WO2016013419A1 - Vehicular headlight control device - Google Patents

Vehicular headlight control device Download PDF

Info

Publication number
WO2016013419A1
WO2016013419A1 PCT/JP2015/069872 JP2015069872W WO2016013419A1 WO 2016013419 A1 WO2016013419 A1 WO 2016013419A1 JP 2015069872 W JP2015069872 W JP 2015069872W WO 2016013419 A1 WO2016013419 A1 WO 2016013419A1
Authority
WO
WIPO (PCT)
Prior art keywords
pitch angle
acceleration
vehicle
control device
calculated
Prior art date
Application number
PCT/JP2015/069872
Other languages
French (fr)
Japanese (ja)
Inventor
和彦 買場
知之 上谷
龍 水野
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2016013419A1 publication Critical patent/WO2016013419A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/02Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments
    • B60Q1/04Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights
    • B60Q1/06Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights adjustable, e.g. remotely-controlled from inside vehicle
    • B60Q1/08Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights adjustable, e.g. remotely-controlled from inside vehicle automatically
    • B60Q1/10Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights adjustable, e.g. remotely-controlled from inside vehicle automatically due to vehicle inclination, e.g. due to load distribution
    • B60Q1/115Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights adjustable, e.g. remotely-controlled from inside vehicle automatically due to vehicle inclination, e.g. due to load distribution by electric means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps

Definitions

  • the present invention relates to a vehicle headlamp control device that controls the optical axis direction of a headlamp mounted on a vehicle.
  • a so-called vehicle headlamp control device that adjusts the optical axis direction of a vehicle headlight according to a change in the posture (tilt) of the vehicle in the front-rear direction is known.
  • a pitch angle indicating a tilt angle of the vehicle in the front-rear direction with respect to the road surface is calculated, and the optical axis direction is adjusted based on the pitch angle.
  • a method for obtaining the pitch angle As a method for obtaining the pitch angle, a method is known in which a vehicle height sensor is provided on the front wheel or rear wheel of the vehicle, and the vehicle is obtained based on the vehicle height value detected by the vehicle height sensor.
  • a technique for obtaining the pitch angle of a vehicle without using a vehicle height sensor has been proposed (for example, see Patent Document 1).
  • an absolute inclination angle of a vehicle (an inclination angle with respect to a horizontal plane perpendicular to the direction of gravity) is calculated using an inclination sensor, and further, an acceleration of the vehicle is calculated. Then, the pitch angle of the vehicle is calculated using the absolute inclination angle, acceleration, and spring constant, and the optical axis direction is adjusted based on the calculated pitch angle.
  • the present invention has been made in view of the above problems, and an object of the present invention is to enable accurate control of the optical axis of a headlamp regardless of whether the vehicle is accelerating or decelerating.
  • the vehicle headlamp control device of the present invention made to solve the above-described problems includes an acceleration detection unit, a pitch angle calculation unit, and a control unit.
  • the acceleration detection unit detects the acceleration of the vehicle.
  • the pitch angle calculation unit calculates the pitch angle of the vehicle based on the acceleration detected by the acceleration detection unit using a predetermined calculation method using the acceleration. The calculation method differs at least depending on whether the vehicle is accelerating or decelerating.
  • the control unit controls the optical axis based on the pitch angle calculated by the pitch angle calculation unit so that the optical axis of the headlamp mounted on the vehicle is directed in a direction corresponding to the pitch angle.
  • the pitch angle is calculated by using the detected acceleration and by a different calculation method depending on whether the vehicle is accelerating or decelerating. Therefore, the pitch angle can be calculated with high accuracy regardless of whether the vehicle is accelerating or decelerating, thereby controlling the optical axis of the headlamp with high accuracy regardless of whether the vehicle is accelerating or decelerating. be able to.
  • the pitch angle calculation unit may calculate the amount of variation in the pitch angle caused by the acceleration using the above calculation method based on the acceleration detected by the acceleration detection unit. Then, the pitch angle may be calculated using the calculated fluctuation amount. More specifically, a stopping pitch angle that is a stopping pitch angle may be calculated, and the pitch angle may be calculated by adding a fluctuation amount to the stopping pitch angle.
  • (A) is explanatory drawing which shows schematic structure of the vehicle by which the headlamp optical-axis direction control apparatus of embodiment is mounted
  • (B) is a block diagram which shows schematic structure of the headlamp optical-axis direction control apparatus. It is explanatory drawing which shows schematic structure of a headlight.
  • (A) to (D) are explanatory diagrams for explaining the relationship among the stopping pitch angle ⁇ p0, the pitch angle variation ⁇ pc, and the road gradient ⁇ g of the vehicle, respectively.
  • (A) is a graph showing the relationship between acceleration and pitch angle variation during acceleration
  • (B) is a graph showing the relationship between acceleration and pitch angle variation during deceleration. It is a flowchart which shows an optical axis control process. It is explanatory drawing which shows the variation
  • FIG. 1A the headlamp control device 1 is mounted on a vehicle 5 and controls the optical axis of a headlight (headlamp) 10 of the vehicle 5.
  • the headlamp control device 1 directly controls the optical axis control motor 15 provided in the headlight 10, thereby controlling the optical axis of the headlight 10.
  • the headlamp control device 1 includes an ECU (vehicle acceleration detection unit, vehicle pitch angle calculation unit, optical axis control unit, stopping pitch angle calculation unit, stable state determination unit) 20, an inclination sensor 31, and a vehicle speed sensor. (Vehicle acceleration detection unit) 32.
  • the inclination sensor 31 is provided at a predetermined portion of the vehicle 5, detects the absolute inclination angle ⁇ a of the vehicle 5 (inclination angle with respect to a horizontal plane perpendicular to the direction of gravity), and outputs an inclination angle signal indicating the detection result to the ECU 20.
  • the vehicle speed sensor 32 detects the actual traveling speed of the vehicle 5 and outputs a vehicle speed signal indicating the detection result to the ECU 20.
  • the ECU 20 receives various signals including at least the inclination angle signal from the inclination sensor 31 and the vehicle speed signal from the vehicle speed sensor 32, and calculates the actual pitch angle ⁇ p of the vehicle 5 according to the various input signals.
  • the actual pitch angle ⁇ p is the pitch angle of the vehicle 5 with respect to the road surface.
  • the ECU 20 controls the headlight 10 based on the calculated actual pitch angle ⁇ p so that the optical axis of the headlight 10 is directed in a direction corresponding to the actual pitch angle ⁇ p.
  • the optical axis is controlled by driving the motor 15 by outputting a drive signal corresponding to the calculated actual pitch angle ⁇ p to the motor 15.
  • the ECU 20 includes a CPU 21, a ROM 22, a RAM 23, a storage memory 24, and an input / output circuit 25.
  • the CPU 21 executes various arithmetic processes according to programs stored in the ROM 22 and other various memories.
  • the ROM 22 is a storage device that stores various programs and data executed by the CPU 21.
  • a program of an optical axis control process (see FIG. 5) described later for controlling the optical axis of the headlight 10 is also stored in the ROM 22.
  • the optical axis control processing program is not necessarily stored in the ROM 22, and may be stored in a storage device other than the ROM 22.
  • the RAM 23 is a main storage device that is directly accessed by the CPU 21.
  • the storage memory 24 is a non-volatile storage device that can electrically rewrite the stored contents.
  • various programs and data are stored, and calculation results and the like may be appropriately stored in the process of the CPU 21 performing various calculations.
  • the spring constants ka and kb used and various calculation results calculated may be stored in the RAM 23 or stored in the storage memory 24. May be.
  • the input / output circuit 25 is an interface for inputting / outputting various signals. Various signals input to the ECU 20 are input via the input / output circuit 25. A drive signal output from the ECU 20 to the motor 15 is also output via the input / output circuit 25.
  • the headlight 10 is a lighting device (front) for improving visibility in front of the vehicle and improving visibility of the vehicle 5 from outside by mainly irradiating light in front of the vehicle 5. Lighting). As shown in FIG. 2, the headlight 10 includes a lamp 11, a reflector 12, a support part 13, a movable part 14, and a motor 15.
  • the lamp 11 is a light emission source for irradiating the front of the vehicle, and examples thereof include a halogen bulb, an HID (High Intensity Discharge lamp), and the like.
  • the reflector 12 is a reflecting material for reflecting the light beam from the lamp 11 toward the front of the vehicle.
  • the support portion 13 is provided on the lower side of the reflector 12 and supports the reflector 12 so as to be swingable in the vertical direction (in the direction of the circular arc in the figure).
  • the movable portion 14 is provided on the upper side of the reflector 12, one end side is connected to the reflector 12 to support the reflector 12, and the other end side is connected to the motor 15. ).
  • the motor 15 drives the movable part 14 in the front-rear direction in accordance with a drive signal from the ECU 20.
  • the motor 15 and the movable portion 14 are connected via a conversion mechanism that converts rotation of the motor 15 into linear motion of the movable portion 14.
  • the movable portion 14 moves in the front-rear direction, whereby the reflector 12 swings up and down around the support point by the support portion 13.
  • the lamp 11 is fixed relative to the reflector 12. For this reason, when the reflector 12 swings in the vertical direction, the optical axis of the lamp 11 also moves in the vertical direction. Therefore, the ECU 20 can appropriately control the optical axis of the lamp 11 by appropriately controlling the motor 15.
  • the stopped pitch angle ⁇ p0 is a pitch angle when the vehicle 5 is stopped.
  • the actual pitch angle ⁇ p is the current pitch angle of the vehicle 5.
  • the absolute inclination angle ⁇ a is an inclination angle with respect to the horizontal plane, not with respect to the road surface.
  • the pitch angle fluctuation amount ⁇ pc is a pitch angle fluctuation amount caused by the acceleration of the vehicle 5 when the vehicle 5 is traveling.
  • the road gradient ⁇ g is an inclination angle of the road surface with respect to a horizontal plane.
  • the stop pitch angle ⁇ p0 may not be 0 °.
  • 3B shows that the vehicle 5 has already slightly tilted forward while the vehicle is stopped.
  • the vehicle 5 may be in a state of being tilted backward while the vehicle 5 is stopped (stopped pitch angle ⁇ p0 is a positive value).
  • the vehicle 5 accelerates, the vehicle 5 tilts backward due to the inertial force, and the pitch angle of the vehicle 5 fluctuates (in this case, increases).
  • the pitch angle variation amount ⁇ pc becomes a positive value instead of 0 due to acceleration, and thus the actual pitch angle ⁇ p is larger than ⁇ p0.
  • the pitch angle variation ⁇ pc which is the pitch angle variation during acceleration, increases as the acceleration increases.
  • the vehicle 5 decelerates, the vehicle 5 tilts forward due to inertial force, and the pitch angle of the vehicle 5 fluctuates (decreases in this case).
  • the pitch angle fluctuation amount ⁇ pc becomes a negative value instead of 0 due to deceleration, and thus the actual pitch angle ⁇ p is smaller than ⁇ p0.
  • the pitch angle fluctuation amount ⁇ pc at the time of deceleration decreases (increases in the negative direction) as the acceleration decreases (that is, as the deceleration increases).
  • a change in the pitch angle may occur due to a change in the road gradient
  • a change in the pitch angle due to the change in the road gradient is ignored.
  • the vehicle 5 accelerates, the vehicle 5 tilts backward and the pitch angle increases. Specifically, as the acceleration increases, the increase amount of the pitch angle increases (that is, the pitch angle fluctuation amount ⁇ pc increases).
  • the pitch angle decrease amount increases (that is, the pitch angle variation ⁇ pc increases in the negative direction).
  • the pitch angle variation ⁇ pc is calculated by detecting the acceleration of the vehicle 5 and integrating the acceleration and the spring constant k for calculation.
  • the calculation spring constant k (specifically, an acceleration spring constant ka and a deceleration spring constant kb, which will be described later) is a constant that directly indicates the spring constant of a specific spring (for example, a spring of a specific suspension of the vehicle 5). is not.
  • the calculation spring constant k is a pseudo value reflecting an actual pitch angle variation characteristic during acceleration / deceleration of the vehicle 5 for calculating the pitch angle variation amount ⁇ pc using the calculation spring constant k and the acceleration ⁇ . Spring constant.
  • the calculation spring constant k may be a constant value regardless of the acceleration.
  • the relationship between the acceleration and the pitch angle fluctuation amount ⁇ pc is not actually linear as illustrated in FIGS. 4A and 4B.
  • the tendency of the change in the pitch angle variation ⁇ pc with respect to acceleration differs between acceleration and deceleration.
  • the characteristic of FIG. 4A that is point-symmetrically moved about the origin does not necessarily match the characteristic of FIG. 4B.
  • FIGS. 4 (A) and 4 (B) are merely examples, and the relationship between the acceleration and the pitch angle variation ⁇ pc depends on the spring constant of the front and rear suspensions of the vehicle 5 and the acceleration / deceleration of the vehicle 5. It depends on various factors such as the center of gravity movement characteristics. 4A and 4B, the rear wheel suspension spring (for example, the spring constant is 30 [N / mm]) is greater than the front wheel suspension spring (for example, the spring constant is 20 [N / mm]). The example of the characteristic of a hard vehicle is also shown.
  • the tendency of the change in the pitch angle fluctuation amount ⁇ pc with respect to acceleration differs between acceleration and deceleration. Therefore, in this embodiment, by using the spring constant k for calculation that is different between acceleration and deceleration, at least the difference in the characteristic change tendency during acceleration and deceleration is reflected in the calculation result. I have to.
  • the CPU 21 of the ECU 20 repeatedly executes the optical axis control process of FIG. 5 at a predetermined control period while the power switch (for example, an ignition switch) of the vehicle 5 is turned on.
  • the power switch for example, an ignition switch
  • CPU21 will start the optical axis control process of FIG. 5, and will determine whether the vehicle 5 is drive
  • the absolute inclination angle ⁇ a is calculated every time the process of S160 described later is executed and stored in a storage device (for example, the RAM 23 or the storage memory 24).
  • the road gradient ⁇ g is also calculated and stored in the storage device every time the process of S270 described later is executed.
  • the process of S120 is a process of calculating the stopping pitch angle ⁇ p0 using the latest absolute inclination angle ⁇ a and road gradient ⁇ g stored in the storage device.
  • the previous value of at least one of the absolute inclination angle ⁇ a and the road gradient ⁇ g is not stored in the storage device, for example, when the power is first turned on to the ECU 20 or when the storage contents of the storage device disappear for some reason.
  • an initial value stored in advance in the ROM 22 is used as the stopping pitch angle ⁇ p0.
  • an initial value (for example, 0 °) of the stopped pitch angle ⁇ p0 is written at a specific timing such as when the vehicle 5 is shipped from the factory.
  • the current absolute tilt angle ⁇ a is calculated and stored in the storage device.
  • S140 it is determined whether or not the current absolute inclination angle ⁇ a calculated in S130 has changed from the previous value.
  • the previous value here is the latest value stored in the storage device before the processing of S130, that is, the value used in the processing of S120.
  • the process returns to S110, but if it has changed from the previous value, the process proceeds to S150.
  • the value of the stopped pitch angle ⁇ p0 is updated. Specifically, the stopping pitch angle ⁇ p0 calculated in S120 is corrected according to the amount of change from the previous value of the absolute inclination angle ⁇ a. For example, when the change amount of the absolute inclination angle ⁇ a from the previous value is ⁇ a, the stopping pitch angle ⁇ p0 is corrected by adding ⁇ a to the stopping pitch angle ⁇ p0 calculated in S120. Then, the value of the stopping pitch angle ⁇ p0 stored in the storage device is updated (overwritten) to the corrected value. After the process of S150, the process returns to S110.
  • the change in the absolute inclination angle ⁇ a is monitored, and if there is a change in the absolute inclination angle ⁇ a, the change is made by following the change and the stopping pitch angle ⁇ p0 is updated.
  • the pitch angle ⁇ p0 is always kept up to date.
  • the process proceeds to S160.
  • S160 based on the tilt angle signal input from the tilt sensor 31, the current absolute tilt angle ⁇ a is calculated and stored in the storage device.
  • the acceleration ⁇ of the vehicle 5 is calculated based on the vehicle speed signal input from the vehicle speed sensor 32.
  • the acceleration ⁇ can be calculated, for example, by calculating a rate of change of the vehicle speed signal (for example, a discrete differential value in the present embodiment) based on at least one vehicle speed signal acquired in the past and the vehicle speed signal acquired this time.
  • the process proceeds to a series of pitch angle calculation processes (S180 to S250) for calculating the pitch angle fluctuation amount ⁇ pc.
  • the acceleration of the vehicle 5 is constant.
  • the acceleration ⁇ calculated in S170 this time is compared with the acceleration ⁇ calculated in S170 last time. However, if they are different, it can be determined that the acceleration is not constant. Further, for example, based on a plurality of accelerations ⁇ calculated from a specific timing in the past to the present, when it is considered that the fluctuation range of each acceleration is stable at a certain level or less, it may be determined that the acceleration is constant. Good. Of course, it may be determined whether the acceleration is constant (that is, the acceleration stable state where the acceleration is stable) by other methods.
  • the pitch angle variation ⁇ pc is calculated as 0 in S250. That is, if the vehicle 5 is actually accelerating or decelerating and the pitch angle fluctuates due to the acceleration, but the acceleration is not constant, the reliability of the acceleration ⁇ calculated in S170 is reliable. There is a low possibility.
  • the pitch angle variation ⁇ pc is set to 0 (that is, the variation due to acceleration is not considered). The pitch angle variation ⁇ pc is set to 0 when the acceleration is not constant based on the idea that the processing is more likely to result in the calculation of the actual pitch angle ⁇ p with higher accuracy. After the processing of S250, the process proceeds to S260.
  • the calculation spring constant k is set to a predetermined acceleration spring constant ka (stored in advance in the storage device).
  • the acceleration spring constant ka and the deceleration spring constant kb which will be described later, are both positive values, but the values differ between the two.
  • the process proceeds to S220.
  • S220 it is determined whether the vehicle 5 is decelerating. If the acceleration ⁇ is 0, it is determined that the vehicle is not decelerating (that is, traveling at a constant speed), and the process proceeds to S250. That is, the pitch angle fluctuation amount ⁇ pc is calculated as 0 when traveling at a constant speed.
  • the acceleration spring constant ka and the deceleration spring constant kb can be determined by various methods. For example, the characteristic of the pitch angle variation ⁇ pc with respect to acceleration as illustrated in FIG. 4 is actually measured for the vehicle 5, and the respective spring constants ka and kb are determined based on the measurement result. Also good. Further, for example, based on the characteristics of the front and rear suspensions of the vehicle 5 (for example, the characteristics of the suspension provided on each of the four wheels (damping characteristics of the shock absorber, the spring constant of the coil spring, etc.)) The calculation spring constants ka and kb may be determined in consideration of the center-of-gravity movement characteristics of the vehicle 5 during braking.
  • the process proceeds to S260.
  • the actual pitch angle ⁇ p is calculated. Specifically, the actual pitch angle ⁇ p is calculated by adding the pitch angle fluctuation amount ⁇ pc calculated in S210, S240 or S250 to the latest stopping pitch angle ⁇ p0 currently stored.
  • the road gradient ⁇ g is calculated by subtracting the actual pitch angle ⁇ p calculated in S260 from the latest absolute inclination angle ⁇ a calculated and stored in S160.
  • the optical axis of the headlight 10 is controlled based on the actual pitch angle ⁇ p calculated in S260. Specifically, based on the fact that the vehicle 5 is pitched by the actual pitch angle ⁇ p, as a result, the motor is set so that the optical axis is in a desired direction (for example, a direction downward by a predetermined angle from a direction parallel to the road surface). The optical axis is controlled by driving 15.
  • the acceleration ⁇ is calculated, and the actual pitch angle ⁇ p is calculated by a different calculation method depending on whether the vehicle 5 is accelerating or decelerating. Is calculated. Therefore, it is possible to accurately calculate the actual pitch angle ⁇ p regardless of whether the vehicle 5 is accelerating or decelerating, and thereby the optical axis of the headlight 10 can be determined regardless of whether the vehicle 5 is accelerating or decelerating. It can be controlled with high accuracy.
  • the pitch angle fluctuation amount ⁇ pc caused by the acceleration / deceleration of the vehicle 5 is calculated.
  • the acceleration spring constant ka is used if the vehicle 5 is accelerating
  • the deceleration spring constant kb is used if the vehicle 5 is decelerating. That is, the pitch angle fluctuation amount ⁇ pc is calculated using a calculation spring constant that varies depending on whether the vehicle 5 is accelerating or decelerating.
  • the actual pitch angle ⁇ p is calculated using the pitch angle fluctuation amount ⁇ pc.
  • the acceleration spring constant ka and the deceleration spring constant kb are set to appropriate values that match the actual characteristics of the vehicle 5, it is possible to determine whether the vehicle 5 is accelerating or decelerating with a simple calculation method. Regardless, the optical axis of the headlight 10 can be accurately controlled.
  • a stopped pitch angle ⁇ p0 that is a pitch angle in the stopped state is calculated.
  • the actual pitch angle ⁇ p is calculated by a simple calculation method of adding the pitch angle fluctuation amount ⁇ pc to the stopping pitch angle ⁇ p0. Therefore, the higher the accuracy of the stopped pitch angle ⁇ p0 and the higher the accuracy of the pitch angle variation ⁇ pc (that is, the more appropriate the values of the spring constants ka and kb), the more accurate the calculation of the actual pitch angle ⁇ p. Can be increased.
  • the pitch angle fluctuation amount ⁇ pc is calculated using the acceleration ⁇ and the calculation spring constant k. That is, when the acceleration of the vehicle 5 is in an unstable state, the pitch angle variation amount ⁇ pc is not calculated using the acceleration ⁇ calculated in the unstable state. Therefore, the calculation accuracy of the actual pitch angle ⁇ p during acceleration / deceleration of the vehicle 5 can be further increased as a whole.
  • acceleration spring constant ka used during acceleration.
  • the acceleration spring constant ka used during acceleration.
  • the first acceleration spring constant ka1 is used, and when the acceleration ⁇ is higher than the predetermined value, the second acceleration spring constant ka2 is used.
  • a method may be adopted.
  • three or more types of acceleration spring constants may be prepared and used depending on the acceleration. The same applies to the deceleration spring constant kb used during deceleration.
  • the pitch angle fluctuation amount ⁇ pc is calculated using the calculation spring constant k.
  • the pitch angle fluctuation amount ⁇ pc may be calculated using the calculation spring constant k.
  • the calculation accuracy of the actual pitch angle ⁇ p can be improved by properly using the calculation spring constant k for acceleration and deceleration.
  • the calculation method differs between acceleration and deceleration. There are other methods for calculating the actual pitch angle ⁇ p by using.
  • a map (variation amount calculation map) in which acceleration and pitch angle variation amount ⁇ pc are associated may be prepared in advance.
  • the processing of S180 to S250 may be replaced with a process of calculating the pitch angle variation ⁇ pc using the variation calculation map. Good.
  • FIG. 6 shows an example of the fluctuation amount calculation map.
  • the fluctuation amount calculation map 40 shown in FIG. 6 is created based on the measurement result of the pitch angle actually measured by actually driving the vehicle 5 (specifically, the actual measurement value of the fluctuation amount of the pitch angle with respect to the acceleration). This is almost equivalent to the characteristic illustrated in FIG. That is, in the fluctuation amount calculation map 40 of FIG. 6, the relationship between the acceleration ⁇ and the pitch angle fluctuation amount ⁇ pc during acceleration and the relationship between the acceleration ⁇ and the pitch angle fluctuation amount ⁇ pc during deceleration depend on the actual behavior. As a result, both have different relationships (characteristics).
  • the pitch angle variation amount ⁇ pc can be calculated with higher accuracy.
  • the calculation of the pitch angle variation amount ⁇ pc may employ a method different from the processing of S180 to S250 shown in FIG. 5 and the method using the variation amount calculation map described above.
  • the method of calculating the actual pitch angle ⁇ p by adding the pitch angle fluctuation amount ⁇ pc and the stopped pitch angle ⁇ p0 is just an example.
  • various calculation methods can be adopted as long as the calculation method uses acceleration and uses different calculation methods depending on whether the vehicle is accelerating or decelerating.
  • the acceleration ⁇ is not limited to a method of calculating by calculation based on a vehicle speed signal (for example, differential calculation of vehicle speed), and may be calculated and acquired by various methods.
  • a vehicle speed signal for example, differential calculation of vehicle speed
  • an acceleration sensor may be provided, and the acceleration ⁇ may be calculated based on a detection signal from the acceleration sensor.
  • the functions of one component in the above embodiment may be distributed as a plurality of components, or the functions of a plurality of components may be integrated into one component.
  • at least a part of the configuration of the above embodiment may be replaced with a known configuration having the same function.
  • at least a part of the configuration of the above embodiment may be added to or replaced with the configuration of the other embodiment.
  • all the aspects included in the technical idea specified from the wording described in the claims are embodiments of the present invention.
  • a system including the headlight control device 1 as a component, a program for causing a computer to function as the headlight control device 1 (specifically, FIG. 5
  • the present invention can also be realized in various forms such as an optical axis control processing program), a medium on which the program is recorded, and an optical axis control method used in the optical axis control processing.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Lighting Device Outwards From Vehicle And Optical Signal (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

The purpose of the present invention is to make it possible to precisely control the optical axis of a headlight regardless of whether a vehicle is accelerating or decelerating. The ECU (20) of this vehicular headlight control device detects the acceleration of a vehicle (5) and, on the basis of the detected acceleration, calculates the pitch angle of the vehicle (5) using a predetermined calculation method in which the acceleration is used. The calculation method differs depending at least on whether the vehicle (5) is accelerating or decelerating. The ECU (20) controls a headlight (10) that is mounted to the vehicle (5) so that the optical axis of said headlight (10) is oriented in a direction corresponding to the calculated pitch angle.

Description

車両用前照灯制御装置Vehicle headlamp control device
 本発明は、車両に搭載される前照灯の光軸方向を制御する車両用前照灯制御装置に関する。 The present invention relates to a vehicle headlamp control device that controls the optical axis direction of a headlamp mounted on a vehicle.
 車両の前後方向の姿勢(傾き)の変化に応じて車両のヘッドライトの光軸方向を調整する、いわゆる車両用前照灯制御装置が知られている。車両用前照灯制御装置では、路面に対する車両の前後方向の傾き角を示すピッチ角が算出され、そのピッチ角に基づいて光軸方向が調整される。 2. Description of the Related Art A so-called vehicle headlamp control device that adjusts the optical axis direction of a vehicle headlight according to a change in the posture (tilt) of the vehicle in the front-rear direction is known. In the vehicle headlamp control device, a pitch angle indicating a tilt angle of the vehicle in the front-rear direction with respect to the road surface is calculated, and the optical axis direction is adjusted based on the pitch angle.
 ピッチ角を求める方法としては、車両の前輪又は後輪に車高センサを設け、車高センサで検出される車高値に基づいて求める方法が知られている。一方、システム構成の簡素化やコストアップ抑制などのために、車高センサを用いずに車両のピッチ角を求める技術が提案されている(例えば、特許文献1参照。)。 As a method for obtaining the pitch angle, a method is known in which a vehicle height sensor is provided on the front wheel or rear wheel of the vehicle, and the vehicle is obtained based on the vehicle height value detected by the vehicle height sensor. On the other hand, in order to simplify the system configuration and suppress cost increase, a technique for obtaining the pitch angle of a vehicle without using a vehicle height sensor has been proposed (for example, see Patent Document 1).
 特許文献1に記載の技術では、傾斜センサを用いて車両の絶対傾斜角(重力方向に垂直な水平面に対する傾斜角)を算出し、さらに車両の加速度を算出する。そして、絶対傾斜角、加速度、及びバネ定数を用いて車両のピッチ角を算出し、その算出したピッチ角に基づいて光軸方向を調整する。 In the technique described in Patent Document 1, an absolute inclination angle of a vehicle (an inclination angle with respect to a horizontal plane perpendicular to the direction of gravity) is calculated using an inclination sensor, and further, an acceleration of the vehicle is calculated. Then, the pitch angle of the vehicle is calculated using the absolute inclination angle, acceleration, and spring constant, and the optical axis direction is adjusted based on the calculated pitch angle.
特開2001-341578号公報JP 2001-341578 A
 特許文献1に記載の技術では、演算用のバネ定数として一定の値を用いている。そのため、加速度とピッチ角との関係が、加速時及び減速時を含め、全体として線形である。
 しかし、車両の加速度とピッチ角との関係は、実際には線形ではなく、少なくとも、加速時と減速時とで変化の傾向が異なる。その理由としては、サスペンションのバネ定数が実際には前後で異なることや、車両の挙動が加速時と減速時とで異なることなど、種々の要因が挙げられる。そのため、特許文献1に記載の技術では、加速中か減速中かにかかわらず一定のバネ定数を用いてピッチ角が演算されるため、その演算精度は低くなり、精度良く光軸を制御することは難しい。
In the technique described in Patent Document 1, a constant value is used as a spring constant for calculation. Therefore, the relationship between acceleration and pitch angle is linear as a whole including acceleration and deceleration.
However, the relationship between the acceleration of the vehicle and the pitch angle is not actually linear, and at least the tendency of change differs between acceleration and deceleration. The reasons include various factors such as the fact that the spring constant of the suspension is actually different before and after, and the behavior of the vehicle is different between acceleration and deceleration. Therefore, in the technique described in Patent Document 1, since the pitch angle is calculated using a constant spring constant regardless of whether the vehicle is accelerating or decelerating, the calculation accuracy is low and the optical axis is controlled with high accuracy. Is difficult.
 本発明は上記課題に鑑みなされたものであり、加速中か減速中かにかかわらず前照灯の光軸を精度良く制御できるようにすることを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to enable accurate control of the optical axis of a headlamp regardless of whether the vehicle is accelerating or decelerating.
 上記課題を解決するためになされた本発明の車両用前照灯制御装置は、加速度検出部と、ピッチ角算出部と、制御部と、を備える。
 加速度検出部は、車両の加速度を検出する。ピッチ角算出部は、加速度検出部により検出された加速度に基づき、その加速度を用いた所定の演算方法を用いて、車両のピッチ角を算出する。演算方法は、少なくとも、車両が加速中か減速中かによって異なる。制御部は、ピッチ角算出部により算出されたピッチ角に基づいて、車両に搭載された前照灯の光軸がピッチ角に応じた方向を向くように光軸を制御する。
The vehicle headlamp control device of the present invention made to solve the above-described problems includes an acceleration detection unit, a pitch angle calculation unit, and a control unit.
The acceleration detection unit detects the acceleration of the vehicle. The pitch angle calculation unit calculates the pitch angle of the vehicle based on the acceleration detected by the acceleration detection unit using a predetermined calculation method using the acceleration. The calculation method differs at least depending on whether the vehicle is accelerating or decelerating. The control unit controls the optical axis based on the pitch angle calculated by the pitch angle calculation unit so that the optical axis of the headlamp mounted on the vehicle is directed in a direction corresponding to the pitch angle.
 このように構成された車両用前照灯制御装置によれば、検出された加速度を用い、車両が加速中か減速中かによって異なる演算方法によって、ピッチ角が算出される。そのため、車両が加速中か減速中かにかかわらず、ピッチ角を精度良く算出することができ、これにより、車両が加速中か減速中かにかかわらず前照灯の光軸を精度良く制御することができる。 According to the vehicle headlamp control apparatus configured as described above, the pitch angle is calculated by using the detected acceleration and by a different calculation method depending on whether the vehicle is accelerating or decelerating. Therefore, the pitch angle can be calculated with high accuracy regardless of whether the vehicle is accelerating or decelerating, thereby controlling the optical axis of the headlamp with high accuracy regardless of whether the vehicle is accelerating or decelerating. be able to.
 ピッチ角算出部は、加速度検出部により検出された加速度に基づき、上記演算方法を用いて、加速度に起因して生じるピッチ角の変動量を算出するようにしてもよい。そして、その算出した変動量を用いてピッチ角を算出するようにしてもよい。より具体的には、停車中のピッチ角である停車中ピッチ角を算出しておき、その停車中ピッチ角に変動量を加算することでピッチ角を算出するようにしてもよい。 The pitch angle calculation unit may calculate the amount of variation in the pitch angle caused by the acceleration using the above calculation method based on the acceleration detected by the acceleration detection unit. Then, the pitch angle may be calculated using the calculated fluctuation amount. More specifically, a stopping pitch angle that is a stopping pitch angle may be calculated, and the pitch angle may be calculated by adding a fluctuation amount to the stopping pitch angle.
 なお、特許請求の範囲に記載した括弧内の符号は、一つの態様として後述する実施形態に記載の具体的手段との対応関係を示すものであって、本発明の技術的範囲を限定するものではない。 In addition, the code | symbol in the parenthesis described in the claim shows the correspondence with the specific means as described in embodiment mentioned later as one aspect, Comprising: The technical scope of this invention is limited is not.
(A)は実施形態の前照灯光軸方向制御装置が搭載された車両の概略構成を示す説明図、(B)は前照灯光軸方向制御装置の概略構成を示すブロック図である。(A) is explanatory drawing which shows schematic structure of the vehicle by which the headlamp optical-axis direction control apparatus of embodiment is mounted, (B) is a block diagram which shows schematic structure of the headlamp optical-axis direction control apparatus. ヘッドライトの概略構成を示す説明図である。It is explanatory drawing which shows schematic structure of a headlight. (A)~(D)はそれぞれ車両の停車中ピッチ角θp0、ピッチ角変動量θpc、及び道路勾配θgの関係を説明するための説明図である。(A) to (D) are explanatory diagrams for explaining the relationship among the stopping pitch angle θp0, the pitch angle variation θpc, and the road gradient θg of the vehicle, respectively. (A)は加速時における加速度とピッチ角変動量との関係を示すグラフ、(B)は減速時における加速度とピッチ角変動量との関係を示すグラフである。(A) is a graph showing the relationship between acceleration and pitch angle variation during acceleration, and (B) is a graph showing the relationship between acceleration and pitch angle variation during deceleration. 光軸制御処理を示すフローチャートである。It is a flowchart which shows an optical axis control process. 変動量算出マップを示す説明図である。It is explanatory drawing which shows the variation | change_quantity calculation map.
 以下、本発明が適用された実施形態について、図面を用いて説明する。
 (1)車両用前照灯制御装置の構成
 本実施形態の車両用前照灯制御装置(以下「前照灯制御装置」と略す)1について、図1(A)および(B)を用いて説明する。図1(A)に示すように、前照灯制御装置1は、車両5に搭載され、車両5のヘッドライト(前照灯)10の光軸を制御する。前照灯制御装置1は、直接的には、ヘッドライト10に設けられた光軸制御用のモータ15を制御し、これによりヘッドライト10の光軸を制御する。前照灯制御装置1は、ECU(車両の加速度検出部、車両のピッチ角算出部、光軸制御部、停車中ピッチ角算出部、安定状態判断部)20と、傾斜センサ31と、車速センサ(車両の加速度検出部)32とを備える。
Embodiments to which the present invention is applied will be described below with reference to the drawings.
(1) Configuration of Vehicle Headlight Control Device A vehicle headlight control device (hereinafter abbreviated as “headlight control device”) 1 of the present embodiment will be described with reference to FIGS. 1 (A) and 1 (B). explain. As shown in FIG. 1A, the headlamp control device 1 is mounted on a vehicle 5 and controls the optical axis of a headlight (headlamp) 10 of the vehicle 5. The headlamp control device 1 directly controls the optical axis control motor 15 provided in the headlight 10, thereby controlling the optical axis of the headlight 10. The headlamp control device 1 includes an ECU (vehicle acceleration detection unit, vehicle pitch angle calculation unit, optical axis control unit, stopping pitch angle calculation unit, stable state determination unit) 20, an inclination sensor 31, and a vehicle speed sensor. (Vehicle acceleration detection unit) 32.
 傾斜センサ31は、車両5における所定の部位に設けられ、車両5の絶対傾斜角θa(重力方向に垂直な水平面に対する傾斜角)を検出してその検出結果を示す傾斜角信号をECU20へ出力する。車速センサ32は、車両5の実際の走行速度を検出し、その検出結果を示す車速信号をECU20へ出力する。 The inclination sensor 31 is provided at a predetermined portion of the vehicle 5, detects the absolute inclination angle θa of the vehicle 5 (inclination angle with respect to a horizontal plane perpendicular to the direction of gravity), and outputs an inclination angle signal indicating the detection result to the ECU 20. . The vehicle speed sensor 32 detects the actual traveling speed of the vehicle 5 and outputs a vehicle speed signal indicating the detection result to the ECU 20.
 ECU20は、傾斜センサ31からの傾斜角信号及び車速センサ32からの車速信号を少なくとも含む各種信号が入力され、それら各種の入力信号に従って、車両5の実ピッチ角θpを算出する。なお、実ピッチ角θpとは、路面に対する車両5のピッチ角である。 The ECU 20 receives various signals including at least the inclination angle signal from the inclination sensor 31 and the vehicle speed signal from the vehicle speed sensor 32, and calculates the actual pitch angle θp of the vehicle 5 according to the various input signals. The actual pitch angle θp is the pitch angle of the vehicle 5 with respect to the road surface.
 ECU20は、算出した実ピッチ角θpに基づいて、ヘッドライト10の光軸がその実ピッチ角θpに応じた方向を向くようにヘッドライト10を制御する。具体的には、算出した実ピッチ角θpに応じた駆動信号をモータ15へ出力してモータ15を駆動することにより、光軸を制御する。 The ECU 20 controls the headlight 10 based on the calculated actual pitch angle θp so that the optical axis of the headlight 10 is directed in a direction corresponding to the actual pitch angle θp. Specifically, the optical axis is controlled by driving the motor 15 by outputting a drive signal corresponding to the calculated actual pitch angle θp to the motor 15.
 ECU20は、図1(B)に示すように、CPU21と、ROM22と、RAM23と、保存用メモリ24と、入出力回路25とを備える。
 CPU21は、ROM22やその他の各種メモリに記憶されているプログラムに従って各種演算処理を実行する。
As shown in FIG. 1B, the ECU 20 includes a CPU 21, a ROM 22, a RAM 23, a storage memory 24, and an input / output circuit 25.
The CPU 21 executes various arithmetic processes according to programs stored in the ROM 22 and other various memories.
 ROM22は、CPU21により実行される各種プログラムやデータが記憶された記憶装置である。ヘッドライト10の光軸を制御するための後述の光軸制御処理(図5参照)のプログラムも、ROM22に記憶されている。なお、光軸制御処理のプログラムがROM22に記憶されていることは必須ではなく、ROM22以外の他の記憶装置に記憶されていてもよい。RAM23は、CPU21によって直接アクセスされる主記憶装置である。 The ROM 22 is a storage device that stores various programs and data executed by the CPU 21. A program of an optical axis control process (see FIG. 5) described later for controlling the optical axis of the headlight 10 is also stored in the ROM 22. The optical axis control processing program is not necessarily stored in the ROM 22, and may be stored in a storage device other than the ROM 22. The RAM 23 is a main storage device that is directly accessed by the CPU 21.
 保存用メモリ24は、記憶内容を電気的に書き換え可能な不揮発性の記憶装置である。保存用メモリ24には、各種プログラムやデータが記憶されているほか、CPU21が各種演算を行う過程において、適宜、演算結果等が記憶されることもある。 The storage memory 24 is a non-volatile storage device that can electrically rewrite the stored contents. In the storage memory 24, various programs and data are stored, and calculation results and the like may be appropriately stored in the process of the CPU 21 performing various calculations.
 後述する光軸制御処理(図5)の実行過程において、使用される各バネ定数ka,kbや算出される各種の演算結果は、RAM23に記憶されてもよいし、保存用メモリ24に記憶されてもよい。 In the execution process of the optical axis control process (FIG. 5), which will be described later, the spring constants ka and kb used and various calculation results calculated may be stored in the RAM 23 or stored in the storage memory 24. May be.
 入出力回路25は、各種信号の入出力を行うためのインタフェースである。ECU20に入力される各種信号は入出力回路25を介して入力される。また、ECU20からモータ15へ出力される駆動信号も入出力回路25を介して出力される。 The input / output circuit 25 is an interface for inputting / outputting various signals. Various signals input to the ECU 20 are input via the input / output circuit 25. A drive signal output from the ECU 20 to the motor 15 is also output via the input / output circuit 25.
 (2)ヘッドライトの構成
 ヘッドライト10は、主に車両5の前方に光を照射することにより車両前方の視認性向上や外部からの車両5の被視認性を向上させるための照明装置(前照灯)である。ヘッドライト10は、図2に示すように、ランプ11と、リフレクタ12と、支持部13と、可動部14と、モータ15とを備える。
(2) Configuration of Headlight The headlight 10 is a lighting device (front) for improving visibility in front of the vehicle and improving visibility of the vehicle 5 from outside by mainly irradiating light in front of the vehicle 5. Lighting). As shown in FIG. 2, the headlight 10 includes a lamp 11, a reflector 12, a support part 13, a movable part 14, and a motor 15.
 ランプ11は、車両前方を照射する光の発光源であり、例えば、ハロゲン電球、HID(High Intensity Discharge lamp ;高輝度放電ランプ)などが挙げられる。リフレクタ12は、ランプ11からの光線を車両前方へ反射させるための反射材である。 The lamp 11 is a light emission source for irradiating the front of the vehicle, and examples thereof include a halogen bulb, an HID (High Intensity Discharge lamp), and the like. The reflector 12 is a reflecting material for reflecting the light beam from the lamp 11 toward the front of the vehicle.
 支持部13は、リフレクタ12の下側に設けられ、リフレクタ12を上下方向(図中の円弧矢印方向)に揺動可能に支持する。可動部14は、リフレクタ12の上側に設けられ、一端側がリフレクタ12に接続されてリフレクタ12を支持し、他端側でモータ15に接続されており、モータ15によって前後方向(図中直線矢印方向)に可動する。 The support portion 13 is provided on the lower side of the reflector 12 and supports the reflector 12 so as to be swingable in the vertical direction (in the direction of the circular arc in the figure). The movable portion 14 is provided on the upper side of the reflector 12, one end side is connected to the reflector 12 to support the reflector 12, and the other end side is connected to the motor 15. ).
 モータ15は、ECU20からの駆動信号に応じて可動部14を前後方向に駆動する。なお、図示は省略したが、モータ15と可動部14とは、モータ15の回転を可動部14の直線運動に変換する変換機構を介して接続されている。 The motor 15 drives the movable part 14 in the front-rear direction in accordance with a drive signal from the ECU 20. Although not shown, the motor 15 and the movable portion 14 are connected via a conversion mechanism that converts rotation of the motor 15 into linear motion of the movable portion 14.
 ECU20からの駆動信号に基づいてモータ15が回転すると、可動部14が前後方向に移動し、これにより、リフレクタ12が、支持部13による支持点を軸にして上下方向に揺動する。ランプ11は、リフレクタ12に対して相対的に固定されている。そのため、リフレクタ12が上下方向に揺動すると、それに伴ってランプ11の光軸も上下方向に移動する。従って、ECU20は、モータ15を適切に制御することで、ランプ11の光軸を適切に制御することができる。 When the motor 15 rotates based on the drive signal from the ECU 20, the movable portion 14 moves in the front-rear direction, whereby the reflector 12 swings up and down around the support point by the support portion 13. The lamp 11 is fixed relative to the reflector 12. For this reason, when the reflector 12 swings in the vertical direction, the optical axis of the lamp 11 also moves in the vertical direction. Therefore, the ECU 20 can appropriately control the optical axis of the lamp 11 by appropriately controlling the motor 15.
 (3)車両の加減速に伴うピッチ角の変動について
 次に、車両5のピッチ角についてより具体的に説明する。本実施形態では、車両5の傾斜に関わる角度として、停車中ピッチ角θp0、実ピッチ角θp、絶対傾斜角θa、ピッチ角変動量θpc、及び道路勾配θgが用いられる。
(3) Pitch angle variation associated with vehicle acceleration / deceleration Next, the pitch angle of the vehicle 5 will be described more specifically. In the present embodiment, the stopping pitch angle θp0, the actual pitch angle θp, the absolute inclination angle θa, the pitch angle variation θpc, and the road gradient θg are used as the angles related to the inclination of the vehicle 5.
 停車中ピッチ角θp0とは、車両5が停車中のときのピッチ角である。実ピッチ角θpとは、車両5の現在のピッチ角である。絶対傾斜角θaは、既述の通り、路面に対してではなく水平面に対する傾斜角である。ピッチ角変動量θpcは、車両5が走行しているときの、車両5の加速度に起因して生じる、ピッチ角の変動量である。道路勾配θgとは、水平面に対する路面の傾斜角である。 The stopped pitch angle θp0 is a pitch angle when the vehicle 5 is stopped. The actual pitch angle θp is the current pitch angle of the vehicle 5. As described above, the absolute inclination angle θa is an inclination angle with respect to the horizontal plane, not with respect to the road surface. The pitch angle fluctuation amount θpc is a pitch angle fluctuation amount caused by the acceleration of the vehicle 5 when the vehicle 5 is traveling. The road gradient θg is an inclination angle of the road surface with respect to a horizontal plane.
 図3(A)は、路面が水平面と平行な道路(即ち道路勾配θg=0°)に車両5が停車していて、車両5の停車中ピッチ角θp0が0°の場合の例を示している。
 図3(B)の例では、道路勾配θg=0°の道路に車両5が停止していて、車両5の停車中ピッチ角θp0が0°ではない(例えば2°)の例を示している。車両5の重心の位置や前・後輪のサスペンションの特性、車両5の乗員の乗車状態などの種々の要因によって、停車中ピッチ角θp0が0°ではない場合も起こり得る。図3(B)は、停車中の状態ですでに車両5がわずかに前傾した状態になっていることを示している。なお、場合によっては、図3(B)とは逆に、車両5が停車中で後傾した状態(停車中ピッチ角θp0が正の値)になることもある。
FIG. 3A shows an example in which the vehicle 5 is stopped on a road whose road surface is parallel to the horizontal plane (that is, road gradient θg = 0 °), and the pitch angle θp0 during stopping of the vehicle 5 is 0 °. Yes.
In the example of FIG. 3B, the vehicle 5 is stopped on the road with the road gradient θg = 0 °, and the stopping pitch angle θp0 of the vehicle 5 is not 0 ° (for example, 2 °). . Depending on various factors such as the position of the center of gravity of the vehicle 5, the characteristics of the suspensions of the front and rear wheels, and the riding state of the occupants of the vehicle 5, the stop pitch angle θp0 may not be 0 °. FIG. 3B shows that the vehicle 5 has already slightly tilted forward while the vehicle is stopped. In some cases, contrary to FIG. 3B, the vehicle 5 may be in a state of being tilted backward while the vehicle 5 is stopped (stopped pitch angle θp0 is a positive value).
 図3(C)は、停車中ピッチ角θp0=0°の車両5が、道路勾配θg=0°の道路上を走行していて且つ加速している状態を例示している。車両5が加速すると、慣性力によって車両5は後傾し、車両5のピッチ角が変動(この場合は増加)する。図3(C)の例では、加速していることによってピッチ角変動量θpcが0ではなく正の値となり、よって実ピッチ角θpはθp0よりも大きくなっている状態が示されている。加速時におけるピッチ角の変動量であるピッチ角変動量θpcは、図4(A)に例示するように、加速度が大きくなるほど大きくなる。 FIG. 3C illustrates a state in which the vehicle 5 having a stopped pitch angle θp0 = 0 ° is traveling on a road having a road gradient θg = 0 ° and is accelerating. When the vehicle 5 accelerates, the vehicle 5 tilts backward due to the inertial force, and the pitch angle of the vehicle 5 fluctuates (in this case, increases). In the example of FIG. 3 (C), the pitch angle variation amount θpc becomes a positive value instead of 0 due to acceleration, and thus the actual pitch angle θp is larger than θp0. As illustrated in FIG. 4A, the pitch angle variation θpc, which is the pitch angle variation during acceleration, increases as the acceleration increases.
 図3(D)は、停車中ピッチ角θp0=0°の車両5が、道路勾配θg>0°の道路上を走行していて且つ減速している状態を例示している。車両5が減速すると、慣性力によって車両5は前傾し、車両5のピッチ角が変動(この場合は減少)する。図3(D)の例では、減速していることによってピッチ角変動量θpcが0ではなく負の値となり、よって実ピッチ角θpはθp0よりも小さくなっている状態が示されている。減速時におけるピッチ角変動量θpcは、図4(B)に例示するように、加速度が小さくなるほど(即ち減速度が大きくなるほど)小さくなる(負の方向に増加する)。 FIG. 3D illustrates a state in which the vehicle 5 having a stopped pitch angle θp0 = 0 ° is traveling on a road having a road gradient θg> 0 ° and is decelerating. When the vehicle 5 decelerates, the vehicle 5 tilts forward due to inertial force, and the pitch angle of the vehicle 5 fluctuates (decreases in this case). In the example of FIG. 3D, the pitch angle fluctuation amount θpc becomes a negative value instead of 0 due to deceleration, and thus the actual pitch angle θp is smaller than θp0. As illustrated in FIG. 4B, the pitch angle fluctuation amount θpc at the time of deceleration decreases (increases in the negative direction) as the acceleration decreases (that is, as the deceleration increases).
 なお、道路勾配の変化によってピッチ角の変化が生じることがあるが、本実施形態では、道路勾配の変化に起因するピッチ角の変動は無視する。
 上記の通り、車両5が加速すると車両5は後傾してピッチ角が増加する。具体的には、加速度が大きくなるほどピッチ角の増加量も大きく(即ちピッチ角変動量θpcが大きく)なる。逆に、車両5が減速すると車両5は前傾してピッチ角が減少する。具体的には、加速度が小さくなるほど(減速度が大きくなるほど)ピッチ角の減少量も大きく(即ちピッチ角変動量θpcが負の方向に大きく)なる。
Although a change in the pitch angle may occur due to a change in the road gradient, in the present embodiment, a change in the pitch angle due to the change in the road gradient is ignored.
As described above, when the vehicle 5 accelerates, the vehicle 5 tilts backward and the pitch angle increases. Specifically, as the acceleration increases, the increase amount of the pitch angle increases (that is, the pitch angle fluctuation amount θpc increases). Conversely, when the vehicle 5 decelerates, the vehicle 5 tilts forward and the pitch angle decreases. Specifically, as the acceleration decreases (the deceleration increases), the pitch angle decrease amount increases (that is, the pitch angle variation θpc increases in the negative direction).
 本実施形態では、後述するように、車両5の加速度を検出し、その加速度と演算用のバネ定数kとの積算によって、ピッチ角変動量θpcが算出される。なお、演算用バネ定数k(詳しくは後述する加速時バネ定数ka及び減速時バネ定数kb)とは、特定のバネ(例えば車両5の特定のサスペンションのバネ)のバネ定数を直接的に示す定数ではない。演算用バネ定数kは、当該演算用バネ定数k及び加速度αを用いてピッチ角変動量θpcを算出するための、車両5の加減速時の実際のピッチ角変動特性が反映された擬似的なバネ定数である。 In this embodiment, as will be described later, the pitch angle variation θpc is calculated by detecting the acceleration of the vehicle 5 and integrating the acceleration and the spring constant k for calculation. The calculation spring constant k (specifically, an acceleration spring constant ka and a deceleration spring constant kb, which will be described later) is a constant that directly indicates the spring constant of a specific spring (for example, a spring of a specific suspension of the vehicle 5). is not. The calculation spring constant k is a pseudo value reflecting an actual pitch angle variation characteristic during acceleration / deceleration of the vehicle 5 for calculating the pitch angle variation amount θpc using the calculation spring constant k and the acceleration α. Spring constant.
 仮に、加速度とピッチ角変動量θpcとの関係が線形関係にあるならば、演算用バネ定数kは、加速度にかかわらず一定値を用いてもよい。
 しかし、加速度とピッチ角変動量θpcとの関係は、実際には、図4(A)および(B)に例示するように線形ではない。しかも、加速時と減速時とでは、加速度に対するピッチ角変動量θpcの変化の傾向が異なる。換言すれば、図4(A)の特性を、原点を中心に点対称移動させた特性と、図4(B)の特性とは、必ずしも一致しない。
If the relationship between the acceleration and the pitch angle variation θpc is linear, the calculation spring constant k may be a constant value regardless of the acceleration.
However, the relationship between the acceleration and the pitch angle fluctuation amount θpc is not actually linear as illustrated in FIGS. 4A and 4B. Moreover, the tendency of the change in the pitch angle variation θpc with respect to acceleration differs between acceleration and deceleration. In other words, the characteristic of FIG. 4A that is point-symmetrically moved about the origin does not necessarily match the characteristic of FIG. 4B.
 なお、図4(A)および(B)に示した特性はあくまでも一例であり、加速度とピッチ角変動量θpcとの関係は、車両5の前・後サスペンションのバネ定数や車両5の加減速時の重心移動特性などの、種々の要因によって異なる。図4(A)および(B)の例は、後輪のサスペンションのバネ(例えばバネ定数が30[N/mm])が前輪のサスペンションのバネ(例えばバネ定数が20[N/mm])よりも硬い車両の特性例を示している。 The characteristics shown in FIGS. 4 (A) and 4 (B) are merely examples, and the relationship between the acceleration and the pitch angle variation θpc depends on the spring constant of the front and rear suspensions of the vehicle 5 and the acceleration / deceleration of the vehicle 5. It depends on various factors such as the center of gravity movement characteristics. 4A and 4B, the rear wheel suspension spring (for example, the spring constant is 30 [N / mm]) is greater than the front wheel suspension spring (for example, the spring constant is 20 [N / mm]). The example of the characteristic of a hard vehicle is also shown.
 上記のように、加速時と減速時とでは、加速度に対するピッチ角変動量θpcの変化の傾向が異なる。そこで、本実施形態では、加速時と減速時とで異なる値の演算用バネ定数kを用いることで、少なくとも、加速時と減速時の特性変化傾向の違いについては、演算結果に反映されるようにしている。 As described above, the tendency of the change in the pitch angle fluctuation amount θpc with respect to acceleration differs between acceleration and deceleration. Therefore, in this embodiment, by using the spring constant k for calculation that is different between acceleration and deceleration, at least the difference in the characteristic change tendency during acceleration and deceleration is reflected in the calculation result. I have to.
 (4)光軸制御処理の説明
 次に、ECU20が実行する光軸制御処理について、図5を用いて説明する。ECU20のCPU21は、車両5の電源スイッチ(例えばイグニションスイッチ)がオンされている間、所定の制御周期で、図5の光軸制御処理を繰り返し実行する。
(4) Description of Optical Axis Control Process Next, the optical axis control process executed by the ECU 20 will be described with reference to FIG. The CPU 21 of the ECU 20 repeatedly executes the optical axis control process of FIG. 5 at a predetermined control period while the power switch (for example, an ignition switch) of the vehicle 5 is turned on.
 CPU21は、図5の光軸制御処理を開始すると、S110で、車両5が走行中か否か判断する。この判断は、例えば車速センサ32からの車速信号に基づいて行うことができる。 CPU21 will start the optical axis control process of FIG. 5, and will determine whether the vehicle 5 is drive | working by S110. This determination can be made based on, for example, a vehicle speed signal from the vehicle speed sensor 32.
 車両5が停車中の場合は、S120で、絶対傾斜角θa及び道路勾配θgの前回値から、停車中ピッチ角θp0を算出する。具体的には、θp0=θa-θgを演算することによって停車中ピッチ角θp0を算出する。絶対傾斜角θaは、後述するS160の処理が実行される度に算出され、記憶装置(例えばRAM23又は保存用メモリ24)に記憶される。道路勾配θgも、後述するS270の処理が実行される度に、算出されて記憶装置に記憶される。S120の処理は、記憶装置に記憶されている最新の絶対傾斜角θa及び道路勾配θgを用いて停車中ピッチ角θp0を算出する処理である。なお、例えばECU20に電源が初めて投入された時や、何らかの要因で記憶装置の記憶内容が消えた場合など、絶対傾斜角θa及び道路勾配θgの少なくとも一方の前回値が記憶装置に記憶されていない場合は、停車中ピッチ角θp0として、予めROM22に記憶されている初期値を用いる。ROM22には、車両5の工場出荷時などの特定のタイミングで、停車中ピッチ角θp0の初期値(例えば0°)が書き込まれる。 If the vehicle 5 is stopped, the stopping pitch angle θp0 is calculated from the previous values of the absolute inclination angle θa and the road gradient θg in S120. Specifically, the stopping pitch angle θp0 is calculated by calculating θp0 = θa−θg. The absolute inclination angle θa is calculated every time the process of S160 described later is executed and stored in a storage device (for example, the RAM 23 or the storage memory 24). The road gradient θg is also calculated and stored in the storage device every time the process of S270 described later is executed. The process of S120 is a process of calculating the stopping pitch angle θp0 using the latest absolute inclination angle θa and road gradient θg stored in the storage device. Note that the previous value of at least one of the absolute inclination angle θa and the road gradient θg is not stored in the storage device, for example, when the power is first turned on to the ECU 20 or when the storage contents of the storage device disappear for some reason. In this case, an initial value stored in advance in the ROM 22 is used as the stopping pitch angle θp0. In the ROM 22, an initial value (for example, 0 °) of the stopped pitch angle θp0 is written at a specific timing such as when the vehicle 5 is shipped from the factory.
 S130では、傾斜センサ31から入力される傾斜角信号に基づいて、現在の絶対傾斜角θaを算出し、記憶装置に記憶する。S140では、S130で算出した現在の絶対傾斜角θaが、前回値から変化しているか否か判断する。ここでいう前回値とは、S130の処理前に記憶装置に記憶されていた最新の値、即ちS120の処理で用いた値である。 In S130, based on the tilt angle signal input from the tilt sensor 31, the current absolute tilt angle θa is calculated and stored in the storage device. In S140, it is determined whether or not the current absolute inclination angle θa calculated in S130 has changed from the previous value. The previous value here is the latest value stored in the storage device before the processing of S130, that is, the value used in the processing of S120.
 S140で、S130で算出した絶対傾斜角θaが前回値と同じである場合はS110に戻るが、前回値から変化している場合はS150に進む。S150では、停車中ピッチ角θp0の値を更新する。具体的には、S120で算出した停車中ピッチ角θp0を、絶対傾斜角θaの前回値からの変化量に従って補正する。例えば絶対傾斜角θaの前回値からの変化量がΔθaである場合は、S120で算出した停車中ピッチ角θp0にΔθaを加算することで停車中ピッチ角θp0を補正する。そして、記憶装置に記憶されている停車中ピッチ角θp0の値を、その補正後の値に更新(上書き)する。S150の処理後は、S110に戻る。 In S140, if the absolute inclination angle θa calculated in S130 is the same as the previous value, the process returns to S110, but if it has changed from the previous value, the process proceeds to S150. In S150, the value of the stopped pitch angle θp0 is updated. Specifically, the stopping pitch angle θp0 calculated in S120 is corrected according to the amount of change from the previous value of the absolute inclination angle θa. For example, when the change amount of the absolute inclination angle θa from the previous value is Δθa, the stopping pitch angle θp0 is corrected by adding Δθa to the stopping pitch angle θp0 calculated in S120. Then, the value of the stopping pitch angle θp0 stored in the storage device is updated (overwritten) to the corrected value. After the process of S150, the process returns to S110.
 このように、車両5が停車中は、絶対傾斜角θaの変動を監視して、絶対傾斜角θaに変動があればその変動に追従して停車中ピッチ角θp0を更新することで、停車中ピッチ角θp0を常に最新の状態に維持する。 As described above, when the vehicle 5 is stopped, the change in the absolute inclination angle θa is monitored, and if there is a change in the absolute inclination angle θa, the change is made by following the change and the stopping pitch angle θp0 is updated. The pitch angle θp0 is always kept up to date.
 S110で、車両5が走行中の場合は、S160に進む。S160では、傾斜センサ31から入力される傾斜角信号に基づいて、現在の絶対傾斜角θaを算出し、記憶装置に記憶する。S170では、車速センサ32から入力される車速信号に基づき、車両5の加速度αを算出する。加速度αは、例えば、過去に取得した少なくとも1つの車速信号と今回取得した車速信号に基づいて車速信号の変化率(本実施形態では例えば離散微分値)を算出することにより算出することができる。加速度αの算出後は、ピッチ角変動量θpcを算出するための一連のピッチ角算出処理(S180~S250)に進む。 In S110, if the vehicle 5 is traveling, the process proceeds to S160. In S160, based on the tilt angle signal input from the tilt sensor 31, the current absolute tilt angle θa is calculated and stored in the storage device. In S170, the acceleration α of the vehicle 5 is calculated based on the vehicle speed signal input from the vehicle speed sensor 32. The acceleration α can be calculated, for example, by calculating a rate of change of the vehicle speed signal (for example, a discrete differential value in the present embodiment) based on at least one vehicle speed signal acquired in the past and the vehicle speed signal acquired this time. After the acceleration α is calculated, the process proceeds to a series of pitch angle calculation processes (S180 to S250) for calculating the pitch angle fluctuation amount θpc.
 S180では、車両5の加速度が一定か否か判断する。加速度が一定か否かの判断方法は種々考えられ、例えば、今回S170で算出した加速度αと、前回S170で算出した加速度αとを比較して、両者が一致している場合は加速度一定と判断し、両者が異なる場合は加速度が一定ではないと判断できる。また例えば、過去の特定のタイミングから現在までに算出された複数の加速度αに基づき、各加速度の変動幅が一定レベル以下で安定しているとみなせる場合に、加速度一定と判断するようにしてもよい。もちろん、他の方法によって加速度が一定(即ち加速度が安定した加速度安定状態)か否かを判断するようにしてもよい。 In S180, it is determined whether or not the acceleration of the vehicle 5 is constant. There are various methods for determining whether or not the acceleration is constant. For example, the acceleration α calculated in S170 this time is compared with the acceleration α calculated in S170 last time. However, if they are different, it can be determined that the acceleration is not constant. Further, for example, based on a plurality of accelerations α calculated from a specific timing in the past to the present, when it is considered that the fluctuation range of each acceleration is stable at a certain level or less, it may be determined that the acceleration is constant. Good. Of course, it may be determined whether the acceleration is constant (that is, the acceleration stable state where the acceleration is stable) by other methods.
 S180で、車両5の加速度が一定ではないと判断した場合は、S250で、ピッチ角変動量θpcを0として算出する。即ち、実際には車両5が加速中又は減速中であってその加速度に起因してピッチ角に変動が生じていても、加速度が一定ではない場合は、S170で算出した加速度αの信頼性が低い可能性がある。本実施形態は、そのような信頼性の低い加速度αを用いてピッチ角変動量θpcを算出するよりも、むしろ、ピッチ角変動量θpcを0として(つまり加速度による変動分は考慮しないこととして)処理を進めた方が結果として精度の高い実ピッチ角θpを算出できる可能性が高いという考えのもと、加速度が一定ではない場合はピッチ角変動量θpcを0としている。S250の処理後は、S260に進む。 If it is determined in S180 that the acceleration of the vehicle 5 is not constant, the pitch angle variation θpc is calculated as 0 in S250. That is, if the vehicle 5 is actually accelerating or decelerating and the pitch angle fluctuates due to the acceleration, but the acceleration is not constant, the reliability of the acceleration α calculated in S170 is reliable. There is a low possibility. In the present embodiment, rather than calculating the pitch angle variation θpc using such an unreliable acceleration α, the pitch angle variation θpc is set to 0 (that is, the variation due to acceleration is not considered). The pitch angle variation θpc is set to 0 when the acceleration is not constant based on the idea that the processing is more likely to result in the calculation of the actual pitch angle θp with higher accuracy. After the processing of S250, the process proceeds to S260.
 S180で、車両5の加速度が一定であると判断した場合は、S190で、車両5が加速中か否か判断する。加速度αが正の値である場合は、加速中と判断して、S200に進む。S200では、演算用バネ定数kを、予め決められている(記憶装置に予め記憶されている)加速時バネ定数kaに設定する。なお、加速時バネ定数ka及び後述する減速時バネ定数kbは、いずれも正の値であるが、その値は両者で異なる。 If it is determined in S180 that the acceleration of the vehicle 5 is constant, it is determined in S190 whether the vehicle 5 is accelerating. If the acceleration α is a positive value, it is determined that acceleration is being performed, and the process proceeds to S200. In S200, the calculation spring constant k is set to a predetermined acceleration spring constant ka (stored in advance in the storage device). The acceleration spring constant ka and the deceleration spring constant kb, which will be described later, are both positive values, but the values differ between the two.
 S210では、S170で算出した加速度αと、S200で設定した演算用バネ定数k(ここではk=ka)とを積算することで、ピッチ角変動量θpcを算出する。S210の処理後は、S260に進む。 In S210, the pitch angle variation θpc is calculated by integrating the acceleration α calculated in S170 and the calculation spring constant k (here, k = ka) set in S200. After the process of S210, the process proceeds to S260.
 S190で、加速度αが0以下の場合は、S220に進む。S220では、車両5が減速中か否か判断する。加速度αが0の場合は、減速中ではない(つまり定速走行中)と判断して、S250に進む。つまり、定速走行中の場合はピッチ角変動量θpcが0として算出される。 If the acceleration α is 0 or less in S190, the process proceeds to S220. In S220, it is determined whether the vehicle 5 is decelerating. If the acceleration α is 0, it is determined that the vehicle is not decelerating (that is, traveling at a constant speed), and the process proceeds to S250. That is, the pitch angle fluctuation amount θpc is calculated as 0 when traveling at a constant speed.
 S220で、加速度αが負の値である場合は、減速中と判断して、S230に進む。S230では、演算用バネ定数kを、予め決められている減速時バネ定数kbに設定する。S240では、S170で算出した加速度αと、S230で設定した演算用バネ定数k(ここではk=kb)とを積算し、その積算結果に-1を乗じた値を、ピッチ角変動量θpcとして算出する。減速時は車両5が前傾するため、ピッチ角は負の方向へ変動する。そのため、-1を乗じている。S240の処理後は、S260に進む。 In S220, when the acceleration α is a negative value, it is determined that the vehicle is decelerating, and the process proceeds to S230. In S230, the calculation spring constant k is set to a predetermined spring constant kb during deceleration. In S240, the acceleration α calculated in S170 and the calculation spring constant k (here, k = kb) set in S230 are integrated, and a value obtained by multiplying the integration result by −1 is used as a pitch angle variation amount θpc. calculate. Since the vehicle 5 tilts forward during deceleration, the pitch angle varies in the negative direction. Therefore, -1 is multiplied. After the process of S240, the process proceeds to S260.
 なお、加速時バネ定数ka及び減速時バネ定数kbは、種々の方法で決めることができる。例えば、図4に例示したような、加速度に対するピッチ角変動量θpcの特性を、車両5を対象として実際に計測し、その計測結果に基づいて各演算用バネ定数ka、kbを決めるようにしてもよい。また例えば、車両5の前・後のサスペンションの特性(例えば4つの車輪それぞれに設けられているサスペンションの特性(ショックアブソーバの減衰特性やコイルバネのバネ定数など)に基づいて各演算用バネ定数ka、kbを決めるようにしてもよい。また、ブレーキ時の車両5の重心移動特性も考慮して、各演算用バネ定数ka、kbを決めるようにしてもよい。 The acceleration spring constant ka and the deceleration spring constant kb can be determined by various methods. For example, the characteristic of the pitch angle variation θpc with respect to acceleration as illustrated in FIG. 4 is actually measured for the vehicle 5, and the respective spring constants ka and kb are determined based on the measurement result. Also good. Further, for example, based on the characteristics of the front and rear suspensions of the vehicle 5 (for example, the characteristics of the suspension provided on each of the four wheels (damping characteristics of the shock absorber, the spring constant of the coil spring, etc.)) The calculation spring constants ka and kb may be determined in consideration of the center-of-gravity movement characteristics of the vehicle 5 during braking.
 S180~S250の一連のピッチ角変動量算出処理によってピッチ角変動量θpcを算出した後は、S260に進む。S260では、実ピッチ角θpを算出する。具体的には、現在記憶されている最新の停車中ピッチ角θp0に、S210、S240又はS250で算出されたピッチ角変動量θpcを加算することで、実ピッチ角θpを算出する。 After calculating the pitch angle variation θpc by the series of pitch angle variation calculation processing of S180 to S250, the process proceeds to S260. In S260, the actual pitch angle θp is calculated. Specifically, the actual pitch angle θp is calculated by adding the pitch angle fluctuation amount θpc calculated in S210, S240 or S250 to the latest stopping pitch angle θp0 currently stored.
 S270では、S160で算出し記憶した最新の絶対傾斜角θaから、S260で算出した実ピッチ角θpを減算することで、道路勾配θgを算出する。
 S280では、S260で算出した実ピッチ角θpに基づいて、ヘッドライト10の光軸を制御する。具体的には、車両5が実ピッチ角θpだけピッチした状態であることに基づき、結果として光軸が所望の方向(例えば路面と平行な方向よりも所定角度下向きの方向)となるようにモータ15を駆動させることで光軸を制御する。
In S270, the road gradient θg is calculated by subtracting the actual pitch angle θp calculated in S260 from the latest absolute inclination angle θa calculated and stored in S160.
In S280, the optical axis of the headlight 10 is controlled based on the actual pitch angle θp calculated in S260. Specifically, based on the fact that the vehicle 5 is pitched by the actual pitch angle θp, as a result, the motor is set so that the optical axis is in a desired direction (for example, a direction downward by a predetermined angle from a direction parallel to the road surface). The optical axis is controlled by driving 15.
 (5)実施形態の効果等
 以上説明した本実施形態の前照灯制御装置1によれば、加速度αを算出し、車両5が加速中か減速中かによって異なる演算方法によって、実ピッチ角θpが算出される。そのため、車両5が加速中か減速中かにかかわらず、実ピッチ角θpを精度良く算出することができ、これにより、車両5が加速中か減速中かにかかわらずヘッドライト10の光軸を精度良く制御することができる。
(5) Effects of Embodiment, etc. According to the headlamp control device 1 of the present embodiment described above, the acceleration α is calculated, and the actual pitch angle θp is calculated by a different calculation method depending on whether the vehicle 5 is accelerating or decelerating. Is calculated. Therefore, it is possible to accurately calculate the actual pitch angle θp regardless of whether the vehicle 5 is accelerating or decelerating, and thereby the optical axis of the headlight 10 can be determined regardless of whether the vehicle 5 is accelerating or decelerating. It can be controlled with high accuracy.
 実ピッチ角θpを算出する過程では、まず、車両5の加減速に起因して生じるピッチ角変動量θpcが算出される。このとき、車両5が加速中ならば加速時バネ定数kaが用いられ、車両5が減速中ならば減速時バネ定数kbが用いられる。つまり、車両5が加速中か減速中かによって異なる演算用バネ定数を用いてピッチ角変動量θpcが算出される。そして、そのピッチ角変動量θpcを用いて実ピッチ角θpが算出される。そのため、加速時バネ定数ka及び減速時バネ定数kbをそれぞれ車両5の実際の特性に合った適切な値に設定することで、簡素な演算方法にて、車両5が加速中か減速中かにかかわらずヘッドライト10の光軸を精度良く制御することができる。 In the process of calculating the actual pitch angle θp, first, the pitch angle fluctuation amount θpc caused by the acceleration / deceleration of the vehicle 5 is calculated. At this time, the acceleration spring constant ka is used if the vehicle 5 is accelerating, and the deceleration spring constant kb is used if the vehicle 5 is decelerating. That is, the pitch angle fluctuation amount θpc is calculated using a calculation spring constant that varies depending on whether the vehicle 5 is accelerating or decelerating. Then, the actual pitch angle θp is calculated using the pitch angle fluctuation amount θpc. Therefore, by setting the acceleration spring constant ka and the deceleration spring constant kb to appropriate values that match the actual characteristics of the vehicle 5, it is possible to determine whether the vehicle 5 is accelerating or decelerating with a simple calculation method. Regardless, the optical axis of the headlight 10 can be accurately controlled.
 また、本実施形態では、車両5が停車しているとき、その停車中の状態でのピッチ角である停車中ピッチ角θp0が算出される。そして、その停車中ピッチ角θp0にピッチ角変動量θpcを加算するという簡素な演算方法で実ピッチ角θpが算出される。そのため、停車中ピッチ角θp0の精度が高いほど、またピッチ角変動量θpcの精度が高いほど(つまり各バネ定数ka,kbの値が適切であればあるほど)、実ピッチ角θpの算出精度を高めることができる。 Further, in the present embodiment, when the vehicle 5 is stopped, a stopped pitch angle θp0 that is a pitch angle in the stopped state is calculated. Then, the actual pitch angle θp is calculated by a simple calculation method of adding the pitch angle fluctuation amount θpc to the stopping pitch angle θp0. Therefore, the higher the accuracy of the stopped pitch angle θp0 and the higher the accuracy of the pitch angle variation θpc (that is, the more appropriate the values of the spring constants ka and kb), the more accurate the calculation of the actual pitch angle θp. Can be increased.
 また、本実施形態では、車両5の加速度が一定の場合に、加速度α及び演算用バネ定数kを用いてピッチ角変動量θpcを算出している。つまり、車両5の加速度が変動している不安定な状態のときには、その不安定な状態で算出された加速度αを用いたピッチ角変動量θpcの算出は行わない。そのため、車両5が加減速中の実ピッチ角θpの算出精度を、全体としてより高めることができる。 Further, in the present embodiment, when the acceleration of the vehicle 5 is constant, the pitch angle fluctuation amount θpc is calculated using the acceleration α and the calculation spring constant k. That is, when the acceleration of the vehicle 5 is in an unstable state, the pitch angle variation amount θpc is not calculated using the acceleration α calculated in the unstable state. Therefore, the calculation accuracy of the actual pitch angle θp during acceleration / deceleration of the vehicle 5 can be further increased as a whole.
 [他の実施形態]
 以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定されることなく、種々の形態を採り得る。
[Other Embodiments]
As mentioned above, although embodiment of this invention was described, this invention can take a various form, without being limited to the said embodiment.
 (1)演算用バネ定数は、加速時用及び減速時用にそれぞれ1つずつ決めておくことは必須ではない。例えば、加速時に用いる加速時バネ定数kaとして、加速度αに応じて異なる複数種類の加速時バネ定数kaを用意してもよい。具体的には、例えば、加速度αが0から所定値までの間は第1の加速時バネ定数ka1を用い、加速度αが所定値より高いときは第2の加速時バネ定数ka2を用いる、という方法を採用してもよい。もちろん、三種類以上の加速時バネ定数を用意して、加速度に応じて使い分けるようにしてもよい。減速時に用いる減速時バネ定数kbについても同様である。 (1) It is not essential to determine one spring constant for calculation, one for acceleration and one for deceleration. For example, a plurality of types of acceleration spring constants ka different according to the acceleration α may be prepared as the acceleration spring constant ka used during acceleration. Specifically, for example, when the acceleration α is between 0 and a predetermined value, the first acceleration spring constant ka1 is used, and when the acceleration α is higher than the predetermined value, the second acceleration spring constant ka2 is used. A method may be adopted. Of course, three or more types of acceleration spring constants may be prepared and used depending on the acceleration. The same applies to the deceleration spring constant kb used during deceleration.
 (2)上記実施形態では、車両5の加速度が一定のときに、演算用バネ定数kを用いたピッチ角変動量θpcの算出を行うようにしたが、加速度が一定であるか否かにかかわらず演算用バネ定数kを用いたピッチ角変動量θpcの算出を行うようにしてもよい。 (2) In the above embodiment, when the acceleration of the vehicle 5 is constant, the pitch angle fluctuation amount θpc is calculated using the calculation spring constant k. However, regardless of whether the acceleration is constant or not. The pitch angle fluctuation amount θpc may be calculated using the calculation spring constant k.
 (3)上記実施形態では、加速時と減速時とで演算用バネ定数kを使い分けることで、実ピッチ角θpの算出精度を高めることができたが、加速時と減速時とで異なる演算方法を用いて実ピッチ角θpを算出する方法は他にも考えられる。 (3) In the above embodiment, the calculation accuracy of the actual pitch angle θp can be improved by properly using the calculation spring constant k for acceleration and deceleration. However, the calculation method differs between acceleration and deceleration. There are other methods for calculating the actual pitch angle θp by using.
 例えば、加速度とピッチ角変動量θpcとが対応づけられたマップ(変動量算出マップ)を予め用意しておいてもよい。そして、図5に示した光軸制御処理の中のピッチ角変動量算出処理において、S180~S250の処理を、その変動量算出マップを用いてピッチ角変動量θpcを算出する処理に置き換えてもよい。 For example, a map (variation amount calculation map) in which acceleration and pitch angle variation amount θpc are associated may be prepared in advance. In the pitch angle variation calculation process in the optical axis control process shown in FIG. 5, the processing of S180 to S250 may be replaced with a process of calculating the pitch angle variation θpc using the variation calculation map. Good.
 図6に、変動量算出マップの一例を示す。図6に示す変動量算出マップ40は、車両5を実際に走行させて実測したピッチ角の測定結果(詳しくは加速度に対するピッチ角の変動量の実測値)を元にして作成されたものであり、図4に例示した特性とほぼ等価である。つまり、図6の変動量算出マップ40は、加速中における加速度αとピッチ角変動量θpcの関係と、減速中における加速度αとピッチ角変動量θpcとの関係とが、それぞれ実際の挙動に応じた関係(特性)となっており、結果として両者はそれぞれ異なる関係(特性)となっている。 FIG. 6 shows an example of the fluctuation amount calculation map. The fluctuation amount calculation map 40 shown in FIG. 6 is created based on the measurement result of the pitch angle actually measured by actually driving the vehicle 5 (specifically, the actual measurement value of the fluctuation amount of the pitch angle with respect to the acceleration). This is almost equivalent to the characteristic illustrated in FIG. That is, in the fluctuation amount calculation map 40 of FIG. 6, the relationship between the acceleration α and the pitch angle fluctuation amount θpc during acceleration and the relationship between the acceleration α and the pitch angle fluctuation amount θpc during deceleration depend on the actual behavior. As a result, both have different relationships (characteristics).
 図6に例示したような変動量算出マップ40を用いてピッチ角変動量θpcを算出することで、ピッチ角変動量θpcをより精度よく算出することができる。なお、ピッチ角変動量θpcの算出は、図5に示したS180~S250の処理や上述した変動量算出マップを用いた方法とは異なる方法を採用してもよい。 By calculating the pitch angle variation amount θpc using the variation amount calculation map 40 illustrated in FIG. 6, the pitch angle variation amount θpc can be calculated with higher accuracy. Note that the calculation of the pitch angle variation amount θpc may employ a method different from the processing of S180 to S250 shown in FIG. 5 and the method using the variation amount calculation map described above.
 また、実ピッチ角θpをピッチ角変動量θpcと停車中ピッチ角θp0の加算により算出する方法もあくまでも一例である。結果として、加速度を用い、且つ車両が加速中か減速中かによって異なる演算方法を用いて算出する方法である限り、種々の算出方法を採用できる。 Further, the method of calculating the actual pitch angle θp by adding the pitch angle fluctuation amount θpc and the stopped pitch angle θp0 is just an example. As a result, various calculation methods can be adopted as long as the calculation method uses acceleration and uses different calculation methods depending on whether the vehicle is accelerating or decelerating.
 (4)加速度αは、車速信号に基づく演算(例えば車速の微分演算)によって算出する方法に限らず、種々の方法で算出・取得してもよい。例えば、加速度センサを設け、その加速度センサからの検出信号に基づいて加速度αを算出するようにしてもよい。 (4) The acceleration α is not limited to a method of calculating by calculation based on a vehicle speed signal (for example, differential calculation of vehicle speed), and may be calculated and acquired by various methods. For example, an acceleration sensor may be provided, and the acceleration α may be calculated based on a detection signal from the acceleration sensor.
 (5)その他、上記実施形態における1つの構成要素が有する機能を複数の構成要素として分散させたり、複数の構成要素が有する機能を1つの構成要素に統合したりしてもよい。また、上記実施形態の構成の少なくとも一部を、同様の機能を有する公知の構成に置き換えてもよい。また、上記実施形態の構成の一部を省略してもよい。また、上記実施形態の構成の少なくとも一部を、他の上記実施形態の構成に対して付加、置換等してもよい。なお、特許請求の範囲に記載の文言から特定される技術思想に含まれるあらゆる態様が本発明の実施形態である。 (5) In addition, the functions of one component in the above embodiment may be distributed as a plurality of components, or the functions of a plurality of components may be integrated into one component. Further, at least a part of the configuration of the above embodiment may be replaced with a known configuration having the same function. Moreover, you may abbreviate | omit a part of structure of the said embodiment. In addition, at least a part of the configuration of the above embodiment may be added to or replaced with the configuration of the other embodiment. In addition, all the aspects included in the technical idea specified from the wording described in the claims are embodiments of the present invention.
 (6)上述した前照灯制御装置1の他、当該前照灯制御装置1を構成要素とするシステム、当該前照灯制御装置1としてコンピュータを機能させるためのプログラム(具体的には図5の光軸制御処理のプログラム)、このプログラムを記録した媒体、光軸制御処理で用いられている光軸制御方法など、種々の形態で本発明を実現することもできる。 (6) In addition to the headlight control device 1 described above, a system including the headlight control device 1 as a component, a program for causing a computer to function as the headlight control device 1 (specifically, FIG. 5 The present invention can also be realized in various forms such as an optical axis control processing program), a medium on which the program is recorded, and an optical axis control method used in the optical axis control processing.
 1…前照灯制御装置
 5…車両
 10…ヘッドライト
 11…ランプ
 12…リフレクタ
 13…支持部
 14…可動部
 15…モータ
 20…ECU
 21…CPU
 22…ROM
 23…RAM
 24…保存用メモリ
 25…入出力回路
 31…傾斜センサ
 32…車速センサ
 40…変動量算出マップ。
 
DESCRIPTION OF SYMBOLS 1 ... Headlamp control apparatus 5 ... Vehicle 10 ... Headlight 11 ... Lamp 12 ... Reflector 13 ... Supporting part 14 ... Movable part 15 ... Motor 20 ... ECU
21 ... CPU
22 ... ROM
23 ... RAM
24 ... Memory for storage 25 ... Input / output circuit 31 ... Inclination sensor 32 ... Vehicle speed sensor 40 ... Variation amount calculation map.

Claims (7)

  1.  車両(5)の加速度を検出する加速度検出部(32,20)と、
     前記加速度検出部により検出された前記加速度に基づき、その加速度を用いた所定の演算方法であって少なくとも前記車両が加速中か減速中かによって異なる演算方法を用いて、前記車両のピッチ角を算出するピッチ角算出部(20)と、
     前記ピッチ角算出部により算出された前記ピッチ角に基づいて、前記車両に搭載された前照灯(10)の光軸が前記ピッチ角に応じた方向を向くように前記光軸を制御する制御部(20)と、
     を備えることを特徴とする車両用前照灯制御装置(1)。
    An acceleration detector (32, 20) for detecting the acceleration of the vehicle (5);
    Based on the acceleration detected by the acceleration detection unit, the pitch angle of the vehicle is calculated using a predetermined calculation method using the acceleration, which is different depending on whether the vehicle is accelerating or decelerating. A pitch angle calculation unit (20) to perform,
    Control for controlling the optical axis so that the optical axis of the headlamp (10) mounted on the vehicle is directed in a direction corresponding to the pitch angle based on the pitch angle calculated by the pitch angle calculation unit. Part (20);
    A vehicle headlamp control device (1) comprising:
  2.  請求項1に記載の車両用前照灯制御装置であって、
     前記ピッチ角算出部は、前記加速度検出部により検出された前記加速度に基づき、前記演算方法を用いて、前記加速度に起因して生じる前記ピッチ角の変動量を算出し、その算出した変動量を用いて前記ピッチ角を算出する
     ことを特徴とする車両用前照灯制御装置。
    The vehicle headlamp control device according to claim 1,
    The pitch angle calculation unit calculates a variation amount of the pitch angle caused by the acceleration using the calculation method based on the acceleration detected by the acceleration detection unit, and calculates the calculated variation amount. A vehicle headlamp control device characterized by using the pitch angle to calculate.
  3.  請求項2に記載の車両用前照灯制御装置であって、
     前記車両が停車中の状態での前記ピッチ角である停車中ピッチ角を算出する停車中ピッチ角算出部(20)を備え、
     前記ピッチ角算出部は、前記停車中ピッチ角算出部により算出された前記停車中ピッチ角に前記変動量を加算することで、前記ピッチ角を算出する
     ことを特徴とする車両用前照灯制御装置。
    The vehicle headlamp control device according to claim 2,
    A stopping pitch angle calculation unit (20) that calculates a stopping pitch angle that is the pitch angle in a state where the vehicle is stopped;
    The pitch angle calculation unit calculates the pitch angle by adding the fluctuation amount to the stop pitch angle calculated by the stop pitch angle calculation unit. apparatus.
  4.  請求項2又は請求項3に記載の車両用前照灯制御装置であって、
     前記ピッチ角算出部は、前記加速度検出部により検出された前記加速度に基づき、その加速度に対応した、前記ピッチ角に関連する演算用のバネ定数を決定し、その決定した演算用のバネ定数と前記加速度とを用いた前記演算方法によって、前記変動量を算出する
     ことを特徴とする車両用前照灯制御装置。
    The vehicle headlamp control device according to claim 2 or 3,
    The pitch angle calculation unit determines a spring constant for calculation related to the pitch angle corresponding to the acceleration based on the acceleration detected by the acceleration detection unit, and the determined spring constant for calculation The vehicular headlamp control device, wherein the fluctuation amount is calculated by the calculation method using the acceleration.
  5.  請求項4に記載の車両用前照灯制御装置であって、
     前記ピッチ角算出部は、前記加速度検出部により検出された前記加速度に基づき、前記車両が加速中の場合には、前記演算用のバネ定数として、予め定められた少なくとも一種類の加速時バネ定数の何れかを決定し、前記車両が減速中の場合には、前記演算用のバネ定数として、予め定められた少なくとも一種類の減速時バネ定数の何れかを決定する
     ことを特徴とする車両用前照灯制御装置。
    The vehicle headlamp control device according to claim 4,
    The pitch angle calculation unit, based on the acceleration detected by the acceleration detection unit, when the vehicle is accelerating, as a spring constant for the calculation, at least one predetermined spring constant during acceleration When the vehicle is decelerating, any one of at least one predetermined spring constant during deceleration is determined as the spring constant for the calculation. Headlight control device.
  6.  請求項2又は請求項3に記載の車両用前照灯制御装置であって、
     前記車両の加速度と前記変動量とが対応付けられたマップであって、加速中における前記加速度と前記変動量の関係と、減速中における前記加速度と前記変動量との関係とがそれぞれ異なるように設定されたマップ(40)を備え、
     前記ピッチ角算出部は、前記加速度検出部により検出された前記加速度に基づき、前記マップにおいてその加速度に対応付けられている前記変動量を取得し、その変動量を用いて前記ピッチ角を算出する
     ことを特徴とする車両用前照灯制御装置。
    The vehicle headlamp control device according to claim 2 or 3,
    It is a map in which the acceleration of the vehicle and the amount of variation are associated with each other so that the relationship between the acceleration and the amount of variation during acceleration is different from the relationship between the acceleration and the amount of variation during deceleration. With a set map (40),
    The pitch angle calculation unit acquires the variation amount associated with the acceleration in the map based on the acceleration detected by the acceleration detection unit, and calculates the pitch angle using the variation amount. A vehicle headlamp control device characterized by the above.
  7.  請求項1~請求項6の何れか1項に記載の車両用前照灯制御装置であって、
     前記加速度検出部により検出された前記加速度に基づき、前記加速度の変化量が少ない所定の加速度安定状態であるか否か判断する安定状態判断部(20)を備え、
     前記ピッチ角算出部は、前記安定状態判断部により前記加速度安定状態と判断されている場合に、前記ピッチ角の算出を行う
     ことを特徴とする車両用前照灯制御装置。
     
    The vehicle headlamp control device according to any one of claims 1 to 6,
    A stable state determination unit (20) for determining whether or not a predetermined acceleration stable state with a small amount of change in the acceleration based on the acceleration detected by the acceleration detection unit;
    The vehicle headlamp control device, wherein the pitch angle calculation unit calculates the pitch angle when the stable state determination unit determines that the acceleration is stable.
PCT/JP2015/069872 2014-07-25 2015-07-10 Vehicular headlight control device WO2016013419A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014151887A JP2016028924A (en) 2014-07-25 2014-07-25 Vehicle headlight control unit
JP2014-151887 2014-07-25

Publications (1)

Publication Number Publication Date
WO2016013419A1 true WO2016013419A1 (en) 2016-01-28

Family

ID=55162948

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/069872 WO2016013419A1 (en) 2014-07-25 2015-07-10 Vehicular headlight control device

Country Status (2)

Country Link
JP (1) JP2016028924A (en)
WO (1) WO2016013419A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016122066A1 (en) 2016-11-16 2018-05-17 Automotive Lighting Reutlingen Gmbh Method for adjusting the angular position of the optical axis of a headlight of a motor vehicle and lighting device of the motor vehicle
WO2022008368A1 (en) * 2020-07-06 2022-01-13 Marelli Automotive Lighting Reutlingen (Germany) GmbH Device and method for setting the angular position of an optical axis of a motor vehicle headlight
EP4001009A1 (en) * 2020-11-11 2022-05-25 Hyundai Mobis Co., Ltd. Leveling control device for vehicle lamp and control method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10875447B2 (en) * 2016-03-30 2020-12-29 Mitsubishi Electric Corporation Optical axis control apparatus
JP6362815B2 (en) * 2016-05-31 2018-07-25 三菱電機株式会社 Optical axis control device for headlamps

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0611236Y2 (en) * 1987-02-23 1994-03-23 日産自動車株式会社 Headlight irradiation angle adjustment device
JPH07164960A (en) * 1993-12-17 1995-06-27 Toyota Motor Corp Headlamp device for vehicle
JPH10166933A (en) * 1996-12-13 1998-06-23 Denso Corp Automatic adjuster for vehicular headlight optic axial direction
JP2009154754A (en) * 2007-12-27 2009-07-16 Stanley Electric Co Ltd Optical axis adjusting device of vehicle headlamp

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0611236Y2 (en) * 1987-02-23 1994-03-23 日産自動車株式会社 Headlight irradiation angle adjustment device
JPH07164960A (en) * 1993-12-17 1995-06-27 Toyota Motor Corp Headlamp device for vehicle
JPH10166933A (en) * 1996-12-13 1998-06-23 Denso Corp Automatic adjuster for vehicular headlight optic axial direction
JP2009154754A (en) * 2007-12-27 2009-07-16 Stanley Electric Co Ltd Optical axis adjusting device of vehicle headlamp

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016122066A1 (en) 2016-11-16 2018-05-17 Automotive Lighting Reutlingen Gmbh Method for adjusting the angular position of the optical axis of a headlight of a motor vehicle and lighting device of the motor vehicle
WO2018091529A1 (en) 2016-11-16 2018-05-24 Automotive Lighting Reutlingen Gmbh Method for adjusting the angular position of the optical axis of a headlamp of a motor vehicle, and illumination device of the motor vehicle
WO2022008368A1 (en) * 2020-07-06 2022-01-13 Marelli Automotive Lighting Reutlingen (Germany) GmbH Device and method for setting the angular position of an optical axis of a motor vehicle headlight
EP4001009A1 (en) * 2020-11-11 2022-05-25 Hyundai Mobis Co., Ltd. Leveling control device for vehicle lamp and control method thereof
US11560082B2 (en) 2020-11-11 2023-01-24 Hyundai Mobis Co., Ltd. Leveling control device for vehicle lamp and control method having an acceleration sensor and speed sensor

Also Published As

Publication number Publication date
JP2016028924A (en) 2016-03-03

Similar Documents

Publication Publication Date Title
JP7059425B2 (en) ECU and vehicle lighting system
WO2016013419A1 (en) Vehicular headlight control device
JP5787649B2 (en) Vehicle lamp control device and vehicle lamp system
WO2013080614A1 (en) Vehicle headlight control device and method, and vehicle headlight control system
JP6008573B2 (en) Vehicle lamp control device and vehicle lamp system
JP5780839B2 (en) Vehicle lamp control device and vehicle lamp system
JP6719444B2 (en) Control device for vehicle lamp
JP5749074B2 (en) VEHICLE LIGHT CONTROL DEVICE AND VEHICLE LIGHT SYSTEM
EP2738041A2 (en) Control apparatus of vehicular lamp, vehicular lamp system, and control method for vehicular lamp
JP7084514B2 (en) Vehicle lighting control device
US10596954B2 (en) Control device for vehicular lamp and vehicle lighting system
WO2020031255A1 (en) Headlamp optical axis control device
JP2009190491A (en) Auto-leveling system of vehicular lamp
JP2005219649A (en) Automatic leveling device of automobile head lamp
JP6916038B2 (en) Vehicle lighting control device and vehicle lighting system
JPWO2019097724A1 (en) Tilt angle measuring device and optical axis control device
JP7162114B2 (en) Vehicle lighting controller and vehicle lighting system
JP5176982B2 (en) Headlamp control device and vehicle
JP2020015357A (en) Control device of lighting fixture for vehicle, control method of lighting fixture for vehicle, and lighting fixture system for vehicle
JP4894825B2 (en) Headlamp optical axis direction adjusting device and electronic control device
JP2012106545A (en) Control device for vehicle lamp, vehicle lamp system, and method of controlling vehicle lamp
JP6271662B2 (en) Control device for vehicular lamp
JP2017100549A (en) Control device for vehicle lamp and vehicle lamp system
JP2015174572A (en) Optical axis control device for vehicular headlamp and vehicular headlamp system
JPWO2020183532A1 (en) Optical axis controller

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15825286

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15825286

Country of ref document: EP

Kind code of ref document: A1