-volatile memory that is a readable recording medium such as a hard disk device, a magneto-optical disk device, a flash memory, and a CD-ROM, and a read / write operation such as a RAM (Random Access Memory).
  • a volatile memory which is a possible recording medium is appropriately combined.
  • the storage unit 54 stores data for fillers such as rubber carbon black, silica, and alumina, which are data for creating a model for analysis of a specific substance to be analyzed via the input means 53, rubber, resin, and elastomer.
  • data for fillers such as rubber carbon black, silica, and alumina
  • This computer program may be capable of realizing the specific substance simulation method according to the present embodiment in combination with a computer program already recorded in the computer or computer system.
  • the “computer system” here includes hardware such as an OS (Operating System) and peripheral devices.
  • the display means 55 is a display device such as a liquid crystal display device.
  • the storage unit 54 may be in another device such as a database server.
  • the analysis device 50 may access the processing unit 52 and the storage unit 54 by communication from a terminal device including the input / output device 51.
  • FIG. 5 is a flowchart showing an outline of an example of a method for creating a specific substance analysis model according to the present embodiment.
  • the model creation unit 52 a uses data for modeling the filler and polymer stored in the storage unit 54 in advance via the input unit 53. Arrangement of components such as number of particles, number of molecules, molecular weight, molecular chain length, number of molecular chains, branching, shape, size, reaction time, reaction conditions and target number of molecules, which is the number of molecules included in the model to be created Various data for modeling fillers and polymers such as stress strain curves that are physical quantity history set in advance and fixed values that do not change conditions are read. Subsequently, the model creation unit 52a performs equilibration calculation by setting initial conditions and calculating molecular dynamics based on various data.
  • the model creation unit 52a sets the model creation area A1 of the specific substance in the calculation area A2 which is a virtual space (step ST1).
  • the model creation unit 52a places the required number of filler models 11 in the model creation area A1 (step ST2).
  • the model creation unit 52a may arrange the filler model 11 created separately in the model creation area A1, or create the filler model 11 in the model creation area A1.
  • the model creation unit 52a creates a polymer model such as the molecular chain length of the polymer model 12 of the polymer model 12 to be created in the model creation region A1, the number of molecular chains of the polymer model 12, and the density of the number of molecular chains of the polymer model 12. 12 creation conditions and arrangement conditions are set (step ST3).
  • the model creation unit 52a sequentially adds the polymer model 12 outside the arrangement area of the filler model 11 in the model creation area A1 (step ST4).
  • the model creation unit 52a determines whether or not the polymer model 12 that is created outside the arrangement area of the filler model 11 in the model creation area A1 satisfies the set polymer model creation condition (step ST5).
  • step ST5 No. Further, when the polymer model 12 satisfies the polymer model creation conditions set by the polymer model 12, the model creation unit 52a ends the creation of the analysis model (step ST5: Yes). In addition, the model creation unit 52a stores the created analysis model data of the specific substance in the storage unit 54, and ends the creation of the analysis model of the specific substance.
  • condition setting unit 52b sets the conditions for the motion simulation (analysis) by the molecular dynamics method using the filler analysis model based on the input from the input means 53 or the information stored in the storage unit 54.
  • the analysis unit 52c performs analysis such as relaxation calculation and deformation analysis using the filler analysis model created by the model creation unit 52a based on the condition set by the condition setting unit 52b, and performs the analysis of the nominal stress and Get physical quantities such as nominal strain. Further, the analysis unit 52c stores the analysis result obtained by the relaxation calculation and the deformation analysis in the storage unit 54.
  • the polymer model is placed outside the filler placement area after the filler model 11 is placed in the designated model creation area A1. Since the analysis model of the specific substance is created by arranging 12, the polymer model 12 can be easily created even if the filler model 11 has a complicated shape. This makes it possible to easily create a model for analyzing a specific substance having an arbitrary shape, thereby realizing a method for creating a model for analyzing a specific substance that can accurately analyze the influence of the specific substance on the material characteristics.

Abstract

To provide a method for creating analysis models for specific substances, a computer program for creating analysis models for specific substances, a simulation method for specific substances, and a computer program for simulation of specific substances, whereby any shape analysis model can be created and the material characteristics of specific substances can be accurately analyzed. The method for creating analysis models for specific substances includes: a first step ST1 in which a model creation area is set in which an analysis model for specific substances is created; a second step ST2 in which a filler model comprising a plurality of particles is arranged inside the model creation area; a third step ST3 in which creation conditions and arrangement conditions are set for a polymer model to be arranged inside the model creation area; and a fourth step ST4 in which the polymer model is arranged outside the filler arrangement area inside the model creation area, on the basis of the set creation conditions and arrangement conditions, and the analysis model for specific substances is created.

Description

特定物質の解析用モデルの作成方法、特定物質の解析用モデルの作成用コンピュータプログラム、特定物質のシミュレーション方法及び特定物質のシミュレーション用コンピュータプログラムMethod for creating model for analyzing specific substance, computer program for creating model for analyzing specific substance, simulation method for specific substance, and computer program for simulating specific substance
 本発明は、特定物質の解析用モデルの作成方法、特定物質の解析用モデルの作成用コンピュータプログラム、特定物質のシミュレーション方法及び特定物質のシミュレーション用コンピュータプログラムに関し、特に、2種類以上の物質を含有する特定物質の解析用モデルの作成方法、特定物質の解析用モデルの作成用コンピュータプログラム、特定物質のシミュレーション方法及び特定物質のシミュレーション用コンピュータプログラムに関する。 The present invention relates to a method for creating a model for analyzing a specific substance, a computer program for creating a model for analyzing a specific substance, a simulation method for a specific substance, and a computer program for simulating a specific substance. The present invention relates to a method for creating a model for analyzing a specific substance, a computer program for creating a model for analyzing a specific substance, a simulation method for a specific substance, and a computer program for simulating a specific substance.
 従来、自動車用タイヤなどに用いられる変性ポリマーとフィラーとを含む高分子材料のモデルの作成方法が提案されている(例えば、特許文献1参照)。このモデルの作成方法では、変性ポリマーとフィラーとの間の相互作用を他の粒子間の相互作用より大きくして変性ポリマーとフィラーとを高分子材料中に分散させる。そして、変性ポリマーとフィラーとの間の相互作用を他の粒子間の相互作用より小さくして変性ポリマーの末端とフィラーとを反応させて高分子材料の解析用モデルを作成する。 Conventionally, a method for creating a model of a polymer material including a modified polymer and a filler used in automobile tires has been proposed (see, for example, Patent Document 1). In this model creation method, the interaction between the modified polymer and the filler is made larger than the interaction between other particles, and the modified polymer and the filler are dispersed in the polymer material. Then, the interaction between the modified polymer and the filler is made smaller than the interaction between other particles, and the terminal of the modified polymer and the filler are reacted to create a model for analyzing the polymer material.
特開2012-177609号公報JP 2012-177609 A
 ところで、ポリマー及びフィラーを含むゴムなどの2種類以上の物質を含有する複合材料においては、フィラーの周囲に存在するポリマーの分子運動がコンパウンドの材料特性に大きな影響を与えることが予測される。このような複合材料の材料特性の発現のメカニズムを解明するためには、フィラーとポリマーとが所定領域内に配置された複合材料のモデルを正確に作成してシミュレーションを実行することが有効である。 By the way, in a composite material containing two or more kinds of substances such as a rubber containing a polymer and a filler, it is predicted that the molecular motion of the polymer existing around the filler greatly affects the material properties of the compound. In order to elucidate the mechanism of manifestation of the material properties of such composite materials, it is effective to create a model of the composite material in which the filler and the polymer are arranged in a predetermined region and execute the simulation. .
 しかしながら、従来の高分子材料のモデルの作成方法では、作成するフィラーモデルの形状及びポリマーモデルの作成条件によっては、必ずしも正確な複合材料のモデルを作成することができない場合があった。このため、解析対象となる特定物質の材料特性を十分に解析できるモデルの作成方法が望まれている。 However, in the conventional polymer material model creation method, an accurate composite material model may not always be created depending on the shape of the filler model to be created and the polymer model creation conditions. Therefore, a method for creating a model that can sufficiently analyze the material properties of a specific substance to be analyzed is desired.
 本発明は、このような実情に鑑みてなされたものであり、任意形状の解析用モデルを作成でき、特定物質の材料特性に及ぼす影響を正確に解析できる特定物質の解析用モデルの作成方法、特定物質の解析用モデルの作成用コンピュータプログラム、特定物質のシミュレーション方法及び特定物質のシミュレーション用コンピュータプログラムを提供することを目的とする。 The present invention has been made in view of such circumstances, can create an analysis model of an arbitrary shape, and can create an analysis model of a specific substance that can accurately analyze the effect on the material properties of the specific substance, It is an object to provide a computer program for creating a model for analyzing a specific substance, a simulation method for the specific substance, and a computer program for simulating the specific substance.
 本発明の特定物質の解析用モデルの作成方法は、コンピュータを用いて分子動力学法により少なくとも2つの物質を含有する特定物質の解析用モデルを作成する特定物質の解析用モデルの作成方法であって、特定物質の解析用モデルを作成するモデル作成領域を設定する第1ステップと、前記モデル作成領域内に複数の粒子によって構成された第1物質のモデルを配置する第2ステップと、前記モデル作成領域内に配置する第2物質のモデルの作成条件及び配置条件を設定する第3ステップと、設定した前記作成条件及び前記配置条件に基づいて前記モデル作成領域内における前記第1物質の配置領域外に前記第2物質のモデルを配置して前記特定物質の解析用モデルを作成する第4ステップと、を含むことを特徴とする。 The method for creating a model for analyzing a specific substance of the present invention is a method for creating a model for analyzing a specific substance that creates a model for analyzing a specific substance containing at least two substances by a molecular dynamics method using a computer. A first step of setting a model creation region for creating a model for analysis of a specific substance, a second step of placing a model of a first material composed of a plurality of particles in the model creation region, and the model A third step of setting a creation condition and an arrangement condition of a model of the second substance to be arranged in the creation area; and an arrangement area of the first substance in the model creation area based on the set creation condition and the arrangement condition And a fourth step of creating a model for analyzing the specific substance by arranging the model of the second substance outside.
 この特定物質の解析用モデルの作成方法によれば、指定したモデル作成領域内に第1物質のモデルを配置してから、第1物質の配置領域外に第2物質の粒子を配置してモデルを作成するので、第1物質のモデルが複雑な形状であっても、第2物質のモデルを容易に作成することが可能となる。これにより、任意形状の特定物質の解析用モデルを容易に作成できるので、特定物質の材料特性に及ぼす影響を正確に解析できる特定物質の解析用モデルの作成方法を実現できる。 According to this method of creating a model for analyzing a specific substance, a model of a first substance is arranged in a designated model creation area, and then a second substance particle is arranged outside the arrangement area of the first substance. Therefore, even if the model of the first substance has a complicated shape, the model of the second substance can be easily created. This makes it possible to easily create a model for analyzing a specific substance having an arbitrary shape, thereby realizing a method for creating a model for analyzing a specific substance that can accurately analyze the influence of the specific substance on the material characteristics.
 本発明の特定物質の解析用モデルの作成方法においては、前記第2ステップにおいて、コンピュータを用いた分子動力学法によるシミュレーションで前記第1物質の配置位置を指定することが好ましい。この方法により、モデル作成領域内における第1物質の配置位置の指定が容易となるので、第1物質のモデルを複数用いる場合であっても、効率的に第1物質を配置することが可能となる。 In the method for creating a model for analyzing a specific substance according to the present invention, in the second step, it is preferable to designate an arrangement position of the first substance by a simulation by a molecular dynamics method using a computer. By this method, it becomes easy to specify the arrangement position of the first substance in the model creation region, so that the first substance can be arranged efficiently even when a plurality of models of the first substance are used. Become.
 本発明の特定物質の解析用モデルの作成方法においては、前記第4ステップにおいて、前記第2物質のモデルを前記モデル作成領域内に存在する前記第2物質のモデルと重ならないように順次追加することが好ましい。この方法により、順次添加される第2物質の分子運動を利用して第2物質を配置することができるので、第2物質を均一に配置することが可能となる。 In the method for creating a model for analyzing a specific substance according to the present invention, in the fourth step, the model of the second substance is sequentially added so as not to overlap with the model of the second substance existing in the model creation region. It is preferable. According to this method, since the second substance can be arranged by utilizing the molecular motion of the second substance added sequentially, the second substance can be arranged uniformly.
 本発明の特定物質の解析用モデルの作成方法においては、前記第4ステップにおいて、前記モデル作成領域の大きさを拡大した状態で前記第2物質のモデルを作成してから、前記モデル作成領域の大きさを縮小することが好ましい。この方法により、モデル作成領域を指定した大きさより拡大した状態で第2物質の粒子をモデル作成領域内に配置することができるので、効率的に第2物質を配置することが可能となる。 In the method for creating a model for analyzing a specific substance of the present invention, in the fourth step, the model of the second substance is created in a state where the size of the model creation area is enlarged, and then the model creation area It is preferable to reduce the size. According to this method, the particles of the second substance can be arranged in the model creation area in a state where the model creation area is larger than the designated size, so that the second substance can be arranged efficiently.
 本発明の特定物質の解析用モデルの作成方法においては、前記第1物質が、フィラーであることが好ましい。この方法により、フィラーを含有する特定物質の解析用モデルを作成することが可能となる。 In the method for creating a model for analyzing a specific substance of the present invention, the first substance is preferably a filler. This method makes it possible to create a model for analyzing a specific substance containing a filler.
 本発明の特定物質の解析用モデルの作成方法においては、前記第2物質が、高分子材料であることが好ましい。この方法により、高分子材料を含有する特定物質の解析用モデルを作成することが可能となる。 In the method for creating a model for analyzing a specific substance of the present invention, the second substance is preferably a polymer material. This method makes it possible to create a model for analysis of a specific substance containing a polymer material.
 本発明の特定物質の解析用モデルの作成方法においては、前記特定物質の解析用モデルが、フィラーモデルであることが好ましい。この方法により、複雑な形状のフィラーモデルを任意に作成することができるので、高分子材料におけるフィラーモデルの形状が材料特性に与える影響を正確に評価することが可能となる。 In the method for creating a specific substance analysis model of the present invention, the specific substance analysis model is preferably a filler model. By this method, a filler model having a complicated shape can be arbitrarily created. Therefore, it is possible to accurately evaluate the influence of the shape of the filler model in the polymer material on the material characteristics.
 本発明の特定物質の解析用モデルの作成用コンピュータプログラムは、上記特定物質の解析用モデルの作成方法をコンピュータに実行させることを特徴とする。 The computer program for creating a model for analyzing a specific substance according to the present invention is characterized by causing a computer to execute the method for creating a model for analyzing a specific substance.
 この特定物質の解析用モデルの作成用コンピュータプログラムによれば、指定したモデル作成領域内に第1物質のモデルを配置してから、第1物質の配置領域外に第2物質の粒子を配置してモデルを作成するので、第1物質のモデルが複雑な形状であっても、第2物質のモデルを容易に作成することが可能となる。これにより、任意形状の特定物質の解析用モデルを容易に作成できるので、特定物質の材料特性に及ぼす影響を正確に解析することが可能となる特定物質の解析用モデルを作成できる。 According to the computer program for creating an analysis model for a specific substance, the first substance model is placed in the designated model creation area, and then the second substance particles are placed outside the first substance placement area. Therefore, even if the model of the first substance has a complicated shape, the model of the second substance can be easily created. As a result, an analysis model of a specific substance having an arbitrary shape can be easily created, so that a model for analysis of a specific substance that can accurately analyze the influence of the specific substance on the material characteristics can be created.
 本発明の特定物質のシミュレーション方法は、上記特定物質の解析用モデルの作成方法で作成した前記第1物質のモデルと前記第2物質のモデルとの間に相互作用を設定し、分子動力学法を用いて緩和計算を実行することを特徴とする。 The specific substance simulation method of the present invention includes a molecular dynamics method in which an interaction is set between the model of the first substance and the model of the second substance created by the method for creating the model for analyzing the specific substance. The relaxation calculation is performed using
 この特定物質のシミュレーション方法によれば、第1物質及び第2物質を含有する特定物質の解析用モデル中での前記第1物質のモデルと前記第2物質のモデルとの間の不安定構造が解消され、平衡状態が得られるので、前記第1物質のモデルと前記第2物質のモデルとの配置が材料特性に及ぼす影響を解析することが可能となる。 According to the simulation method of the specific substance, an unstable structure between the model of the first substance and the model of the second substance in the analysis model of the specific substance containing the first substance and the second substance is obtained. Since it is eliminated and an equilibrium state is obtained, it is possible to analyze the influence of the arrangement of the first substance model and the second substance model on the material properties.
 本発明の特定物質のシミュレーション方法は、上記特定物質の解析用モデルの作成方法で作成した特定物質の解析用モデルを用いて変形解析を実行することを特徴とする。 The method for simulating a specific substance of the present invention is characterized in that a deformation analysis is executed using the analysis model for a specific substance created by the method for creating an analysis model for the specific substance.
 この特定物質のシミュレーション方法によれば、第1物質及び第2物質を含有する特定物質の解析用モデルを用いて変形解析を実行するので、特定物質の形状が材料特性に及ぼす影響を解析することが可能となり、コンパウンドの力学特性を得ることが可能となる。 According to this specific substance simulation method, the deformation analysis is executed using the analysis model of the specific substance containing the first substance and the second substance, so that the influence of the shape of the specific substance on the material characteristics is analyzed. It becomes possible to obtain the mechanical characteristics of the compound.
 本発明の特定物質のシミュレーション用コンピュータプログラムは、上記特定物質のシミュレーション方法をコンピュータに実行させることを特徴とする。 The computer program for simulation of a specific substance of the present invention is characterized by causing a computer to execute the simulation method of the specific substance.
 この特定物質のシミュレーション用コンピュータプログラムによれば、任意形状の特定物質の解析用モデルを容易に作成できるので、特定物質の材料特性に及ぼす影響を正確に解析できる。 This computer program for simulating a specific substance can easily create a model for analyzing a specific substance of any shape, so that the influence of the specific substance on the material properties can be analyzed accurately.
 本発明によれば、任意形状の解析用モデルを作成でき、特定物質の材料特性に及ぼす影響を正確に解析できる特定物質の解析用モデルの作成方法、特定物質の解析用モデルの作成用コンピュータプログラム、特定物質のシミュレーション方法及び特定物質のシミュレーション用コンピュータプログラムを実現できる。 ADVANTAGE OF THE INVENTION According to this invention, the analytical model of the specific substance which can create the analytical model of arbitrary shapes and can analyze accurately the influence which it has on the material characteristic of a specific substance, the computer program for creation of the analytical model of a specific substance The simulation method of the specific substance and the computer program for simulation of the specific substance can be realized.
図1Aは、本実施の形態に係る特定物質の解析用モデルの作成方法で作成される解析用モデルの一例を示す概念図である。FIG. 1A is a conceptual diagram showing an example of an analysis model created by the method for creating an analysis model for a specific substance according to the present embodiment. 図1Bは、本実施の形態に係る特定物質の解析用モデルの作成方法で作成される解析用モデルの他の例を示す概念図である。FIG. 1B is a conceptual diagram showing another example of an analysis model created by the method for creating an analysis model for a specific substance according to the present embodiment. 図1Cは、本実施の形態に係る特定物質の解析用モデルの作成方法で作成される解析用モデルの他の例を示す概念図である。FIG. 1C is a conceptual diagram showing another example of an analysis model created by the method for creating an analysis model for a specific substance according to the present embodiment. 図2Aは、本実施の形態に係る特定物質の解析用モデルの作成方法の説明図である。FIG. 2A is an explanatory diagram of a method for creating an analysis model for a specific substance according to the present embodiment. 図2Bは、本実施の形態に係る特定物質の解析用モデルの作成方法の説明図である。FIG. 2B is an explanatory diagram of a method for creating an analysis model for a specific substance according to the present embodiment. 図2Cは、本実施の形態に係る特定物質の解析用モデルの作成方法の説明図である。FIG. 2C is an explanatory diagram of a method for creating a specific substance analysis model according to the present embodiment. 図2Dは、本実施の形態に係る特定物質の解析用モデルの作成方法の説明図である。FIG. 2D is an explanatory diagram of a method for creating an analysis model for a specific substance according to the present embodiment. 図3は、本実施の形態に係るポリマーモデルの配置の説明図である。FIG. 3 is an explanatory diagram of the arrangement of the polymer model according to the present embodiment. 図4は、本発明の実施の形態に係る特定物質の解析用モデルの作成方法及び特定物質のシミュレーション方法を実行する解析装置の機能ブロック図である。FIG. 4 is a functional block diagram of an analysis apparatus that executes a method for creating a model for analyzing a specific substance and a simulation method for the specific substance according to the embodiment of the present invention. 図5は、本実施の形態に係る特定物質の解析用モデルの作成方法の一例の概略を示すフロー図である。FIG. 5 is a flowchart showing an outline of an example of a method for creating a specific substance analysis model according to the present embodiment.
 以下、本発明の一実施の形態について、添付図面を参照して詳細に説明する。なお、本発明は、以下の実施の形態に限定されるものではなく、適宜変更して実施可能である。 Hereinafter, an embodiment of the present invention will be described in detail with reference to the accompanying drawings. In addition, this invention is not limited to the following embodiment, It can implement by changing suitably.
 本実施の形態に係る特定物質の解析用モデルの作成方法は、コンピュータを用いて分子動力学法により少なくとも2つの物質を含有する特定物質の解析用モデルを作成する特定物質の解析用モデルの作成方法であって、特定物質の解析用モデルを作成するモデル作成領域を設定する第1ステップと、モデル作成領域内に複数の粒子によって構成された第1物質のモデルを配置する第2ステップと、モデル作成領域内に作成する第2物質のモデルの作成条件を設定する第3ステップと、設定した作成条件に基づいてモデル作成領域内における第1物質の配置領域外に第2物質の粒子を配置して第2物質のモデルを作成して特定物質の解析用モデルを作成する第4ステップと、を含む。まず、本実施の形態に係る特定物質の解析用モデルの作成方法の概要について説明する。 The method for creating a model for analyzing a specific substance according to the present embodiment is to create a model for analyzing a specific substance that creates a model for analyzing a specific substance containing at least two substances by a molecular dynamics method using a computer. A method, a first step of setting a model creation region for creating a model for analysis of a specific substance, a second step of placing a model of a first substance composed of a plurality of particles in the model creation region, The third step of setting the creation conditions of the model of the second substance to be created in the model creation area, and placing the particles of the second substance outside the placement area of the first substance in the model creation area based on the set creation conditions And a fourth step of creating a model for analyzing the specific substance by creating a model for the second substance. First, an outline of a method for creating a model for analyzing a specific substance according to the present embodiment will be described.
 図1Aは、本実施の形態に係る特定物質の解析用モデルの作成方法で作成される解析用モデル1の一例を示す概念図である。図1Aに示すように、本実施の形態に係る特定物質の解析用モデル1は、一辺の長さが距離L1の略立方体状の仮想空間であるモデル作成領域A1内でフィラーモデル11及びポリマーモデル12が配置されて解析対象となる特定物質がモデル化されたものである。なお、本実施の形態では、解析対象となる特定物質がフィラー(第1物質)及び高分子材料であるポリマー(第2物質)を含有する複合材料である例について説明するが、本発明は、2種類の物質を含有する特定材料以外にも各種材料に適用可能である。 FIG. 1A is a conceptual diagram showing an example of an analysis model 1 created by the method for creating an analysis model for a specific substance according to the present embodiment. As shown in FIG. 1A, a model 1 for analyzing a specific substance according to the present embodiment includes a filler model 11 and a polymer model in a model creation region A1 which is a substantially cubic virtual space whose one side is a distance L1. 12 is arranged and a specific substance to be analyzed is modeled. In the present embodiment, an example in which the specific substance to be analyzed is a composite material containing a filler (first substance) and a polymer (second substance) that is a polymer material will be described. In addition to the specific material containing two kinds of substances, the present invention can be applied to various materials.
 図1Bは、本実施の形態に係る特定物質の解析用モデルの作成方法で作成される解析用モデルの他の例を示す概念図である。図1Bに示す解析用モデル2では、図1に示した解析用モデル1のフィラーモデル11に代えてモデル作成領域A1に第1のフィラーモデル11Aと第2のフィラーモデル11Bとがフィラーモデル化されている。第1のフィラーモデル11A及び第2のフィラーモデル11Bは、複数のフィラー粒子11aがそれぞれ略球状体に集合して構成される。また、第1のフィラーモデル11Aと第2のフィラーモデル11Bとは、相互に凝集して外縁部の一部が連結(共有)されている。 FIG. 1B is a conceptual diagram showing another example of an analysis model created by the method for creating an analysis model for a specific substance according to the present embodiment. In the analysis model 2 shown in FIG. 1B, instead of the filler model 11 of the analysis model 1 shown in FIG. 1, the first filler model 11A and the second filler model 11B are converted into filler models in the model creation area A1. ing. The first filler model 11A and the second filler model 11B are configured by a plurality of filler particles 11a being assembled into a substantially spherical body. Further, the first filler model 11A and the second filler model 11B are agglomerated with each other and a part of the outer edge portion is connected (shared).
 図1Cは、本実施の形態に係る特定物質の解析用モデルの作成方法で作成される解析用モデルの他の例を示す概念図である。図1Cに示す解析用モデル3では、図1に示した解析用モデル1のフィラーモデルに代えてモデル作成領域A1内で第1のフィラーモデル11Aと第2のフィラーモデル11Bと第3のフィラーモデル11Cと第4のフィラーモデル11Dとがモデル化されている。第1のフィラーモデル11A、第2のフィラーモデル11B、第3のフィラーモデル11C及び第4のフィラーモデル11Dは、複数のフィラー粒子11aがそれぞれ略球状体に集合して構成される。第1のフィラーモデル11Aと第2のフィラーモデル11Bとの間は、相互に凝集して外縁部の一部が連結(共有)されている。第2のフィラーモデル11Bと第3のフィラーモデル11Cとの間は、相互に凝集して外縁部の一部が連結(共有)されている。第3のフィラーモデル11Cと第4のフィラーモデル11Dとの間は、相互に凝集して外縁部の一部が連結(共有)されている。第1のフィラーモデル11Aと第4のフィラーモデル11Dとの間は、相互に凝集して外縁部の一部が近接している。このように、本実施の形態によれば、2つの第1のフィラーモデル11A及び第2のフィラーモデル11Bが凝集した複雑な形状の解析用モデル2及び4つの第1のフィラーモデル11A、第2のフィラーモデル11B、第3のフィラーモデル11C、及び第4のフィラーモデル11Dが凝集した複雑な形状の解析用モデル3を作成することも可能である。 FIG. 1C is a conceptual diagram showing another example of an analysis model created by the method for creating an analysis model for a specific substance according to the present embodiment. In the analysis model 3 shown in FIG. 1C, instead of the filler model of the analysis model 1 shown in FIG. 1, the first filler model 11A, the second filler model 11B, and the third filler model in the model creation region A1. 11C and the fourth filler model 11D are modeled. The first filler model 11A, the second filler model 11B, the third filler model 11C, and the fourth filler model 11D are configured by a plurality of filler particles 11a that are each assembled into a substantially spherical body. Between the 1st filler model 11A and the 2nd filler model 11B, it mutually aggregates and a part of outer edge part is connected (shared). Between the 2nd filler model 11B and the 3rd filler model 11C, it mutually aggregates and a part of outer edge part is connected (shared). Between the 3rd filler model 11C and the 4th filler model 11D, it mutually aggregates and a part of outer edge part is connected (shared). Between the first filler model 11 </ b> A and the fourth filler model 11 </ b> D, they are agglomerated with each other and a part of the outer edge portion is close. As described above, according to the present embodiment, the analysis model 2 having a complicated shape in which the two first filler models 11A and the second filler model 11B are aggregated, the four first filler models 11A, the second It is also possible to create the analysis model 3 having a complicated shape in which the filler model 11B, the third filler model 11C, and the fourth filler model 11D are aggregated.
 フィラーとしては、例えば、カーボンブラック、シリカ、及びアルミナなどが含まれる。フィラーモデル11は、複数のフィラー原子及び複数のフィラー原子の集合体としてのフィラー粒子11aが集合した略球状体としてモデル化される。フィラー粒子11aは、複数のフィラー粒子11a間の結合鎖(不図示)によって相対位置が特定されている。この結合鎖(不図示)は、フィラー粒子11a間の結合距離である平衡長とばね定数とが定義されたバネとしての機能を有し、各フィラー粒子11a間を拘束している。結合鎖は、フィラー粒子11aの相対位置及び捻り、曲げなどによって力が発生するポテンシャルが定義されているボンドである。このフィラーモデル11は、フィラーを分子動力学で取り扱うための数値データ(フィラー粒子11aの質量、体積、直径及び初期座標などを含む)である。フィラーモデル11の数値データは、コンピュータに入力される。 Examples of fillers include carbon black, silica, and alumina. The filler model 11 is modeled as a substantially spherical body in which a plurality of filler atoms and filler particles 11a as an aggregate of a plurality of filler atoms are aggregated. The relative position of the filler particles 11a is specified by a bond chain (not shown) between the plurality of filler particles 11a. This binding chain (not shown) has a function as a spring in which an equilibrium length, which is a binding distance between filler particles 11a, and a spring constant are defined, and binds between the filler particles 11a. The bond chain is a bond in which the relative position of the filler particle 11a and the potential at which force is generated by twisting, bending, or the like are defined. The filler model 11 is numerical data (including the mass, volume, diameter, initial coordinates, and the like of the filler particles 11a) for handling the filler by molecular dynamics. Numerical data of the filler model 11 is input to the computer.
 ポリマーとしては、例えば、ゴム、樹脂、及びエラストマーなどが含まれる。このポリマーモデル12は、複数のポリマー原子及び複数のポリマー原子の集合体であるポリマー粒子12aがモデル作成領域A1内に所定密度で充填されてモデル化される。ポリマー粒子12aは、複数のポリマー粒子12a間の結合鎖12bによって相対位置が特定されている。この結合鎖12bは、ポリマー粒子12a間の結合距離である平衡長とばね定数とが定義されたバネとしての機能を有し、各ポリマー粒子12a間を拘束している。結合鎖12bは、ポリマー粒子12aの相対位置及び捻り、曲げなどによって力が発生するポテンシャルが定義されているボンドである。このポリマーモデル12は、ポリマーを分子動力学で取り扱うための数値データ(ポリマー粒子12aの質量、体積、直径及び初期座標などを含む)である。ポリマーモデル12の数値データは、コンピュータに入力される。 Examples of the polymer include rubber, resin, and elastomer. The polymer model 12 is modeled by filling a plurality of polymer atoms and polymer particles 12a, which are aggregates of a plurality of polymer atoms, into the model creation region A1 at a predetermined density. The relative position of the polymer particle 12a is specified by the bonding chain 12b between the plurality of polymer particles 12a. The binding chain 12b functions as a spring in which an equilibrium length, which is a binding distance between the polymer particles 12a, and a spring constant are defined, and restrains the polymer particles 12a. The bond chain 12b is a bond in which the relative position of the polymer particle 12a and the potential at which force is generated by twisting, bending, or the like are defined. The polymer model 12 is numerical data (including the mass, volume, diameter, initial coordinates, and the like of the polymer particle 12a) for handling the polymer by molecular dynamics. Numerical data of the polymer model 12 is input to a computer.
 また、ポリマーには、フィラーとの親和性を高める変性剤が必要に応じて配合される。この変性剤としては、例えば、水酸基、カルボニル基、及び原子団の官能基などが含まれる。 Also, a modifier is added to the polymer as needed to enhance the affinity with the filler. Examples of the modifier include a hydroxyl group, a carbonyl group, and a functional group of an atomic group.
 次に、本実施の形態に係る特定物質の解析用モデルの作成方法について詳細に説明する。図2A~図2Dは、本実施の形態に係る特定物質の解析用モデルの作成方法の説明図である。なお、図2A~図2Dにおいては、図1Aに示した略立方体状のモデル作成領域A1の正面の一部を示している。 Next, a method for creating a model for analyzing a specific substance according to this embodiment will be described in detail. 2A to 2D are explanatory diagrams of a method for creating a model for analyzing a specific substance according to the present embodiment. 2A to 2D show a part of the front of the substantially cubic model creation region A1 shown in FIG. 1A.
 図2Aに示すように、本実施の形態においては、第1ステップでは、解析対象となる特定物質のモデルを作成する仮想空間である計算領域A2内にモデル作成領域A1を設定する。このモデル作成領域A1は、作成する特定物質のモデルの形状に応じて任意形状に設定することが可能である。モデル作成領域A1の形状としては、例えば、略球体状、楕円体状、円錐状、円柱状、三角柱状、立方体状、直方体状、及び多面体状などが挙げられる。モデル作成領域A1は、例えば、モデル作成領域A1内に指定した特定点を中心座標とする所定の半径を有する略球状体として指定してもよい。また、モデル作成領域A1は、モデル作成領域A1内に指定した複数の特定点を各頂点座標とする多面体として指定してもよい。さらに、モデル作成領域A1は、CADなどによる作図で作成した立体形状に基づいて指定してもよい。 As shown in FIG. 2A, in the present embodiment, in the first step, a model creation area A1 is set in a calculation area A2 that is a virtual space in which a model of a specific substance to be analyzed is created. This model creation area A1 can be set to an arbitrary shape according to the shape of the model of the specific substance to be created. Examples of the shape of the model creation region A1 include a substantially spherical shape, an ellipsoidal shape, a conical shape, a cylindrical shape, a triangular prism shape, a cubic shape, a rectangular parallelepiped shape, and a polyhedral shape. The model creation area A1 may be designated as, for example, a substantially spherical body having a predetermined radius with a specific point designated in the model creation area A1 as a central coordinate. The model creation area A1 may be designated as a polyhedron having a plurality of specific points designated in the model creation area A1 as vertex coordinates. Further, the model creation area A1 may be specified based on a three-dimensional shape created by drawing with CAD or the like.
 次に、図2Bに示すように、第2ステップでは、モデル作成領域A1内に複数のフィラー粒子12aによって構成されたフィラーモデル11を配置する。モデル作成領域A1内に配置するフィラーの形状に特に制限はなく、例えば、図1に示した略球状体のフィラーモデル11を配置してもよく、図1Bに示した2つのフィラーモデル11A及びフィラーモデル11Bが連結されたフィラーを配置してもよく、図1Cに示した4つのフィラーモデル11A、フィラーモデル11B、フィラーモデル11C及びフィラーモデル11Dが連結された形状のものを配置してもよい。また、フィラーの形状としては、多面体であってもよい。また、モデル作成領域A1内に配置するフィラーとしては、モデル作成領域A1内で作成したものであってもよい。 Next, as shown in FIG. 2B, in the second step, the filler model 11 composed of a plurality of filler particles 12a is arranged in the model creation region A1. There is no particular limitation on the shape of the filler arranged in the model creation region A1, and for example, the substantially spherical filler model 11 shown in FIG. 1 may be arranged, and the two filler models 11A and filler shown in FIG. 1B may be arranged. A filler to which the model 11B is connected may be arranged, or a filler having a shape in which the four filler models 11A, the filler model 11B, the filler model 11C, and the filler model 11D shown in FIG. 1C are connected may be arranged. The shape of the filler may be a polyhedron. Moreover, as a filler arrange | positioned in model creation area | region A1, what was created in model creation area | region A1 may be used.
 また、第2ステップにおいては、コンピュータを用いた分子動力学法によるシミュレーションでフィラーモデル11の配置位置を指定することが好ましい。これにより、モデル作成領域A1内におけるフィラーモデル11の配置位置の指定が容易となるので、複数のフィラーモデル11を配置する場合であっても、効率的にフィラーを配置することが可能となる。フィラーモデル11の位置を指定するシミュレーションとしては、乱数を用いるモンテカルロ法などが挙げられる。このシミュレーションにより複数のフィラーモデル11を配置する場合には、フィラー同士が相互に接触及び重複する場合には、再度乱数でフィラーモデル11の配置位置を指定してもよく、接触及び重複したフィラーモデル11同士を結合させて1つのフィラーモデル11としてもよい。 Also, in the second step, it is preferable to designate the arrangement position of the filler model 11 by simulation using a molecular dynamics method using a computer. This facilitates the designation of the arrangement position of the filler model 11 in the model creation area A1, and therefore, even when a plurality of filler models 11 are arranged, the filler can be arranged efficiently. Examples of the simulation for designating the position of the filler model 11 include a Monte Carlo method using random numbers. In the case where a plurality of filler models 11 are arranged by this simulation, when fillers contact and overlap each other, the arrangement position of the filler model 11 may be designated again by a random number. 11 may be combined to form one filler model 11.
 次に、第3ステップでは、モデル作成領域A1内に作成するポリマーモデル12の作成条件を設定する。ポリマーモデル12の作成条件としては、作成するポリマーの分子鎖長、ポリマーモデル12の分子鎖数、ポリマーモデル12の分子鎖の密度などが挙げられる。 Next, in the third step, conditions for creating the polymer model 12 to be created in the model creation area A1 are set. The creation conditions of the polymer model 12 include the molecular chain length of the polymer to be created, the number of molecular chains of the polymer model 12, the density of the molecular chains of the polymer model 12, and the like.
 次に、図2Cに示すように、第4ステップでは、第3ステップで設定したポリマーモデル12の作成条件に基づいてモデル作成領域A1内のフィラーモデル11の配置領域外にポリマーを配置してポリマーモデル12を作成する。ポリマーモデル12は、複数のポリマー粒子12aが結合鎖12bなどを介して連結された分子鎖が集合した状態で順次モデル作成領域A1内に追加される。そして、図2Dに示すように、ポリマーモデル12の作成条件として設定したポリマーの分子鎖長、ポリマーモデル12の分子鎖数及びポリマーモデル12の分子鎖の密度を満たす状態となることにより特定物質の解析用モデルが作成される。 Next, as shown in FIG. 2C, in the fourth step, the polymer is arranged outside the arrangement region of the filler model 11 in the model creation region A1 based on the creation conditions of the polymer model 12 set in the third step. A model 12 is created. The polymer model 12 is sequentially added to the model creation region A1 in a state where molecular chains in which a plurality of polymer particles 12a are connected via a bonding chain 12b or the like are gathered. Then, as shown in FIG. 2D, the molecular chain length of the polymer, the number of molecular chains of the polymer model 12 and the density of the molecular chains of the polymer model 12 set as the creation conditions of the polymer model 12 are satisfied. An analysis model is created.
 また、第4ステップにおいては、ポリマーを複数のポリマー粒子12aが数珠状に連結された分子鎖としてモデル作成領域A1内に既に配置されたポリマー粒子12aと重ならないように順次追加することが好ましい。ここで、ポリマー粒子12aを重ならないとは、ポリマー粒子12a間の粒子間相互作用が作用しない距離にポリマー粒子12aが存在することである。これにより、順次追加されるポリマーの分子運動を利用してモデル領域A1内のフィラーモデル11の配置領域外にポリマーモデル11を配置することができるので、ポリマーモデル12を均一に配置することが可能となる。 Also, in the fourth step, it is preferable that the polymer is sequentially added as a molecular chain in which a plurality of polymer particles 12a are connected in a bead shape so as not to overlap with the polymer particles 12a already arranged in the model creation region A1. Here, the fact that the polymer particles 12a do not overlap each other means that the polymer particles 12a exist at a distance where the interparticle interaction between the polymer particles 12a does not act. Thereby, since the polymer model 11 can be arranged outside the arrangement area of the filler model 11 in the model area A1 by utilizing the molecular motion of the polymer added sequentially, the polymer model 12 can be arranged uniformly. It becomes.
 さらに、第4ステップにおいては、図3に示すように、モデル作成領域A1の体積を拡大した状態でポリマーモデル12を配置してもよい。図3に示す例では、図2Aに示した一辺が距離L1のモデル作成領域A1に対して、モデル作成領域の一辺を距離L2に拡大している。この場合、モデル作成領域A1を拡大しても、モデル作成領域A1内に配置するポリマー12の分子鎖数及びポリマー粒子12aの数は変更しない。また、モデル作成領域A1は、ポリマーモデル12の作成後に一辺の距離が距離L2から距離L1に縮小することが好ましい。このようにしてポリマーを追加することにより、モデル作成領域A1を指定した大きさより拡大した状態でポリマー粒子12aをモデル作成領域A1内に配置することができるので、効率的にポリマーを配置することが可能となる。この場合、モデル作成領域A1の体積は、効率的にポリマーを配置する観点及び計算効率の観点から、指定体積の3倍にすることが好ましく、5倍にすることがより好ましい。 Furthermore, in the fourth step, as shown in FIG. 3, the polymer model 12 may be arranged in a state where the volume of the model creation region A1 is enlarged. In the example shown in FIG. 3, one side of the model creation area is expanded to the distance L2 with respect to the model creation area A1 whose one side shown in FIG. 2A is the distance L1. In this case, even if the model creation region A1 is enlarged, the number of molecular chains of the polymer 12 and the number of polymer particles 12a arranged in the model creation region A1 are not changed. In the model creation region A1, it is preferable that the distance of one side is reduced from the distance L2 to the distance L1 after the polymer model 12 is created. By adding the polymer in this way, the polymer particles 12a can be arranged in the model creation region A1 in a state where the model creation region A1 is larger than the specified size, so that the polymer can be arranged efficiently. It becomes possible. In this case, the volume of the model creation area A1 is preferably 3 times the specified volume, and more preferably 5 times, from the viewpoint of efficiently arranging the polymer and the viewpoint of calculation efficiency.
 また、第4ステップにおいては、モデル作成領域A1内の圧力を低下させた状態でポリマーモデル12を配置してもよい。これにより、モデル作成領域A1内が低圧となるので、ポリマーモデル12を効率良く配置することが可能となる。この場合、モデル作成領域A1内の圧力は、効率的にポリマーモデル12を配置する観点及び計算効率の観点から、変更前の指定圧力の1/3にすることが好ましく、1/5にすることがより好ましい。 Further, in the fourth step, the polymer model 12 may be arranged in a state where the pressure in the model creation region A1 is reduced. Thereby, since the inside of the model creation region A1 becomes a low pressure, the polymer model 12 can be arranged efficiently. In this case, the pressure in the model creation region A1 is preferably 1/3 of the specified pressure before the change, from the viewpoint of efficiently arranging the polymer model 12 and the viewpoint of calculation efficiency, and should be 1/5. Is more preferable.
 次に、本実施の形態に係るシミュレーション方法について説明する。本実施の形態に係るシミュレーション方法は、上記実施の形態に係る特定物質の解析用モデルの作成方法で作成した解析用モデルを用いたシミュレーション方法である。シミュレーション方法としては、フィラーモデル11とポリマーモデル12との間に相互作用を設定し、分子動力学法を用いて緩和計算を実行するシミュレーション方法及び特定物質の解析用モデルを用いた変形解析が挙げられる。 Next, a simulation method according to this embodiment will be described. The simulation method according to the present embodiment is a simulation method using the analysis model created by the method for creating the analysis model for the specific substance according to the above embodiment. Examples of the simulation method include a simulation method in which an interaction is set between the filler model 11 and the polymer model 12 and relaxation calculation is performed using a molecular dynamics method, and deformation analysis using a model for analyzing a specific substance. It is done.
 本実施の形態に係るシミュレーション方法においては、緩和計算を行う場合には、ポリマー粒子12a間の距離の伸びきり長が定義されていないポテンシャルを使用することが好ましい。これにより、隣接するポリマーモデル12がポリマー粒子12a間で絡まっても解けやすくなるので、ポリマーモデル12の絡まりによって作用する大きな力を抑制することができるので、計算落ちの発生を防ぐことができる。また、変形解析を行う場合には、ポリマー粒子12a間の距離の伸びきり長が定義されているポテンシャルを使用することが好ましい。これにより、伸びきり長以上のポリマー粒子12a間距離が許容されずに分子動力学計算が行われるので、ポリマーの分子運動に近似させて、変形解析することができ、シミュレーションの精度が向上する。 In the simulation method according to the present embodiment, when the relaxation calculation is performed, it is preferable to use a potential for which the full length of the distance between the polymer particles 12a is not defined. Thereby, even if the adjacent polymer model 12 is entangled between the polymer particles 12a, it is easy to be unraveled, so that a large force acting due to the entanglement of the polymer model 12 can be suppressed, so that occurrence of calculation failure can be prevented. In addition, when performing deformation analysis, it is preferable to use a potential in which the full length of the distance between the polymer particles 12a is defined. Thereby, since the molecular dynamics calculation is performed without allowing the distance between the polymer particles 12a longer than the full length, the deformation analysis can be performed by approximating the molecular motion of the polymer, and the accuracy of the simulation is improved.
 次に、本実施の形態に係る特定物質の解析用モデルの作成方法及び特定物質のシミュレーション方法について詳細に説明する。図4は、本発明の実施の形態に係る特定物質の解析用モデルの作成方法及び特定物質のシミュレーション方法を実行する解析装置の機能ブロック図である。図4に示すように、本実施の形態に係る特定物質の解析用モデルの作成方法及び特定物質のシミュレーション方法は、処理部52と記憶部54とを含むコンピュータである解析装置50が実現する。この解析装置50は、入力手段53を備えた入出力装置51と電気的に接続されている。入力手段53は、特定物質の解析用モデルの作成対象であるポリマー及びフィラーの各種物性値及び解析における境界条件などを処理部52又は記憶部54へ入力する。入力手段53としては、例えば、キーボード、マウスなどの入力デバイスが用いられる。 Next, a method for creating a specific substance analysis model and a specific substance simulation method according to the present embodiment will be described in detail. FIG. 4 is a functional block diagram of an analysis apparatus that executes a method for creating a model for analyzing a specific substance and a simulation method for the specific substance according to the embodiment of the present invention. As shown in FIG. 4, the analysis method 50, which is a computer including a processing unit 52 and a storage unit 54, implements the method for creating a specific substance analysis model and the specific material simulation method according to the present embodiment. This analysis device 50 is electrically connected to an input / output device 51 having an input means 53. The input means 53 inputs, to the processing unit 52 or the storage unit 54, various physical property values of the polymer and filler for which the analysis model for the specific substance is to be created, boundary conditions in the analysis, and the like. As the input means 53, for example, an input device such as a keyboard and a mouse is used.
 処理部52は、例えば、中央演算装置(CPU:Central Processing Unit)及びメモリを含む。処理部52は、各種処理を実行する際にコンピュータプログラムを記憶部54から読み込んでメモリに展開する。メモリに展開されたコンピュータプログラムは、各種処理を実行する。例えば、処理部52は、記憶部54から予め記憶された各種処理に係るデータを必要に応じて適宜メモリ上の自身に割り当てられた領域に展開し、展開したデータに基づいて特定物質の解析用モデルの作成及び特定物質の解析用モデルを用いた特定物質のシミュレーションに関する各種処理を実行する。 The processing unit 52 includes, for example, a central processing unit (CPU: Central Processing Unit) and a memory. The processing unit 52 reads a computer program from the storage unit 54 and develops it in a memory when executing various processes. The computer program expanded in the memory executes various processes. For example, the processing unit 52 expands data related to various processes stored in advance from the storage unit 54 to an area allocated to itself on the memory as necessary, and for analyzing a specific substance based on the expanded data. Various processes related to simulation of a specific substance using a model for model creation and a model for analysis of the specific substance are executed.
 処理部52は、モデル作成部52aと、条件設定部52bと、解析部52cとを含む。モデル作成部52aは、予め記憶部54に記憶されたデータに基づき、分子動力学法により特定物質の解析用モデルを作成する際のフィラー及びポリマーなどの特定物質の粒子数、分子数、分子量、分子鎖長、分子鎖数、分岐、形状、大きさ、反応時間、反応条件及び作成する解析用モデルに含まれる分子数である目標分子数などの構成要素の配置、設定及び計算ステップ数などの粗視化モデルの設定、分子鎖間などの相互作用などの各種計算パラメーターの初期条件の設定を行う。 The processing unit 52 includes a model creation unit 52a, a condition setting unit 52b, and an analysis unit 52c. The model creation unit 52a is based on the data stored in the storage unit 54 in advance, and the number of particles, the number of molecules, the molecular weight of the specific material such as filler and polymer when creating a model for analysis of the specific material by the molecular dynamics method, Molecular chain length, number of molecular chains, branching, shape, size, reaction time, reaction conditions, and the number of molecules included in the analysis model to be created Set coarse-grained models and initial conditions for various calculation parameters such as interactions between molecular chains.
 フィラー粒子11a間の相互作用及びポリマー粒子12a間の相互作用を調整する計算パラメーターとしては、下記式(1)で表されるレナード・ジョーンズポテンシャルのσ、εを用い、これらが調整される。ポテンシャルを計算する上限距離(カットオフ距離)を大きくすることで、遠距離まで働いた引力、斥力を調整できる。なお、フィラー粒子11a間の相互作用及びポリマー粒子12a間の相互作用が一定値になるまで順次、フィラー粒子11a間の相互作用及びポリマー粒子12a間の相互作用のパラメーターを小さくすることが好ましい。レナード・ジョーンズポテンシャルのσ、εを大きな値から徐々に本来の値に近づけることにより、分子を不自然な状態に導かない穏やかな速度で粒子の接近を行うことができる。また、カットオフ距離も徐々に小さくすることにより、適正な範囲で引力、斥力を調整できる。
Figure JPOXMLDOC01-appb-M000001
As calculation parameters for adjusting the interaction between the filler particles 11a and the interaction between the polymer particles 12a, σ and ε of Leonard-Jones potential expressed by the following formula (1) are used, and these are adjusted. By increasing the upper limit distance (cutoff distance) for calculating the potential, it is possible to adjust the attractive force and repulsive force that worked to a long distance. It is preferable that the interaction parameter between the filler particles 11a and the interaction between the polymer particles 12a are sequentially reduced until the interaction between the filler particles 11a and the interaction between the polymer particles 12a reach a constant value. By gradually bringing the σ and ε of the Leonard-Jones potential closer to the original values from large values, it is possible to approach the particles at a gentle speed that does not lead the molecule to an unnatural state. Further, by gradually reducing the cut-off distance, the attractive force and the repulsive force can be adjusted within an appropriate range.
Figure JPOXMLDOC01-appb-M000001
 モデル作成部52aは、初期条件の設定の後、平衡化計算を行う。平衡化計算では、所定の温度、密度及び圧力で、初期設定後の各種構成要素が平衡状態に到達する所定の時間、分子動力学計算を行う。そして、モデル作成部52aは、初期条件の設定及び平衡化の計算処理後に、計算領域A2内に特定物質の解析用モデルを作成するモデル作成領域A1を任意形状の領域として設定する。ここでは、モデル作成部52aは、モデル作成領域A1としては、例えば、略球体状、楕円体状、円錐状、円柱状、三角柱状、立方体状、直方体状、及び多面体状など任意形状の領域を指定する。 The model creation unit 52a performs balancing calculation after setting initial conditions. In the equilibration calculation, molecular dynamics calculation is performed at a predetermined temperature, density, and pressure for a predetermined time for various components after the initial setting to reach an equilibrium state. Then, after the initial condition setting and equilibration calculation processing, the model creation unit 52a sets the model creation region A1 for creating the analysis model of the specific substance in the calculation region A2 as an arbitrarily shaped region. Here, the model creation unit 52a includes, as the model creation region A1, for example, a region having an arbitrary shape such as a substantially spherical shape, an ellipsoidal shape, a conical shape, a cylindrical shape, a triangular prism shape, a cubic shape, a rectangular parallelepiped shape, and a polyhedral shape. specify.
 次に、モデル作成部52aは、作成したモデル作成領域A1内に複数のフィラー粒子11aによって構成されたフィラーモデル11を配置する。ここでは、モデル作成部52aは、別途作成したフィラーモデル11をモデル作成領域A1内に配置してもよく、モデル作成領域A1内にフィラーモデル11を作成してもよい。ここでは、モデル作成部52aは、乱数を用いるモンテカルロ法などのコンピュータを用いた分子動力学法によるシミュレーションでフィラーモデル11の配置位置を指定してもよい。 Next, the model creation unit 52a places the filler model 11 constituted by a plurality of filler particles 11a in the created model creation region A1. Here, the model creation unit 52a may arrange the filler model 11 created separately in the model creation area A1, or create the filler model 11 in the model creation area A1. Here, the model creation unit 52a may designate the arrangement position of the filler model 11 by a simulation by a molecular dynamics method using a computer such as a Monte Carlo method using a random number.
 次に、モデル作成部52aは、モデル作成領域A1内に作成するポリマーモデル12の作成条件を設定する。ここでは、モデル作成部52aは、ポリマーモデル12の作成条件として設定したポリマーの分子鎖長、ポリマーモデル12の分子鎖数及びポリマーモデル12中の分子鎖の密度を設定する。 Next, the model creation unit 52a sets conditions for creating the polymer model 12 to be created in the model creation area A1. Here, the model creation unit 52a sets the molecular chain length of the polymer, the number of molecular chains of the polymer model 12, and the density of the molecular chains in the polymer model 12 set as the creation conditions of the polymer model 12.
 次に、モデル作成部52aは、設定したポリマーモデル12の作成条件に基づいてモデル作成領域A1内におけるフィラーモデル11の配置領域外にポリマー粒子12aを配置して特定物質の解析用モデルを作成する。ここでは、モデル作成部52aは、設定したポリマーモデル12の作成条件を満たすまでフィラーモデル11の配置領域外にポリマー粒子12aを配置して特定物質の解析用モデルを作成する。また、モデル作成部52aは、モデル作成領域A1の体積を拡大した状態でポリマーモデル12を作成し、作成後にモデル作成領域A1の体積を縮小してもよい。また、モデル作成部52aは、モデル作成領域A1内の圧力を低下させた状態でポリマーモデル12を配置し、作成後に圧力を元に戻してもよい。また、モデル作成部52aは、必要に応じてポリマーにフィラーとの親和性を高める水酸基、カルボニル基、及び原子団の官能基などの変性剤を配合してもよい。 Next, the model creation unit 52a creates a model for analyzing a specific substance by placing the polymer particles 12a outside the placement area of the filler model 11 in the model creation area A1 based on the created creation conditions of the polymer model 12. . Here, the model creation unit 52a creates a model for analyzing a specific substance by placing the polymer particles 12a outside the placement region of the filler model 11 until the creation condition of the set polymer model 12 is satisfied. Further, the model creation unit 52a may create the polymer model 12 in a state where the volume of the model creation region A1 is enlarged, and reduce the volume of the model creation region A1 after creation. Moreover, the model creation part 52a may arrange | position the polymer model 12 in the state which reduced the pressure in model creation area | region A1, and may return a pressure after creation. Moreover, the model creation part 52a may mix | blend modifiers, such as a hydroxyl group, a carbonyl group, and a functional group of an atomic group which raise affinity with a filler to a polymer as needed.
 また、モデル作成部52aは、作成したフィラーモデル11とゴム、樹脂、及びエラストマーなどのポリマーを用いたポリマーモデル12とを併用して解析を行う場合には、フィラーモデル11を作成した後に、モデル作成領域A1内にポリマー原子及び複数のポリマー原子の集合体であるポリマー粒子12a及び/又はポリマーモデル12をモデル作成領域A1内に所定密度で充填して解析用モデルを作成する。 When the model creation unit 52a performs analysis using the created filler model 11 and the polymer model 12 using a polymer such as rubber, resin, and elastomer, the model creation unit 52a creates the model after creating the filler model 11. A model for analysis is created by filling the creation area A1 with polymer particles 12a and / or polymer models 12 that are aggregates of polymer atoms and a plurality of polymer atoms in the model creation area A1 at a predetermined density.
 次に、モデル作成部52aは、ポリマーモデル12の一部のポリマー粒子12aを除去してフィラーモデル11の解析用モデル2に対応した形状を有する領域であるポリマー粒子除去領域A4を作成し、作成したポリマー粒子除去領域A4にフィラーの解析用モデルを配置する。 Next, the model creation unit 52a creates a polymer particle removal region A4 that is a region having a shape corresponding to the analysis model 2 of the filler model 11 by removing a part of the polymer particles 12a of the polymer model 12. A filler analysis model is placed in the polymer particle removal region A4.
 条件設定部52bは、モデル作成部52aで作成した特定物質の解析用モデル及びポリマーモデル12を用いた分子動力学法による運動シミュレーション(解析)を実行するための各種条件を設定する。条件設定部52bは、入力手段53からの入力及び記憶部54に記憶されている情報に基づいて各種条件を設定する。各種条件としては、解析を実行するフィラーの位置及び数、フィラー原子、フィラー原子団、フィラー粒子及びフィラー粒子群の位置及び数、フィラー粒子番号、ポリマーの分子鎖の位置及び数、ポリマー原子、ポリマー原子団、ポリマー粒子及びポリマー粒子群の位置及び数、ポリマー粒子番号、予め設定した物理量履歴である応力ひずみ曲線及び条件を変更しない固定値などが含まれる。 The condition setting unit 52b sets various conditions for executing a motion simulation (analysis) by the molecular dynamics method using the model for analyzing the specific substance created by the model creating unit 52a and the polymer model 12. The condition setting unit 52 b sets various conditions based on the input from the input unit 53 and the information stored in the storage unit 54. Various conditions include the position and number of fillers to be analyzed, the position and number of filler atoms, filler atomic groups, filler particles and filler particles, filler particle number, the position and number of polymer molecular chains, polymer atoms, and polymers. The position and number of atomic groups, polymer particles, and polymer particle groups, polymer particle numbers, stress strain curves that are preset physical quantity histories, and fixed values that do not change conditions are included.
 解析部52cは、モデル作成部52aにより作成されたフィラーモデル11及びポリマーモデル12を含む特定物質の解析用モデルを用いた分子動力学法による緩和計算、伸長解析、せん断解析などの変形解析などの運動シミュレーションを実行して各種物理量を取得する。ここでの物理量としては、シミュレーションの結果得られる運動変位及び公称応力又は運動変位を演算して得られる公称ひずみなどが挙げられる。これにより、任意に作成した複雑な形状のフィラーモデル11をポリマーモデル12中に配置するので、フィラーの形状がポリマーに及ぼす影響を解析することが可能となり、フィラーモデル11の挿入により生じた不安定構造を解消して平衡状態が得られる。さらに、任意に作成した複雑な形状の特定物質の解析用モデルを用いて変形解析を実行するので、特定物質の形状が材料特性に及ぼす影響を解析することが可能となり、コンパウンドの力学特性を得ることが可能となる。 The analysis unit 52c performs deformation calculations such as relaxation calculation by a molecular dynamics method using a model for analyzing a specific substance including the filler model 11 and the polymer model 12 created by the model creation unit 52a, elongation analysis, deformation analysis such as shear analysis, and the like. Various physical quantities are acquired by executing motion simulation. Examples of the physical quantity here include a motion displacement obtained as a result of simulation and a nominal strain obtained by calculating a nominal stress or motion displacement. Thereby, since the arbitrarily created filler model 11 having a complicated shape is arranged in the polymer model 12, it is possible to analyze the influence of the filler shape on the polymer, and the instability caused by the insertion of the filler model 11 is possible. Equilibrium is obtained by eliminating the structure. In addition, deformation analysis is performed using an arbitrarily created model for analyzing a specific substance with a complex shape, so it is possible to analyze the effect of the shape of the specific substance on the material properties and obtain the mechanical properties of the compound. It becomes possible.
 記憶部54は、ハードディスク装置、光磁気ディスク装置、フラッシュメモリ及びCD-ROMなどの読み出しのみが可能な記録媒体である不揮発性のメモリ、並びに、RAM(Random Access Memory)のような読み出し及び書き込みが可能な記録媒体である揮発性のメモリが適宜組み合わせられる。 The storage unit 54 is a non-volatile memory that is a readable recording medium such as a hard disk device, a magneto-optical disk device, a flash memory, and a CD-ROM, and a read / write operation such as a RAM (Random Access Memory). A volatile memory which is a possible recording medium is appropriately combined.
 記憶部54には、入力手段53を介して解析対象となる特定物質の解析用モデルを作成するためのデータであるゴムカーボンブラック、シリカ、及びアルミナなどのフィラーのデータ、ゴム、樹脂、及びエラストマーなどのポリマーのデータ、予め設定した物理量履歴である応力ひずみ曲線及び本実施の形態に係る特定物質の解析用モデルの作成方法、特定物質のシミュレーション方法を実現するためのコンピュータプログラムなどが格納されている。このコンピュータプログラムは、コンピュータ又はコンピュータシステムに既に記録されているコンピュータプログラムとの組み合わせによって、本実施の形態に係る特定物質のシミュレーション方法を実現できるものであってもよい。ここでいう「コンピュータシステム」とは、OS(Operating System)及び周辺機器などのハードウェアを含むものとする。 The storage unit 54 stores data for fillers such as rubber carbon black, silica, and alumina, which are data for creating a model for analysis of a specific substance to be analyzed via the input means 53, rubber, resin, and elastomer. Such as polymer data, stress strain curves which are preset physical quantity history, a method for creating a model for analyzing a specific substance according to the present embodiment, a computer program for realizing a method for simulating a specific substance, and the like are stored. Yes. This computer program may be capable of realizing the specific substance simulation method according to the present embodiment in combination with a computer program already recorded in the computer or computer system. The “computer system” here includes hardware such as an OS (Operating System) and peripheral devices.
 表示手段55は、例えば、液晶表示装置等の表示用デバイスである。なお、記憶部54は、データベースサーバなどの他の装置内にあってもよい。例えば、解析装置50は、入出力装置51を備えた端末装置から通信により処理部52及び記憶部54にアクセスするものであってもよい。 The display means 55 is a display device such as a liquid crystal display device. The storage unit 54 may be in another device such as a database server. For example, the analysis device 50 may access the processing unit 52 and the storage unit 54 by communication from a terminal device including the input / output device 51.
 次に、図5を参照して本実施の形態に係る特定物質の解析用モデルの作成方法の具体例について説明する。図5は、本実施の形態に係る特定物質の解析用モデルの作成方法の一例の概略を示すフロー図である。 Next, a specific example of a method for creating a model for analyzing a specific substance according to the present embodiment will be described with reference to FIG. FIG. 5 is a flowchart showing an outline of an example of a method for creating a specific substance analysis model according to the present embodiment.
 図5に示すように、開始時には、モデル作成部52aが、入力手段53を介して予め記憶部54に記憶されたフィラー及びポリマーをモデル化するためのデータであるフィラー及びポリマーなどの特定物質の粒子数、分子数、分子量、分子鎖長、分子鎖数、分岐、形状、大きさ、反応時間、反応条件及び作成する解析用モデルに含まれる分子数である目標分子数などの構成要素の配置、予め設定した物理量履歴である応力ひずみ曲線及び条件を変更しない固定値などのフィラー及びポリマーをモデル化するための各種データを読込む。続いて、モデル作成部52aは、各種データに基づいて、初期条件の設定及び分子動力学計算により平衡化計算を行う。 As shown in FIG. 5, at the start, the model creation unit 52 a uses data for modeling the filler and polymer stored in the storage unit 54 in advance via the input unit 53. Arrangement of components such as number of particles, number of molecules, molecular weight, molecular chain length, number of molecular chains, branching, shape, size, reaction time, reaction conditions and target number of molecules, which is the number of molecules included in the model to be created Various data for modeling fillers and polymers such as stress strain curves that are physical quantity history set in advance and fixed values that do not change conditions are read. Subsequently, the model creation unit 52a performs equilibration calculation by setting initial conditions and calculating molecular dynamics based on various data.
 次に、モデル作成部52aは、仮想空間である計算領域A2内に特定物質のモデル作成領域A1を設定する(ステップST1)。次に、モデル作成部52aは、モデル作成領域A1内に必要数のフィラーモデル11を配置する(ステップST2)。ここでは、モデル作成部52aは、別途作成したフィラーモデル11をモデル作成領域A1内に配置してもよく、モデル作成領域A1内でフィラーモデル11を作成してもよい。 Next, the model creation unit 52a sets the model creation area A1 of the specific substance in the calculation area A2 which is a virtual space (step ST1). Next, the model creation unit 52a places the required number of filler models 11 in the model creation area A1 (step ST2). Here, the model creation unit 52a may arrange the filler model 11 created separately in the model creation area A1, or create the filler model 11 in the model creation area A1.
 続いて、モデル作成部52aは、モデル作成領域A1内に作成するポリマーモデル12のポリマーモデル12の分子鎖長、ポリマーモデル12の分子鎖数及びポリマーモデル12の分子鎖数の密度などのポリマーモデル12の作成条件及び配置条件を設定する(ステップST3)。次に、モデル作成部52aは、モデル作成領域A1のフィラーモデル11の配置領域外にポリマーモデル12を順次追加する(ステップST4)。そして、モデル作成部52aは、モデル作成領域A1のフィラーモデル11の配置領域外に作成されるポリマーモデル12が設定したポリマーモデル作成条件を満たすか否かを判定し(ステップST5)、ポリマーモデル作成条件を満たしていない場合には、更にポリマーモデル12を追加する(ステップST5:No)。また、モデル作成部52aは、ポリマーモデル12が設定したポリマーモデル作成条件を満たした場合には、解析用モデルの作成を終了する(ステップST5:Yes)。また、モデル作成部52aは、作成した特定物質の解析用モデルのデータを記憶部54に格納して特定物質の解析用モデルの作成を終了する。 Subsequently, the model creation unit 52a creates a polymer model such as the molecular chain length of the polymer model 12 of the polymer model 12 to be created in the model creation region A1, the number of molecular chains of the polymer model 12, and the density of the number of molecular chains of the polymer model 12. 12 creation conditions and arrangement conditions are set (step ST3). Next, the model creation unit 52a sequentially adds the polymer model 12 outside the arrangement area of the filler model 11 in the model creation area A1 (step ST4). Then, the model creation unit 52a determines whether or not the polymer model 12 that is created outside the arrangement area of the filler model 11 in the model creation area A1 satisfies the set polymer model creation condition (step ST5). If the condition is not satisfied, the polymer model 12 is further added (step ST5: No). Further, when the polymer model 12 satisfies the polymer model creation conditions set by the polymer model 12, the model creation unit 52a ends the creation of the analysis model (step ST5: Yes). In addition, the model creation unit 52a stores the created analysis model data of the specific substance in the storage unit 54, and ends the creation of the analysis model of the specific substance.
 次に、条件設定部52bは、入力手段53からの入力又は記憶部54に記憶されている情報に基づいて、フィラーの解析用モデルを用いた分子動力学法による運動シミュレーション(解析)の条件を設定する。次に、解析部52cは、条件設定部52bによって設定された条件に基づいて、モデル作成部52aによって作成されたフィラーの解析用モデルを用いて緩和計算及び変形解析などの解析を行い公称応力及び公称ひずみなどの物理量を取得する。また、解析部52cは、緩和計算及び変形解析などによって得られた解析結果を記憶部54に格納する。 Next, the condition setting unit 52b sets the conditions for the motion simulation (analysis) by the molecular dynamics method using the filler analysis model based on the input from the input means 53 or the information stored in the storage unit 54. Set. Next, the analysis unit 52c performs analysis such as relaxation calculation and deformation analysis using the filler analysis model created by the model creation unit 52a based on the condition set by the condition setting unit 52b, and performs the analysis of the nominal stress and Get physical quantities such as nominal strain. Further, the analysis unit 52c stores the analysis result obtained by the relaxation calculation and the deformation analysis in the storage unit 54.
 以上説明したように、上記実施の形態に係る特定物質の解析用モデルの作成方法によれば、指定したモデル作成領域A1内にフィラーモデル11を配置してから、フィラーの配置領域外にポリマーモデル12を配置して特定物質の解析用モデルを作成するので、フィラーモデル11が複雑な形状であっても、ポリマーモデル12を容易に作成することが可能となる。これにより、任意形状の特定物質の解析用モデルを容易に作成できるので、特定物質の材料特性に及ぼす影響を正確に解析できる特定物質の解析用モデルの作成方法を実現できる。 As described above, according to the method for creating a model for analyzing a specific substance according to the above embodiment, the polymer model is placed outside the filler placement area after the filler model 11 is placed in the designated model creation area A1. Since the analysis model of the specific substance is created by arranging 12, the polymer model 12 can be easily created even if the filler model 11 has a complicated shape. This makes it possible to easily create a model for analyzing a specific substance having an arbitrary shape, thereby realizing a method for creating a model for analyzing a specific substance that can accurately analyze the influence of the specific substance on the material characteristics.
 1,2,3 解析用モデル
 11 フィラー
 11a フィラー粒子
 50 解析装置
 51 入出力装置
 52 処理部
 52a モデル作成部
 52b 条件設定部
 52c 解析部
 53 入力手段
 54 記憶部
 55 表示手段
1, 2, 3 Model for analysis 11 Filler 11a Filler particle 50 Analysis device 51 Input / output device 52 Processing unit 52a Model creation unit 52b Condition setting unit 52c Analysis unit 53 Input unit 54 Storage unit 55 Display unit

Claims (10)

  1.  コンピュータを用いて分子動力学法により少なくとも2つの物質を含有する特定物質の解析用モデルを作成する特定物質の解析用モデルの作成方法であって、
     特定物質の解析用モデルを作成するモデル作成領域を設定する第1ステップと、
     前記モデル作成領域内に複数の粒子によって構成された第1物質のモデルを配置する第2ステップと、
     前記モデル作成領域内に配置する第2物質のモデルの作成条件及び配置条件を設定する第3ステップと、
     設定した前記作成条件及び前記配置条件に基づいて前記モデル作成領域内における前記第1物質の配置領域外に前記第2物質のモデルを配置して前記特定物質の解析用モデルを作成する第4ステップと、
     を含むことを特徴とする、特定物質の解析用モデルの作成方法。
    A method for creating a model for analyzing a specific substance that creates a model for analyzing a specific substance containing at least two substances by molecular dynamics using a computer,
    A first step of setting a model creation area for creating a model for analysis of a specific substance;
    A second step of disposing a model of a first substance composed of a plurality of particles in the model creation region;
    A third step of setting creation conditions and placement conditions for a model of the second substance to be placed in the model creation area;
    A fourth step of creating a model for analysis of the specific substance by placing the model of the second substance outside the placement area of the first substance in the model creation area based on the set creation condition and the placement condition; When,
    A method for creating a model for analyzing a specific substance, characterized by comprising:
  2.  前記第2ステップにおいて、コンピュータを用いた分子動力学法によるシミュレーションで前記第1物質の配置位置を指定する、請求項1に記載の特定物質の解析用モデルの作成方法。 The method for creating a model for analyzing a specific substance according to claim 1, wherein, in the second step, an arrangement position of the first substance is designated by a simulation by a molecular dynamics method using a computer.
  3.  前記第4ステップにおいて、前記第2物質のモデルを前記モデル作成領域内に存在する前記第2物質のモデルと重ならないように順次追加する、請求項1又は請求項2に記載の特定物質の解析用モデルの作成方法。 The specific substance analysis according to claim 1 or 2, wherein in the fourth step, the model of the second substance is sequentially added so as not to overlap with the model of the second substance existing in the model creation region. How to create a model for use.
  4.  前記第4ステップにおいて、前記モデル作成領域の大きさを拡大した状態で前記第2物質のモデルを作成してから、前記モデル作成領域の大きさを縮小する、請求項1から請求項3のいずれか1項に記載の特定物質の解析用モデルの作成方法。 4. The method according to claim 1, wherein, in the fourth step, the model of the second substance is created in a state where the size of the model creation region is enlarged, and then the size of the model creation region is reduced. A method for creating a model for analyzing a specific substance according to claim 1.
  5.  前記第1物質が、フィラーである、請求項1から請求項4のいずれか1項に記載の特定物質の解析用モデルの作成方法。 The method for creating a model for analyzing a specific substance according to any one of claims 1 to 4, wherein the first substance is a filler.
  6.  前記第2物質が、高分子材料である、請求項1から請求項5のいずれか1項に記載の特定物質の解析用モデルの作成方法。 The method for creating a model for analyzing a specific substance according to any one of claims 1 to 5, wherein the second substance is a polymer material.
  7.  請求項1から請求項6のいずれか1項に記載の特定物質の解析用モデルの作成方法をコンピュータに実行させることを特徴とする、特定物質の解析用モデルの作成用コンピュータプログラム。 A computer program for creating a specific substance analysis model, which causes a computer to execute the method for creating a specific substance analysis model according to any one of claims 1 to 6.
  8.  請求項1から請求項6のいずれか1項に記載の特定物質の解析用モデルの作成方法で作成した前記第1物質のモデルと前記第2物質のモデルとの間に相互作用を設定し、分子動力学法を用いて緩和計算を実行することを特徴とする特定物質のシミュレーション方法。 An interaction is set between the model of the first substance and the model of the second substance created by the method for creating a model for analyzing a specific substance according to any one of claims 1 to 6, A method for simulating a specific substance, wherein relaxation calculation is performed using a molecular dynamics method.
  9.  請求項1から請求項6のいずれか1項に記載の特定物質の解析用モデルの作成方法で作成した特定物質の解析用モデルを用いて変形解析を実行することを特徴とする、特定物質のシミュレーション方法。 A deformation analysis is performed using a specific substance analysis model created by the method for creating a specific substance analysis model according to any one of claims 1 to 6. Simulation method.
  10.  請求項8又は請求項9に記載の特定物質のシミュレーション方法をコンピュータに実行させることを特徴とする、特定物質のシミュレーション用コンピュータプログラム。 A computer program for simulation of a specific substance, which causes a computer to execute the simulation method for the specific substance according to claim 8 or 9.
PCT/JP2015/071019 2014-07-24 2015-07-23 Method for creating analysis model for specific substances, computer program for creating analysis model for specific substances, simulation method for specific substances, and computer program for simulation of specific substances WO2016013631A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-151189 2014-07-24
JP2014151189A JP6500360B2 (en) 2014-07-24 2014-07-24 Method of creating model for analysis of specific substance, computer program for creation of model for analysis of specific substance, simulation method of specific substance, and computer program for simulation of specific substance

Publications (1)

Publication Number Publication Date
WO2016013631A1 true WO2016013631A1 (en) 2016-01-28

Family

ID=55163155

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/071019 WO2016013631A1 (en) 2014-07-24 2015-07-23 Method for creating analysis model for specific substances, computer program for creating analysis model for specific substances, simulation method for specific substances, and computer program for simulation of specific substances

Country Status (2)

Country Link
JP (1) JP6500360B2 (en)
WO (1) WO2016013631A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6759737B2 (en) * 2016-06-10 2020-09-23 横浜ゴム株式会社 Method for creating a model for analysis of a composite material, computer program for creating a model for analysis of a composite material, method for analyzing a composite material, and computer program for analyzing a composite material
JP6834182B2 (en) * 2016-06-10 2021-02-24 横浜ゴム株式会社 Composite material analysis model creation method, composite material analysis model creation computer program, composite material analysis method and composite material analysis computer program
JP6891548B2 (en) * 2017-03-08 2021-06-18 横浜ゴム株式会社 Composite material analysis model creation method, composite material analysis model creation computer program, composite material analysis method and composite material analysis computer program
JP7040152B2 (en) * 2018-03-12 2022-03-23 住友ゴム工業株式会社 Simulation method for polymer materials
JP6993939B2 (en) * 2018-06-26 2022-01-14 Toyo Tire株式会社 Methods, systems and programs to generate filler-filled uncrosslinked polymer models

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012177609A (en) * 2011-02-25 2012-09-13 Bridgestone Corp Model creation method of high polymer material
JP2014016163A (en) * 2012-07-05 2014-01-30 Sumitomo Rubber Ind Ltd Simulation method for high polymer material
JP2014025909A (en) * 2012-06-21 2014-02-06 Sumitomo Rubber Ind Ltd Polymeric material simulation method
JP2014110000A (en) * 2012-12-04 2014-06-12 Toyo Tire & Rubber Co Ltd Device for preparing filler-filled polymer model, method thereof and program
JP2015007908A (en) * 2013-06-25 2015-01-15 住友ゴム工業株式会社 Calculation method for interaction potentials between fillers

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012177609A (en) * 2011-02-25 2012-09-13 Bridgestone Corp Model creation method of high polymer material
JP2014025909A (en) * 2012-06-21 2014-02-06 Sumitomo Rubber Ind Ltd Polymeric material simulation method
JP2014016163A (en) * 2012-07-05 2014-01-30 Sumitomo Rubber Ind Ltd Simulation method for high polymer material
JP2014110000A (en) * 2012-12-04 2014-06-12 Toyo Tire & Rubber Co Ltd Device for preparing filler-filled polymer model, method thereof and program
JP2015007908A (en) * 2013-06-25 2015-01-15 住友ゴム工業株式会社 Calculation method for interaction potentials between fillers

Also Published As

Publication number Publication date
JP2016024787A (en) 2016-02-08
JP6500360B2 (en) 2019-04-17

Similar Documents

Publication Publication Date Title
JP6492439B2 (en) Method for creating model for analyzing specific substance, computer program for creating model for analyzing specific substance, simulation method for specific substance, and computer program for simulating specific substance
WO2016013631A1 (en) Method for creating analysis model for specific substances, computer program for creating analysis model for specific substances, simulation method for specific substances, and computer program for simulation of specific substances
JP6613724B2 (en) Method for creating composite material analysis model, computer program for creating composite material analysis model, composite material simulation method, and composite material simulation computer program
JP6492438B2 (en) Method for creating model for analyzing specific substance, computer program for creating model for analyzing specific substance, simulation method for specific substance, and computer program for simulating specific substance
JP6759733B2 (en) Agglomerate model creation method, agglomerate model creation computer program, composite material analysis method and composite material analysis computer program
JP5432549B2 (en) Rubber material simulation method
JP7243442B2 (en) Composite material analysis method and computer program for composite material analysis
JP6244773B2 (en) Composite material analysis model creation method, composite material analysis computer program, composite material simulation method, and composite material simulation computer program
JP5592921B2 (en) Method for simulating polymer materials
JP6958112B2 (en) Composite material analysis method and computer program for composite material analysis
JP6464796B2 (en) Composite material analysis method, composite material analysis computer program, composite material analysis result evaluation method, and composite material analysis result evaluation computer program
WO2016013632A1 (en) Method for evaluating analysis results for specific substances, computer program for evaluating analysis results for specific substances, analysis method for specific substances, simulation method for specific substances, and computer program for simulation of specific substances
JP7348470B2 (en) Composite material model creation method, composite material analysis method, and computer program for composite material analysis
JP2017049056A (en) Analysis method of composite material, computer program for analysis of composite material, evaluation method of analysis result of composite material and computer program for evaluation of analysis result of composite material
JP6484921B2 (en) Analysis method of specific substance and computer program for analysis
JP6746971B2 (en) Composite material analysis method and computer program for composite material analysis
JP7056137B2 (en) Analysis method of specific substance and computer program for analysis of specific substance
JP7006219B2 (en) Analysis method of specific substance and computer program for analysis of specific substance
JP6834182B2 (en) Composite material analysis model creation method, composite material analysis model creation computer program, composite material analysis method and composite material analysis computer program
JP6759737B2 (en) Method for creating a model for analysis of a composite material, computer program for creating a model for analysis of a composite material, method for analyzing a composite material, and computer program for analyzing a composite material
JP2015064645A (en) Analysis method of specific substance and computer program for analysis
JP6552938B2 (en) Method, apparatus and program for calculating hysteresis loss of filler filled rubber
JP7127442B2 (en) Composite material analysis method and computer program for composite material analysis
JP7006220B2 (en) Analysis method of specific substance and computer program for analysis of specific substance
JP6891548B2 (en) Composite material analysis model creation method, composite material analysis model creation computer program, composite material analysis method and composite material analysis computer program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15824088

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15824088

Country of ref document: EP

Kind code of ref document: A1