WO2016013543A1 - Resin composition for forming cured film, cured film, electrically conductive member, and method for preventing migration - Google Patents

Resin composition for forming cured film, cured film, electrically conductive member, and method for preventing migration Download PDF

Info

Publication number
WO2016013543A1
WO2016013543A1 PCT/JP2015/070691 JP2015070691W WO2016013543A1 WO 2016013543 A1 WO2016013543 A1 WO 2016013543A1 JP 2015070691 W JP2015070691 W JP 2015070691W WO 2016013543 A1 WO2016013543 A1 WO 2016013543A1
Authority
WO
WIPO (PCT)
Prior art keywords
cured film
resin composition
group
meth
migration
Prior art date
Application number
PCT/JP2015/070691
Other languages
French (fr)
Japanese (ja)
Inventor
隼人 服部
智久 山田
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to CN201580039411.4A priority Critical patent/CN106536620A/en
Priority to KR1020167034451A priority patent/KR102341781B1/en
Priority to JP2016535934A priority patent/JP6787125B2/en
Publication of WO2016013543A1 publication Critical patent/WO2016013543A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/101Esters; Ether-esters of monocarboxylic acids
    • C08K5/103Esters; Ether-esters of monocarboxylic acids with polyalcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3472Five-membered rings
    • C08K5/3475Five-membered rings condensed with carbocyclic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • C08K5/3495Six-membered rings condensed with carbocyclic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09D133/10Homopolymers or copolymers of methacrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports

Definitions

  • the present invention relates to a cured film forming resin composition, a cured film, a conductive member, and a method for suppressing migration.
  • Patent Document 1 a protective film, an insulating film, and the like necessary for a touch panel and the like have been formed in a necessary portion by pattern processing by a photolithography method using a photosensitive resin composition.
  • the film substrate is stored in the form of a roll or the like at the time of storage. At this time, the substrate is curved, so that the material applied on the film substrate is required to have the same flexibility as the film.
  • Patent Document 2 various developments regarding touch panels using metal nanowires as an alternative to ITO have been made (Patent Document 2, etc.).
  • Patent Document 2 there is a problem that metal migration occurs, which causes a short circuit. Therefore, there is a demand for an overcoat material that can suppress migration and protect electrodes, wiring, and the like.
  • the conventional overcoat material is intended for application on a glass substrate and contains inorganic fine particles in order to increase the hardness (Patent Document 3).
  • the conventional method such as the inclusion of inorganic fine particles improves the hardness, but is not flexible, for example, it causes inconveniences such as cracking when bent, so it is applicable to application to a film substrate. The situation was impossible.
  • the present invention has been made in view of the above problems, and can form a film at a necessary site by a simple method such as a printing method, and has high light transmittance, high adhesion, high hardness, and high flexibility. It is an object of the present invention to provide a composition capable of forming a cured film having a migration suppressing ability, a cured film formed from the composition, a conductive member having the cured film, and a migration suppressing method. .
  • a migration inhibitor / ion trapping agent comprising a (meth) acrylate polymer having a weight average molecular weight of 5,000 to 200,000 and a benzotriazole compound.
  • the present invention has been completed by finding that the above problems can be solved by a composition containing a solvent and a solvent.
  • the present invention provides the following cured film forming resin composition, cured film, conductive member, and migration suppression method.
  • a (meth) acrylate polymer having a weight average molecular weight of 5,000 to 200,000 (excluding those having a silane structure in the side chain) (B) A cured film forming resin composition comprising a migration inhibitor / ion trapping agent comprising a benzotriazole compound, and (C) a solvent.
  • B A cured film forming resin composition comprising a migration inhibitor / ion trapping agent comprising a benzotriazole compound, and (C) a solvent.
  • D 1 resin composition for cured film formation containing a silane coupling agent.
  • a method of suppressing migration from the electrode and / or wiring of a structure having a cured film formed from a cured film-forming resin composition on a substrate on which electrodes and / or wiring are formed A method comprising using any one of the cured film forming resin compositions 1 to 5 as the cured film forming resin composition.
  • 9. Inhibition of migration from the electrode and / or wiring of the structure having a cured film formed from a resin composition containing a (meth) acrylate polymer and a solvent on the substrate on which the electrode and / or wiring is formed A method, A method comprising adding a benzotriazole compound to the composition.
  • the cured film obtained by using the resin composition for forming a cured film of the present invention is excellent in light transmittance, adhesion, and hardness, and further has a metal migration suppressing ability. Therefore, it is useful as a material for forming a cured film such as a protective film, an insulating film, or the like in a touch panel such as a protective film, a planarizing film, or an insulating film in various displays such as an organic electroluminescence (EL) element. Moreover, since it is excellent also in a softness
  • the conductive member of the present invention includes an electrode and / or wiring and the cured film formed so as to be in contact therewith.
  • the cured film has not only the properties of high light transmittance, high adhesion and high hardness required for cured films used in various displays such as organic EL elements, but also has migration suppression ability, so that the conductive property of the present invention.
  • the metal member is excellent in durability because migration of metal is suppressed.
  • the electroconductive member of this invention can be suitably employ
  • the migration suppression method of the present invention by using a benzotriazole compound, metal migration can be suppressed while maintaining the light transmittance, adhesion and hardness of the cured film.
  • FIG. 4 is a diagram showing a silver pattern after a migration resistance evaluation test related to Example 1. It is a figure which shows the silver pattern after the test of migration resistance evaluation regarding the comparative example 1.
  • FIG. 4 is a diagram showing a silver pattern after a migration resistance evaluation test related to Example 1. It is a figure which shows the silver pattern after the test of migration resistance evaluation regarding the comparative example 1.
  • the resin composition for forming a cured film of the present invention comprises (A) a (meth) acrylate polymer having a weight average molecular weight of 5,000 to 200,000, (B) a migration inhibitor / ion trap agent comprising a benzotriazole compound, And (C) contains a solvent.
  • the component (A) contained in the composition of the present invention is a (meth) acrylate polymer having a weight average molecular weight of 5,000 to 200,000.
  • the (meth) acrylate polymer is a polymer having monomer units derived from at least one monomer selected from acrylate compounds and methacrylate compounds.
  • the (meth) acrylate polymer in the present invention does not contain a silane structure in the side chain from the viewpoint of storage stability.
  • suitable (meth) acrylate compounds include those represented by the formula (1).
  • R 1 represents a hydrogen atom or a methyl group.
  • R 2 represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms which may be substituted with a hydroxy group, an epoxy group, an acryloyl group, a methacryloyl group or an isocyanate group.
  • the alkyl group having 1 to 20 carbon atoms may be linear, branched or cyclic.
  • Examples of (meth) acrylate compounds include acrylic acid, methacrylic acid, methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, n-propyl acrylate, n-propyl methacrylate, isopropyl acrylate, isopropyl methacrylate, and 2,2,2-trifluoro.
  • the monomer preferably contains one kind selected from methyl methacrylate and ethyl methacrylate.
  • the (meth) acrylate polymer may contain other monomer units other than the monomer units derived from acrylate and methacrylate.
  • Typical examples of the monomer that gives other monomer units include styrene compounds, vinyl compounds, maleimide compounds, acrylonitrile, and maleic anhydride.
  • styrene compound examples include styrene, methylstyrene, chlorostyrene, bromostyrene, 4-t-butylstyrene and the like.
  • vinyl compound examples include methyl vinyl ether, benzyl vinyl ether, vinyl naphthalene, vinyl anthracene, vinyl biphenyl, vinyl carbazole, 2-hydroxyethyl vinyl ether, phenyl vinyl ether, propyl vinyl ether, and the like.
  • maleimide compounds include maleimide, N-methylmaleimide, N-phenylmaleimide, N-cyclohexylmaleimide and the like.
  • a styrene compound is preferable, and styrene is more preferable.
  • the content of the monomer unit derived from the (meth) acrylate compound in the (meth) acrylate polymer is preferably 50 mol% or more, More preferably, it is 60 mol% or more, More preferably, it is 70 mol% or more, More preferably, it is 80 mol% or more.
  • a commercially available product may be used as the (meth) acrylate polymer, but a polymer produced by polymerizing the above-described monomers may be used.
  • radical polymerization As the polymerization method, radical polymerization, anionic polymerization, cationic polymerization, and the like can be adopted. However, radical polymerization is preferable because a (meth) acrylate polymer having a weight average molecular weight necessary in the present invention can be produced relatively easily.
  • Initiators include peroxides such as benzoyl peroxide, cumene hydroperoxide, and t-butyl hydroperoxide; persulfates such as sodium persulfate, potassium persulfate, and ammonium persulfate; azobisisobutyronitrile, azobismethyl And azo compounds such as butyronitrile, azobisisovaleronitrile, 2,2′-azobis (isobutyric acid) dimethyl, and the like.
  • the amount of such an initiator used varies depending on the type and amount of the monomer and the reaction temperature, and thus cannot be specified unconditionally, but is usually about 0.005 to 0.05 mole per mole of monomer.
  • the reaction temperature during the polymerization may be appropriately set from 0 ° C. to the boiling point of the solvent used, but is usually about 20 to 100 ° C.
  • the reaction time is about 0.1 to 30 hours.
  • Polymerization is preferably performed in a solvent, and a solvent generally used in this kind of reaction can be used as a solvent for the polymerization reaction.
  • a solvent generally used in this kind of reaction can be used as a solvent for the polymerization reaction.
  • water methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, i-butyl alcohol, t-butyl alcohol, 1-pentanol, 2-pentanol, 3-pen Alcohols such as butanol, i-pentyl alcohol, t-pentyl alcohol, 1-hexanol, 1-heptanol, 2-heptanol, 3-heptanol, 2-octanol, 2-ethyl-1-hexanol, benzyl alcohol, cyclohexanol; diethyl Ethers such as ether, diisopropyl ether, dibutyl ether, cyclopentyl
  • the weight average molecular weight (Mw) of the (meth) acrylate polymer is 5,000 to 200,000 from the viewpoint of ensuring the solubility of the polymer and preparing a composition that provides a suitable cured film.
  • the upper limit is preferably 180,000, more preferably 150,000, even more preferably 100,000, still more preferably 80,000.
  • the lower limit value is preferably 10,000, more preferably 15,000, still more preferably 30,000, still more preferably 40,000. 000.
  • Mw is a polystyrene conversion measured value by gel permeation chromatography (GPC).
  • the (meth) acrylate polymer When the (meth) acrylate polymer is produced using two or more types of monomers, the (meth) acrylate polymer may be any of a random copolymer, an alternating copolymer, and a block copolymer.
  • the component (B) contained in the composition of the present invention is a migration inhibitor / ion trap agent comprising a benzotriazole compound.
  • benzotriazole compounds include alkyl group-substituted benzotriazole derivatives having 1 to 3 carbon atoms such as benzotriazole, 4-methylbenzotriazole, and 5-methylbenzotriazole. Among them, 5-methylbenzotriazole is preferable. preferable.
  • the content of the component (B) is preferably about 0.1 to 50 parts by mass with respect to 100 parts by mass of the component (A), but the migration is maintained while maintaining high light transmittance, high adhesion and high hardness. From the viewpoint of obtaining a cured film excellent in suppressing ability with good reproducibility, it is more preferably 1 to 30 parts by mass, and even more preferably 2 to 25 parts by mass.
  • composition of the present invention contains a benzotriazole compound, it is possible to realize excellent migration suppression without impairing the high transparency, high adhesion and high hardness of the cured film.
  • composition of the present invention is used in a solution state dissolved in a solvent.
  • the solvent used at that time can dissolve the components (A) and (B), and if it contains the components (D) to (H) and other additives described below, these can also be dissolved. There is no particular limitation.
  • the solvent examples include ethylene glycol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol diethyl ether, ethylene glycol isopropyl ether, ethylene glycol monobutyl ether, ethylene glycol dibutyl ether, ethylene glycol monohexyl ether, ethylene glycol mono Benzyl ether, ethylene glycol monophenyl ether, ethylene glycol monoacetate, ethylene glycol diacetate, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether acetate, diethylene glycol, diethylene glycol monomethyl ether, die Lenglycol dimethyl ether, diethylene glycol methyl ethyl ether, diethylene glycol monoethyl ether, diethylene glycol diethyl ether, diethylene glycol monobutyl ether, diethylene glycol dibutyl ether, diethylene glycol
  • the solvent can be used singly or in combination of two or more. Moreover, the solvent used when superposing
  • the solvent preferably has a boiling point of 150 ° C. or higher, more preferably 180 ° C. or higher, and even more preferably 200 ° C. or higher.
  • solvents include diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether, diethylene glycol monobutyl ether acetate, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dibutyl ether, diethylene glycol monohexyl ether, triethylene glycol Monobutyl ether, propylene glycol monobutyl ether, dipropylene glycol, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, diethylene glycol monophenyl ether, ethylene glycol monobenzyl ether Le, diethylene glycol benzyl ether or the like are particularly preferable.
  • At least one boiling point is preferably 150 ° C. or higher, more preferably 180 ° C. or higher, and even more preferably 200 ° C. or higher.
  • the amount of the solvent is preferably such that the solid content concentration in the composition of the present invention is 1 to 95% by mass, more preferably the solid content concentration is 5 to 90% by mass, An amount such that the concentration is 10 to 85% by mass is even more preferable.
  • solid content removes (C) solvent from all the components of the composition of this invention.
  • composition of the present invention contains the components (A) to (C), but from the viewpoint of improving the overcoat function, (D) a silane coupling agent, (E) a polyfunctional (meth) acrylate compound, (F) a radical polymerization initiator, (G) a polymerization inhibitor, (H) You may contain ion trap agents other than a benzotriazole compound.
  • the composition of the present invention preferably contains a silane coupling agent as the component (D) from the viewpoint of improving adhesion.
  • a silane coupling agent is a silane compound represented by the formula (2).
  • R 3 represents a methyl group or an ethyl group.
  • X represents a hydrolyzable group.
  • Y represents a reactive functional group.
  • m is an integer of 0 to 3.
  • n is an integer of 0 to 3, preferably an integer of 0 to 2.
  • Examples of the hydrolyzable group represented by X include a halogen atom, an alkoxy group having 1 to 3 carbon atoms, and an alkoxyalkoxy group having 2 to 4 carbon atoms.
  • Examples of the halogen atom include a chlorine atom and a bromine atom.
  • the alkoxy group having 1 to 3 carbon atoms is preferably linear or branched, and specifically includes a methoxy group, an ethoxy group, an n-propoxy group, and an i-propoxy group.
  • Specific examples of the alkoxyalkoxy group having 2 to 4 carbon atoms include a methoxymethoxy group, a 2-methoxyethoxy group, an ethoxymethoxy group, and a 2-ethoxyethoxy group.
  • Examples of the reactive functional group represented by Y include an amino group, a ureido group, a (meth) acryloxy group, a vinyl group, an epoxy group, a mercapto group, and the like, such as an amino group, a ureido group, and a (meth) acryloxy group. preferable. Particularly preferred is an amino group or a ureido group.
  • silane coupling agent examples include 3-aminopropyltrichlorosilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropylmethyldimethoxysilane, and 3-aminopropylmethyldiethoxysilane.
  • 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropyl Triethoxysilane and the like are particularly preferable.
  • a commercial item can be used as said silane coupling agent.
  • the content thereof is preferably 0.001 to 10 parts by mass, more preferably 0.01 to 5 parts by mass with respect to 100 parts by mass of the component (A). 0.05 to 1 part by mass is even more preferable. If the content is less than 0.001 part by mass, the effect of improving the adhesion may not be obtained, and if it exceeds 10 parts by mass, the hardness may decrease.
  • the composition of the present invention preferably contains a polyfunctional (meth) acrylate compound as the component (E).
  • the polyfunctional (meth) acrylate compound is a compound having at least three (meth) acryloxy groups in the molecule, and specifically includes an ester of a polyhydric alcohol and (meth) acrylic acid.
  • the number of (meth) acryloxy groups in one molecule is 3 to 6, preferably 3 or 4.
  • polyhydric alcohol examples include glycerol, erythritol, pentaerythritol, trimethylolethane, trimethylolpropane, dipentaerythritol, ditrimethylolpropane, and the like.
  • polyfunctional (meth) acrylate compound examples include pentaerythritol tetraacrylate, pentaerythritol tetramethacrylate, pentaerythritol triacrylate, pentaerythritol trimethacrylate, dipentaerythritol hexaacrylate, dipentaerythritol hexamethacrylate, dipentaerythritol pentane.
  • Examples include acrylate, dipentaerythritol pentamethacrylate, trimethylolethane triacrylate, trimethylolethane trimethacrylate, trimethylolpropane triacrylate, trimethylolpropane trimethacrylate, ditrimethylolpropane tetraacrylate, ditrimethylolpropane tetramethacrylate, and the like.
  • the polyfunctional (meth) acrylate compound can be easily obtained as a commercial product.
  • Specific examples thereof include, for example, KAYARAD (registered trademark) T-1420, DPHA, DPHA-2C manufactured by Nippon Kayaku Co., Ltd.
  • Aronix (registered trademark) M-210, M-240, M-6200, M-309, M-400, M-402, M-405, M-450, M-7100, M-8030, M-8060, M-1310, M-1600, M-1960, M-8100, M-8530, M-8560, M-9050; Biscoat 295, 300, 360, GPT, 3PA, 400, 260 manufactured by Osaka Organic Chemical Industry Co., Ltd. , 312, 335HP; Shin Nakamura Chemical Co., Ltd.
  • NK Esters A-9300, A-9300-1CL, A-GLY-9E, A-GLY-20E, A-TMM-3, A-TMM-3L, A -TMM-3LM-N, A-TMPT, AD-TMP, ATM-35E, A-TMMT, A-9550, A-DPH, TMPT, etc.
  • the content is preferably 10 to 300 parts by weight, more preferably 20 to 200 parts by weight with respect to 100 parts by weight of the component (A). 50 to 150 parts by mass is even more preferable.
  • the content is less than 10 parts by mass, the effect of improving the hardness of the cured film may not be obtained.
  • the content exceeds 300 parts by mass, the adhesion and flexibility characteristics are degraded and cracks are generated. May be easier to do.
  • a polyfunctional (meth) acrylate compound can be used 1 type or in combination of 2 or more types.
  • the composition of the present invention preferably contains a radical polymerization initiator as the component (F) from the viewpoint of initiation or acceleration of the polymerization of the component (E).
  • the component (E) is spontaneously polymerized by processing at a high temperature, but when a high-temperature curing process such as degeneration of the substrate is not possible, a low-temperature curing process or a photo-curing process is possible by adding the component (F) Become.
  • the radical polymerization initiator may be any substance that can release a substance that initiates radical polymerization by light irradiation and / or heating.
  • photo radical polymerization initiators include benzophenone derivatives, imidazole derivatives, bisimidazole derivatives, N-aryl glycine derivatives, organic azide compounds, titanocene compounds, aluminate complexes, organic peroxides, N-alkoxypyridinium salts, thioxanthone derivatives. Etc.
  • benzophenone 1,3-di (t-butyldioxycarbonyl) benzophenone, 3,3 ′, 4,4′-tetrakis (t-butyldioxycarbonyl) benzophenone, 3-phenyl-5- Isoxazolone, 2-mercaptobenzimidazole, bis (2,4,5-triphenyl) imidazole, 2,2-dimethoxy-1,2-diphenylethane-1-one, 1-hydroxycyclohexyl phenyl ketone, 2-benzyl- 2-Dimethylamino-1- (4-morpholinophenyl) butan-1-one, bis ( ⁇ 5-2,4-cyclopentadien-1-yl) bis (2,6-difluoro-3- (1H-pyrrole-1) -Yl) phenyl) titanium and the like, but are not limited thereto.
  • IRGACURE registered trademark
  • BASF commercially available products
  • IRGACURE registered trademark
  • DAROCUR manufactured by BASF
  • Speedcure registered trademark
  • MBB Speedcure
  • CTX CTX
  • EDB EDB manufactured by Lambson
  • Esacure registered trademark
  • KAYACURE registered trademark
  • DETX manufactured by Nippon Kayaku Co., Ltd. -S, CTX, BMS, DMBI, etc.
  • thermal radical polymerization initiator examples include acetyl peroxide, benzoyl peroxide, methyl ethyl ketone peroxide, cyclohexanone peroxide, hydrogen peroxide, t-butyl hydroperoxide, cumene hydroperoxide, di-t-butyl peroxide, dicumyl peroxide, Peroxides such as lauroyl peroxide, t-butylperoxyacetate, t-butylperoxypivalate, t-butylperoxy-2-ethylhexanoate (t-butyl-2-ethylhexaneperoxoate); 2,2′-azo Bisisobutyronitrile, 2,2′-azobis (2,4-dimethylvaleronitrile), (1-phenylethyl) azodiphenylmethane, 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile) Dimethyl 2, '-
  • thermal radical polymerization initiators include, for example, NOF Corporation Parroyl (registered trademark) IB, NPP, IPP, SBP, TCP, OPP, SA, 355, L, perbutyl (registered trademark) ND, NHP, MA, PV, 355, A, C, D, E, L, I, O, P, Z, Perhexyl (registered trademark) ND, PV, D, I, O, Z, Perocta (registered trademark) ND, Nyper ( (Registered trademark) PMB, BMT, BW, grabbe (registered trademark) A, perhexa (registered trademark) MC, TMH, HC, 250, 25B, C, 25Z, 22, V, perocta (registered trademark) O, park mill (registered trademark) ) ND, D, Permenta (registered trademark) H, NOFMER (registered trademark) BC; V-70, V-65, V-59, V-40, V
  • the content thereof is preferably 1 to 20 parts by mass, more preferably 1 to 15 parts by mass with respect to 100 parts by mass of the component (A).
  • composition of this invention can contain a polymerization inhibitor as (G) component as needed.
  • the polymerization inhibitor include 2,6-diisobutylphenol, 3,5-di-t-butylphenol, 3,5-di-t-butylcresol, hydroquinone, hydroquinone monomethyl ether, pyrogallol, t-butylcatechol, 4 -Methoxy-1-naphthol and the like.
  • the content thereof is preferably 1% by mass or less, more preferably 0.5% by mass or less, based on the total solid content. If the content exceeds 1% by mass, poor curing may occur and the reaction may become insufficient.
  • the composition of this invention can contain ion trap agents other than a benzotriazole compound as (H) component.
  • ion trapping agent for example, N, N′-bis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyl] hydrazine (Irganox® MD1024, manufactured by BASF) ), Bis (benzylidene hydrazide) oxalate (Eastman Inhibitor OABH, manufactured by Eastman Chemical Co.), and the like.
  • the content is about 0.0001 to 20 parts by mass with respect to 100 parts by mass of the component (A). Since it can also function as an ion trapping agent, it is preferable not to include other ion trapping agents.
  • composition of the present invention may further comprise a surfactant, a crosslinking agent, an antifoaming agent, a rheology modifier, a pigment, a dye, a storage stabilizer, a polyhydric phenol, A dissolution accelerator such as a polyvalent carboxylic acid can be contained.
  • the surfactant is not particularly limited, and examples thereof include a fluorine-based surfactant, a silicon-based surfactant, and a nonionic surfactant.
  • this type of surfactant include, for example, F-top (registered trademark) EF301, EF303, EF352 manufactured by Mitsubishi Materials Electronics Chemical Co., Ltd .; Mega-Fac® (registered trademark) F171, F173 manufactured by DIC Corporation; FLUORAD manufactured by 3M (Registered trademark) FC430, FC431; Asahi Guard Co., Ltd. Asahi Guard (registered trademark) AG710, AGC Seimi Chemical Co., Ltd. Surflon (registered trademark) S-382, SC101, SC102, SC103, SC104, SC105, SC106 etc. Can be mentioned.
  • the crosslinking agent examples include a polyfunctional epoxy compound, a polyfunctional isocyanate compound, a polyfunctional thiol compound, a melamine-based crosslinking agent, and the like.
  • a trifunctional or higher functional thiol compound is preferable.
  • the polyfunctional thiol compound can be obtained as an addition reaction product of a polyhydric alcohol and a monofunctional and / or polyfunctional thiol compound.
  • Specific compounds include 1,3,5-tris (3-mercaptopropionyloxyethyl) isocyanurate and 1,3,5-tris (3-mercaptobutyryloxyethyl) isocyanurate (manufactured by Showa Denko KK).
  • Antifoaming agents include, but are not limited to, acetylene glycol, silicone fluids and emulsions, ethoxylated or propoxylated silicones, hydrocarbons, fatty acid ester derivatives, acetylated polyamides, poly (alkylene oxide) polymers and copolymers, and the like. .
  • the composition of the present invention preferably contains an antifoaming agent.
  • the viscosity at 25 ° C. of the composition of the present invention is preferably 1 to 10,000 mPa ⁇ s, more preferably 1 to 5,000 mPa ⁇ s, and still more preferably 1 to 1,000 mPa ⁇ s from the viewpoint of applicability. It is. If the viscosity is too low, the desired film thickness may not be obtained, and if the viscosity is too high, the coatability may deteriorate.
  • the viscosity at 25 ° C. of the composition of the present invention is preferably 10 to 100,000 mPa ⁇ s, more preferably 500 to 100,000 mPa ⁇ s, and still more preferably 1,000 to 100 from the viewpoint of printability. 1,000 mPa ⁇ s. If the viscosity is too low, the composition may diffuse after application, and a desired pattern may not be formed. If the viscosity is too high, the discharge performance may be reduced, and a load on the process may occur. Transferability to the surface may be reduced.
  • the viscosity at 25 ° C. of the composition is preferably 10 to 100,000 mPa ⁇ s, more preferably 5,000 to 100,000 mPa ⁇ s, and even more preferably 20,000 to 100,000 mPa ⁇ s. If the viscosity is too low, the composition may diffuse after application, and a desired pattern may not be formed. If the viscosity is too high, the discharge performance may be reduced, and a load on the process may occur. Transferability to the surface may be reduced.
  • the viscosity is a value measured with an E-type viscometer.
  • the method for preparing the composition of the present invention is not particularly limited. As an example, there may be mentioned a method in which the component (A) is dissolved in the solvent (C) and the component (B) is mixed with this solution at a predetermined ratio to obtain a uniform solution. In addition, in an appropriate stage of this preparation method, there may be mentioned a preparation method in which components (D) to (H) and other components are further added and mixed as necessary.
  • the solution of the component (A) obtained by the polymerization reaction in a solvent can be used as it is.
  • the component (B) is added to the solution of the component (A) to obtain a uniform solution.
  • (C) a solvent may be further added.
  • the solution-state composition thus prepared is preferably used after being filtered using a filter having a pore size of about 0.2 ⁇ m.
  • the composition of the present invention is applied to a substrate having electrodes and / or wirings (for example, a silicon / silicon dioxide-coated substrate; a silicon nitride substrate; a metal such as aluminum, molybdenum, chromium, copper, or silver; a metal nanowire such as a silver nanowire; Metal nanoparticles such as silver nanoparticles and copper nanoparticles, poly (3,4-ethylenedioxythiophene) / poly (styrenesulfonate) (PEDOT / PSS), conductive polymers such as graphene and carbon nanotubes are coated Glass substrate; quartz substrate; ITO substrate; ITO film substrate; TAC film, polyester film, acrylic film, resin film substrate such as cycloolefin (COP) film), etc., spin coating, flow coating, roll coating , Slit coating, spin coating following slit, ink jet coating, screen marking , Flexographic printing, gravure printing, offset printing, coated by a printing method such
  • the pre-bake is generally preferably performed at 60 ° C. to 150 ° C., more preferably at 80 ° C. to 120 ° C., for 0.5 to 30 minutes when using a hot plate, and 0.5 to 90 minutes when using an oven. The method of doing is taken.
  • post-baking for thermosetting is performed. Specifically, heating is performed using a hot plate, an oven, or the like.
  • the post-baking is generally performed at a temperature of preferably 150 ° C. to 300 ° C., more preferably 200 ° C. to 250 ° C. for 1 to 30 minutes when using a hot plate, and 1 to 90 minutes when using an oven. Is taken.
  • the composition of the present invention contains a thermal radical polymerization initiator, curing at a low temperature is possible.
  • the pre-bake conditions are the same as described above, but the post-bake temperature is preferably 60 ° C. to 200 ° C., more preferably 80 ° C. to 150 ° C. Other conditions are the same as described above.
  • photocuring can be performed by irradiating an ultraviolet-ray to the said coating film after prebaking.
  • the ultraviolet ray preferably has a wavelength in the range of 200 to 500 nm, and the exposure amount is preferably 100 to 5,000 mJ / cm 2 .
  • post-baking for thermal curing is performed. Specifically, heating is performed using a hot plate, an oven, or the like.
  • the post-bake is generally performed at a temperature of preferably 60 ° C. to 150 ° C., more preferably 80 ° C. to 120 ° C. for 1 to 30 minutes when using a hot plate, and 1 to 90 minutes when using an oven. Is taken.
  • the step of the substrate can be sufficiently flattened, and a cured film having high transparency can be formed.
  • the cured film of the present invention has at least the necessary level of flatness, hardness and adhesion, the protective film, flattening film, and insulating film in various displays such as thin film transistor (TFT) type liquid crystal display elements and organic EL elements. It is also useful as a material for forming a cured film such as a protective film or an insulating film in a touch panel. Moreover, since it is excellent also in a softness
  • TFT thin film transistor
  • the conductive member provided with the cured film of the present invention formed so as to be in contact with the electrode and / or the wiring on the substrate on which the electrode and / or the wiring is formed, migration is suppressed, It is difficult to cause a short circuit and has excellent durability.
  • the migration suppression method of the present invention since a benzotriazole compound is contained in the composition, it is possible to realize excellent migration suppression without impairing the transparency, adhesion and hardness of the cured film.
  • the method of the present invention is effective for suppressing migration of silver, copper, gold, aluminum, nickel, tin, lead, palladium, and the like, and is particularly effective for suppressing migration of silver.
  • the weight average molecular weight (Mw) of the copolymer obtained in the synthesis example is GPC apparatus (Shodex GPC-101) manufactured by Showa Denko KK (column: Shodex (registered trademark) KF803l and KF804l (Showa Denko Co., Ltd.). )), And the elution solvent tetrahydrofuran was allowed to flow through the column (column temperature 40 ° C.) at a flow rate of 1 mL / min for elution. Mw is expressed in terms of polystyrene.
  • the reagents and devices used in the following synthesis examples, examples, and comparative examples are as follows. ⁇ DEGMEA (diethylene glycol monoethyl ether acetate), MMA (methyl methacrylate), MAA (methacrylic acid), ST (styrene): manufactured by Tokyo Chemical Industry Co., Ltd. ⁇ MAIB: 2,2′-azobis (isobutyric acid) dimethyl, • Tokyo Chemical Industry Co., Ltd. • PET-30: Pentaerythritol (tri / tetra) acrylate, Nippon Kayaku Co., Ltd. • 5-MBT: 5-methylbenzotriazole, Tokyo Chemical Industry Co., Ltd.
  • IRG184 Hikari Polymerization initiator, IRGACURE (registered trademark) 184 manufactured by BASF APS: 3-aminopropyltriethoxysilane, LS-3150 manufactured by Shin-Etsu Chemical Co., Ltd.
  • AGITAN 771 Antifoaming agent, manufactured by MUNZING ⁇ Stirrer: Shintaro Awatori Nertaro ARE-310
  • Example 2 In a 200 mL plastic container, 50.2 g of the resin solution P1 obtained in Synthesis Example 1, 25.1 g of PET-30, 1.4 g of IRG184, 0.68 g of 5-MBT, 0.03 g of APS, AGITAN771 0.03 g and DEGMEA 22.6 g were put into a stirrer and stirred for 10 minutes at 2,000 rpm to prepare a varnish.
  • Example 3 In a 200 mL plastic container, 48.3 g of the resin solution P1 obtained in Synthesis Example 1, 24.1 g of PET-30, 1.3 g of IRG184, 2.62 g of 5-MBT, 0.02 g of APS, AGITAN771 0.03 g and DEGMEA 23.7 g were put into a stirrer and stirred for 10 minutes at 2,000 rpm to prepare a varnish.
  • Example 4 In a 200 mL plastic container, 45.9 g of the resin solution P1 obtained in Synthesis Example 1, 22.9 g of PET-30, 1.2 g of IRG184, 5.00 g of 5-MBT, 0.02 g of APS, AGITAN771 Of 0.03 g and 25.0 g of DEGMEA were put into a stirrer and stirred for 10 minutes at 2,000 rpm to prepare a varnish.
  • Table 1 summarizes the compositions of the varnishes produced in Examples 1 to 4 and Comparative Example 1.
  • UV-visible absorption spectrum of the cured film was measured using UV-3100PC manufactured by Shimadzu Corporation, and the transmittance at a wavelength of 400 nm was evaluated.
  • a silver pattern 2 as shown in FIG. 1 was formed on a glass substrate 1 by sputter deposition.
  • the varnishes of Examples 1 to 4 and Comparative Example 1 were each applied onto the glass substrate with a silver pattern by screen printing, and prebaked at 110 ° C. for 2 minutes.
  • post-baking was performed at 110 ° C. for 30 minutes to produce a cured film 3 having a thickness of about 5 ⁇ m, and an evaluation sample was obtained.
  • a cross-sectional view of the silver pattern substrate on which the cured film is formed is shown in FIG. The obtained sample was evaluated for migration resistance by the following method.
  • [Migration resistance evaluation] A test in which a sample for evaluation is placed under conditions of a temperature of 60 ° C. and a relative humidity of 90% RH, and an anode and a cathode are connected to both ends of the silver pattern and a voltage of 5 V is applied for 15 hours so that electric field concentration occurs at the tip of the pattern. The test was performed to confirm the occurrence of migration. Whether migration occurred or not was confirmed by observing the pattern before and after the test with a microscope. The patterns before and after the test are shown in FIGS.
  • the cured films obtained from the varnishes (cured film-forming resin compositions) of the examples have a pencil hardness as high as H or higher, and adhesion as high as 4B or higher, and transparency. It was also excellent. Moreover, when these cured films were used, no migration was observed (FIG. 4). On the other hand, when a cured film obtained from the varnish of the comparative example was used, occurrence of migration was observed (FIG. 5).

Abstract

Provided is a resin composition for forming a cured film, said resin composition comprising: (A) a (meth)acrylate polymer having a weight average molecular weight of 5,000 to 200,000 (excluding a (meth)acrylate polymer having a silane structure in a side chain thereof); (B) an agent capable of preventing migration and also capable of trapping ions, which comprises a benzotriazole compound; and (C) a solvent.

Description

硬化膜形成用樹脂組成物、硬化膜、導電性部材、及びマイグレーションの抑制方法Cured film forming resin composition, cured film, conductive member, and migration suppressing method
 本発明は、硬化膜形成用樹脂組成物、硬化膜、導電性部材、及びマイグレーションの抑制方法に関する。 The present invention relates to a cured film forming resin composition, a cured film, a conductive member, and a method for suppressing migration.
 従来、タッチパネル等に必要な保護膜、絶縁膜等は、感光性樹脂組成物を用いたフォトリソグラフィー法によるパターン加工によって必要とする部位に形成されてきた(特許文献1)。 Conventionally, a protective film, an insulating film, and the like necessary for a touch panel and the like have been formed in a necessary portion by pattern processing by a photolithography method using a photosensitive resin composition (Patent Document 1).
 しかし、フォトリソグラフィー法によるパターン加工は、工程が複雑であるだけでなく、コストもかかるという問題があった。そのため、より簡便な方法で、かつ低コストで、必要な部位に保護膜、絶縁膜等を形成できる組成物が望まれていた。 However, pattern processing by the photolithography method has a problem that not only the process is complicated but also costly. Therefore, there has been a demand for a composition that can form a protective film, an insulating film, and the like at a necessary site by a simpler method and at a lower cost.
 また、運搬や保存上の要請から、ガラス基板に代わってフィルム基板の利用が増えてきている。フィルム基板は、保存時にロール状等にして保存されるが、その際、基板が湾曲するために、フィルム基板上に塗布する材料にもフィルム同様の柔軟性が求められている。 Also, due to demands for transportation and storage, the use of film substrates instead of glass substrates is increasing. The film substrate is stored in the form of a roll or the like at the time of storage. At this time, the substrate is curved, so that the material applied on the film substrate is required to have the same flexibility as the film.
 更に、ITOの代替として金属ナノワイヤを用いるタッチパネルに関する開発が種々なされているが(特許文献2等)、このようなタッチパネルにおいては、金属のマイグレーションが生じ、それがショートの原因となるという問題があることから、マイグレーションを抑制できる、電極、配線等を保護するオーバーコート材料が求められている。 Furthermore, various developments regarding touch panels using metal nanowires as an alternative to ITO have been made (Patent Document 2, etc.). However, in such touch panels, there is a problem that metal migration occurs, which causes a short circuit. Therefore, there is a demand for an overcoat material that can suppress migration and protect electrodes, wiring, and the like.
 一方、従来のオーバーコート材料は、ガラス基板上への塗布を目的とするものであり、硬度を上げるために無機微粒子を含有していた(特許文献3)。しかし、無機微粒子を含有させる等の従来の方法では、硬度は改善されるものの、柔軟性がなく、例えば、折り曲げた場合にクラックが入る等の不都合が生じるため、フィルム基板への塗布には適用できない状況であった。 On the other hand, the conventional overcoat material is intended for application on a glass substrate and contains inorganic fine particles in order to increase the hardness (Patent Document 3). However, the conventional method such as the inclusion of inorganic fine particles improves the hardness, but is not flexible, for example, it causes inconveniences such as cracking when bent, so it is applicable to application to a film substrate. The situation was impossible.
特開2013-064973号公報JP 2013-064973 A 特開2013-225296号公報JP 2013-225296 A 特開2012-116975号公報JP 2012-116975 A
 本発明は、前記問題に鑑みなされたものであり、印刷法等による簡便な方法で必要な部位に膜を形成することができ、しかも高光透過率、高密着性、高硬度及び高柔軟性を有し、更にマイグレーション抑制能をも有する硬化膜を形成可能な組成物、当該組成物から形成された硬化膜、当該硬化膜を有する導電性部材、及びマイグレーション抑制方法を提供することを目的とする。 The present invention has been made in view of the above problems, and can form a film at a necessary site by a simple method such as a printing method, and has high light transmittance, high adhesion, high hardness, and high flexibility. It is an object of the present invention to provide a composition capable of forming a cured film having a migration suppressing ability, a cured film formed from the composition, a conductive member having the cured film, and a migration suppressing method. .
 本発明者らは、前記課題を解決すべく鋭意検討を重ねた結果、重量平均分子量が5,000~200,000である(メタ)アクリレートポリマー、ベンゾトリアゾール化合物からなるマイグレーション抑制剤兼イオントラップ剤、及び溶剤を含有する組成物によって、前記課題を解決し得ることを見出し、本発明を完成させた。 As a result of intensive studies to solve the above problems, the present inventors have found that a migration inhibitor / ion trapping agent comprising a (meth) acrylate polymer having a weight average molecular weight of 5,000 to 200,000 and a benzotriazole compound. The present invention has been completed by finding that the above problems can be solved by a composition containing a solvent and a solvent.
 すなわち、本発明は、下記硬化膜形成用樹脂組成物、硬化膜、導電性部材、及びマイグレーションの抑制方法を提供する。
1.(A)重量平均分子量が5,000~200,000である(メタ)アクリレートポリマー(ただし、側鎖にシラン構造を有するものを除く。)、
(B)ベンゾトリアゾール化合物からなるマイグレーション抑制剤兼イオントラップ剤、及び
(C)溶剤
を含有することを特徴とする硬化膜形成用樹脂組成物。
2.更に、(D)シランカップリング剤を含有する1の硬化膜形成用樹脂組成物。
3.更に、(E)多官能(メタ)アクリレート化合物を含有する1又は2の硬化膜形成用樹脂組成物。
4.更に、(F)ラジカル重合開始剤を含有する3の硬化膜形成用樹脂組成物。
5.(B)ベンゾトリアゾール化合物が、(A)成分100質量部に対して0.1~50質量部含まれる1~4のいずれかの硬化膜形成用樹脂組成物。
6.1~5のいずれかの硬化膜形成用樹脂組成物を用いて形成された硬化膜。
7.電極及び/又は配線が形成された基材と、この基材上に前記電極及び/又は配線と接するように形成された6の硬化膜とを備える導電性部材。
8.電極及び/又は配線が形成された基材上に硬化膜形成用樹脂組成物から形成された硬化膜を有する構造体の前記電極及び/又は配線からのマイグレーションを抑制する方法であって、
 前記硬化膜形成用樹脂組成物として、1~5のいずれかの硬化膜形成用樹脂組成物を用いることを特徴とする方法。
9.電極及び/又は配線が形成された基材上に、(メタ)アクリレートポリマー及び溶剤を含有する樹脂組成物から形成された硬化膜を有する構造体の前記電極及び/又は配線からのマイグレーションを抑制する方法であって、
 前記組成物中に、ベンゾトリアゾール化合物を添加することを特徴とする方法。
That is, the present invention provides the following cured film forming resin composition, cured film, conductive member, and migration suppression method.
1. (A) a (meth) acrylate polymer having a weight average molecular weight of 5,000 to 200,000 (excluding those having a silane structure in the side chain),
(B) A cured film forming resin composition comprising a migration inhibitor / ion trapping agent comprising a benzotriazole compound, and (C) a solvent.
2. Furthermore, (D) 1 resin composition for cured film formation containing a silane coupling agent.
3. Furthermore, (E) 1 or 2 cured film formation resin composition containing a polyfunctional (meth) acrylate compound.
4). Furthermore, (F) 3 resin composition for cured film formation containing a radical polymerization initiator.
5. (B) The cured film forming resin composition according to any one of 1 to 4, wherein the benzotriazole compound is contained in an amount of 0.1 to 50 parts by mass with respect to 100 parts by mass of the component (A).
6. A cured film formed using the cured film forming resin composition according to any one of 1 to 5.
7). An electroconductive member provided with the base material in which the electrode and / or wiring were formed, and the 6 cured film formed so that it might contact | connect the said electrode and / or wiring on this base material.
8). A method of suppressing migration from the electrode and / or wiring of a structure having a cured film formed from a cured film-forming resin composition on a substrate on which electrodes and / or wiring are formed,
A method comprising using any one of the cured film forming resin compositions 1 to 5 as the cured film forming resin composition.
9. Inhibition of migration from the electrode and / or wiring of the structure having a cured film formed from a resin composition containing a (meth) acrylate polymer and a solvent on the substrate on which the electrode and / or wiring is formed A method,
A method comprising adding a benzotriazole compound to the composition.
 本発明の硬化膜形成用樹脂組成物を用いて得られる硬化膜は、光透過率、密着性、硬度に優れ、更に金属のマイグレーション抑制能をも有する。そのため、有機エレクトロルミネッセンス(EL)素子等の各種ディスプレイにおける保護膜、平坦化膜、絶縁膜等、タッチパネルにおける保護膜、絶縁膜等の硬化膜を形成する材料として有用である。また、柔軟性にも優れることから、ITOフィルム用のオーバーコート材としても好適である。 The cured film obtained by using the resin composition for forming a cured film of the present invention is excellent in light transmittance, adhesion, and hardness, and further has a metal migration suppressing ability. Therefore, it is useful as a material for forming a cured film such as a protective film, an insulating film, or the like in a touch panel such as a protective film, a planarizing film, or an insulating film in various displays such as an organic electroluminescence (EL) element. Moreover, since it is excellent also in a softness | flexibility, it is suitable also as an overcoat material for ITO films.
 また、本発明の導電性部材は、電極及び/又は配線と、それと接するように形成された前記硬化膜とを備える。前記硬化膜は、有機EL素子等の各種ディスプレイに用いられる硬化膜に求められる高光透過率、高密着性及び高硬度という特性を有するだけでなく、マイグレーション抑制能をも有するため、本発明の導電性部材は、金属のマイグレーションが抑制され、耐久性に優れるものとなる。また、前記硬化膜は柔軟性にも優れることから、本発明の導電性部材は、ITOフィルムを有するディスプレイにも好適に採用できる。 The conductive member of the present invention includes an electrode and / or wiring and the cured film formed so as to be in contact therewith. The cured film has not only the properties of high light transmittance, high adhesion and high hardness required for cured films used in various displays such as organic EL elements, but also has migration suppression ability, so that the conductive property of the present invention. The metal member is excellent in durability because migration of metal is suppressed. Moreover, since the said cured film is excellent also in a softness | flexibility, the electroconductive member of this invention can be suitably employ | adopted also for the display which has an ITO film.
 本発明のマイグレーション抑制方法によれば、ベンゾトリアゾール化合物を使用することで、硬化膜の光透過率、密着性及び硬度を維持しつつ、金属のマイグレーションを抑制することができる。 According to the migration suppression method of the present invention, by using a benzotriazole compound, metal migration can be suppressed while maintaining the light transmittance, adhesion and hardness of the cured film.
実施例及び比較例で用いた耐マイグレーション評価用サンプルの平面図である。It is a top view of the sample for migration resistance evaluation used by the Example and the comparative example. 実施例及び比較例で用いた耐マイグレーション評価用サンプルの断面図である。It is sectional drawing of the sample for migration resistance evaluation used by the Example and the comparative example. 耐マイグレーション評価の試験前の銀パターンを示す図である。It is a figure which shows the silver pattern before the test of migration resistance evaluation. 実施例1に関する耐マイグレーション評価の試験後の銀パターンを示す図である。FIG. 4 is a diagram showing a silver pattern after a migration resistance evaluation test related to Example 1. 比較例1に関する耐マイグレーション評価の試験後の銀パターンを示す図である。It is a figure which shows the silver pattern after the test of migration resistance evaluation regarding the comparative example 1. FIG.
[硬化膜形成用樹脂組成物]
 本発明の硬化膜形成用樹脂組成物は、(A)重量平均分子量が5,000~200,000である(メタ)アクリレートポリマー、(B)ベンゾトリアゾール化合物からなるマイグレーション抑制剤兼イオントラップ剤、及び(C)溶剤を含有する。
[Resin composition for forming cured film]
The resin composition for forming a cured film of the present invention comprises (A) a (meth) acrylate polymer having a weight average molecular weight of 5,000 to 200,000, (B) a migration inhibitor / ion trap agent comprising a benzotriazole compound, And (C) contains a solvent.
[(A)(メタ)アクリレートポリマー]
 本発明の組成物に含まれる(A)成分は、重量平均分子量が5,000~200,000である(メタ)アクリレートポリマーである。(メタ)アクリレートポリマーとは、アクリレート化合物及びメタクリレート化合物から選ばれる少なくとも1種のモノマーから誘導されるモノマー単位を有する重合体である。ただし、本発明における(メタ)アクリレートポリマーは、保存安定性の観点から、側鎖にシラン構造を含むものではない。
[(A) (Meth) acrylate polymer]
The component (A) contained in the composition of the present invention is a (meth) acrylate polymer having a weight average molecular weight of 5,000 to 200,000. The (meth) acrylate polymer is a polymer having monomer units derived from at least one monomer selected from acrylate compounds and methacrylate compounds. However, the (meth) acrylate polymer in the present invention does not contain a silane structure in the side chain from the viewpoint of storage stability.
 本発明において、好適な(メタ)アクリレート化合物としては、式(1)で表されるものが挙げられる。 In the present invention, suitable (meth) acrylate compounds include those represented by the formula (1).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 式(1)中、R1は、水素原子又はメチル基を表す。R2は、水素原子、又はヒドロキシ基、エポキシ基、アクリロイル基、メタクリロイル基若しくはイソシアネート基で置換されてもよい炭素数1~20のアルキル基を表す。 In formula (1), R 1 represents a hydrogen atom or a methyl group. R 2 represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms which may be substituted with a hydroxy group, an epoxy group, an acryloyl group, a methacryloyl group or an isocyanate group.
 炭素数1~20のアルキル基としては、直鎖状、分岐状、環状のいずれでもよく、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基等の炭素数1~20の直鎖状又は分岐状アルキル基;シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基、ビシクロブチル基、ビシクロペンチル基、ビシクロヘキシル基、ビシクロヘプチル基、ビシクロオクチル基、ビシクロノニル基、ビシクロデシル基等の炭素数3~20の環状アルキル基等が挙げられる。 The alkyl group having 1 to 20 carbon atoms may be linear, branched or cyclic. For example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, s- Linear or branched having 1 to 20 carbon atoms such as butyl group, t-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group and n-decyl group Alkyl group; cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, cyclononyl group, cyclodecyl group, bicyclobutyl group, bicyclopentyl group, bicyclohexyl group, bicycloheptyl group, bicyclooctyl group And cyclic alkyl groups having 3 to 20 carbon atoms such as a bicyclononyl group and a bicyclodecyl group.
 (メタ)アクリレート化合物としては、アクリル酸、メタクリル酸、メチルアクリレート、メチルメタクリレート、エチルアクリレート、エチルメタクリレート、n-プロピルアクリレート、n-プロピルメタクリレート、イソプロピルアクリレート、イソプロピルメタクリレート、2,2,2-トリフルオロエチルアクリレート、2,2,2-トリフルオロエチルメタクリレート、t-ブチルアクリレート、t-ブチルメタクリレート、2-ヒドロキシエチルアクリレート、2-ヒドロキシエチルメタクリレート、2-ヒドロキシプロピルアクリレート、2-ヒドロキシプロピルメタクリレート、2,3-ジヒドロキシプロピルアクリレート、2,3-ジヒドロキシプロピルメタクリレート、4-ヒドロキシブチルアクリレート、4-ヒドロキシブチルメタクリレート等が挙げられる。中でも、高光透過率、高密着性及び高硬度のバランスを考慮すると、好ましくは、モノマーは、メチルメタクリレート及びエチルメタクリレートから選ばれる1種を含む。 Examples of (meth) acrylate compounds include acrylic acid, methacrylic acid, methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, n-propyl acrylate, n-propyl methacrylate, isopropyl acrylate, isopropyl methacrylate, and 2,2,2-trifluoro. Ethyl acrylate, 2,2,2-trifluoroethyl methacrylate, t-butyl acrylate, t-butyl methacrylate, 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl acrylate, 2-hydroxypropyl methacrylate, 2, 3-dihydroxypropyl acrylate, 2,3-dihydroxypropyl methacrylate, 4-hydroxybutyl acrylate, 4-hydroxybutyl Methacrylate, and the like. Among these, considering the balance of high light transmittance, high adhesion, and high hardness, the monomer preferably contains one kind selected from methyl methacrylate and ethyl methacrylate.
 本発明において、(メタ)アクリレートポリマーは、アクリレート及びメタクリレートから誘導されるモノマー単位以外のその他のモノマー単位を含んでいてもよい。その他のモノマー単位を与えるモノマーとしては、典型的には、スチレン化合物、ビニル化合物、マレイミド化合物、アクリロニトリル、マレイン酸無水物が挙げられる。 In the present invention, the (meth) acrylate polymer may contain other monomer units other than the monomer units derived from acrylate and methacrylate. Typical examples of the monomer that gives other monomer units include styrene compounds, vinyl compounds, maleimide compounds, acrylonitrile, and maleic anhydride.
 スチレン化合物としては、スチレン、メチルスチレン、クロロスチレン、ブロモスチレン、4-t-ブチルスチレン等が挙げられる。 Examples of the styrene compound include styrene, methylstyrene, chlorostyrene, bromostyrene, 4-t-butylstyrene and the like.
 ビニル化合物としては、メチルビニルエーテル、ベンジルビニルエーテル、ビニルナフタレン、ビニルアントラセン、ビニルビフェニル、ビニルカルバゾール、2-ヒドロキシエチルビニルエーテル、フェニルビニルエーテル、プロピルビニルエーテル等が挙げられる。 Examples of the vinyl compound include methyl vinyl ether, benzyl vinyl ether, vinyl naphthalene, vinyl anthracene, vinyl biphenyl, vinyl carbazole, 2-hydroxyethyl vinyl ether, phenyl vinyl ether, propyl vinyl ether, and the like.
 マレイミド化合物としては、例えば、マレイミド、N-メチルマレイミド、N-フェニルマレイミド、N-シクロヘキシルマレイミド等が挙げられる。 Examples of maleimide compounds include maleimide, N-methylmaleimide, N-phenylmaleimide, N-cyclohexylmaleimide and the like.
 これらの中でも、得られる薄膜の疎水性(低吸水性)の観点から、スチレン化合物が好ましく、スチレンがより好ましい。 Among these, from the viewpoint of hydrophobicity (low water absorption) of the obtained thin film, a styrene compound is preferable, and styrene is more preferable.
 本発明において、高光透過率、高密着性及び高硬度のバランスを考慮すると、(メタ)アクリレートポリマー中の(メタ)アクリレート化合物から誘導されるモノマー単位の含有量は、好ましくは50モル%以上、より好ましくは60モル%以上、より一層好ましくは70モル%以上、更に好ましくは80モル%以上である。 In the present invention, considering the balance of high light transmittance, high adhesion and high hardness, the content of the monomer unit derived from the (meth) acrylate compound in the (meth) acrylate polymer is preferably 50 mol% or more, More preferably, it is 60 mol% or more, More preferably, it is 70 mol% or more, More preferably, it is 80 mol% or more.
 (メタ)アクリレートポリマーは、市販品を用いてもよいが、前述したモノマーを重合することで製造したポリマーを用いてもよい。 A commercially available product may be used as the (meth) acrylate polymer, but a polymer produced by polymerizing the above-described monomers may be used.
 重合方法としては、ラジカル重合、アニオン重合、カチオン重合等を採用し得るが、本発明で必要な重量平均分子量を有する(メタ)アクリレートポリマーを比較的簡便に製造できることから、ラジカル重合が好ましい。 As the polymerization method, radical polymerization, anionic polymerization, cationic polymerization, and the like can be adopted. However, radical polymerization is preferable because a (meth) acrylate polymer having a weight average molecular weight necessary in the present invention can be produced relatively easily.
 開始剤としては、過酸化ベンゾイル、クメンヒドロペルオキシド、t-ブチルヒドロペルオキシド等の過酸化物;過硫酸ナトリウム、過硫酸カリウム、過硫酸アンモニウム等の過硫酸塩;アゾビスイソブチロニトリル、アゾビスメチルブチロニトリル、アゾビスイソバレロニトリル、2,2'-アゾビス(イソ酪酸)ジメチル等のアゾ系化合物等が挙げられる。このような開始剤の使用量は、モノマーの種類や量、反応温度によって異なるため一概に規定できないが、通常、モノマー1モルに対して、0.005~0.05モル程度である。重合時の反応温度は、0℃から使用する溶剤の沸点までで適宜設定すればよいが、通常20~100℃程度である。また、反応時間は、0.1~30時間程度である。 Initiators include peroxides such as benzoyl peroxide, cumene hydroperoxide, and t-butyl hydroperoxide; persulfates such as sodium persulfate, potassium persulfate, and ammonium persulfate; azobisisobutyronitrile, azobismethyl And azo compounds such as butyronitrile, azobisisovaleronitrile, 2,2′-azobis (isobutyric acid) dimethyl, and the like. The amount of such an initiator used varies depending on the type and amount of the monomer and the reaction temperature, and thus cannot be specified unconditionally, but is usually about 0.005 to 0.05 mole per mole of monomer. The reaction temperature during the polymerization may be appropriately set from 0 ° C. to the boiling point of the solvent used, but is usually about 20 to 100 ° C. The reaction time is about 0.1 to 30 hours.
 重合は、溶媒中で行うことが好ましく、重合反応に用いる溶媒は、この種の反応で一般的に使用される溶媒を使用することができる。具体的には、水;メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、i-ブチルアルコール、t-ブチルアルコール、1-ペンタノール、2-ペンタノール、3-ペンタノール、i-ペンチルアルコール、t-ペンチルアルコール、1-ヘキサノール、1-ヘプタノール、2-ヘプタノール、3-ヘプタノール、2-オクタノール、2-エチル-1-ヘキサノール、ベンジルアルコール、シクロヘキサノール等のアルコール;ジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル、シクロペンチルメチルエーテル、テトラヒドロフラン、1,4-ジオキサン等のエーテル;クロロホルム、ジクロロメタン、ジクロロエタン、四塩化炭素等のハロゲン化炭化水素;メチルセロソルブ、エチルセロソルブ、イソプロピルセロソルブ、ブチルセロソルブ、ジエチレングリコールモノブチルエーテル等のエーテルアルコール;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン;酢酸エチル、酢酸ブチル、プロピオン酸エチル、セロソルブアセテート等のエステル;n-ペンタン、n-ヘキサン、n-ヘプタン、n-オクタン、n-ノナン、n-デカン、シクロペンタン、メチルシクロペンタン、シクロヘキサン、メチルシクロヘキサン、ベンゼン、トルエン、キシレン、エチルベンゼン、アニソール等の脂肪族又は芳香族炭化水素;メチラール、ジエチルアセタール等のアセタール;ギ酸、酢酸、プロピオン酸等の脂肪酸;ニトロプロパン、ニトロベンゼン、ジメチルアミン、モノエタノールアミン、ピリジン、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリル等が挙げられる。これらから、モノマーや開始剤の種類や量、反応温度等を考慮して、使用する溶媒が適宜選択される。 Polymerization is preferably performed in a solvent, and a solvent generally used in this kind of reaction can be used as a solvent for the polymerization reaction. Specifically, water; methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, i-butyl alcohol, t-butyl alcohol, 1-pentanol, 2-pentanol, 3-pen Alcohols such as butanol, i-pentyl alcohol, t-pentyl alcohol, 1-hexanol, 1-heptanol, 2-heptanol, 3-heptanol, 2-octanol, 2-ethyl-1-hexanol, benzyl alcohol, cyclohexanol; diethyl Ethers such as ether, diisopropyl ether, dibutyl ether, cyclopentyl methyl ether, tetrahydrofuran and 1,4-dioxane; halogenated hydrocarbons such as chloroform, dichloromethane, dichloroethane and carbon tetrachloride; methyl cellosolve; Ether alcohols such as ethyl cellosolve, isopropyl cellosolve, butyl cellosolve, diethylene glycol monobutyl ether; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone; esters such as ethyl acetate, butyl acetate, ethyl propionate, cellosolve acetate; n-pentane, n -Aliphatic or aromatic hydrocarbons such as hexane, n-heptane, n-octane, n-nonane, n-decane, cyclopentane, methylcyclopentane, cyclohexane, methylcyclohexane, benzene, toluene, xylene, ethylbenzene, anisole; Acetals such as methylal and diethyl acetal; fatty acids such as formic acid, acetic acid and propionic acid; nitropropane, nitrobenzene, dimethylamine, monoethanol Amine, pyridine, N- methyl-2-pyrrolidone, N, N- dimethylformamide, dimethyl sulfoxide, acetonitrile and the like. From these, the solvent to be used is appropriately selected in consideration of the type and amount of the monomer and initiator, the reaction temperature, and the like.
 本発明においては、(メタ)アクリレートポリマーの重量平均分子量(Mw)は、ポリマーの溶解性を確保し、好適な硬化膜を与える組成物を調製する観点から、5,000~200,000であるが、組成物の粘度の過度な増加を抑制することを考慮すると、その上限値は、好ましくは180,000、より好ましくは150,000、より一層好ましくは100,000、更に好ましくは80,000であり、組成物の粘度の過度な減少を抑制することを考慮すると、その下限値は、好ましくは10,000、より好ましくは15,000、より一層好ましくは30,000、更に好ましくは40,000である。なお、Mwは、ゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン換算測定値である。 In the present invention, the weight average molecular weight (Mw) of the (meth) acrylate polymer is 5,000 to 200,000 from the viewpoint of ensuring the solubility of the polymer and preparing a composition that provides a suitable cured film. However, in consideration of suppressing an excessive increase in the viscosity of the composition, the upper limit is preferably 180,000, more preferably 150,000, even more preferably 100,000, still more preferably 80,000. In view of suppressing an excessive decrease in the viscosity of the composition, the lower limit value is preferably 10,000, more preferably 15,000, still more preferably 30,000, still more preferably 40,000. 000. In addition, Mw is a polystyrene conversion measured value by gel permeation chromatography (GPC).
 (メタ)アクリレートポリマーが2種以上のモノマーを用いて製造される場合、(メタ)アクリレートポリマーは、ランダム共重合体、交互共重合体、ブロック共重合体のいずれでもよい。 When the (meth) acrylate polymer is produced using two or more types of monomers, the (meth) acrylate polymer may be any of a random copolymer, an alternating copolymer, and a block copolymer.
[(B)マイグレーション抑制剤兼イオントラップ剤]
 本発明の組成物に含まれる(B)成分は、ベンゾトリアゾール化合物からなるマイグレーション抑制剤兼イオントラップ剤である。このようなベンゾトリアゾール化合物としては、ベンゾトリアゾール、4-メチルベンゾトリアゾール、5-メチルベンゾトリアゾール等の炭素数1~3のアルキル基置換ベンゾトリアゾール誘導体が挙げられるが、中でも、5-メチルベンゾトリアゾールが好ましい。
[(B) Migration inhibitor and ion trapping agent]
The component (B) contained in the composition of the present invention is a migration inhibitor / ion trap agent comprising a benzotriazole compound. Examples of such benzotriazole compounds include alkyl group-substituted benzotriazole derivatives having 1 to 3 carbon atoms such as benzotriazole, 4-methylbenzotriazole, and 5-methylbenzotriazole. Among them, 5-methylbenzotriazole is preferable. preferable.
 (B)成分の含有量は、(A)成分100質量部に対して、好ましくは0.1~50質量部程度であるが、高光透過率、高密着性及び高硬度を維持しつつ、マイグレーション抑制能により優れる硬化膜を再現性よく得る観点から、より好ましくは1~30質量部であり、より一層好ましくは2~25質量部である。 The content of the component (B) is preferably about 0.1 to 50 parts by mass with respect to 100 parts by mass of the component (A), but the migration is maintained while maintaining high light transmittance, high adhesion and high hardness. From the viewpoint of obtaining a cured film excellent in suppressing ability with good reproducibility, it is more preferably 1 to 30 parts by mass, and even more preferably 2 to 25 parts by mass.
 本発明の組成物はベンゾトリアゾール化合物を含有することから、硬化膜の高透明性、高密着性及び高硬度を損なうことなく、優れたマイグレーション抑制を実現することが可能となる。 Since the composition of the present invention contains a benzotriazole compound, it is possible to realize excellent migration suppression without impairing the high transparency, high adhesion and high hardness of the cured film.
[(C)溶剤]
 本発明の組成物は、溶剤に溶解した溶液状態で用いられる。その際に使用する溶剤は、前記(A)及び(B)成分を溶解でき、更に後述の(D)~(H)成分及びその他の添加剤を含有する場合はこれらも溶解できるものであれば、特に限定されない。
[(C) Solvent]
The composition of the present invention is used in a solution state dissolved in a solvent. The solvent used at that time can dissolve the components (A) and (B), and if it contains the components (D) to (H) and other additives described below, these can also be dissolved. There is no particular limitation.
 溶剤の具体例としては、エチレングリコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールイソプロピルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールジブチルエーテル、エチレングリコールモノヘキシルエーテル、エチレングリコールモノベンジルエーテル、エチレングリコールモノフェニルエーテル、エチレングリコールモノアセテート、エチレングリコールジアセテート、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、ジエチレングリコール、ジエチレングリコールモノメチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールジブチルエーテル、ジエチレングリコールモノヘキシルエーテル、ジエチレングリコールモノベンジルエーテル、ジエチレングリコールモノフェニルエーテル、ジエチレングリコールアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノブチルエーテル、プロピレングリコール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノブチルエーテル、ジプロピレングリコール、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノブチルエーテル、トリプロピレングリコールモノメチルエーテル、トリメチレングリコール、ヘキシレングリコール、オクチレングリコール、メトキシメトキシエタノール、1-ブトキシエトキシプロパノール、酢酸イソブチル、酢酸メトキシブチル、酢酸2-エチルへキシル、酢酸シクロヘキシル、酢酸メチルシクロヘキシル、酢酸ベンジル、酢酸イソアミル、プロピオン酸n-ブチル、乳酸イソブチル、乳酸n-ブチル、乳酸n-アミル、乳酸イソアミル、イソ吉草酸イソアミル、アセト酪酸エチル、ステアリン酸ブチル、シュウ酸ジブチル、マロン酸ジエチル、安息香酸メチル、安息香酸エチル、安息香酸プロピル、サリチル酸メチル、メチルフェニルエーテル、エチルベンジルエーテル、エチルフェニルエーテル、ジクロロエチルエーテル、ジイソアミルエーテル、n-ヘキシルエーテル、1,4-ジオキサン、ジエチルアセタール、シネオール、メチルエチルケトン、メチルプロピルケトン、メチルブチルケトン、メチルイソブチルケトン、ジエチルケトン、エチルn-ブチルケトン、ジ-n-プロピルケトン、アセトニルアセトン、ホロン、イソホロン、アセトフェノン、グリセリン、ブタノール、2-ブタノール、1,3-ブタンジオール、2,3-ブタンジオール、イソアミルアルコール、1,5-ペンタンジオール、2-メチルシクロヘキサノール、2-エチルヘキサノール、3,5,5-トリメチルヘキサノール、1-オクタノール、2-オクタノール、ノナノール、n-デカノール、トリメチルノニルアルコール、ベンジルアルコール、α-テルピネオール、テトラヒドロフルフリルアルコール、フルフリルアルコール、アビエチノール、トリグリコールジクロリド、トリクロロ酢酸、乳酸、吉草酸、イソ吉草酸、カプロン酸、2-エチルへキサン酸、カプリル酸、無水酪酸、デカン、ジペンテン、p-メンタン、ドデカン、1,1,2-トリクロロエタン、1,1,1,2-テトラクロロエタン、1,1,2,2-テトラクロロエタン、ヘキサクロロエタン、トルエン、キシレン、o-ジクロロベンゼン、m-ジクロロベンゼン、p-ジクロロベンゼン、1,2,4-トリクロロベンゼン、o-ジブロモベンゼン、ベンゾニトリル、ニトロベンゼン、α-トルニトリル(フェニルアセトニトリル)、N-メチルホルムアミド、N-メチルアセトアミド、2-ピロリドン等が挙げられる。 Specific examples of the solvent include ethylene glycol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol diethyl ether, ethylene glycol isopropyl ether, ethylene glycol monobutyl ether, ethylene glycol dibutyl ether, ethylene glycol monohexyl ether, ethylene glycol mono Benzyl ether, ethylene glycol monophenyl ether, ethylene glycol monoacetate, ethylene glycol diacetate, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether acetate, diethylene glycol, diethylene glycol monomethyl ether, die Lenglycol dimethyl ether, diethylene glycol methyl ethyl ether, diethylene glycol monoethyl ether, diethylene glycol diethyl ether, diethylene glycol monobutyl ether, diethylene glycol dibutyl ether, diethylene glycol monohexyl ether, diethylene glycol monobenzyl ether, diethylene glycol monophenyl ether, diethylene glycol acetate, diethylene glycol monoethyl ether acetate, Diethylene glycol monobutyl ether acetate, triethylene glycol monomethyl ether, triethylene glycol monobutyl ether, propylene glycol, propylene glycol monomethyl ether, propylene glycol monoethyl Ether, propylene glycol monobutyl ether, dipropylene glycol, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol monobutyl ether, tripropylene glycol monomethyl ether, trimethylene glycol, hexylene glycol, octylene glycol, methoxymethoxy Ethanol, 1-butoxyethoxypropanol, isobutyl acetate, methoxybutyl acetate, 2-ethylhexyl acetate, cyclohexyl acetate, methyl cyclohexyl acetate, benzyl acetate, isoamyl acetate, n-butyl propionate, isobutyl lactate, n-butyl lactate, lactic acid n-amyl, isoamyl lactate, isoamyl isovalerate, ethyl acetobutyrate, butyl stearate, dioxalate Butyl, diethyl malonate, methyl benzoate, ethyl benzoate, propyl benzoate, methyl salicylate, methyl phenyl ether, ethyl benzyl ether, ethyl phenyl ether, dichloroethyl ether, diisoamyl ether, n-hexyl ether, 1,4- Dioxane, diethyl acetal, cineol, methyl ethyl ketone, methyl propyl ketone, methyl butyl ketone, methyl isobutyl ketone, diethyl ketone, ethyl n-butyl ketone, di-n-propyl ketone, acetonyl acetone, holon, isophorone, acetophenone, glycerin, butanol, 2-butanol, 1,3-butanediol, 2,3-butanediol, isoamyl alcohol, 1,5-pentanediol, 2-methylcyclohexanol, 2-ethylhexene Sanol, 3,5,5-trimethylhexanol, 1-octanol, 2-octanol, nonanol, n-decanol, trimethylnonyl alcohol, benzyl alcohol, α-terpineol, tetrahydrofurfuryl alcohol, furfuryl alcohol, abiethinol, triglycol dichloride , Trichloroacetic acid, lactic acid, valeric acid, isovaleric acid, caproic acid, 2-ethylhexanoic acid, caprylic acid, butyric anhydride, decane, dipentene, p-menthane, dodecane, 1,1,2-trichloroethane, 1,1 , 1,2-tetrachloroethane, 1,1,2,2-tetrachloroethane, hexachloroethane, toluene, xylene, o-dichlorobenzene, m-dichlorobenzene, p-dichlorobenzene, 1,2,4-trichlorobenzene, o-Dibromobenzene, Zonitoriru, nitrobenzene, alpha-tolunitrile (phenylacetonitrile), N- methylformamide, N- methylacetamide, 2-pyrrolidone, and the like.
 前記溶剤は、1種単独で又は2種以上を混合して使用することができる。また、(A)成分を重合する際に用いた溶剤をそのまま用いることもできる。 The solvent can be used singly or in combination of two or more. Moreover, the solvent used when superposing | polymerizing (A) component can also be used as it is.
 前記溶剤は、印刷性の観点からは、沸点が150℃以上であることが好ましく、180℃以上であることがより好ましく、200℃以上であることがより一層好ましい。このような溶剤としては、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノブチルエーテルアセテート、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、ジエチレングリコールモノヘキシルエーテル、トリエチレングリコールモノブチルエーテル、プロピレングリコールモノブチルエーテル、ジプロピレングリコール、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジエチレングリコールモノフェニルエーテル、エチレングリコールモノベンジルエーテル、ジエチレングリコールモノベンジルエーテル等が特に好ましい。 From the viewpoint of printability, the solvent preferably has a boiling point of 150 ° C. or higher, more preferably 180 ° C. or higher, and even more preferably 200 ° C. or higher. Such solvents include diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether, diethylene glycol monobutyl ether acetate, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dibutyl ether, diethylene glycol monohexyl ether, triethylene glycol Monobutyl ether, propylene glycol monobutyl ether, dipropylene glycol, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, diethylene glycol monophenyl ether, ethylene glycol monobenzyl ether Le, diethylene glycol benzyl ether or the like are particularly preferable.
 溶剤を2種以上混合して使用する場合は、少なくとも1種の沸点が150℃以上であることが好ましく、180℃以上であることがより好ましく、200℃以上であることがより一層好ましい。 When two or more solvents are used in combination, at least one boiling point is preferably 150 ° C. or higher, more preferably 180 ° C. or higher, and even more preferably 200 ° C. or higher.
 前記溶剤の量は、本発明の組成物中の固形分濃度が1~95質量%となるような量が好ましく、固形分濃度が5~90質量%となるような量がより好ましく、固形分濃度が10~85質量%となるような量がより一層好ましい。ここで、固形分とは、本発明の組成物の全成分から(C)溶剤を除いたものである。 The amount of the solvent is preferably such that the solid content concentration in the composition of the present invention is 1 to 95% by mass, more preferably the solid content concentration is 5 to 90% by mass, An amount such that the concentration is 10 to 85% by mass is even more preferable. Here, solid content removes (C) solvent from all the components of the composition of this invention.
 本発明の組成物は、前記(A)~(C)成分を含有するが、オーバーコート機能を向上させる観点等から、更に
(D)シランカップリング剤、
(E)多官能(メタ)アクリレート化合物、
(F)ラジカル重合開始剤、
(G)重合禁止剤、
(H)ベンゾトリアゾール化合物以外のイオントラップ剤
等を含有してもよい。
The composition of the present invention contains the components (A) to (C), but from the viewpoint of improving the overcoat function, (D) a silane coupling agent,
(E) a polyfunctional (meth) acrylate compound,
(F) a radical polymerization initiator,
(G) a polymerization inhibitor,
(H) You may contain ion trap agents other than a benzotriazole compound.
[(D)シランカップリング剤]
 本発明の組成物は、密着性を向上させる観点から、好ましくは、(D)成分としてシランカップリング剤を含有する。シランカップリング剤の好ましい一例としては、式(2)で表されるシラン化合物が挙げられる。
[(D) Silane coupling agent]
The composition of the present invention preferably contains a silane coupling agent as the component (D) from the viewpoint of improving adhesion. A preferred example of the silane coupling agent is a silane compound represented by the formula (2).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 式(2)中、R3は、メチル基又はエチル基を表す。Xは、加水分解性基を表す。Yは、反応性官能基を表す。mは、0~3の整数である。nは、0~3の整数であり、0~2の整数が好ましい。 In formula (2), R 3 represents a methyl group or an ethyl group. X represents a hydrolyzable group. Y represents a reactive functional group. m is an integer of 0 to 3. n is an integer of 0 to 3, preferably an integer of 0 to 2.
 Xで表される加水分解性基としては、ハロゲン原子、炭素数1~3のアルコキシ基、炭素数2~4のアルコキシアルコキシ基等が挙げられる。前記ハロゲン原子としては、塩素原子、臭素原子等が挙げられる。炭素数1~3のアルコキシ基としては、直鎖状又は分岐状のものが好ましく、具体的には、メトキシ基、エトキシ基、n-プロポキシ基及びi-プロポキシ基である。また、炭素数2~4のアルコキシアルコキシ基として具体的には、メトキシメトキシ基、2-メトキシエトキシ基、エトキシメトキシ基及び2-エトキシエトキシ基である。 Examples of the hydrolyzable group represented by X include a halogen atom, an alkoxy group having 1 to 3 carbon atoms, and an alkoxyalkoxy group having 2 to 4 carbon atoms. Examples of the halogen atom include a chlorine atom and a bromine atom. The alkoxy group having 1 to 3 carbon atoms is preferably linear or branched, and specifically includes a methoxy group, an ethoxy group, an n-propoxy group, and an i-propoxy group. Specific examples of the alkoxyalkoxy group having 2 to 4 carbon atoms include a methoxymethoxy group, a 2-methoxyethoxy group, an ethoxymethoxy group, and a 2-ethoxyethoxy group.
 Yで表される反応性官能基としては、アミノ基、ウレイド基、(メタ)アクリロキシ基、ビニル基、エポキシ基、メルカプト基等が挙げられ、アミノ基、ウレイド基、(メタ)アクリロキシ基等が好ましい。特に好ましくは、アミノ基又はウレイド基である。 Examples of the reactive functional group represented by Y include an amino group, a ureido group, a (meth) acryloxy group, a vinyl group, an epoxy group, a mercapto group, and the like, such as an amino group, a ureido group, and a (meth) acryloxy group. preferable. Particularly preferred is an amino group or a ureido group.
 前記シランカップリング剤として具体的には、3-アミノプロピルトリクロロシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-アミノプロピルメチルジメトキシシラン、3-アミノプロピルメチルジエトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-アクリロキシプロピルトリエトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、ビニルトリクロロシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、アリルトリクロロシラン、アリルトリメトキシシラン、アリルトリエトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルメチルジエトキシシラン等が挙げられる。 Specific examples of the silane coupling agent include 3-aminopropyltrichlorosilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropylmethyldimethoxysilane, and 3-aminopropylmethyldiethoxysilane. 3-ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, 3-acryloxypropyltriethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropyltri Ethoxysilane, vinyltrichlorosilane, vinyltrimethoxysilane, vinyltriethoxysilane, allyltrichlorosilane, allyltrimethoxysilane, allyltriethoxysilane, 3-glycidoxy Propyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 3-mercaptopropylmethyldimethoxysilane, Examples include 3-mercaptopropylmethyldiethoxysilane.
 これらのうち、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン等が特に好ましい。
 前記シランカップリング剤としては、市販品を使用し得る。
Of these, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropyl Triethoxysilane and the like are particularly preferable.
A commercial item can be used as said silane coupling agent.
 本発明の組成物が(D)成分を含有する場合、その含有量は、(A)成分100質量部に対して0.001~10質量部が好ましく、0.01~5質量部がより好ましく、0.05~1質量部がより一層好ましい。含有量が0.001質量部未満だと密着性の向上効果が得られないことがあり、10質量部を超えると硬度が低下することがある。 When the composition of the present invention contains the component (D), the content thereof is preferably 0.001 to 10 parts by mass, more preferably 0.01 to 5 parts by mass with respect to 100 parts by mass of the component (A). 0.05 to 1 part by mass is even more preferable. If the content is less than 0.001 part by mass, the effect of improving the adhesion may not be obtained, and if it exceeds 10 parts by mass, the hardness may decrease.
[(E)多官能(メタ)アクリレート化合物]
 本発明の組成物は、硬度を改善する観点から、好ましくは、(E)成分として多官能(メタ)アクリレート化合物を含有する。多官能(メタ)アクリレート化合物とは、分子中に少なくとも3つの(メタ)アクリロキシ基を有する化合物のことであり、具体的には、多価アルコールと(メタ)アクリル酸とのエステルが挙げられる。また、1分子中の(メタ)アクリロキシ基の数は3~6であり、好ましくは3又は4である。
[(E) Polyfunctional (meth) acrylate compound]
From the viewpoint of improving hardness, the composition of the present invention preferably contains a polyfunctional (meth) acrylate compound as the component (E). The polyfunctional (meth) acrylate compound is a compound having at least three (meth) acryloxy groups in the molecule, and specifically includes an ester of a polyhydric alcohol and (meth) acrylic acid. The number of (meth) acryloxy groups in one molecule is 3 to 6, preferably 3 or 4.
 前記多価アルコールとしては、グリセロール、エリスリトール、ペンタエリスリトール、トリメチロールエタン、トリメチロールプロパン、ジペンタエリスリトール、ジトリメチロールプロパン等が挙げられる。 Examples of the polyhydric alcohol include glycerol, erythritol, pentaerythritol, trimethylolethane, trimethylolpropane, dipentaerythritol, ditrimethylolpropane, and the like.
 前記多官能(メタ)アクリレート化合物の具体例としては、ペンタエリスリトールテトラアクリレート、ペンタエリスリトールテトラメタクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールトリメタクリレート、ジペンタエリスリトールヘキサアクリレート、ジペンタエリスリトールヘキサメタクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールペンタメタクリレート、トリメチロールエタントリアクリレート、トリメチロールエタントリメタクリレート、トリメチロールプロパントリアクリレート、トリメチロールプロパントリメタクリレート、ジトリメチロールプロパンテトラアクリレート、ジトリメチロールプロパンテトラメタクリレート等が挙げられる。 Specific examples of the polyfunctional (meth) acrylate compound include pentaerythritol tetraacrylate, pentaerythritol tetramethacrylate, pentaerythritol triacrylate, pentaerythritol trimethacrylate, dipentaerythritol hexaacrylate, dipentaerythritol hexamethacrylate, dipentaerythritol pentane. Examples include acrylate, dipentaerythritol pentamethacrylate, trimethylolethane triacrylate, trimethylolethane trimethacrylate, trimethylolpropane triacrylate, trimethylolpropane trimethacrylate, ditrimethylolpropane tetraacrylate, ditrimethylolpropane tetramethacrylate, and the like.
 前記多官能(メタ)アクリレート化合物は、市販品として容易に入手が可能であり、その具体例としては、例えば、日本化薬(株)製KAYARAD(登録商標)T-1420、DPHA、DPHA-2C、D-310、D-330、DPCA-20、DPCA-30、DPCA-60、DPCA-120、DN-0075、DN-2475、R-526、NPGDA、PEG400DA、MANDA、R-167、HX-220、HX620、R-551、R-712、R-604、R-684、GPO-303、TMPTA、THE-330、TPA-320、TPA-330、PET-30、RP-1040;東亞合成(株)製アロニックス(登録商標)M-210、M-240、M-6200、M-309、M-400、M-402、M-405、M-450、M-7100、M-8030、M-8060、M-1310、M-1600、M-1960、M-8100、M-8530、M-8560、M-9050;大阪有機化学工業(株)製ビスコート295、300、360、GPT、3PA、400、260、312、335HP;新中村化学工業(株)製NKエステルA-9300、A-9300-1CL、A-GLY-9E、A-GLY-20E、A-TMM-3、A-TMM-3L、A-TMM-3LM-N、A-TMPT、AD-TMP、ATM-35E、A-TMMT、A-9550、A-DPH、TMPT等が挙げられる。 The polyfunctional (meth) acrylate compound can be easily obtained as a commercial product. Specific examples thereof include, for example, KAYARAD (registered trademark) T-1420, DPHA, DPHA-2C manufactured by Nippon Kayaku Co., Ltd. , D-310, D-330, DPCA-20, DPCA-30, DPCA-60, DPCA-120, DN-0075, DN-2475, R-526, NPGDA, PEG400DA, MANDA, R-167, HX-220 , HX620, R-551, R-712, R-604, R-684, GPO-303, TMPTA, THE-330, TPA-320, TPA-330, PET-30, RP-1040; Toagosei Co., Ltd. Aronix (registered trademark) M-210, M-240, M-6200, M-309, M-400, M-402, M-405, M-450, M-7100, M-8030, M-8060, M-1310, M-1600, M-1960, M-8100, M-8530, M-8560, M-9050; Biscoat 295, 300, 360, GPT, 3PA, 400, 260 manufactured by Osaka Organic Chemical Industry Co., Ltd. , 312, 335HP; Shin Nakamura Chemical Co., Ltd. NK Esters A-9300, A-9300-1CL, A-GLY-9E, A-GLY-20E, A-TMM-3, A-TMM-3L, A -TMM-3LM-N, A-TMPT, AD-TMP, ATM-35E, A-TMMT, A-9550, A-DPH, TMPT, etc.
 本発明の組成物が(E)成分を含有する場合、その含有量は、(A)成分100質量部に対して10~300質量部であることが好ましく、20~200質量部がより好ましく、50~150質量部がより一層好ましい。含有量が10質量部未満である場合には、硬化膜の硬度改善効果が得られないことがあり、300質量部を超える場合には、密着性と柔軟性の特性が低下し、クラックが発生し易くなることがある。多官能(メタ)アクリレート化合物は、1種又は2種以上を組み合わせて用いることができる。 When the composition of the present invention contains the component (E), the content is preferably 10 to 300 parts by weight, more preferably 20 to 200 parts by weight with respect to 100 parts by weight of the component (A). 50 to 150 parts by mass is even more preferable. When the content is less than 10 parts by mass, the effect of improving the hardness of the cured film may not be obtained. When the content exceeds 300 parts by mass, the adhesion and flexibility characteristics are degraded and cracks are generated. May be easier to do. A polyfunctional (meth) acrylate compound can be used 1 type or in combination of 2 or more types.
[(F)ラジカル重合開始剤]
 本発明の組成物は、(E)成分の重合の開始又は促進の観点から、好ましくは、(F)成分としてラジカル重合開始剤を含有する。(E)成分は、高温で処理することによって自発的に重合するが、基板が変性する等高温硬化処理ができない場合、(F)成分を添加することによって低温硬化処理又は光硬化処理が可能となる。
[(F) radical polymerization initiator]
The composition of the present invention preferably contains a radical polymerization initiator as the component (F) from the viewpoint of initiation or acceleration of the polymerization of the component (E). The component (E) is spontaneously polymerized by processing at a high temperature, but when a high-temperature curing process such as degeneration of the substrate is not possible, a low-temperature curing process or a photo-curing process is possible by adding the component (F) Become.
 ラジカル重合開始剤は、光照射及び/又は加熱によりラジカル重合を開始させる物質を放出することが可能であればよい。例えば、光ラジカル重合開始剤としては、ベンゾフェノン誘導体、イミダゾール誘導体、ビスイミダゾール誘導体、N-アリールグリシン誘導体、有機アジド化合物、チタノセン化合物、アルミナート錯体、有機過酸化物、N-アルコキシピリジニウム塩、チオキサントン誘導体等が挙げられる。更に具体的には、ベンゾフェノン、1,3-ジ(t-ブチルジオキシカルボニル)ベンゾフェノン、3,3',4,4'-テトラキス(t-ブチルジオキシカルボニル)ベンゾフェノン、3-フェニル-5-イソオキサゾロン、2-メルカプトベンズイミダゾール、ビス(2,4,5-トリフェニル)イミダゾール、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)ブタン-1-オン、ビス(η5-2,4-シクロペンタジエン-1-イル)ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)フェニル)チタニウム等が挙げられるが、これらに限定されない。 The radical polymerization initiator may be any substance that can release a substance that initiates radical polymerization by light irradiation and / or heating. For example, photo radical polymerization initiators include benzophenone derivatives, imidazole derivatives, bisimidazole derivatives, N-aryl glycine derivatives, organic azide compounds, titanocene compounds, aluminate complexes, organic peroxides, N-alkoxypyridinium salts, thioxanthone derivatives. Etc. More specifically, benzophenone, 1,3-di (t-butyldioxycarbonyl) benzophenone, 3,3 ′, 4,4′-tetrakis (t-butyldioxycarbonyl) benzophenone, 3-phenyl-5- Isoxazolone, 2-mercaptobenzimidazole, bis (2,4,5-triphenyl) imidazole, 2,2-dimethoxy-1,2-diphenylethane-1-one, 1-hydroxycyclohexyl phenyl ketone, 2-benzyl- 2-Dimethylamino-1- (4-morpholinophenyl) butan-1-one, bis (η5-2,4-cyclopentadien-1-yl) bis (2,6-difluoro-3- (1H-pyrrole-1) -Yl) phenyl) titanium and the like, but are not limited thereto.
 前記光ラジカル重合開始剤としては市販品を利用することもでき、例えば、BASF社製のIRGACURE(登録商標)651、184、369、784等が挙げられる。また、前記以外の市販品も使用でき、具体的には、BASF社製IRGACURE(登録商標)500、907、379、819、127、500、754、250、1800、1870、OXE01、TPO、DAROCUR(登録商標)1173;Lambson社製Speedcure(登録商標)MBB、PBZ、ITX、CTX、EDB;Lamberti社製Esacure(登録商標)ONE、KIP150、KTO46;日本化薬(株)製KAYACURE(登録商標)DETX-S、CTX、BMS、DMBI等が挙げられる。 Commercially available products can be used as the photo radical polymerization initiator, and examples thereof include IRGACURE (registered trademark) 651, 184, 369, 784 manufactured by BASF. In addition, commercially available products other than those described above can also be used. Specifically, IRGACURE (registered trademark) 500, 907, 379, 819, 127, 500, 754, 250, 1800, 1870, OXE01, TPO, DAROCUR (manufactured by BASF) (Registered trademark) 1173; Speedcure (registered trademark) MBB, PBZ, ITX, CTX, EDB manufactured by Lambson; Esacure (registered trademark) ONE, KIP150, KTO46 manufactured by Lamberti; KAYACURE (registered trademark) DETX manufactured by Nippon Kayaku Co., Ltd. -S, CTX, BMS, DMBI, etc.
 また、熱ラジカル重合開始剤としては、例えば、アセチルペルオキシド、ベンゾイルペルオキシド、メチルエチルケトンペルオキシド、シクロヘキサノンペルオキシド、過酸化水素、t-ブチルヒドロペルオキシド、クメンヒドロペルオキシド、ジ-t-ブチルペルオキシド、ジクミルペルオキシド、ジラウロイルペルオキシド、t-ブチルペルオキシアセテート、t-ブチルペルオキシピバレート、t-ブチルペルオキシ-2-エチルヘキサノエート(t-ブチル2-エチルヘキサンペルオキソエート)等の過酸化物;2,2'-アゾビスイソブチロニトリル、2,2'-アゾビス(2,4-ジメチルバレロニトリル)、(1-フェニルエチル)アゾジフェニルメタン、2,2'-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、ジメチル2,2'-アゾビスイソブチレート、2,2'-アゾビス(2-メチルブチロニトリル)、1,1'-アゾビス(1-シクロヘキサンカルボニトリル)、2-(カルバモイルアゾ)イソブチロニトリル、2,2'-アゾビス(2,4,4-トリメチルペンタン)、2-フェニルアゾ-2,4-ジメチル-4-メトキシバレロニトリル、2,2'-アゾビス(2-メチルプロパン)等のアゾ系化合物;過硫酸アンモニウム、過硫酸ナトリウム、過硫酸カリウム等の過硫酸塩等が挙げられるが、これらに限定されない。 Examples of the thermal radical polymerization initiator include acetyl peroxide, benzoyl peroxide, methyl ethyl ketone peroxide, cyclohexanone peroxide, hydrogen peroxide, t-butyl hydroperoxide, cumene hydroperoxide, di-t-butyl peroxide, dicumyl peroxide, Peroxides such as lauroyl peroxide, t-butylperoxyacetate, t-butylperoxypivalate, t-butylperoxy-2-ethylhexanoate (t-butyl-2-ethylhexaneperoxoate); 2,2′-azo Bisisobutyronitrile, 2,2′-azobis (2,4-dimethylvaleronitrile), (1-phenylethyl) azodiphenylmethane, 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile) Dimethyl 2, '-Azobisisobutyrate, 2,2'-azobis (2-methylbutyronitrile), 1,1'-azobis (1-cyclohexanecarbonitrile), 2- (carbamoylazo) isobutyronitrile, 2, Azo compounds such as 2′-azobis (2,4,4-trimethylpentane), 2-phenylazo-2,4-dimethyl-4-methoxyvaleronitrile, 2,2′-azobis (2-methylpropane); Examples thereof include, but are not limited to, persulfates such as ammonium sulfate, sodium persulfate, and potassium persulfate.
 市販の熱ラジカル重合開始剤としては、例えば、日油(株)製パーロイル(登録商標)IB、NPP、IPP、SBP、TCP、OPP、SA、355、L、パーブチル(登録商標)ND、NHP、MA、PV、355、A、C、D、E、L、I、O、P、Z、パーヘキシル(登録商標)ND、PV、D、I、O、Z、パーオクタ(登録商標)ND、ナイパー(登録商標)PMB、BMT、BW、パーテトラ(登録商標)A、パーヘキサ(登録商標)MC、TMH、HC、250、25B、C、25Z、22、V、パーオクタ(登録商標)O、パークミル(登録商標)ND、D、パーメンタ(登録商標)H、ノフマー(登録商標)BC;和光純薬工業(株)製V-70、V-65、V-59、V-40、V-30、VA-044、VA-046B、VA-061、V-50、VA-057、VA-086、VF-096、VAm-110、V-601、V-501;BASF社製IRGACURE(登録商標)184、369、651、500、819、907、784、2959、CGI1700、CGI1750、CGI1850、CG24-61、TPO、DAROCUR(登録商標)1116、1173;サイテックサーフェイススペシャルティーズ社製UVECRYL(登録商標)P36;Lamberti社製Esacure(登録商標)KIP150、KIP65LT、KIP100F、KT37、KT55、KTO46、KIP75/B等が挙げられるが、これらに限定されない。 Examples of commercially available thermal radical polymerization initiators include, for example, NOF Corporation Parroyl (registered trademark) IB, NPP, IPP, SBP, TCP, OPP, SA, 355, L, perbutyl (registered trademark) ND, NHP, MA, PV, 355, A, C, D, E, L, I, O, P, Z, Perhexyl (registered trademark) ND, PV, D, I, O, Z, Perocta (registered trademark) ND, Nyper ( (Registered trademark) PMB, BMT, BW, pertetra (registered trademark) A, perhexa (registered trademark) MC, TMH, HC, 250, 25B, C, 25Z, 22, V, perocta (registered trademark) O, park mill (registered trademark) ) ND, D, Permenta (registered trademark) H, NOFMER (registered trademark) BC; V-70, V-65, V-59, V-40, V-30, VA-044 manufactured by Wako Pure Chemical Industries, Ltd. , VA-046B, VA-061, V-50, VA-057, VA-086, VF-096, VAm-110, V-601, V-501; IRGACURE (registered trademark) 184, 369, 651 manufactured by BASF , 500, 819, 907, 784, 2959, CGI1700, CGI1750, CGI1850, CG24-61, TPO, DAROCUR (registered trademark) 1116, 1173; Tech Surface Specialties Inc. UVECRYL (registered trademark) P36; Lamberti Co. Esacure (TM) KIP150, KIP65LT, KIP100F, KT37, KT55, KTO46, KIP75 / but B, and the like, without limitation.
 本発明の組成物が(F)成分を含有する場合、その含有量は、(A)成分100質量部に対して1~20質量部が好ましく、1~15質量部がより好ましい。 In the case where the composition of the present invention contains the component (F), the content thereof is preferably 1 to 20 parts by mass, more preferably 1 to 15 parts by mass with respect to 100 parts by mass of the component (A).
[(G)重合禁止剤]
 本発明の組成物は、必要に応じて、(G)成分として重合禁止剤を含有することができる。前記重合禁止剤としては、例えば2,6-ジイソブチルフェノール、3,5-ジ-t-ブチルフェノール、3,5-ジ-t-ブチルクレゾール、ヒドロキノン、ヒドロキノンモノメチルエーテル、ピロガロール、t-ブチルカテコール、4-メトキシ-1-ナフトール等が挙げられる。
[(G) Polymerization inhibitor]
The composition of this invention can contain a polymerization inhibitor as (G) component as needed. Examples of the polymerization inhibitor include 2,6-diisobutylphenol, 3,5-di-t-butylphenol, 3,5-di-t-butylcresol, hydroquinone, hydroquinone monomethyl ether, pyrogallol, t-butylcatechol, 4 -Methoxy-1-naphthol and the like.
 本発明の組成物が(G)成分を含有する場合、その含有量は、全固形分中1質量%以下が好ましく、0.5質量%以下がより好ましい。含有率が1質量%を超えると、硬化不良を起こし、反応が不十分となることがある。 When the composition of the present invention contains the component (G), the content thereof is preferably 1% by mass or less, more preferably 0.5% by mass or less, based on the total solid content. If the content exceeds 1% by mass, poor curing may occur and the reaction may become insufficient.
[(H)ベンゾトリアゾール化合物以外のイオントラップ剤]
 本発明の組成物は、(H)成分としてベンゾトリアゾール化合物以外のイオントラップ剤を含有することができる。このようなイオントラップ剤としては、例えば、N,N'-ビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニル]ヒドラジン(Irganox(登録商標)MD1024、BASF社製)、シュウ酸ビス(ベンジリデンヒドラジド)(Eastman Inhibitor OABH、イーストマンケミカル社製)等が挙げられる。
[(H) Ion trapping agents other than benzotriazole compounds]
The composition of this invention can contain ion trap agents other than a benzotriazole compound as (H) component. As such an ion trapping agent, for example, N, N′-bis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyl] hydrazine (Irganox® MD1024, manufactured by BASF) ), Bis (benzylidene hydrazide) oxalate (Eastman Inhibitor OABH, manufactured by Eastman Chemical Co.), and the like.
 本発明の組成物が(H)成分を含有する場合、その含有量は、(A)成分100質量部に対して0.0001~20質量部程度であるが、前述のとおり、ベンゾトリアゾール化合物がイオントラップ剤としても機能し得ることから、その他のイオントラップ剤を含まない方が好ましい。 When the composition of the present invention contains the component (H), the content is about 0.0001 to 20 parts by mass with respect to 100 parts by mass of the component (A). Since it can also function as an ion trapping agent, it is preferable not to include other ion trapping agents.
[その他の添加剤]
 本発明の組成物は、本発明の効果を損なわない限りにおいて、必要に応じて、更に界面活性剤、架橋剤、消泡剤、レオロジー調整剤、顔料、染料、保存安定剤、多価フェノールや多価カルボン酸等の溶解促進剤等を含有することができる。
[Other additives]
The composition of the present invention may further comprise a surfactant, a crosslinking agent, an antifoaming agent, a rheology modifier, a pigment, a dye, a storage stabilizer, a polyhydric phenol, A dissolution accelerator such as a polyvalent carboxylic acid can be contained.
 界面活性剤としては、特に限定されないが、例えば、フッ素系界面活性剤、シリコン系界面活性剤、ノニオン系界面活性剤等が挙げられる。この種の界面活性剤としては、例えば、三菱マテリアル電子化成(株)製エフトップ(登録商標)EF301、EF303、EF352;DIC(株)製メガファック(登録商標)F171、F173;スリーエム社製FLUORAD(登録商標)FC430、FC431;旭硝子(株)製アサヒガード(登録商標)AG710、AGCセイミケミカル(株)製サーフロン(登録商標)S-382、SC101、SC102、SC103、SC104、SC105、SC106等が挙げられる。 The surfactant is not particularly limited, and examples thereof include a fluorine-based surfactant, a silicon-based surfactant, and a nonionic surfactant. Examples of this type of surfactant include, for example, F-top (registered trademark) EF301, EF303, EF352 manufactured by Mitsubishi Materials Electronics Chemical Co., Ltd .; Mega-Fac® (registered trademark) F171, F173 manufactured by DIC Corporation; FLUORAD manufactured by 3M (Registered trademark) FC430, FC431; Asahi Guard Co., Ltd. Asahi Guard (registered trademark) AG710, AGC Seimi Chemical Co., Ltd. Surflon (registered trademark) S-382, SC101, SC102, SC103, SC104, SC105, SC106 etc. Can be mentioned.
 架橋剤としては、多官能エポキシ化合物、多官能イソシアネート化合物、多官能チオール化合物、メラミン系架橋剤等が挙げられるが、(E)成分を含有する場合は3官能以上のチオール化合物が好ましい。多官能チオール化合物は、多価アルコールと、単官能及び/又は多官能チオール化合物との付加反応物として得ることができる。具体的な化合物としては、1,3,5-トリス(3-メルカプトプロピオニルオキシエチル)イソシアヌレート、1,3,5-トリス(3-メルカプトブチリルオキシエチル)イソシアヌレート(昭和電工(株)製、カレンズMT(登録商標)NR1)、トリメチロールプロパントリス(3-メルカプトプロピオネート)等の3官能チオール化合物;ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3-メルカプトブチレート)(昭和電工(株)製、カレンズMT(登録商標)PEI)等の4官能チオール化合物;ジペンタエリスリトールヘキサキス(3-プロピオネート)等の6官能チオール化合物等が挙げられる。 Examples of the crosslinking agent include a polyfunctional epoxy compound, a polyfunctional isocyanate compound, a polyfunctional thiol compound, a melamine-based crosslinking agent, and the like. When the component (E) is contained, a trifunctional or higher functional thiol compound is preferable. The polyfunctional thiol compound can be obtained as an addition reaction product of a polyhydric alcohol and a monofunctional and / or polyfunctional thiol compound. Specific compounds include 1,3,5-tris (3-mercaptopropionyloxyethyl) isocyanurate and 1,3,5-tris (3-mercaptobutyryloxyethyl) isocyanurate (manufactured by Showa Denko KK). , Karenz MT (registered trademark) NR1), trifunctional thiol compounds such as trimethylolpropane tris (3-mercaptopropionate); pentaerythritol tetrakis (3-mercaptopropionate), pentaerythritol tetrakis (3-mercaptobutyrate) ) (Made by Showa Denko KK, Karenz MT (registered trademark) PEI) and the like; and tetrafunctional thiol compounds such as dipentaerythritol hexakis (3-propionate).
 消泡剤としては、アセチレングリコール、シリコーン流体及び乳剤、エトキシ化又はプロポキシ化シリコーン、炭化水素、脂肪酸エステル誘導体、アセチル化ポリアミド、ポリ(アルキレンオキシド)ポリマー及びコポリマー等が挙げられるが、これらに限定されない。スクリーン印刷を行う場合は、本発明の組成物は消泡剤を含有することが好ましい。 Antifoaming agents include, but are not limited to, acetylene glycol, silicone fluids and emulsions, ethoxylated or propoxylated silicones, hydrocarbons, fatty acid ester derivatives, acetylated polyamides, poly (alkylene oxide) polymers and copolymers, and the like. . When screen printing is performed, the composition of the present invention preferably contains an antifoaming agent.
 本発明の組成物の25℃における粘度は、塗布性の観点から、好ましくは1~10,000mPa・s、より好ましくは1~5,000mPa・s、より一層好ましくは1~1,000mPa・sである。粘度が低すぎると、目的の膜厚が得られないことがあり、粘度が高すぎると、塗布性が低下することがある。 The viscosity at 25 ° C. of the composition of the present invention is preferably 1 to 10,000 mPa · s, more preferably 1 to 5,000 mPa · s, and still more preferably 1 to 1,000 mPa · s from the viewpoint of applicability. It is. If the viscosity is too low, the desired film thickness may not be obtained, and if the viscosity is too high, the coatability may deteriorate.
 また、本発明の組成物の25℃における粘度は、印刷性の観点から、好ましくは10~100,000mPa・s、より好ましくは500~100,000mPa・s、より一層好ましくは1,000~100,000mPa・sである。粘度が低すぎると、塗布後に組成物が拡散してしまい、所望のパターンが形成されないことがあり、粘度が高すぎると、吐出性が低くなる等工程への負荷が生じたり、組成物の基板への転写性が低下したりすることがある。 Further, the viscosity at 25 ° C. of the composition of the present invention is preferably 10 to 100,000 mPa · s, more preferably 500 to 100,000 mPa · s, and still more preferably 1,000 to 100 from the viewpoint of printability. 1,000 mPa · s. If the viscosity is too low, the composition may diffuse after application, and a desired pattern may not be formed. If the viscosity is too high, the discharge performance may be reduced, and a load on the process may occur. Transferability to the surface may be reduced.
 タッチパネルにおけるX軸電極及びY軸電極が直交する部分にブリッジ構造を構成するための絶縁膜のように微細な構造をスクリーン印刷、グラビアオフセット印刷等の印刷法によって形成する場合には、本発明の組成物の25℃における粘度は、好ましくは10~100,000mPa・s、より好ましくは5,000~100,000mPa・s、より一層好ましくは20,000~100,000mPa・sである。粘度が低すぎると、塗布後に組成物が拡散してしまい、所望のパターンが形成されないことがあり、粘度が高すぎると、吐出性が低くなる等工程への負荷が生じたり、組成物の基板への転写性が低下したりすることがある。 In the case where a fine structure such as an insulating film for forming a bridge structure is formed by a printing method such as screen printing or gravure offset printing in a portion where the X-axis electrode and the Y-axis electrode in the touch panel are orthogonal to each other, The viscosity at 25 ° C. of the composition is preferably 10 to 100,000 mPa · s, more preferably 5,000 to 100,000 mPa · s, and even more preferably 20,000 to 100,000 mPa · s. If the viscosity is too low, the composition may diffuse after application, and a desired pattern may not be formed. If the viscosity is too high, the discharge performance may be reduced, and a load on the process may occur. Transferability to the surface may be reduced.
 なお、本発明において、粘度は、E型粘度計による測定値である。 In the present invention, the viscosity is a value measured with an E-type viscometer.
[組成物の調製方法]
 本発明の組成物の調製方法は、特に限定されない。一例としては、(A)成分を(C)溶剤に溶解し、この溶液に(B)成分を所定の割合で混合し、均一な溶液とする方法が挙げられる。また、この調製方法の適当な段階において、必要に応じて(D)~(H)成分やその他の成分を更に添加して混合する調製方法が挙げられる。
[Method for Preparing Composition]
The method for preparing the composition of the present invention is not particularly limited. As an example, there may be mentioned a method in which the component (A) is dissolved in the solvent (C) and the component (B) is mixed with this solution at a predetermined ratio to obtain a uniform solution. In addition, in an appropriate stage of this preparation method, there may be mentioned a preparation method in which components (D) to (H) and other components are further added and mixed as necessary.
 本発明の組成物の調製にあたっては、溶剤中における重合反応によって得られた(A)成分の溶液をそのまま使用することができる。この場合、この(A)成分の溶液に、前述したように、(B)成分等を入れて均一な溶液とする。また、濃度調整を目的として更に(C)溶剤を加えてもよい。 In preparing the composition of the present invention, the solution of the component (A) obtained by the polymerization reaction in a solvent can be used as it is. In this case, as described above, the component (B) is added to the solution of the component (A) to obtain a uniform solution. Further, for the purpose of adjusting the concentration, (C) a solvent may be further added.
 こうして調製された溶液状態の組成物は、孔径が0.2μm程度のフィルタ等を用いて濾過した後に使用することが好ましい。 The solution-state composition thus prepared is preferably used after being filtered using a filter having a pore size of about 0.2 μm.
[塗膜及び硬化膜]
 本発明の組成物を、電極及び/又は配線を有する基板(例えば、シリコン/二酸化シリコン被覆基板;シリコンナイトライド基板;アルミニウム、モリブデン、クロム、銅、銀等の金属、銀ナノワイヤ等の金属ナノワイヤ、銀ナノ粒子、銅ナノ粒子等の金属ナノ粒子、ポリ(3,4-エチレンジオキシチオフェン)/ポリ(スチレンスルホン酸塩)(PEDOT/PSS)、グラフェン、カーボンナノチューブ等の導電性ポリマーが被覆された基板;ガラス基板;石英基板;ITO基板;ITOフィルム基板;TACフィルム、ポリエステルフィルム、アクリルフィルム、シクロオレフィン(COP)フィルム等の樹脂フィルム基板)等の上に、回転塗布、流し塗布、ロール塗布、スリット塗布、スリットに続いた回転塗布、インクジェット塗布、スクリーン印刷、フレキソ印刷、グラビア印刷、オフセット印刷、グラビアオフセット印刷等の印刷法等によって塗布し、その後、ホットプレート又はオーブン等で予備乾燥(プリベーク)することにより、塗膜を形成することができる。本発明の組成物は、特にインクジェット塗布、スクリーン印刷、フレキソ印刷、グラビアオフセット印刷等の印刷法に適している。
[Coating and cured film]
The composition of the present invention is applied to a substrate having electrodes and / or wirings (for example, a silicon / silicon dioxide-coated substrate; a silicon nitride substrate; a metal such as aluminum, molybdenum, chromium, copper, or silver; a metal nanowire such as a silver nanowire; Metal nanoparticles such as silver nanoparticles and copper nanoparticles, poly (3,4-ethylenedioxythiophene) / poly (styrenesulfonate) (PEDOT / PSS), conductive polymers such as graphene and carbon nanotubes are coated Glass substrate; quartz substrate; ITO substrate; ITO film substrate; TAC film, polyester film, acrylic film, resin film substrate such as cycloolefin (COP) film), etc., spin coating, flow coating, roll coating , Slit coating, spin coating following slit, ink jet coating, screen marking , Flexographic printing, gravure printing, offset printing, coated by a printing method such as gravure offset printing, followed by pre-drying (prebaking) on a hot plate or an oven or the like, it is possible to form a coating film. The composition of the present invention is particularly suitable for printing methods such as inkjet coating, screen printing, flexographic printing, and gravure offset printing.
 プリベークは、一般に、好ましくは60℃~150℃、より好ましくは80℃~120℃で、ホットプレートを用いる場合には0.5~30分間、オーブンを用いる場合には0.5~90分間処理するという方法が採られる。 The pre-bake is generally preferably performed at 60 ° C. to 150 ° C., more preferably at 80 ° C. to 120 ° C., for 0.5 to 30 minutes when using a hot plate, and 0.5 to 90 minutes when using an oven. The method of doing is taken.
 次いで、熱硬化のためのポストベークを行う。具体的には、ホットプレート、オーブン等を用いて加熱する。ポストベークは、一般に、好ましくは150℃~300℃、より好ましくは200℃~250℃で、ホットプレートを用いる場合には1~30分間、オーブンを用いる場合には1~90分間処理するという方法が採られる。 Next, post-baking for thermosetting is performed. Specifically, heating is performed using a hot plate, an oven, or the like. The post-baking is generally performed at a temperature of preferably 150 ° C. to 300 ° C., more preferably 200 ° C. to 250 ° C. for 1 to 30 minutes when using a hot plate, and 1 to 90 minutes when using an oven. Is taken.
 本発明の組成物が熱ラジカル重合開始剤を含有する場合には、低温での硬化が可能である。この場合、プリベーク条件は前記と同様であるが、ポストベーク温度は、好ましくは60℃~200℃、より好ましくは80℃~150℃である。その他の条件は前記と同様である。 When the composition of the present invention contains a thermal radical polymerization initiator, curing at a low temperature is possible. In this case, the pre-bake conditions are the same as described above, but the post-bake temperature is preferably 60 ° C. to 200 ° C., more preferably 80 ° C. to 150 ° C. Other conditions are the same as described above.
 また、本発明の組成物が光ラジカル重合開始剤を含有する場合には、プリベーク後、前記塗膜に紫外線を照射することによって、光硬化を行うことができる。紫外線は、波長200~500nmの範囲で、その露光量は100~5,000mJ/cm2であることが好ましい。 Moreover, when the composition of this invention contains radical photopolymerization initiator, photocuring can be performed by irradiating an ultraviolet-ray to the said coating film after prebaking. The ultraviolet ray preferably has a wavelength in the range of 200 to 500 nm, and the exposure amount is preferably 100 to 5,000 mJ / cm 2 .
 光硬化後は、熱硬化のためのポストベークを行う。具体的には、ホットプレート、オーブン等を用いて加熱する。ポストベークは、一般に、好ましくは60℃~150℃、より好ましくは80℃~120℃で、ホットプレートを用いる場合には1~30分間、オーブンを用いる場合には1~90分間処理するという方法が採られる。 After photocuring, post-baking for thermal curing is performed. Specifically, heating is performed using a hot plate, an oven, or the like. The post-bake is generally performed at a temperature of preferably 60 ° C. to 150 ° C., more preferably 80 ° C. to 120 ° C. for 1 to 30 minutes when using a hot plate, and 1 to 90 minutes when using an oven. Is taken.
 前記のような条件のもとで本発明の組成物を硬化させることにより、基板の段差を充分に平坦化でき、高透明性を有する硬化膜を形成することができる。 By curing the composition of the present invention under the above conditions, the step of the substrate can be sufficiently flattened, and a cured film having high transparency can be formed.
 本発明の硬化膜は、少なくとも必要な水準の平坦化性、硬度及び密着性を有するため、薄膜トランジスタ(TFT)型液晶表示素子、有機EL素子等の各種ディスプレイにおける保護膜、平坦化膜、絶縁膜等、タッチパネルにおける保護膜、絶縁膜等の硬化膜を形成する材料としても有用である。また、柔軟性にも優れるため、ITOフィルム用のオーバーコート材としても好適である。 Since the cured film of the present invention has at least the necessary level of flatness, hardness and adhesion, the protective film, flattening film, and insulating film in various displays such as thin film transistor (TFT) type liquid crystal display elements and organic EL elements. It is also useful as a material for forming a cured film such as a protective film or an insulating film in a touch panel. Moreover, since it is excellent also in a softness | flexibility, it is suitable also as an overcoat material for ITO films.
 電極及び/又は配線が形成された基材上に前記電極及び/又は配線と接するように形成された本発明の硬化膜を備える導電性部材は、マイグレーションが抑制されるため、電極や配線間のショートを起こしにくく、耐久性に優れるものとなる。 Since the conductive member provided with the cured film of the present invention formed so as to be in contact with the electrode and / or the wiring on the substrate on which the electrode and / or the wiring is formed, migration is suppressed, It is difficult to cause a short circuit and has excellent durability.
 本発明のマイグレーション抑制方法によれば、組成物中にベンゾトリアゾール化合物が含まれるため、硬化膜の透明性、密着性及び硬度を損なうことなく、優れたマイグレーション抑制を実現することが可能となる。本発明の方法は、銀、銅、金、アルミニウム、ニッケル、スズ、鉛、パラジウム等のマイグレーションの抑制に効果的であり、特に、銀のマイグレーション抑制に効果的である。 According to the migration suppression method of the present invention, since a benzotriazole compound is contained in the composition, it is possible to realize excellent migration suppression without impairing the transparency, adhesion and hardness of the cured film. The method of the present invention is effective for suppressing migration of silver, copper, gold, aluminum, nickel, tin, lead, palladium, and the like, and is particularly effective for suppressing migration of silver.
 以下、合成例、実施例及び比較例を挙げて本発明を更に詳しく説明するが、本発明は、下記実施例に限定されない。なお、合成例において得られた共重合体の重量平均分子量(Mw)は、昭和電工(株)製GPC装置(Shodex GPC-101)(カラム:Shodex(登録商標)KF803l及びKF804l(昭和電工(株)製))を用いて、溶出溶剤テトラヒドロフランを流量1mL/分でカラム中(カラム温度40℃)に流して溶離させるという条件で測定した。なお、Mwはポリスチレン換算値にて表した。 Hereinafter, the present invention will be described in more detail with reference to synthesis examples, examples, and comparative examples, but the present invention is not limited to the following examples. In addition, the weight average molecular weight (Mw) of the copolymer obtained in the synthesis example is GPC apparatus (Shodex GPC-101) manufactured by Showa Denko KK (column: Shodex (registered trademark) KF803l and KF804l (Showa Denko Co., Ltd.). ))), And the elution solvent tetrahydrofuran was allowed to flow through the column (column temperature 40 ° C.) at a flow rate of 1 mL / min for elution. Mw is expressed in terms of polystyrene.
 また、下記合成例、実施例、比較例で用いた試薬及び装置は、次のとおりである。
・DEGMEA(ジエチレングリコールモノエチルエーテルアセテート)、MMA(メタクリル酸メチル)、MAA(メタクリル酸)、ST(スチレン):東京化成工業(株)製
・MAIB:2,2'-アゾビス(イソ酪酸)ジメチル、東京化成工業(株)製
・PET-30:ペンタエリスリトール(トリ/テトラ)アクリレート、日本化薬(株)製
・5-MBT:5-メチルベンゾトリアゾール、東京化成工業(株)製
・IRG184:光重合開始剤、BASF社製IRGACURE(登録商標)184
・APS:3-アミノプロピルトリエトキシシラン、信越化学工業(株)製LS-3150
・AGITAN771:消泡剤、MUNZING社製
・攪拌装置:(株)シンキー製あわとり練太郎ARE-310
The reagents and devices used in the following synthesis examples, examples, and comparative examples are as follows.
・ DEGMEA (diethylene glycol monoethyl ether acetate), MMA (methyl methacrylate), MAA (methacrylic acid), ST (styrene): manufactured by Tokyo Chemical Industry Co., Ltd. ・ MAIB: 2,2′-azobis (isobutyric acid) dimethyl, • Tokyo Chemical Industry Co., Ltd. • PET-30: Pentaerythritol (tri / tetra) acrylate, Nippon Kayaku Co., Ltd. • 5-MBT: 5-methylbenzotriazole, Tokyo Chemical Industry Co., Ltd. • IRG184: Hikari Polymerization initiator, IRGACURE (registered trademark) 184 manufactured by BASF
APS: 3-aminopropyltriethoxysilane, LS-3150 manufactured by Shin-Etsu Chemical Co., Ltd.
・ AGITAN 771: Antifoaming agent, manufactured by MUNZING ・ Stirrer: Shintaro Awatori Nertaro ARE-310
[1]樹脂の合成
[合成例1]
 1,000mLの四つ口フラスコに、DEGMEA532.0gを入れ、窒素雰囲気下、70℃(内温)で攪拌しながら、そこにMMA280.0g、MAA30.1g、ST36.5g及びMAIB8.1gの混合液を2時間かけてゆっくり滴下した。滴下後、更に70℃で20時間反応させ、樹脂溶液P1を得た。なお、この樹脂溶液に含まれる樹脂((メタ)アクリレートポリマー)中のモノマー単位のモル比は、MMA単位:MAA単位:ST単位=80:10:10であって、そのMwは、約5万であった。
[1] Synthesis of resin [Synthesis Example 1]
In a 1,000 mL four-necked flask, 532.0 g of DEGMEA was placed and stirred at 70 ° C. (internal temperature) under a nitrogen atmosphere, and MMA 280.0 g, MAA 30.1 g, ST36.5 g and MAIB 8.1 g were mixed therein. The solution was slowly added dropwise over 2 hours. After the dropwise addition, the mixture was further reacted at 70 ° C. for 20 hours to obtain a resin solution P1. The molar ratio of monomer units in the resin ((meth) acrylate polymer) contained in the resin solution is MMA unit: MAA unit: ST unit = 80: 10: 10, and the Mw is about 50,000. Met.
[2]硬化膜形成用樹脂組成物の作製、硬化膜の作製及びその評価
[実施例1]
 200mLのプラスチック容器に、合成例1で得られた樹脂溶液P1を55.1g、PET-30を24.3g、IRG184を1.3g、5-MBTを1.3g、APSを0.02g、AGITAN771を0.03g、DEGMEAを17.9g入れ、これを攪拌装置に入れ、10分間、2,000rpmで攪拌し、ワニスを作製した。
[2] Production of cured film forming resin composition, production of cured film and evaluation thereof [Example 1]
In a 200 mL plastic container, 55.1 g of resin solution P1 obtained in Synthesis Example 1, 24.3 g of PET-30, 1.3 g of IRG184, 1.3 g of 5-MBT, 0.02 g of APS, AGITAN771 0.03 g and DEGMEA 17.9 g were put into a stirrer and stirred for 10 minutes at 2,000 rpm to prepare a varnish.
[実施例2]
 200mLのプラスチック容器に、合成例1で得られた樹脂溶液P1を50.2g、PET-30を25.1g、IRG184を1.4g、5-MBTを0.68g、APSを0.03g、AGITAN771を0.03g、DEGMEAを22.6g入れ、これを攪拌装置に入れ、10分間、2,000rpmで攪拌し、ワニスを作製した。
[Example 2]
In a 200 mL plastic container, 50.2 g of the resin solution P1 obtained in Synthesis Example 1, 25.1 g of PET-30, 1.4 g of IRG184, 0.68 g of 5-MBT, 0.03 g of APS, AGITAN771 0.03 g and DEGMEA 22.6 g were put into a stirrer and stirred for 10 minutes at 2,000 rpm to prepare a varnish.
[実施例3]
 200mLのプラスチック容器に、合成例1で得られた樹脂溶液P1を48.3g、PET-30を24.1g、IRG184を1.3g、5-MBTを2.62g、APSを0.02g、AGITAN771を0.03g、DEGMEAを23.7g入れ、これを攪拌装置に入れ、10分間、2,000rpmで攪拌し、ワニスを作製した。
[Example 3]
In a 200 mL plastic container, 48.3 g of the resin solution P1 obtained in Synthesis Example 1, 24.1 g of PET-30, 1.3 g of IRG184, 2.62 g of 5-MBT, 0.02 g of APS, AGITAN771 0.03 g and DEGMEA 23.7 g were put into a stirrer and stirred for 10 minutes at 2,000 rpm to prepare a varnish.
[実施例4]
 200mLのプラスチック容器に、合成例1で得られた樹脂溶液P1を45.9g、PET-30を22.9g、IRG184を1.2g、5-MBTを5.00g、APSを0.02g、AGITAN771を0.03g、DEGMEAを25.0g入れ、これを攪拌装置に入れ、10分間、2,000rpmで攪拌し、ワニスを作製した。
[Example 4]
In a 200 mL plastic container, 45.9 g of the resin solution P1 obtained in Synthesis Example 1, 22.9 g of PET-30, 1.2 g of IRG184, 5.00 g of 5-MBT, 0.02 g of APS, AGITAN771 Of 0.03 g and 25.0 g of DEGMEA were put into a stirrer and stirred for 10 minutes at 2,000 rpm to prepare a varnish.
[比較例1]
 200mLのプラスチック容器に、合成例1で得られた樹脂溶液P1を56.7g、PET-30を24.9g、IRG184を1.4g、APSを0.02g、AGITAN771を0.03g、DEGMEAを17.0g入れ、これを攪拌装置に入れ、10分間、2,000rpmで攪拌し、ワニスを作製した。
[Comparative Example 1]
In a 200 mL plastic container, 56.7 g of the resin solution P1 obtained in Synthesis Example 1, 24.9 g of PET-30, 1.4 g of IRG184, 0.02 g of APS, 0.03 g of AGITAN771, and 17 of DEGMEA 0.0 g was put into a stirrer and stirred for 10 minutes at 2,000 rpm to prepare a varnish.
 実施例1~4及び比較例1で作製したワニスの組成をまとめて表1に示す。 Table 1 summarizes the compositions of the varnishes produced in Examples 1 to 4 and Comparative Example 1.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
[3]硬化膜の作製及びその評価
[光透過率測定用硬化膜の作製]
 実施例1~4及び比較例1のワニスを、それぞれガラス基板上にスピンコートにより塗布し、まず110℃で2分間プリベークを行った。次いでUV照射(800mJ/cm2)を行い、その後110℃で30分間ポストベークを行い、厚さ約5μmの硬化膜を作製した。得られた硬化膜について、下記方法によって鉛筆硬度、密着性、透明性の評価を行った。結果を表2に示す。
[3] Preparation of cured film and evaluation thereof [Preparation of cured film for light transmittance measurement]
The varnishes of Examples 1 to 4 and Comparative Example 1 were each applied onto a glass substrate by spin coating, and prebaked at 110 ° C. for 2 minutes. Subsequently, UV irradiation (800 mJ / cm 2 ) was performed, and then post-baking was performed at 110 ° C. for 30 minutes to produce a cured film having a thickness of about 5 μm. About the obtained cured film, pencil hardness, adhesiveness, and transparency were evaluated by the following method. The results are shown in Table 2.
[光透過率の測定]
 硬化膜の紫外可視吸収スペクトルを(株)島津製作所製UV-3100PCを用いて測定し、波長400nmにおける透過率を評価した。
[Measurement of light transmittance]
The UV-visible absorption spectrum of the cured film was measured using UV-3100PC manufactured by Shimadzu Corporation, and the transmittance at a wavelength of 400 nm was evaluated.
[鉛筆硬度の評価]
 JIS K 5400に準拠し、1,000g荷重で測定した。
[Evaluation of pencil hardness]
Based on JIS K 5400, the measurement was performed under a load of 1,000 g.
[密着性の評価]
 クロスカット試験方法により評価した。まず、カッターガイドを用いて、硬化膜に100個の碁盤目を作成した。次に、当該碁盤目上にニチバン(株)製のセロハンテープを接着し、上から消しゴムで強く擦り、充分に密着させた。そして、次にセロハンテープをはがし、その際に、100個の碁盤目のうち、何個が剥離したかで評価を行った。
  0B:66個以上が剥離
  1B:36~65個が剥離
  2B:16~35個が剥離
  3B:6~15個が剥離
  4B:1~5個が剥離
  5B:剥離なし
[Evaluation of adhesion]
The cross-cut test method was used for evaluation. First, 100 grids were prepared on the cured film using a cutter guide. Next, a cellophane tape made by Nichiban Co., Ltd. was bonded onto the grid, and rubbed with an eraser from above to make it adhere sufficiently. Then, the cellophane tape was peeled off, and at that time, it was evaluated how many of the 100 grids were peeled off.
0B: 66 or more peeled 1B: 36-65 peeled 2B: 16-35 peeled 3B: 6-15 peeled 4B: 1-5 peeled 5B: No peeling
[耐マイグレーション評価用サンプルの作製]
 図1のような銀パターン2をスパッタ蒸着によりガラス基板1上に作製した。実施例1~4及び比較例1のワニスを、それぞれ当該銀パターン付きガラス基板上にスクリーン印刷法により塗布し、まず110℃で2分間プリベークを行った。次いで110℃で30分間ポストベークを行い、厚さ約5μmの硬化膜3を作製し、評価用サンプルを得た。硬化膜を形成した銀パターン基板の断面図を図2に示す。得られたサンプルについて、下記方法によって、耐マイグレーション評価を行なった。
[Preparation of samples for migration resistance evaluation]
A silver pattern 2 as shown in FIG. 1 was formed on a glass substrate 1 by sputter deposition. The varnishes of Examples 1 to 4 and Comparative Example 1 were each applied onto the glass substrate with a silver pattern by screen printing, and prebaked at 110 ° C. for 2 minutes. Next, post-baking was performed at 110 ° C. for 30 minutes to produce a cured film 3 having a thickness of about 5 μm, and an evaluation sample was obtained. A cross-sectional view of the silver pattern substrate on which the cured film is formed is shown in FIG. The obtained sample was evaluated for migration resistance by the following method.
[耐マイグレーション評価]
 評価用サンプルを温度60℃、相対湿度90%RHの条件下に置き、銀パターン両端部に陽極と陰極をつなぎパターン先端部に電界集中が起こるように5Vの電圧を15時間印加するという試験を行い、この試験によるマイグレーションの発生の有無を確認した。なお、マイグレーションが発生したか否かは、試験前後のパターンを顕微鏡で観察することで確認した。試験前後のパターンを図3~5に示す。
[Migration resistance evaluation]
A test in which a sample for evaluation is placed under conditions of a temperature of 60 ° C. and a relative humidity of 90% RH, and an anode and a cathode are connected to both ends of the silver pattern and a voltage of 5 V is applied for 15 hours so that electric field concentration occurs at the tip of the pattern. The test was performed to confirm the occurrence of migration. Whether migration occurred or not was confirmed by observing the pattern before and after the test with a microscope. The patterns before and after the test are shown in FIGS.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表2に示す結果から明らかなように、実施例のワニス(硬化膜形成用樹脂組成物)から得られた硬化膜は、鉛筆硬度がH以上と高く、密着性も4B以上と高く、透明性にも優れるものであった。また、これらの硬化膜を用いた場合、マイグレーションの発生は認められなかった(図4)。一方、比較例のワニスから得られた硬化膜を用いた場合、マイグレーションの発生が認められた(図5)。 As is clear from the results shown in Table 2, the cured films obtained from the varnishes (cured film-forming resin compositions) of the examples have a pencil hardness as high as H or higher, and adhesion as high as 4B or higher, and transparency. It was also excellent. Moreover, when these cured films were used, no migration was observed (FIG. 4). On the other hand, when a cured film obtained from the varnish of the comparative example was used, occurrence of migration was observed (FIG. 5).
 1 基板
 2 銀パターン
 3 硬化膜
1 Substrate 2 Silver pattern 3 Cured film

Claims (9)

  1.  (A)重量平均分子量が5,000~200,000である(メタ)アクリレートポリマー(ただし、側鎖にシラン構造を有するものを除く。)、
    (B)ベンゾトリアゾール化合物からなるマイグレーション抑制剤兼イオントラップ剤、及び
    (C)溶剤
    を含有することを特徴とする硬化膜形成用樹脂組成物。
    (A) a (meth) acrylate polymer having a weight average molecular weight of 5,000 to 200,000 (excluding those having a silane structure in the side chain),
    (B) A cured film forming resin composition comprising a migration inhibitor / ion trapping agent comprising a benzotriazole compound, and (C) a solvent.
  2.  更に、(D)シランカップリング剤を含有する請求項1記載の硬化膜形成用樹脂組成物。 Furthermore, (D) The resin composition for cured film formation of Claim 1 containing a silane coupling agent.
  3.  更に、(E)多官能(メタ)アクリレート化合物を含有する請求項1又は2記載の硬化膜形成用樹脂組成物。 The resin composition for forming a cured film according to claim 1 or 2, further comprising (E) a polyfunctional (meth) acrylate compound.
  4.  更に、(F)ラジカル重合開始剤を含有する請求項3記載の硬化膜形成用樹脂組成物。 Furthermore, the resin composition for cured film formation of Claim 3 containing (F) radical polymerization initiator.
  5.  (B)ベンゾトリアゾール化合物が、(A)成分100質量部に対して0.1~50質量部含まれる請求項1~4のいずれか1項記載の硬化膜形成用樹脂組成物。 The cured film forming resin composition according to any one of claims 1 to 4, wherein the (B) benzotriazole compound is contained in an amount of 0.1 to 50 parts by mass with respect to 100 parts by mass of the component (A).
  6.  請求項1~5のいずれか1項記載の硬化膜形成用樹脂組成物を用いて形成された硬化膜。 A cured film formed using the resin composition for forming a cured film according to any one of claims 1 to 5.
  7.  電極及び/又は配線が形成された基材と、この基材上に前記電極及び/又は配線と接するように形成された請求項6記載の硬化膜とを備える導電性部材。 A conductive member comprising: a base material on which electrodes and / or wirings are formed; and the cured film according to claim 6 formed on the base material so as to be in contact with the electrodes and / or wirings.
  8.  電極及び/又は配線が形成された基材上に硬化膜形成用樹脂組成物から形成された硬化膜を有する構造体の前記電極及び/又は配線からのマイグレーションを抑制する方法であって、
     前記硬化膜形成用樹脂組成物として、請求項1~5のいずれか1項記載の硬化膜形成用樹脂組成物を用いることを特徴とする方法。
    A method of suppressing migration from the electrode and / or wiring of a structure having a cured film formed from a cured film-forming resin composition on a substrate on which electrodes and / or wiring are formed,
    A method comprising using the cured film-forming resin composition according to any one of claims 1 to 5 as the cured film-forming resin composition.
  9.  電極及び/又は配線が形成された基材上に、(メタ)アクリレートポリマー及び溶剤を含有する樹脂組成物から形成された硬化膜を有する構造体の前記電極及び/又は配線からのマイグレーションを抑制する方法であって、
     前記組成物中に、ベンゾトリアゾール化合物を添加することを特徴とする方法。
    Inhibition of migration from the electrode and / or wiring of the structure having a cured film formed from a resin composition containing a (meth) acrylate polymer and a solvent on the substrate on which the electrode and / or wiring is formed A method,
    A method comprising adding a benzotriazole compound to the composition.
PCT/JP2015/070691 2014-07-23 2015-07-21 Resin composition for forming cured film, cured film, electrically conductive member, and method for preventing migration WO2016013543A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580039411.4A CN106536620A (en) 2014-07-23 2015-07-21 Resin composition for forming cured film, cured film, electrically conductive member, and method for preventing migration
KR1020167034451A KR102341781B1 (en) 2014-07-23 2015-07-21 Resin composition for forming cured film, cured film, electrically conductive member, and method for preventing migration
JP2016535934A JP6787125B2 (en) 2014-07-23 2015-07-21 Resin composition for forming a cured film, cured film, conductive member, and method for suppressing migration

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014149946 2014-07-23
JP2014-149946 2014-07-23

Publications (1)

Publication Number Publication Date
WO2016013543A1 true WO2016013543A1 (en) 2016-01-28

Family

ID=55163068

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/070691 WO2016013543A1 (en) 2014-07-23 2015-07-21 Resin composition for forming cured film, cured film, electrically conductive member, and method for preventing migration

Country Status (5)

Country Link
JP (1) JP6787125B2 (en)
KR (1) KR102341781B1 (en)
CN (1) CN106536620A (en)
TW (1) TWI667274B (en)
WO (1) WO2016013543A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016084828A1 (en) * 2014-11-25 2016-06-02 日産化学工業株式会社 Resin composition for cured film formation, cured film, electrically conductive member, and corrosion inhibition method for metal electrode and/or metal wiring
KR20220027275A (en) 2016-03-31 2022-03-07 닛산 가가쿠 가부시키가이샤 Resin composition for forming high refractive index cured film
WO2022230517A1 (en) * 2021-04-27 2022-11-03 日産化学株式会社 Composition for forming thin film for energy storage device electrode

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102152634B1 (en) 2018-10-22 2020-09-07 현대모비스 주식회사 Apparatus and method for detecting ionmigration

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010150396A (en) * 2008-12-25 2010-07-08 Cheil Industries Inc Adhesive composition and optical member using the same
JP2011132296A (en) * 2009-12-22 2011-07-07 Cheil Industries Inc Adhesive composition, and optical member and surface-protection film produced by using the same
JP2012046681A (en) * 2010-08-30 2012-03-08 Dainippon Printing Co Ltd Adhesive sheet for sticking metal
JP2012077281A (en) * 2010-09-07 2012-04-19 Dainippon Printing Co Ltd Self-adhesive composition and self-adhesive tape
JP2012241149A (en) * 2011-05-23 2012-12-10 Panasonic Corp Resin composition and method for manufacturing circuit board
WO2014112452A1 (en) * 2013-01-15 2014-07-24 日産化学工業株式会社 Cured-film-forming resin composition

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06287470A (en) * 1993-04-05 1994-10-11 Mitsubishi Petrochem Co Ltd Abrasion resistive coating composition
KR20060133169A (en) * 2005-06-20 2006-12-26 삼성전자주식회사 Brightness enhancement film and liquid crystal display provided with the same
JP2009065091A (en) * 2007-09-10 2009-03-26 Momentive Performance Materials Japan Kk Method of protecting metal conductive part of electric/electronic component, and electric/electronic component
KR101134383B1 (en) * 2009-11-27 2012-04-09 현대자동차주식회사 Coating agent for Poly?methyl methacrylate?pannel nano imprinting having superior anti-light reflection
JP2012116975A (en) 2010-12-02 2012-06-21 Toyo Ink Sc Holdings Co Ltd Photosensitive resin composition and insulating film for touch panel
JP2013064973A (en) 2011-08-26 2013-04-11 Toppan Printing Co Ltd Photosensitive resin composition, material for touch panel, touch panel protective film, touch panel insulating film, and touch panel
JP2013225296A (en) 2012-03-23 2013-10-31 Fujifilm Corp Conductive member, touch panel using the same, display device, and input device
CN104583242A (en) * 2012-08-28 2015-04-29 日产化学工业株式会社 Curable film-forming composition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010150396A (en) * 2008-12-25 2010-07-08 Cheil Industries Inc Adhesive composition and optical member using the same
JP2011132296A (en) * 2009-12-22 2011-07-07 Cheil Industries Inc Adhesive composition, and optical member and surface-protection film produced by using the same
JP2012046681A (en) * 2010-08-30 2012-03-08 Dainippon Printing Co Ltd Adhesive sheet for sticking metal
JP2012077281A (en) * 2010-09-07 2012-04-19 Dainippon Printing Co Ltd Self-adhesive composition and self-adhesive tape
JP2012241149A (en) * 2011-05-23 2012-12-10 Panasonic Corp Resin composition and method for manufacturing circuit board
WO2014112452A1 (en) * 2013-01-15 2014-07-24 日産化学工業株式会社 Cured-film-forming resin composition

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016084828A1 (en) * 2014-11-25 2016-06-02 日産化学工業株式会社 Resin composition for cured film formation, cured film, electrically conductive member, and corrosion inhibition method for metal electrode and/or metal wiring
KR20220027275A (en) 2016-03-31 2022-03-07 닛산 가가쿠 가부시키가이샤 Resin composition for forming high refractive index cured film
KR102481090B1 (en) * 2016-03-31 2022-12-27 닛산 가가쿠 가부시키가이샤 Resin composition for forming high refractive index cured film
WO2022230517A1 (en) * 2021-04-27 2022-11-03 日産化学株式会社 Composition for forming thin film for energy storage device electrode

Also Published As

Publication number Publication date
TWI667274B (en) 2019-08-01
TW201617391A (en) 2016-05-16
KR20170033813A (en) 2017-03-27
KR102341781B1 (en) 2021-12-21
JPWO2016013543A1 (en) 2017-04-27
JP6787125B2 (en) 2020-11-18
CN106536620A (en) 2017-03-22

Similar Documents

Publication Publication Date Title
JP6225921B2 (en) Resin composition for forming cured film
KR102154158B1 (en) Solvent-free photocurable resin composition
KR102341781B1 (en) Resin composition for forming cured film, cured film, electrically conductive member, and method for preventing migration
US20150353665A1 (en) Resin composition for insulating materials, insulating ink, insulating film and organic field effect transistor using insulating film
WO2016084828A1 (en) Resin composition for cured film formation, cured film, electrically conductive member, and corrosion inhibition method for metal electrode and/or metal wiring
TW201422654A (en) Curable film-forming composition
JP6555266B2 (en) Resin composition for forming cured film
JP6992741B2 (en) Resin composition for forming a high refractive index cured film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15824869

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016535934

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167034451

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15824869

Country of ref document: EP

Kind code of ref document: A1