WO2016013520A1 - Color filter and solid-state imaging element - Google Patents

Color filter and solid-state imaging element Download PDF

Info

Publication number
WO2016013520A1
WO2016013520A1 PCT/JP2015/070581 JP2015070581W WO2016013520A1 WO 2016013520 A1 WO2016013520 A1 WO 2016013520A1 JP 2015070581 W JP2015070581 W JP 2015070581W WO 2016013520 A1 WO2016013520 A1 WO 2016013520A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
pixel
color
layer
multilayer film
Prior art date
Application number
PCT/JP2015/070581
Other languages
French (fr)
Japanese (ja)
Inventor
大貴 瀧下
啓之 山本
啓佑 有村
高桑 英希
嶋田 和人
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to KR1020167032073A priority Critical patent/KR101876281B1/en
Priority to JP2016535918A priority patent/JP6297155B2/en
Publication of WO2016013520A1 publication Critical patent/WO2016013520A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/10Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths
    • H04N23/12Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths with one sensor only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/418Refractive

Definitions

  • the present invention relates to a color filter and a solid-state imaging device.
  • a solid-state imaging device usually includes a color filter having red, green, and blue color pixels that are two-dimensionally arranged on a substrate such as a semiconductor substrate or a glass substrate.
  • color filters having various color pixels in addition to the three colors of red, green, and blue have been applied to solid-state imaging devices (for example, Patent Document 1).
  • Patent Document 1 discloses a mode in which magenta, cyan, and yellow (yellow) color pixels are used together with green, red, and blue color pixels.
  • the infrared region detection capability is imparted by using an optical filter that transmits specific infrared light together with red light, green light, and blue light.
  • Patent Document 2 describes that an optical filter is used to transmit visible light in a specific wavelength region and infrared light in a specific wavelength region. There is no description. In consideration of industrial points, such a color filter that transmits specific light is also required to have excellent manufacturing suitability. That is, it has been desired to provide a color filter that can be manufactured more easily and can transmit visible light in a specific wavelength region and infrared light in a specific wavelength region.
  • the second embodiment of the present invention has an object to provide a color filter having color pixels that transmit specific visible light and specific infrared light, which can be easily manufactured. To do. Another object of the second embodiment of the present invention is to provide a solid-state imaging device including the color filter.
  • the present inventors have found that the above-described problems can be solved by using a multilayer film layer in which a plurality of films having different refractive indexes are stacked. That is, the present inventors have found that the problem of the first embodiment can be solved by the following configuration.
  • a color filter wherein at least one of the color pixels is a multilayer color pixel formed by laminating a multilayer film layer in which a plurality of films having different refractive indexes are laminated and a colorant-containing composition layer containing a colorant.
  • the color pixel contains at least a red pixel composed of a colorant-containing composition layer containing a red colorant, a green pixel composed of a colorant-containing composition layer containing a green colorant, and a blue colorant
  • the color filter according to (1) comprising a blue pixel comprising the colorant-containing composition layer.
  • the red pixel has a maximum value in the transmission spectrum at a wavelength of 575 nm or more
  • the green pixel has a maximum value in the transmission spectrum at a wavelength of 480 nm or more and less than 575 nm
  • the blue pixel has a maximum value in the transmission spectrum at a wavelength of less than 480 nm.
  • a color pixel is formed by laminating at least a red pixel, a green pixel, a blue pixel, a multilayer film layer in which a plurality of films having different refractive indexes are laminated, and a colorant-containing composition layer containing a green colorant.
  • the multilayer film layer has a transmittance of 30% or less within a wavelength range of 480 to 500 nm, or a transmittance of 30% or less within a wavelength range of 580 to 600 nm.
  • a solid-state imaging device comprising the color filter according to any one of (1) to (6).
  • a first color pixel that transmits first visible light and first infrared light
  • a second color pixel that transmits second visible light and second infrared light
  • third visible light and third infrared light A third color pixel that transmits light
  • the first visible light, the second visible light, and the third visible light have different wavelength distributions
  • a color filter in which the first infrared light, the second infrared light, and the third infrared light have different wavelength distributions.
  • the color filter according to (8), wherein at least one of the first color pixel, the second color pixel, and the third color pixel includes a multilayer film layer in which a plurality of films having different refractive indexes are stacked.
  • the first color pixel is formed by laminating a red pixel composed of a colorant-containing composition layer containing a red colorant, and a first multilayer film layer in which a plurality of films having different refractive indexes are laminated
  • the second color pixel is formed by laminating a blue pixel composed of a colorant-containing composition layer containing a blue colorant, and a second multilayer film layer in which a plurality of films having different refractive indexes are laminated
  • the third color pixel is formed by laminating a green pixel composed of a colorant-containing composition layer containing a green colorant, and a third multilayer film layer in which a plurality of films having different refractive indexes are laminated.
  • the first multilayer film layer has a light transmittance in the first infrared wavelength region (light transmittance in the first infrared wavelength region) of 50% or more, and is in the second infrared wavelength region.
  • the light transmittance (light transmittance in the second infrared wavelength region) and the light transmittance in the third infrared wavelength region (light transmittance in the third infrared wavelength region) each show 20% or less
  • the second multilayer film has a light transmittance of 50% or more in the second infrared wavelength region, and has a light transmittance in the first infrared wavelength region and a light transmittance in the third infrared wavelength region.
  • the third multilayer film has a light transmittance of 50% or more in the third infrared wavelength region, and has a light transmittance in the first infrared wavelength region and a light transmittance in the second infrared wavelength region.
  • the color filter according to any one of (8) to (12), wherein each represents 20% or less.
  • the center wavelength of the first infrared light is located on the shorter wavelength side than the center wavelength of the second infrared light and the center wavelength of the third infrared light.
  • the wavelength region of the first infrared light is located on a shorter wavelength side than the wavelength region of the second infrared light and the wavelength region of the third infrared light
  • the wavelength region of the first infrared light is any one of (8) to (14)
  • the center wavelength of the second infrared light is located on the shorter wavelength side than the center wavelength of the third infrared light, or The color filter according to any one of (8) to (15), wherein the wavelength region of the second infrared light is located on a shorter wavelength side than the wavelength region of the third infrared light.
  • the first infrared wavelength region is located between wavelengths 700-800 nm, the second infrared wavelength region is located between wavelengths 900-1000 nm, and the third infrared wavelength region is between wavelengths 1050-1200 nm
  • the color filter according to (13) or (14), which is located in (18)
  • the first infrared wavelength region is located between wavelengths 700-800 nm, the second infrared wavelength region is located between wavelengths 800-900 nm, and the third infrared wavelength region is between wavelengths 900-1000 nm
  • the first embodiment of the present invention it is possible to provide a color filter having four or more color pixels that can be easily manufactured.
  • a solid-state imaging device including the color filter.
  • the second embodiment of the present invention it is possible to provide a color filter having color pixels that transmit specific visible light and infrared light, which can be easily manufactured. Moreover, according to the 2nd embodiment of this invention, a solid-state image sensor provided with the said color filter can also be provided.
  • FIG. 3 is a cross-sectional view taken along line AA in FIG. 2.
  • FIG. 3 is a cross-sectional view taken along line BB in FIG. 2.
  • FIG. 6 is a cross-sectional view taken along the line CC in FIG. 5.
  • FIG. 6 is a cross-sectional view taken along the line DD in FIG. 5.
  • FIG. 9 is a cross-sectional view taken along line EE in FIG. 8.
  • FIG. 9 is a cross-sectional view taken along line FF in FIG. 8.
  • A is a transmission spectrum diagram of the multilayer film layer 1
  • B is a transmission spectrum diagram of the multilayer film layer 2.
  • (A) is a transmission spectrum diagram of each of a red pixel, a blue pixel, and a green pixel
  • (B) is a red color pixel, a multilayer color pixel composed of a multilayer film layer 1 and a green pixel, and a multilayer film layer 1
  • (A) is a transmission spectrum diagram of each of a red pixel, a blue pixel, and a green pixel
  • (B) is a blue pixel, a multilayer color pixel of the multilayer film layer 2 and the green pixel, and the multilayer film layer 2. It is a transmission spectrum figure of each lamination type color pixel with a red pixel.
  • (A) represents a transmission spectrum diagram of red light and first infrared light transmitted through the first color pixel
  • (B) represents a transmission spectrum diagram of blue light and second infrared light transmitted through the second color pixel.
  • (C) represents a transmission spectrum diagram of green light and third infrared light transmitted through the third color pixel. It is the spectrum figure of the light which permeate
  • the notation which does not describe substitution and non-substitution includes those having no substituent and those having a substituent.
  • the “alkyl group” includes not only an alkyl group having no substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group).
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the term “process” is not limited to an independent process, and is included in the term if the intended action of the process is achieved even when it cannot be clearly distinguished from other processes.
  • the total solid content refers to the total mass of the components excluding the solvent from the total composition of the composition.
  • the solid content concentration in this specification refers to the solid content concentration at 25 ° C.
  • the monomer in this specification is distinguished from an oligomer and a polymer, and refers to a compound having a weight average molecular weight of 2,000 or less.
  • the polymerizable compound means a compound having a polymerizable functional group, and may be a monomer or a polymer.
  • the polymerizable functional group refers to a group that participates in a polymerization reaction.
  • the weight average molecular weight is defined as a polystyrene equivalent value by GPC (gel permeation chromatography) measurement.
  • the weight average molecular weight (Mw) is, for example, HLC-8220 (manufactured by Tosoh Corporation), and TSKgelgSuper AWM-H (manufactured by Tosoh Corporation, 6.0 mm ID ⁇ 15.0 cm) as a column.
  • Mw weight average molecular weight
  • HLC-8220 manufactured by Tosoh Corporation
  • TSKgelgSuper AWM-H manufactured by Tosoh Corporation, 6.0 mm ID ⁇ 15.0 cm
  • a feature of the color filter of the first embodiment of the present invention is that a multilayer film layer in which a plurality of films having different refractive indexes are stacked is used.
  • the multilayer film layer increases the transmittance in a specific wavelength range by appropriately adjusting the refractive index of the included film and the number of films, respectively, or transmits in a specific wavelength range. Only the rate can be lowered.
  • FIG. 1A is a multilayer film layer that transmits light in a high wavelength region
  • FIG. 1B is a colorant-containing composition layer that transmits light in a low wavelength region.
  • the two layers have different wavelength ranges of light that can be transmitted. Then, when the two layers are stacked, only light that can be transmitted through both layers is transmitted, as shown in FIG. That is, by laminating the multilayer film layer and the colorant-containing composition layer, the color of the formed laminate is different from that of the colorant-containing composition layer.
  • different color pixels can be formed from one colorant-containing composition layer. That is, it is not necessary to use a colorant-containing composition containing another colorant, and a plurality of color pixels can be formed, which is excellent in terms of cost and productivity.
  • the color filter of the present invention has at least four color pixels.
  • the color filter includes at least four types of pixels having different colors.
  • Typical color pixels include R (red) pixels, G (green) pixels, and B (blue) pixels.
  • color pixels having the same type of hue but having different shades are also color pixels having different colors.
  • color pixels having the same color and having different shades in chromaticity are different color pixels. More specifically, it is assumed that the color of the dark green pixel G1 is different from that of the pixel G2 that exhibits the same type of hue (green) as the pixel G1 and is lighter than the pixel G1.
  • the color of the colorant-containing composition layer used can be adjusted by the multilayer film layer.
  • a color pixel is produced using a composition containing a specific green colorant, a multilayer disposed in advance on the substrate while producing a dark green pixel by directly applying the composition onto the substrate.
  • a thin green pixel can be produced by applying the composition on the film layer.
  • a red pixel for example, a pixel composed of a colorant-containing composition layer containing a red colorant
  • a green pixel preferably has a maximum value in a transmission spectrum at a wavelength of 575 nm or more (preferably 575 nm or more and 670 nm or less), and a green pixel.
  • a pixel comprising a colorant-containing composition layer containing a green colorant preferably has a maximum value in the transmission spectrum at a wavelength of 480 nm or more and less than 575 nm, and a blue pixel (for example, a colorant containing a blue colorant) It is preferable that the maximum pixel in the transmission spectrum has a maximum value of less than 480 nm (preferably, 400 nm or more and less than 480 nm) in the transmission spectrum.
  • each color pixel is not restrict
  • it is preferably formed from a composition containing a colorant described later. That is, each color pixel preferably includes a colorant-containing composition layer containing a predetermined colorant (for example, a red colorant, a green colorant, and a blue colorant).
  • a predetermined colorant for example, a red colorant, a green colorant, and a blue colorant.
  • each color pixel is not particularly limited, and an optimal size is appropriately selected according to the application to be used, but is preferably a substantially square shape.
  • the upper limit of the size of one side is preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less, and the lower limit is preferably 0.1 ⁇ m or more, more preferably 0.5 ⁇ m or more.
  • the thickness of each color pixel is not particularly limited, the upper limit value is preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less, and the lower limit value is 0.1 ⁇ m or more in terms of the balance between performance as a color pixel and thinning. preferable.
  • At least one of the color pixels is a laminated color formed by laminating a multilayer film layer in which a plurality of films having different refractive indexes are laminated and a colorant-containing composition layer containing a colorant. Pixel.
  • the layers constituting the stacked color pixel will be described in detail, and then the configuration of the color filter will be described in detail.
  • the multilayer film layer is a laminated body in which a plurality of films having different refractive indexes are laminated. By adjusting the refractive index and film thickness of the film used, the optical path difference of light is adjusted, and transmission at a desired wavelength is performed. The rate can be controlled.
  • the transmittance in the wavelength range of 480 to 500 nm is 30% or less (note that 20% or less is preferable and 10% or less is more preferable. The lower limit is not particularly limited. , 0% may be mentioned). By arranging blue pixels, green pixels, and the like on such a multilayer film layer, the color of each pixel can be adjusted.
  • the transmittance within the wavelength range of 580 to 600 nm is 30% or less (note that 20% or less is preferable and 10% or less is more preferable.
  • the lower limit is particularly limited.
  • a multilayer film layer is 0%). By arranging a green pixel, a red pixel, or the like on such a multilayer film layer, the color of each pixel can be adjusted.
  • the thickness of the multilayer film layer is not particularly limited, and an optimal thickness is appropriately selected according to the application to be used.
  • the upper limit value is 5 ⁇ m or less in terms of the balance between the performance as a color pixel and thinning.
  • the lower limit is preferably 0.1 ⁇ m or more, more preferably 0.3 ⁇ m or more.
  • the multilayer film layer an embodiment in which high refractive layers and low refractive layers are alternately laminated on each other can be mentioned.
  • the high refractive layer and the low refractive layer are layers having different refractive indexes, and the high refractive layer has a higher refractive index than the low refractive layer.
  • the thickness of the high refractive layer and the low refractive layer may be the same or different from each other.
  • Each of the high refractive layer and the low refractive layer may be independently composed of only one high refractive layer or low refractive layer, or may be composed of two or more high refractive layers or low refractive layers.
  • the alternating lamination in the present invention refers to a laminated structure in which the low refractive layer and the high refractive layer are replaced on the film surface, but it is not always necessary to be a laminated body of only the low refractive layer and the high refractive layer.
  • a third layer having a refractive index different from that of the low refractive layer and the high refractive layer such as a middle refractive layer may be provided between the low refractive layer and the high refractive layer.
  • the middle refractive layer is intended to mean a layer having a refractive index higher than that of the low refractive layer and lower than that of the high refractive layer.
  • the multilayer film layer is preferably formed by coating.
  • the layer is preferably formed using a coating liquid containing a predetermined component.
  • the components contained in the coating solution will be described in detail later.
  • the total of the low refractive layer and the high refractive layer in one multilayer film layer is preferably 5 layers or more, more preferably 8 layers or more, and may be 10 layers or more. As an upper limit, it is 60 layers or less, for example, it can also be 30 layers or less, can also be 25 layers or less, and also can be 20 layers or less. Furthermore, when it has a 3rd layer (for example, medium refractive layer), it is preferable that the total number which combined them is the said range.
  • the difference in refractive index between the low refractive layer and the high refractive layer is preferably 0.5 or more, preferably 0.55 or more, and can be 0.6 or more. It can also be 65 or more.
  • the upper limit value of the difference in refractive index between the low refractive layer and the high refractive layer can be, for example, 0.8 or less, and can be 0.75 or less.
  • the high refractive layer and the low refractive layer will be described in detail.
  • the high refractive layer is a layer having a higher refractive index than the low refractive layer described later (preferably a layer having a refractive index of 0.5 or more).
  • the refractive index of the high refractive layer is preferably 1.5 to 3.0, and more preferably 1.7 to 2.3.
  • the highly refractive layer is preferably a layer containing a resin.
  • the layer containing a resin may be a so-called layer containing a high refractive resin, or a composition containing a resin, particles and a solvent (hereinafter sometimes referred to as “high refractive composition”) is applied. May be formed.
  • the resin used for forming the high refractive layer is a polymer chain composed of repeating units derived from a polymerizable monomer or a compound having a polymer chain composed of repeating units derived from a polymerizable monomer as a partial structure. Preferably there is. Preferably, it is a layer formed by applying a highly refractive composition. Details of the highly refractive composition will be described below.
  • the resin contained in the highly refractive composition examples include resins capable of dispersing particles described later. Specifically, the following embodiments are exemplified.
  • the first embodiment of the resin is an acid group, a group having a basic nitrogen atom, a urea group, a urethane group, a group having a coordinating oxygen atom, an alkyl group, an aryl group, a phenol group, a group having an alkyleneoxy chain
  • the acid group examples include a carboxylic acid group, a sulfonic acid group, a phosphoric acid group, a phenolic hydroxyl group, and the like, and preferably at least one selected from a carboxylic acid group, a sulfonic acid group, and a phosphoric acid group.
  • Carboxylic acid groups are particularly preferred.
  • the acid value is preferably 20 to 300 mgKOH / g, more preferably 50 to 250 mgKOH / g, and still more preferably 50 to 210 mgKOH / g.
  • R 1 represents an (m + n) -valent linking group
  • R 2 represents a single bond or a divalent linking group
  • a 1 is an acid group, a urea group, a urethane group, a group having a coordinating oxygen atom, a group having a basic nitrogen atom, a phenol group, an alkyl group, an aryl group, a group having an alkyleneoxy chain, an imide group, a heterocyclic ring 1 having at least one group selected from the group consisting of a group (heterocyclic structure), an alkyloxycarbonyl group, an alkylaminocarbonyl group, a sulfonamide group, a carboxylate group, an alkoxysilyl group, an epoxy group, an isocyanate group, and a hydroxyl group Represents a valent substituent.
  • n A 1 and R 2 may be the same or different.
  • m represents a positive number of 8 or less, n represents 1 to 9, and m + n satisfies 3 to 10.
  • P 1 represents a polymer chain.
  • the m P 1 may be the same or different.
  • a 1 is an acid group, a group having a basic nitrogen atom, a urea group, a urethane group, a group having a coordinating oxygen atom, an alkyloxycarbonyl group, an alkylaminocarbonyl group, a carboxylate group, a sulfonamide group, an alkoxysilyl group 1 having at least one kind of structure capable of adsorbing to metal oxide particles such as a heterocyclic group, a functional group having adsorption ability to metal oxide particles described later such as a group, an epoxy group, an isocyanate group and a hydroxyl group Represents a valent substituent.
  • the site having the ability to adsorb to the metal oxide particles (the functional group and the structure) will be collectively referred to as “adsorption site” as appropriate.
  • the “monovalent substituent having at least one kind of adsorption site” includes the aforementioned adsorption site, 1 to 200 carbon atoms, 0 to 20 nitrogen atoms, 0 to It is a monovalent substituent formed by bonding up to 100 oxygen atoms, 1 to 400 hydrogen atoms, and a linking group consisting of 0 to 40 sulfur atoms.
  • the adsorption site itself can constitute a monovalent substituent
  • the adsorption site itself may be a monovalent substituent represented by A 1 .
  • the adsorption site constituting A 1 will be described below.
  • Preferred examples of the “acid group” include a carboxylic acid group, a sulfonic acid group, a monosulfate group, a phosphoric acid group, a monophosphate group, and a boric acid group, and a carboxylic acid group, a sulfonic acid group, and a monosulfuric acid group.
  • An ester group, a phosphoric acid group, and a monophosphate ester group are more preferable, a carboxylic acid group, a sulfonic acid group, and a phosphoric acid group are still more preferable, and a carboxylic acid group is particularly preferable.
  • urea group for example, —NR 15 CONR 16 R 17 (wherein R 15 , R 16 , and R 17 are each independently a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, 6 or more carbon atoms) And an aryl group having a carbon number of 7 or more.) —NR 15 CONHR 17 (wherein R 15 and R 17 are each independently a hydrogen atom or a group having 1 carbon atom).
  • An alkyl group having up to 10 carbon atoms, an aryl group having 6 or more carbon atoms, and an aralkyl group having 7 or more carbon atoms are more preferred, and —NHCONHR 17 (wherein R 17 is a hydrogen atom or having 1 to 10 carbon atoms)
  • R 17 is a hydrogen atom or having 1 to 10 carbon atoms
  • An alkyl group, an aryl group having 6 or more carbon atoms, and an aralkyl group having 7 or more carbon atoms are particularly preferred.
  • urethane group for example, —NHCOOR 18 , —NR 19 COOR 20 , —OCONHR 21 , —OCONR 22 R 23 (where R 18 , R 19 , R 20 , R 21 , R 22 and R 23 are And each independently represents an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 or more carbon atoms, or an aralkyl group having 7 or more carbon atoms), and the like.
  • -NHCOOR 18 , -OCONHR 21 (Here, R 18 and R 21 each independently represents an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 or more carbon atoms, or an aralkyl group having 7 or more carbon atoms).
  • R 18 and R 21 each independently represents an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 or more carbon atoms, or an aralkyl group having 7 or more carbon atoms).
  • Table Are particularly preferred.
  • Examples of the “group having a coordinating oxygen atom” include an acetylacetonato group and a crown ether.
  • Examples of the “group having a basic nitrogen atom” include an amino group (—NH 2 ), a substituted imino group (—NHR 8 , —NR 9 R 10 , wherein R 8 , R 9 , and R 10 are Each independently represents an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 or more carbon atoms, or an aralkyl group having 7 or more carbon atoms), a guanidyl group represented by the following formula (a1), Preferred examples include an amidinyl group represented by (a2).
  • R 11 and R 12 each independently represents an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 or more carbon atoms, or an aralkyl group having 7 or more carbon atoms.
  • R 13 and R 14 each independently represents an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 or more carbon atoms, or an aralkyl group having 7 or more carbon atoms.
  • an amino group (—NH 2 ), a substituted imino group (—NHR 8 , —NR 9 R 10 , wherein R 8 , R 9 , and R 10 are each independently a group having 1 to 10 carbon atoms.
  • a guanidyl group represented by the formula (a1) [in the formula (a1), R 11 and R 12 are each independently an alkyl group having 1 to 10 carbon atoms; Represents a phenyl group and a benzyl group.
  • Amidinyl in group [wherein (a2) represented by the formula (a2), each independently R 13 and R 14 represents an alkyl group, a phenyl group, a benzyl group having 1 to 10 carbon atoms. ] Is more preferable.
  • an amino group (—NH 2 ) the above substituted imino group, a guanidyl group represented by the above formula (a1), an amidinyl group represented by the above formula (a2), and the like are preferably used.
  • the alkyl group moiety in the “alkyloxycarbonyl group” is preferably an alkyl group having 1 to 20 carbon atoms, and examples thereof include a methyl group and an ethyl group.
  • alkyl group moiety in the “alkylaminocarbonyl group” is preferably an alkyl group having 1 to 20 carbon atoms, and examples thereof include a methyl group, an ethyl group, and a propyl group.
  • examples of the “carboxylic acid group” include groups composed of ammonium salts of carboxylic acids.
  • a hydrogen atom bonded to a nitrogen atom may be substituted with an alkyl group (such as a methyl group), an acyl group (such as an acetyl group or a trifluoroacetyl group), and the like.
  • heterocyclic structure examples include thiophene, furan, xanthene, pyrrole, pyrroline, pyrrolidine, dioxolane, pyrazole, pyrazoline, pyrazolidine, imidazole, oxazole, thiazole, oxadiazole, triazole, thiadiazole, pyran, pyridine, piperidine, Dioxane, morpholine, pyridazine, pyrimidine, piperazine, triazine, trithiane, isoindoline, isoindolinone, benzimidazolone, benzothiazole, succinimide, phthalimide, naphthalimide, imide groups, hydantoin, indole, quinoline, carbazole, acridine, acridone Anthraquinone is a preferred example, pyrroline, pyrrolidine, pyrazole,
  • the “heterocyclic structure” may further have a substituent.
  • substituents include an alkyl group having 1 to 20 carbon atoms such as a methyl group and an ethyl group, a phenyl group, and a naphthyl group.
  • an aryloxy group having 6 to 16 carbon atoms a hydroxyl group, an amino group, a carboxyl group, a sulfonamido group, an N-sulfonylamido group, an acetoxy group and the like, an acyloxy group having 1 to 6 carbon atoms, a methoxy group, an ethoxy group, etc.
  • these substituents may be bonded to the heterocyclic ring through a linking group constituted by combining the following structural units or the above structural units.
  • alkoxysilyl group may be any of monoalkoxysilyl group, dialkoxysilyl group, trialkoxysilyl group, but is preferably trialkoxysilyl group, such as trimethoxysilyl group, triethoxysilyl group, etc. Is mentioned.
  • examples of the “epoxy group” include a substituted or unsubstituted oxirane group (ethylene oxide group).
  • As an epoxy group it can represent with the following general formula (a3), for example.
  • R EP1 to R EP3 each independently represent a hydrogen atom, a halogen atom, an alkyl group or a cycloalkyl group.
  • R EP1 and R EP2 , R EP2 and R EP3 may be bonded to each other to form a ring structure. * Represents a connecting hand.
  • the linking group bonded to the adsorption site may be a single bond or 1 to 100 carbon atoms, 0 to 10 nitrogen atoms, 0 to 50 oxygen atoms, 1 to 200. And a linking group consisting of 0 to 20 sulfur atoms is preferred, and this organic linking group may be unsubstituted or may further have a substituent. Specific examples of this linking group include the following structural units or groups constituted by combining the above structural units.
  • examples of the substituent include an alkyl group having 1 to 20 carbon atoms such as a methyl group and an ethyl group, and a carbon group having 6 to 16 carbon atoms such as a phenyl group and a naphthyl group.
  • C1-C6 alkoxy such as aryl group, hydroxyl group, amino group, carboxyl group, sulfonamide group, N-sulfonylamide group, acetoxy group, etc.
  • C1-C6 acyloxy group methoxy group, ethoxy group, etc.
  • halogen atoms such as chlorine and bromine
  • alkoxycarbonyl groups having 2 to 7 carbon atoms such as methoxycarbonyl group, ethoxycarbonyl group and cyclohexyloxycarbonyl group
  • carbonate groups such as cyano group and t-butyl carbonate, etc. It is done.
  • a 1 is a monovalent substitution having at least one group selected from the group consisting of an acid group, a urea group, a urethane group, a sulfonamide group, an imide group and a group having a coordinating oxygen atom. It is preferably a group.
  • a 1 is a monovalent substitution having at least one functional group of pKa5-14. More preferably, it is a group.
  • pKa has the definition described in Chemical Handbook (II) (4th revised edition, 1993, edited by The Chemical Society of Japan, Maruzen Co., Ltd.).
  • Examples of the functional group of pKa5 to 14 include a urea group, a urethane group, a sulfonamide group, an imide group, and a group having a coordinating oxygen atom.
  • a urea group about pKa 12 to 14
  • a urethane group about pKa 11 to 13
  • —COCH 2 CO— about pKa 8 to 10
  • a sulfonamide group (About pKa 9 to 11).
  • a 1 is preferably represented as a monovalent substituent represented by the following general formula (4).
  • B 1 represents an adsorption site
  • R 24 represents a single bond or a (a + 1) -valent linking group.
  • a represents an integer of 1 to 10, and B 1 existing in the general formula (4) may be the same or different.
  • Examples of the adsorption site represented by B 1 include the same adsorption sites as those constituting A 1 in the general formula (1), and preferred examples are also the same. Among them, an acid group, a urea group, a urethane group, a sulfonamide group, an imide group or a group having a coordinating oxygen atom is preferable, and a urea group, a functional group having a pKa of 5 to 14 is more preferable. It is more preferably a urethane group, a sulfonamide group, an imide group or a group having a coordinating oxygen atom.
  • R 24 represents a single bond or a (a + 1) -valent linking group, and a represents 1 to 10.
  • a is 1 to 7, more preferably a is 1 to 5, and particularly preferably a is 1 to 3.
  • (A + 1) valent linking groups include 1 to 100 carbon atoms, 0 to 10 nitrogen atoms, 0 to 50 oxygen atoms, 1 to 200 hydrogen atoms, and Groups consisting of 0 to 20 sulfur atoms are included and may be unsubstituted or further substituted.
  • (a + 1) -valent linking group examples include the following structural units or groups formed by combining these structural units (which may form a ring structure).
  • R 24 may be a single bond or 1 to 50 carbon atoms, 0 to 8 nitrogen atoms, 0 to 25 oxygen atoms, 1 to 100 hydrogen atoms, and (A + 1) valent linking groups consisting of 0 to 10 sulfur atoms are preferred, single bonds or 1 to 30 carbon atoms, 0 to 6 nitrogen atoms, 0 to 15 More preferred are (a + 1) valent linking groups consisting of up to oxygen atoms, 1 to 50 hydrogen atoms, and 0 to 7 sulfur atoms, a single bond, or 1 to 10 carbons (A + 1) valent linkage consisting of atoms, 0 to 5 nitrogen atoms, 0 to 10 oxygen atoms, 1 to 30 hydrogen atoms, and 0 to 5 sulfur atoms The group is particularly preferred.
  • examples of the substituent include an alkyl group having 1 to 20 carbon atoms such as a methyl group and an ethyl group, a phenyl group, and a naphthyl group.
  • C1-C6 acyloxy groups such as aryl groups, hydroxyl groups, amino groups, carboxyl groups, sulfonamido groups, N-sulfonylamido groups, acetoxy groups, etc., carbon atoms such as methoxy groups, ethoxy groups, etc.
  • R 2 represents a single bond or a divalent linking group.
  • the n R 2 s may be the same or different.
  • Divalent linking groups include 1 to 100 carbon atoms, 0 to 10 nitrogen atoms, 0 to 50 oxygen atoms, 1 to 200 hydrogen atoms, and 0 To 20 sulfur atoms are included, which may be unsubstituted or further substituted.
  • divalent linking group examples include the following structural units or groups formed by combining these structural units.
  • R 2 may be a single bond or 1 to 50 carbon atoms, 0 to 8 nitrogen atoms, 0 to 25 oxygen atoms, 1 to 100 hydrogen atoms, and Divalent linking groups consisting of 0 to 10 sulfur atoms are preferred, single bonds, or 1 to 30 carbon atoms, 0 to 6 nitrogen atoms, 0 to 15 More preferred are divalent linking groups consisting of oxygen atoms, 1 to 50 hydrogen atoms, and 0 to 7 sulfur atoms, a single bond or 1 to 10 carbon atoms, 0 Particularly preferred are divalent linking groups consisting of from 1 to 5 nitrogen atoms, 0 to 10 oxygen atoms, 1 to 30 hydrogen atoms, and 0 to 5 sulfur atoms.
  • examples of the substituent include carbon numbers such as an alkyl group having 1 to 20 carbon atoms such as a methyl group and an ethyl group, a phenyl group, and a naphthyl group. 1 to 6 carbon atoms such as aryl group, hydroxyl group, amino group, carboxyl group, sulfonamido group, N-sulfonylamido group, acetoxy group, etc. having 6 to 16 carbon atoms, methoxy group, ethoxy group, etc.
  • alkoxy groups such as chlorine and bromine, alkoxycarbonyl groups having 2 to 7 carbon atoms such as methoxycarbonyl group, ethoxycarbonyl group and cyclohexyloxycarbonyl group, cyano group, carbonic acid such as t-butyl carbonate, etc.
  • An ester group etc. are mentioned.
  • R 1 represents a (m + n) -valent linking group.
  • m + n satisfies 3 to 10.
  • Examples of the (m + n) -valent linking group represented by R 1 include 1 to 100 carbon atoms, 0 to 10 nitrogen atoms, 0 to 50 oxygen atoms, and 1 to 200. Groups consisting of up to 20 hydrogen atoms and 0 to 20 sulfur atoms are included, which may be unsubstituted or may further have a substituent.
  • (m + n) -valent linking group examples include the following structural units or groups formed by combining these structural units (which may form a ring structure).
  • (M + n) -valent linking groups include 1 to 60 carbon atoms, 0 to 10 nitrogen atoms, 0 to 40 oxygen atoms, 1 to 120 hydrogen atoms, and Groups consisting of 0 to 10 sulfur atoms are preferred, 1 to 50 carbon atoms, 0 to 10 nitrogen atoms, 0 to 30 oxygen atoms, 1 to 100 And more preferably a group consisting of 0 to 7 sulfur atoms, 1 to 40 carbon atoms, 0 to 8 nitrogen atoms, 0 to 20 oxygen atoms, Particular preference is given to groups consisting of 1 to 80 hydrogen atoms and 0 to 5 sulfur atoms.
  • examples of the substituent include an alkyl group having 1 to 20 carbon atoms such as a methyl group and an ethyl group, a phenyl group, and a naphthyl group.
  • C1-C6 acyloxy groups such as aryl groups, hydroxyl groups, amino groups, carboxyl groups, sulfonamido groups, N-sulfonylamido groups, acetoxy groups, etc., carbon atoms such as methoxy groups, ethoxy groups, etc.
  • preferred (m + n) -valent linking groups are (1), (2), (10), ( 11), (16), and (17).
  • n represents 1 to 9. n is preferably 2 to 8, more preferably 2 to 7, and particularly preferably 3 to 6.
  • P 1 represents a polymer chain and can be selected from known polymers according to the purpose.
  • the m P 1 may be the same or different.
  • the polymers a vinyl monomer polymer or copolymer, an ester polymer, an ether polymer, a urethane polymer, an amide polymer, an epoxy polymer, a silicone polymer, and modifications thereof are used to form a polymer chain.
  • copolymer for example, polyether / polyurethane copolymer, copolymer of polyether / vinyl monomer polymer, etc. (any of random copolymer, block copolymer, graft copolymer, etc. May also be included).
  • At least one selected from the group consisting of vinyl monomers selected from the group consisting of polymers or copolymers of vinyl monomers, ester polymers, ether polymers, urethane polymers, and modified products or copolymers thereof. At least one kind is more preferred, and a polymer or copolymer of vinyl monomers is particularly preferred.
  • the polymer chain P 1 contains at least one repeating unit.
  • the number k of repeating units of at least one repeating unit in the polymer chain P 1 is preferably 3 or more from the viewpoint of achieving steric repulsion and improving dispersibility, achieving a high refractive index and a low viscosity. More preferably, it is 5 or more.
  • the number k of repeating units of at least one repeating unit is preferably 50 or less, and 40 or less. Is more preferable, and it is still more preferable that it is 30 or less.
  • the polymer is preferably soluble in an organic solvent. If the affinity with the organic solvent is low, the affinity with the dispersion medium is weakened, and it may be impossible to secure an adsorption layer sufficient for stabilizing the dispersion.
  • a vinyl monomer For example, (meth) acrylic acid esters, crotonic acid esters, vinyl esters, maleic acid diesters, fumaric acid diesters, itaconic acid diesters, (meth) acrylamides, styrene , Vinyl ethers, vinyl ketones, olefins, maleimides, (meth) acrylonitrile, vinyl monomers having an acid group, and the like are preferable.
  • vinyl monomers include paragraphs 0089 to 0094, 0096 and 0097 of JP-A-2007-277514 (paragraphs 0105 to 0117 and 0119 to 0119 in the corresponding US Patent Application Publication No. 2010/233595).
  • the vinyl monomers described in 0120) are mentioned, the contents of which are incorporated herein.
  • vinyl monomers having a functional group such as a urethane group, a urea group, a sulfonamide group, a phenol group, and an imide group can also be used.
  • a monomer having a urethane group or a urea group can be appropriately synthesized using, for example, an addition reaction between an isocyanate group and a hydroxyl group or an amino group.
  • an addition reaction between an isocyanate group-containing monomer and a compound containing one hydroxyl group or a compound containing one primary or secondary amino group, or a hydroxyl group-containing monomer or primary or secondary amino group containing It can be appropriately synthesized by an addition reaction between a monomer and monoisocyanate.
  • a resin represented by the following general formula (2) is preferable.
  • a 2 represents an acid group, a urea group, a urethane group, a group having a coordinating oxygen atom, a group having a basic nitrogen atom, a phenol group, an alkyl group, an aryl group, or an alkyleneoxy chain.
  • a group selected from the group consisting of a group having an imide group, a heterocyclic group, an alkyloxycarbonyl group, an alkylaminocarbonyl group, a carboxylate group, a sulfonamide group, an alkoxysilyl group, an epoxy group, an isocyanate group, and a hydroxyl group.
  • the monovalent substituent which has a seed is represented.
  • a 2 may be the same or different.
  • a 2 has the same meaning as A 1 in the general formula (1), a preferable embodiment thereof is also the same.
  • R 4 and R 5 each independently represents a single bond or a divalent linking group.
  • the n R 4 s may be the same or different.
  • the m R 5 s may be the same or different.
  • the divalent linking group represented by R 4 or R 5 the same divalent linking groups as those represented by R 2 in the general formula (1) can be used, and a preferred embodiment is also used. It is the same.
  • R 3 represents an (m + n) -valent linking group.
  • m + n satisfies 3 to 10.
  • Examples of the (m + n) -valent linking group represented by R 3 include 1 to 60 carbon atoms, 0 to 10 nitrogen atoms, 0 to 50 oxygen atoms, and 1 to 100 atoms. Groups consisting of up to 20 hydrogen atoms and 0 to 20 sulfur atoms are included, which may be unsubstituted or may further have a substituent.
  • the (m + n) -valent linking group represented by R 3 is the same as the (m + n) -valent linking group represented by R 1 in the general formula (1).
  • the preferred embodiments are also the same.
  • n represents 1 to 9. n is preferably 2 to 8, more preferably 2 to 7, and particularly preferably 3 to 6.
  • P 2 of the general formula (2) represents a polymer chain, can be selected according to the purpose or the like from such known polymers.
  • the m P 2 may be the same or different.
  • the preferred embodiment of the polymer is the same as P 1 in the general formula (1).
  • R 3 Specific examples (1), (2), (10), (11), (16), or (17)
  • R 4 A single bond or the following structural unit or a combination of these structural units: “1 to 10 carbon atoms, 0 to 5 nitrogen atoms, 0 to 10”
  • a divalent linking group comprising an oxygen atom, 1 to 30 hydrogen atoms, and 0 to 5 sulfur atoms (which may have a substituent, for example, Alkyl group having 1 to 20 carbon atoms such as methyl group and ethyl group, aryl group having 6 to 16 carbon atoms such as phenyl group and naphthyl group, hydroxyl group, amino group, carboxyl group, sulfonamide group, N-sulfonyl group C1-C6 acyloxy groups such as amide groups and acetoxy groups, C1
  • R 5 single bond, ethylene group, propylene group, the following group (a), or the following group (b)
  • R 12 represents a hydrogen atom or a methyl group
  • l represents 1 or 2.
  • P 2 Polymer or copolymer of vinyl monomer, ester polymer, ether polymer, urethane polymer and modified products thereof m: 1 to 3 n: 3-6
  • the second embodiment of the resin is a resin containing a graft copolymer.
  • the number of atoms excluding hydrogen atoms per graft chain is preferably 40 to 10,000, more preferably 100 to 500, and still more preferably 150 to 260.
  • a poly (meth) acrylic structure, a polyester structure, a polyurethane structure, a polyurea structure, a polyamide structure, a polyether structure, or the like can be used.
  • the resin containing the graft copolymer for example, the description in paragraphs 0080 to 0126 of JP-A-2014-063125 can be referred to, and the contents thereof are incorporated in the present specification.
  • a third embodiment of the resin is an oligoimine resin containing a nitrogen atom in at least one of the main chain and the side chain.
  • the oligoimine resin includes a repeating unit having a partial structure X having a functional group of pKa14 or less, a side chain containing a side chain Y having 40 to 10,000 atoms, and at least a main chain and a side chain.
  • a resin having a basic nitrogen atom on one side is preferred.
  • the description in paragraphs 0225 to 0267 of JP-A-2014-063125 can be referred to, and the contents thereof are incorporated in the present specification.
  • a fourth embodiment of the resin is a siloxane resin obtained by hydrolyzing a silane compound containing the silane compound represented by any one of the general formulas (2) to (4) and subjecting the hydrolyzate to a condensation reaction. It is.
  • R 0 represents hydrogen, an alkyl group, an alkenyl group, or a phenyl group.
  • R 1 represents a monovalent condensed polycyclic aromatic group.
  • R 9 represents hydrogen, a methyl group, an ethyl group, a propyl group or a butyl group, and may be the same or different.
  • n is 1 or 2.
  • R 2 Si (OR 10 ) 3 General formula (3)
  • R 2 represents a monovalent fused polycyclic aromatic group.
  • R 10 represents hydrogen, methyl group, ethyl group, propyl group or butyl group, and may be the same or different.
  • R 11 O m
  • R 5 3-l General formula (4)
  • R 3 represents a divalent condensed polycyclic aromatic group.
  • R 4 and R 5 represent hydrogen, an alkyl group, an alkenyl group, or an aryl group, and may be the same or different.
  • R 11 and R 12 represent hydrogen, a methyl group, an ethyl group, a propyl group, or a butyl group, and may be the same or different.
  • m and l are each independently an integer of 1 to 3.
  • the description of paragraphs 0017 to 0044 of JP-A-2010-007057 can be referred to for the siloxane resin, the contents of which are incorporated herein.
  • the highly refractive composition contains an epoxy resin.
  • epoxy resins for example, as bisphenol A type epoxy resins, JER827, JER828, JER834, JER1001, JER1002, JER1003, JER1055, JER1007, JER1009, JER1010 (above, manufactured by Japan Epoxy Resins Co., Ltd.), EPICLON860 , EPICLON 1050, EPICLON 1051, EPICLON 1055 (above, manufactured by DIC Corporation), etc., and as bisphenol F type epoxy resin, JER806, JER807, JER4004, JER4005, JER4007, JER4010 (above, manufactured by Japan Epoxy Resin Co., Ltd.), EPICLON830, EPICLON835 (above, manufactured by DIC Corporation), LCE-21, RE-602S As described above, JER152, JER154, JER157S70, JER157S65 (above Japan Epoxy Resin
  • EPICLON N-770 EPICLON N-775 (manufactured by DIC Corporation), and the like.
  • EPICLON N-680, EPICLON N-690, EPICLON N-695 above DIC Corporation
  • EOCN-1020 above, Nippon Kayaku Co., Ltd.
  • ADEKA RESIN EP-4000S, EP-4003S, EP-4010S, EP-4010S, EP-4011S (above, manufactured by ADEKA Corporation), NC-2000, NC-3000, NC-7300, XD-1000, EPPN-501, EPPN-502 (above, manufactured by ADEKA Corporation), JER1031S (manufactured by Japan Epoxy Resin Co., Ltd.) and the like.
  • the molecular weight of the resin is preferably 2,000 to 200,000, more preferably 2,000 to 15,000, and even more preferably 2,500 to 10,000 in terms of weight average molecular weight.
  • the amount of the resin in the highly refractive composition is preferably 0.5% by mass or more, more preferably 1% by mass or more, and further preferably 2% by mass or more with respect to the total mass of the composition.
  • the upper limit is preferably 30% by mass or less, more preferably 20% by mass or less, and further preferably 15% by mass or less.
  • the solid content concentration of the resin in the highly refractive composition is preferably 5% by mass or more, more preferably 8% by mass or more, and further preferably 10% by mass or more.
  • the upper limit is preferably 40% by mass or less, more preferably 35% by mass or less, and further preferably 30% by mass or less. Only one type of resin may be included, or two or more types of resins may be included. When two or more types are included, the total amount is preferably within the above range.
  • the particles contained in the highly refractive composition preferably include metal oxide particles.
  • the metal oxide particles are preferably inorganic particles that have a high refractive index and are colorless, white, or transparent. Titanium (Ti), zirconium (Zr), aluminum (Al), silicon (Si), zinc (Zn) or oxide particles of magnesium (Mg) and the like, titanium dioxide (TiO 2) particles is preferably from zirconium dioxide (ZrO 2) particles, titanium dioxide particles are more preferable.
  • the lower limit of the primary particle diameter is preferably 1 nm or more, and the upper limit is preferably 100 nm or less, more preferably 80 nm or less, and further preferably 50 nm or less.
  • the average particle size can also be used as an index of the primary particle size.
  • the average particle diameter of the metal oxide particles is measured by using a dynamic light scattering method for a diluted solution obtained by diluting a mixed solution or dispersion containing the metal oxide particles 80 times with propylene glycol monomethyl ether acetate. The value obtained by doing. This measurement is the number average particle diameter obtained by using Microtrack UPA-EX150 manufactured by Nikkiso Co., Ltd.
  • the description in paragraphs 0023 to 0027 of JP-A-2014-062221 can be referred to, and the contents thereof are incorporated in the present specification.
  • the amount of particles in the highly refractive composition is preferably 10% by mass or more, more preferably 15% by mass or more, and still more preferably 20% by mass or more with respect to the total mass of the composition.
  • the solid content concentration of the particles in the highly refractive composition is preferably 60% by mass or more, and more preferably 70% by mass or more.
  • the upper limit is not particularly limited, but is preferably 99% by mass or less, more preferably 95% by mass or less, and still more preferably 90% by mass or less.
  • One type of particle may be included, or two or more types may be included. When two or more types are included, the total amount is preferably within the above range.
  • organic solvent As the solvent contained in the highly refractive composition, an organic solvent is preferable.
  • organic solvents include esters such as ethyl acetate, n-butyl acetate, isobutyl acetate, amyl formate, isoamyl acetate, isobutyl acetate, butyl propionate, isopropyl butyrate, ethyl butyrate, butyl butyrate, methyl lactate, and ethyl lactate.
  • Alkyl oxyacetates eg, methyl oxyacetate, ethyl oxyacetate, butyl oxyacetate (eg, methyl methoxyacetate, ethyl methoxyacetate, butyl methoxyacetate, methyl ethoxyacetate, ethyl ethoxyacetate)
  • alkyl 3-oxypropionate Esters eg, methyl 3-oxypropionate, ethyl 3-oxypropionate, etc.
  • 2- Xylpropionic acid alkyl esters eg, methyl 2-oxypropionate, ethyl 2-oxypropionate, propyl 2-oxypropionate, etc.
  • ethers diethylene glycol dimethyl ether, dipropylene glycol dimethyl ether, tetrahydrofuran, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, methyl cellosolve acetate, ethyl cellosolve acetate, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene Glycol mono n-butyl ether, propylene glycol mono tert-butyl ether, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, propylene glycol monopropyl ether acetate, etc., and ketones
  • methyl ethyl ketone, cyclohexanone, cyclopentanone, 2-heptanone, 3-heptanone, and aromatic hydrocarbons include, for example
  • the description in paragraphs 0065 to 0067 of JP-A-2014-063125 can be referred to, and the contents thereof are incorporated in the present specification.
  • 50 mass% or more is preferable in the whole quantity of a composition, and, as for the quantity of the solvent in a highly refractive composition, 60 mass% or more is more preferable.
  • the upper limit is preferably 99.9% by mass or less, more preferably 95% by mass or less, and further preferably 90% by mass or less.
  • the solvent may contain only 1 type and may contain 2 or more types. When two or more types are included, the total amount falls within the above range.
  • the high refractive composition may contain various surfactants from the viewpoint of further improving coatability.
  • various surfactants such as a fluorine-based surfactant, a nonionic surfactant, a cationic surfactant, an anionic surfactant, and a silicone-based surfactant can be used.
  • a fluorochemical surfactant is preferred.
  • the interfacial tension between the coated surface and the coating liquid decreases, and the wettability to the coated surface is improved.
  • the applicability to the coated surface is improved. For this reason, it is possible to more suitably form a film having a uniform thickness with small thickness unevenness.
  • the fluorine-containing surfactant preferably has a fluorine content of 3 to 40% by mass, more preferably 5 to 30% by mass, and still more preferably 7 to 25% by mass.
  • a fluorine-based surfactant having a fluorine content within this range is effective in terms of uniformity of coating film thickness and liquid-saving properties, and has good solubility in the composition.
  • fluorosurfactant examples include Megafac F-171, F-172, F-173, F-176, F-177, F-141, F-142, and F-143.
  • nonionic surfactants include glycerol, trimethylolpropane, trimethylolethane, and ethoxylates and propoxylates thereof (for example, glycerol propoxylate, glycerin ethoxylate, etc.), polyoxyethylene lauryl ether, polyoxyethylene Stearyl ether, polyoxyethylene oleyl ether, polyoxyethylene octylphenyl ether, polyoxyethylene nonylphenyl ether, polyethylene glycol dilaurate, polyethylene glycol distearate, sorbitan fatty acid ester (Pluronic L10, L31, L61, L62 manufactured by BASF, 10R5, 17R2, 25R2, Tetronic 304, 701, 704, 901, 904, 150R1, Sparse 20000 (manufactured by Nippon Lubrizol Corporation), and the like.
  • cationic surfactant examples include phthalocyanine derivatives (trade name: EFKA-745, manufactured by Morishita Sangyo Co., Ltd.), organosiloxane polymer KP341 (manufactured by Shin-Etsu Chemical Co., Ltd.), (meth) acrylic acid ( Co) polymer polyflow no. 75, no. 90, no. 95 (manufactured by Kyoeisha Chemical Co., Ltd.), W001 (manufactured by Yusho Co., Ltd.) and the like.
  • phthalocyanine derivatives trade name: EFKA-745, manufactured by Morishita Sangyo Co., Ltd.
  • organosiloxane polymer KP341 manufactured by Shin-Etsu Chemical Co., Ltd.
  • (meth) acrylic acid ( Co) polymer polyflow no. 75, no. 90, no. 95 manufactured by Kyoeisha Chemical Co., Ltd.
  • W001 manufactured by Yusho Co., Ltd.
  • anionic surfactants include W004, W005, W017 (manufactured by Yusho Co., Ltd.) and the like.
  • silicone-based surfactants include Torre Silicone DC3PA, Torre Silicone SH7PA, Torre Silicone DC11PA, Torresilicone SH21PA, Torree Silicone SH28PA, Torree Silicone SH29PA, Torree Silicone SH30PA, Torree Silicone SH8400 (above, Toray Dow Corning Co., Ltd.) )), TSF-4440, TSF-4300, TSF-4445, TSF-4460, TSF-4442 (above, manufactured by Momentive Performance Materials), KP341, KF6001, KF6002 (above, manufactured by Shin-Etsu Silicone Co., Ltd.) , BYK307, BYK323, BYK330 (above, manufactured by BYK Chemie) and the like.
  • the content of the surfactant is preferably 0.001 to 2.0% by mass, and more preferably 0.005 to 1.0% by mass with respect to the total mass of the composition.
  • the high refractive composition may contain a polymerization inhibitor.
  • Polymerization inhibitors include hydroquinone, p-methoxyphenol, di-t-butyl-p-cresol, pyrogallol, t-butylcatechol, benzoquinone, 4,4′-thiobis (3-methyl-6-t-butylphenol), 2,2′-methylenebis (4-methyl-6-tert-butylphenol), N-nitrosophenylhydroxyamine primary cerium salt and the like. Of these, p-methoxyphenol is preferred.
  • the addition amount of the polymerization inhibitor is preferably 0.001 to 5% by mass with respect to the total mass of the composition.
  • the highly refractive composition may contain other additives.
  • additives include a curing agent, a polymerizable compound, a polymerization initiator, a resin other than the above resin (for example, an alkali-soluble resin and a binder), a plasticizer, a sensitizer, and an ultraviolet absorber.
  • alkali-soluble resin examples include benzyl (meth) acrylate / (meth) acrylic acid copolymer, benzyl (meth) acrylate / (meth) acrylic acid / 2-hydroxyethyl (meth) acrylate copolymer, benzyl (meth)
  • a multi-component copolymer comprising acrylate / (meth) acrylic acid / other monomers can be preferably used.
  • the description in paragraphs 0133 to 0224 of JP-A-2014-063125 can also be preferably used.
  • the photopolymerization initiator is not particularly limited as long as it has the ability to initiate polymerization of a polymerizable compound, and can be appropriately selected from known photopolymerization initiators. For example, those having photosensitivity to light rays from the ultraviolet light region to the visible light region are preferable. Further, it may be an activator that generates some action with a photoexcited sensitizer and generates an active radical, or may be an initiator that initiates cationic polymerization according to the type of monomer.
  • the photopolymerization initiator preferably contains at least one compound having a molar extinction coefficient of at least about 50 within a range of about 300 nm to 800 nm (more preferably 330 nm to 500 nm).
  • Examples of the photopolymerization initiator include halogenated hydrocarbon derivatives (for example, those having a triazine skeleton, those having an oxadiazole skeleton, etc.), acylphosphine compounds such as acylphosphine oxide, hexaarylbiimidazole, and oxime derivatives. Oxime compounds such as organic peroxides, thio compounds, ketone compounds, aromatic onium salts, ketoxime ethers, aminoacetophenone compounds, and hydroxyacetophenones.
  • Examples of the halogenated hydrocarbon compound having a triazine skeleton include those described in Wakabayashi et al., Bull. Chem. Soc.
  • trihalomethyltriazine compounds trihalomethyltriazine compounds, benzyldimethylketal compounds, ⁇ -hydroxyketone compounds, ⁇ -aminoketone compounds, acylphosphine compounds, phosphine oxide compounds, metallocene compounds, oxime compounds, triallylimidazole dimers, oniums
  • compounds selected from the group consisting of compounds, benzothiazole compounds, benzophenone compounds, acetophenone compounds and derivatives thereof, cyclopentadiene-benzene-iron complexes and salts thereof, halomethyloxadiazole compounds, and 3-aryl substituted coumarin compounds are preferred.
  • trihalomethyltriazine compound More preferred are trihalomethyltriazine compound, ⁇ -aminoketone compound, acylphosphine compound, phosphine oxide compound, oxime compound, triallylimidazole dimer, onium compound, benzophenone compound, acetophenone compound, trihalomethyltriazine compound, ⁇ -aminoketone
  • a fine pattern may be formed in a sharp shape, and the development is performed with no residue in the unexposed area along with curability. is important.
  • stepper exposure is used for curing exposure, but this exposure machine may be damaged by halogen, and it is necessary to keep the addition amount of the photopolymerization initiator low.
  • an oxime compound as a photopolymerization initiator for forming a fine pattern.
  • oxime compound can improve the color transfer.
  • paragraphs 0265 to 0268 of JP2013-29760A can be referred to, and the contents thereof are incorporated in the present specification.
  • hydroxyacetophenone compounds As the photopolymerization initiator, hydroxyacetophenone compounds, aminoacetophenone compounds, and acylphosphine compounds can also be suitably used. More specifically, for example, an aminoacetophenone initiator described in JP-A-10-291969 and an acylphosphine initiator described in Japanese Patent No. 4225898 can also be used.
  • hydroxyacetophenone-based initiator IRGACURE-184, DAROCUR-1173, IRGACURE-500, IRGACURE-2959, IRGACURE-127 (trade names: all manufactured by BASF) can be used.
  • aminoacetophenone-based initiator commercially available products IRGACURE-907, IRGACURE-369, and IRGACURE-379EG (trade names: all manufactured by BASF) can be used.
  • aminoacetophenone-based initiator a compound described in JP-A-2009-191179 in which an absorption wavelength is matched with a long wave light source such as 365 nm or 405 nm can also be used.
  • acylphosphine initiator commercially available products such as IRGACURE-819 and DAROCUR-TPO (trade names: both manufactured by BASF) can be used.
  • More preferred examples of the photopolymerization initiator include oxime compounds.
  • Specific examples of the oxime compound include compounds described in JP-A No. 2001-233842, compounds described in JP-A No. 2000-80068, and compounds described in JP-A No. 2006-342166.
  • Examples of the oxime compound that can be suitably used in the present invention include 3-benzoyloxyiminobutan-2-one, 3-acetoxyiminobutan-2-one, 3-propionyloxyiminobutan-2-one, 2-acetoxyiminopentan-3-one, 2-acetoxyimino-1-phenylpropan-1-one, 2-benzoyloxyimino-1-phenylpropan-1-one, 3- (4-toluenesulfonyloxy) iminobutane Examples include -2-one and 2-ethoxycarbonyloxyimino-1-phenylpropan-1-one.
  • J.H. C. S. Perkin II (1979) pp. 1653-1660) J.M.
  • oxime compounds other than those described above compounds described in JP-A-2009-519904 in which an oxime is linked to the carbazole N-position, compounds described in US Pat. No. 7,626,957 in which a hetero substituent is introduced into the benzophenone moiety, Compounds described in Japanese Patent Application Laid-Open No. 2010-15025 and US Patent Publication No. 2009-292039, in which a nitro group is introduced into the dye moiety, ketoxime compounds described in International Patent Publication No. 2009-131189, a triazine skeleton and an oxime skeleton in the same molecule A compound described in US Pat. No.
  • the oxime compound is preferably a compound represented by the following formula (OX-1).
  • the oxime N—O bond may be an (E) oxime compound, a (Z) oxime compound, or a mixture of (E) and (Z) isomers. .
  • R and B each independently represent a monovalent substituent
  • A represents a divalent organic group
  • Ar represents an aryl group.
  • the monovalent substituent represented by R is preferably a monovalent nonmetallic atomic group.
  • the monovalent nonmetallic atomic group include an alkyl group, an aryl group, an acyl group, an alkoxycarbonyl group, an aryloxycarbonyl group, a heterocyclic group, an alkylthiocarbonyl group, and an arylthiocarbonyl group.
  • these groups may have one or more substituents.
  • the substituent mentioned above may be further substituted by another substituent.
  • the substituent examples include a halogen atom, an aryloxy group, an alkoxycarbonyl group or an aryloxycarbonyl group, an acyloxy group, an acyl group, an alkyl group, and an aryl group.
  • the monovalent substituent represented by B is preferably an aryl group, a heterocyclic group, an arylcarbonyl group, or a heterocyclic carbonyl group. These groups may have one or more substituents. Examples of the substituent include the above-described substituents.
  • the divalent organic group represented by A is preferably an alkylene group having 1 to 12 carbon atoms, a cycloalkylene group, or an alkynylene group. These groups may have one or more substituents. Examples of the substituent include the above-described substituents.
  • an oxime compound having a fluorine atom can also be used as a photopolymerization initiator.
  • Specific examples of the oxime compound having a fluorine atom include compounds described in JP 2010-262028 A, compounds 24 and 36 to 40 described in JP-A-2014-500852, and compounds described in JP-A 2013-164471 ( C-3). This content is incorporated herein.
  • a compound represented by the following general formula (1) or (2) can also be used as a photopolymerization initiator.
  • R 1 and R 2 are each independently an alkyl group having 1 to 20 carbon atoms, an alicyclic hydrocarbon group having 4 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, or When an arylalkyl group having 7 to 30 carbon atoms is represented and R 1 and R 2 are phenyl groups, the phenyl groups may be bonded to each other to form a fluorene group, and R 3 and R 4 are each independently Represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, an arylalkyl group having 7 to 30 carbon atoms or a heterocyclic group having 4 to 20 carbon atoms, wherein X is a direct bond or carbonyl Indicates a group.
  • R 1, R 2, R 3 and R 4 have the same meanings as R 1, R 2, R 3 and R 4 in Formula (1)
  • R 5 is -R 6, -OR 6 , —SR 6 , —COR 6 , —CONR 6 R 6 , —NR 6 COR 6 , —OCOR 6 , —COOR 6 , —SCOR 6 , —OCSR 6 , —COSR 6 , —CSOR 6 , —CN
  • halogen R 6 represents an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, an arylalkyl group having 7 to 30 carbon atoms or a heterocyclic group having 4 to 20 carbon atoms
  • X represents a direct bond or a carbonyl group, and a represents an integer of 0 to 4.
  • R 1 and R 2 are preferably each independently a methyl group, an ethyl group, an n-propyl group, an i-propyl group, a cyclohexyl group, or a phenyl group.
  • R 3 is preferably a methyl group, an ethyl group, a phenyl group, a tolyl group or a xylyl group.
  • R 4 is preferably an alkyl group having 1 to 6 carbon atoms or a phenyl group.
  • R 5 is preferably a methyl group, an ethyl group, a phenyl group, a tolyl group or a naphthyl group.
  • X is preferably a direct bond.
  • Specific examples of the compounds represented by formula (1) and formula (2) include, for example, compounds described in paragraph numbers 0076 to 0079 of JP-A No. 2014-137466. This content is incorporated herein.
  • oxime compounds that are preferably used in the present invention are shown below, but the present invention is not limited thereto.
  • the oxime compound preferably has a maximum absorption wavelength in the wavelength region of 350 nm to 500 nm, more preferably has an absorption wavelength in the wavelength region of 360 nm to 480 nm, and particularly preferably has a high absorbance at 365 nm and 455 nm.
  • the molar extinction coefficient at 365 nm or 405 nm of the oxime compound is preferably from 1,000 to 300,000, more preferably from 2,000 to 300,000, more preferably from 5,000 to 200, from the viewpoint of sensitivity. Is particularly preferred.
  • For the molar extinction coefficient of the compound a known method can be used.
  • an ethyl acetate solvent is used at a concentration of 0.01 g / L. It is preferable to measure. You may use the photoinitiator used for this invention in combination of 2 or more type as needed.
  • the content of the photopolymerization initiator is preferably from 0.1 to 50% by mass, more preferably from 0.5 to 30% by mass, and even more preferably from 1 to 20%, based on the total solid content of the highly refractive composition. % By mass. Within this range, better sensitivity and pattern formability can be obtained.
  • the highly refractive composition may contain only one type of photopolymerization initiator, or may contain two or more types. When two or more types are included, the total amount is preferably within the above range.
  • thermal polymerization initiators include various azo compounds and peroxide compounds.
  • azo compounds include azobis compounds.
  • peroxide compounds include ketones. Examples thereof include peroxides, peroxyketals, hydroperoxides, dialkyl peroxides, diacyl peroxides, peroxyesters, peroxydicarbonates, and the like.
  • the high refractive composition examples include the dispersion composition described in claim 1 of JP-A-2014-062221, and the siloxane-based resin composition described in claim 1 of JP-A-2010-007057. The contents of which are incorporated herein by reference. Moreover, the preferable range of these compositions is mentioned as an example of the preferable range of the high refractive composition of this invention.
  • the film thickness of the highly refractive layer is appropriately determined so as to achieve a desired optical path difference, but is, for example, 50 nm or more, and may be 60 nm or more.
  • the upper limit is, for example, 600 nm or less, 500 nm or less, or 300 nm or less.
  • the low refractive layer is a layer having a lower refractive index than that of the high refractive layer (preferably a layer having a refractive index lower by 0.5 or more).
  • the refractive index of the low refractive layer is preferably 1.0 to 1.5, more preferably 1.1 to 1.5.
  • the low refractive layer is preferably a layer containing a resin.
  • the layer containing the resin may be a so-called low-refractive resin, that is, a layer made of a resin having a refractive index lower than that of the above-described high-refractive resin, or a composition containing resin, particles, and a solvent (hereinafter, , Sometimes referred to as “low refractive composition”).
  • the resin used for forming the low refractive layer is a polymer chain composed of repeating units derived from a polymerizable monomer or a compound having a polymer chain composed of repeating units derived from a polymerizable monomer as a partial structure. Preferably there is. Preferably, it is a layer formed by applying a low refractive composition. Details of the low refractive composition will be described below. Note that the low refractive composition may include at least particles and a solvent. That is, the low-refractive index composition may be an embodiment that does not contain a resin.
  • the resin used in the low refractive layer examples include a resin containing at least one of a siloxane resin and a fluorine-based resin.
  • a siloxane resin can be obtained through hydrolysis and condensation using an alkoxysilane raw material.
  • the siloxane resin is, for example, a part or all of alkoxy groups of alkyltrialkoxysilane is hydrolyzed to be converted into silanol groups, and at least part of the generated silanol groups is condensed to form Si—O—.
  • a Si bond is formed.
  • the siloxane resin preferably has a silsesquioxane structure represented by the following general formula (5).
  • R 1 represents an alkyl group having 1 to 3 carbon atoms.
  • n represents an integer of 20 to 1000.
  • the fluorine-based resin is a resin containing fluorine in a substance molecule, specifically, polytetrafluoroethylene, polyhexafluoropropylene, tetrafluoroethylene / hexafluoropropylene copolymer, tetrafluoroethylene / perfluoroalkyl.
  • Examples include vinyl ether copolymers, tetrafluoroethylene / ethylene copolymers, hexafluoropropylene / propylene copolymers, polyvinylidene fluoride, vinylidene fluoride / ethylene copolymers, and the like.
  • siloxane resin and the fluorine-based resin for example, description in paragraphs 0014 to 0060 of JP-A-2014-063125 can be referred to, and the contents thereof are incorporated in the present specification.
  • a resin contained in the low refractive composition a hydrolyzate of a predetermined silicon compound described in paragraphs 0016 to 0024 of JP2013-253145A, paragraph 0030 of JP2012-0214772A.
  • the compounds described in -0043 can be referred to, the contents of which are incorporated herein.
  • the amount of the resin in the low refractive composition is preferably 0.5% by mass or more, more preferably 1% by mass or more, and further preferably 2% by mass or more.
  • the upper limit is preferably 30% by mass or less, more preferably 20% by mass or less, and further preferably 15% by mass or less.
  • the solid content concentration of the resin in the low refractive composition is preferably 5% by mass or more, more preferably 8% by mass or more, and further preferably 10% by mass or more.
  • the upper limit is preferably 40% by mass or less, more preferably 35% by mass or less, and further preferably 30% by mass or less. Only one type of resin may be included, or two or more types of resins may be included. When two or more types are included, the total amount is preferably within the above range.
  • the particles used in the low refractive layer include hollow particles and non-hollow particles.
  • hollow particles hollow structure or porous fine particles may be used.
  • the hollow particle has a structure having a cavity inside and refers to a particle having a cavity surrounded by an outer shell, and the porous particle refers to a porous particle having a large number of cavities.
  • the hollow particles or the porous particles are appropriately referred to as “specific particles”.
  • the specific particles may be organic particles or inorganic particles. Metal oxide particles are preferable, and silica particles are more preferable.
  • the description in paragraphs 0047 to 0055 of JP 2014-063125 A can be referred to, and the contents thereof are incorporated in the present specification.
  • a bead-like particle has a shape in which particles are connected and / or branched like a bead. Specific examples include those having a chain structure in which spherical particles (for example, colloidal silica) are connected in a bead shape, and those in which the connected colloidal silica is branched. Because of the steric hindrance, the beaded particles cannot occupy the space densely, and as a result, a region with a higher porosity can be easily formed, and the region can easily have a low refractive index.
  • the amount of particles in the low refractive composition is preferably 10% by mass or more, more preferably 15% by mass or more, and still more preferably 20% by mass or more with respect to the total mass of the composition. Although there is no restriction
  • the solid content concentration of the particles in the low refractive composition is preferably 60% by mass or more, and more preferably 70% by mass or more.
  • the upper limit is not particularly limited, but is preferably 99% by mass or less, more preferably 95% by mass or less, and still more preferably 90% by mass or less.
  • One type of particle may be included, or two or more types may be included. When two or more types are included, the total amount is preferably within the above range.
  • the solvent contained in the low refractive composition is the same as the solvent contained in the high refractive composition, and the preferred range and blending amount are also the same.
  • the low refractive composition used in the present invention may contain other additives. Other additives are the same as those described in the above-mentioned highly refractive composition, and the blending amounts and the like are also the same.
  • Specific examples of the low-refractive composition include a curable composition for forming a low-refractive film according to claim 11 of JP2014-063125, and a siloxane-based composition according to claim 1 of JP2013-253145A. Resin compositions are exemplified and their contents are incorporated herein.
  • the preferable range of these compositions is mentioned as an example of the preferable range of the high refractive composition of this invention.
  • the film thickness of the low refractive layer is appropriately determined so as to achieve a desired optical path difference.
  • the upper limit is, for example, 600 nm or less, 500 nm or less, or 300 nm or less.
  • the method for producing a multilayer film layer includes, for example, a step of applying a high refractive composition containing particles, a resin, and a solvent to form a high refractive layer, and a surface of the high refractive layer, particles, a resin, A step of forming a low refractive layer by applying a low refractive composition containing a solvent;
  • the multilayer film layer can be preferably manufactured. Since the multilayer film layer can be manufactured by coating, productivity can be improved as compared with a known multilayer film layer.
  • the low refractive layer is provided on the high refractive layer. However, the order may be reversed.
  • a step of forming a low refraction layer by applying a low refraction composition and a step of forming a high refraction layer by applying a high refraction composition on the surface of the low refraction layer may be performed.
  • a procedure for forming the high refractive layer and then forming the low refractive layer will be described in detail.
  • the coating method in this invention is not specifically limited, The appropriate well-known coating method is applicable.
  • a spray method, a roll coating method, a spin coating method (spin coating method), a bar coating method, or the like can be applied.
  • the coating time can be 30 seconds to 3 minutes per high refractive layer, and further, the coating time can be 30 seconds to 2 minutes.
  • the film thickness after curing becomes a desired condition.
  • post-baking it is preferable to perform post-baking to volatilize part or all of the solvent.
  • the post-baking is preferably performed at 100 to 300 ° C. for 30 seconds to 8 minutes, more preferably at 150 to 250 ° C. for 1 to 5 minutes for the high refractive layer.
  • the low refractive composition and the high refractive composition are preferably filtered with a filter before coating for the purpose of removing foreign substances and reducing defects. If it is conventionally used for the filtration use etc., it can use without being specifically limited.
  • a low refractive layer is formed on the surface by applying a low refractive composition.
  • the method for forming the low refraction layer is the same as in the formation of the high refraction layer except that the high refraction composition is changed to the low refraction composition, and the preferred range is also the same.
  • the post-baking of the low refractive layer is preferably performed at 80 to 240 ° C. for 30 seconds to 8 minutes, more preferably at 80 to 120 ° C. for 1 to 5 minutes.
  • a multilayer film layer can be obtained by alternately laminating high refractive layers and low refractive layers.
  • a curable resin such as a siloxane resin disclosed in paragraphs 0011 and after of JP2014-74874 (WO2013 / 099945) is contained in a solvent.
  • a resin composition for forming a light-transmitting cured film and a composition for forming a high refractive index layer disclosed in paragraphs 0097 and after can also be used.
  • the colorant-containing composition layer is a layer formed from a composition containing a predetermined colorant.
  • a colored photocurable composition containing a colorant and a photocurable component is preferably used.
  • This photocurable component is a photocurable composition usually used in the photolithographic method, and includes at least a binder resin (such as an alkali-soluble resin), a photosensitive polymerization component (such as a photopolymerization monomer), and a photopolymerization initiator.
  • Compositions can be used.
  • the matters described in paragraphs 0017 to 0064 of JP-A-2005-326453 can be suitably applied.
  • a colorant-containing composition layer can be formed using a non-photosensitive colored thermosetting composition.
  • the colored thermosetting composition contains a colorant and a thermosetting compound, and the colorant concentration in the total solid content is preferably 50% by mass or more and less than 100% by mass.
  • the thermosetting compound is not particularly limited as long as the film can be cured by heating.
  • a compound having a thermosetting functional group can be used.
  • this thermosetting compound for example, those having at least one group selected from an epoxy group, a methylol group, an alkoxymethyl group and an acyloxymethyl group are preferable.
  • the type of the colorant contained in the colorant-containing composition layer is not particularly limited, and conventionally known colorants such as various dyes and pigments are used according to the type of each color pixel. Usually, a red colorant, a green colorant, a blue colorant and the like are used. More specifically, examples of the pigment include various conventionally known inorganic pigments or organic pigments. Further, considering that it is preferable to have a high transmittance, whether it is an inorganic pigment or an organic pigment, it is preferable to use a pigment having an average particle size as small as possible. 0.01 ⁇ m to 0.1 ⁇ m is preferable, and 0.01 ⁇ m to 0.05 ⁇ m is more preferable.
  • C.I. I. 15: 3 is a representative example.
  • the colorant is a dye
  • it can be uniformly dissolved in the composition to obtain a non-photosensitive thermosetting colored resin composition.
  • a well-known dye can be used for color filters.
  • the chemical structure includes pyrazole azo, anilino azo, triphenyl methane, anthraquinone, anthrapyridone, benzylidene, oxonol, pyrazolotriazole azo, pyridone azo, cyanine, phenothiazine, pyrrolopyrazole azomethine, Dyes such as xanthene, phthalocyanine, benzopyran and indigo can be used.
  • the colorant content of the colorant-containing composition layer is not particularly limited, but is preferably 50% by mass or more and less than 100% by mass, and 55% by mass with respect to the total mass of the colorant-containing composition layer. More preferred is 90% by mass or less.
  • various additives such as a binder, a curing agent, a curing catalyst, a solvent, a filler, and the like other than those described above are provided as long as the effects of the present invention are not impaired.
  • a polymer compound, a surfactant, an adhesion promoter, an antioxidant, an ultraviolet absorber, an aggregation inhibitor, a dispersant and the like can be blended.
  • these various additives descriptions in paragraphs 0032 to 0040 of JP 2010-078680 A can be referred to, and the contents thereof are incorporated in the present specification.
  • a colored photocurable composition or a colored thermosetting composition is applied to the multilayer film layer directly or via another layer and dried, and then subjected to light irradiation treatment or heat treatment. It is formed by.
  • the colorant-containing composition is preferably filtered with a filter before coating for the purpose of removing foreign substances and reducing defects. Any filter can be used without particular limitation as long as it has been conventionally used for filtration.
  • any filter can be used without particular limitation as long as it has been conventionally used for filtration.
  • a laminate in which a multilayer film layer is arranged at a predetermined position on a substrate is prepared, and then a colored photocurable composition containing a green colorant dispersed in a solvent is spin coated to form a multilayer film on the substrate.
  • a pre-bake treatment is performed.
  • the colored photocurable composition on the multilayer film layer is exposed using, for example, a well-known exposure device such as a stepper. The exposure light beam from the stepper is irradiated to the green pixel formation region of the colored photocurable composition from the opening of the mask, and the green pixel formation region is cured.
  • the colored photocurable composition After completion of the exposure process, the colored photocurable composition is developed using a known developer. Thereby, except the green pixel formation area (uncured area) of the colored photocurable composition is removed, and a colorant-containing composition layer is formed on the multilayer film layer.
  • the layer thickness of the colorant-containing composition layer is not particularly limited, but is preferably 0.1 to 10 ⁇ m, more preferably 0.5 to 5 ⁇ m, from the viewpoint of color pixel performance and thinning balance.
  • a red pixel comprising a colorant-containing composition layer (red color layer) containing a red colorant, and a colorant containing a green colorant
  • a green pixel composed of a containing composition layer (green colored layer), a blue pixel composed of a colorant-containing composition layer (blue colored layer) containing a blue colorant, and a plurality of films having different refractive indexes are laminated
  • stacking a layer and the said red colored layer, the said green colored layer, or the said blue colored layer is mentioned.
  • the color filter can have a color pixel of four or more colors, although the kind of colorant used is 3 types (a red colorant, a green colorant, and a blue colorant).
  • 3 is a cross-sectional view taken along the line AA
  • FIG. 4 is a cross-sectional view taken along the line BB.
  • the color filter 10 includes a plurality of color pixels and is disposed on the substrate 12.
  • the red pixel (R) 14, the green pixel (G1) 16, and the blue pixel (B1) 18 are arranged side by side on the substrate.
  • the first stacked color pixel (G2) 20 is a stacked body of the first multilayer film layer 24 and the green pixel (G1) 16.
  • the first stacked color pixel (G2) 20 includes the green pixel (G1) 16, but the first multilayer color layer (G2) 20 has a green color (G1) due to the first multilayer film layer 24. ) Different from 16. That is, the green pixel (G1) 16 and the first stacked color pixel (G2) 20 have different colors.
  • the second stacked color pixel (B2) 22 is a stacked body of the second multilayer film layer 26 and the blue pixel (G1) 18.
  • the second stacked color pixel (B2) 22 includes the blue pixel (G1) 18, but the second multilayer color layer (B2) 22 has an overall color of the blue pixel (B1) due to the second multilayer film layer 26. ) 18 is different.
  • the blue pixel (B1) 18 and the second stacked color pixel (B2) 22 have different colors.
  • the red coloring agent used in order to form red pixel (R) 14, and the green coloring agent used in order to form green pixel (G1) 16 Three kinds of blue colorants used to form the blue pixel (B1) 18 are used, but the first multilayer film layer 24 and the second multilayer film layer 26 are used to generate 5 Color pixels of color are arranged on the substrate.
  • the first stacked color pixel (G2) 20 and the second stacked color pixel (B2) 22 are used. In, it is sufficient that at least one (one type) stacked color pixel is used. Three (three types) or more of stacked color pixels may be used. In the first stacked color pixel (G2) 20, the green pixel (G1) 16 is included, but a green color different from the green colorant included in the green pixel (G1) 16 is shown. Other green pixels containing a colorant may be included.
  • the second stacked color pixel (B2) 22 may also include other blue pixels including a blue colorant of a different type from the blue colorant included in the blue pixel (B1) 18.
  • the first multilayer film layer 24 and the second multilayer film layer 26 may be the same layer or different layers.
  • the colorant-containing composition layer included in the stacked color pixel contains a colorant that is not a stacked color pixel included in the color filter.
  • the same layer as the composition layer is preferably used.
  • the type of substrate used is not particularly limited.
  • a glass substrate, a resin substrate, or the like is used as appropriate, and when applying a color filter to a solid-state imaging device, photoelectric conversion that photoelectrically converts light from a subject.
  • a semiconductor substrate on which a photodiode as an element is arranged may be used as the substrate.
  • FIG. 5 shows a partially enlarged plan view of a second preferred example of the color filter of the first embodiment of the present invention.
  • FIG. 6 is a cross-sectional view taken along the line CC
  • FIG. 7 is a cross-sectional view taken along the line DD.
  • the color filter 100 includes a plurality of color pixels and is disposed on the substrate 12. As color pixels, a red pixel (R) 114, a green pixel (G1) 116, a blue pixel (B1) 118, a first stacked color pixel (G2) 20, and a second stacked color pixel (B2). 22 color pixels, and these color pixels are arranged two-dimensionally (planarly) on the substrate 12.
  • the heights of the red pixel (R) 114, the green pixel (G1) 116, and the blue pixel (B1) 118 are the same as the first stacked color pixel ( G2) 20 and the second stacked color pixel (B2) 22 are the same as in the first preferred example except that the height is adjusted to be the same as that of the second stacked color pixel (B2) 22.
  • FIG. 5 shows a partially enlarged plan view of a third preferred example of the color filter of the first embodiment of the present invention.
  • 9 is a cross-sectional view taken along the line EE
  • FIG. 10 is a cross-sectional view taken along the line FF.
  • the color filter of the first embodiment of the present invention can be applied to various applications, and examples thereof include a solid-state image sensor. That is, the solid-state image sensor containing the color filter of 1st embodiment of this invention is mentioned.
  • the configuration of the solid-state imaging device is not particularly limited and may include known modes. For example, a photodiode, an insulating layer, the color filter of the first embodiment of the present invention, a flat layer, a microlens, and the like may be used as a semiconductor substrate (substrate). The structure provided above is mentioned.
  • an imaging apparatus will be described as an example to which the solid-state imaging device of the present invention is applied.
  • An example of the imaging device is a camera module.
  • FIG. 11 is a functional block diagram of the imaging apparatus.
  • the imaging apparatus emits infrared light, the lens optical system 1, the solid-state imaging device 110, the signal processing unit 120, the signal switching unit 130, the control unit 140, the signal storage unit 150, the light emission control unit 160, and the like.
  • Infrared LED 170 as a light emitting element and image output units 180 and 181 are provided.
  • the solid-state image sensor 110 the solid-state image sensor provided with the color filter of this invention mentioned above can be used.
  • the configuration other than the solid-state imaging device 110 and the lens optical system 1 can be formed entirely or partially on the same semiconductor substrate.
  • paragraphs 0032 to 0036 of JP 2011-233983 A can be referred to, and the contents thereof are incorporated in the present specification.
  • visible light refers to light in a wavelength region of 400 nm to less than 700 nm
  • infrared light refers to light in a wavelength region of 700 nm to 1000 ⁇ m
  • Near-infrared light is intended for light in the wavelength region of 700 nm to 2500 nm.
  • the red light is intended for light having a central wavelength of about 640 nm (preferably, light having a wavelength of 575 nm to 670 nm), and the green light is light having a central wavelength of about 530 nm (preferably having a wavelength of 480 nm to less than 575 nm).
  • the blue light means light having a center wavelength of about 435 nm (preferably light having a wavelength of 400 nm or more and less than 480 nm).
  • the first infrared light is intended for light in the first infrared wavelength region
  • the second infrared light is intended for light in the second infrared wavelength region
  • the third infrared light is the third red light. Intended for light in the outside wavelength region.
  • the color filter of the second embodiment of the present invention is suitable for photographing a color image (color still image or color moving image) of a subject in the dark, and is preferably applied to a night vision camera (particularly a color night vision camera). can do.
  • the color filter according to the second embodiment of the present invention can transmit visible light having three different wavelength distributions and infrared light having three different wavelength distributions. Therefore, for example, when irradiating a subject with predetermined infrared light and transmitting the infrared light reflected from the subject through this color filter, together with visible light having three different wavelength distributions (wavelength intensity distributions) Three types of infrared light having different wavelength distributions (wavelength intensity distributions) can be obtained.
  • Each transmitted infrared light is imaged on an imaging surface that captures an optical image such as a CCD image sensor, and an in-plane intensity distribution of each infrared light is obtained, thereby obtaining an image of the subject by each infrared light.
  • An infrared color image of a subject can be captured by, for example, displaying red, green, and blue single colors on each of the three types of images obtained.
  • a visible light color image of a subject can also be captured using three types of visible light that are simultaneously transmitted.
  • the multilayer film layer is preferably a layer formed with a coating solution. If a multilayer film layer formed of such a coating solution is used, the production of the color filter becomes industrially easier and the light transmittance of the obtained color filter is excellent.
  • FIG. 15 is a partially enlarged cross-sectional view of the color filter according to the second embodiment of the present invention.
  • the color filter 300 includes a plurality of color pixels and is disposed on the substrate 12.
  • the color pixels include a first color pixel 30 that transmits red light and first infrared light, a second color pixel 32 that transmits blue light and second infrared light, and green light and third infrared light.
  • the first color pixel 30 is a first multilayer in which a red pixel (R) 214 composed of a colorant-containing composition layer (red color layer) containing a red colorant and a plurality of films having different refractive indexes are laminated.
  • a film layer 36 is laminated.
  • the first color pixel 30 transmits red light (R) and first infrared light (IR1). More specifically, only the red light (R) among the light in the visible light region incident on the first color pixel 30 can pass through the red pixel (R) 214, and the infrared light incident on the first color pixel 30. Of the light in the light region, only the first infrared light (IR1) can pass through the first multilayer film layer 36.
  • the red light (R) and the first infrared light (IR1) have a continuous wavelength band, but the present invention is not limited to this mode, and the wavelength of the red light is not limited. The range and the wavelength range of the first infrared light may not be continuous.
  • the second color pixel 32 is a second multilayer film layer in which a blue pixel (B) 218 made of a colorant-containing composition layer (blue color layer) containing a blue colorant and a plurality of films having different refractive indexes are laminated. 38 is laminated.
  • the second color pixel 32 transmits blue light (B) and second infrared light (IR2). More specifically, only the blue light (B) among the light in the visible light region incident on the second color pixel 32 can pass through the blue pixel (B) 218, and the infrared light incident on the second color pixel 32. Of the light in the light region, only the second infrared light (IR2) can pass through the second multilayer film layer 38.
  • the third color pixel 34 includes a green pixel (B) 216 composed of a colorant-containing composition layer (green color layer) containing a green colorant, and a third multilayer film layer in which a plurality of films having different refractive indexes are laminated. 40 is laminated.
  • the third color pixel 34 transmits green light (G) and third infrared light (IR3). More specifically, only the green light (G) among the light in the visible light region incident on the third color pixel 34 can pass through the green pixel (G), and the infrared light incident on the third color pixel 34. Of the light in the region, only the third infrared light (IR3) can pass through the third multilayer film layer 40.
  • the light passing through the color filter 300 includes three types of visible light (first visible light that is light in the first visible wavelength region and second visible light that is light in the second visible wavelength region).
  • Light and third visible light that is light in the third visible wavelength region and three types of infrared light (first infrared light, second infrared light, and third infrared light). It is done.
  • the red light (R) that is the first visible light, the blue light (B) that is the second visible light, and the green light (G) that is the third visible light have different wavelength distributions
  • the first infrared light (IR1), the second infrared light (IR2), and the third infrared light (IR3) also have different wavelength distributions.
  • the three wavelength distributions of visible light described above are different, in other words, the wavelength regions of the visible lights are different from each other. That is, the ranges of the first visible wavelength region, the second visible wavelength region, and the third visible wavelength region are intended to be different from each other.
  • the fact that the wavelength distributions of the three infrared lights are different means that the ranges of the first infrared wavelength region, the second infrared wavelength region, and the third infrared wavelength region are different from each other.
  • the image (imaging signal) obtained from each infrared light is colored based on this difference, and color imaging is performed. A signal can be obtained.
  • an image captured with red light and first infrared light is displayed in red
  • an image captured with blue light and second infrared light is displayed in blue
  • green light and first infrared light are displayed.
  • the definition (for example, shape, size, material, etc.) of the red pixel (R) 214, the green pixel (G) 216, and the blue pixel (B) 218 is the definition described in the first embodiment.
  • the definition of the colorant-containing composition layer (red colored layer, green colored layer, blue colored layer) is also synonymous with the definition described in the first embodiment.
  • the definitions of the first multilayer film layer 36, the second multilayer film layer 38, and the third multilayer film layer 40 are the same as the definitions of the multilayer film layers described in the first embodiment.
  • the preferred ranges of the configuration (material, thickness, number of layers, etc.) of the first multilayer film layer 36, the second multilayer film layer 38, and the third multilayer film layer 40 are the same as those in the first embodiment described above. It is the same as the description of the multilayer film layer described in the embodiment, and an embodiment in which the high refractive layer and the low refractive layer are alternately laminated is preferably mentioned. It is to be noted that the transmitted infrared is controlled by controlling the refractive index and the film thickness of each multilayer film layer (the first multilayer film layer 36, the second multilayer film layer 38, and the third multilayer film layer 40). The area of light can be adjusted. As described above, since each multilayer film layer can be manufactured using a coating solution, it is excellent in industrial production suitability.
  • the center wavelength of the first infrared light (IR1), the center wavelength of the second infrared light (IR2), and the center wavelength of the third infrared light (IR2) are respectively near infrared light. It is preferable to correspond.
  • the center wavelength of the first infrared light (IR1) is the same as that of the second infrared light (IR2) and the third infrared light (IR2).
  • the center wavelength of the second infrared light is located on the shorter wavelength side than the center wavelength, and the center wavelength of the second infrared light is located on the shorter wavelength side than the center wavelength of the third infrared light.
  • the center wavelength of the first infrared wavelength region is located on the shorter wavelength side than the center wavelength of the second infrared wavelength region and the center wavelength of the third infrared wavelength region, and the center of the second infrared wavelength region.
  • the wavelength is located on the shorter wavelength side than the center wavelength in the third infrared wavelength region.
  • the center wavelength of each infrared wavelength region is intended to be a wavelength intermediate between the infrared wavelength regions (the median value of the shortest wavelength and the longest wavelength), for example, a specific infrared wavelength region over 800 to 900 nm. If there is, the center wavelength is 850 nm.
  • the above relationship is preferably satisfied in the wavelength range of 700 to 2000 nm, more preferably in the wavelength range of 700 to 1200 nm. That is, the center wavelength of each light (first infrared light, second infrared light, and third infrared light) in the wavelength range of 700 to 2000 nm (preferably 700 to 1200 nm) satisfies the above relationship. Is preferred.
  • the center wavelength of each light is the center value of the wavelength region of each light.
  • the first multilayer film layer 36 has a light transmittance in the first infrared wavelength region (WR1) (light transmittance in the first infrared wavelength region (WR1)) of 50. % Or more (preferably 60% or more, more preferably 70% or more.
  • the upper limit is not particularly limited, but 100% can be mentioned
  • the light transmittance in the second infrared wavelength region (WR2) The light transmittance in the second infrared wavelength region (WR2)
  • the light transmittance in the third infrared wavelength region (WR3) are each 20%. It is preferable to show the following (preferably 10% or less, more preferably 5% or less.
  • the first multilayer film layer 36 has a light transmittance in the first infrared wavelength region (WR1), a light transmittance in the second infrared wavelength region (WR2), and a third infrared wavelength region (WR3). It is preferable that the light transmittance is higher.
  • the second multilayer film layer 38 has a light transmittance of 50% or more (preferably 60% or more, more preferably 70% or more) in the second infrared wavelength region (WR2).
  • the upper limit is not particularly limited, but 100% may be mentioned.
  • the light transmittance in the first infrared wavelength region (WR1) and the light transmittance in the third infrared wavelength region (WR3) are respectively It is preferably 20% or less (preferably 10% or less, more preferably 5% or less.
  • the lower limit is not particularly limited, but 0% may be mentioned). That is, the second multilayer film 38 has a light transmittance in the second infrared wavelength region (WR2), a light transmittance in the first infrared wavelength region (WR1), and a third infrared wavelength region (WR3). It is preferable that the light transmittance is higher. As shown in FIG.
  • the third multilayer film layer 40 has a light transmittance of 50% or more (preferably 60% or more, more preferably 70% or more) in the third infrared wavelength region (WR3).
  • the upper limit is not particularly limited, but 100% may be mentioned.
  • the light transmittance in the first infrared wavelength region (WR1) and the light transmittance in the second infrared wavelength region (WR2) are respectively It is preferably 20% or less (preferably 10% or less, more preferably 5% or less.
  • the lower limit is not particularly limited, but 0% may be mentioned). That is, the third multilayer film layer 40 has light transmittance in the third infrared wavelength region (WR3), light transmittance in the first infrared wavelength region (WR1), and second infrared wavelength region (WR2).
  • the light transmittance is higher.
  • a clearer color can be obtained by selecting the infrared light irradiated to the subject in accordance with each infrared wavelength region.
  • An image can be obtained.
  • three types of infrared light sources that can irradiate light having a center wavelength in each of the first infrared wavelength region to the third infrared wavelength region are selected, and the subject is irradiated. By passing the light reflected from the subject through the color filter, it is possible to selectively transmit only specific infrared light in a specific color pixel.
  • the light is mainly derived from specific infrared light.
  • Image can be obtained, and a clearer color image can be formed.
  • the width of the first infrared wavelength region (WR1), the width of the second infrared wavelength region (WR2), and the width of the third infrared wavelength region (WR3) are from the viewpoint of application to a night vision camera or the like. These are each preferably 30 nm or more, and more preferably 40 nm or more.
  • the upper limit is not particularly limited, but is often 100 nm or less, and is often 60 nm or less.
  • the center wavelength of the first infrared wavelength region and the center wavelength of the second infrared wavelength region are at least 30 nm or more (preferably 50 nm or more, more preferably 70 nm or more.
  • the upper limit is not particularly limited, but is preferably 100 nm or less. .) It is preferable that they are separated.
  • the center wavelength of the second infrared wavelength region and the center wavelength of the third infrared wavelength region are at least 30 nm or more (preferably 50 nm or more, more preferably 70 nm or more.
  • the upper limit is not particularly limited, but is preferably 100 nm or less. .) It is preferable that they are separated.
  • the first infrared wavelength region (WR1) is located between wavelengths 700 to 800 nm, and the second infrared wavelength region (WR2) is between wavelengths 900 to 1000 nm.
  • the third infrared wavelength region (WR3) is preferably located between wavelengths 1050 and 1200 nm.
  • the first infrared wavelength region (WR1) is located between wavelengths 700 to 800 nm
  • the second infrared wavelength region (WR2) is located between wavelengths 800 to 900 nm
  • the third infrared wavelength region (WR3) ) Is preferably located between wavelengths of 900 to 1000 nm.
  • the first color pixel is formed by stacking the red pixel (R) 214 and the first multilayer film layer 36
  • the second color pixel is formed by stacking the blue pixel (B) 218 and the second multilayer film layer 38.
  • the third color pixel is composed of the green pixel (G) 216 and the third multilayer film layer 40
  • the present invention is not limited to this combination.
  • the aspect provided with the color pixel comprised from the 2nd multilayer film layer 38 may be sufficient.
  • the aspect provided with the color pixel comprised from the 3rd multilayer film layer 40 may be sufficient.
  • the aspect provided with the color pixel comprised from the 1st multilayer film layer 36 may be sufficient.
  • the aspect provided with the color pixel comprised from the 2nd multilayer film layer 38 may be sufficient.
  • the three wavelengths of the infrared light are different from each other.
  • the wavelength range of 1st infrared light (IR3) is from the wavelength range of 2nd infrared light (IR2), and the wavelength range of 3rd infrared light (IR2). May be positioned on the short wavelength side, and the wavelength range of the second infrared light may be positioned on the short wavelength side of the wavelength range of the third infrared light.
  • the color filter of the second embodiment described above further includes an infrared ray containing an infrared ray absorbent (for example, an infrared ray absorbing dye) in order to control the wavelength range of light transmitted through each color pixel.
  • an infrared ray absorbent for example, an infrared ray absorbing dye
  • a light absorbing layer may be included.
  • the arrangement position of the infrared light absorption layer is not particularly limited. For example, when the infrared light absorption layer is included in the first color pixel, the infrared light absorption is performed on the surface of the first multilayer film layer opposite to the red pixel.
  • a layer may be disposed.
  • the color filter of the second embodiment of the present invention can be applied to various applications, and examples thereof include a solid-state image sensor.
  • the configuration of the solid-state imaging device is not particularly limited and may include known modes.
  • a photodiode, an insulating layer, a color filter according to the second embodiment of the present invention, a flat layer, a microlens, and the like may be used as a semiconductor substrate (substrate).
  • substrate substrate
  • the structure provided above is mentioned.
  • the solid-state imaging device of the present invention the aspect described with reference to FIG.
  • the imaging apparatus includes an irradiation unit (specifically, an infrared LED), an imaging unit (specifically, the above-described solid-state imaging device), and a color specification setting unit, and the irradiation unit has different wavelength intensities. Irradiates the subject with infrared rays having a distribution, and the imaging unit picks up images of the subjects with different infrared intensity having different wavelength intensity distributions reflected by the subject, forms image information representing each image, and sets the color specification The unit sets color information for displaying each image represented by the formed image information with a different single color in the image information. According to such an imaging apparatus, it is possible to form a color image having a natural color arrangement as much as possible even in the dark.
  • the imaging unit is a solid-state imaging device such as a CCD (Charge Coupled Device) image sensor, a CMOS (Complementary Metal Organic Semiconductor) image sensor, an APD (Avalanche Photodiode or Iconoscope), or an image dissector or iconoscope.
  • CCD Charge Coupled Device
  • CMOS Complementary Metal Organic Semiconductor
  • APD Avalanche Photodiode or Iconoscope
  • an image dissector or iconoscope an image dissector or iconoscope.
  • the color specification setting is to set in advance what color the brightness of the image is displayed when displaying the image.
  • the color setting can be set, for example, by setting the transmission timing of the image information or image signal, or by sequentially corresponding the image information or image signal to the reference trigger.
  • setting by separately generating color information or color setting signal setting by superimposing color information or color setting signal on image information or image signal, setting by address in memory It can also be performed by setting or labeling or flagging in signal processing.
  • an image pickup apparatus image pickup apparatus (image pickup apparatus) described in JP 2011-50049 A (corresponding US Patent Application Publication No. 2012/0212619) can be referred to, and the contents thereof are described in this specification. Embedded in the book.
  • the imaging apparatus further includes a control processing unit, a display unit, an image storage unit, a separation unit, and the like described in JP 2011-50049 A (corresponding US Patent Application Publication No. 2012/0212619). May be.
  • Example A> [Preparation of highly bent dispersion B-1] A mixed solution having the following composition was mixed for 3 hours using a zirconia bead having a diameter of 0.3 mm in a bead mill (high pressure disperser NANO-3000-10 with a pressure reducing mechanism (manufactured by Nippon BEE Co., Ltd.)). A highly bent dispersion B-1 was prepared. Titanium oxide 28.9 parts Dispersant: Dispersant (C-5) described in Examples of JP-A-2014-62221 (see below) 6.4 parts Organic solvent: Propylene glycol methyl ether acetate (PGMEA ) 64.7 parts
  • High refractive chemical solution 1 The following components were mixed to prepare a highly refractive chemical solution 1.
  • ⁇ High bending dispersion B-1 84.7 parts ⁇ 45 parts by mass of PGMEA 45% by weight of the following alkali-soluble resin 1 ⁇ Epoxy resin (EX211L Nagase ChemteX) 2.9 parts ⁇ Epoxy resin (JER157S65 Mitsubishi Chemical) 0 .7 parts
  • Surfactant 1 Megafac manufactured by DIC Corporation F-781F in 10 wt% PGMEA solution 3.4 parts
  • Polymerization inhibitor p-methoxyphenol 0.002 parts
  • Organic solvent 1 PGMEA 7.4 parts
  • Alkali-soluble resin 1 (hereinafter structural formula)
  • low refractive chemical 1 The following components were mixed to prepare a low refractive chemical solution 1. In addition, the obtained low refractive chemical liquid 1 contained beaded colloidal silica particles.
  • Low refractive composition B-1 JP 2013-253145 Example 1-1) 75.3 parts Surfactant 1: Megafac manufactured by DIC Corporation 0.1 parts of 10 mass% PGMEA solution of F-781F, organic solvent 1: 24.6 parts of ethyl lactate
  • n in the parentheses means the refractive index of a layer formed from each liquid.
  • the siloxane curable composition A-1 described in Examples after paragraph 0376 of JP 2014-74874 (WO2013 / 099945) was used as the low-refractive-index chemical solution 2.
  • the low refractive chemical solutions 1 and 2 were applied using a spin coater and dried on a hot plate at 100 ° C. for 120 seconds to form a film.
  • the high refractive chemical solution 1 was applied using a spin coater and dried at 200 ° C. for 1 minute on a hot plate to form a film.
  • the substrate 8-inch glass wafer
  • the above-described coating and heating steps were repeated to produce a multilayer film layer described in Table 1.
  • the optical film thickness in Table 1 intends (physical film thickness ⁇ refractive index).
  • “1” to “21” represent the numbers of layers arranged from the substrate side.
  • “2” represents the characteristics of the second layer from the substrate side.
  • FIGS. Transmission spectrum diagrams of the multilayer film layer 1 and the multilayer film layer 2 in Table 1 are shown in FIGS. It was confirmed that the multilayer film layer 1 and the multilayer film layer 2 have low transmittance in a predetermined wavelength region. Specifically, in the multilayer film layer 1, the transmittance in the wavelength range of 480 to 500 nm is 30% or less, and in the multilayer film layer 2, the transmittance in the wavelength range of 580 to 600 nm. Was 30% or less.
  • Example 1 As shown in FIGS. 2 to 4, the above-described method (manufacture of multilayer layers (parts thereof) is performed at predetermined positions on the substrate (positions of the first multilayer layer 24 and the second multilayer layer 26 described in FIGS. 2 to 4)). 1)), the multilayer film layer 1 is prepared, and a red pixel (corresponding to the red pixel 14 in FIG. 2), a green pixel (corresponding to the green pixel 16 in FIG. 2), and a blue color at predetermined positions on the substrate. Each pixel (corresponding to the blue pixel 18 in FIG. 2) is arranged, and further, a green pixel (corresponding to the green pixel 16 on the first multilayer film layer 24 in FIG. 4) is arranged on the multilayer film layer 1.
  • a blue pixel (corresponding to the blue pixel 18 on the second multilayer film layer 26 in FIG. 4) was arranged on each of them to produce a color filter.
  • the patterning procedure for producing the multilayer film layer 1 was carried out with reference to the procedures in paragraphs 0418 to 0421 of JP2013-54081A.
  • a red pixel, a green pixel, and a blue pixel are pixels produced using the composition containing each colorant (a red colorant, a green colorant, or a blue colorant), respectively.
  • a composition containing a red colorant “red colored radiation-sensitive composition RS” described in paragraphs 0273 and 0274 of JP2012-198408A was used.
  • a composition containing a green colorant “colored radiation-sensitive composition GS-1” described in paragraph 0272 of JP2012-198408A was used.
  • a composition containing a blue colorant “blue colored radiation-sensitive composition BS” described in paragraph 0276 of JP2012-198408A was used.
  • the patterning method for each color pixel was carried out with reference to the procedures in paragraphs 0278 to 0280 of JP2012-198408A.
  • FIG. 13A shows a transmission spectrum diagram of a red pixel, a green pixel, and a blue pixel
  • FIG. 13B shows a red pixel, a stacked color pixel of the multilayer film layer 1 and the green pixel, and a multilayer pixel.
  • the transmission spectrum of the laminated color pixel of the film layer 1 and a blue pixel is shown.
  • the transmission spectrum of the red pixel is represented by “R”
  • the transmission spectrum of the green pixel is represented by “G1”
  • the transmission spectrum of the blue pixel is represented by “B1”.
  • the transmission spectrum of the pixel is “R”, the transmission spectrum of the multilayer color pixel of the multilayer film layer 1 and the green pixel is “G2”, and the transmission spectrum of the multilayer color pixel of the multilayer film layer 1 and the blue pixel is “B2”. It is represented by As can be seen from the spectrum, by using the multilayer film layer 1, it is possible to produce a color pixel having a color different from that of the green pixel and the blue pixel. That is, a multicolor color filter could be produced.
  • FIG. 14A shows a transmission spectrum diagram of a red pixel, a green pixel, and a blue pixel
  • FIG. 14B shows a blue pixel, a stacked color pixel composed of a multilayer film layer 2 and a green pixel, and a multilayer pixel.
  • the transmission spectrum of the laminated color pixel of the film layer 2 and the red pixel is shown.
  • the transmission spectrum of the red pixel is represented by “R”
  • the transmission spectrum of the green pixel is represented by “G1”
  • the transmission spectrum of the blue pixel is represented by “B1”.
  • the transmission spectrum of the pixel is “B”
  • the transmission spectrum of the multilayer color pixel of the multilayer film layer 2 and the green pixel is “G3”
  • the transmission spectrum of the multilayer color pixel of the multilayer film layer 2 and the red pixel is “R3”. It is represented by As can be seen from the spectrum, by using the multilayer film layer 2, it is possible to produce a color pixel having a color different from that of the green pixel and the red pixel. That is, a multicolor color filter could be produced.
  • magenta, cyan, and yellow (yellow) color pixels are used instead of the red pixel, the green pixel, and the blue pixel.
  • a multicolor color filter could be produced.
  • a composition used for producing magenta, cyan, and yellow (yellow) color pixels “colored radiation-sensitive composition M-1” described in Examples in JP-A-2014-41301 is used. “Colored radiation-sensitive composition Cy-1” and “colored radiation-sensitive composition Y-1” were used, respectively.
  • the first multilayer film layer 36, the second multilayer film layer 38, and the first multilayer film layer are formed at predetermined positions on the substrate by a method described later (manufacture of multilayer film layer (2)).
  • 3 multilayer films 40 are formed, and further, a red pixel (corresponding to the red pixel 214 in FIG. 15) is formed on the first multilayer film 36, and a blue pixel (on the blue pixel 218 in FIG. Corresponding) and a green pixel (corresponding to the green pixel 216 in FIG. 15) are respectively arranged on the third multilayer film layer 40 to produce a color filter.
  • the patterning procedure for producing the first multilayer film layer 36 to the third multilayer film layer 40 was carried out with reference to the procedures in paragraphs 0418 to 0421 of JP2013-54081A.
  • a red pixel, a green pixel, and a blue pixel are pixels produced using the composition containing each colorant (a red colorant, a green colorant, or a blue colorant), respectively.
  • a composition containing a red colorant “red colored radiation-sensitive composition RS” described in paragraphs 0273 and 0274 of JP2012-198408A was used.
  • a composition containing a green colorant “colored radiation-sensitive composition GS-1” described in paragraph 0272 of JP2012-198408A was used.
  • a composition containing a blue colorant “blue colored radiation-sensitive composition BS” described in paragraph 0276 of JP2012-198408A was used.
  • the patterning method for each color pixel was carried out with reference to the procedures in paragraphs 0278 to 0280 of JP2012-198408A.
  • n in the parentheses means the refractive index of a layer formed from each liquid.
  • the low refractive chemical solution 1 was applied using a spin coater and dried on a hot plate at 100 ° C. for 120 seconds to form a film.
  • the high refractive chemical solution 1 was applied using a spin coater and dried at 200 ° C. for 1 minute on a hot plate to form a film.
  • the substrate 8-inch glass wafer
  • optical film thickness in Table 2 intends (physical film thickness ⁇ refractive index).
  • number of layers in Table 2 represents the number of the layers arranged from the substrate side, and for example, “2” represents the characteristics of the second layer from the substrate side.
  • FIG. 17 also shows a transmission spectrum diagram of light transmitted through the first color pixel, the second color pixel, and the third color pixel.
  • visible light and infrared light are transmitted from each color pixel, have different wavelength distributions, and the positions of the central wavelengths of the respective lights are different.
  • the first color pixel has a light transmittance of 80% or more at a wavelength of 700 to 750 nm (corresponding to the first infrared wavelength region), and a wavelength of 920 to 980 nm (second infrared wavelength).
  • the light transmittance in the region (corresponding to the region) is 10% or less, and the light transmittance in the wavelength 1090 to 1150 nm (corresponding to the third infrared wavelength region) is 10% or less.
  • the second color pixel has a light transmittance of 10% or less at a wavelength of 700 to 750 nm (corresponding to the first infrared wavelength region), and a light transmittance at a wavelength of 920 to 980 nm (corresponding to the second infrared wavelength region).
  • the transmittance is 90% or more, and the light transmittance at a wavelength of 1090 to 1150 nm (corresponding to the third infrared wavelength region) is 10% or less.
  • the third color pixel has a light transmittance of 10% or less at a wavelength of 700 to 750 nm (corresponding to the first infrared wavelength region), and a light transmittance at a wavelength of 920 to 980 nm (corresponding to the second infrared wavelength region).
  • the transmittance is 10% or less, and the light transmittance at a wavelength of 1090 to 1150 nm (corresponding to the third infrared wavelength region) is 90% or more.
  • Lens optical system 10, 100, 200, 300: Color filter, 12: Substrate, 14, 114, 214: Red pixel, 16, 116, 216: Green pixel, 18, 118, 218: Blue pixel
  • 36 first multilayer film layer
  • 38 second multilayer film layer
  • 40 third multilayer film layer
  • 170: infrared LED 180, 181: image output unit

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Filters (AREA)
  • Color Television Image Signal Generators (AREA)

Abstract

The present invention provides: a color filter which has color pixels of four or more colors, and which is able to be produced easily; and a solid-state imaging element. A color filter according to the present invention has color pixels of four or more colors, and at least one of the color pixels is a multilayer color pixel that is obtained by laminating a multilayer film layer wherein a plurality of films having different refractive indexes are laminated and a coloring agent-containing composition layer which contains a coloring agent.

Description

カラーフィルタ、固体撮像素子Color filter, solid-state image sensor
 本発明は、カラーフィルタ、及び、固体撮像素子に関する。 The present invention relates to a color filter and a solid-state imaging device.
 固体撮像素子は、通常、半導体基板やガラス基板等の基板上に2次元配列された赤、緑、青の色画素を有するカラーフィルタを備えている。
 近年、赤、緑及び青の三色に加え、様々な色画素(色フィルタ)を併せ持つカラーフィルタが固体撮像素子に適用されている(例えば、特許文献1)。特許文献1においては、緑、赤及び青の色画素と共に、マゼンタ、シアン及び黄色(イエロー)の色画素を使用する態様が開示されている。
A solid-state imaging device usually includes a color filter having red, green, and blue color pixels that are two-dimensionally arranged on a substrate such as a semiconductor substrate or a glass substrate.
In recent years, color filters having various color pixels (color filters) in addition to the three colors of red, green, and blue have been applied to solid-state imaging devices (for example, Patent Document 1). Patent Document 1 discloses a mode in which magenta, cyan, and yellow (yellow) color pixels are used together with green, red, and blue color pixels.
 また、さらに、暗視カメラ等への応用の点から、赤、緑及び青の三色の各画素に赤外領域(好ましくは、近赤外領域)の検知能を持たせる試みも行われている。例えば、特許文献2においては、赤色光、緑色光及び青色光と共に、特定の赤外光を透過させる光学フィルタを用いることにより、赤外領域の検出能を付与している。 Furthermore, from the viewpoint of application to night vision cameras and the like, an attempt has been made to give each pixel of red, green, and blue colors the ability to detect the infrared region (preferably the near infrared region). Yes. For example, in Patent Literature 2, the infrared region detection capability is imparted by using an optical filter that transmits specific infrared light together with red light, green light, and blue light.
特開2006-270364号公報JP 2006-270364 A 特開2011-50049号公報JP 2011-50049 A
 一方、特許文献1に記載されるような、マゼンタ、シアン及び黄色の色画素を使用する場合は、追加する一色ごとに色材・組成物の開発が必要となるため、工業的な点からは必ずしも好ましくない。
 また、使用する着色剤の種類が増えるため、各色画素を作製する工程が増えると共に、着色剤の交換などの作業時間が増加するために、生産性の点でも好ましくない。
On the other hand, when using magenta, cyan, and yellow color pixels as described in Patent Document 1, it is necessary to develop a color material / composition for each color to be added. Not necessarily preferred.
Further, since the types of colorants to be used are increased, the number of steps for producing each color pixel is increased, and the work time for replacing the colorants is increased, which is not preferable in terms of productivity.
 また、特許文献2においては、光学フィルタを用いて特定の波長領域の可視光及び特定の波長領域の赤外光を透過する旨が記載されているが、使用される具体的な材料やその構造に関する記載はない。なお、工業的な点を考慮すれば、このような特定の光を透過するカラーフィルタは製造適性に優れることも求められる。
 つまり、より簡便に製造することができ、特定の波長領域の可視光及び特定の波長領域の赤外光を透過できるカラーフィルタを提供することが求められていた。
In addition, Patent Document 2 describes that an optical filter is used to transmit visible light in a specific wavelength region and infrared light in a specific wavelength region. There is no description. In consideration of industrial points, such a color filter that transmits specific light is also required to have excellent manufacturing suitability.
That is, it has been desired to provide a color filter that can be manufactured more easily and can transmit visible light in a specific wavelength region and infrared light in a specific wavelength region.
 本発明の第1実施態様は、上記実情に鑑みて、簡便に製造することが可能な4色以上の色画素を有するカラーフィルタを提供することを課題とする。
 また、本発明の第1実施態様は、上記カラーフィルタを備える固体撮像素子を提供することも課題とする。
In view of the above circumstances, the first embodiment of the present invention is to provide a color filter having four or more color pixels that can be easily manufactured.
Another object of the first embodiment of the present invention is to provide a solid-state imaging device including the color filter.
 本発明の第2実施態様は、上記実情に鑑みて、簡便に製造することが可能な、特定の可視光及び特定の赤外光を透過させる色画素を有するカラーフィルタを提供することを課題とする。
 また、本発明の第2実施態様は、上記カラーフィルタを備える固体撮像素子を提供することも課題とする。
In view of the above situation, the second embodiment of the present invention has an object to provide a color filter having color pixels that transmit specific visible light and specific infrared light, which can be easily manufactured. To do.
Another object of the second embodiment of the present invention is to provide a solid-state imaging device including the color filter.
 本発明者らは、従来技術の問題点について鋭意検討を行ったところ、屈折率の異なる複数の膜を積層した多層膜層を用いることにより、上記課題を解決できることを見出した。
 つまり、本発明者らは、以下の構成により上記第1実施態様の課題が解決できることを見出した。
As a result of diligent investigations on the problems of the prior art, the present inventors have found that the above-described problems can be solved by using a multilayer film layer in which a plurality of films having different refractive indexes are stacked.
That is, the present inventors have found that the problem of the first embodiment can be solved by the following configuration.
(1) 4色以上の色画素を有し、
 色画素の少なくとも1つが、屈折率の異なる複数の膜を積層した多層膜層と、着色剤を含有した着色剤含有組成物層とを積層してなる積層型色画素である、カラーフィルタ。
(2) 色画素が、少なくとも、赤色着色剤を含有した着色剤含有組成物層からなる赤色画素、緑色着色剤を含有した着色剤含有組成物層からなる緑色画素、及び、青色着色剤を含有した着色剤含有組成物層からなる青色画素を含む、(1)に記載のカラーフィルタ。
(3) 赤色画素は透過スペクトルにおいて極大値が波長575nm以上にあり、緑色画素は透過スペクトルにおいて極大値が波長480nm以上575nm未満にあり、青色画素は透過スペクトルにおいて極大値が波長480nm未満にある、(2)に記載のカラーフィルタ。
(4) 色画素が、少なくとも、赤色画素、緑色画素、青色画素、屈折率の異なる複数の膜を積層した多層膜層と緑色着色剤を含有した着色剤含有組成物層とを積層してなる第1積層型色画素、及び、屈折率の異なる複数の膜を積層した多層膜層と青色着色剤を含有した着色剤含有組成物層とを積層してなる第2積層型色画素を含む、(2)または(3)に記載のカラーフィルタ。
(5) 多層膜層が、波長480~500nmの範囲内での透過率が30%以下である、又は、波長580~600nmの範囲内での透過率が30%以下である、(1)~(4)のいずれかに記載のカラーフィルタ。
(6) 多層膜層が、塗布液を用いて形成された層である、(1)~(5)のいずれかに記載のカラーフィルタ。
(7) (1)~(6)のいずれかに記載のカラーフィルタを備える、固体撮像素子。
(1) It has four or more color pixels,
A color filter, wherein at least one of the color pixels is a multilayer color pixel formed by laminating a multilayer film layer in which a plurality of films having different refractive indexes are laminated and a colorant-containing composition layer containing a colorant.
(2) The color pixel contains at least a red pixel composed of a colorant-containing composition layer containing a red colorant, a green pixel composed of a colorant-containing composition layer containing a green colorant, and a blue colorant The color filter according to (1), comprising a blue pixel comprising the colorant-containing composition layer.
(3) The red pixel has a maximum value in the transmission spectrum at a wavelength of 575 nm or more, the green pixel has a maximum value in the transmission spectrum at a wavelength of 480 nm or more and less than 575 nm, and the blue pixel has a maximum value in the transmission spectrum at a wavelength of less than 480 nm. The color filter according to (2).
(4) A color pixel is formed by laminating at least a red pixel, a green pixel, a blue pixel, a multilayer film layer in which a plurality of films having different refractive indexes are laminated, and a colorant-containing composition layer containing a green colorant. Including a first laminated color pixel and a second laminated color pixel formed by laminating a multilayer film layer in which a plurality of films having different refractive indexes are laminated and a colorant-containing composition layer containing a blue colorant. The color filter according to (2) or (3).
(5) The multilayer film layer has a transmittance of 30% or less within a wavelength range of 480 to 500 nm, or a transmittance of 30% or less within a wavelength range of 580 to 600 nm. The color filter according to any one of (4).
(6) The color filter according to any one of (1) to (5), wherein the multilayer film layer is a layer formed using a coating solution.
(7) A solid-state imaging device comprising the color filter according to any one of (1) to (6).
 また、本発明者らは、以下の構成により上記第2実施態様の課題が解決できることを見出した。 Further, the present inventors have found that the problem of the second embodiment can be solved by the following configuration.
(8) 第1可視光及び第1赤外光を透過させる第1色画素と、第2可視光及び第2赤外光を透過させる第2色画素と、第3可視光及び第3赤外光を透過させる第3色画素とを有し、
 第1可視光、第2可視光、及び、第3可視光が、互いに異なる波長分布を有し、
 第1赤外光、第2赤外光、及び、第3赤外光が、互いに異なる波長分布を有する、カラーフィルタ。
(9) 第1色画素、第2色画素、及び、第3色画素の少なくとも1つが、屈折率の異なる複数の膜を積層した多層膜層を含む、(8)に記載のカラーフィルタ。
(10) 多層膜層が、塗布液を用いて形成された層である、(9)に記載のカラーフィルタ。
(11) 第1可視光が赤色光であり、第2可視光が青色光であり、第3可視光が緑色光である、(8)~(10)のいずれかに記載のカラーフィルタ。
(12) 第1色画素が、赤色着色剤を含有した着色剤含有組成物層からなる赤色画素、及び、屈折率の異なる複数の膜を積層した第1多層膜層を積層してなり、
 第2色画素が、青色着色剤を含有した着色剤含有組成物層からなる青色画素、及び、屈折率の異なる複数の膜を積層した第2多層膜層を積層してなり、
 第3色画素が、緑色着色剤を含有した着色剤含有組成物層からなる緑色画素、及び、屈折率の異なる複数の膜を積層した第3多層膜層を積層してなる、(8)~(11)のいずれかに記載のカラーフィルタ。
(13) 第1多層膜層は、第1赤外波長領域の光の透過率(第1赤外波長領域における光の透過率)が50%以上を示し、かつ、第2赤外波長領域の光の透過率(第2赤外波長領域における光の透過率)及び第3赤外波長領域の光の透過率(第3赤外波長領域における光の透過率)がそれぞれ20%以下を示し、
 第2多層膜層は、第2赤外波長領域の光の透過率が50%以上を示し、かつ、第1赤外波長領域の光の透過率及び第3赤外波長領域の光の透過率がそれぞれ20%以下を示し、
 第3多層膜層は、第3赤外波長領域の光の透過率が50%以上を示し、かつ、第1赤外波長領域の光の透過率及び第2赤外波長領域の光の透過率がそれぞれ20%以下を示す、(8)~(12)のいずれかに記載のカラーフィルタ。
(14) 第1赤外波長領域の幅、第2赤外波長領域の幅、及び、第3赤外波長領域の幅が、それぞれ30nm以上ある、(13)に記載のカラーフィルタ。
(15) 第1赤外光の中心波長が、第2赤外光の中心波長及び第3赤外光の中心波長よりも、短波長側に位置する、
 または、第1赤外光の波長領域が、第2赤外光の波長領域及び第3赤外光の波長領域よりも、短波長側に位置する、(8)~(14)のいずれかに記載のカラーフィルタ。
(16) 第2赤外光の中心波長が、第3赤外光の中心波長よりも、短波長側に位置する、または、
 第2赤外光の波長領域が、第3赤外光の波長領域よりも、短波長側に位置する、(8)~(15)のいずれかに記載のカラーフィルタ。
(17) 第1赤外波長領域が波長700~800nmの間に位置し、第2赤外波長領域が波長900~1000nmの間に位置し、第3赤外波長領域が波長1050~1200nmの間に位置する、(13)または(14)に記載のカラーフィルタ。
(18) 第1赤外波長領域が波長700~800nmの間に位置し、第2赤外波長領域が波長800~900nmの間に位置し、第3赤外波長領域が波長900~1000nmの間に位置する、(13)または(14)に記載のカラーフィルタ。
(8) a first color pixel that transmits first visible light and first infrared light, a second color pixel that transmits second visible light and second infrared light, and third visible light and third infrared light. A third color pixel that transmits light;
The first visible light, the second visible light, and the third visible light have different wavelength distributions;
A color filter in which the first infrared light, the second infrared light, and the third infrared light have different wavelength distributions.
(9) The color filter according to (8), wherein at least one of the first color pixel, the second color pixel, and the third color pixel includes a multilayer film layer in which a plurality of films having different refractive indexes are stacked.
(10) The color filter according to (9), wherein the multilayer film layer is a layer formed using a coating solution.
(11) The color filter according to any one of (8) to (10), wherein the first visible light is red light, the second visible light is blue light, and the third visible light is green light.
(12) The first color pixel is formed by laminating a red pixel composed of a colorant-containing composition layer containing a red colorant, and a first multilayer film layer in which a plurality of films having different refractive indexes are laminated,
The second color pixel is formed by laminating a blue pixel composed of a colorant-containing composition layer containing a blue colorant, and a second multilayer film layer in which a plurality of films having different refractive indexes are laminated,
The third color pixel is formed by laminating a green pixel composed of a colorant-containing composition layer containing a green colorant, and a third multilayer film layer in which a plurality of films having different refractive indexes are laminated. The color filter according to any one of (11).
(13) The first multilayer film layer has a light transmittance in the first infrared wavelength region (light transmittance in the first infrared wavelength region) of 50% or more, and is in the second infrared wavelength region. The light transmittance (light transmittance in the second infrared wavelength region) and the light transmittance in the third infrared wavelength region (light transmittance in the third infrared wavelength region) each show 20% or less,
The second multilayer film has a light transmittance of 50% or more in the second infrared wavelength region, and has a light transmittance in the first infrared wavelength region and a light transmittance in the third infrared wavelength region. Indicates 20% or less,
The third multilayer film has a light transmittance of 50% or more in the third infrared wavelength region, and has a light transmittance in the first infrared wavelength region and a light transmittance in the second infrared wavelength region. The color filter according to any one of (8) to (12), wherein each represents 20% or less.
(14) The color filter according to (13), wherein the width of the first infrared wavelength region, the width of the second infrared wavelength region, and the width of the third infrared wavelength region are each 30 nm or more.
(15) The center wavelength of the first infrared light is located on the shorter wavelength side than the center wavelength of the second infrared light and the center wavelength of the third infrared light.
Alternatively, the wavelength region of the first infrared light is located on a shorter wavelength side than the wavelength region of the second infrared light and the wavelength region of the third infrared light, and the wavelength region of the first infrared light is any one of (8) to (14) The color filter described.
(16) The center wavelength of the second infrared light is located on the shorter wavelength side than the center wavelength of the third infrared light, or
The color filter according to any one of (8) to (15), wherein the wavelength region of the second infrared light is located on a shorter wavelength side than the wavelength region of the third infrared light.
(17) The first infrared wavelength region is located between wavelengths 700-800 nm, the second infrared wavelength region is located between wavelengths 900-1000 nm, and the third infrared wavelength region is between wavelengths 1050-1200 nm The color filter according to (13) or (14), which is located in
(18) The first infrared wavelength region is located between wavelengths 700-800 nm, the second infrared wavelength region is located between wavelengths 800-900 nm, and the third infrared wavelength region is between wavelengths 900-1000 nm The color filter according to (13) or (14), which is located in
 本発明の第1実施態様によれば、簡便に製造することが可能な4色以上の色画素を有するカラーフィルタを提供することができる。
 また、本発明の第1実施態様によれば、上記カラーフィルタを備える固体撮像素子を提供することもできる。
According to the first embodiment of the present invention, it is possible to provide a color filter having four or more color pixels that can be easily manufactured.
In addition, according to the first embodiment of the present invention, it is possible to provide a solid-state imaging device including the color filter.
 本発明の第2実施態様によれば、簡便に製造することが可能な、特定の可視光及び赤外光を透過させる色画素を有するカラーフィルタを提供することができる。
 また、本発明の第2実施態様によれば、上記カラーフィルタを備える固体撮像素子を提供することもできる。
According to the second embodiment of the present invention, it is possible to provide a color filter having color pixels that transmit specific visible light and infrared light, which can be easily manufactured.
Moreover, according to the 2nd embodiment of this invention, a solid-state image sensor provided with the said color filter can also be provided.
多層膜層と着色剤含有組成物層とを組み合わせたときの、波長と透過率の関係の一例を示すイメージ図である。It is an image figure which shows an example of the relationship between a wavelength and the transmittance | permeability when a multilayer film layer and a colorant containing composition layer are combined. 本発明の第1実施態様のカラーフィルタの第1好適例の一部拡大平面図である。It is a partially expanded plan view of the 1st suitable example of the color filter of the 1st embodiment of the present invention. 図2のA-A線に沿った断面図である。FIG. 3 is a cross-sectional view taken along line AA in FIG. 2. 図2のB-B線に沿った断面図である。FIG. 3 is a cross-sectional view taken along line BB in FIG. 2. 本発明の第1実施態様のカラーフィルタの第2好適例の一部拡大平面図である。It is a partially expanded plan view of a second preferred example of the color filter of the first embodiment of the present invention. 図5のC-C線に沿った断面図である。FIG. 6 is a cross-sectional view taken along the line CC in FIG. 5. 図5のD-D線に沿った断面図である。FIG. 6 is a cross-sectional view taken along the line DD in FIG. 5. 本発明の第1実施態様のカラーフィルタの第3好適例の一部拡大平面図である。It is a partially expanded plan view of a third preferred example of the color filter of the first embodiment of the present invention. 図8のE-E線に沿った断面図である。FIG. 9 is a cross-sectional view taken along line EE in FIG. 8. 図8のF-F線に沿った断面図である。FIG. 9 is a cross-sectional view taken along line FF in FIG. 8. 本発明の第1実施態様のカラーフィルタを用いた固体撮像素子を適用した撮像装置の機能ブロック図である。It is a functional block diagram of the imaging device to which the solid-state imaging device using the color filter of the first embodiment of the present invention is applied. (A)は多層膜層1の透過スペクトル図であり、(B)は多層膜層2の透過スペクトル図である。(A) is a transmission spectrum diagram of the multilayer film layer 1, and (B) is a transmission spectrum diagram of the multilayer film layer 2. (A)は赤色画素、青色画素、及び、緑色画素それぞれの透過スペクトル図であり、(B)は赤色画素、多層膜層1と緑色画素との積層型色画素、及び、多層膜層1と青色画素との積層型色画素それぞれの透過スペクトル図である。(A) is a transmission spectrum diagram of each of a red pixel, a blue pixel, and a green pixel, and (B) is a red color pixel, a multilayer color pixel composed of a multilayer film layer 1 and a green pixel, and a multilayer film layer 1 It is a transmission spectrum figure of each lamination type color pixel with a blue pixel. (A)は赤色画素、青色画素、及び、緑色画素それぞれの透過スペクトル図であり、(B)は青色画素、多層膜層2と緑色画素との積層型色画素、及び、多層膜層2と赤色画素との積層型色画素それぞれの透過スペクトル図である。(A) is a transmission spectrum diagram of each of a red pixel, a blue pixel, and a green pixel, and (B) is a blue pixel, a multilayer color pixel of the multilayer film layer 2 and the green pixel, and the multilayer film layer 2. It is a transmission spectrum figure of each lamination type color pixel with a red pixel. 本発明の第2実施態様のカラーフィルタの一実施態様の一部拡大断面図である。It is a partially expanded sectional view of one embodiment of the color filter of the second embodiment of the present invention. (A)は第1色画素を透過した赤色光及び第1赤外光の透過スペクトル図を表し、(B)は第2色画素を透過した青色光及び第2赤外光の透過スペクトル図を表し、(C)は第3色画素を透過した緑色光及び第3赤外光の透過スペクトル図を表す。(A) represents a transmission spectrum diagram of red light and first infrared light transmitted through the first color pixel, and (B) represents a transmission spectrum diagram of blue light and second infrared light transmitted through the second color pixel. (C) represents a transmission spectrum diagram of green light and third infrared light transmitted through the third color pixel. 実施例にて作製された第1色画素、第2色画素、及び、第3色画素を透過した光のスペクトル図である。It is the spectrum figure of the light which permeate | transmitted the 1st color pixel produced in the Example, the 2nd color pixel, and the 3rd color pixel.
 以下に、本発明のカラーフィルタ及び固体撮像素子について詳述する。
 以下に記載する本発明における構成要素の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。
Below, the color filter and solid-state image sensor of this invention are explained in full detail.
The description of the components in the present invention described below may be made based on typical embodiments of the present invention, but the present invention is not limited to such embodiments.
 本明細書における基(原子団)の表記に於いて、置換及び無置換を記していない表記は、置換基を有さないものと共に置換基を有するものをも包含するものである。例えば、「アルキル基」とは、置換基を有さないアルキル基(無置換アルキル基)のみならず、置換基を有するアルキル基(置換アルキル基)をも包含するものである。 In the description of the group (atomic group) in this specification, the notation which does not describe substitution and non-substitution includes those having no substituent and those having a substituent. For example, the “alkyl group” includes not only an alkyl group having no substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group).
 本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 本明細書において「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の作用が達成されれば、本用語に含まれる。
 本明細書において、全固形分とは、組成物の全組成から溶剤を除いた成分の総質量をいう。
 本明細書における固形分濃度とは、25℃における固形分の濃度をいう。
In the present specification, a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
In this specification, the term “process” is not limited to an independent process, and is included in the term if the intended action of the process is achieved even when it cannot be clearly distinguished from other processes. .
In this specification, the total solid content refers to the total mass of the components excluding the solvent from the total composition of the composition.
The solid content concentration in this specification refers to the solid content concentration at 25 ° C.
 本明細書において、“単量体”と“モノマー”とは同義である。本明細書における単量体は、オリゴマー及びポリマーと区別され、重量平均分子量が2,000以下の化合物をいう。本明細書において、重合性化合物とは、重合性官能基を有する化合物のことをいい、単量体であっても、ポリマーであってもよい。重合性官能基とは、重合反応に関与する基を言う。 In this specification, “monomer” and “monomer” are synonymous. The monomer in this specification is distinguished from an oligomer and a polymer, and refers to a compound having a weight average molecular weight of 2,000 or less. In the present specification, the polymerizable compound means a compound having a polymerizable functional group, and may be a monomer or a polymer. The polymerizable functional group refers to a group that participates in a polymerization reaction.
 本明細書において、重量平均分子量は、GPC(ゲル浸透クロマトグラフィー)測定によるポリスチレン換算値として定義される。本明細書において、重量平均分子量(Mw)は、例えば、HLC-8220(東ソー(株)製)を用い、カラムとしてTSKgel Super AWM―H(東ソー(株)製、6.0mmID×15.0cm)を、溶離液として10mmol/L リチウムブロミドNMP(N-メチルピロリジノン)溶液を用いることによって求めることができる。 In the present specification, the weight average molecular weight is defined as a polystyrene equivalent value by GPC (gel permeation chromatography) measurement. In this specification, the weight average molecular weight (Mw) is, for example, HLC-8220 (manufactured by Tosoh Corporation), and TSKgelgSuper AWM-H (manufactured by Tosoh Corporation, 6.0 mm ID × 15.0 cm) as a column. Can be determined by using a 10 mmol / L lithium bromide NMP (N-methylpyrrolidinone) solution as an eluent.
<第1実施態様>
 以下、本発明の第1実施態様のカラーフィルタに関して詳述する。
 本発明の第1実施態様のカラーフィルタの特徴点としては、屈折率の異なる複数の膜を積層した多層膜層を使用する点が挙げられる。後述するように、多層膜層は、含まれる膜の屈折率や、膜の数をそれぞれ独立に適宜調整することにより、特定の波長範囲の透過率のみを高くしたり、特定の波長範囲の透過率のみを低くしたりすることができる。このような多層膜層と着色剤含有組成物層とを積層させることにより、2つの層が積層された積層体を透過する波長の範囲を調整することができる。より具体的には、図1を用いて、説明する。図1(A)は高波長領域の光を透過する多層膜層であり、図1(B)は低波長領域の光を透過する着色剤含有組成物層である。2つの層は、それぞれ、透過できる光の波長範囲が異なっている。そして、2枚の層を積層させると、図1(C)に示すように、両方の層を透過可能な光のみが透過する。つまり、多層膜層と着色剤含有組成物層とを積層させることにより、形成される積層体の色が着色剤含有組成物層とは異なる色となる。このような態様においては、多層膜層を用いることにより、1種の着色剤含有組成物層から異なる色の色画素を形成することができる。つまり、別の着色剤を含む着色剤含有組成物を使用する必要が無く、複数の色画素を形成することができ、コスト及び生産性の点で優れる。
<First Embodiment>
Hereinafter, the color filter of the first embodiment of the present invention will be described in detail.
A feature of the color filter of the first embodiment of the present invention is that a multilayer film layer in which a plurality of films having different refractive indexes are stacked is used. As will be described later, the multilayer film layer increases the transmittance in a specific wavelength range by appropriately adjusting the refractive index of the included film and the number of films, respectively, or transmits in a specific wavelength range. Only the rate can be lowered. By laminating such a multilayer film layer and a colorant-containing composition layer, it is possible to adjust the range of wavelengths that pass through the laminate in which the two layers are laminated. More specifically, a description will be given with reference to FIG. 1A is a multilayer film layer that transmits light in a high wavelength region, and FIG. 1B is a colorant-containing composition layer that transmits light in a low wavelength region. The two layers have different wavelength ranges of light that can be transmitted. Then, when the two layers are stacked, only light that can be transmitted through both layers is transmitted, as shown in FIG. That is, by laminating the multilayer film layer and the colorant-containing composition layer, the color of the formed laminate is different from that of the colorant-containing composition layer. In such an embodiment, by using a multilayer film layer, different color pixels can be formed from one colorant-containing composition layer. That is, it is not necessary to use a colorant-containing composition containing another colorant, and a plurality of color pixels can be formed, which is excellent in terms of cost and productivity.
 本発明のカラーフィルタは、少なくとも4色の色画素を有する。言い換えると、カラーフィルタには、色が互いに異なる画素が少なくとも4種類以上含まれる。代表的な色画素としては、R(赤色)画素、G(緑色)画素、及び、B(青色)画素が挙げられ、それ以外に、C(シアン)画素、M(マゼンダ)画素、Y(イエロー)画素などが挙げられる。
 なお、本発明においては、同一種類の色相であるが、濃淡が異なる色画素も、色が互いに異なる色画素とする。つまり、色度に濃淡差がある同色系の色画素同士は、異なる色画素とする。より具体的には、濃い緑色の画素G1と、画素G1と同一種類の色相(緑色)を呈して画素G1よりも薄い色の画素G2とは、色が異なるとする。
 また、後述するように、積層型色画素においては、使用される着色剤含有組成物層の色を、多層膜層によって調整することができる。よって、例えば、特定の緑色着色剤を含む組成物を用いて色画素を作製する際に、基板上に直接組成物を塗布して濃い緑色の画素を作製しつつ、基板上にあらかじめ配置した多層膜層上に組成物を塗布して薄い緑色の画素を作製することができる。
 なお、赤色画素(例えば、赤色着色剤を含有した着色剤含有組成物層からなる画素)は透過スペクトルにおいて極大値が波長575nm以上(好ましくは、575nm以上670nm以下)にあることが好ましく、緑色画素(例えば、緑色着色剤を含有した着色剤含有組成物層からなる画素)は透過スペクトルにおいて極大値が波長480nm以上575nm未満にあることが好ましく、青色画素(例えば、青色着色剤を含有した着色剤含有組成物層からなる画素)は透過スペクトルにおいて極大値が波長480nm未満(好ましくは、400nm以上480nm未満)にあることが好ましい。
The color filter of the present invention has at least four color pixels. In other words, the color filter includes at least four types of pixels having different colors. Typical color pixels include R (red) pixels, G (green) pixels, and B (blue) pixels. In addition, C (cyan) pixels, M (magenta) pixels, and Y (yellow). ) Pixels.
In the present invention, color pixels having the same type of hue but having different shades are also color pixels having different colors. In other words, color pixels having the same color and having different shades in chromaticity are different color pixels. More specifically, it is assumed that the color of the dark green pixel G1 is different from that of the pixel G2 that exhibits the same type of hue (green) as the pixel G1 and is lighter than the pixel G1.
As will be described later, in the stacked color pixel, the color of the colorant-containing composition layer used can be adjusted by the multilayer film layer. Thus, for example, when a color pixel is produced using a composition containing a specific green colorant, a multilayer disposed in advance on the substrate while producing a dark green pixel by directly applying the composition onto the substrate. A thin green pixel can be produced by applying the composition on the film layer.
Note that a red pixel (for example, a pixel composed of a colorant-containing composition layer containing a red colorant) preferably has a maximum value in a transmission spectrum at a wavelength of 575 nm or more (preferably 575 nm or more and 670 nm or less), and a green pixel. (For example, a pixel comprising a colorant-containing composition layer containing a green colorant) preferably has a maximum value in the transmission spectrum at a wavelength of 480 nm or more and less than 575 nm, and a blue pixel (for example, a colorant containing a blue colorant) It is preferable that the maximum pixel in the transmission spectrum has a maximum value of less than 480 nm (preferably, 400 nm or more and less than 480 nm) in the transmission spectrum.
 なお、各色画素の製造方法は特に制限されず、公知の方法が採用される。例えば、後述する着色剤を含む組成物より形成されることが好ましい。つまり、各色画素は、所定の着色剤(例えば、赤色着色剤、緑色着色剤、青色着色剤)を含有した着色剤含有組成物層を含むことが好ましい。
 また、後述するように、色画素が積層型色画素である場合は、後述する方法により作製される。
In addition, the manufacturing method in particular of each color pixel is not restrict | limited, A well-known method is employ | adopted. For example, it is preferably formed from a composition containing a colorant described later. That is, each color pixel preferably includes a colorant-containing composition layer containing a predetermined colorant (for example, a red colorant, a green colorant, and a blue colorant).
As will be described later, when the color pixel is a stacked color pixel, it is manufactured by a method described later.
 各色画素の形状は特に制限されず、適用される用途に応じて適宜最適な大きさが選択されるが、略四角形状であることが好ましい。その場合、その一辺の大きさは、上限値としては、10μm以下が好ましく、5μm以下がより好ましく、下限値としては、0.1μm以上が好ましく、0.5μm以上がより好ましい。
 各色画素の厚さは特に制限されないが、色画素としての性能及び薄型化のバランスの点で、上限値としては、10μm以下が好ましく、5μm以下がより好ましく、下限値としては0.1μm以上が好ましい。
The shape of each color pixel is not particularly limited, and an optimal size is appropriately selected according to the application to be used, but is preferably a substantially square shape. In that case, the upper limit of the size of one side is preferably 10 μm or less, more preferably 5 μm or less, and the lower limit is preferably 0.1 μm or more, more preferably 0.5 μm or more.
Although the thickness of each color pixel is not particularly limited, the upper limit value is preferably 10 μm or less, more preferably 5 μm or less, and the lower limit value is 0.1 μm or more in terms of the balance between performance as a color pixel and thinning. preferable.
 本発明のカラーフィルタにおいては、色画素の少なくとも1つが、屈折率の異なる複数の膜を積層した多層膜層と、着色剤を含有した着色剤含有組成物層とを積層してなる積層型色画素である。
 以下では、まず、積層型色画素を構成する層について詳述し、その後、カラーフィルタの構成について詳述する。
In the color filter of the present invention, at least one of the color pixels is a laminated color formed by laminating a multilayer film layer in which a plurality of films having different refractive indexes are laminated and a colorant-containing composition layer containing a colorant. Pixel.
In the following, first, the layers constituting the stacked color pixel will be described in detail, and then the configuration of the color filter will be described in detail.
<多層膜層>
 多層膜層は、屈折率の異なる複数の膜を積層した積層体であって、使用される膜の屈折率及び膜厚を調整することによって、光の光路差を調整し、所望の波長による透過率を制御することができる。
 多層膜層の好適実施態様の一つとしては、波長480~500nmの範囲内での透過率が30%以下(なお、20%以下が好ましく、10%以下がより好ましい。下限は特に制限されず、0%が挙げられる)である多層膜層が挙げられる。このような多層膜層上に、青色画素や緑色画素などが配置されることにより、それぞれの画素の色味を調整できる。
 また、多層膜層の他の好適実施態様としては、波長580~600nmの範囲内での透過率が30%以下(なお、20%以下が好ましく、10%以下がより好ましい。下限は特に制限されず、0%が挙げられる)である多層膜層が挙げられる。このような多層膜層上に、緑色画素や赤色画素などが配置されることにより、それぞれの画素の色味を調整できる。
 多層膜層の厚みは特に制限されず、適用される用途に応じて適宜最適な厚みが選択されるが、色画素としての性能及び薄型化のバランスの点で、上限値としては、5μm以下が好ましく、3μm以下がより好ましく、下限値としては、0.1μm以上が好ましく、0.3μm以上がより好ましい。
<Multilayer film layer>
The multilayer film layer is a laminated body in which a plurality of films having different refractive indexes are laminated. By adjusting the refractive index and film thickness of the film used, the optical path difference of light is adjusted, and transmission at a desired wavelength is performed. The rate can be controlled.
As one preferred embodiment of the multilayer film layer, the transmittance in the wavelength range of 480 to 500 nm is 30% or less (note that 20% or less is preferable and 10% or less is more preferable. The lower limit is not particularly limited. , 0% may be mentioned). By arranging blue pixels, green pixels, and the like on such a multilayer film layer, the color of each pixel can be adjusted.
As another preferred embodiment of the multilayer film layer, the transmittance within the wavelength range of 580 to 600 nm is 30% or less (note that 20% or less is preferable and 10% or less is more preferable. The lower limit is particularly limited. A multilayer film layer is 0%). By arranging a green pixel, a red pixel, or the like on such a multilayer film layer, the color of each pixel can be adjusted.
The thickness of the multilayer film layer is not particularly limited, and an optimal thickness is appropriately selected according to the application to be used. However, the upper limit value is 5 μm or less in terms of the balance between the performance as a color pixel and thinning. Preferably, it is 3 μm or less, and the lower limit is preferably 0.1 μm or more, more preferably 0.3 μm or more.
 多層膜層の一実施態様としては、高屈折層と、低屈折層とが互いに交互に積層している態様が挙げられる。なお、高屈折層と低屈折層とは屈折率が異なる層であり、高屈折層のほうが低屈折層よりも屈折率が大きい。
 高屈折層と低屈折層との厚さは同一であっても、互いに異なっていてもよい。高屈折層、低屈折層は、それぞれ独立に、1層の高屈折層又は低屈折層のみからなってもよいし、2層以上の高屈折層又は低屈折層からなっていてもよい。
 本発明における交互に積層とは、低屈折層と高屈折層とが膜面上に代わる代わる積層された構成をいうが、必ずしも、低屈折層及び高屈折層のみの積層体である必要はない。例えば、低屈折層と高屈折層の間に、中屈折層等の低屈折層及び高屈折層とは異なる屈折率を有する第三の層を有していてもよい。なお、中屈折層とは、低屈折層よりも屈折率が高く、高屈折層よりも屈折率が低い層を意図する。
 また、多層膜層は、塗布により形成することが好ましい。つまり、所定の成分を含む塗布液を用いて形成された層であることが好ましい。塗布液に含まれる成分については、後段で詳述する。
 1つの多層膜層における低屈折層及び高屈折層の合計は、5層以上であることが好ましく、8層以上であることがより好ましく、10層以上とすることもできる。上限値としては、例えば、60層以下であり、30層以下とすることもでき、25層以下とすることもでき、さらには、20層以下とすることもできる。さらに、第三の層(例えば、中屈折層)を有する場合は、それらを合わせた総数が上記範囲であることが好ましい。
As one embodiment of the multilayer film layer, an embodiment in which high refractive layers and low refractive layers are alternately laminated on each other can be mentioned. The high refractive layer and the low refractive layer are layers having different refractive indexes, and the high refractive layer has a higher refractive index than the low refractive layer.
The thickness of the high refractive layer and the low refractive layer may be the same or different from each other. Each of the high refractive layer and the low refractive layer may be independently composed of only one high refractive layer or low refractive layer, or may be composed of two or more high refractive layers or low refractive layers.
The alternating lamination in the present invention refers to a laminated structure in which the low refractive layer and the high refractive layer are replaced on the film surface, but it is not always necessary to be a laminated body of only the low refractive layer and the high refractive layer. . For example, a third layer having a refractive index different from that of the low refractive layer and the high refractive layer such as a middle refractive layer may be provided between the low refractive layer and the high refractive layer. The middle refractive layer is intended to mean a layer having a refractive index higher than that of the low refractive layer and lower than that of the high refractive layer.
The multilayer film layer is preferably formed by coating. That is, the layer is preferably formed using a coating liquid containing a predetermined component. The components contained in the coating solution will be described in detail later.
The total of the low refractive layer and the high refractive layer in one multilayer film layer is preferably 5 layers or more, more preferably 8 layers or more, and may be 10 layers or more. As an upper limit, it is 60 layers or less, for example, it can also be 30 layers or less, can also be 25 layers or less, and also can be 20 layers or less. Furthermore, when it has a 3rd layer (for example, medium refractive layer), it is preferable that the total number which combined them is the said range.
 本発明では、低屈折層と高屈折層との屈折率の差は0.5以上であることが好ましく、0.55以上であることが好ましく、0.6以上とすることもでき、0.65以上とすることもできる。低屈折層及び高屈折層の屈折率の差の上限値としては、例えば、0.8以下とすることができ、0.75以下とすることもできる。
 以下、高屈折層及び低屈折層に関して詳述する。
In the present invention, the difference in refractive index between the low refractive layer and the high refractive layer is preferably 0.5 or more, preferably 0.55 or more, and can be 0.6 or more. It can also be 65 or more. The upper limit value of the difference in refractive index between the low refractive layer and the high refractive layer can be, for example, 0.8 or less, and can be 0.75 or less.
Hereinafter, the high refractive layer and the low refractive layer will be described in detail.
[高屈折層]
 高屈折層は、後述する低屈折層よりも屈折率が高い層(好ましくは、屈折率が0.5以上高い層)である。高屈折層の屈折率は、1.5~3.0が好ましく、1.7~2.3がより好ましい。
 高屈折層は、好ましくは樹脂を含む層である。樹脂を含む層は、いわゆる、高屈折樹脂を含む層であってもよいし、樹脂と、粒子と、溶剤とを含む組成物(以下、「高屈折組成物」ということがある)を塗布して形成してもよい。高屈折層の形成に用いられる樹脂は、重合性単量体に由来する繰り返し単位からなるポリマー鎖であるか、重合性単量体に由来する繰り返し単位からなるポリマー鎖を部分構造として有する化合物であることが好ましい。好ましくは、高屈折組成物を塗布してなる層である。
 以下、高屈折組成物の詳細について述べる。
[High refractive layer]
The high refractive layer is a layer having a higher refractive index than the low refractive layer described later (preferably a layer having a refractive index of 0.5 or more). The refractive index of the high refractive layer is preferably 1.5 to 3.0, and more preferably 1.7 to 2.3.
The highly refractive layer is preferably a layer containing a resin. The layer containing a resin may be a so-called layer containing a high refractive resin, or a composition containing a resin, particles and a solvent (hereinafter sometimes referred to as “high refractive composition”) is applied. May be formed. The resin used for forming the high refractive layer is a polymer chain composed of repeating units derived from a polymerizable monomer or a compound having a polymer chain composed of repeating units derived from a polymerizable monomer as a partial structure. Preferably there is. Preferably, it is a layer formed by applying a highly refractive composition.
Details of the highly refractive composition will be described below.
(高屈折組成物)
(樹脂)
 高屈折組成物に含まれる樹脂としては、後述する粒子を分散可能な樹脂が挙げられる。
具体的には、以下の実施態様のものが例示される。
 樹脂の第一の実施態様は、酸基、塩基性窒素原子を有する基、ウレア基、ウレタン基、配位性酸素原子を有する基、アルキル基、アリール基、フェノール基、アルキレンオキシ鎖を有する基、イミド基、複素環基、アルキルオキシカルボニル基、アルキルアミノカルボニル基、カルボン酸塩基、スルホンアミド基、アルコキシシリル基、エポキシ基、イソシアネート基及び水酸基からなる群から選択される基を含む樹脂である。
 酸基の例としては、カルボン酸基、スルホン酸基、リン酸基、フェノール性水酸基などが挙げられ、カルボン酸基、スルホン酸基、及びリン酸基から選ばれる少なくとも1種であることが好ましく、カルボン酸基が特に好ましい。
 酸価は、20~300mgKOH/gであることが好ましく、50~250mgKOH/gがより好ましく、50~210mgKOH/gがさらに好ましい。
(High refractive composition)
(resin)
Examples of the resin contained in the highly refractive composition include resins capable of dispersing particles described later.
Specifically, the following embodiments are exemplified.
The first embodiment of the resin is an acid group, a group having a basic nitrogen atom, a urea group, a urethane group, a group having a coordinating oxygen atom, an alkyl group, an aryl group, a phenol group, a group having an alkyleneoxy chain A resin containing a group selected from the group consisting of an imide group, a heterocyclic group, an alkyloxycarbonyl group, an alkylaminocarbonyl group, a carboxylate group, a sulfonamide group, an alkoxysilyl group, an epoxy group, an isocyanate group, and a hydroxyl group .
Examples of the acid group include a carboxylic acid group, a sulfonic acid group, a phosphoric acid group, a phenolic hydroxyl group, and the like, and preferably at least one selected from a carboxylic acid group, a sulfonic acid group, and a phosphoric acid group. Carboxylic acid groups are particularly preferred.
The acid value is preferably 20 to 300 mgKOH / g, more preferably 50 to 250 mgKOH / g, and still more preferably 50 to 210 mgKOH / g.
 より好ましくは、一般式(1)で表される樹脂である。
一般式(1)
Figure JPOXMLDOC01-appb-C000001

 一般式(1)中、R1は、(m+n)価の連結基を表し、R2は単結合又は2価の連結基を表す。A1は酸基、ウレア基、ウレタン基、配位性酸素原子を有する基、塩基性窒素原子を有する基、フェノール基、アルキル基、アリール基、アルキレンオキシ鎖を有する基、イミド基、複素環基(複素環構造)、アルキルオキシカルボニル基、アルキルアミノカルボニル基、スルホンアミド基、カルボン酸塩基、アルコキシシリル基、エポキシ基、イソシアネート基及び水酸基よりなる群から選択される基を少なくとも1種有する1価の置換基を表す。n個のA1及びR2は、それぞれ、同一であっても、異なっていてもよい。mは8以下の正の数、nは1~9を表し、m+nは3~10を満たす。P1はポリマー鎖を表す。m個のP1は、同一であっても、異なっていてもよい。
More preferably, it is resin represented by General formula (1).
General formula (1)
Figure JPOXMLDOC01-appb-C000001

In general formula (1), R 1 represents an (m + n) -valent linking group, and R 2 represents a single bond or a divalent linking group. A 1 is an acid group, a urea group, a urethane group, a group having a coordinating oxygen atom, a group having a basic nitrogen atom, a phenol group, an alkyl group, an aryl group, a group having an alkyleneoxy chain, an imide group, a heterocyclic ring 1 having at least one group selected from the group consisting of a group (heterocyclic structure), an alkyloxycarbonyl group, an alkylaminocarbonyl group, a sulfonamide group, a carboxylate group, an alkoxysilyl group, an epoxy group, an isocyanate group, and a hydroxyl group Represents a valent substituent. The n A 1 and R 2 may be the same or different. m represents a positive number of 8 or less, n represents 1 to 9, and m + n satisfies 3 to 10. P 1 represents a polymer chain. The m P 1 may be the same or different.
 以下、一般式(1)における各基について詳細に説明する。
 A1は、酸基、塩基性窒素原子を有する基、ウレア基、ウレタン基、配位性酸素原子を有する基、アルキルオキシカルボニル基、アルキルアミノカルボニル基、カルボン酸塩基、スルホンアミド基、アルコキシシリル基、エポキシ基、イソシアネート基及び水酸基のような後述する金属酸化物粒子に対する吸着能を有する官能基、複素環構造のような金属酸化物粒子に対する吸着能を有し得る構造を少なくとも1種有する1価の置換基を表す。
 なお、以下、この金属酸化物粒子に対する吸着能を有する部位(上記官能基及び構造)を、適宜、「吸着部位」と総称して、説明する。
Hereinafter, each group in General formula (1) is demonstrated in detail.
A 1 is an acid group, a group having a basic nitrogen atom, a urea group, a urethane group, a group having a coordinating oxygen atom, an alkyloxycarbonyl group, an alkylaminocarbonyl group, a carboxylate group, a sulfonamide group, an alkoxysilyl group 1 having at least one kind of structure capable of adsorbing to metal oxide particles such as a heterocyclic group, a functional group having adsorption ability to metal oxide particles described later such as a group, an epoxy group, an isocyanate group and a hydroxyl group Represents a valent substituent.
Hereinafter, the site having the ability to adsorb to the metal oxide particles (the functional group and the structure) will be collectively referred to as “adsorption site” as appropriate.
 吸着部位は、1つのA1の中に、少なくとも1種含まれていればよく、2種以上を含んでいてもよい。
 また、本発明において、「吸着部位を少なくとも1種有する1価の置換基」は、前述の吸着部位と、1から200個までの炭素原子、0個から20個までの窒素原子、0個から100個までの酸素原子、1個から400個までの水素原子、及び0個から40個までの硫黄原子から成り立つ連結基とが結合してなる1価の置換基である。なお、吸着部位自体が1価の置換基を構成しうる場合には、吸着部位そのものがA1で表される1価の置換基であってもよい。
 まず、A1を構成する吸着部位について以下に説明する。
As long as at least one kind of adsorption site is contained in one A 1 , two or more kinds may be contained.
In the present invention, the “monovalent substituent having at least one kind of adsorption site” includes the aforementioned adsorption site, 1 to 200 carbon atoms, 0 to 20 nitrogen atoms, 0 to It is a monovalent substituent formed by bonding up to 100 oxygen atoms, 1 to 400 hydrogen atoms, and a linking group consisting of 0 to 40 sulfur atoms. When the adsorption site itself can constitute a monovalent substituent, the adsorption site itself may be a monovalent substituent represented by A 1 .
First, the adsorption site constituting A 1 will be described below.
 「酸基」として、例えば、カルボン酸基、スルホン酸基、モノ硫酸エステル基、リン酸基、モノリン酸エステル基、ホウ酸基が好ましい例として挙げられ、カルボン酸基、スルホン酸基、モノ硫酸エステル基、リン酸基、モノリン酸エステル基がより好ましく、カルボン酸基、スルホン酸基、リン酸基が更に好ましく、カルボン酸基が特に好ましい。 Preferred examples of the “acid group” include a carboxylic acid group, a sulfonic acid group, a monosulfate group, a phosphoric acid group, a monophosphate group, and a boric acid group, and a carboxylic acid group, a sulfonic acid group, and a monosulfuric acid group. An ester group, a phosphoric acid group, and a monophosphate ester group are more preferable, a carboxylic acid group, a sulfonic acid group, and a phosphoric acid group are still more preferable, and a carboxylic acid group is particularly preferable.
 「ウレア基」として、例えば、-NR15CONR1617(ここで、R15、R16、及びR17は各々独立に、水素原子、炭素数1から20までのアルキル基、炭素数6以上のアリール基、又は炭素数7以上のアラルキル基を表す。)が好ましい例として挙げられ、-NR15CONHR17(ここで、R15及びR17は各々独立に、水素原子あるいは、炭素数1から10までのアルキル基、炭素数6以上のアリール基、炭素数7以上のアラルキル基を表す。)がより好ましく、-NHCONHR17(ここで、R17は水素原子あるいは、炭素数1から10までのアルキル基、炭素数6以上のアリール基、炭素数7以上のアラルキル基を表す。)が特に好ましい。 As the “urea group”, for example, —NR 15 CONR 16 R 17 (wherein R 15 , R 16 , and R 17 are each independently a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, 6 or more carbon atoms) And an aryl group having a carbon number of 7 or more.) —NR 15 CONHR 17 (wherein R 15 and R 17 are each independently a hydrogen atom or a group having 1 carbon atom). An alkyl group having up to 10 carbon atoms, an aryl group having 6 or more carbon atoms, and an aralkyl group having 7 or more carbon atoms are more preferred, and —NHCONHR 17 (wherein R 17 is a hydrogen atom or having 1 to 10 carbon atoms) An alkyl group, an aryl group having 6 or more carbon atoms, and an aralkyl group having 7 or more carbon atoms are particularly preferred.
 「ウレタン基」として、例えば、-NHCOOR18、-NR19COOR20、-OCONHR21、-OCONR2223(ここで、R18、R19、R20、R21、R22及びR23は、各々独立に、炭素数1から20までのアルキル基、炭素数6以上のアリール基、又は、炭素数7以上のアラルキル基を表す。)などが好ましい例として挙げられ、-NHCOOR18、-OCONHR21(ここで、R18、R21は、各々独立に、炭素数1から20までのアルキル基、炭素数6以上のアリール基、又は、炭素数7以上のアラルキル基を表す。)などがより好ましく、-NHCOOR18、-OCONHR21(ここで、R18、R21は各々独立に、炭素数1から10までのアルキル基、炭素数6以上のアリール基、又は、炭素数7以上のアラルキル基を表す。)などが特に好ましい。 As the “urethane group”, for example, —NHCOOR 18 , —NR 19 COOR 20 , —OCONHR 21 , —OCONR 22 R 23 (where R 18 , R 19 , R 20 , R 21 , R 22 and R 23 are And each independently represents an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 or more carbon atoms, or an aralkyl group having 7 or more carbon atoms), and the like. -NHCOOR 18 , -OCONHR 21 (Here, R 18 and R 21 each independently represents an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 or more carbon atoms, or an aralkyl group having 7 or more carbon atoms). , —NHCOOR 18 , —OCONHR 21 (wherein R 18 and R 21 each independently represents an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 or more carbon atoms, or an aralkyl group having 7 or more carbon atoms). table Are particularly preferred.
 「配位性酸素原子を有する基」としては、例えば、アセチルアセトナト基、クラウンエーテルなどが挙げられる。 Examples of the “group having a coordinating oxygen atom” include an acetylacetonato group and a crown ether.
 また、「塩基性窒素原子を有する基」として、例えば、アミノ基(-NH2)、置換イミノ基(-NHR8、-NR910、ここで、R8、R9、及びR10は各々独立に、炭素数1から20までのアルキル基、炭素数6以上のアリール基、又は、炭素数7以上のアラルキル基を表す。)、下記式(a1)で表されるグアニジル基、下記式(a2)で表されるアミジニル基などが好ましい例として挙げられる。 Examples of the “group having a basic nitrogen atom” include an amino group (—NH 2 ), a substituted imino group (—NHR 8 , —NR 9 R 10 , wherein R 8 , R 9 , and R 10 are Each independently represents an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 or more carbon atoms, or an aralkyl group having 7 or more carbon atoms), a guanidyl group represented by the following formula (a1), Preferred examples include an amidinyl group represented by (a2).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 式(a1)中、R11及びR12は各々独立に、炭素数1から20までのアルキル基、炭素数6以上のアリール基、又は、炭素数7以上のアラルキル基を表す。
 式(a2)中、R13及びR14は各々独立に、炭素数1から20までのアルキル基、炭素数6以上のアリール基、又は、炭素数7以上のアラルキル基を表す。
In formula (a1), R 11 and R 12 each independently represents an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 or more carbon atoms, or an aralkyl group having 7 or more carbon atoms.
In formula (a2), R 13 and R 14 each independently represents an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 or more carbon atoms, or an aralkyl group having 7 or more carbon atoms.
 これらの中でも、アミノ基(-NH2)、置換イミノ基(-NHR8、-NR910、ここで、R8、R9、及びR10は各々独立に、炭素数1から10までのアルキル基、フェニル基、ベンジル基を表す。)、式(a1)で表されるグアニジル基〔式(a1)中、R11及びR12は各々独立に、炭素数1から10までのアルキル基、フェニル基、ベンジル基を表す。〕、式(a2)で表されるアミジニル基〔式(a2)中、R13及びR14は各々独立に、炭素数1から10までのアルキル基、フェニル基、ベンジル基を表す。〕などがより好ましい。
 特に、アミノ基(-NH2)、上記置換イミノ基、上記式(a1)で表されるグアニジル基、上記式(a2)で表されるアミジニル基などが好ましく用いられる。
 「アルキルオキシカルボニル基」におけるアルキル基部分としては、炭素数1から20までのアルキル基であることが好ましく、例えば、メチル基、エチル基等が挙げられる。
 「アルキルアミノカルボニル基」におけるアルキル基部分としては、炭素数1から20までのアルキル基であることが好ましく、例えば、メチル基、エチル基、プロピル基等が挙げられる。
 「カルボン酸塩基」としては、カルボン酸のアンモニウム塩からなる基などが挙げられる。
 「スルホンアミド基」としては、窒素原子に結合する水素原子がアルキル基(メチル基等)、アシル基(アセチル基、トリフルオロアセチル基など)等で置換されていてもよい。
Among these, an amino group (—NH 2 ), a substituted imino group (—NHR 8 , —NR 9 R 10 , wherein R 8 , R 9 , and R 10 are each independently a group having 1 to 10 carbon atoms. An alkyl group, a phenyl group, and a benzyl group.), A guanidyl group represented by the formula (a1) [in the formula (a1), R 11 and R 12 are each independently an alkyl group having 1 to 10 carbon atoms; Represents a phenyl group and a benzyl group. ], Amidinyl in group [wherein (a2) represented by the formula (a2), each independently R 13 and R 14 represents an alkyl group, a phenyl group, a benzyl group having 1 to 10 carbon atoms. ] Is more preferable.
In particular, an amino group (—NH 2 ), the above substituted imino group, a guanidyl group represented by the above formula (a1), an amidinyl group represented by the above formula (a2), and the like are preferably used.
The alkyl group moiety in the “alkyloxycarbonyl group” is preferably an alkyl group having 1 to 20 carbon atoms, and examples thereof include a methyl group and an ethyl group.
The alkyl group moiety in the “alkylaminocarbonyl group” is preferably an alkyl group having 1 to 20 carbon atoms, and examples thereof include a methyl group, an ethyl group, and a propyl group.
Examples of the “carboxylic acid group” include groups composed of ammonium salts of carboxylic acids.
In the “sulfonamide group”, a hydrogen atom bonded to a nitrogen atom may be substituted with an alkyl group (such as a methyl group), an acyl group (such as an acetyl group or a trifluoroacetyl group), and the like.
 「複素環構造」としては、例えば、チオフェン、フラン、キサンテン、ピロール、ピロリン、ピロリジン、ジオキソラン、ピラゾール、ピラゾリン、ピラゾリジン、イミダゾール、オキサゾール、チアゾール、オキサジアゾール、トリアゾール、チアジアゾール、ピラン、ピリジン、ピペリジン、ジオキサン、モルホリン、ピリダジン、ピリミジン、ピペラジン、トリアジン、トリチアン、イソインドリン、イソインドリノン、ベンズイミダゾロン、ベンゾチアゾール、コハクイミド、フタルイミド、ナフタルイミド等のイミド基、ヒダントイン、インドール、キノリン、カルバゾール、アクリジン、アクリドン、アントラキノンが好ましい例として挙げられ、ピロリン、ピロリジン、ピラゾール、ピラゾリン、ピラゾリジン、イミダゾール、トリアゾール、ピリジン、ピペリジン、モルホリン、ピリダジン、ピリミジン、ピペラジン、トリアジン、イソインドリン、イソインドリノン、ベンズイミダゾロン、ベンゾチアゾール、コハクイミド、フタルイミド、ナフタルイミド等のイミド基、ヒダントイン、カルバゾール、アクリジン、アクリドン、アントラキノンがより好ましい。 Examples of the “heterocyclic structure” include thiophene, furan, xanthene, pyrrole, pyrroline, pyrrolidine, dioxolane, pyrazole, pyrazoline, pyrazolidine, imidazole, oxazole, thiazole, oxadiazole, triazole, thiadiazole, pyran, pyridine, piperidine, Dioxane, morpholine, pyridazine, pyrimidine, piperazine, triazine, trithiane, isoindoline, isoindolinone, benzimidazolone, benzothiazole, succinimide, phthalimide, naphthalimide, imide groups, hydantoin, indole, quinoline, carbazole, acridine, acridone Anthraquinone is a preferred example, pyrroline, pyrrolidine, pyrazole, pyrazoline, pyrazolidine, imidazole , Triazole, pyridine, piperidine, morpholine, pyridazine, pyrimidine, piperazine, triazine, isoindoline, isoindolinone, benzimidazolone, imide groups such as benzothiazole, succinimide, phthalimide, naphthalimide, hydantoin, carbazole, acridine, acridone, Anthraquinone is more preferred.
 なお、「複素環構造」は、更に置換基を有していてもよく、置換基としては、例えば、メチル基、エチル基等の炭素数1から20までのアルキル基、フェニル基、ナフチル基等の炭素数6から16までのアリール基、水酸基、アミノ基、カルボキシル基、スルホンアミド基、N-スルホニルアミド基、アセトキシ基等の炭素数1から6までのアシルオキシ基、メトキシ基、エトキシ基等の炭素数1から20までのアルコキシ基、塩素、臭素等のハロゲン原子、メトキシカルボニル基、エトキシカルボニル基、シクロヘキシルオキシカルボニル基等の炭素数2から7までのアルコキシカルボニル基、シアノ基、t-ブチルカーボネート等の炭酸エステル基等が挙げられる。ここで、これらの置換基は、下記の構造単位又は上記構造単位が組み合わさって構成される連結基を介して複素環と結合していてもよい。 The “heterocyclic structure” may further have a substituent. Examples of the substituent include an alkyl group having 1 to 20 carbon atoms such as a methyl group and an ethyl group, a phenyl group, and a naphthyl group. Such as an aryloxy group having 6 to 16 carbon atoms, a hydroxyl group, an amino group, a carboxyl group, a sulfonamido group, an N-sulfonylamido group, an acetoxy group and the like, an acyloxy group having 1 to 6 carbon atoms, a methoxy group, an ethoxy group, etc. Alkoxy groups having 1 to 20 carbon atoms, halogen atoms such as chlorine and bromine, alkoxycarbonyl groups having 2 to 7 carbon atoms such as methoxycarbonyl group, ethoxycarbonyl group, cyclohexyloxycarbonyl group, cyano group, t-butyl carbonate And carbonic acid ester groups. Here, these substituents may be bonded to the heterocyclic ring through a linking group constituted by combining the following structural units or the above structural units.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 「アルコキシシリル基」としては、モノアルコキシシリル基、ジアルコキシシリル基、トリアルコキシシリル基のいずれでもよいが、トリアルコキシシリル基であることが好ましく、例えば、トリメトキシシリル基、トリエトキシシリル基などが挙げられる。
 「エポキシ基」としては、置換又は無置換のオキシラン基(エチレンオキシド基)が挙げられる。エポキシ基としては、例えば、下記一般式(a3)で表すことができる。
The “alkoxysilyl group” may be any of monoalkoxysilyl group, dialkoxysilyl group, trialkoxysilyl group, but is preferably trialkoxysilyl group, such as trimethoxysilyl group, triethoxysilyl group, etc. Is mentioned.
Examples of the “epoxy group” include a substituted or unsubstituted oxirane group (ethylene oxide group). As an epoxy group, it can represent with the following general formula (a3), for example.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 上記一般式(a3)中、
 REP1~REP3は各々独立に、水素原子、ハロゲン原子、アルキル基又はシクロアルキル基を表す。また、REP1とREP2、REP2とREP3は、互いに結合して環構造を形成していてもよい。*は連結手を表す。
In the general formula (a3),
R EP1 to R EP3 each independently represent a hydrogen atom, a halogen atom, an alkyl group or a cycloalkyl group. R EP1 and R EP2 , R EP2 and R EP3 may be bonded to each other to form a ring structure. * Represents a connecting hand.
 吸着部位と結合する連結基としては、単結合、又は、1から100個までの炭素原子、0個から10個までの窒素原子、0個から50個までの酸素原子、1個から200個までの水素原子、及び0個から20個までの硫黄原子から成り立つ連結基が好ましく、この有機連結基は、無置換でも置換基を更に有していてもよい。
 この連結基の具体的な例として、下記の構造単位又は上記構造単位が組み合わさって構成される基を挙げることができる。
The linking group bonded to the adsorption site may be a single bond or 1 to 100 carbon atoms, 0 to 10 nitrogen atoms, 0 to 50 oxygen atoms, 1 to 200. And a linking group consisting of 0 to 20 sulfur atoms is preferred, and this organic linking group may be unsubstituted or may further have a substituent.
Specific examples of this linking group include the following structural units or groups constituted by combining the above structural units.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 連結基が更なる置換基を有する場合、上記置換基としては、例えば、メチル基、エチル基等の炭素数1から20までのアルキル基、フェニル基、ナフチル基等の炭素数6から16までのアリール基、水酸基、アミノ基、カルボキシル基、スルホンアミド基、N-スルホニルアミド基、アセトキシ基等の炭素数1から6までのアシルオキシ基、メトキシ基、エトキシ基等の炭素数1から6までのアルコキシ基、塩素、臭素等のハロゲン原子、メトキシカルボニル基、エトキシカルボニル基、シクロヘキシルオキシカルボニル基等の炭素数2から7までのアルコキシカルボニル基、シアノ基、t-ブチルカーボネート等の炭酸エステル基等が挙げられる。 When the linking group has a further substituent, examples of the substituent include an alkyl group having 1 to 20 carbon atoms such as a methyl group and an ethyl group, and a carbon group having 6 to 16 carbon atoms such as a phenyl group and a naphthyl group. C1-C6 alkoxy such as aryl group, hydroxyl group, amino group, carboxyl group, sulfonamide group, N-sulfonylamide group, acetoxy group, etc., C1-C6 acyloxy group, methoxy group, ethoxy group, etc. Groups, halogen atoms such as chlorine and bromine, alkoxycarbonyl groups having 2 to 7 carbon atoms such as methoxycarbonyl group, ethoxycarbonyl group and cyclohexyloxycarbonyl group, carbonate groups such as cyano group and t-butyl carbonate, etc. It is done.
 上記の中では、A1として、酸基、ウレア基、ウレタン基、スルホンアミド基、イミド基及び配位性酸素原子を有する基よりなる群から選択される基を少なくとも1種有する1価の置換基であることが好ましい。
 特に、金属酸化物粒子との相互作用を良好にし、屈折率を向上し、かつ組成物の粘度を低減する観点から、A1は、pKa5~14の官能基を少なくとも1種有する1価の置換基であることがより好ましい。
 ここでいう「pKa」とは、化学便覧(II)(改訂4版、1993年、日本化学会編、丸善株式会社)に記載されている定義のものである。
 上記pKa5~14の官能基としては、ウレア基、ウレタン基、スルホンアミド基、イミド基又は配位性酸素原子を有する基が挙げられる。
 具体的には、例えば、ウレア基(pKa 12~14程度)、ウレタン基(pKa 11~13程度)、配位性酸素原子としての-COCH2CO-(pKa 8~10程度)、スルホンアミド基(pKa 9~11程度)等が挙げられる。
In the above, A 1 is a monovalent substitution having at least one group selected from the group consisting of an acid group, a urea group, a urethane group, a sulfonamide group, an imide group and a group having a coordinating oxygen atom. It is preferably a group.
In particular, from the viewpoint of improving the interaction with the metal oxide particles, improving the refractive index, and reducing the viscosity of the composition, A 1 is a monovalent substitution having at least one functional group of pKa5-14. More preferably, it is a group.
Here, “pKa” has the definition described in Chemical Handbook (II) (4th revised edition, 1993, edited by The Chemical Society of Japan, Maruzen Co., Ltd.).
Examples of the functional group of pKa5 to 14 include a urea group, a urethane group, a sulfonamide group, an imide group, and a group having a coordinating oxygen atom.
Specifically, for example, a urea group (about pKa 12 to 14), a urethane group (about pKa 11 to 13), —COCH 2 CO— (about pKa 8 to 10) as a coordinating oxygen atom, a sulfonamide group (About pKa 9 to 11).
 A1は、下記一般式(4)で表される1価の置換基として表されることが好ましい。 A 1 is preferably represented as a monovalent substituent represented by the following general formula (4).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 一般式(4)中、B1は吸着部位を表し、R24は単結合又は(a+1)価の連結基を表す。aは、1~10の整数を表し、一般式(4)中にa個存在するB1は同一であっても、異なっていてもよい。 In General Formula (4), B 1 represents an adsorption site, and R 24 represents a single bond or a (a + 1) -valent linking group. a represents an integer of 1 to 10, and B 1 existing in the general formula (4) may be the same or different.
 B1で表される吸着部位としては、前述の一般式(1)のA1を構成する吸着部位と同様のものが挙げられ、好ましい例も同様である。
 中でも、酸基、ウレア基、ウレタン基、スルホンアミド基、イミド基又は配位性酸素原子を有する基であることが好ましく、pKa5~14の官能基であることがより好ましい観点から、ウレア基、ウレタン基、スルホンアミド基、イミド基又は配位性酸素原子を有する基であることがより好ましい。
Examples of the adsorption site represented by B 1 include the same adsorption sites as those constituting A 1 in the general formula (1), and preferred examples are also the same.
Among them, an acid group, a urea group, a urethane group, a sulfonamide group, an imide group or a group having a coordinating oxygen atom is preferable, and a urea group, a functional group having a pKa of 5 to 14 is more preferable. It is more preferably a urethane group, a sulfonamide group, an imide group or a group having a coordinating oxygen atom.
 R24は、単結合又は(a+1)価の連結基を表し、aは1~10を表す。好ましくは、aは1~7であり、より好ましくは、aは1~5であり、特に好ましくは、aは1~3である。
 (a+1)価の連結基としては、1から100個までの炭素原子、0個から10個までの窒素原子、0個から50個までの酸素原子、1個から200個までの水素原子、及び0個から20個までの硫黄原子から成り立つ基が含まれ、無置換でも置換基を更に有していてもよい。
R 24 represents a single bond or a (a + 1) -valent linking group, and a represents 1 to 10. Preferably, a is 1 to 7, more preferably a is 1 to 5, and particularly preferably a is 1 to 3.
(A + 1) valent linking groups include 1 to 100 carbon atoms, 0 to 10 nitrogen atoms, 0 to 50 oxygen atoms, 1 to 200 hydrogen atoms, and Groups consisting of 0 to 20 sulfur atoms are included and may be unsubstituted or further substituted.
 (a+1)価の連結基は、具体的な例として、下記の構造単位又はこれらの構造単位が組み合わさって構成される基(環構造を形成していてもよい)を挙げることができる。 Specific examples of the (a + 1) -valent linking group include the following structural units or groups formed by combining these structural units (which may form a ring structure).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 R24としては、単結合、又は、1から50個までの炭素原子、0個から8個までの窒素原子、0個から25個までの酸素原子、1個から100個までの水素原子、及び0個から10個までの硫黄原子から成り立つ(a+1)価の連結基が好ましく、単結合、又は、1から30個までの炭素原子、0個から6個までの窒素原子、0個から15個までの酸素原子、1個から50個までの水素原子、及び0個から7個までの硫黄原子から成り立つ(a+1)価の連結基がより好ましく、単結合、又は、1から10個までの炭素原子、0個から5個までの窒素原子、0個から10個までの酸素原子、1個から30個までの水素原子、及び0個から5個までの硫黄原子から成り立つ(a+1)価の連結基が特に好ましい。 R 24 may be a single bond or 1 to 50 carbon atoms, 0 to 8 nitrogen atoms, 0 to 25 oxygen atoms, 1 to 100 hydrogen atoms, and (A + 1) valent linking groups consisting of 0 to 10 sulfur atoms are preferred, single bonds or 1 to 30 carbon atoms, 0 to 6 nitrogen atoms, 0 to 15 More preferred are (a + 1) valent linking groups consisting of up to oxygen atoms, 1 to 50 hydrogen atoms, and 0 to 7 sulfur atoms, a single bond, or 1 to 10 carbons (A + 1) valent linkage consisting of atoms, 0 to 5 nitrogen atoms, 0 to 10 oxygen atoms, 1 to 30 hydrogen atoms, and 0 to 5 sulfur atoms The group is particularly preferred.
 上記のうち、(a+1)価の連結基が置換基を有する場合、上記置換基としては、例えば、メチル基、エチル基等の炭素数1から20までのアルキル基、フェニル基、ナフチル基等の炭素数6から16までのアリール基、水酸基、アミノ基、カルボキシル基、スルホンアミド基、N-スルホニルアミド基、アセトキシ基等の炭素数1から6までのアシルオキシ基、メトキシ基、エトキシ基等の炭素数1から6までのアルコキシ基、塩素、臭素等のハロゲン原子、メトキシカルボニル基、エトキシカルボニル基、シクロヘキシルオキシカルボニル基等の炭素数2から7までのアルコキシカルボニル基、シアノ基、t-ブチルカーボネート等の炭酸エステル基等が挙げられる。 Among the above, when the (a + 1) -valent linking group has a substituent, examples of the substituent include an alkyl group having 1 to 20 carbon atoms such as a methyl group and an ethyl group, a phenyl group, and a naphthyl group. C1-C6 acyloxy groups such as aryl groups, hydroxyl groups, amino groups, carboxyl groups, sulfonamido groups, N-sulfonylamido groups, acetoxy groups, etc., carbon atoms such as methoxy groups, ethoxy groups, etc. Alkoxy groups having 1 to 6 carbon atoms, halogen atoms such as chlorine and bromine, alkoxycarbonyl groups having 2 to 7 carbon atoms such as methoxycarbonyl group, ethoxycarbonyl group and cyclohexyloxycarbonyl group, cyano group, t-butyl carbonate, etc. And the like.
 一般式(1)中、R2は単結合又は2価の連結基を表す。n個のR2は、同一であっても、異なっていてもよい。
 2価の連結基としては、1から100個までの炭素原子、0個から10個までの窒素原子、0個から50個までの酸素原子、1個から200個までの水素原子、及び0個から20個までの硫黄原子から成り立つ基が含まれ、無置換でも置換基を更に有していてもよい。
In general formula (1), R 2 represents a single bond or a divalent linking group. The n R 2 s may be the same or different.
Divalent linking groups include 1 to 100 carbon atoms, 0 to 10 nitrogen atoms, 0 to 50 oxygen atoms, 1 to 200 hydrogen atoms, and 0 To 20 sulfur atoms are included, which may be unsubstituted or further substituted.
 2価の連結基は、具体的な例として、下記の構造単位又はこれらの構造単位が組み合わさって構成される基を挙げることができる。 Specific examples of the divalent linking group include the following structural units or groups formed by combining these structural units.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 R2としては、単結合、又は、1から50個までの炭素原子、0個から8個までの窒素原子、0個から25個までの酸素原子、1個から100個までの水素原子、及び0個から10個までの硫黄原子から成り立つ2価の連結基が好ましく、単結合、又は、1から30個までの炭素原子、0個から6個までの窒素原子、0個から15個までの酸素原子、1個から50個までの水素原子、及び0個から7個までの硫黄原子から成り立つ2価の連結基がより好ましく、単結合、又は、1から10個までの炭素原子、0個から5個までの窒素原子、0個から10個までの酸素原子、1個から30個までの水素原子、及び0個から5個までの硫黄原子から成り立つ2価の連結基が特に好ましい。 R 2 may be a single bond or 1 to 50 carbon atoms, 0 to 8 nitrogen atoms, 0 to 25 oxygen atoms, 1 to 100 hydrogen atoms, and Divalent linking groups consisting of 0 to 10 sulfur atoms are preferred, single bonds, or 1 to 30 carbon atoms, 0 to 6 nitrogen atoms, 0 to 15 More preferred are divalent linking groups consisting of oxygen atoms, 1 to 50 hydrogen atoms, and 0 to 7 sulfur atoms, a single bond or 1 to 10 carbon atoms, 0 Particularly preferred are divalent linking groups consisting of from 1 to 5 nitrogen atoms, 0 to 10 oxygen atoms, 1 to 30 hydrogen atoms, and 0 to 5 sulfur atoms.
 上記のうち、2価の連結基が置換基を有する場合、上記置換基としては、例えば、メチル基、エチル基等の炭素数1から20までのアルキル基、フェニル基、ナフチル基等の炭素数6から16までのアリール基、水酸基、アミノ基、カルボキシル基、スルホンアミド基、N-スルホニルアミド基、アセトキシ基等の炭素数1から6までのアシルオキシ基、メトキシ基、エトキシ基等の炭素数1から6までのアルコキシ基、塩素、臭素等のハロゲン原子、メトキシカルボニル基、エトキシカルボニル基、シクロヘキシルオキシカルボニル基等の炭素数2から7までのアルコキシカルボニル基、シアノ基、t-ブチルカーボネート等の炭酸エステル基等が挙げられる。 Among the above, when the divalent linking group has a substituent, examples of the substituent include carbon numbers such as an alkyl group having 1 to 20 carbon atoms such as a methyl group and an ethyl group, a phenyl group, and a naphthyl group. 1 to 6 carbon atoms such as aryl group, hydroxyl group, amino group, carboxyl group, sulfonamido group, N-sulfonylamido group, acetoxy group, etc. having 6 to 16 carbon atoms, methoxy group, ethoxy group, etc. To 6 to 6 alkoxy groups, halogen atoms such as chlorine and bromine, alkoxycarbonyl groups having 2 to 7 carbon atoms such as methoxycarbonyl group, ethoxycarbonyl group and cyclohexyloxycarbonyl group, cyano group, carbonic acid such as t-butyl carbonate, etc. An ester group etc. are mentioned.
 一般式(1)中、R1は、(m+n)価の連結基を表す。m+nは3~10を満たす。
 R1で表される(m+n)価の連結基としては、1から100個までの炭素原子、0個から10個までの窒素原子、0個から50個までの酸素原子、1個から200個までの水素原子、及び0個から20個までの硫黄原子から成り立つ基が含まれ、無置換でも置換基を更に有していてもよい。
In general formula (1), R 1 represents a (m + n) -valent linking group. m + n satisfies 3 to 10.
Examples of the (m + n) -valent linking group represented by R 1 include 1 to 100 carbon atoms, 0 to 10 nitrogen atoms, 0 to 50 oxygen atoms, and 1 to 200. Groups consisting of up to 20 hydrogen atoms and 0 to 20 sulfur atoms are included, which may be unsubstituted or may further have a substituent.
 (m+n)価の連結基は、具体的な例として、下記の構造単位又はこれらの構造単位が組み合わさって構成される基(環構造を形成していてもよい)を挙げることができる。 Specific examples of the (m + n) -valent linking group include the following structural units or groups formed by combining these structural units (which may form a ring structure).
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 (m+n)価の連結基としては、1から60個までの炭素原子、0個から10個までの窒素原子、0個から40個までの酸素原子、1個から120個までの水素原子、及び0個から10個までの硫黄原子から成り立つ基が好ましく、1から50個までの炭素原子、0個から10個までの窒素原子、0個から30個までの酸素原子、1個から100個までの水素原子、及び0個から7個までの硫黄原子から成り立つ基がより好ましく、1から40個までの炭素原子、0個から8個までの窒素原子、0個から20個までの酸素原子、1個から80個までの水素原子、及び0個から5個までの硫黄原子から成り立つ基が特に好ましい。 (M + n) -valent linking groups include 1 to 60 carbon atoms, 0 to 10 nitrogen atoms, 0 to 40 oxygen atoms, 1 to 120 hydrogen atoms, and Groups consisting of 0 to 10 sulfur atoms are preferred, 1 to 50 carbon atoms, 0 to 10 nitrogen atoms, 0 to 30 oxygen atoms, 1 to 100 And more preferably a group consisting of 0 to 7 sulfur atoms, 1 to 40 carbon atoms, 0 to 8 nitrogen atoms, 0 to 20 oxygen atoms, Particular preference is given to groups consisting of 1 to 80 hydrogen atoms and 0 to 5 sulfur atoms.
 上記のうち、(m+n)価の連結基が置換基を有する場合、上記置換基としては、例えば、メチル基、エチル基等の炭素数1から20までのアルキル基、フェニル基、ナフチル基等の炭素数6から16までのアリール基、水酸基、アミノ基、カルボキシル基、スルホンアミド基、N-スルホニルアミド基、アセトキシ基等の炭素数1から6までのアシルオキシ基、メトキシ基、エトキシ基等の炭素数1から6までのアルコキシ基、塩素、臭素等のハロゲン原子、メトキシカルボニル基、エトキシカルボニル基、シクロヘキシルオキシカルボニル基等の炭素数2から7までのアルコキシカルボニル基、シアノ基、t-ブチルカーボネート等の炭酸エステル基等が挙げられる。 Among the above, when the (m + n) -valent linking group has a substituent, examples of the substituent include an alkyl group having 1 to 20 carbon atoms such as a methyl group and an ethyl group, a phenyl group, and a naphthyl group. C1-C6 acyloxy groups such as aryl groups, hydroxyl groups, amino groups, carboxyl groups, sulfonamido groups, N-sulfonylamido groups, acetoxy groups, etc., carbon atoms such as methoxy groups, ethoxy groups, etc. Alkoxy groups having 1 to 6 carbon atoms, halogen atoms such as chlorine and bromine, alkoxycarbonyl groups having 2 to 7 carbon atoms such as methoxycarbonyl group, ethoxycarbonyl group and cyclohexyloxycarbonyl group, cyano group, t-butyl carbonate, etc. And the like.
 R1で表される(m+n)価の連結基の具体的な例〔具体例(1)~(17)〕を以下に示す。但し、本発明においては、これらに制限されるものではない。 Specific examples of the (m + n) -valent linking group represented by R 1 [specific examples (1) to (17)] are shown below. However, the present invention is not limited to these.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 上記の具体例の中でも、原料の入手性、合成の容易さ、各種溶剤への溶解性の観点から、好ましい(m+n)価の連結基は、(1)、(2)、(10)、(11)、(16)、(17)である。 Among the above specific examples, from the viewpoint of availability of raw materials, ease of synthesis, and solubility in various solvents, preferred (m + n) -valent linking groups are (1), (2), (10), ( 11), (16), and (17).
 一般式(1)中、mは8以下の正の数を表す。mとしては、0.5~5が好ましく、1~4がより好ましく、1~3が特に好ましい。
 また、一般式(1)中、nは1~9を表す。nとしては、2~8が好ましく、2~7がより好ましく、3~6が特に好ましい。
In general formula (1), m represents a positive number of 8 or less. m is preferably 0.5 to 5, more preferably 1 to 4, and particularly preferably 1 to 3.
In the general formula (1), n represents 1 to 9. n is preferably 2 to 8, more preferably 2 to 7, and particularly preferably 3 to 6.
 一般式(1)中、P1はポリマー鎖を表し、公知のポリマーなどから目的等に応じて選択することができる。m個のP1は、同一であっても、異なっていてもよい。
 ポリマーの中でも、ポリマー鎖を構成するには、ビニルモノマーの重合体もしくは共重合体、エステル系ポリマー、エーテル系ポリマー、ウレタン系ポリマー、アミド系ポリマー、エポキシ系ポリマー、シリコーン系ポリマー、及びこれらの変性物、又は共重合体〔例えば、ポリエーテル/ポリウレタン共重合体、ポリエーテル/ビニルモノマーの重合体の共重合体など(ランダム共重合体、ブロック共重合体、グラフト共重合体のいずれであってもよい。)を含む。〕からなる群より選択される少なくとも一種が好ましく、ビニルモノマーの重合体もしくは共重合体、エステル系ポリマー、エーテル系ポリマー、ウレタン系ポリマー、及びこれらの変性物又は共重合体からなる群より選択される少なくとも一種がより好ましく、ビニルモノマーの重合体もしくは共重合体が特に好ましい。
In the general formula (1), P 1 represents a polymer chain and can be selected from known polymers according to the purpose. The m P 1 may be the same or different.
Among the polymers, a vinyl monomer polymer or copolymer, an ester polymer, an ether polymer, a urethane polymer, an amide polymer, an epoxy polymer, a silicone polymer, and modifications thereof are used to form a polymer chain. Or copolymer [for example, polyether / polyurethane copolymer, copolymer of polyether / vinyl monomer polymer, etc. (any of random copolymer, block copolymer, graft copolymer, etc. May also be included). At least one selected from the group consisting of vinyl monomers, selected from the group consisting of polymers or copolymers of vinyl monomers, ester polymers, ether polymers, urethane polymers, and modified products or copolymers thereof. At least one kind is more preferred, and a polymer or copolymer of vinyl monomers is particularly preferred.
 ポリマー鎖P1が少なくとも1種の繰り返し単位を含有することが好ましい。
 ポリマー鎖P1における、少なくとも1種の繰り返し単位の繰り返し単位数kが、立体反発力を発揮し分散性を向上し、高屈折率かつ低粘度を達成する観点から、3以上であることが好ましく、5以上であることがより好ましい。
 また、硬化膜中に金属酸化物粒子を密に存在させ、高屈折率を達成する観点から、少なくとも1種の繰り返し単位の繰り返し単位数kは、50以下であることが好ましく、40以下であることがより好ましく、30以下であることが更に好ましい。
It is preferred that the polymer chain P 1 contains at least one repeating unit.
The number k of repeating units of at least one repeating unit in the polymer chain P 1 is preferably 3 or more from the viewpoint of achieving steric repulsion and improving dispersibility, achieving a high refractive index and a low viscosity. More preferably, it is 5 or more.
In addition, from the viewpoint of allowing the metal oxide particles to be densely present in the cured film and achieving a high refractive index, the number k of repeating units of at least one repeating unit is preferably 50 or less, and 40 or less. Is more preferable, and it is still more preferable that it is 30 or less.
 なお、ポリマーは有機溶剤に可溶であることが好ましい。有機溶剤との親和性が低いと、分散媒との親和性が弱まり、分散安定化に十分な吸着層を確保できなくなることがある。
 ビニルモノマーとしては特に制限されないが、例えば、(メタ)アクリル酸エステル類、クロトン酸エステル類、ビニルエステル類、マレイン酸ジエステル類、フマル酸ジエステル類、イタコン酸ジエステル類、(メタ)アクリルアミド類、スチレン類、ビニルエーテル類、ビニルケトン類、オレフィン類、マレイミド類、(メタ)アクリロニトリル、酸基を有するビニルモノマーなどが好ましい。
 これらのビニルモノマーの好ましい例としては、特開2007-277514号公報の段落0089~0094、0096及び0097(対応する米国特許出願公開第2010/233595号明細書においては段落0105~0117、及び0119~0120)に記載のビニルモノマーが挙げられ、これらの内容は本願明細書に組み込まれる。
The polymer is preferably soluble in an organic solvent. If the affinity with the organic solvent is low, the affinity with the dispersion medium is weakened, and it may be impossible to secure an adsorption layer sufficient for stabilizing the dispersion.
Although it does not restrict | limit especially as a vinyl monomer, For example, (meth) acrylic acid esters, crotonic acid esters, vinyl esters, maleic acid diesters, fumaric acid diesters, itaconic acid diesters, (meth) acrylamides, styrene , Vinyl ethers, vinyl ketones, olefins, maleimides, (meth) acrylonitrile, vinyl monomers having an acid group, and the like are preferable.
Preferred examples of these vinyl monomers include paragraphs 0089 to 0094, 0096 and 0097 of JP-A-2007-277514 (paragraphs 0105 to 0117 and 0119 to 0119 in the corresponding US Patent Application Publication No. 2010/233595). The vinyl monomers described in 0120) are mentioned, the contents of which are incorporated herein.
 上記の化合物以外にも、例えば、ウレタン基、ウレア基、スルホンアミド基、フェノール基、イミド基などの官能基を有するビニルモノマーも用いることができる。このようなウレタン基、又はウレア基を有する単量体としては、例えば、イソシアナート基と水酸基、又はアミノ基の付加反応を利用して、適宜合成することが可能である。具体的には、イソシアナート基含有モノマーと水酸基を1個含有する化合物又は1級あるいは2級アミノ基を1個含有する化合物との付加反応、又は水酸基含有モノマー又は1級あるいは2級アミノ基含有モノマーとモノイソシアネートとの付加反応等により適宜合成することができる。 In addition to the above compounds, for example, vinyl monomers having a functional group such as a urethane group, a urea group, a sulfonamide group, a phenol group, and an imide group can also be used. Such a monomer having a urethane group or a urea group can be appropriately synthesized using, for example, an addition reaction between an isocyanate group and a hydroxyl group or an amino group. Specifically, an addition reaction between an isocyanate group-containing monomer and a compound containing one hydroxyl group or a compound containing one primary or secondary amino group, or a hydroxyl group-containing monomer or primary or secondary amino group containing It can be appropriately synthesized by an addition reaction between a monomer and monoisocyanate.
 一般式(1)で表される樹脂の中でも、下記一般式(2)で表される樹脂が好ましい。 Among the resins represented by the general formula (1), a resin represented by the following general formula (2) is preferable.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 一般式(2)において、A2は、酸基、ウレア基、ウレタン基、配位性酸素原子を有する基、塩基性窒素原子を有する基、フェノール基、アルキル基、アリール基、アルキレンオキシ鎖を有する基、イミド基、複素環基、アルキルオキシカルボニル基、アルキルアミノカルボニル基、カルボン酸塩基、スルホンアミド基、アルコキシシリル基、エポキシ基、イソシアネート基及び水酸基よりなる群から選択される基を少なくとも1種有する1価の置換基を表す。n個のA2は同一であっても、異なっていてもよい。
 なお、A2は、一般式(1)におけるA1と同義であり、好ましい態様も同様である。
In the general formula (2), A 2 represents an acid group, a urea group, a urethane group, a group having a coordinating oxygen atom, a group having a basic nitrogen atom, a phenol group, an alkyl group, an aryl group, or an alkyleneoxy chain. A group selected from the group consisting of a group having an imide group, a heterocyclic group, an alkyloxycarbonyl group, an alkylaminocarbonyl group, a carboxylate group, a sulfonamide group, an alkoxysilyl group, an epoxy group, an isocyanate group, and a hydroxyl group. The monovalent substituent which has a seed is represented. The n A 2 may be the same or different.
Incidentally, A 2 has the same meaning as A 1 in the general formula (1), a preferable embodiment thereof is also the same.
 一般式(2)において、R4、R5は各々独立に単結合あるいは2価の連結基を表す。n個のR4は、同一であっても、異なっていてもよい。また、m個のR5は、同一であっても、異なっていてもよい。
 R4、R5で表される2価の連結基としては、一般式(1)のR2で表される2価の連結基として挙げられたものと同様のものが用いられ、好ましい態様も同様である。
In the general formula (2), R 4 and R 5 each independently represents a single bond or a divalent linking group. The n R 4 s may be the same or different. The m R 5 s may be the same or different.
As the divalent linking group represented by R 4 or R 5 , the same divalent linking groups as those represented by R 2 in the general formula (1) can be used, and a preferred embodiment is also used. It is the same.
 一般式(2)において、R3は、(m+n)価の連結基を表す。m+nは3~10を満たす。
 R3で表される(m+n)価の連結基としては、1から60個までの炭素原子、0個から10個までの窒素原子、0個から50個までの酸素原子、1個から100個までの水素原子、及び0個から20個までの硫黄原子から成り立つ基が含まれ、無置換でも置換基を更に有していてもよい。
 R3で表される(m+n)価の連結基として、具体的には、一般式(1)のR1で表される(m+n)価の連結基として挙げられたものと同様のものが用いられ、好ましい態様も同様である。
In the general formula (2), R 3 represents an (m + n) -valent linking group. m + n satisfies 3 to 10.
Examples of the (m + n) -valent linking group represented by R 3 include 1 to 60 carbon atoms, 0 to 10 nitrogen atoms, 0 to 50 oxygen atoms, and 1 to 100 atoms. Groups consisting of up to 20 hydrogen atoms and 0 to 20 sulfur atoms are included, which may be unsubstituted or may further have a substituent.
Specifically, the (m + n) -valent linking group represented by R 3 is the same as the (m + n) -valent linking group represented by R 1 in the general formula (1). The preferred embodiments are also the same.
 一般式(2)中、mは8以下の正の数を表す。mとしては、0.5~5が好ましく、1~4がより好ましく、1~3が特に好ましい。
 また、一般式(2)中、nは1~9を表す。nとしては、2~8が好ましく、2~7がより好ましく、3~6が特に好ましい。
In general formula (2), m represents a positive number of 8 or less. m is preferably 0.5 to 5, more preferably 1 to 4, and particularly preferably 1 to 3.
In the general formula (2), n represents 1 to 9. n is preferably 2 to 8, more preferably 2 to 7, and particularly preferably 3 to 6.
 また、一般式(2)中のP2は、ポリマー鎖を表し、公知のポリマーなどから目的等に応じて選択することができる。m個のP2は、同一であっても、異なっていてもよい。ポリマーの好ましい態様については、一般式(1)におけるP1と同様である。 Further, P 2 of the general formula (2) represents a polymer chain, can be selected according to the purpose or the like from such known polymers. The m P 2 may be the same or different. The preferred embodiment of the polymer is the same as P 1 in the general formula (1).
 一般式(2)で表される樹脂のうち、以下に示すR3、R4、R5、P2、m、及びnを全て満たすものが最も好ましい。
 R3:具体例(1)、(2)、(10)、(11)、(16)、又は(17)
 R4:単結合、又は、下記の構造単位若しくはこれらの構造単位が組み合わさって構成される「1から10個までの炭素原子、0個から5個までの窒素原子、0個から10個までの酸素原子、1個から30個までの水素原子、及び0個から5個までの硫黄原子」から成り立つ2価の連結基(置換基を有していてもよく、上記置換基としては、例えば、メチル基、エチル基等の炭素数1から20までのアルキル基、フェニル基、ナフチル基等の炭素数6から16までのアリール基、水酸基、アミノ基、カルボキシル基、スルホンアミド基、N-スルホニルアミド基、アセトキシ基等の炭素数1から6までのアシルオキシ基、メトキシ基、エトキシ基等の炭素数1から6までのアルコキシ基、塩素、臭素等のハロゲン原子、メトキシカルボニル基、エトキシカルボニル基、シクロヘキシルオキシカルボニル基等の炭素数2から7までのアルコキシカルボニル基、シアノ基、t-ブチルカーボネート等の炭酸エステル基等が挙げられる。)
Of the resins represented by the general formula (2), those satisfying all of R 3 , R 4 , R 5 , P 2 , m, and n shown below are most preferable.
R 3 : Specific examples (1), (2), (10), (11), (16), or (17)
R 4 : A single bond or the following structural unit or a combination of these structural units: “1 to 10 carbon atoms, 0 to 5 nitrogen atoms, 0 to 10” A divalent linking group comprising an oxygen atom, 1 to 30 hydrogen atoms, and 0 to 5 sulfur atoms (which may have a substituent, for example, Alkyl group having 1 to 20 carbon atoms such as methyl group and ethyl group, aryl group having 6 to 16 carbon atoms such as phenyl group and naphthyl group, hydroxyl group, amino group, carboxyl group, sulfonamide group, N-sulfonyl group C1-C6 acyloxy groups such as amide groups and acetoxy groups, C1-C6 alkoxy groups such as methoxy groups and ethoxy groups, halogen atoms such as chlorine and bromine, methoxycarbonyl groups An ethoxycarbonyl group, an alkoxycarbonyl group having from 2 to 7 carbon atoms such as cyclohexyl oxycarbonyl group, a cyano group, such as carbonic acid ester group such as t- butyl carbonate.)
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 R5:単結合、エチレン基、プロピレン基、下記基(a)、又は下記基(b)
 なお、下記基中、R12は水素原子又はメチル基を表し、lは1又は2を表す。
R 5 : single bond, ethylene group, propylene group, the following group (a), or the following group (b)
In the following groups, R 12 represents a hydrogen atom or a methyl group, and l represents 1 or 2.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 P2:ビニルモノマーの重合体もしくは共重合体、エステル系ポリマー、エーテル系ポリマー、ウレタン系ポリマー及びこれらの変性物
 m:1~3
 n:3~6
P 2 : Polymer or copolymer of vinyl monomer, ester polymer, ether polymer, urethane polymer and modified products thereof m: 1 to 3
n: 3-6
 樹脂の第二の実施態様は、グラフト共重合体を含む樹脂である。
 グラフト共重合体は、グラフト鎖1本あたりの水素原子を除いた原子数が40~10000であることが好ましく、100~500であることがより好ましく、150~260であることがさらに好ましい。
 グラフト鎖のポリマー構造は、ポリ(メタ)アクリル構造、ポリエステル構造、ポリウレタン構造、ポリウレア構造、ポリアミド構造、ポリエーテル構造などを用いることができる。
 グラフト共重合体を含む樹脂は、例えば特開2014-063125号公報の段落0080~0126の記載を参酌でき、この内容は本願明細書に組み込まれる。
The second embodiment of the resin is a resin containing a graft copolymer.
In the graft copolymer, the number of atoms excluding hydrogen atoms per graft chain is preferably 40 to 10,000, more preferably 100 to 500, and still more preferably 150 to 260.
As the polymer structure of the graft chain, a poly (meth) acrylic structure, a polyester structure, a polyurethane structure, a polyurea structure, a polyamide structure, a polyether structure, or the like can be used.
For the resin containing the graft copolymer, for example, the description in paragraphs 0080 to 0126 of JP-A-2014-063125 can be referred to, and the contents thereof are incorporated in the present specification.
 樹脂の第三の実施態様は、主鎖及び側鎖の少なくとも一方に窒素原子を含むオリゴイミン系樹脂である。オリゴイミン系樹脂としては、pKa14以下の官能基を有する部分構造Xを有する繰り返し単位と、原子数40~10,000の側鎖Yを含む側鎖とを有し、かつ主鎖及び側鎖の少なくとも一方に塩基性窒素原子を有する樹脂が好ましい。
 オリゴイミン系樹脂は、例えば特開2014-063125号公報の段落0225~0267の記載を参酌でき、この内容は本願明細書に組み込まれる。
A third embodiment of the resin is an oligoimine resin containing a nitrogen atom in at least one of the main chain and the side chain. The oligoimine resin includes a repeating unit having a partial structure X having a functional group of pKa14 or less, a side chain containing a side chain Y having 40 to 10,000 atoms, and at least a main chain and a side chain. A resin having a basic nitrogen atom on one side is preferred.
For the oligoimine-based resin, for example, the description in paragraphs 0225 to 0267 of JP-A-2014-063125 can be referred to, and the contents thereof are incorporated in the present specification.
 樹脂の第四の実施態様は、一般式(2)~(4)のいずれかで表されるシラン化合物を含むシラン化合物を加水分解し、この加水分解物を縮合反応させることにより得られるシロキサン樹脂である。
0 2-n1 nSi(OR9一般式(2)
 一般式(2)中、R0は水素、アルキル基、アルケニル基、フェニル基を表す。R1は1価の縮合多環式芳香族基を表す。R9は水素、メチル基、エチル基、プロピル基又はブチル基を表し、同一でも異なっていてもよい。nは1又は2である。nが2の場合、複数のR1は同一でも異なっていてもよい。
2Si(OR10一般式(3)
 一般式(3)中、R2は1価の縮合多環式芳香族基を表す。R10は水素、メチル基、エチル基、プロピル基又はブチル基を表し、同一でも異なっていてもよい。
(R11O)m4 3-mSi-R3-Si(OR12l5 3-l 一般式(4)
 一般式(4)中、R3は2価の縮合多環式芳香族基を表す。R4及びR5は水素、アルキル基、アルケニル基、アリール基を表し、それぞれ同一でも異なっていてもよい。R11及びR12は水素、メチル基、エチル基、プロピル基又はブチル基を表し、それぞれ同一でも異なっていてもよい。m及びlはそれぞれ独立に1~3の整数である。
 上記シロキサン樹脂は、例えば特開2010-007057号公報の段落0017~0044の記載を参酌でき、この内容は本願明細書に組み込まれる。
A fourth embodiment of the resin is a siloxane resin obtained by hydrolyzing a silane compound containing the silane compound represented by any one of the general formulas (2) to (4) and subjecting the hydrolyzate to a condensation reaction. It is.
R 0 2-n R 1 n Si (OR 9 ) 2 General formula (2)
In general formula (2), R 0 represents hydrogen, an alkyl group, an alkenyl group, or a phenyl group. R 1 represents a monovalent condensed polycyclic aromatic group. R 9 represents hydrogen, a methyl group, an ethyl group, a propyl group or a butyl group, and may be the same or different. n is 1 or 2. When n is 2, the plurality of R 1 may be the same or different.
R 2 Si (OR 10 ) 3 General formula (3)
In general formula (3), R 2 represents a monovalent fused polycyclic aromatic group. R 10 represents hydrogen, methyl group, ethyl group, propyl group or butyl group, and may be the same or different.
(R 11 O) m R 4 3-m Si—R 3 —Si (OR 12 ) l R 5 3-l General formula (4)
In the general formula (4), R 3 represents a divalent condensed polycyclic aromatic group. R 4 and R 5 represent hydrogen, an alkyl group, an alkenyl group, or an aryl group, and may be the same or different. R 11 and R 12 represent hydrogen, a methyl group, an ethyl group, a propyl group, or a butyl group, and may be the same or different. m and l are each independently an integer of 1 to 3.
For example, the description of paragraphs 0017 to 0044 of JP-A-2010-007057 can be referred to for the siloxane resin, the contents of which are incorporated herein.
 高屈折組成物は、エポキシ樹脂を含むことも好ましい。
 エポキシ樹脂の市販品としては、例えば、ビスフェノールA型エポキシ樹脂としては、JER827、JER828、JER834、JER1001、JER1002、JER1003、JER1055、JER1007、JER1009、JER1010(以上、ジャパンエポキシレジン(株)製)、EPICLON860、EPICLON1050、EPICLON1051、EPICLON1055(以上、DIC(株)製)等であり、ビスフェノールF型エポキシ樹脂としては、JER806、JER807、JER4004、JER4005、JER4007、JER4010(以上、ジャパンエポキシレジン(株)製)、EPICLON830、EPICLON835(以上、DIC(株)製)、LCE-21、RE-602S(以上、日本化薬(株)製)等であり、フェノールノボラック型エポキシ樹脂としては、JER152、JER154、JER157S70、JER157S65(以上、ジャパンエポキシレジン(株)製)、EPICLON N-740、EPICLON N-740、EPICLON N-770、EPICLON N-775(以上、DIC(株)製)等であり、クレゾールノボラック型エポキシ樹脂としては、EPICLON N-660、EPICLON N-665、EPICLON N-670、EPICLON N-673、EPICLON N-680、EPICLON N-690、EPICLON N-695(以上、DIC(株)製)、EOCN-1020(以上、日本化薬(株)製)等であり、脂肪族エポキシ樹脂としては、ADEKA RESIN EP-4080S、同EP-4085S、同EP-4088S(以上、(株)ADEKA製)、セロキサイド2021P、セロキサイド2081、セロキサイド2083、セロキサイド2085、EHPE3150、EPOLEAD PB 3600、同PB 4700(以上、ダイセル化学工業(株)製)、デナコールEX-211L、EX-212L、EX-214L、EX-216L、EX-321L、EX-850L(以上、ナガセケムテックス(株)製)等である。その他にも、ADEKA RESIN EP-4000S、同EP-4003S、同EP-4010S、同EP-4011S(以上、(株)ADEKA製)、NC-2000、NC-3000、NC-7300、XD-1000、EPPN-501、EPPN-502(以上、(株)ADEKA製)、JER1031S(ジャパンエポキシレジン(株)製)等が挙げられる。
It is also preferable that the highly refractive composition contains an epoxy resin.
As commercially available products of epoxy resins, for example, as bisphenol A type epoxy resins, JER827, JER828, JER834, JER1001, JER1002, JER1003, JER1055, JER1007, JER1009, JER1010 (above, manufactured by Japan Epoxy Resins Co., Ltd.), EPICLON860 , EPICLON 1050, EPICLON 1051, EPICLON 1055 (above, manufactured by DIC Corporation), etc., and as bisphenol F type epoxy resin, JER806, JER807, JER4004, JER4005, JER4007, JER4010 (above, manufactured by Japan Epoxy Resin Co., Ltd.), EPICLON830, EPICLON835 (above, manufactured by DIC Corporation), LCE-21, RE-602S As described above, JER152, JER154, JER157S70, JER157S65 (above Japan Epoxy Resin Co., Ltd.), EPICLON N-740, EPICLON N-740. EPICLON N-770, EPICLON N-775 (manufactured by DIC Corporation), and the like. EPICLON N-680, EPICLON N-690, EPICLON N-695 (above DIC Corporation), EOCN-1020 (above, Nippon Kayaku Co., Ltd.), etc. AD EKA RESIN EP-4080S, EP-4085S, EP-4088S (manufactured by ADEKA Corporation), Celoxide 2021P, Celoxide 2081, Celoxide 2083, Celoxide 2085, EHPE3150, EPOLEAD PB 3600, PB 4700 Chemical Industry Co., Ltd.), Denacol EX-211L, EX-212L, EX-214L, EX-216L, EX-321L, EX-850L (manufactured by Nagase ChemteX Corporation). In addition, ADEKA RESIN EP-4000S, EP-4003S, EP-4010S, EP-4010S, EP-4011S (above, manufactured by ADEKA Corporation), NC-2000, NC-3000, NC-7300, XD-1000, EPPN-501, EPPN-502 (above, manufactured by ADEKA Corporation), JER1031S (manufactured by Japan Epoxy Resin Co., Ltd.) and the like.
 樹脂の分子量は、重量平均分子量で、2,000~200,000が好ましく、2,000~15,000がより好ましく、2,500~10,000がさらに好ましい。 The molecular weight of the resin is preferably 2,000 to 200,000, more preferably 2,000 to 15,000, and even more preferably 2,500 to 10,000 in terms of weight average molecular weight.
 高屈折組成物における樹脂の量は、組成物全質量に対して、0.5質量%以上が好ましく、1質量%以上がより好ましく、2質量%以上がさらに好ましい。また、上限は30質量%以下が好ましく、20質量%以下がより好ましく、15質量%以下がさらに好ましい。
 また、高屈折組成物における樹脂の固形分濃度は、5質量%以上が好ましく、8質量%以上がより好ましく、10質量%以上がさらに好ましい。また、上限は40質量%以下が好ましく、35質量%以下がより好ましく、30質量%以下がさらに好ましい。
 樹脂は、1種類のみ含んでいてもよいし、2種類以上含んでいてもよい。2種類以上含む場合、合計量が上記範囲となることが好ましい。
The amount of the resin in the highly refractive composition is preferably 0.5% by mass or more, more preferably 1% by mass or more, and further preferably 2% by mass or more with respect to the total mass of the composition. The upper limit is preferably 30% by mass or less, more preferably 20% by mass or less, and further preferably 15% by mass or less.
The solid content concentration of the resin in the highly refractive composition is preferably 5% by mass or more, more preferably 8% by mass or more, and further preferably 10% by mass or more. The upper limit is preferably 40% by mass or less, more preferably 35% by mass or less, and further preferably 30% by mass or less.
Only one type of resin may be included, or two or more types of resins may be included. When two or more types are included, the total amount is preferably within the above range.
(粒子)
 高屈折組成物に含まれる粒子は、金属酸化物粒子を含むことが好ましい。
 金属酸化物粒子としては、屈折率が高く、無色、白色又は透明な無機粒子であることが好ましく、チタン(Ti)、ジルコニウム(Zr)、アルミニウム(Al)、ケイ素(Si)、亜鉛(Zn)又はマグネシウム(Mg)の酸化物粒子が挙げられ、二酸化チタン(TiO2)粒子、二酸化ジルコニウム(ZrO2)粒子であることが好ましく、二酸化チタン粒子がより好ましい。
 金属酸化物粒子は、一次粒子径の下限が1nm以上であることが好ましく、上限は100nm以下が好ましく、80nm以下がより好ましく、50nm以下がさらに好ましい。一次粒子径の指標として平均粒子径を用いることもできる。金属酸化物粒子の平均粒子径は、金属酸化物粒子を含む混合液又は分散液を、プロピレングリコールモノメチルエーテルアセテートで80倍に希釈し、得られた希釈液について動的光散乱法を用いて測定することにより得られた値のことを言う。この測定は、日機装株式会社製マイクロトラックUPA-EX150を用いて行って得られた数平均粒子径のこととする。
 金属酸化物粒子は、例えば特開2014-062221号公報の段落0023~0027の記載を参酌でき、この内容は本願明細書に組み込まれる。
(particle)
The particles contained in the highly refractive composition preferably include metal oxide particles.
The metal oxide particles are preferably inorganic particles that have a high refractive index and are colorless, white, or transparent. Titanium (Ti), zirconium (Zr), aluminum (Al), silicon (Si), zinc (Zn) or oxide particles of magnesium (Mg) and the like, titanium dioxide (TiO 2) particles is preferably from zirconium dioxide (ZrO 2) particles, titanium dioxide particles are more preferable.
In the metal oxide particles, the lower limit of the primary particle diameter is preferably 1 nm or more, and the upper limit is preferably 100 nm or less, more preferably 80 nm or less, and further preferably 50 nm or less. The average particle size can also be used as an index of the primary particle size. The average particle diameter of the metal oxide particles is measured by using a dynamic light scattering method for a diluted solution obtained by diluting a mixed solution or dispersion containing the metal oxide particles 80 times with propylene glycol monomethyl ether acetate. The value obtained by doing. This measurement is the number average particle diameter obtained by using Microtrack UPA-EX150 manufactured by Nikkiso Co., Ltd.
For the metal oxide particles, for example, the description in paragraphs 0023 to 0027 of JP-A-2014-062221, can be referred to, and the contents thereof are incorporated in the present specification.
 高屈折組成物における粒子の量は、組成物全質量に対して、10質量%以上が好ましく、15質量%以上がより好ましく、20質量%以上がさらに好ましい。上限は特に制限はないが、40質量%以下が好ましく、30質量%以下がより好ましい。
 また、高屈折組成物における粒子の固形分濃度は、60質量%以上が好ましく、70質量%以上がより好ましい。上限は特に制限はないが、99質量%以下が好ましく、95質量%以下がより好ましく、90質量%以下がさらに好ましい。
 粒子は、1種類のみ含んでいてもよいし、2種類以上含んでいてもよい。2種類以上含む場合、合計量が上記範囲となることが好ましい。
The amount of particles in the highly refractive composition is preferably 10% by mass or more, more preferably 15% by mass or more, and still more preferably 20% by mass or more with respect to the total mass of the composition. Although there is no restriction | limiting in particular in an upper limit, 40 mass% or less is preferable and 30 mass% or less is more preferable.
Further, the solid content concentration of the particles in the highly refractive composition is preferably 60% by mass or more, and more preferably 70% by mass or more. The upper limit is not particularly limited, but is preferably 99% by mass or less, more preferably 95% by mass or less, and still more preferably 90% by mass or less.
One type of particle may be included, or two or more types may be included. When two or more types are included, the total amount is preferably within the above range.
(溶剤)
 高屈折組成物に含まれる溶剤としては、有機溶剤が好ましい。有機溶剤としては、エステル類として、例えば、酢酸エチル、酢酸-n-ブチル、酢酸イソブチル、ギ酸アミル、酢酸イソアミル、酢酸イソブチル、プロピオン酸ブチル、酪酸イソプロピル、酪酸エチル、酪酸ブチル、乳酸メチル、乳酸エチル、オキシ酢酸アルキル(例:オキシ酢酸メチル、オキシ酢酸エチル、オキシ酢酸ブチル(例えば、メトキシ酢酸メチル、メトキシ酢酸エチル、メトキシ酢酸ブチル、エトキシ酢酸メチル、エトキシ酢酸エチル等))、3-オキシプロピオン酸アルキルエステル類(例:3-オキシプロピオン酸メチル、3-オキシプロピオン酸エチル等(例えば、3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル等))、2-オキシプロピオン酸アルキルエステル類(例:2-オキシプロピオン酸メチル、2-オキシプロピオン酸エチル、2-オキシプロピオン酸プロピル等(例えば、2-メトキシプロピオン酸メチル、2-メトキシプロピオン酸エチル、2-メトキシプロピオン酸プロピル、2-エトキシプロピオン酸メチル、2-エトキシプロピオン酸エチル))、2-オキシ-2-メチルプロピオン酸メチル及び2-オキシ-2-メチルプロピオン酸エチル(例えば、2-メトキシ-2-メチルプロピオン酸メチル、2-エトキシ-2-メチルプロピオン酸エチル等)、ピルビン酸メチル、ピルビン酸エチル、ピルビン酸プロピル、アセト酢酸メチル、アセト酢酸エチル、2-オキソブタン酸メチル、2-オキソブタン酸エチル等、並びに、エーテル類として、例えば、ジエチレングリコールジメチルエーテル、ジプロピレングリコールジメチルエーテル、テトラヒドロフラン、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、メチルセロソルブアセテート、エチルセロソルブアセテート、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノn-ブチルエーテル、プロピレングリコールモノtert-ブチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノプロピルエーテルアセテート等、並びに、ケトン類として、例えば、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、2-ヘプタノン、3-ヘプタノン等、並びに、芳香族炭化水素類として、例えば、トルエン、キシレン等が好適に挙げられる。
 特に好ましくは、上記の3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、エチルセロソルブアセテート、乳酸エチル、ジエチレングリコールジメチルエーテル、酢酸ブチル、3-メトキシプロピオン酸メチル、2-ヘプタノン、シクロヘキサノン、エチルカルビトールアセテート、ブチルカルビトールアセテート、プロピレングリコールメチルエーテル、ジプロピレングリコールジメチルエーテル、プロピレングリコールモノn-ブチルエーテル、プロピレングリコールモノtert-ブチルエーテル、及びプロピレングリコールメチルエーテルアセテートである。
 その他高屈折組成物に含まれる溶剤としては、例えば特開2014-063125号公報の段落0065~0067の記載を参酌でき、この内容は本願明細書に組み込まれる。
 高屈折組成物における溶剤の量は、組成物の全量中、50質量%以上が好ましく、60質量%以上がより好ましい。また、組成物の全量中、上限は、99.9質量%以下が好ましく、95質量%以下がより好ましく、90質量%以下がさらに好ましい。
 溶剤は、1種類のみ含んでいてもよいし、2種類以上含んでいてもよい。2種類以上含む場合、合計量が上記範囲となる。
(solvent)
As the solvent contained in the highly refractive composition, an organic solvent is preferable. Examples of organic solvents include esters such as ethyl acetate, n-butyl acetate, isobutyl acetate, amyl formate, isoamyl acetate, isobutyl acetate, butyl propionate, isopropyl butyrate, ethyl butyrate, butyl butyrate, methyl lactate, and ethyl lactate. , Alkyl oxyacetates (eg, methyl oxyacetate, ethyl oxyacetate, butyl oxyacetate (eg, methyl methoxyacetate, ethyl methoxyacetate, butyl methoxyacetate, methyl ethoxyacetate, ethyl ethoxyacetate)), alkyl 3-oxypropionate Esters (eg, methyl 3-oxypropionate, ethyl 3-oxypropionate, etc. (eg, methyl 3-methoxypropionate, ethyl 3-methoxypropionate, methyl 3-ethoxypropionate, ethyl 3-ethoxypropionate, etc.) )), 2- Xylpropionic acid alkyl esters (eg, methyl 2-oxypropionate, ethyl 2-oxypropionate, propyl 2-oxypropionate, etc. (eg, methyl 2-methoxypropionate, ethyl 2-methoxypropionate, 2-methoxy) Propyl propionate, methyl 2-ethoxypropionate, ethyl 2-ethoxypropionate)), methyl 2-oxy-2-methylpropionate and ethyl 2-oxy-2-methylpropionate (eg 2-methoxy-2- Methyl methyl propionate, ethyl 2-ethoxy-2-methylpropionate, etc.), methyl pyruvate, ethyl pyruvate, propyl pyruvate, methyl acetoacetate, ethyl acetoacetate, methyl 2-oxobutanoate, ethyl 2-oxobutanoate, etc. And as ethers For example, diethylene glycol dimethyl ether, dipropylene glycol dimethyl ether, tetrahydrofuran, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, methyl cellosolve acetate, ethyl cellosolve acetate, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene Glycol mono n-butyl ether, propylene glycol mono tert-butyl ether, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, propylene glycol monopropyl ether acetate, etc., and ketones For example, methyl ethyl ketone, cyclohexanone, cyclopentanone, 2-heptanone, 3-heptanone, and aromatic hydrocarbons include, for example, toluene and xylene.
Particularly preferably, methyl 3-ethoxypropionate, ethyl 3-ethoxypropionate, ethyl cellosolve acetate, ethyl lactate, diethylene glycol dimethyl ether, butyl acetate, methyl 3-methoxypropionate, 2-heptanone, cyclohexanone, ethyl carbitol acetate Butyl carbitol acetate, propylene glycol methyl ether, dipropylene glycol dimethyl ether, propylene glycol mono n-butyl ether, propylene glycol mono tert-butyl ether, and propylene glycol methyl ether acetate.
As other solvents contained in the highly refractive composition, for example, the description in paragraphs 0065 to 0067 of JP-A-2014-063125 can be referred to, and the contents thereof are incorporated in the present specification.
50 mass% or more is preferable in the whole quantity of a composition, and, as for the quantity of the solvent in a highly refractive composition, 60 mass% or more is more preferable. In the total amount of the composition, the upper limit is preferably 99.9% by mass or less, more preferably 95% by mass or less, and further preferably 90% by mass or less.
The solvent may contain only 1 type and may contain 2 or more types. When two or more types are included, the total amount falls within the above range.
(界面活性剤)
 高屈折組成物には、塗布性をより向上させる観点から、各種の界面活性剤を含有させてもよい。界面活性剤としては、フッ素系界面活性剤、ノニオン系界面活性剤、カチオン系界面活性剤、アニオン系界面活性剤、シリコーン系界面活性剤などの各種界面活性剤を使用できる。フッ素系界面活性剤が好ましい。フッ素系界面活性剤を含有する組成物を適用した塗布液を用いて膜形成する場合においては、被塗布面と塗布液との界面張力が低下して、被塗布面への濡れ性が改善され、被塗布面への塗布性が向上する。このため、厚みムラの小さい均一厚の膜形成をより好適に行うことができる。
(Surfactant)
The high refractive composition may contain various surfactants from the viewpoint of further improving coatability. As the surfactant, various surfactants such as a fluorine-based surfactant, a nonionic surfactant, a cationic surfactant, an anionic surfactant, and a silicone-based surfactant can be used. A fluorochemical surfactant is preferred. In the case of forming a film using a coating liquid to which a composition containing a fluorosurfactant is applied, the interfacial tension between the coated surface and the coating liquid decreases, and the wettability to the coated surface is improved. The applicability to the coated surface is improved. For this reason, it is possible to more suitably form a film having a uniform thickness with small thickness unevenness.
 フッ素系界面活性剤は、フッ素含有率が3~40質量%であることが好ましく、5~30質量%がより好ましく、7~25質量%が更に好ましい。フッ素含有率がこの範囲内であるフッ素系界面活性剤は、塗布膜の厚さの均一性や省液性の点で効果的であり、組成物中における溶解性も良好である。 The fluorine-containing surfactant preferably has a fluorine content of 3 to 40% by mass, more preferably 5 to 30% by mass, and still more preferably 7 to 25% by mass. A fluorine-based surfactant having a fluorine content within this range is effective in terms of uniformity of coating film thickness and liquid-saving properties, and has good solubility in the composition.
 フッ素系界面活性剤としては、例えば、メガファックF-171、同F-172、同F-173、同F-176、同F-177、同F-141、同F-142、同F-143、同F-144、同R-30、同F-437、同F-475、同F-479、同F-482、同F-554、同F-780、同F-781、同F-781F(以上、DIC(株)製)、フロラードFC430、同FC431、同FC171(以上、住友スリーエム(株)製)、サーフロンS-382、同SC-101、同SC-103、同SC-104、同SC-105、同SC1068、同SC-381、同SC-383、同S393、同KH-40(以上、旭硝子(株)製)等が挙げられる。 Examples of the fluorosurfactant include Megafac F-171, F-172, F-173, F-176, F-177, F-141, F-142, and F-143. F-144, R-30, F-437, F-475, F-479, F-482, F-554, F-780, F-781, F-781F (Above DIC Corporation), Florard FC430, FC431, FC171 (above, Sumitomo 3M Limited), Surflon S-382, SC-101, SC-103, SC-104, SC-105, SC1068, SC-381, SC-383, S393, KH-40 (above, manufactured by Asahi Glass Co., Ltd.) and the like.
 ノニオン系界面活性剤として具体的には、グリセロール、トリメチロールプロパン、トリメチロールエタン並びにそれらのエトキシレート及びプロポキシレート(例えば、グリセロールプロポキシレート、グリセリンエトキシレート等)、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンノニルフェニルエーテル、ポリエチレングリコールジラウレート、ポリエチレングリコールジステアレート、ソルビタン脂肪酸エステル(BASF社製のプルロニックL10、L31、L61、L62、10R5、17R2、25R2、テトロニック304、701、704、901、904、150R1、ソルスパース20000(日本ルーブリゾール(株)製)等が挙げられる。 Specific examples of nonionic surfactants include glycerol, trimethylolpropane, trimethylolethane, and ethoxylates and propoxylates thereof (for example, glycerol propoxylate, glycerin ethoxylate, etc.), polyoxyethylene lauryl ether, polyoxyethylene Stearyl ether, polyoxyethylene oleyl ether, polyoxyethylene octylphenyl ether, polyoxyethylene nonylphenyl ether, polyethylene glycol dilaurate, polyethylene glycol distearate, sorbitan fatty acid ester (Pluronic L10, L31, L61, L62 manufactured by BASF, 10R5, 17R2, 25R2, Tetronic 304, 701, 704, 901, 904, 150R1, Sparse 20000 (manufactured by Nippon Lubrizol Corporation), and the like.
 カチオン系界面活性剤として具体的には、フタロシアニン誘導体(商品名:EFKA-745、森下産業(株)製)、オルガノシロキサンポリマーKP341(信越化学工業(株)製)、(メタ)アクリル酸系(共)重合体ポリフローNo.75、No.90、No.95(共栄社化学(株)製)、W001(裕商(株)製)等が挙げられる。 Specific examples of the cationic surfactant include phthalocyanine derivatives (trade name: EFKA-745, manufactured by Morishita Sangyo Co., Ltd.), organosiloxane polymer KP341 (manufactured by Shin-Etsu Chemical Co., Ltd.), (meth) acrylic acid ( Co) polymer polyflow no. 75, no. 90, no. 95 (manufactured by Kyoeisha Chemical Co., Ltd.), W001 (manufactured by Yusho Co., Ltd.) and the like.
 アニオン系界面活性剤として具体的には、W004、W005、W017(裕商(株)社製)等が挙げられる。 Specific examples of anionic surfactants include W004, W005, W017 (manufactured by Yusho Co., Ltd.) and the like.
 シリコーン系界面活性剤としては、例えば、トーレシリコーンDC3PA、トーレシリコーンSH7PA、トーレシリコーンDC11PA、トーレシリコーンSH21PA、トーレシリコーンSH28PA、トーレシリコーンSH29PA、トーレシリコーンSH30PA、トーレシリコーンSH8400(以上、東レ・ダウコーニング(株)製)、TSF-4440、TSF-4300、TSF-4445、TSF-4460、TSF-4452(以上、モメンティブ・パフォーマンス・マテリアルズ社製)、KP341、KF6001、KF6002(以上、信越シリコーン株式会社製)、BYK307、BYK323、BYK330(以上、ビックケミー社製)等が挙げられる。 Examples of silicone-based surfactants include Torre Silicone DC3PA, Torre Silicone SH7PA, Torre Silicone DC11PA, Torresilicone SH21PA, Torree Silicone SH28PA, Torree Silicone SH29PA, Torree Silicone SH30PA, Torree Silicone SH8400 (above, Toray Dow Corning Co., Ltd.) )), TSF-4440, TSF-4300, TSF-4445, TSF-4460, TSF-4442 (above, manufactured by Momentive Performance Materials), KP341, KF6001, KF6002 (above, manufactured by Shin-Etsu Silicone Co., Ltd.) , BYK307, BYK323, BYK330 (above, manufactured by BYK Chemie) and the like.
 界面活性剤は、1種のみを用いてもよいし、2種類以上を組み合わせてもよい。
 界面活性剤の含有量は、組成物全質量に対して、0.001~2.0質量%が好ましく0.005~1.0質量%がより好ましい。
Only one type of surfactant may be used, or two or more types may be combined.
The content of the surfactant is preferably 0.001 to 2.0% by mass, and more preferably 0.005 to 1.0% by mass with respect to the total mass of the composition.
(重合禁止剤)
 高屈折組成物には、重合禁止剤を含有させてもよい。
 重合禁止剤としては、ハイドロキノン、p-メトキシフェノール、ジ-t-ブチル-p-クレゾール、ピロガロール、t-ブチルカテコール、ベンゾキノン、4,4’-チオビス(3-メチル-6-t-ブチルフェノール)、2,2’-メチレンビス(4-メチル-6-t-ブチルフェノール)、N-ニトロソフェニルヒドロキシアミン第一セリウム塩等が挙げられる。中でも、p-メトキシフェノールが好ましい。
 重合禁止剤の添加量は、組成物全質量に対して、0.001~5質量%が好ましい。
(Polymerization inhibitor)
The high refractive composition may contain a polymerization inhibitor.
Polymerization inhibitors include hydroquinone, p-methoxyphenol, di-t-butyl-p-cresol, pyrogallol, t-butylcatechol, benzoquinone, 4,4′-thiobis (3-methyl-6-t-butylphenol), 2,2′-methylenebis (4-methyl-6-tert-butylphenol), N-nitrosophenylhydroxyamine primary cerium salt and the like. Of these, p-methoxyphenol is preferred.
The addition amount of the polymerization inhibitor is preferably 0.001 to 5% by mass with respect to the total mass of the composition.
(その他の添加剤)
 高屈折組成物は、他の添加剤を含んでいてもよい。具体的には、硬化剤、重合性化合物、重合開始剤、上記樹脂以外の樹脂(例えば、アルカリ可溶性樹脂、バインダー)、可塑剤、感脂化剤、紫外線吸収剤等が挙げられる。
 アルカリ可溶性樹脂としては、例えば、ベンジル(メタ)アクリレート/(メタ)アクリル酸共重合体、ベンジル(メタ)アクリレート/(メタ)アクリル酸/2-ヒドロキシエチル(メタ)アクリレート共重合体、ベンジル(メタ)アクリレート/(メタ)アクリル酸/他のモノマーからなる多元共重合体が好ましく用いることができる。また、2-ヒドロキシエチル(メタ)アクリレートを共重合したもの、特開平7-140654号公報に記載の、2-ヒドロキシプロピル(メタ)アクリレート/ポリスチレンマクロモノマー/ベンジルメタクリレート/メタクリル酸共重合体、2-ヒドロキシ-3-フェノキシプロピルアクリレート/ポリメチルメタクリレートマクロモノマー/ベンジルメタクリレート/メタクリル酸共重合体、2-ヒドロキシエチルメタクリレート/ポリスチレンマクロモノマー/メチルメタクリレート/メタクリル酸共重合体、2-ヒドロキシエチルメタクリレート/ポリスチレンマクロモノマー/ベンジルメタクレート/メタクリル酸共重合体なども好ましく用いることができる。
 これらの添加剤は、例えば特開2014-063125号公報の段落0133~0224の記載を参酌でき、この内容は本願明細書に組み込まれる。
(Other additives)
The highly refractive composition may contain other additives. Specific examples include a curing agent, a polymerizable compound, a polymerization initiator, a resin other than the above resin (for example, an alkali-soluble resin and a binder), a plasticizer, a sensitizer, and an ultraviolet absorber.
Examples of the alkali-soluble resin include benzyl (meth) acrylate / (meth) acrylic acid copolymer, benzyl (meth) acrylate / (meth) acrylic acid / 2-hydroxyethyl (meth) acrylate copolymer, benzyl (meth) A multi-component copolymer comprising acrylate / (meth) acrylic acid / other monomers can be preferably used. Further, a copolymer of 2-hydroxyethyl (meth) acrylate, a 2-hydroxypropyl (meth) acrylate / polystyrene macromonomer / benzyl methacrylate / methacrylic acid copolymer described in JP-A-7-140654, 2 -Hydroxy-3-phenoxypropyl acrylate / polymethyl methacrylate macromonomer / benzyl methacrylate / methacrylic acid copolymer, 2-hydroxyethyl methacrylate / polystyrene macromonomer / methyl methacrylate / methacrylic acid copolymer, 2-hydroxyethyl methacrylate / polystyrene A macromonomer / benzyl methacrylate / methacrylic acid copolymer can also be preferably used.
For these additives, for example, the description in paragraphs 0133 to 0224 of JP-A-2014-063125 can be referred to, and the contents thereof are incorporated in the present specification.
 なお、重合開始剤としては、光重合開始剤や熱重合開始剤が挙げられる。
 光重合開始剤としては、重合性化合物の重合を開始する能力を有する限り、特に制限はなく、公知の光重合開始剤の中から適宜選択することができる。例えば、紫外光領域から可視光領域の光線に対して感光性を有するものが好ましい。また、光励起された増感剤と何らかの作用を生じ、活性ラジカルを生成する活性剤であってもよく、モノマーの種類に応じてカチオン重合を開始させるような開始剤であってもよい。
 また、光重合開始剤は、約300nm~800nm(330nm~500nmがより好ましい。)の範囲内に少なくとも約50のモル吸光係数を有する化合物を、少なくとも1種含有していることが好ましい。
In addition, as a polymerization initiator, a photoinitiator and a thermal polymerization initiator are mentioned.
The photopolymerization initiator is not particularly limited as long as it has the ability to initiate polymerization of a polymerizable compound, and can be appropriately selected from known photopolymerization initiators. For example, those having photosensitivity to light rays from the ultraviolet light region to the visible light region are preferable. Further, it may be an activator that generates some action with a photoexcited sensitizer and generates an active radical, or may be an initiator that initiates cationic polymerization according to the type of monomer.
The photopolymerization initiator preferably contains at least one compound having a molar extinction coefficient of at least about 50 within a range of about 300 nm to 800 nm (more preferably 330 nm to 500 nm).
 光重合開始剤としては、例えば、ハロゲン化炭化水素誘導体(例えば、トリアジン骨格を有するもの、オキサジアゾール骨格を有するもの、など)、アシルホスフィンオキサイド等のアシルホスフィン化合物、ヘキサアリールビイミダゾール、オキシム誘導体等のオキシム化合物、有機過酸化物、チオ化合物、ケトン化合物、芳香族オニウム塩、ケトオキシムエーテル、アミノアセトフェノン化合物、ヒドロキシアセトフェノンなどが挙げられる。トリアジン骨格を有するハロゲン化炭化水素化合物としては、例えば、若林ら著、Bull.Chem.Soc.Japan,42、2924(1969)記載の化合物、英国特許1388492号明細書記載の化合物、特開昭53-133428号公報記載の化合物、独国特許3337024号明細書記載の化合物、F.C.SchaeferなどによるJ.Org.Chem.;29、1527(1964)記載の化合物、特開昭62-58241号公報記載の化合物、特開平5-281728号公報記載の化合物、特開平5-34920号公報記載の化合物、米国特許第4212976号明細書記載の化合物、などが挙げられる。 Examples of the photopolymerization initiator include halogenated hydrocarbon derivatives (for example, those having a triazine skeleton, those having an oxadiazole skeleton, etc.), acylphosphine compounds such as acylphosphine oxide, hexaarylbiimidazole, and oxime derivatives. Oxime compounds such as organic peroxides, thio compounds, ketone compounds, aromatic onium salts, ketoxime ethers, aminoacetophenone compounds, and hydroxyacetophenones. Examples of the halogenated hydrocarbon compound having a triazine skeleton include those described in Wakabayashi et al., Bull. Chem. Soc. Japan, 42, 2924 (1969), a compound described in British Patent No. 1388492, a compound described in JP-A-53-133428, a compound described in German Patent No. 3337024, F.I. C. J. Schaefer et al. Org. Chem. 29, 1527 (1964), compounds described in JP-A-62-258241, compounds described in JP-A-5-281728, compounds described in JP-A-5-34920, US Pat. No. 4,221,976 And compounds described in the specification.
 また、露光感度の観点から、トリハロメチルトリアジン化合物、ベンジルジメチルケタール化合物、α-ヒドロキシケトン化合物、α-アミノケトン化合物、アシルホスフィン化合物、フォスフィンオキサイド化合物、メタロセン化合物、オキシム化合物、トリアリルイミダゾールダイマー、オニウム化合物、ベンゾチアゾール化合物、ベンゾフェノン化合物、アセトフェノン化合物及びその誘導体、シクロペンタジエン-ベンゼン-鉄錯体及びその塩、ハロメチルオキサジアゾール化合物、3-アリール置換クマリン化合物からなる群より選択される化合物が好ましい。 From the viewpoint of exposure sensitivity, trihalomethyltriazine compounds, benzyldimethylketal compounds, α-hydroxyketone compounds, α-aminoketone compounds, acylphosphine compounds, phosphine oxide compounds, metallocene compounds, oxime compounds, triallylimidazole dimers, oniums Compounds selected from the group consisting of compounds, benzothiazole compounds, benzophenone compounds, acetophenone compounds and derivatives thereof, cyclopentadiene-benzene-iron complexes and salts thereof, halomethyloxadiazole compounds, and 3-aryl substituted coumarin compounds are preferred.
 さらに好ましくは、トリハロメチルトリアジン化合物、α-アミノケトン化合物、アシルホスフィン化合物、フォスフィンオキサイド化合物、オキシム化合物、トリアリルイミダゾールダイマー、オニウム化合物、ベンゾフェノン化合物、アセトフェノン化合物であり、トリハロメチルトリアジン化合物、α-アミノケトン化合物、オキシム化合物、トリアリルイミダゾールダイマー、ベンゾフェノン化合物からなる群より選ばれる少なくとも一種の化合物が特に好ましい。 More preferred are trihalomethyltriazine compound, α-aminoketone compound, acylphosphine compound, phosphine oxide compound, oxime compound, triallylimidazole dimer, onium compound, benzophenone compound, acetophenone compound, trihalomethyltriazine compound, α-aminoketone Particularly preferred is at least one compound selected from the group consisting of compounds, oxime compounds, triallylimidazole dimer, and benzophenone compounds.
 特に、本発明の高屈折組成物を固体撮像素子の作製に使用する場合には、微細なパターンをシャープな形状で形成する場合があり、硬化性とともに未露光部に残渣がなく現像されることが重要である。このような観点からは、光重合開始剤としてはオキシム化合物を使用することが特に好ましい。特に、微細なパターンを形成する場合、硬化用露光にステッパー露光を用いるが、この露光機はハロゲンにより損傷される場合があり、光重合開始剤の添加量も低く抑える必要があるため、これらの点を考慮すれば、微細パターンを形成するには光重合開始剤としては、オキシム化合物を用いるのが特に好ましい。また、オキシム化合物を用いることにより、色移り性をより良化できる。
 光重合開始剤の具体例としては、例えば、特開2013-29760号公報の段落0265~0268を参酌することができ、この内容は本願明細書に組み込まれる。
In particular, when the highly refractive composition of the present invention is used for the production of a solid-state imaging device, a fine pattern may be formed in a sharp shape, and the development is performed with no residue in the unexposed area along with curability. is important. From such a viewpoint, it is particularly preferable to use an oxime compound as the photopolymerization initiator. In particular, when a fine pattern is formed, stepper exposure is used for curing exposure, but this exposure machine may be damaged by halogen, and it is necessary to keep the addition amount of the photopolymerization initiator low. Considering the point, it is particularly preferable to use an oxime compound as a photopolymerization initiator for forming a fine pattern. Further, the use of an oxime compound can improve the color transfer.
As specific examples of the photopolymerization initiator, for example, paragraphs 0265 to 0268 of JP2013-29760A can be referred to, and the contents thereof are incorporated in the present specification.
 光重合開始剤としては、ヒドロキシアセトフェノン化合物、アミノアセトフェノン化合物、及び、アシルホスフィン化合物も好適に用いることができる。より具体的には、例えば、特開平10-291969号公報に記載のアミノアセトフェノン系開始剤、特許第4225898号公報に記載のアシルホスフィン系開始剤も用いることができる。
 ヒドロキシアセトフェノン系開始剤としては、IRGACURE-184、DAROCUR-1173、IRGACURE-500、IRGACURE-2959,IRGACURE-127(商品名:いずれもBASF社製)を用いることができる。
 アミノアセトフェノン系開始剤としては、市販品であるIRGACURE-907、IRGACURE-369、及び、IRGACURE-379EG(商品名:いずれもBASF社製)を用いることができる。アミノアセトフェノン系開始剤は、365nm又は405nm等の長波光源に吸収波長がマッチングされた特開2009-191179公報に記載の化合物も用いることができる。
 アシルホスフィン系開始剤としては、市販品であるIRGACURE-819やDAROCUR-TPO(商品名:いずれもBASF社製)を用いることができる。
As the photopolymerization initiator, hydroxyacetophenone compounds, aminoacetophenone compounds, and acylphosphine compounds can also be suitably used. More specifically, for example, an aminoacetophenone initiator described in JP-A-10-291969 and an acylphosphine initiator described in Japanese Patent No. 4225898 can also be used.
As the hydroxyacetophenone-based initiator, IRGACURE-184, DAROCUR-1173, IRGACURE-500, IRGACURE-2959, IRGACURE-127 (trade names: all manufactured by BASF) can be used.
As the aminoacetophenone-based initiator, commercially available products IRGACURE-907, IRGACURE-369, and IRGACURE-379EG (trade names: all manufactured by BASF) can be used. As the aminoacetophenone-based initiator, a compound described in JP-A-2009-191179 in which an absorption wavelength is matched with a long wave light source such as 365 nm or 405 nm can also be used.
As the acylphosphine initiator, commercially available products such as IRGACURE-819 and DAROCUR-TPO (trade names: both manufactured by BASF) can be used.
 光重合開始剤として、より好ましくはオキシム化合物が挙げられる。
 オキシム化合物の具体例としては、特開2001-233842号公報記載の化合物、特開2000-80068号公報記載の化合物、特開2006-342166号公報記載の化合物を用いることができる。
 本発明において、好適に用いることのできるオキシム化合物としては、例えば、3-ベンゾイロキシイミノブタン-2-オン、3-アセトキシイミノブタン-2-オン、3-プロピオニルオキシイミノブタン-2-オン、2-アセトキシイミノペンタン-3-オン、2-アセトキシイミノ-1-フェニルプロパン-1-オン、2-ベンゾイロキシイミノ-1-フェニルプロパン-1-オン、3-(4-トルエンスルホニルオキシ)イミノブタン-2-オン、及び2-エトキシカルボニルオキシイミノ-1-フェニルプロパン-1-オンなどが挙げられる。
 また、J.C.S.Perkin II(1979年)pp.1653-1660)、J.C.S.Perkin II(1979年)pp.156-162、Journal of Photopolymer Science and Technology(1995年)pp.202-232、特開2000-66385号公報記載の化合物、特開2000-80068号公報、特表2004-534797号公報、特開2006-342166号公報の各公報に記載の化合物等も挙げられる。
 市販品ではIRGACURE-OXE01(BASF社製)、IRGACURE-OXE02(BASF社製)も好適に用いられる。また、TR-PBG-304(常州強力電子新材料有限公司社製)、アデカアークルズNCI-831およびアデカアークルズNCI-930(ADEKA社製)も用いることができる。
More preferred examples of the photopolymerization initiator include oxime compounds.
Specific examples of the oxime compound include compounds described in JP-A No. 2001-233842, compounds described in JP-A No. 2000-80068, and compounds described in JP-A No. 2006-342166.
Examples of the oxime compound that can be suitably used in the present invention include 3-benzoyloxyiminobutan-2-one, 3-acetoxyiminobutan-2-one, 3-propionyloxyiminobutan-2-one, 2-acetoxyiminopentan-3-one, 2-acetoxyimino-1-phenylpropan-1-one, 2-benzoyloxyimino-1-phenylpropan-1-one, 3- (4-toluenesulfonyloxy) iminobutane Examples include -2-one and 2-ethoxycarbonyloxyimino-1-phenylpropan-1-one.
In addition, J.H. C. S. Perkin II (1979) pp. 1653-1660), J.M. C. S. Perkin II (1979) pp. 156-162, Journal of Photopolymer Science and Technology (1995) pp. Examples thereof include compounds described in 202-232, JP-A 2000-66385, compounds described in JP-A 2000-80068, JP-T 2004-534797, JP-A 2006-342166, and the like.
As commercially available products, IRGACURE-OXE01 (manufactured by BASF) and IRGACURE-OXE02 (manufactured by BASF) are also preferably used. Further, TR-PBG-304 (manufactured by Changzhou Powerful Electronic New Materials Co., Ltd.), Adeka Arkles NCI-831 and Adeka Arkles NCI-930 (made by ADEKA) can also be used.
 また上記記載以外のオキシム化合物として、カルバゾールN位にオキシムが連結した特表2009-519904号公報に記載の化合物、ベンゾフェノン部位にヘテロ置換基が導入された米国特許第7626957号公報に記載の化合物、色素部位にニトロ基が導入された特開2010-15025号公報及び米国特許公開2009-292039号記載の化合物、国際公開特許2009-131189号公報に記載のケトオキシム化合物、トリアジン骨格とオキシム骨格を同一分子内に含有する米国特許7556910号公報に記載の化合物、405nmに吸収極大を有しg線光源に対して良好な感度を有する特開2009-221114号公報記載の化合物、などを用いてもよい。
 好ましくは、例えば、特開2013-29760号公報の段落0274~0275を参酌することができ、この内容は本願明細書に組み込まれる。
 具体的には、オキシム化合物としては、下記式(OX-1)で表される化合物が好ましい。なお、オキシムのN-O結合が(E)体のオキシム化合物であっても、(Z)体のオキシム化合物であっても、(E)体と(Z)体との混合物であってもよい。
Further, as oxime compounds other than those described above, compounds described in JP-A-2009-519904 in which an oxime is linked to the carbazole N-position, compounds described in US Pat. No. 7,626,957 in which a hetero substituent is introduced into the benzophenone moiety, Compounds described in Japanese Patent Application Laid-Open No. 2010-15025 and US Patent Publication No. 2009-292039, in which a nitro group is introduced into the dye moiety, ketoxime compounds described in International Patent Publication No. 2009-131189, a triazine skeleton and an oxime skeleton in the same molecule A compound described in US Pat. No. 7,556,910 contained therein, a compound described in JP-A-2009-221114 having an absorption maximum at 405 nm and good sensitivity to a g-line light source, and the like may be used.
Preferably, for example, paragraphs 0274 to 0275 of JP2013-29760A can be referred to, and the contents thereof are incorporated in the present specification.
Specifically, the oxime compound is preferably a compound represented by the following formula (OX-1). The oxime N—O bond may be an (E) oxime compound, a (Z) oxime compound, or a mixture of (E) and (Z) isomers. .
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 一般式(OX-1)中、RおよびBは各々独立に一価の置換基を表し、Aは二価の有機基を表し、Arはアリール基を表す。
 一般式(OX-1)中、Rで表される一価の置換基としては、一価の非金属原子団であることが好ましい。
 一価の非金属原子団としては、アルキル基、アリール基、アシル基、アルコキシカルボニル基、アリールオキシカルボニル基、複素環基、アルキルチオカルボニル基、アリールチオカルボニル基等が挙げられる。また、これらの基は、1以上の置換基を有していてもよい。また、前述した置換基は、さらに他の置換基で置換されていてもよい。
 置換基としてはハロゲン原子、アリールオキシ基、アルコキシカルボニル基またはアリールオキシカルボニル基、アシルオキシ基、アシル基、アルキル基、アリール基等が挙げられる。
 一般式(OX-1)中、Bで表される一価の置換基としては、アリール基、複素環基、アリールカルボニル基、又は、複素環カルボニル基が好ましい。これらの基は1以上の置換基を有していてもよい。置換基としては、前述した置換基が例示できる。
 一般式(OX-1)中、Aで表される二価の有機基としては、炭素数1~12のアルキレン基、シクロアルキレン基、アルキニレン基が好ましい。これらの基は1以上の置換基を有していてもよい。置換基としては、前述した置換基が例示できる。
In general formula (OX-1), R and B each independently represent a monovalent substituent, A represents a divalent organic group, and Ar represents an aryl group.
In the general formula (OX-1), the monovalent substituent represented by R is preferably a monovalent nonmetallic atomic group.
Examples of the monovalent nonmetallic atomic group include an alkyl group, an aryl group, an acyl group, an alkoxycarbonyl group, an aryloxycarbonyl group, a heterocyclic group, an alkylthiocarbonyl group, and an arylthiocarbonyl group. Moreover, these groups may have one or more substituents. Moreover, the substituent mentioned above may be further substituted by another substituent.
Examples of the substituent include a halogen atom, an aryloxy group, an alkoxycarbonyl group or an aryloxycarbonyl group, an acyloxy group, an acyl group, an alkyl group, and an aryl group.
In General Formula (OX-1), the monovalent substituent represented by B is preferably an aryl group, a heterocyclic group, an arylcarbonyl group, or a heterocyclic carbonyl group. These groups may have one or more substituents. Examples of the substituent include the above-described substituents.
In the general formula (OX-1), the divalent organic group represented by A is preferably an alkylene group having 1 to 12 carbon atoms, a cycloalkylene group, or an alkynylene group. These groups may have one or more substituents. Examples of the substituent include the above-described substituents.
 本発明は、光重合開始剤として、フッ素原子を有するオキシム化合物を用いることもできる。フッ素原子を有するオキシム化合物の具体例としては、特開2010-262028号公報記載の化合物、特表2014-500852号公報記載の化合物24、36~40、特開2013-164471号公報記載の化合物(C-3)などが挙げられる。この内容は本明細書に組み込まれることとする。 In the present invention, an oxime compound having a fluorine atom can also be used as a photopolymerization initiator. Specific examples of the oxime compound having a fluorine atom include compounds described in JP 2010-262028 A, compounds 24 and 36 to 40 described in JP-A-2014-500852, and compounds described in JP-A 2013-164471 ( C-3). This content is incorporated herein.
 本発明は、光重合開始剤として、下記一般式(1)または(2)で表される化合物を用いることもできる。 In the present invention, a compound represented by the following general formula (1) or (2) can also be used as a photopolymerization initiator.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 式(1)において、R及びRは、それぞれ独立に、炭素数1~20のアルキル基、炭素数4~20の脂環式炭化水素基、炭素数6~30のアリール基、または、炭素数7~30のアリールアルキル基を表し、R及びRがフェニル基の場合、フェニル基どうしが結合してフルオレン基を形成してもよく、R及びRは、それぞれ独立に、水素原子、炭素数1~20のアルキル基、炭素数6~30のアリール基、炭素数7~30のアリールアルキル基または炭素数4~20の複素環基を表し、Xは、直接結合またはカルボニル基を示す。 In the formula (1), R 1 and R 2 are each independently an alkyl group having 1 to 20 carbon atoms, an alicyclic hydrocarbon group having 4 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, or When an arylalkyl group having 7 to 30 carbon atoms is represented and R 1 and R 2 are phenyl groups, the phenyl groups may be bonded to each other to form a fluorene group, and R 3 and R 4 are each independently Represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, an arylalkyl group having 7 to 30 carbon atoms or a heterocyclic group having 4 to 20 carbon atoms, wherein X is a direct bond or carbonyl Indicates a group.
 式(2)において、R、R、R及びRは、式(1)におけるR、R、R及びRと同義であり、Rは、-R、-OR、-SR、-COR、-CONR、-NRCOR、-OCOR、-COOR、-SCOR、-OCSR、-COSR、-CSOR、-CN、ハロゲン原子または水酸基を表し、Rは、炭素数1~20のアルキル基、炭素数6~30のアリール基、炭素数7~30のアリールアルキル基または炭素数4~20の複素環基を表し、Xは、直接結合またはカルボニル基を表し、aは0~4の整数を表す。 In the formula (2), R 1, R 2, R 3 and R 4 have the same meanings as R 1, R 2, R 3 and R 4 in Formula (1), R 5 is -R 6, -OR 6 , —SR 6 , —COR 6 , —CONR 6 R 6 , —NR 6 COR 6 , —OCOR 6 , —COOR 6 , —SCOR 6 , —OCSR 6 , —COSR 6 , —CSOR 6 , —CN, halogen R 6 represents an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, an arylalkyl group having 7 to 30 carbon atoms or a heterocyclic group having 4 to 20 carbon atoms; X represents a direct bond or a carbonyl group, and a represents an integer of 0 to 4.
 上記式(1)及び式(2)において、R及びRは、それぞれ独立に、メチル基、エチル基、n-プロピル基、i-プロピル、シクロヘキシル基またはフェニル基が好ましい。Rはメチル基、エチル基、フェニル基、トリル基またはキシリル基が好ましい。Rは炭素数1~6のアルキル基又はフェニル基が好ましい。Rはメチル基、エチル基、フェニル基、トリル基又はナフチル基が好ましい。Xは直接結合が好ましい。
 式(1)及び式(2)で表される化合物の具体例としては、例えば、特開2014-137466号公報の段落番号0076~0079に記載された化合物が挙げられる。この内容は本明細書に組み込まれることとする。
In the above formulas (1) and (2), R 1 and R 2 are preferably each independently a methyl group, an ethyl group, an n-propyl group, an i-propyl group, a cyclohexyl group, or a phenyl group. R 3 is preferably a methyl group, an ethyl group, a phenyl group, a tolyl group or a xylyl group. R 4 is preferably an alkyl group having 1 to 6 carbon atoms or a phenyl group. R 5 is preferably a methyl group, an ethyl group, a phenyl group, a tolyl group or a naphthyl group. X is preferably a direct bond.
Specific examples of the compounds represented by formula (1) and formula (2) include, for example, compounds described in paragraph numbers 0076 to 0079 of JP-A No. 2014-137466. This content is incorporated herein.
 本発明において好ましく使用されるオキシム化合物の具体例を以下に示すが、本発明はこれらに限定されるものではない。 Specific examples of oxime compounds that are preferably used in the present invention are shown below, but the present invention is not limited thereto.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 オキシム化合物は、350nm~500nmの波長領域に極大吸収波長を有するものが好ましく、360nm~480nmの波長領域に吸収波長を有するものがより好ましく、365nm及び455nmの吸光度が高いものが特に好ましい。
 オキシム化合物は、365nm又は405nmにおけるモル吸光係数は、感度の観点から、1,000~300,000であることが好ましく、2,000~300,000であることがより好ましく、5,000~200,000であることが特に好ましい。
 化合物のモル吸光係数は、公知の方法を用いることができるが、例えば、紫外可視分光光度計(Varian社製Cary-5 spctrophotometer)にて、酢酸エチル溶媒を用い、0.01g/Lの濃度で測定することが好ましい。
 本発明に用いられる光重合開始剤は、必要に応じて2種以上を組み合わせて使用してもよい。
The oxime compound preferably has a maximum absorption wavelength in the wavelength region of 350 nm to 500 nm, more preferably has an absorption wavelength in the wavelength region of 360 nm to 480 nm, and particularly preferably has a high absorbance at 365 nm and 455 nm.
The molar extinction coefficient at 365 nm or 405 nm of the oxime compound is preferably from 1,000 to 300,000, more preferably from 2,000 to 300,000, more preferably from 5,000 to 200, from the viewpoint of sensitivity. Is particularly preferred.
For the molar extinction coefficient of the compound, a known method can be used. For example, in a UV-visible spectrophotometer (Cary-5 spctrophotometer manufactured by Varian), an ethyl acetate solvent is used at a concentration of 0.01 g / L. It is preferable to measure.
You may use the photoinitiator used for this invention in combination of 2 or more type as needed.
 光重合開始剤の含有量は、高屈折組成物の全固形分に対して、0.1~50質量%が好ましく、より好ましくは0.5~30質量%であり、さらに好ましくは1~20質量%である。この範囲で、より良好な感度とパターン形成性が得られる。高屈折組成物は、光重合開始剤を、1種類のみを含んでいてもよいし、2種類以上含んでいてもよい。2種類以上含む場合は、その合計量が上記範囲となることが好ましい。 The content of the photopolymerization initiator is preferably from 0.1 to 50% by mass, more preferably from 0.5 to 30% by mass, and even more preferably from 1 to 20%, based on the total solid content of the highly refractive composition. % By mass. Within this range, better sensitivity and pattern formability can be obtained. The highly refractive composition may contain only one type of photopolymerization initiator, or may contain two or more types. When two or more types are included, the total amount is preferably within the above range.
 また、熱重合開始剤としては、例えば、各種のアゾ系化合物、過酸化物系化合物が挙げられ、アゾ系化合物としては、アゾビス系化合物を挙げることができ、過酸化物系化合物としては、ケトンパーオキサイド、パーオキシケタール、ハイドロパーオキサイド、ジアルキルパーオキサイド、ジアシルパーオキサイド、パーオキシエステル、パーオキシジカーボネートなどを挙げることができる。 Examples of thermal polymerization initiators include various azo compounds and peroxide compounds. Examples of azo compounds include azobis compounds. Examples of peroxide compounds include ketones. Examples thereof include peroxides, peroxyketals, hydroperoxides, dialkyl peroxides, diacyl peroxides, peroxyesters, peroxydicarbonates, and the like.
 高屈折組成物の具体例としては、特開2014-062221号公報の請求項1に記載の分散組成物、特開2010-007057号公報の請求項1に記載のシロキサン系樹脂組成物が例示され、これらの内容は本願明細書に組み込まれる。また、これらの組成物の好ましい範囲が、本発明の高屈折組成物の好ましい範囲の例として挙げられる。 Specific examples of the high refractive composition include the dispersion composition described in claim 1 of JP-A-2014-062221, and the siloxane-based resin composition described in claim 1 of JP-A-2010-007057. The contents of which are incorporated herein by reference. Moreover, the preferable range of these compositions is mentioned as an example of the preferable range of the high refractive composition of this invention.
 高屈折層の膜厚は、所望の光の光路差を達成するように適宜定められるが、例えば、50nm以上であり、60nm以上とすることもできる。上限としては、例えば、600nm以下であり、500nm以下とすることもでき、300nm以下とすることもできる。 The film thickness of the highly refractive layer is appropriately determined so as to achieve a desired optical path difference, but is, for example, 50 nm or more, and may be 60 nm or more. The upper limit is, for example, 600 nm or less, 500 nm or less, or 300 nm or less.
[低屈折層]
 低屈折層は、高屈折層よりも屈折率が低い層(好ましくは、屈折率が0.5以上低い層)である。低屈折層の屈折率は、好ましくは1.0~1.5であり、より好ましくは1.1~1.5である。
 低屈折層は、好ましくは樹脂を含む層である。樹脂を含む層は、いわゆる、低屈折樹脂、すなわち、上述の高屈折樹脂よりも屈折率の低い樹脂からなる層であってもよいし、樹脂と、粒子と、溶剤とを含む組成物(以下、「低屈折組成物」ということがある)を塗布して形成してもよい。低屈折層の形成に用いられる樹脂は、重合性単量体に由来する繰り返し単位からなるポリマー鎖であるか、重合性単量体に由来する繰り返し単位からなるポリマー鎖を部分構造として有する化合物であることが好ましい。好ましくは、低屈折組成物を塗布してなる層である。
 以下、低屈折組成物の詳細について述べる。なお、低屈折組成物は、粒子と溶剤とを少なくとも含む態様であってもよい。つまり、低屈折率組成物は、樹脂を含まない態様であってもよい。
[Low refractive layer]
The low refractive layer is a layer having a lower refractive index than that of the high refractive layer (preferably a layer having a refractive index lower by 0.5 or more). The refractive index of the low refractive layer is preferably 1.0 to 1.5, more preferably 1.1 to 1.5.
The low refractive layer is preferably a layer containing a resin. The layer containing the resin may be a so-called low-refractive resin, that is, a layer made of a resin having a refractive index lower than that of the above-described high-refractive resin, or a composition containing resin, particles, and a solvent (hereinafter, , Sometimes referred to as “low refractive composition”). The resin used for forming the low refractive layer is a polymer chain composed of repeating units derived from a polymerizable monomer or a compound having a polymer chain composed of repeating units derived from a polymerizable monomer as a partial structure. Preferably there is. Preferably, it is a layer formed by applying a low refractive composition.
Details of the low refractive composition will be described below. Note that the low refractive composition may include at least particles and a solvent. That is, the low-refractive index composition may be an embodiment that does not contain a resin.
(低屈折組成物)
(樹脂)
 低屈折層で用いられる樹脂としては、シロキサン樹脂及びフッ素系樹脂の少なくとも一方を含む樹脂が例示される。
 シロキサン樹脂は、アルコキシシラン原料を用いて、加水分解反応及び縮合反応を介して得ることができる。具体的には、シロキサン樹脂は、例えば、アルキルトリアルコキシシランの一部又は全部のアルコキシ基が加水分解してシラノール基に変換し、生成したシラノール基の少なくとも一部が縮合してSi-O-Si結合を形成したものである。シロキサン樹脂は、下記一般式(5)で表されるシルセスキオキサン構造を有することが好ましい。
(R1SiO3/2n  一般式(5)
 一般式(5)中、R1は炭素数1~3のアルキル基を表す。nは20~1000の整数を表す。
 フッ素系樹脂は、物質分子中にフッ素を含有する樹脂であり、具体的には、ポリテトラフルオロエチレン、ポリヘキサフルオロプロピレン、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン/パーフルオロアルキルビニルエーテル共重合体、テトラフルオロエチレン/エチレン共重合体、ヘキサフルオロプロピレン/プロピレン共重合体、ポリビニリデンフルオライド、ビニリデンフルオライド/エチレン共重合体などが挙げられる。
(Low refractive composition)
(resin)
Examples of the resin used in the low refractive layer include a resin containing at least one of a siloxane resin and a fluorine-based resin.
A siloxane resin can be obtained through hydrolysis and condensation using an alkoxysilane raw material. Specifically, the siloxane resin is, for example, a part or all of alkoxy groups of alkyltrialkoxysilane is hydrolyzed to be converted into silanol groups, and at least part of the generated silanol groups is condensed to form Si—O—. A Si bond is formed. The siloxane resin preferably has a silsesquioxane structure represented by the following general formula (5).
(R 1 SiO 3/2 ) n General formula (5)
In general formula (5), R 1 represents an alkyl group having 1 to 3 carbon atoms. n represents an integer of 20 to 1000.
The fluorine-based resin is a resin containing fluorine in a substance molecule, specifically, polytetrafluoroethylene, polyhexafluoropropylene, tetrafluoroethylene / hexafluoropropylene copolymer, tetrafluoroethylene / perfluoroalkyl. Examples include vinyl ether copolymers, tetrafluoroethylene / ethylene copolymers, hexafluoropropylene / propylene copolymers, polyvinylidene fluoride, vinylidene fluoride / ethylene copolymers, and the like.
 上記シロキサン樹脂及びフッ素系樹脂の詳細については、例えば特開2014-063125号公報の段落0014~0060の記載を参酌でき、この内容は本願明細書に組み込まれる。
 そのほか、本発明では、低屈折組成物に含まれる樹脂として、特開2013-253145号公報の段落0016~0024に記載の所定のケイ素化合物による加水分解物、特開2012-0214772号公報の段落0030~0043に記載の化合物を参酌でき、これらの内容は本願明細書に組み込まれる。
 低屈折組成物における樹脂の量は、0.5質量%以上が好ましく、1質量%以上がより好ましく、2質量%以上がさらに好ましい。また、上限は30質量%以下が好ましく、20質量%以下がより好ましく、15質量%以下がさらに好ましい。
 また、低い屈折組成物における樹脂の固形分濃度は、5質量%以上が好ましく、8質量%以上がより好ましく、10質量%以上がさらに好ましい。また、上限は40質量%以下が好ましく、35質量%以下がより好ましく、30質量%以下がさらに好ましい。
 樹脂は、1種類のみ含んでいてもよいし、2種類以上含んでいてもよい。2種類以上含む場合、合計量が上記範囲となることが好ましい。
For details of the siloxane resin and the fluorine-based resin, for example, description in paragraphs 0014 to 0060 of JP-A-2014-063125 can be referred to, and the contents thereof are incorporated in the present specification.
In addition, in the present invention, as a resin contained in the low refractive composition, a hydrolyzate of a predetermined silicon compound described in paragraphs 0016 to 0024 of JP2013-253145A, paragraph 0030 of JP2012-0214772A. The compounds described in -0043 can be referred to, the contents of which are incorporated herein.
The amount of the resin in the low refractive composition is preferably 0.5% by mass or more, more preferably 1% by mass or more, and further preferably 2% by mass or more. The upper limit is preferably 30% by mass or less, more preferably 20% by mass or less, and further preferably 15% by mass or less.
Further, the solid content concentration of the resin in the low refractive composition is preferably 5% by mass or more, more preferably 8% by mass or more, and further preferably 10% by mass or more. The upper limit is preferably 40% by mass or less, more preferably 35% by mass or less, and further preferably 30% by mass or less.
Only one type of resin may be included, or two or more types of resins may be included. When two or more types are included, the total amount is preferably within the above range.
(粒子)
 低屈折層で用いられる粒子としては、中空粒子又は非中空粒子が挙げられる。中空粒子としては、中空構造や多孔質の微粒子を使用してもよい。中空粒子は、内部に空洞を有する構造のものであり、外郭に包囲された空洞を有する粒子を指し、多孔質粒子は、多数の空洞を有する多孔質の粒子を指す。以下、中空粒子又は多孔質粒子を、適宜「特定粒子」と称する。特定粒子は、有機粒子であっても、無機粒子であってもよい。好ましくは、金属酸化物粒子であり、より好ましくはシリカ粒子である。
 低屈折層で用いられる粒子は、例えば特開2014-063125号公報の段落0047~0055の記載を参酌でき、この内容は本願明細書に組み込まれる。
(particle)
Examples of the particles used in the low refractive layer include hollow particles and non-hollow particles. As the hollow particles, hollow structure or porous fine particles may be used. The hollow particle has a structure having a cavity inside and refers to a particle having a cavity surrounded by an outer shell, and the porous particle refers to a porous particle having a large number of cavities. Hereinafter, the hollow particles or the porous particles are appropriately referred to as “specific particles”. The specific particles may be organic particles or inorganic particles. Metal oxide particles are preferable, and silica particles are more preferable.
For the particles used in the low refractive layer, for example, the description in paragraphs 0047 to 0055 of JP 2014-063125 A can be referred to, and the contents thereof are incorporated in the present specification.
 低屈折層で用いられる粒子の好適態様の一つとしては、数珠状粒子が挙げられ、数珠状シリカ(数珠状コロイダルシリカ)(複数のシリカ粒子が鎖状に連なった粒子凝集体)がより好ましい。
 数珠状粒子とは、粒子が数珠状に連結及び/又は分岐した形状を持つ。具体的には例えば、球状の粒子(例えば、コロイダルシリカ)が数珠状に連結した鎖状の構造を有するもの、及び連結したコロイダルシリカが分岐したものなどを挙げることができる。
 数珠状粒子は、その立体的な障害により、空間を密に占めることができず、その結果、より空隙率の高い領域を容易に形成でき、領域を低屈折率化しやすい。
One preferred embodiment of the particles used in the low refractive layer is beaded beads, and beaded silica (beaded colloidal silica) (particle aggregate in which a plurality of silica particles are linked in a chain) is more preferable. .
A bead-like particle has a shape in which particles are connected and / or branched like a bead. Specific examples include those having a chain structure in which spherical particles (for example, colloidal silica) are connected in a bead shape, and those in which the connected colloidal silica is branched.
Because of the steric hindrance, the beaded particles cannot occupy the space densely, and as a result, a region with a higher porosity can be easily formed, and the region can easily have a low refractive index.
 低屈折組成物における粒子の量は、組成物全質量に対して、10質量%以上が好ましく、15質量%以上がより好ましく、20質量%以上がさらに好ましい。上限は特に制限はないが、40質量%以下が好ましく、30質量%以下がより好ましい。
 また、低屈折組成物における粒子の固形分濃度は、60質量%以上が好ましく、70質量%以上がより好ましい。上限は特に制限はないが、99質量%以下が好ましく、95質量%以下がより好ましく、90質量%以下がさらに好ましい。
 粒子は、1種類のみ含んでいてもよいし、2種類以上含んでいてもよい。2種類以上含む場合、合計量が上記範囲となることが好ましい。
The amount of particles in the low refractive composition is preferably 10% by mass or more, more preferably 15% by mass or more, and still more preferably 20% by mass or more with respect to the total mass of the composition. Although there is no restriction | limiting in particular in an upper limit, 40 mass% or less is preferable and 30 mass% or less is more preferable.
The solid content concentration of the particles in the low refractive composition is preferably 60% by mass or more, and more preferably 70% by mass or more. The upper limit is not particularly limited, but is preferably 99% by mass or less, more preferably 95% by mass or less, and still more preferably 90% by mass or less.
One type of particle may be included, or two or more types may be included. When two or more types are included, the total amount is preferably within the above range.
(溶剤)
 低屈折組成物に含まれる溶剤しては、上記高屈折組成物に含まれる溶剤と同様であり、好ましい範囲や配合量も同様である。
(その他の添加剤)
 本発明で用いる低屈折組成物は、他の添加剤を含んでいてもよい。その他の添加剤は、上述の高屈折組成物で述べたものと同じであり、配合量等も同様である。
 低屈折組成物の具体例としては、特開2014-063125号公報の請求項11に記載の低屈折膜形成用硬化性組成物、特開2013-253145号公報の請求項1に記載のシロキサン系樹脂組成物が例示され、これらの内容は本願明細書に組み込まれる。また、これらの組成物の好ましい範囲が、本発明の高屈折組成物の好ましい範囲の例として挙げられる。
 低屈折層の膜厚は、所望の光の光路差を達成するように適宜定められるが、例えば、60nm以上であり、70nm以上とすることもできる。上限としては、例えば、600nm以下であり、500nm以下とすることもでき、300nm以下とすることもできる。
(solvent)
The solvent contained in the low refractive composition is the same as the solvent contained in the high refractive composition, and the preferred range and blending amount are also the same.
(Other additives)
The low refractive composition used in the present invention may contain other additives. Other additives are the same as those described in the above-mentioned highly refractive composition, and the blending amounts and the like are also the same.
Specific examples of the low-refractive composition include a curable composition for forming a low-refractive film according to claim 11 of JP2014-063125, and a siloxane-based composition according to claim 1 of JP2013-253145A. Resin compositions are exemplified and their contents are incorporated herein. Moreover, the preferable range of these compositions is mentioned as an example of the preferable range of the high refractive composition of this invention.
The film thickness of the low refractive layer is appropriately determined so as to achieve a desired optical path difference. The upper limit is, for example, 600 nm or less, 500 nm or less, or 300 nm or less.
(多層膜層の製造方法)
 多層膜層の製造方法は、例えば、粒子と、樹脂と、溶剤とを含む高屈折組成物を塗布して高屈折層を形成する工程と、高屈折層の表面に、粒子と、樹脂と、溶剤とを含む低屈折組成物を塗布して低屈折層を形成する工程を含む。このような方法を採用することにより、上記多層膜層を好ましく製造できる。上記多層膜層は、塗布で製造可能であるため、公知の多層膜層と比較して、生産性を向上させることができる。
 なお、上記では高屈折層上に低屈折層を設ける態様を述べたが、その順序を逆にしてもよい。つまり、低屈折組成物を塗布して低屈折層を形成する工程と、低屈折層の表面に高屈折組成物を塗布して高屈折層を形成する工程を実施してもよい。
 なお、以下では、高屈折層を形成し、その後、低屈折層を形成する手順について詳述する。
(Manufacturing method of multilayer film layer)
The method for producing a multilayer film layer includes, for example, a step of applying a high refractive composition containing particles, a resin, and a solvent to form a high refractive layer, and a surface of the high refractive layer, particles, a resin, A step of forming a low refractive layer by applying a low refractive composition containing a solvent; By adopting such a method, the multilayer film layer can be preferably manufactured. Since the multilayer film layer can be manufactured by coating, productivity can be improved as compared with a known multilayer film layer.
In the above description, the low refractive layer is provided on the high refractive layer. However, the order may be reversed. That is, a step of forming a low refraction layer by applying a low refraction composition and a step of forming a high refraction layer by applying a high refraction composition on the surface of the low refraction layer may be performed.
In the following, a procedure for forming the high refractive layer and then forming the low refractive layer will be described in detail.
 高屈折組成物を塗布して高屈折層を形成する工程は、高屈折層が1層の高屈折層からなる場合は、塗布回数は通常1回であるが、高屈折層を同時又は逐次塗布して、2層以上の高屈折層を形成してもよい。本発明における塗布方法は、特に限定されないが、適宜の公知の塗布方法を適用することができる。例えば、スプレー法、ロールコート法、回転塗布法(スピンコート法)、バー塗布法等などを適用することができる。例えば、スピンコート塗布の場合、高屈折層1層あたり、30秒~3分の塗布時間とすることができ、さらには、30秒~2分の塗布時間とすることができる。
 塗布量としては、硬化後の膜厚が、所望の条件となるように、塗布することが好ましい。
 必要に応じて、塗布された塗膜には加熱処理などを施し、塗膜中に含まれる溶剤を除去することが好ましい。具体的には、塗布した後、ポストベークを行い、溶剤の一部又は全部を揮発させることが好ましい。ポストベークとしては、高屈折層については、100~300℃で、30秒~8分行うことが好ましく、150~250℃で、1~5分行うことがより好ましい。
In the step of forming the high refractive layer by applying the high refractive composition, when the high refractive layer is composed of one high refractive layer, the number of times of coating is usually one, but the high refractive layer is applied simultaneously or sequentially. Then, two or more highly refractive layers may be formed. Although the coating method in this invention is not specifically limited, The appropriate well-known coating method is applicable. For example, a spray method, a roll coating method, a spin coating method (spin coating method), a bar coating method, or the like can be applied. For example, in the case of spin coating, the coating time can be 30 seconds to 3 minutes per high refractive layer, and further, the coating time can be 30 seconds to 2 minutes.
As an application amount, it is preferable to apply so that the film thickness after curing becomes a desired condition.
As needed, it is preferable to heat-treat etc. to the apply | coated coating film and to remove the solvent contained in a coating film. Specifically, after coating, it is preferable to perform post-baking to volatilize part or all of the solvent. The post-baking is preferably performed at 100 to 300 ° C. for 30 seconds to 8 minutes, more preferably at 150 to 250 ° C. for 1 to 5 minutes for the high refractive layer.
 低屈折組成物及び高屈折組成物は、異物の除去や欠陥の低減などの目的で、塗布前に、フィルタで濾過することが好ましい。従来からろ過用途等に用いられているものであれば特に限定されることなく用いることができる。 The low refractive composition and the high refractive composition are preferably filtered with a filter before coating for the purpose of removing foreign substances and reducing defects. If it is conventionally used for the filtration use etc., it can use without being specifically limited.
 高屈折層を形成した後、その表面に低屈折層を低屈折組成物の塗布により形成する。低屈折層の形成方法についても、上記高屈折層の形成において、高屈折組成物を低屈折組成物に変えるほかは、同様であり、好ましい範囲も同様である。但し、低屈折層のポストベークについては、80~240℃で、30秒~8分行うことが好ましく、80~120℃で、1~5分行うことがより好ましい。
 さらに、高屈折層及び低屈折層を交互に積層することによって、多層膜層が得られる。
 高屈折層及び低屈折層としては、上述した材料によるもの以外に、特開2014-74874(WO2013/099945)の段落0011以降に開示されているシロキサン樹脂等の硬化性樹脂を溶媒に含有させた光透過性硬化膜形成用樹脂組成物、段落0097以降に開示されている高屈折率層形成用組成物も使用することができる。
 なお、多層膜層は必要に応じて、パターン状に配置してもよい。なお、パターニングの方法は特に制限されず、公知の方法を採用でき、例えば、特開2013-54081号公報の段落0418~0421の方法などが挙げられる。
After the high refractive layer is formed, a low refractive layer is formed on the surface by applying a low refractive composition. The method for forming the low refraction layer is the same as in the formation of the high refraction layer except that the high refraction composition is changed to the low refraction composition, and the preferred range is also the same. However, the post-baking of the low refractive layer is preferably performed at 80 to 240 ° C. for 30 seconds to 8 minutes, more preferably at 80 to 120 ° C. for 1 to 5 minutes.
Furthermore, a multilayer film layer can be obtained by alternately laminating high refractive layers and low refractive layers.
As the high refractive layer and the low refractive layer, in addition to the above-described materials, a curable resin such as a siloxane resin disclosed in paragraphs 0011 and after of JP2014-74874 (WO2013 / 099945) is contained in a solvent. A resin composition for forming a light-transmitting cured film and a composition for forming a high refractive index layer disclosed in paragraphs 0097 and after can also be used.
In addition, you may arrange | position a multilayer film layer in a pattern form as needed. Note that the patterning method is not particularly limited, and a known method can be employed.
(着色剤含有組成物層)
 着色剤含有組成物層は、所定の着色剤を含む組成物より形成される層である。
 組成物としては、着色剤、及び、光硬化成分を含む着色光硬化性組成物が使用されることが好ましい。この光硬化性成分は、フォトリソ法に通常用いられる光硬化性組成物であり、バインダー樹脂(アルカリ可溶性樹脂等)、感光性重合成分(光重合成モノマー等)、光重合開始剤等を少なくとも含む組成物を用いることができる。このような着色光硬化性組成物については、例えば、特開2005-326453号公報の段落0017~0064に記載の事項を好適に適用することができる。
(Colorant-containing composition layer)
The colorant-containing composition layer is a layer formed from a composition containing a predetermined colorant.
As the composition, a colored photocurable composition containing a colorant and a photocurable component is preferably used. This photocurable component is a photocurable composition usually used in the photolithographic method, and includes at least a binder resin (such as an alkali-soluble resin), a photosensitive polymerization component (such as a photopolymerization monomer), and a photopolymerization initiator. Compositions can be used. For such a colored photocurable composition, for example, the matters described in paragraphs 0017 to 0064 of JP-A-2005-326453 can be suitably applied.
 また、着色光硬化性組成物を用いる代わりに、非感光性の着色熱硬化性組成物を用いて着色剤含有組成物層を形成することができる。着色熱硬化性組成物は、着色剤と、熱硬化性化合物とを含み、全固形分中の着色剤濃度が50質量%以上100質量%未満であることが好ましい。なお、熱硬化性化合物とは、加熱により膜硬化を行えるものであれば特に限定はなく、例えば、熱硬化性官能基を有する化合物を用いることができる。この熱硬化性化合物としては、例えば、エポキシ基、メチロール基、アルコキシメチル基及びアシロキシメチル基から選ばれる少なくとも1つの基を有するものが好ましい。 Also, instead of using a colored photocurable composition, a colorant-containing composition layer can be formed using a non-photosensitive colored thermosetting composition. The colored thermosetting composition contains a colorant and a thermosetting compound, and the colorant concentration in the total solid content is preferably 50% by mass or more and less than 100% by mass. The thermosetting compound is not particularly limited as long as the film can be cured by heating. For example, a compound having a thermosetting functional group can be used. As this thermosetting compound, for example, those having at least one group selected from an epoxy group, a methylol group, an alkoxymethyl group and an acyloxymethyl group are preferable.
 着色剤含有組成物層に含まれる着色剤の種類は特に制限されず、各色画素の種類にあわせて、従来公知の種々の染料や顔料などの着色剤が使用される。通常、赤色着色剤、緑色着色剤、青色着色剤などが使用される。
 より具体的には、顔料としては、従来公知の種々の無機顔料又は有機顔料を挙げることができる。また、無機顔料であれ有機顔料であれ、高透過率であることが好ましいことを考慮すると、平均粒子径がなるべく小さい顔料の使用が好ましく、ハンドリング性をも考慮すると、顔料の平均粒子径は、0.01μm~0.1μmが好ましく、0.01μm~0.05μmがより好ましい。また、顔料として耐光性が強い無機顔料を選定することが好ましく、以下のものを挙げることができる(なお、以下にはY色、G色、B色以外の顔料についても例示している)。以下では、C.I.15:3が代表例である。
C.I.ピグメント・イエロー
11,24,108,109,110,138,139,150,151,154,167,180,185;
C.I.ピグメント・グリーン
7、36、37、58、59
C.I.ピグメント・オレンジ
36,71;
C.I.ピグメント・レッド
122,150,171,175,177,209,224,242,254,255,264;
C.I.ピグメント・バイオレット
19,23,32
C.I.ピグメント・ブルー
15:1,15:3,15:6,16,22,60,66;
C.I.ピグメント・ブラック1
The type of the colorant contained in the colorant-containing composition layer is not particularly limited, and conventionally known colorants such as various dyes and pigments are used according to the type of each color pixel. Usually, a red colorant, a green colorant, a blue colorant and the like are used.
More specifically, examples of the pigment include various conventionally known inorganic pigments or organic pigments. Further, considering that it is preferable to have a high transmittance, whether it is an inorganic pigment or an organic pigment, it is preferable to use a pigment having an average particle size as small as possible. 0.01 μm to 0.1 μm is preferable, and 0.01 μm to 0.05 μm is more preferable. In addition, it is preferable to select an inorganic pigment having high light resistance as the pigment, and the following can be exemplified (the pigments other than Y color, G color, and B color are also exemplified below). In the following, C.I. I. 15: 3 is a representative example.
C. I. Pigment yellow 11,24,108,109,110,138,139,150,151,154,167,180,185;
C. I. Pigment Green 7, 36, 37, 58, 59
C. I. Pigment orange 36, 71;
C. I. Pigment red 122,150,171,175,177,209,224,242,254,255,264;
C. I. Pigment Violet 19, 23, 32
C. I. Pigment blue 15: 1, 15: 3, 15: 6, 16, 22, 60, 66;
C. I. Pigment Black 1
 着色剤が染料である場合には、組成物中に均一に溶解して非感光性の熱硬化性着色樹脂組成物を得ることができる。本発明において使用できる染料は、特に制限はなく、カラーフィルタ用として公知の染料が使用可能である。化学構造としては、ピラゾールアゾ系、アニリノアゾ系、トリフェニルメタン系、アントラキノン系、アンスラピリドン系、ベンジリデン系、オキソノール系、ピラゾロトリアゾールアゾ系、ピリドンアゾ系、シアニン系、フェノチアジン系、ピロロピラゾールアゾメチン系、キサテン系、フタロシアニン系、ペンゾピラン系、インジゴ系等の染料を使用することができる。これらの染料は多量体であってもよい。さらに、染料と顔料を組み合わせてもよい。
 着色剤含有組成物層の着色剤含有率は、特に限定されるものではないが、着色剤含有組成物層全質量に対して、好ましくは50質量%以上100質量%未満であり、55質量%以上90質量%以下がより好ましい。
When the colorant is a dye, it can be uniformly dissolved in the composition to obtain a non-photosensitive thermosetting colored resin composition. There is no restriction | limiting in particular in the dye which can be used in this invention, A well-known dye can be used for color filters. The chemical structure includes pyrazole azo, anilino azo, triphenyl methane, anthraquinone, anthrapyridone, benzylidene, oxonol, pyrazolotriazole azo, pyridone azo, cyanine, phenothiazine, pyrrolopyrazole azomethine, Dyes such as xanthene, phthalocyanine, benzopyran and indigo can be used. These dyes may be multimers. Furthermore, you may combine dye and a pigment.
The colorant content of the colorant-containing composition layer is not particularly limited, but is preferably 50% by mass or more and less than 100% by mass, and 55% by mass with respect to the total mass of the colorant-containing composition layer. More preferred is 90% by mass or less.
 着色剤含有組成物層を形成するために使用される組成物には、本発明の効果を損なわない範囲で各種添加物、例えば、バインダー、硬化剤、硬化触媒、溶剤、充填剤、上記以外の高分子化合物、界面活性剤、密着促進剤、酸化防止剤、紫外線吸収剤、凝集防止剤、分散剤等を配合することができる。これら各種添加物としては、特開2010-078680号公報の段落0032~0040の記載を参酌でき、この内容は本願明細書に組み込まれる。 In the composition used for forming the colorant-containing composition layer, various additives such as a binder, a curing agent, a curing catalyst, a solvent, a filler, and the like other than those described above are provided as long as the effects of the present invention are not impaired. A polymer compound, a surfactant, an adhesion promoter, an antioxidant, an ultraviolet absorber, an aggregation inhibitor, a dispersant and the like can be blended. As these various additives, descriptions in paragraphs 0032 to 0040 of JP 2010-078680 A can be referred to, and the contents thereof are incorporated in the present specification.
 着色剤含有組成物層は、着色光硬化性組成物又は着色熱硬化性組成物を多層膜層上に直接又は他の層を介して塗布・乾燥した後、光照射処理又は加熱処理を施すことにより形成される。着色剤含有組成物は、異物の除去や欠陥の低減などの目的で、塗布前に、フィルタで濾過することが好ましい。フィルタとしては、従来からろ過用途等に用いられているものであれば特に限定されることなく用いることができる。
 以下、緑色着色剤を含有した着色光硬化性組成物を用いた一態様について、詳述する。
 最初に、基板上の所定の位置に多層膜層が配置された積層体を用意し、次に、溶剤に分散された緑色着色剤を含む着色光硬化性組成物をスピンコーターで基板の多層膜層がある側の表面上に塗布した後、プリベーク処理を行う。着色光硬化性組成物のプリベーク処理後に、例えば、周知のステッパー等の露光装置を用いて、多層膜層上にある着色光硬化性組成物を露光する。ステッパーからの露光用光線は、マスクの開口部より着色光硬化性組成物の緑色画素形成領域に照射され、この緑色画素形成領域が硬化する。露光処理終了後、周知の現像液を用いて着色光硬化性組成物を現像処理する。これにより、着色光硬化性組成物の緑色画素形成領域以外(未硬化領域)が除去されて、多層膜層上に着色剤含有組成物層が形成される。
For the colorant-containing composition layer, a colored photocurable composition or a colored thermosetting composition is applied to the multilayer film layer directly or via another layer and dried, and then subjected to light irradiation treatment or heat treatment. It is formed by. The colorant-containing composition is preferably filtered with a filter before coating for the purpose of removing foreign substances and reducing defects. Any filter can be used without particular limitation as long as it has been conventionally used for filtration.
Hereinafter, one aspect using the colored photocurable composition containing the green colorant will be described in detail.
First, a laminate in which a multilayer film layer is arranged at a predetermined position on a substrate is prepared, and then a colored photocurable composition containing a green colorant dispersed in a solvent is spin coated to form a multilayer film on the substrate. After applying the layer on the surface on which the layer is present, a pre-bake treatment is performed. After the pre-bake treatment of the colored photocurable composition, the colored photocurable composition on the multilayer film layer is exposed using, for example, a well-known exposure device such as a stepper. The exposure light beam from the stepper is irradiated to the green pixel formation region of the colored photocurable composition from the opening of the mask, and the green pixel formation region is cured. After completion of the exposure process, the colored photocurable composition is developed using a known developer. Thereby, except the green pixel formation area (uncured area) of the colored photocurable composition is removed, and a colorant-containing composition layer is formed on the multilayer film layer.
 着色剤含有組成物層の層厚は特に制限されないが、色画素の性能と薄型化バランスの点から、0.1~10μmが好ましく、0.5~5μmがより好ましい。 The layer thickness of the colorant-containing composition layer is not particularly limited, but is preferably 0.1 to 10 μm, more preferably 0.5 to 5 μm, from the viewpoint of color pixel performance and thinning balance.
<好適実施態様>
 本発明の第1実施態様のカラーフィルタの好適実施態様の一つとしては、赤色着色剤を含有した着色剤含有組成物層(赤色着色層)からなる赤色画素、緑色着色剤を含有した着色剤含有組成物層(緑色着色層)からなる緑色画素、青色着色剤を含有した着色剤含有組成物層(青色着色層)からなる青色画素、及び、屈折率の異なる複数の膜を積層した多層膜層と上記赤色着色層、上記緑色着色層、又は、上記青色着色層とが積層してなる積層型色画素を有する態様が挙げられる。この態様であれば、使用される着色剤の種類が3種(赤色着色剤、緑色着色剤、青色着色剤)でありながら、カラーフィルタが4色以上の色画素を有することができる。
 以下、本発明の第1実施態様のカラーフィルタの好適実施態様の具体例について詳述する。
 図2に、本発明の第1実施態様のカラーフィルタの第1好適例の一部拡大平面図を示す。図3は、A-A線に沿った断面図であり、図4はB-B線に沿った断面図である。
 図2に示すように、カラーフィルタ10は複数の色画素を備え、基板12上に配置される。色画素としては、赤色画素(R)14と、緑色画素(G1)16と、青色画素(B1)18と、第1積層型色画素(G2)20と、第2積層型色画素(B2)22との5色の色画素が挙げられ、これら色画素が基板12上に2次元的(平面的)に配置されている。
 図3に示すように、赤色画素(R)14と、緑色画素(G1)16と、青色画素(B1)18とは基板上に並んで配置されている。
 図4に示すように、第1積層型色画素(G2)20は、第1多層膜層24と緑色画素(G1)16との積層体である。第1積層型色画素(G2)20中には緑色画素(G1)16が含まれるが、第1多層膜層24によって、第1積層型色画素(G2)20全体の色が緑色画素(G1)16とは異なっている。つまり、緑色画素(G1)16と第1積層型色画素(G2)20とは、互いに色が異なる。
 また、図4に示すように、第2積層型色画素(B2)22は、第2多層膜層26と青色画素(G1)18との積層体である。第2積層型色画素(B2)22中には青色画素(G1)18が含まれるが、第2多層膜層26によって、第2積層型色画素(B2)22全体の色が青色画素(B1)18とは異なっている。つまり、青色画素(B1)18と第2積層型色画素(B2)22とは、互いに色が異なる。
 上記態様においては、使用される着色剤としては、赤色画素(R)14を形成するために使用される赤色着色剤と、緑色画素(G1)16を形成するために使用される緑色着色剤と、青色画素(B1)18を形成するために使用される青色着色剤との3種が使用されているが、第1多層膜層24及び第2多層膜層26が使用されることにより、5色の色画素が基板上に配置されている。
<Preferred embodiment>
As one of the preferred embodiments of the color filter of the first embodiment of the present invention, a red pixel comprising a colorant-containing composition layer (red color layer) containing a red colorant, and a colorant containing a green colorant A multilayer film in which a green pixel composed of a containing composition layer (green colored layer), a blue pixel composed of a colorant-containing composition layer (blue colored layer) containing a blue colorant, and a plurality of films having different refractive indexes are laminated The aspect which has a laminated color pixel formed by laminating | stacking a layer and the said red colored layer, the said green colored layer, or the said blue colored layer is mentioned. If it is this aspect, the color filter can have a color pixel of four or more colors, although the kind of colorant used is 3 types (a red colorant, a green colorant, and a blue colorant).
Hereinafter, specific examples of preferred embodiments of the color filter of the first embodiment of the present invention will be described in detail.
FIG. 2 shows a partially enlarged plan view of a first preferred example of the color filter of the first embodiment of the present invention. 3 is a cross-sectional view taken along the line AA, and FIG. 4 is a cross-sectional view taken along the line BB.
As shown in FIG. 2, the color filter 10 includes a plurality of color pixels and is disposed on the substrate 12. As color pixels, a red pixel (R) 14, a green pixel (G1) 16, a blue pixel (B1) 18, a first stacked color pixel (G2) 20, and a second stacked color pixel (B2). 22 color pixels, and these color pixels are arranged two-dimensionally (planarly) on the substrate 12.
As shown in FIG. 3, the red pixel (R) 14, the green pixel (G1) 16, and the blue pixel (B1) 18 are arranged side by side on the substrate.
As shown in FIG. 4, the first stacked color pixel (G2) 20 is a stacked body of the first multilayer film layer 24 and the green pixel (G1) 16. The first stacked color pixel (G2) 20 includes the green pixel (G1) 16, but the first multilayer color layer (G2) 20 has a green color (G1) due to the first multilayer film layer 24. ) Different from 16. That is, the green pixel (G1) 16 and the first stacked color pixel (G2) 20 have different colors.
Further, as shown in FIG. 4, the second stacked color pixel (B2) 22 is a stacked body of the second multilayer film layer 26 and the blue pixel (G1) 18. The second stacked color pixel (B2) 22 includes the blue pixel (G1) 18, but the second multilayer color layer (B2) 22 has an overall color of the blue pixel (B1) due to the second multilayer film layer 26. ) 18 is different. That is, the blue pixel (B1) 18 and the second stacked color pixel (B2) 22 have different colors.
In the said aspect, as a coloring agent used, the red coloring agent used in order to form red pixel (R) 14, and the green coloring agent used in order to form green pixel (G1) 16, Three kinds of blue colorants used to form the blue pixel (B1) 18 are used, but the first multilayer film layer 24 and the second multilayer film layer 26 are used to generate 5 Color pixels of color are arranged on the substrate.
 上記態様においては、第1積層型色画素(G2)20及び第2積層型色画素(B2)22の2つ(2種)の積層型色画素を使用したが、上述したように、本発明においては、少なくとも1つ(1種)の積層型色画素が使用されていればよい。また、3つ(3種)以上の積層型色画素が使用されていてもよい。
 また、上記第1積層型色画素(G2)20においては、それぞれ緑色画素(G1)16が含まれる態様を示したが、緑色画素(G1)16に含まれる緑色着色剤とは異なる種類の緑色着色剤を含む他の緑色画素が含まれていてもよい。また、上記第2積層型色画素(B2)22においても、青色画素(B1)18に含まれる青色着色剤とは異なる種類の青色着色剤を含む他の青色画素が含まれていてもよい。
 また、上記第1多層膜層24と上記第2多層膜層26とは、同一の層であっても、異なる層であってもよい。
 なお、カラーフィルタの生産性及びコストの点を考慮すれば、積層型色画素に含まれる着色剤含有組成物層は、カラーフィルタ中に含まれる積層型色画素ではない色画素である着色剤含有組成物層と同一のものが使用されることが好ましい。
In the above embodiment, two (two types) of stacked color pixels, ie, the first stacked color pixel (G2) 20 and the second stacked color pixel (B2) 22 are used. In, it is sufficient that at least one (one type) stacked color pixel is used. Three (three types) or more of stacked color pixels may be used.
In the first stacked color pixel (G2) 20, the green pixel (G1) 16 is included, but a green color different from the green colorant included in the green pixel (G1) 16 is shown. Other green pixels containing a colorant may be included. The second stacked color pixel (B2) 22 may also include other blue pixels including a blue colorant of a different type from the blue colorant included in the blue pixel (B1) 18.
Further, the first multilayer film layer 24 and the second multilayer film layer 26 may be the same layer or different layers.
In consideration of the productivity and cost of the color filter, the colorant-containing composition layer included in the stacked color pixel contains a colorant that is not a stacked color pixel included in the color filter. The same layer as the composition layer is preferably used.
 なお、使用される基板の種類は特に制限されず、例えば、ガラス基板、樹脂基板などが適宜使用され、カラーフィルタを固体撮像素子に適用する際には、被写体からの光を光電変換する光電変換素子であるフォトダイオードが配置された半導体基板を基板として用いてもよい。 The type of substrate used is not particularly limited. For example, a glass substrate, a resin substrate, or the like is used as appropriate, and when applying a color filter to a solid-state imaging device, photoelectric conversion that photoelectrically converts light from a subject. A semiconductor substrate on which a photodiode as an element is arranged may be used as the substrate.
 図5に、本発明の第1実施態様のカラーフィルタの第2好適例の一部拡大平面図を示す。図6は、C-C線に沿った断面図であり、図7はD-D線に沿った断面図である。
 図5に示すように、カラーフィルタ100は複数の色画素を備え、基板12上に配置される。色画素としては、赤色画素(R)114と、緑色画素(G1)116と、青色画素(B1)118と、第1積層型色画素(G2)20と、第2積層型色画素(B2)22との5色の色画素が挙げられ、これら色画素が基板12上に2次元的(平面的)に配置されている。
 第2好適例と、上述した第1好適例とは、赤色画素(R)114と、緑色画素(G1)116と、青色画素(B1)118との高さが、第1積層型色画素(G2)20と、第2積層型色画素(B2)22との高さと同じようになるように調整した以外は、第1好適例と同じである。
 このような形態とすることにより、カラーフィルタ100の表面に段差がなくなり、その上に配置される層の平坦性がより向上する。
FIG. 5 shows a partially enlarged plan view of a second preferred example of the color filter of the first embodiment of the present invention. FIG. 6 is a cross-sectional view taken along the line CC, and FIG. 7 is a cross-sectional view taken along the line DD.
As shown in FIG. 5, the color filter 100 includes a plurality of color pixels and is disposed on the substrate 12. As color pixels, a red pixel (R) 114, a green pixel (G1) 116, a blue pixel (B1) 118, a first stacked color pixel (G2) 20, and a second stacked color pixel (B2). 22 color pixels, and these color pixels are arranged two-dimensionally (planarly) on the substrate 12.
In the second preferred example and the first preferred example described above, the heights of the red pixel (R) 114, the green pixel (G1) 116, and the blue pixel (B1) 118 are the same as the first stacked color pixel ( G2) 20 and the second stacked color pixel (B2) 22 are the same as in the first preferred example except that the height is adjusted to be the same as that of the second stacked color pixel (B2) 22.
By adopting such a form, there is no step on the surface of the color filter 100, and the flatness of the layer disposed thereon is further improved.
 なお、図5においては、赤色画素(R)114自体、緑色画素(G1)116自体、青色画素(B1)118自体の高さを高くしたが、図8~10のカラーフィルタ200に示すように、透明樹脂層28を設けることにより、赤色画素(R)14と、緑色画素(G1)16と、青色画素(B1)18との高さを、第1積層型色画素(G2)20と、第2積層型色画素(B2)22との高さに調整することもできる。
 なお、図8に、本発明の第1実施態様のカラーフィルタの第3好適例の一部拡大平面図を示す。図9は、E-E線に沿った断面図であり、図10はF-F線に沿った断面図である。
In FIG. 5, the heights of the red pixel (R) 114 itself, the green pixel (G1) 116 itself, and the blue pixel (B1) 118 themselves are increased. However, as shown in the color filter 200 of FIGS. By providing the transparent resin layer 28, the heights of the red pixel (R) 14, the green pixel (G 1) 16, and the blue pixel (B 1) 18 are set to the first stacked color pixel (G 2) 20, It is also possible to adjust the height to the second stacked color pixel (B2) 22.
FIG. 8 shows a partially enlarged plan view of a third preferred example of the color filter of the first embodiment of the present invention. 9 is a cross-sectional view taken along the line EE, and FIG. 10 is a cross-sectional view taken along the line FF.
 本発明の第1実施態様のカラーフィルタは、種々の用途に適用でき、例えば、固体撮像素子が挙げられる。つまり、本発明の第1実施態様のカラーフィルタを含む固体撮像素子が挙げられる。固体撮像素子の構成は特に制限されず、公知の態様が挙げられるが、例えば、フォトダイオード、絶縁層、本発明の第1実施態様のカラーフィルタ、平坦層、マイクロレンズなどを半導体基板(基板)上に設けられた構成が挙げられる。
 次に、本発明の固体撮像素子を適用した例として撮像装置について説明する。撮像装置としては、カメラモジュールが挙げられる。
 図11は、撮像装置の機能ブロック図である。撮像装置は、レンズ光学系1と、固体撮像素子110と、信号処理部120と、信号切替部130と、制御部140と、信号蓄積部150と、発光制御部160と、赤外光を発光する発光素子の赤外LED170と、画像出力部180及び181とを備える。なお、固体撮像素子110としては、上述した本発明のカラーフィルタを備える固体撮像素子を用いることができる。また、固体撮像素子110とレンズ光学系1以外の構成は、そのすべてが、又は、その一部が、同一の半導体基板に形成することもできる。撮像装置の各構成については、特開2011-233983号公報の段落0032~0036を参酌することができ、この内容は本願明細書に組み込まれる。
The color filter of the first embodiment of the present invention can be applied to various applications, and examples thereof include a solid-state image sensor. That is, the solid-state image sensor containing the color filter of 1st embodiment of this invention is mentioned. The configuration of the solid-state imaging device is not particularly limited and may include known modes. For example, a photodiode, an insulating layer, the color filter of the first embodiment of the present invention, a flat layer, a microlens, and the like may be used as a semiconductor substrate (substrate). The structure provided above is mentioned.
Next, an imaging apparatus will be described as an example to which the solid-state imaging device of the present invention is applied. An example of the imaging device is a camera module.
FIG. 11 is a functional block diagram of the imaging apparatus. The imaging apparatus emits infrared light, the lens optical system 1, the solid-state imaging device 110, the signal processing unit 120, the signal switching unit 130, the control unit 140, the signal storage unit 150, the light emission control unit 160, and the like. Infrared LED 170 as a light emitting element and image output units 180 and 181 are provided. In addition, as the solid-state image sensor 110, the solid-state image sensor provided with the color filter of this invention mentioned above can be used. In addition, the configuration other than the solid-state imaging device 110 and the lens optical system 1 can be formed entirely or partially on the same semiconductor substrate. Regarding each configuration of the imaging apparatus, paragraphs 0032 to 0036 of JP 2011-233983 A can be referred to, and the contents thereof are incorporated in the present specification.
<第2実施態様>
 以下、本発明の第2実施態様のカラーフィルタの好適実施態様の具体例について詳述する。
 なお、本明細書において、可視光とは波長400nm以上700nm未満の領域の光を意図し、赤外光とは波長700nm~1000μmの領域の光を意図する。また、近赤外光とは波長700nm~2500nmの領域の光を意図する。また、赤色光とは中心波長が640nm程度の光(好ましくは、波長575nm以上670nm以下の光)を意図し、緑色光とは中心波長が530nm程度の光(好ましくは、波長480nm以上575nm未満の光)を意図し、青色光とは中心波長が435nm程度の光(好ましくは、波長400nm以上480nm未満の光)を意図する。また、第1赤外光とは第1赤外波長領域の光を意図し、第2赤外光とは第2赤外波長領域の光を意図し、第3赤外光とは第3赤外波長領域の光を意図する。
 本発明の第2実施態様のカラーフィルタは、暗闇中の被写体のカラー画像(カラー静止画またはカラー動画)を撮影するのに好適であり、暗視カメラ(特にカラー暗視カメラ)などに好適適用することができる。後段で詳述するように、本発明の第2実施態様のカラーフィルタは、3つの波長分布が異なる可視光と、3つの波長分布の異なる赤外光とを透過させることができる。そのため、例えば、被写体に所定の赤外光を照射して、被写体から反射された赤外光を本カラーフィルタに通して透過させると、3種の波長分布(波長強度分布)の異なる可視光と共に、3種の波長分布(波長強度分布)の異なる赤外光が得られる。透過された各赤外光をCCDイメージセンサなどの光イメージを撮像する撮像面に結像させ、各赤外光の面内強度分布を取得することにより、各赤外光による被写体の画像を得ることができる。得られた3種の画像のそれぞれに、例えば、赤、緑、及び青の単色を表色することにより、被写体の赤外線カラー画像を撮像することができる。なお、同時に透過している3種の可視光を用いて、被写体の可視光カラー画像を撮像することもできる。
 本実施態様のカラーフィルタの好適態様としては、カラーフィルタを構成する色画素中に、上述した多層膜層が含まれる態様が挙げられる。特に、多層膜層が、塗布液にて形成される層であることが好ましい。このような塗布液により形成される多層膜層を使用すれば、カラーフィルタの製造が工業的により容易となると共に、得られるカラーフィルタの光透過性にも優れる。
<Second Embodiment>
Hereinafter, specific examples of preferred embodiments of the color filter of the second embodiment of the present invention will be described in detail.
Note that in this specification, visible light refers to light in a wavelength region of 400 nm to less than 700 nm, and infrared light refers to light in a wavelength region of 700 nm to 1000 μm. Near-infrared light is intended for light in the wavelength region of 700 nm to 2500 nm. The red light is intended for light having a central wavelength of about 640 nm (preferably, light having a wavelength of 575 nm to 670 nm), and the green light is light having a central wavelength of about 530 nm (preferably having a wavelength of 480 nm to less than 575 nm). The blue light means light having a center wavelength of about 435 nm (preferably light having a wavelength of 400 nm or more and less than 480 nm). The first infrared light is intended for light in the first infrared wavelength region, the second infrared light is intended for light in the second infrared wavelength region, and the third infrared light is the third red light. Intended for light in the outside wavelength region.
The color filter of the second embodiment of the present invention is suitable for photographing a color image (color still image or color moving image) of a subject in the dark, and is preferably applied to a night vision camera (particularly a color night vision camera). can do. As will be described in detail later, the color filter according to the second embodiment of the present invention can transmit visible light having three different wavelength distributions and infrared light having three different wavelength distributions. Therefore, for example, when irradiating a subject with predetermined infrared light and transmitting the infrared light reflected from the subject through this color filter, together with visible light having three different wavelength distributions (wavelength intensity distributions) Three types of infrared light having different wavelength distributions (wavelength intensity distributions) can be obtained. Each transmitted infrared light is imaged on an imaging surface that captures an optical image such as a CCD image sensor, and an in-plane intensity distribution of each infrared light is obtained, thereby obtaining an image of the subject by each infrared light. be able to. An infrared color image of a subject can be captured by, for example, displaying red, green, and blue single colors on each of the three types of images obtained. Note that a visible light color image of a subject can also be captured using three types of visible light that are simultaneously transmitted.
As a suitable aspect of the color filter of this embodiment, the aspect in which the multilayer film layer mentioned above is contained in the color pixel which comprises a color filter is mentioned. In particular, the multilayer film layer is preferably a layer formed with a coating solution. If a multilayer film layer formed of such a coating solution is used, the production of the color filter becomes industrially easier and the light transmittance of the obtained color filter is excellent.
 図15に、本発明の第2実施態様のカラーフィルタの一部拡大断面図を示す。
 図15に示すように、カラーフィルタ300は複数の色画素を備え、基板12上に配置されている。色画素としては、赤色光及び第1赤外光を透過させる第1色画素30と、青色光及び第2赤外光を透過させる第2色画素32と、緑色光及び第3赤外光を透過させる第3色画素34とがある。
 まず、第1色画素30は、赤色着色剤を含有した着色剤含有組成物層(赤色着色層)からなる赤色画素(R)214、及び、屈折率の異なる複数の膜を積層した第1多層膜層36が積層されてなる。第1色画素30は、図16(A)に示すように、赤色光(R)及び第1赤外光(IR1)を透過させる。より具体的には、第1色画素30に入射された可視光領域の光のうち赤色光(R)のみが赤色画素(R)214を透過でき、第1色画素30に入射された赤外光領域の光のうち第1赤外光(IR1)のみが第1多層膜層36を透過できる。
 なお、図16(A)に示すように、赤色光(R)及び第1赤外光(IR1)とは連続した波長帯をなしているが、この態様には限定されず、赤色光の波長範囲と第1赤外光の波長範囲とは連続していなくてもよい。
FIG. 15 is a partially enlarged cross-sectional view of the color filter according to the second embodiment of the present invention.
As shown in FIG. 15, the color filter 300 includes a plurality of color pixels and is disposed on the substrate 12. The color pixels include a first color pixel 30 that transmits red light and first infrared light, a second color pixel 32 that transmits blue light and second infrared light, and green light and third infrared light. There is a third color pixel 34 to be transmitted.
First, the first color pixel 30 is a first multilayer in which a red pixel (R) 214 composed of a colorant-containing composition layer (red color layer) containing a red colorant and a plurality of films having different refractive indexes are laminated. A film layer 36 is laminated. As shown in FIG. 16A, the first color pixel 30 transmits red light (R) and first infrared light (IR1). More specifically, only the red light (R) among the light in the visible light region incident on the first color pixel 30 can pass through the red pixel (R) 214, and the infrared light incident on the first color pixel 30. Of the light in the light region, only the first infrared light (IR1) can pass through the first multilayer film layer 36.
As shown in FIG. 16A, the red light (R) and the first infrared light (IR1) have a continuous wavelength band, but the present invention is not limited to this mode, and the wavelength of the red light is not limited. The range and the wavelength range of the first infrared light may not be continuous.
 第2色画素32は、青色着色剤を含有した着色剤含有組成物層(青色着色層)からなる青色画素(B)218、及び、屈折率の異なる複数の膜を積層した第2多層膜層38が積層されてなる。第2色画素32は、図16(B)に示すように、青色光(B)及び第2赤外光(IR2)を透過させる。より具体的には、第2色画素32に入射された可視光領域の光のうち青色光(B)のみが青色画素(B)218を透過でき、第2色画素32に入射された赤外光領域の光のうち第2赤外光(IR2)のみが第2多層膜層38を透過できる。 The second color pixel 32 is a second multilayer film layer in which a blue pixel (B) 218 made of a colorant-containing composition layer (blue color layer) containing a blue colorant and a plurality of films having different refractive indexes are laminated. 38 is laminated. As shown in FIG. 16B, the second color pixel 32 transmits blue light (B) and second infrared light (IR2). More specifically, only the blue light (B) among the light in the visible light region incident on the second color pixel 32 can pass through the blue pixel (B) 218, and the infrared light incident on the second color pixel 32. Of the light in the light region, only the second infrared light (IR2) can pass through the second multilayer film layer 38.
 第3色画素34は、緑色着色剤を含有した着色剤含有組成物層(緑色着色層)からなる緑色画素(B)216、及び、屈折率の異なる複数の膜を積層した第3多層膜層40が積層されてなる。第3色画素34は、図16(C)に示すように、緑色光(G)及び第3赤外光(IR3)を透過させる。より具体的には、第3色画素34に入射された可視光領域の光のうち緑色光(G)のみが緑色画素(G)を透過でき、第3色画素34に入射された赤外光領域の光のうち第3赤外光(IR3)のみが第3多層膜層40を透過できる。 The third color pixel 34 includes a green pixel (B) 216 composed of a colorant-containing composition layer (green color layer) containing a green colorant, and a third multilayer film layer in which a plurality of films having different refractive indexes are laminated. 40 is laminated. As shown in FIG. 16C, the third color pixel 34 transmits green light (G) and third infrared light (IR3). More specifically, only the green light (G) among the light in the visible light region incident on the third color pixel 34 can pass through the green pixel (G), and the infrared light incident on the third color pixel 34. Of the light in the region, only the third infrared light (IR3) can pass through the third multilayer film layer 40.
 図16に示すように、上記カラーフィルタ300を透過する光としては、3種の可視光(第1可視波長領域の光である第1可視光、第2可視波長領域の光である第2可視光、及び、第3可視波長領域の光である第3可視光)、及び、3種の赤外光(第1赤外光、第2赤外光、及び、第3赤外光)が挙げられる。また、第1可視光である赤色光(R)、第2可視光である青色光(B)、及び、第3可視光である緑色光(G)は、互いに異なる波長分布を有し、かつ、第1赤外光(IR1)、第2赤外光(IR2)、及び、第3赤外光(IR3)も、互いに異なる波長分布を有する。
 なお、上記において述べた、3つの可視光の波長分布が異なるとは、言い換えると、各可視光の波長領域が互いに異なることを意図する。つまり、第1可視波長領域、第2可視波長領域、及び、第3可視波長領域の範囲が互いに異なることを意図する。
 また、3つの赤外光の波長分布が異なるとは、言い換えると、第1赤外波長領域、第2赤外波長領域、及び、第3赤外波長領域の範囲が互いに異なることを意図する。
 このように各色画素を透過した赤外光の中心波長の位置がそれぞれ異なっているため、この違いに基づいて、各赤外光から得られた画像(撮像信号)に色付けを行い、カラーの撮像信号を得ることが可能となる。より具体的には、赤色光及び第1赤外光により撮像された画像を赤色により表色し、青色光及び第2赤外光により撮像された画像を青色により表色し、緑色光及び第3赤外光により撮像された画像を緑色により表色することにより、可視光及び赤外光により得られた画像をカラー化することができる。
As shown in FIG. 16, the light passing through the color filter 300 includes three types of visible light (first visible light that is light in the first visible wavelength region and second visible light that is light in the second visible wavelength region). Light and third visible light that is light in the third visible wavelength region) and three types of infrared light (first infrared light, second infrared light, and third infrared light). It is done. Further, the red light (R) that is the first visible light, the blue light (B) that is the second visible light, and the green light (G) that is the third visible light have different wavelength distributions, and The first infrared light (IR1), the second infrared light (IR2), and the third infrared light (IR3) also have different wavelength distributions.
Note that the three wavelength distributions of visible light described above are different, in other words, the wavelength regions of the visible lights are different from each other. That is, the ranges of the first visible wavelength region, the second visible wavelength region, and the third visible wavelength region are intended to be different from each other.
In addition, the fact that the wavelength distributions of the three infrared lights are different means that the ranges of the first infrared wavelength region, the second infrared wavelength region, and the third infrared wavelength region are different from each other.
As described above, since the position of the center wavelength of the infrared light transmitted through each color pixel is different, the image (imaging signal) obtained from each infrared light is colored based on this difference, and color imaging is performed. A signal can be obtained. More specifically, an image captured with red light and first infrared light is displayed in red, an image captured with blue light and second infrared light is displayed in blue, and green light and first infrared light are displayed. By displaying an image captured with 3 infrared light in green, the image obtained with visible light and infrared light can be colored.
 なお、赤色画素(R)214、緑色画素(G)216、及び、青色画素(B)218の定義(例えば、形状、大きさ、材料、など)は、上述した第1実施態様で述べた定義と同義であり、着色剤含有組成物層(赤色着色層、緑色着色層、青色着色層)の定義も、上述した第1実施態様で述べた定義と同義である。
 また、第1多層膜層36、第2多層膜層38、及び、第3多層膜層40の定義は、上述した第1実施態様で述べた多層膜層の定義と同じである。より具体的には、第1多層膜層36、第2多層膜層38、及び、第3多層膜層40の構成(材料、厚み、層数、など)の好適範囲は、上述した第1実施態様で述べた多層膜層の説明と同じであり、高屈折層と低屈折層とが互いに交互に積層している態様が好適に挙げられる。
 なお、各多層膜層(第1多層膜層36、第2多層膜層38、及び、第3多層膜層40)を構成する層の屈折率及び膜厚を制御することにより、透過する赤外光の領域を調整できる。
 上述したように、各多層膜層は、塗布液を用いて製造することができるために、工業的な生産適正に優れる。
The definition (for example, shape, size, material, etc.) of the red pixel (R) 214, the green pixel (G) 216, and the blue pixel (B) 218 is the definition described in the first embodiment. The definition of the colorant-containing composition layer (red colored layer, green colored layer, blue colored layer) is also synonymous with the definition described in the first embodiment.
The definitions of the first multilayer film layer 36, the second multilayer film layer 38, and the third multilayer film layer 40 are the same as the definitions of the multilayer film layers described in the first embodiment. More specifically, the preferred ranges of the configuration (material, thickness, number of layers, etc.) of the first multilayer film layer 36, the second multilayer film layer 38, and the third multilayer film layer 40 are the same as those in the first embodiment described above. It is the same as the description of the multilayer film layer described in the embodiment, and an embodiment in which the high refractive layer and the low refractive layer are alternately laminated is preferably mentioned.
It is to be noted that the transmitted infrared is controlled by controlling the refractive index and the film thickness of each multilayer film layer (the first multilayer film layer 36, the second multilayer film layer 38, and the third multilayer film layer 40). The area of light can be adjusted.
As described above, since each multilayer film layer can be manufactured using a coating solution, it is excellent in industrial production suitability.
 図15の態様においては、第1赤外光(IR1)の中心波長、第2赤外光(IR2)の中心波長及び第3赤外光(IR2)の中心波長は、それぞれ近赤外光に該当することが好ましい。
 また、図15の態様においては、図16に示すように、第1赤外光(IR1)の中心波長が、第2赤外光(IR2)の中心波長及び第3赤外光(IR2)の中心波長よりも短波長側に位置し、第2赤外光の中心波長が、第3赤外光の中心波長よりも短波長側に位置する。言い換えると、第1赤外波長領域の中心波長が、第2赤外波長領域の中心波長及び第3赤外波長領域の中心波長よりも短波長側に位置し、第2赤外波長領域の中心波長が、第3赤外波長領域の中心波長よりも短波長側に位置する。なお、各赤外波長領域の中心波長とは、各赤外波長領域の中間の波長(最短波長と最長波長の中央値)を意図し、例えば、800~900nmに渡って特定の赤外波長領域がある場合、その中心波長は850nmとする。
 上記関係は、波長700~2000nmの範囲において満たされていることが好ましく、波長700~1200nmの範囲において満たされていることがより好ましい。つまり、波長700~2000nm(好ましくは、700~1200nm)の範囲における各光(第1赤外光、第2赤外光、第3赤外光)の中心波長が、上記関係を満たしていることが好ましい。
 なお、各光の中心波長とは、各光の波長領域の中心値である。
In the embodiment of FIG. 15, the center wavelength of the first infrared light (IR1), the center wavelength of the second infrared light (IR2), and the center wavelength of the third infrared light (IR2) are respectively near infrared light. It is preferable to correspond.
In the embodiment of FIG. 15, as shown in FIG. 16, the center wavelength of the first infrared light (IR1) is the same as that of the second infrared light (IR2) and the third infrared light (IR2). The center wavelength of the second infrared light is located on the shorter wavelength side than the center wavelength, and the center wavelength of the second infrared light is located on the shorter wavelength side than the center wavelength of the third infrared light. In other words, the center wavelength of the first infrared wavelength region is located on the shorter wavelength side than the center wavelength of the second infrared wavelength region and the center wavelength of the third infrared wavelength region, and the center of the second infrared wavelength region. The wavelength is located on the shorter wavelength side than the center wavelength in the third infrared wavelength region. The center wavelength of each infrared wavelength region is intended to be a wavelength intermediate between the infrared wavelength regions (the median value of the shortest wavelength and the longest wavelength), for example, a specific infrared wavelength region over 800 to 900 nm. If there is, the center wavelength is 850 nm.
The above relationship is preferably satisfied in the wavelength range of 700 to 2000 nm, more preferably in the wavelength range of 700 to 1200 nm. That is, the center wavelength of each light (first infrared light, second infrared light, and third infrared light) in the wavelength range of 700 to 2000 nm (preferably 700 to 1200 nm) satisfies the above relationship. Is preferred.
The center wavelength of each light is the center value of the wavelength region of each light.
 図16(A)に示すように、第1多層膜層36は、第1赤外波長領域(WR1)の光の透過率(第1赤外波長領域(WR1)における光の透過率)が50%以上(好ましくは60%以上、より好ましくは70%以上。上限は特に制限されないが、100%が挙げられる。)を示し、かつ、第2赤外波長領域(WR2)の光の透過率(第2赤外波長領域(WR2)における光の透過率)及び第3赤外波長領域(WR3)の光の透過率(第3赤外波長領域(WR3)における光の透過率)がそれぞれ20%以下(好ましくは10%以下、より好ましくは5%以下。下限は特に制限されないが、0%が挙げられる。)を示すことが好ましい。すなわち、第1多層膜層36は、第1赤外波長領域(WR1)の光の透過率が、第2赤外波長領域(WR2)の光の透過率及び第3赤外波長領域(WR3)の光の透過率よりも高いことが好ましい。
 図16(B)に示すように、第2多層膜層38は、第2赤外波長領域(WR2)の光の透過率が50%以上(好ましくは60%以上、より好ましくは70%以上。上限は特に制限されないが、100%が挙げられる。)を示し、かつ、第1赤外波長領域(WR1)の光の透過率及び第3赤外波長領域(WR3)の光の透過率がそれぞれ20%以下(好ましくは10%以下、より好ましくは5%以下。下限は特に制限されないが、0%が挙げられる。)を示すことが好ましい。すなわち、第2多層膜層38は、第2赤外波長領域(WR2)の光の透過率が、第1赤外波長領域(WR1)の光の透過率及び第3赤外波長領域(WR3)の光の透過率よりも高いことが好ましい。
 図16(C)に示すように、第3多層膜層40は、第3赤外波長領域(WR3)の光の透過率が50%以上(好ましくは60%以上、より好ましくは70%以上。上限は特に制限されないが、100%が挙げられる。)を示し、かつ、第1赤外波長領域(WR1)の光の透過率及び第2赤外波長領域(WR2)の光の透過率がそれぞれ20%以下(好ましくは10%以下、より好ましくは5%以下。下限は特に制限されないが、0%が挙げられる。)を示すことが好ましい。すなわち、第3多層膜層40は、第3赤外波長領域(WR3)の光の透過率が、第1赤外波長領域(WR1)の光の透過率及び第2赤外波長領域(WR2)の光の透過率よりも高いことが好ましい。
 上記のように、各多層膜層が特定の赤外波長領域において高い透過率を示す場合、それぞれの赤外波長領域にあわせて被写体に照射する赤外光を選択することにより、より鮮明なカラー画像を得ることができる。具体的には、第1赤外波長領域~第3赤外波長領域のそれぞれの範囲に、中心波長が含まれる光を照射できる3種の赤外光光源を選択し、被写体に照射する。被写体から反射された光を上記カラーフィルタに通すことより、特定の色画素において特定の赤外光のみが選択的に透過できるようにすることができ、結果として主に特定の赤外光に由来する画像を得ることができ、より鮮明なカラー画像を形成できる。
 第1赤外波長領域(WR1)の幅、第2赤外波長領域(WR2)の幅、及び、第3赤外波長領域(WR3)の幅は、暗視カメラ等への応用の点からは、それぞれ30nm以上であることが好ましく、40nm以上であることがより好ましい。上限は特に制限されないが、100nm以下の場合が多く、60nm以下の場合が多い。
 また、第1赤外波長領域の中心波長と第2赤外波長領域の中心波長とは、少なくとも30nm以上(好ましくは50nm以上、より好ましくは70nm以上。上限は特に制限されないが、100nm以下が好ましい。)離れていることが好ましい。
 さらに、第2赤外波長領域の中心波長と第3赤外波長領域の中心波長とは、少なくとも30nm以上(好ましくは50nm以上、より好ましくは70nm以上。上限は特に制限されないが、100nm以下が好ましい。)離れていることが好ましい。
As shown in FIG. 16A, the first multilayer film layer 36 has a light transmittance in the first infrared wavelength region (WR1) (light transmittance in the first infrared wavelength region (WR1)) of 50. % Or more (preferably 60% or more, more preferably 70% or more. The upper limit is not particularly limited, but 100% can be mentioned), and the light transmittance in the second infrared wavelength region (WR2) ( The light transmittance in the second infrared wavelength region (WR2)) and the light transmittance in the third infrared wavelength region (WR3) (light transmittance in the third infrared wavelength region (WR3)) are each 20%. It is preferable to show the following (preferably 10% or less, more preferably 5% or less. Although the lower limit is not particularly limited, 0% may be mentioned). That is, the first multilayer film layer 36 has a light transmittance in the first infrared wavelength region (WR1), a light transmittance in the second infrared wavelength region (WR2), and a third infrared wavelength region (WR3). It is preferable that the light transmittance is higher.
As shown in FIG. 16B, the second multilayer film layer 38 has a light transmittance of 50% or more (preferably 60% or more, more preferably 70% or more) in the second infrared wavelength region (WR2). The upper limit is not particularly limited, but 100% may be mentioned.) And the light transmittance in the first infrared wavelength region (WR1) and the light transmittance in the third infrared wavelength region (WR3) are respectively It is preferably 20% or less (preferably 10% or less, more preferably 5% or less. The lower limit is not particularly limited, but 0% may be mentioned). That is, the second multilayer film 38 has a light transmittance in the second infrared wavelength region (WR2), a light transmittance in the first infrared wavelength region (WR1), and a third infrared wavelength region (WR3). It is preferable that the light transmittance is higher.
As shown in FIG. 16C, the third multilayer film layer 40 has a light transmittance of 50% or more (preferably 60% or more, more preferably 70% or more) in the third infrared wavelength region (WR3). The upper limit is not particularly limited, but 100% may be mentioned.) And the light transmittance in the first infrared wavelength region (WR1) and the light transmittance in the second infrared wavelength region (WR2) are respectively It is preferably 20% or less (preferably 10% or less, more preferably 5% or less. The lower limit is not particularly limited, but 0% may be mentioned). That is, the third multilayer film layer 40 has light transmittance in the third infrared wavelength region (WR3), light transmittance in the first infrared wavelength region (WR1), and second infrared wavelength region (WR2). It is preferable that the light transmittance is higher.
As described above, when each multilayer film layer shows a high transmittance in a specific infrared wavelength region, a clearer color can be obtained by selecting the infrared light irradiated to the subject in accordance with each infrared wavelength region. An image can be obtained. Specifically, three types of infrared light sources that can irradiate light having a center wavelength in each of the first infrared wavelength region to the third infrared wavelength region are selected, and the subject is irradiated. By passing the light reflected from the subject through the color filter, it is possible to selectively transmit only specific infrared light in a specific color pixel. As a result, the light is mainly derived from specific infrared light. Image can be obtained, and a clearer color image can be formed.
The width of the first infrared wavelength region (WR1), the width of the second infrared wavelength region (WR2), and the width of the third infrared wavelength region (WR3) are from the viewpoint of application to a night vision camera or the like. These are each preferably 30 nm or more, and more preferably 40 nm or more. The upper limit is not particularly limited, but is often 100 nm or less, and is often 60 nm or less.
The center wavelength of the first infrared wavelength region and the center wavelength of the second infrared wavelength region are at least 30 nm or more (preferably 50 nm or more, more preferably 70 nm or more. The upper limit is not particularly limited, but is preferably 100 nm or less. .) It is preferable that they are separated.
Further, the center wavelength of the second infrared wavelength region and the center wavelength of the third infrared wavelength region are at least 30 nm or more (preferably 50 nm or more, more preferably 70 nm or more. The upper limit is not particularly limited, but is preferably 100 nm or less. .) It is preferable that they are separated.
 また、暗視カメラ等への応用の点からは、第1赤外波長領域(WR1)が波長700~800nmの間に位置し、第2赤外波長領域(WR2)が波長900~1000nmの間に位置し、第3赤外波長領域(WR3)が波長1050~1200nmの間に位置する態様が好ましい。
 また、第1赤外波長領域(WR1)が波長700~800nmの間に位置し、第2赤外波長領域(WR2)が波長800~900nmの間に位置し、第3赤外波長領域(WR3)が波長900~1000nmの間に位置する様態も好ましい。
From the viewpoint of application to a night vision camera or the like, the first infrared wavelength region (WR1) is located between wavelengths 700 to 800 nm, and the second infrared wavelength region (WR2) is between wavelengths 900 to 1000 nm. And the third infrared wavelength region (WR3) is preferably located between wavelengths 1050 and 1200 nm.
The first infrared wavelength region (WR1) is located between wavelengths 700 to 800 nm, the second infrared wavelength region (WR2) is located between wavelengths 800 to 900 nm, and the third infrared wavelength region (WR3) ) Is preferably located between wavelengths of 900 to 1000 nm.
 上記図15においては、第1色画素が赤色画素(R)214及び第1多層膜層36が積層してなり、第2色画素が青色画素(B)218及び第2多層膜層38が積層してなり、第3色画素が緑色画素(G)216及び第3多層膜層40からなる態様について述べたが、この組み合わせには限定されない。
 例えば、赤色画素(R)214及び第1多層膜層36から構成される色画素、青色画素(R)218及び第3多層膜層40から構成されて色画素、及び、緑色画素(G)216及び第2多層膜層38から構成される色画素を備える態様であってもよい。
 また、赤色画素(R)214及び第2多層膜層38から構成される色画素、青色画素(R)218及び第1多層膜層36から構成されて色画素、及び、緑色画素(G)216及び第3多層膜層40から構成される色画素を備える態様であってもよい。
 また、赤色画素(R)214及び第2多層膜層38から構成される色画素、青色画素(R)218及び第3多層膜層40から構成されて色画素、及び、緑色画素(G)216及び第1多層膜層36から構成される色画素を備える態様であってもよい。
 また、赤色画素(R)214及び第3多層膜層40から構成される色画素、青色画素(R)218及び第1多層膜層36から構成されて色画素、及び、緑色画素(G)216及び第2多層膜層38から構成される色画素を備える態様であってもよい。
 また、赤色画素(R)214及び第3多層膜層40から構成される色画素、青色画素(R)218及び第2多層膜層38から構成されて色画素、及び、緑色画素(G)216及び第1多層膜層36から構成される色画素を備える態様であってもよい。
In FIG. 15, the first color pixel is formed by stacking the red pixel (R) 214 and the first multilayer film layer 36, and the second color pixel is formed by stacking the blue pixel (B) 218 and the second multilayer film layer 38. Thus, although the aspect in which the third color pixel is composed of the green pixel (G) 216 and the third multilayer film layer 40 has been described, the present invention is not limited to this combination.
For example, a color pixel composed of a red pixel (R) 214 and a first multilayer film layer 36, a color pixel composed of a blue pixel (R) 218 and a third multilayer film layer 40, and a green pixel (G) 216 And the aspect provided with the color pixel comprised from the 2nd multilayer film layer 38 may be sufficient.
Also, a color pixel composed of a red pixel (R) 214 and a second multilayer film layer 38, a color pixel composed of a blue pixel (R) 218 and a first multilayer film layer 36, and a green pixel (G) 216. And the aspect provided with the color pixel comprised from the 3rd multilayer film layer 40 may be sufficient.
In addition, a color pixel composed of a red pixel (R) 214 and a second multilayer film layer 38, a color pixel composed of a blue pixel (R) 218 and a third multilayer film layer 40, and a green pixel (G) 216. And the aspect provided with the color pixel comprised from the 1st multilayer film layer 36 may be sufficient.
Also, a color pixel composed of the red pixel (R) 214 and the third multilayer film layer 40, a color pixel composed of the blue pixel (R) 218 and the first multilayer film layer 36, and a green pixel (G) 216. And the aspect provided with the color pixel comprised from the 2nd multilayer film layer 38 may be sufficient.
Further, the color pixel composed of the red pixel (R) 214 and the third multilayer film layer 40, the color pixel composed of the blue pixel (R) 218 and the second multilayer film layer 38, and the green pixel (G) 216. And the aspect provided with the color pixel comprised from the 1st multilayer film layer 36 may be sufficient.
 また、上記図16では、3種の赤外光(第1赤外光(IR1)、第2赤外光(IR2)、及び、第3赤外光(IR3))の中心波長が異なる態様について詳述したが、この態様には限定されず、第1の赤外光(IR3)の波長範囲が第2赤外光(IR2)の波長範囲及び第3赤外光(IR2)の波長範囲よりも短波長側に位置し、第2赤外光の波長範囲が、第3赤外光の波長範囲よりも短波長側に位置する態様であってもよい。 Further, in FIG. 16, the three wavelengths of the infrared light (first infrared light (IR1), second infrared light (IR2), and third infrared light (IR3)) are different from each other. Although it explained in full detail, it is not limited to this aspect, The wavelength range of 1st infrared light (IR3) is from the wavelength range of 2nd infrared light (IR2), and the wavelength range of 3rd infrared light (IR2). May be positioned on the short wavelength side, and the wavelength range of the second infrared light may be positioned on the short wavelength side of the wavelength range of the third infrared light.
 また、上記の第2実施態様のカラーフィルタには、各色画素を透過する光の波長範囲を制御するために、さらに赤外光吸収剤(例えば、赤外光吸収色素)が含まれた赤外光吸収層が含まれていてもよい。赤外光吸収層の配置位置は特に制限されず、例えば、第1色画素に赤外光吸収層が含まれる場合、第1多層膜層の赤色画素とは反対側の表面に赤外光吸収層が配置されていてもよい。 Further, the color filter of the second embodiment described above further includes an infrared ray containing an infrared ray absorbent (for example, an infrared ray absorbing dye) in order to control the wavelength range of light transmitted through each color pixel. A light absorbing layer may be included. The arrangement position of the infrared light absorption layer is not particularly limited. For example, when the infrared light absorption layer is included in the first color pixel, the infrared light absorption is performed on the surface of the first multilayer film layer opposite to the red pixel. A layer may be disposed.
 本発明の第2実施態様のカラーフィルタは、種々の用途に適用でき、例えば、固体撮像素子が挙げられる。固体撮像素子の構成は特に制限されず、公知の態様が挙げられるが、例えば、フォトダイオード、絶縁層、本発明の第2実施態様のカラーフィルタ、平坦層、マイクロレンズなどを半導体基板(基板)上に設けられた構成が挙げられる。
 なお、本発明の固体撮像素子を適用した例として撮像装置に関しては、上記図11で説明した態様が挙げられる。
 撮像装置の好適な例としては、特開2011-50049号公報に記載の撮像装置が挙げられる。より具体的には、撮像装置は、照射部(具体的には赤外LED)、撮像部(具体的には上述した固体撮像素子)及び表色設定部を備え、照射部は、異なる波長強度分布を有する赤外線を被写体に照射し、撮像部は、被写体により反射された異なる波長強度分布を有するそれぞれの赤外線による被写体の画像を撮像してそれぞれの画像を表わす画像情報を形成し、表色設定部は、形成された画像情報が表わす画像それぞれを異なる単色により表色するための表色情報を画像情報に設定する。このような撮像装置によれば、暗闇であっても、できるだけ自然な配色を有するカラー画像を形成することができる。
 ここで、表色とは、可視光線下における画像の明度又は特定の物理量の面内強度分布を、色の明度で表現することである。
 撮像部は、CCD(Charge Coupled Device)イメージセンサーないしCMOS(Complementary Metal Organic Semiconductor)イメージセンサーないしAPD(Avalanche Photodiode)イメージセンサーなどの固体撮像素子、ないしは、イメージディセクタないしアイコノスコープないしイメージオルシコンないしビジコンないしサチコンないしプランビコンないしニュービコンないしニューコスビコンないしカルニコンないしトリニコンないしHARP(High-gain Avalanche Rushing amorphous Photoconductor)ないし磁気フォーカス型イメージインテンシファイアないしは電場フォーカス型イメージインテンシファイアないしマイクロチャンネルプレートなどの撮像管ないし撮像板、ないしは、MEMS(Micro Electro Mechanical System)ボロメーターなどのボロメーター系撮影素子、ないしは、焦電系撮影素子などによる構成である。
 表色設定とは、画像を表示する際、画像の明度をどのような色により表色するかを予め設定しておくことである。表色設定は、例えば、画像情報又は画像信号の伝送のタイミングで設定することや、基準トリガーに逐次的に画像情報又は画像信号を対応させることにより設定することが出来る。また、表色情報又は表色設定信号を別途生成することで設定することや、画像情報又は画像信号に表色情報又は表色設定信号を重畳させることにより設定することや、メモリにおける番地で設定することや、信号処理おけるラベル付けやフラッグ付けにより設定すること等により行うことも出来る。
 このような撮像装置としては、特開2011-50049号公報(対応する米国特許出願公開第2012/0212619号明細書)に記載の画像撮影装置(撮像装置)を参酌でき、これらの内容は本願明細書に組み込まれる。上記撮像装置は、さらに、特開2011-50049号公報(対応する米国特許出願公開第2012/0212619号明細書)に記載の制御処理部、表示部、画像保存部、分離部などを有していてもよい。
The color filter of the second embodiment of the present invention can be applied to various applications, and examples thereof include a solid-state image sensor. The configuration of the solid-state imaging device is not particularly limited and may include known modes. For example, a photodiode, an insulating layer, a color filter according to the second embodiment of the present invention, a flat layer, a microlens, and the like may be used as a semiconductor substrate (substrate). The structure provided above is mentioned.
As an example to which the solid-state imaging device of the present invention is applied, the aspect described with reference to FIG.
As a suitable example of the imaging apparatus, there is an imaging apparatus described in Japanese Patent Application Laid-Open No. 2011-50049. More specifically, the imaging apparatus includes an irradiation unit (specifically, an infrared LED), an imaging unit (specifically, the above-described solid-state imaging device), and a color specification setting unit, and the irradiation unit has different wavelength intensities. Irradiates the subject with infrared rays having a distribution, and the imaging unit picks up images of the subjects with different infrared intensity having different wavelength intensity distributions reflected by the subject, forms image information representing each image, and sets the color specification The unit sets color information for displaying each image represented by the formed image information with a different single color in the image information. According to such an imaging apparatus, it is possible to form a color image having a natural color arrangement as much as possible even in the dark.
Here, the color specification means that the brightness of an image under visible light or the in-plane intensity distribution of a specific physical quantity is expressed by the brightness of the color.
The imaging unit is a solid-state imaging device such as a CCD (Charge Coupled Device) image sensor, a CMOS (Complementary Metal Organic Semiconductor) image sensor, an APD (Avalanche Photodiode or Iconoscope), or an image dissector or iconoscope. Sachicon, Plumbicon, New Bicon, New Cosbicon, Carnicon, Trinicon, HARP (High-gain Avalanche Rushing Amorphous Photoconductor), Magnetic Focus Image Intensifier, or Electric Field Focus Image An imaging tube or imaging plate such as an intensifier or a microchannel plate, or a bolometer imaging element such as a MEMS (Micro Electro Mechanical System) bolometer, or a pyroelectric imaging element.
The color specification setting is to set in advance what color the brightness of the image is displayed when displaying the image. The color setting can be set, for example, by setting the transmission timing of the image information or image signal, or by sequentially corresponding the image information or image signal to the reference trigger. Also, setting by separately generating color information or color setting signal, setting by superimposing color information or color setting signal on image information or image signal, setting by address in memory It can also be performed by setting or labeling or flagging in signal processing.
As such an image pickup apparatus, an image pickup apparatus (image pickup apparatus) described in JP 2011-50049 A (corresponding US Patent Application Publication No. 2012/0212619) can be referred to, and the contents thereof are described in this specification. Embedded in the book. The imaging apparatus further includes a control processing unit, a display unit, an image storage unit, a separation unit, and the like described in JP 2011-50049 A (corresponding US Patent Application Publication No. 2012/0212619). May be.
 以下、本発明の実施例を説明するが、本発明は、これらの実施例に何ら限定されるものではない。なお、特に断りのない限り、「部」、「%」は、質量基準である。 Examples of the present invention will be described below, but the present invention is not limited to these examples. Unless otherwise specified, “part” and “%” are based on mass.
<実施例A>
〔高屈分散液B-1の調製〕
 下記組成の混合液を、0.3mm径のジルコニアビーズを使用して、ビーズミル(減圧機構付き高圧分散機NANO-3000-10(日本ビーイーイー(株)製))で、3時間、混合して、高屈分散液B-1を調製した。
・酸化チタン                           28.9部
・分散剤:特開2014-62221号公報の実施例に記載の分散剤(C-5)(以下参照) 6.4部
・有機溶剤:プロピレングリコールメチルエーテルアセテート(PGMEA)
                                 64.7部
<Example A>
[Preparation of highly bent dispersion B-1]
A mixed solution having the following composition was mixed for 3 hours using a zirconia bead having a diameter of 0.3 mm in a bead mill (high pressure disperser NANO-3000-10 with a pressure reducing mechanism (manufactured by Nippon BEE Co., Ltd.)). A highly bent dispersion B-1 was prepared.
Titanium oxide 28.9 parts Dispersant: Dispersant (C-5) described in Examples of JP-A-2014-62221 (see below) 6.4 parts Organic solvent: Propylene glycol methyl ether acetate (PGMEA )
64.7 parts
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
〔高屈折薬液1〕
 下記の成分を混合して、高屈折薬液1を調製した。
・高屈分散液B-1                        84.7部
・下記アルカリ可溶性樹脂1の45質量%PGMEA溶液        0.9部
・エポキシ樹脂(EX211L ナガセケムテックス)             2.9部
・エポキシ樹脂(JER157S65 三菱化学)                0.7部
・界面活性剤1:DIC株式会社製Megafac
 F-781Fの10質量%PGMEA溶液             3.4部
・重合禁止剤:p-メトキシフェノール              0.002部
・有機溶剤1:PGMEA                     7.4部
[High refractive chemical solution 1]
The following components were mixed to prepare a highly refractive chemical solution 1.
・ High bending dispersion B-1 84.7 parts ・ 45 parts by mass of PGMEA 45% by weight of the following alkali-soluble resin 1 ・ Epoxy resin (EX211L Nagase ChemteX) 2.9 parts ・ Epoxy resin (JER157S65 Mitsubishi Chemical) 0 .7 parts Surfactant 1: Megafac manufactured by DIC Corporation
F-781F in 10 wt% PGMEA solution 3.4 parts Polymerization inhibitor: p-methoxyphenol 0.002 parts Organic solvent 1: PGMEA 7.4 parts
 アルカリ可溶性樹脂1(以下構造式)
Figure JPOXMLDOC01-appb-C000019
Alkali-soluble resin 1 (hereinafter structural formula)
Figure JPOXMLDOC01-appb-C000019
〔低屈折薬液1の調製〕
 下記の成分を混合して、低屈折薬液1を調製した。なお、得られた低屈折薬液1には、数珠状コロイダルシリカ粒子が含まれていた。
・低屈折組成物B-1 (特開2013-253145 実施例1-1)  75.3部
・界面活性剤1:DIC株式会社製Megafac
 F-781Fの10質量%PGMEA溶液              0.1部
・有機溶剤1:乳酸エチル                     24.6部
[Preparation of low refractive chemical 1]
The following components were mixed to prepare a low refractive chemical solution 1. In addition, the obtained low refractive chemical liquid 1 contained beaded colloidal silica particles.
Low refractive composition B-1 (JP 2013-253145 Example 1-1) 75.3 parts Surfactant 1: Megafac manufactured by DIC Corporation
0.1 parts of 10 mass% PGMEA solution of F-781F, organic solvent 1: 24.6 parts of ethyl lactate
(多層膜層の製造(その1))
 上記高屈折薬液1(n=1.91)、低屈折薬液1(n=1.23)、低屈折薬液2(n=1.4)の3種の薬液を用いて多層膜層の作製を行った。なお、上記カッコ中のnは各液より形成される層の屈折率を意図する。
 なお、低屈折薬液2としては、特開2014-74874(WO2013/099945)の段落0376段落以降の実施例に記載のシロキサン硬化性組成物A-1を用いた。
 低屈折薬液1及び2はスピンコーターを用いて塗布し、ホットプレートにて100℃で120秒間乾燥することで膜を形成した。高屈折薬液1はスピンコーターを用いて塗布し、ホットプレートにて200℃にて1分間乾燥することで膜を形成した。
 基板(8インチガラスウェハ)上にて、上記塗布、加熱工程を繰り返すことで表1に記載の多層膜層を作製した。なお、表1中の光学膜厚は、(物理膜厚×屈折率)を意図する。また、表1中の「1」~「21」は、基板側から配置された層の番号を表し、例えば、「2」は基板側から2層目の層の特性を表す。
(Manufacture of multilayer layers (part 1))
Fabrication of a multilayer film layer using the three types of chemical solutions, the high refractive chemical solution 1 (n = 1.91), the low refractive chemical solution 1 (n = 1.23), and the low refractive chemical solution 2 (n = 1.4). went. Note that n in the parentheses means the refractive index of a layer formed from each liquid.
As the low-refractive-index chemical solution 2, the siloxane curable composition A-1 described in Examples after paragraph 0376 of JP 2014-74874 (WO2013 / 099945) was used.
The low refractive chemical solutions 1 and 2 were applied using a spin coater and dried on a hot plate at 100 ° C. for 120 seconds to form a film. The high refractive chemical solution 1 was applied using a spin coater and dried at 200 ° C. for 1 minute on a hot plate to form a film.
On the substrate (8-inch glass wafer), the above-described coating and heating steps were repeated to produce a multilayer film layer described in Table 1. In addition, the optical film thickness in Table 1 intends (physical film thickness × refractive index). In Table 1, “1” to “21” represent the numbers of layers arranged from the substrate side. For example, “2” represents the characteristics of the second layer from the substrate side.
Figure JPOXMLDOC01-appb-T000020
 
 
Figure JPOXMLDOC01-appb-T000020
 
 
 表1中の多層膜層1及び多層膜層2の透過スペクトル図を図12(A)及び(B)にそれぞれ示す。多層膜層1及び多層膜層2は、所定の波長領域の透過率が低いことが確認された。
 具体的には、多層膜層1においては、波長480~500nmの範囲内での透過率は30%以下であり、また、多層膜層2においては、波長580~600nmの範囲内での透過率が30%以下であった。
Transmission spectrum diagrams of the multilayer film layer 1 and the multilayer film layer 2 in Table 1 are shown in FIGS. It was confirmed that the multilayer film layer 1 and the multilayer film layer 2 have low transmittance in a predetermined wavelength region.
Specifically, in the multilayer film layer 1, the transmittance in the wavelength range of 480 to 500 nm is 30% or less, and in the multilayer film layer 2, the transmittance in the wavelength range of 580 to 600 nm. Was 30% or less.
<実施例1>
 図2~4に示すように、基板上の所定の位置(図2~4に記載の第1多層膜層24及び第2多層膜層26の位置)に上記方法(多層膜層の製造(その1))にて多層膜層1を作製して、基板上の所定の位置に赤色画素(図2の赤色画素14に該当)、緑色画素(図2の緑色画素16に該当)、及び、青色画素(図2の青色画素18に該当)をそれぞれ配置し、さらに、多層膜層1上に緑色画素(図4の第1多層膜層24上の緑色画素16に該当)を、多層膜層1上に青色画素(図4の第2多層膜層26上の青色画素18に該当)をそれぞれ配置して、カラーフィルタを作製した。
 なお、多層膜層1を作製する際のパターニングの手順としては、特開2013-54081号公報の段落0418~0421の手順を参照して、実施した。
<Example 1>
As shown in FIGS. 2 to 4, the above-described method (manufacture of multilayer layers (parts thereof) is performed at predetermined positions on the substrate (positions of the first multilayer layer 24 and the second multilayer layer 26 described in FIGS. 2 to 4)). 1)), the multilayer film layer 1 is prepared, and a red pixel (corresponding to the red pixel 14 in FIG. 2), a green pixel (corresponding to the green pixel 16 in FIG. 2), and a blue color at predetermined positions on the substrate. Each pixel (corresponding to the blue pixel 18 in FIG. 2) is arranged, and further, a green pixel (corresponding to the green pixel 16 on the first multilayer film layer 24 in FIG. 4) is arranged on the multilayer film layer 1. A blue pixel (corresponding to the blue pixel 18 on the second multilayer film layer 26 in FIG. 4) was arranged on each of them to produce a color filter.
The patterning procedure for producing the multilayer film layer 1 was carried out with reference to the procedures in paragraphs 0418 to 0421 of JP2013-54081A.
 また、赤色画素、緑色画素、及び、青色画素は、それぞれ各着色剤(赤色着色剤、緑色着色剤、又は、青色着色剤)を含む組成物を用いて作製された画素である。
 赤色着色剤を含む組成物としては、特開2012-198408号公報の段落0273及び0274に記載の「赤色の着色感放射線性組成物RS」を使用した。
 緑色着色剤を含む組成物としては、特開2012-198408号公報の段落0272に記載の「着色感放射線性組成物GS-1」を使用した。
 青色着色剤を含む組成物としては、特開2012-198408号公報の段落0276に記載の「青色の着色感放射線性組成物BS」を使用した。
 なお、各色画素のパターニング方法としては、特開2012-198408号公報の段落0278~0280の手順を参照して実施した。
Moreover, a red pixel, a green pixel, and a blue pixel are pixels produced using the composition containing each colorant (a red colorant, a green colorant, or a blue colorant), respectively.
As a composition containing a red colorant, “red colored radiation-sensitive composition RS” described in paragraphs 0273 and 0274 of JP2012-198408A was used.
As a composition containing a green colorant, “colored radiation-sensitive composition GS-1” described in paragraph 0272 of JP2012-198408A was used.
As a composition containing a blue colorant, “blue colored radiation-sensitive composition BS” described in paragraph 0276 of JP2012-198408A was used.
The patterning method for each color pixel was carried out with reference to the procedures in paragraphs 0278 to 0280 of JP2012-198408A.
 図13(A)に赤色画素、緑色画素、及び、青色画素の透過スペクトル図を示すと共に、図13(B)に赤色画素、多層膜層1と緑色画素との積層型色画素、及び、多層膜層1と青色画素との積層型色画素の透過スペクトルを示す。
 なお、図13(A)中、赤色画素の透過スペクトルは「R」、緑色画素の透過スペクトルは「G1」、青色画素の透過スペクトルは「B1」で表され、図13(B)中、赤色画素の透過スペクトルは「R」、多層膜層1と緑色画素との積層型色画素の透過スペクトルは「G2」、多層膜層1と青色画素との積層型色画素の透過スペクトルは「B2」で表される。
 上記スペクトルから分かるように、多層膜層1を使用することにより、緑色画素及び青色画素とは異なる色の色画素を作製することが可能となる。つまり、多色のカラーフィルタを作製することができた。
FIG. 13A shows a transmission spectrum diagram of a red pixel, a green pixel, and a blue pixel, and FIG. 13B shows a red pixel, a stacked color pixel of the multilayer film layer 1 and the green pixel, and a multilayer pixel. The transmission spectrum of the laminated color pixel of the film layer 1 and a blue pixel is shown.
In FIG. 13A, the transmission spectrum of the red pixel is represented by “R”, the transmission spectrum of the green pixel is represented by “G1”, and the transmission spectrum of the blue pixel is represented by “B1”. In FIG. The transmission spectrum of the pixel is “R”, the transmission spectrum of the multilayer color pixel of the multilayer film layer 1 and the green pixel is “G2”, and the transmission spectrum of the multilayer color pixel of the multilayer film layer 1 and the blue pixel is “B2”. It is represented by
As can be seen from the spectrum, by using the multilayer film layer 1, it is possible to produce a color pixel having a color different from that of the green pixel and the blue pixel. That is, a multicolor color filter could be produced.
<実施例2>
 多層膜層1の代わりに多層膜層2を使用し、かつ、多層膜層1上に配置された青色画素の代わりに赤色画素を使用した以外は、実施例1と同様の手順に従って、多層のカラーフィルタを製造した。
 図14(A)に赤色画素、緑色画素、及び、青色画素の透過スペクトル図を示すと共に、図14(B)に青色画素、多層膜層2と緑色画素との積層型色画素、及び、多層膜層2と赤色画素との積層型色画素の透過スペクトルを示す。
 なお、図14(A)中、赤色画素の透過スペクトルは「R」、緑色画素の透過スペクトルは「G1」、青色画素の透過スペクトルは「B1」で表され、図14(B)中、青色画素の透過スペクトルは「B」、多層膜層2と緑色画素との積層型色画素の透過スペクトルは「G3」、多層膜層2と赤色画素との積層型色画素の透過スペクトルは「R3」で表される。
 上記スペクトルから分かるように、多層膜層2を使用することにより、緑色画素及び赤色画素とは異なる色の色画素を作製することが可能となる。つまり、多色のカラーフィルタを作製することができた。
<Example 2>
The multilayer film layer 2 is used in place of the multilayer film layer 1 and a red pixel is used in place of the blue pixel arranged on the multilayer film layer 1. A color filter was manufactured.
FIG. 14A shows a transmission spectrum diagram of a red pixel, a green pixel, and a blue pixel, and FIG. 14B shows a blue pixel, a stacked color pixel composed of a multilayer film layer 2 and a green pixel, and a multilayer pixel. The transmission spectrum of the laminated color pixel of the film layer 2 and the red pixel is shown.
In FIG. 14A, the transmission spectrum of the red pixel is represented by “R”, the transmission spectrum of the green pixel is represented by “G1”, and the transmission spectrum of the blue pixel is represented by “B1”. The transmission spectrum of the pixel is “B”, the transmission spectrum of the multilayer color pixel of the multilayer film layer 2 and the green pixel is “G3”, and the transmission spectrum of the multilayer color pixel of the multilayer film layer 2 and the red pixel is “R3”. It is represented by
As can be seen from the spectrum, by using the multilayer film layer 2, it is possible to produce a color pixel having a color different from that of the green pixel and the red pixel. That is, a multicolor color filter could be produced.
 なお、上記では赤色画素、緑色画素、及び、青色画素を用いた態様について述べたが、赤色画素、緑色画素、及び、青色画素の代わりに、マゼンタ、シアン及び黄色(イエロー)の色画素を用いた場合も、上記実施例1及び2と同様に、多層膜層1または多層膜層2を使用することにより、多色のカラーフィルタを作製することができた。
 なお、マゼンタ、シアン及び黄色(イエロー)の色画素を作製するために使用した組成物としては、特開2014-41301号公報の実施例欄に記載の「着色感放射線性組成物M-1」「着色感放射線性組成物Cy-1」及び「着色感放射線性組成物Y-1」をそれぞれ使用した。
In addition, although the aspect using the red pixel, the green pixel, and the blue pixel has been described above, magenta, cyan, and yellow (yellow) color pixels are used instead of the red pixel, the green pixel, and the blue pixel. Also in the case of using the multilayer film layer 1 or the multilayer film layer 2 as in Examples 1 and 2, a multicolor color filter could be produced.
In addition, as a composition used for producing magenta, cyan, and yellow (yellow) color pixels, “colored radiation-sensitive composition M-1” described in Examples in JP-A-2014-41301 is used. “Colored radiation-sensitive composition Cy-1” and “colored radiation-sensitive composition Y-1” were used, respectively.
<実施例B>
 図15に示すように、基板上の所定の位置に後述する(多層膜層の製造(その2))に記載の方法にて第1多層膜層36、第2多層膜層38、及び、第3多層膜層40を作製し、さらに、第1多層膜層36上に赤色画素(図15の赤色画素214に該当)、第2多層膜層38上に青色画素(図15の青色画素218に該当)、及び、第3多層膜層40上に緑色画素(図15の緑色画素216に該当)をそれぞれ配置して、カラーフィルタを作製した。
 なお、第1多層膜層36~第3多層膜層40を作製する際のパターニングの手順としては、特開2013-54081号公報の段落0418~0421の手順を参照して、実施した。
<Example B>
As shown in FIG. 15, the first multilayer film layer 36, the second multilayer film layer 38, and the first multilayer film layer are formed at predetermined positions on the substrate by a method described later (manufacture of multilayer film layer (2)). 3 multilayer films 40 are formed, and further, a red pixel (corresponding to the red pixel 214 in FIG. 15) is formed on the first multilayer film 36, and a blue pixel (on the blue pixel 218 in FIG. Corresponding) and a green pixel (corresponding to the green pixel 216 in FIG. 15) are respectively arranged on the third multilayer film layer 40 to produce a color filter.
The patterning procedure for producing the first multilayer film layer 36 to the third multilayer film layer 40 was carried out with reference to the procedures in paragraphs 0418 to 0421 of JP2013-54081A.
 また、赤色画素、緑色画素、及び、青色画素は、それぞれ各着色剤(赤色着色剤、緑色着色剤、又は、青色着色剤)を含む組成物を用いて作製された画素である。
 赤色着色剤を含む組成物としては、特開2012-198408号公報の段落0273及び0274に記載の「赤色の着色感放射線性組成物RS」を使用した。
 緑色着色剤を含む組成物としては、特開2012-198408号公報の段落0272に記載の「着色感放射線性組成物GS-1」を使用した。
 青色着色剤を含む組成物としては、特開2012-198408号公報の段落0276に記載の「青色の着色感放射線性組成物BS」を使用した。
 なお、各色画素のパターニング方法としては、特開2012-198408号公報の段落0278~0280の手順を参照して実施した。
Moreover, a red pixel, a green pixel, and a blue pixel are pixels produced using the composition containing each colorant (a red colorant, a green colorant, or a blue colorant), respectively.
As a composition containing a red colorant, “red colored radiation-sensitive composition RS” described in paragraphs 0273 and 0274 of JP2012-198408A was used.
As a composition containing a green colorant, “colored radiation-sensitive composition GS-1” described in paragraph 0272 of JP2012-198408A was used.
As a composition containing a blue colorant, “blue colored radiation-sensitive composition BS” described in paragraph 0276 of JP2012-198408A was used.
The patterning method for each color pixel was carried out with reference to the procedures in paragraphs 0278 to 0280 of JP2012-198408A.
(多層膜層の製造(その2))
 上記高屈折薬液1(n=1.91)、及び、上記低屈折薬液1(n=1.23)の2種の薬液を用いて多層膜層の作製を行った。なお、上記カッコ中のnは各液より形成される層の屈折率を意図する。
 低屈折薬液1はスピンコーターを用いて塗布し、ホットプレートにて100℃で120秒間乾燥することで膜を形成した。高屈折薬液1はスピンコーターを用いて塗布し、ホットプレートにて200℃にて1分間乾燥することで膜を形成した。
 基板(8インチガラスウェハ)上にて、上記塗布、加熱工程を繰り返すことで表2に記載の多層膜層を作製した。なお、表2中の光学膜厚は、(物理膜厚×屈折率)を意図する。また、表2中の層数は、基板側から配置された層の番号を表し、例えば、「2」は基板側から2層目の層の特性を表す。
(Manufacture of multilayer film layer (2))
A multilayer film was prepared using the two types of chemical solutions, the high refractive chemical solution 1 (n = 1.91) and the low refractive chemical solution 1 (n = 1.23). Note that n in the parentheses means the refractive index of a layer formed from each liquid.
The low refractive chemical solution 1 was applied using a spin coater and dried on a hot plate at 100 ° C. for 120 seconds to form a film. The high refractive chemical solution 1 was applied using a spin coater and dried at 200 ° C. for 1 minute on a hot plate to form a film.
On the substrate (8-inch glass wafer), the above coating and heating steps were repeated to produce a multilayer film layer described in Table 2. In addition, the optical film thickness in Table 2 intends (physical film thickness × refractive index). Further, the number of layers in Table 2 represents the number of the layers arranged from the substrate side, and for example, “2” represents the characteristics of the second layer from the substrate side.
Figure JPOXMLDOC01-appb-T000021
 
 
 
Figure JPOXMLDOC01-appb-T000021
 
 
 
 図17に、第1色画素、第2色画素、及び、第3色画素を透過する光の透過スペクトル図を合わせて示す。
 図17に示されるように、各色画素からは可視光と赤外光とが透過されており、それぞれ異なる波長分布を有し、各光の中心波長の位置が異なっている。
 また、図17に示すように、第1色画素は、波長700~750nm(第1赤外波長領域に該当)における光の透過率が80%以上を、波長920~980nm(第2赤外波長領域に該当)における光の透過率が10%以下を、波長1090~1150nm(第3赤外波長領域に該当)における光の透過率が10%以下を示す。
 また、第2色画素は、波長700~750nm(第1赤外波長領域に該当)における光の透過率が10%以下を、波長920~980nm(第2赤外波長領域に該当)における光の透過率が90%以上を、波長1090~1150nm(第3赤外波長領域に該当)における光の透過率が10%以下を示す。
 また、第3色画素は、波長700~750nm(第1赤外波長領域に該当)における光の透過率が10%以下を、波長920~980nm(第2赤外波長領域に該当)における光の透過率が10%以下を、波長1090~1150nm(第3赤外波長領域に該当)における光の透過率が90%以上を示す。
FIG. 17 also shows a transmission spectrum diagram of light transmitted through the first color pixel, the second color pixel, and the third color pixel.
As shown in FIG. 17, visible light and infrared light are transmitted from each color pixel, have different wavelength distributions, and the positions of the central wavelengths of the respective lights are different.
As shown in FIG. 17, the first color pixel has a light transmittance of 80% or more at a wavelength of 700 to 750 nm (corresponding to the first infrared wavelength region), and a wavelength of 920 to 980 nm (second infrared wavelength). The light transmittance in the region (corresponding to the region) is 10% or less, and the light transmittance in the wavelength 1090 to 1150 nm (corresponding to the third infrared wavelength region) is 10% or less.
Further, the second color pixel has a light transmittance of 10% or less at a wavelength of 700 to 750 nm (corresponding to the first infrared wavelength region), and a light transmittance at a wavelength of 920 to 980 nm (corresponding to the second infrared wavelength region). The transmittance is 90% or more, and the light transmittance at a wavelength of 1090 to 1150 nm (corresponding to the third infrared wavelength region) is 10% or less.
The third color pixel has a light transmittance of 10% or less at a wavelength of 700 to 750 nm (corresponding to the first infrared wavelength region), and a light transmittance at a wavelength of 920 to 980 nm (corresponding to the second infrared wavelength region). The transmittance is 10% or less, and the light transmittance at a wavelength of 1090 to 1150 nm (corresponding to the third infrared wavelength region) is 90% or more.
1:レンズ光学系、10,100,200,300:カラーフィルタ、12:基板、14,114,214:赤色画素、16,116,216:緑色画素、18,118,218:青色画素、20:第1積層型色画素、22:第2積層型色画素、24:第1多層膜層、26:第2多層膜層、28:透明樹脂層、30:第1色画素、32:第2色画素、34:第3色画素、36:第1多層膜層、38:第2多層膜層、40:第3多層膜層、110:固体撮像素子、120:信号処理部、130:信号切替部、140:制御部、150:信号蓄積部、160:発光制御部、170:赤外LED、180、181:画像出力部
 
1: Lens optical system, 10, 100, 200, 300: Color filter, 12: Substrate, 14, 114, 214: Red pixel, 16, 116, 216: Green pixel, 18, 118, 218: Blue pixel, 20: First laminated color pixel, 22: second laminated color pixel, 24: first multilayer film layer, 26: second multilayer film layer, 28: transparent resin layer, 30: first color pixel, 32: second color Pixel, 34: third color pixel, 36: first multilayer film layer, 38: second multilayer film layer, 40: third multilayer film layer, 110: solid-state imaging device, 120: signal processing unit, 130: signal switching unit 140: control unit, 150: signal storage unit, 160: light emission control unit, 170: infrared LED, 180, 181: image output unit

Claims (7)

  1.  4色以上の色画素を有し、
     前記色画素の少なくとも1つが、屈折率の異なる複数の膜を積層した多層膜層と、着色剤を含有した着色剤含有組成物層とを積層してなる積層型色画素である、カラーフィルタ。
    Having four or more color pixels,
    A color filter, wherein at least one of the color pixels is a multilayer color pixel formed by laminating a multilayer film layer in which a plurality of films having different refractive indexes are laminated and a colorant-containing composition layer containing a colorant.
  2.  前記色画素が、少なくとも、赤色着色剤を含有した着色剤含有組成物層からなる赤色画素、緑色着色剤を含有した着色剤含有組成物層からなる緑色画素、及び、青色着色剤を含有した着色剤含有組成物層からなる青色画素を含む、請求項1に記載のカラーフィルタ。 The color pixel is at least a red pixel comprising a colorant-containing composition layer containing a red colorant, a green pixel comprising a colorant-containing composition layer containing a green colorant, and a color containing a blue colorant The color filter of Claim 1 containing the blue pixel which consists of an agent containing composition layer.
  3.  前記赤色画素は透過スペクトルにおいて極大値が波長575nm以上にあり、前記緑色画素は透過スペクトルにおいて極大値が波長480nm以上575nm未満にあり、前記青色画素は透過スペクトルにおいて極大値が波長480nm未満にある、請求項2に記載のカラーフィルタ。 The red pixel has a maximum value in a transmission spectrum at a wavelength of 575 nm or more, the green pixel has a maximum value in a transmission spectrum at a wavelength of 480 nm or more and less than 575 nm, and the blue pixel has a maximum value in a transmission spectrum at a wavelength of less than 480 nm. The color filter according to claim 2.
  4.  前記色画素が、少なくとも、前記赤色画素、前記緑色画素、前記青色画素、屈折率の異なる複数の膜を積層した多層膜層と緑色着色剤を含有した着色剤含有組成物層とを積層してなる第1積層型色画素、及び、屈折率の異なる複数の膜を積層した多層膜層と青色着色剤を含有した着色剤含有組成物層とを積層してなる第2積層型色画素を含む、請求項2または3に記載のカラーフィルタ。 The color pixel is formed by laminating at least the red pixel, the green pixel, the blue pixel, a multilayer film layer in which a plurality of films having different refractive indexes are laminated, and a colorant-containing composition layer containing a green colorant. And a second stacked color pixel formed by stacking a multilayer film layer formed by stacking a plurality of films having different refractive indexes and a colorant-containing composition layer containing a blue colorant. The color filter according to claim 2 or 3.
  5.  前記多層膜層が、波長480~500nmの範囲内での透過率が30%以下である、又は、波長580~600nmの範囲内での透過率が30%以下である、請求項1~4のいずれか1項に記載のカラーフィルタ。 The multilayer film layer has a transmittance of 30% or less within a wavelength range of 480 to 500 nm, or a transmittance of 30% or less within a wavelength range of 580 to 600 nm. The color filter according to any one of the above.
  6.  前記多層膜層が、塗布液を用いて形成された層である、請求項1~5のいずれか1項に記載のカラーフィルタ。 The color filter according to any one of claims 1 to 5, wherein the multilayer film layer is a layer formed using a coating liquid.
  7.  請求項1~6のいずれか1項に記載のカラーフィルタを備える、固体撮像素子。 A solid-state imaging device comprising the color filter according to any one of claims 1 to 6.
PCT/JP2015/070581 2014-07-25 2015-07-17 Color filter and solid-state imaging element WO2016013520A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020167032073A KR101876281B1 (en) 2014-07-25 2015-07-17 Color filter and solid-state imaging element
JP2016535918A JP6297155B2 (en) 2014-07-25 2015-07-17 Color filter, solid-state image sensor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-152155 2014-07-25
JP2014152155 2014-07-25
JP2015-008038 2015-01-19
JP2015008038 2015-01-19

Publications (1)

Publication Number Publication Date
WO2016013520A1 true WO2016013520A1 (en) 2016-01-28

Family

ID=55163045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/070581 WO2016013520A1 (en) 2014-07-25 2015-07-17 Color filter and solid-state imaging element

Country Status (4)

Country Link
JP (1) JP6297155B2 (en)
KR (1) KR101876281B1 (en)
TW (1) TWI666472B (en)
WO (1) WO2016013520A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018155486A1 (en) * 2017-02-21 2018-08-30 株式会社ナノルクス Solid-state imaging element and imaging device
WO2018173706A1 (en) * 2017-03-24 2018-09-27 富士フイルム株式会社 Composition, color filter, and hemoglobin sensor
WO2020031655A1 (en) * 2018-08-07 2020-02-13 ソニーセミコンダクタソリューションズ株式会社 Imaging device and imaging system
CN111602246A (en) * 2018-03-30 2020-08-28 索尼半导体解决方案公司 Imaging element and imaging device
JP7489217B2 (en) 2020-04-07 2024-05-23 ローム株式会社 Optical Sensors and Electronic Devices

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10056417B2 (en) 2016-03-10 2018-08-21 Visera Technologies Company Limited Image-sensor structures
KR102572680B1 (en) * 2016-03-23 2023-08-31 동우 화인켐 주식회사 Red colored photosensitive resin composition, color filter and display device comprising the same
KR20170112959A (en) * 2016-03-30 2017-10-12 동우 화인켐 주식회사 Green colored photosensitive resin composition, color filter and display device comprising the same
KR20190073301A (en) 2017-12-18 2019-06-26 삼성전자주식회사 Layered structures and electronic device including the same
KR102182030B1 (en) 2019-01-11 2020-11-23 주식회사 디엔유 UAV Test-bed platform with training unit

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS541649A (en) * 1977-06-06 1979-01-08 Sony Corp Color separating filter
JPH11194208A (en) * 1997-12-26 1999-07-21 Seiko Epson Corp Color filter, liquid crystal panel, liquid crystal device, and electronic equipment
JP2010078680A (en) * 2008-09-24 2010-04-08 Fujifilm Corp Color filter and solid-state imaging device
JP2013142089A (en) * 2012-01-06 2013-07-22 Konica Minolta Inc Pigment having dielectric multilayer film structure and coating containing the same
JP2014111734A (en) * 2012-11-01 2014-06-19 Fujifilm Corp Photosensitive composition and gray cured film, gray pixel, and solid-state imaging element using the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002243929A (en) * 2001-02-16 2002-08-28 Fuji Xerox Co Ltd Method for manufacturing color filter by photoelectric deposition method and photocatalyst method, color filter, liquid crystal device, and apparatus for manufacturing color filter
JP4766223B2 (en) * 2003-03-27 2011-09-07 戸田工業株式会社 Transparent coloring composition and color filter
JP4465650B2 (en) * 2004-03-29 2010-05-19 東レ株式会社 Color filter for liquid crystal display and liquid crystal display device using the same
JP2006270364A (en) 2005-03-23 2006-10-05 Fuji Photo Film Co Ltd Solid-state image pickup element and solid-state image pickup device, and driving method thereof
JP5874116B2 (en) 2009-07-30 2016-03-02 国立研究開発法人産業技術総合研究所 Image photographing apparatus and image photographing method
US8408821B2 (en) * 2010-10-12 2013-04-02 Omnivision Technologies, Inc. Visible and infrared dual mode imaging system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS541649A (en) * 1977-06-06 1979-01-08 Sony Corp Color separating filter
JPH11194208A (en) * 1997-12-26 1999-07-21 Seiko Epson Corp Color filter, liquid crystal panel, liquid crystal device, and electronic equipment
JP2010078680A (en) * 2008-09-24 2010-04-08 Fujifilm Corp Color filter and solid-state imaging device
JP2013142089A (en) * 2012-01-06 2013-07-22 Konica Minolta Inc Pigment having dielectric multilayer film structure and coating containing the same
JP2014111734A (en) * 2012-11-01 2014-06-19 Fujifilm Corp Photosensitive composition and gray cured film, gray pixel, and solid-state imaging element using the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018155486A1 (en) * 2017-02-21 2018-08-30 株式会社ナノルクス Solid-state imaging element and imaging device
JP6410203B1 (en) * 2017-02-21 2018-10-24 株式会社ナノルクス Solid-state imaging device and imaging apparatus
JP2018170801A (en) * 2017-02-21 2018-11-01 株式会社ナノルクス Solid state imaging device and imaging apparatus
US10819922B2 (en) 2017-02-21 2020-10-27 Nanolux Co. Ltd. Solid-state imaging element and imaging device
WO2018173706A1 (en) * 2017-03-24 2018-09-27 富士フイルム株式会社 Composition, color filter, and hemoglobin sensor
JPWO2018173706A1 (en) * 2017-03-24 2019-11-07 富士フイルム株式会社 Composition, color filter, and hemoglobin sensor
US11543747B2 (en) 2017-03-24 2023-01-03 Fujifilm Corporation Composition, color filter, and hemoglobin sensor
CN111602246A (en) * 2018-03-30 2020-08-28 索尼半导体解决方案公司 Imaging element and imaging device
WO2020031655A1 (en) * 2018-08-07 2020-02-13 ソニーセミコンダクタソリューションズ株式会社 Imaging device and imaging system
JPWO2020031655A1 (en) * 2018-08-07 2021-09-02 ソニーセミコンダクタソリューションズ株式会社 Imaging device and imaging system
JP7242678B2 (en) 2018-08-07 2023-03-20 ソニーセミコンダクタソリューションズ株式会社 Imaging device and imaging system
JP7489217B2 (en) 2020-04-07 2024-05-23 ローム株式会社 Optical Sensors and Electronic Devices

Also Published As

Publication number Publication date
JPWO2016013520A1 (en) 2017-04-27
KR101876281B1 (en) 2018-07-09
JP6297155B2 (en) 2018-03-20
TW201604592A (en) 2016-02-01
KR20160145168A (en) 2016-12-19
TWI666472B (en) 2019-07-21

Similar Documents

Publication Publication Date Title
JP6297155B2 (en) Color filter, solid-state image sensor
JP6453324B2 (en) Laminate, infrared absorption filter, bandpass filter, laminate production method, bandpass filter formation kit, and image display device
TWI723994B (en) Colored composition, film, color filter, pattern forming method, method of manufacturing color filter, solid-state imaging element, and infrared sensor
JP6329626B2 (en) Infrared sensor, near infrared absorbing composition, photosensitive resin composition, compound, near infrared absorbing filter, and imaging device
JP6166682B2 (en) Coloring composition, cured film, color filter, pattern forming method, color filter manufacturing method, solid-state imaging device, and image display device
US10719012B2 (en) Curable composition, method of manufacturing curable composition, film, infrared cut filter, infrared transmitting filter, pattern forming method, and device
JP7090684B2 (en) A method for manufacturing a color-curable composition, a color filter, a solid-state image sensor, an image display device, and a cured film.
WO2017164161A1 (en) Photosensitive composition, color filter, method for forming pattern, solid state image sensor and image display device
TW201740187A (en) Radiation-sensitive resin composition, cured film, pattern formation method, solid-state image pickup element, and image display image
TW201741319A (en) Composition, curable composition, cured film, near-infrared cut filter, infrared transmission filter, solid-state imaging element, infrared sensor, and camera module
TW201741768A (en) Radiation-sensitive composition, optical filter, laminate, method for forming pattern, solid state imaging element, image display device and infrared radiation sensor
WO2017119422A1 (en) Coloring composition, method for producing coloring composition, color filter, pattern forming method, solid-state imaging element and image display device
JP6587697B2 (en) Coloring composition, color filter, pattern forming method, solid-state imaging device, and image display device
WO2017213028A1 (en) Coloring composition and method for producing film
TW202422228A (en) Light-shielding film, method for manufacturing light-shielding film, optical element, solid-state imaging element, headlight unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15824037

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167032073

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016535918

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15824037

Country of ref document: EP

Kind code of ref document: A1