WO2016013041A1 - Detection method and detection device for circulating tumor cell - Google Patents

Detection method and detection device for circulating tumor cell Download PDF

Info

Publication number
WO2016013041A1
WO2016013041A1 PCT/JP2014/003855 JP2014003855W WO2016013041A1 WO 2016013041 A1 WO2016013041 A1 WO 2016013041A1 JP 2014003855 W JP2014003855 W JP 2014003855W WO 2016013041 A1 WO2016013041 A1 WO 2016013041A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
immunostaining
antibody
cancer
culture
Prior art date
Application number
PCT/JP2014/003855
Other languages
French (fr)
Japanese (ja)
Inventor
恒雄 倉持
Original Assignee
株式会社がん免疫研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社がん免疫研究所 filed Critical 株式会社がん免疫研究所
Priority to PCT/JP2014/003855 priority Critical patent/WO2016013041A1/en
Priority to KR1020167032240A priority patent/KR101922322B1/en
Priority to CN201480078553.7A priority patent/CN106796237B/en
Priority to JP2016535556A priority patent/JP6052756B2/en
Publication of WO2016013041A1 publication Critical patent/WO2016013041A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/30Staining; Impregnating ; Fixation; Dehydration; Multistep processes for preparing samples of tissue, cell or nucleic acid material and the like for analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/4833Physical analysis of biological material of solid biological material, e.g. tissue samples, cell cultures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/531Production of immunochemical test materials
    • G01N33/532Production of labelled immunochemicals

Definitions

  • the present invention relates to a peripheral circulating cancer cell detection method and a detection apparatus capable of easily detecting peripheral circulating cancer cells (CTC; Circulating Tumor Cell).
  • CTC peripheral circulating cancer cells
  • peripheral circulating cancer cells are observed in the peripheral blood of patients with epithelial-derived cancer at a single ultra-low concentration in 106-107 peripheral blood mononuclear cells. .
  • CTC is considered to cause advanced cancer cells to circulate on the flow of blood and lymph and cause metastasis to distant organs.
  • CTCs in the blood have been recognized as useful in determining the therapeutic effect and predicting prognosis in cases of metastatic cancer such as breast cancer and colorectal cancer.
  • breast cancer and colorectal cancer developed by Veridex, USA
  • a CellSearch registered trademark
  • CTCs are concentrated and sorted using anti-EpCAM antibody-immobilized magnetic beads, and then CTCs in a sample are counted by identifying the CTCs by immunostaining (for example, (Refer nonpatent literature 1).
  • urokinase activity A method for detecting circulating cancer cells that detects and collects CTCs simply and accurately is known (see Patent Document 1).
  • CTCs are concentrated using anti-EpCAM antibody-immobilized magnetic beads against EpCAM (epithelial cell surface molecule) expressed on the surface of cancer cells.
  • EpCAM epithelial cell surface molecule
  • epithelial cells are specifically separated from many cells in blood by magnetic particles in which antibodies against EpCAM are bound to nano iron particles.
  • the separated epithelial cells are reacted with a fluorescently labeled cytokeratin monoclonal antibody, and the cell nucleus is stained with a fluorescent DNA staining substance.
  • a fluorescently labeled CD45 antibody is reacted.
  • the CTC reaction solution is transferred into a cartridge having a magnet fixed thereto.
  • the CTC moves to the upper surface of the cartridge by the magnetic force generated by the magnet. Fluorescent image data indicating the fluorescent color development state on the upper surface of the cartridge is analyzed.
  • an object of the present invention is to provide a detection method and a detection apparatus that can easily and accurately detect peripheral circulating cancer cells.
  • peripheral cells of the peripheral circulation cancer simply and accurately using the adherent cells after cell culture. It was found that it could be detected.
  • the peripheral circulating cancer cell detection method of the present invention is a method for detecting circulating cancer cells in a biological sample, and includes the following steps (a) to (d).
  • (A) Separation step for separating lymphocytes from peripheral blood (b) Culturing step for culturing the separated peripheral blood lymphocyte layer in a culture solution (c) After culturing, immunostaining the cells attached to the bottom of the culture vessel Immunostaining step (d) Detection step of detecting circulating cancer cells in a biological sample based on an observation image of stained cells obtained by the immunostaining step
  • the immunostaining step (c) is more preferably performed using an anti-EMA (Epithelial® Membrane® Antigen) antibody.
  • anti-EMA Epidermal® Membrane® Antigen
  • the results obtained by immunostaining using anti-EMA antibody are equivalent to lowering the cut-off value of the test because the analysis data has low specificity and high sensitivity. This is because it can be used as a screening test.
  • the culture vessel used in the culture step (b) and the immunostaining vessel used in the immunostaining step (c) are the same vessel, and after culturing, only the cells attached to the bottom by draining the supernatant from the culture vessel It is preferable to inject the antibody to be immunostained into the culture container. This is because it can be detected more easily.
  • the culture solution may contain at least 1000 U / ml interleukin-2 (IL-2).
  • the culture medium for culturing the peripheral blood lymphocyte layer preferably empirically contains at least 1000 U / ml interleukin-2.
  • the culture step (b) is preferably performed for 48 to 72 hours. This is because it is difficult to detect circulatory cancer cells empirically in cultures shorter than 48 hours, and in cancer cultures longer than 72 hours, the circulating cancer cells disappear spontaneously (apoptosis).
  • the separated peripheral blood lymphocyte layer may be solid-phased using at least one of anti-CD3 antibody and anti-CD161 antibody. This is because cell culture is usually performed using a flask that is solid-phased with an anti-CD3 antibody, an anti-CD161 antibody, or the like. By immobilizing with either the anti-CD3 antibody or the anti-CD161 antibody, cells contained in the peripheral blood lymphocyte layer are proliferated and activated.
  • the treatment for solid phase is not particularly limited and can be appropriately selected.
  • the method for screening cancer patients and healthy subjects of the present invention is based on the number of stained cells in the observed image in the detection step (d) in the method for detecting peripheral circulation cancer cells of the present invention described above. To do.
  • the grade is determined according to the number of stained cells in the observation image.
  • the peripheral circulating cancer cell detection device of the present invention comprises a separating means for separating lymphocytes from peripheral blood, a culturing means for culturing the separated peripheral blood lymphocyte layer in a culture solution, and a cell attached to the bottom of a culture vessel And immunostaining means for immunostaining, and detection means for detecting circulating cancer cells in the biological sample based on the observed images of the stained cells.
  • the immunostaining means is preferably stained with an anti-EMA (Epithelial Membrane Antigen) antibody.
  • the culture container used for the culture means and the immunostaining container used for the immunostaining means are the same container.
  • the culture solution may contain at least 1000 U / ml interleukin-2 (IL-2).
  • the separated peripheral blood lymphocyte layer may be immobilized using at least one of anti-CD3 antibody and anti-CD161 antibody.
  • peripheral circulating cancer cell detection method and detection apparatus of the present invention there is an effect that peripheral circulating cancer cells can be detected simply and accurately.
  • Detection flow diagram of peripheral circulation cancer cells of the present invention Detection flow chart of peripheral circulation cancer cells of the present invention (including solid phase immobilization process) EMA positive cell electron micrograph of ovarian cancer patient 1 EMA positive cell electron micrograph of ovarian cancer patient 2 EMA positive cell electron micrograph of healthy subjects 1 EMA positive cell electron micrograph of healthy subjects 2
  • the method for detecting peripheral circulation cancer cells of the present invention includes a separation step (step S1) for separating lymphocytes from peripheral blood, and culturing the separated peripheral blood lymphocyte layer in a culture solution.
  • the lymphocyte layer is separated from 30 ml of peripheral blood of the biological sample with a lymphocyte separation liquid (specific gravity 1.077 ⁇ 0.001).
  • a lymphocyte separation liquid specific gravity 1.077 ⁇ 0.001.
  • a lymphocyte culture solution prepared by adding 1000 U / ml of IL-2 to a culture solution based on RPMI1640 and IMDM in a 75 cm2 plastic flask was used. Incubate for 48 to 72 hours in an incubator at 37 ° C. with% CO 2 .
  • the proliferation rate and activity of the cells are improved.
  • IL-2 is a cytokine (immune substance released from cells) that is known to affect cell proliferation and activation, and can also be synthesized artificially.
  • the immunostaining step step S5
  • the supernatant is discarded, the cells attached to the bottom of the flask are detached with a cell scraper, fixed with 95% ethanol, and immunostained at room temperature.
  • the detection step step S7, the specimen obtained in the immunostaining step is subjected to endogenous peroxidase blocking for 5 minutes as a pretreatment, and then 6 types of antibodies described later for 20 minutes and DAB coloring reagent for 4 minutes. Hematoxylin staining is performed for 1 minute and observed under a microscope.
  • the separated lymphocyte layer is immobilized using at least one of anti-CD3 antibody and anti-CD161 antibody.
  • a process (step S2) may be added.
  • an anti-CD3 antibody or an anti-CD161 antibody, or an anti-CD3 antibody and an anti-CD161 antibody are used.
  • the reagents used in the reaction were manufactured by Dako.
  • As for hematoxylin Meyer's hematoxylin was self-adjusted and used.
  • the antibodies used in the immunostaining step (step S5) are diluted anti-EMA antibody, anti-CEA antibody, anti-CK (AE1 / AE3) antibody, anti-Ki-67 antibody, anti-CD20 (L-26) manufactured by Dako. Either an antibody or an anti-CD45RO antibody was used, and staining was performed using an automatic immunostaining apparatus. Table 1 below shows the lineage and clinical significance of cancer cells for the six types of antibodies used for immunostaining.
  • the solid-phase culture vessel was prepared by immobilizing a solid-phase treatment with anti-CD3 antibody and anti-CD161 antibody on a flask having an inner surface area of 75 cm 2 at the bottom.
  • the solid-phase treatment was performed by injecting an anti-CD3 antibody adjusted to 1 ⁇ g / ml into the flask, allowing to stand for 24 hours at room temperature, and then washing off excess antibody with a phosphate buffer.
  • the anti-CD161 antibody adjusted to 10 ⁇ g / ml was poured into the flask, allowed to stand at room temperature for 24 hours, then stored in a refrigerator at 5 ° C., and excess antibody was removed from the phosphate buffer during use. Rinse and use.
  • the step of immobilizing the separated lymphocyte layer with anti-CD3 antibody and anti-CD161 antibody may not be included.
  • Example 1 describes the result of immunostaining using an anti-EMA antibody in the immunostaining step (step S5).
  • Subject selection method As a method for selecting subjects, first, the target person is not determined, but first, the correct answer is examined, and 37 cancer patients and 22 healthy persons (including 22 males and 15 females) and 33 (of which, A total of 70 men (37 men and 33 women) were selected from 15 men and 18 women).
  • Table 2 shows the age, sex, type of cancer, stage (stage), immunostaining result (Positive: positive or Negative: negative), immunity for 37 cancer patient specimens (specimen names P1 to P37), respectively.
  • the judgment grade (0 to 3) based on the analysis result of staining is shown.
  • there are various types of cancer such as liver cancer, breast cancer, gastric cancer, pancreatic cancer, esophageal cancer, lung cancer, rectal cancer, hepatocellular carcinoma, colon cancer, and malignant lymphoma.
  • Table 3 shows the age, sex, immunostaining result (Positive: positive or Negative: negative), and determination grade (0 based on the analysis result of immunostaining for 33 healthy subjects (sample names N1 to N33), respectively. To 3).
  • sensitivity Proportion that test subjects were correctly positive
  • Specificity Proportion that non-disease was correctly negative
  • Positive predictive value Proportion of positive illness correctly
  • Negative predictive value Negative was correctly non-sick Rate that was correct
  • rate of correct diagnosis rate that was correct in the total number
  • the sensitivity, specificity, positive predictive value, negative predictive value, and correct diagnosis rate are indicators that are usually used as diagnostic accuracy. Positive rates and prevalence are not indicators of diagnostic accuracy, but are important indicators in interpreting the data. Table 5 shows calculation formulas for each index. If the sensitivity is high, there are few oversights of positive persons (prevalent), and the test has a high diagnosis probability. On the other hand, if the specificity is high, the test has few oversights (false positives). In other words, if a test with a high positive predictive value is positive, the possibility of the disease is very high, and if a test with a high negative predictive value is negative, the disease can be almost denied.
  • Anti-EMA antibodies may stain plasma cells in the bone marrow in addition to epithelial tumor cells. Since bone marrow plasma cells do not appear in peripheral blood in healthy individuals, the possibility that the healthy person's EMA-positive cells expressed in the test were plasma cells can be excluded. Cancer patients with EMA-positive cells in peripheral blood include Hodgkin's disease (H & L cells) and anaplastic large cell lymphoma (T-cell lineage cells), but these patients have not been examined this time . For these reasons, it was judged that cells stained with anti-EMA antibody can be considered epithelial tumor cells or epithelial abnormal cells.
  • H & L cells Hodgkin's disease
  • T-cell lineage cells anaplastic large cell lymphoma
  • step S3 the results of investigation using the cells of 4 healthy individuals as to whether or not the composition of the culture solution affects the expression of EMA positive cells will be described.
  • One subject was negative for EMA positive cells, and the other three were subjects who expressed EMA positive cells, and the expression of EMA positive cells was compared using culture media based on RPMI1640 and IMDM. Culturing was performed using a flask solid-phased with anti-CD3 antibody and anti-CD161 antibody. The comparison results are shown in Table 6 below. From Table 6, it can be seen that the composition of the culture solution does not affect the expression of EMA positive cells.
  • a lymphocyte layer separated from 30 ml of peripheral blood with a lymphocyte separation solution was immobilized in a flask solid-phased with an anti-CD3 antibody and an anti-CD161 antibody. It is in culture. This is because cell culture is usually performed using a flask that is solid-phased with an anti-CD3 antibody and an anti-CD161 antibody. It was investigated whether the presence or absence of the solid phase step (step S2) affects the expression of EMA positive cells. In the experiment, EMA immunostaining was performed after simultaneously culturing cells using a flask treated with anti-CD3 antibody and anti-CD161 antibody and a flask not treated with antibody.
  • EMA positive cells were expressed even when cultured in a flask that was not immobilized with the antibody, and was not related to the immobilized treatment of the antibody. That is, even if cells are cultured using an untreated flask that has not been immobilized with an antibody, the expression of EMA positive cells is not affected.
  • the presence or absence of the immobilization step (step S2) It was found that it does not affect the expression of.
  • the results of the method for detecting peripheral circulation cancer cells of this example were compared with the results measured by other methods.
  • the comparison was performed by measuring a specimen of a subject with EMA positive cells using a CellSearch (registered trademark) system (detection system for breast cancer, colon cancer, etc. developed by Veridex, USA).
  • a CellSearch registered trademark
  • Table 9 the results obtained by the EMA staining and the test results obtained by the CellSearch (registered trademark) system coincided. This indicates that the peripheral circulating cancer cell detection method of this example is not inferior to the measurement sensitivity of the CellSearch (registered trademark) system.
  • 3 and 4 are electron micrographs of EMA positive cells of ovarian cancer patients.
  • the cells observed in FIGS. 3 and 4 generally have a high N / C ratio, and formation of mitochondria and the like is observed, but formation of other cytoplasmic organelles such as the Golgi area is poor.
  • the formation of nucleolus is conspicuous. While it is difficult to recognize the formation of an intercellular adhesion device, adhesion by cytoplasmic processes is suggested. Although it is difficult to specify the cell lineage, it can be assumed that it is a tumor cell.
  • FIG. 5 and FIG. 6 are electron micrographs of EMA positive cells of a healthy person. 5 and 6, atypical cells with a high N / C ratio and conspicuous nucleoli are observed. Although some images of cell-cell adhesion are observed, the development of cell-cell adhesion devices is poor. It can be said that the growth of organelles such as mitochondria is relatively poor. From the above observation results, EMA positive cells expressed in cancer patients and healthy individuals can be inferred as some tumor cells or atypical cells, although it is difficult to specify the cell lineage. Table 10 below summarizes the comparison of observation results by electron micrographs of EMA positive cells of ovarian cancer patients and healthy individuals.
  • EMA positive cells are non-tumor stromal cells.
  • Stromal cells include immune cells, inflammatory cells, endothelial cells, fibroblasts, and pericytes. Of these, it is necessary to unravel whether EMA positive cells were stromal cells. In particular, whether it is an immune cell, inflammatory cell, or endothelial cell in the blood.
  • inflammatory cells include neutrophils and plasma cells. Neutrophils may be nonspecifically CEA positive by immunostaining, but they are not EMA positive. Plasma cells are expressed in the peripheral blood of patients with Hodgkin's disease and anaplastic large cell lymphoma, but not in the peripheral blood of healthy individuals.
  • Non-tumor immature T cells generated from thymic epithelial cells may appear in peripheral blood.
  • non-tumor immature T cells are not found in healthy individuals and appear in the peripheral blood of thymoma patients.
  • Thymoma patients are also excluded from the subject this time, so the possibility of being immune cells can be excluded.
  • endothelial cells, fibroblasts, or pericytes may be expressed as peripheral blood EMA positive cells.
  • the problems are vascular endothelial cells, fibroblasts, and pericytes that may be mixed into the needle hole during blood collection.
  • peripheral blood from which the first 2 ml was discarded at the time of blood collection and peripheral blood that was not discarded were cultured and compared.
  • EMA positive cells were expressed in peripheral blood discarded at 2 ml at the time of blood collection as well as peripheral blood not discarded at 2 ml. From this, it is possible to exclude the possibility that the detected EMA positive cells are vascular endothelial cells, fibroblasts, and pericytes mixed in the needle holes at the time of blood collection. From the above, EMA positive cells present in peripheral blood are considered epithelial cells.
  • Grade is determined as shown in Table 12 below. That is, Grade 0 is a case where there are no EMA positive cells. In this case, although there is little concern about cancer or cancer metastasis, it is recommended to undergo regular cancer screening. Grade 1 is a case where one EMA-positive cell appears. Although the probability of cancer is low, cancer screening is recommended. In this case, attention to cancer in the future is necessary.
  • Grade 2 is a case where there are several EMA positive cells, and there is a possibility of the presence of a small invisible cancer, and it is recommended to undergo a close examination of cancer.
  • Grade3 is a case where the number of EMA-positive cells is more than 5%, and in this case, it is highly recommended that cancer is present somewhere, so it is recommended to undergo a detailed examination of cancer as soon as possible. It is. Note that if the number of EMA positive cells is more than 5%, the numerical element may not be considered regardless of whether the number of EMA positive cells is 10% or 30%.
  • the healthy subject's EMA positive cells are not necessarily cancer cells relative to the EMA positive cells of cancer patients.
  • the healthy person's EMA positive cells are not necessarily cancer cells relative to the EMA positive cells of cancer patients.
  • the cancer metastasis or recurrence is significant (76%, true positive 28/37 patients), and EMA positive cells in cancer patients are cancer cells themselves. It can be said that there is a high possibility of capturing.
  • EMA-positive cells expressed in cancer patients are metastatic cancer cells, and EMA-positive cells expressed in healthy individuals may be slow-dividing cancer stem cells that may cause cancer in the future. Conceivable.
  • the possibility can be inferred from the results of observation of cultured cells of ovarian cancer patients and EMA cell-positive healthy individuals with an electron microscope (see FIGS. 3 to 6).
  • cancer patients who do not have metastasis or recurrence at the time of examination may be considered to have a higher probability of cancer metastasis or recurrence by confirming EMA positive cells after the examination.
  • cancer cells or abnormal cells are produced per day. However, these cells are eliminated by immune cells or spontaneously extinguished (apoptosis), and the onset of cancer is suppressed. If one or two of these cells remain in the body, unlike the culture condition, 100% cannot be denied unless cancer develops in vivo.
  • the result of immunostaining using an anti-CEA antibody instead of the anti-EMA antibody in the immunostaining step (step S5) will be described.
  • the anti-CEA antibody specifically stains adenocarcinoma cells such as the large intestine, lung, breast, liver, pancreas, etc., from the types of cancer and the lineage of cancer cells shown in Table 2 above, lung cancer, pancreatic cancer, large intestine Adenocarcinoma patients such as cancer and gastric cancer were selected, and the number of cases from 70 cases of Example 1 (37 cancer patients and 33 healthy persons, respectively) to 52 cases (30 cancer patients and 30 healthy persons, respectively) 22 people).
  • the results obtained by immunostaining using an anti-CEA antibody are shown in Tables 13 and 14 below. The terms and indices in the table are the same as those described in the first embodiment.
  • step S5 the result of EMA immunostaining with anti-EMA antibody and the result of EMA immunostaining with anti-CEA antibody are used at the same time.
  • the result of investigating whether or not the accuracy can be improved will be described.
  • the number of cases was reduced from 70 cases in Example 1 (37 cancer patients and 33 healthy persons, respectively) to 57 cases (35 cancer patients and 22 healthy persons, respectively).
  • the determination results obtained by simultaneously using the results of EMA immunostaining with anti-EMA antibody and the results of EMA immunostaining with anti-CEA antibody are shown in Tables 15 and 16 below. The terms and indices in the table are the same as those described in the first embodiment.
  • step S5 the result of immunostaining using an anti-Ki-67 antibody instead of the anti-EMA antibody in the immunostaining step (step S5) will be described.
  • Anti-Ki-67 antibody specifically stains cell proliferating active cells. The number of cases is 15 (8 cancer patients and 7 healthy persons, respectively). Cancer patients were randomly selected regardless of the type of cancer.
  • Tables 19 and 20 The results obtained by immunostaining using anti-Ki-67 antibody are shown in Tables 19 and 20 below. The terms and indices in the table are the same as those described in the first embodiment.
  • step S5 the result of immunostaining using an anti-CD45RO antibody instead of the anti-EMA antibody in the immunostaining step (step S5) will be described.
  • Anti-CD45RO antibody specifically stains T cell lymphoma and mature T cells. The number of cases is 13 (10 cancer patients and 3 healthy persons, respectively). Cancer patients were randomly selected regardless of the type of cancer.
  • Tables 23 and 24 The results obtained by immunostaining using an anti-CD45RO antibody are shown in Tables 23 and 24 below. The terms and indices in the table are the same as those described in the first embodiment.
  • Table 26 shows the detection accuracy when the determination by EMA immunostaining, the determination by CEA immunostaining, and the determination by using EMA immunostaining and CEA immunostaining at the same time (EMA + CEA) were obtained.
  • EMA immunostaining is most suitable as a screening test.
  • the present invention is a detection device for screening tests for early detection of cancer for healthy individuals, a device for recurrence inspection after surgery for cancer patients, and determination of the effects of anticancer agents, radiotherapy or cancer immunotherapy. Useful as a device.

Abstract

Provided is a method whereby a circulating tumor cell can be easily detected at a high accuracy. The method for detecting a circulating tumor cell, whereby a circulating tumor cell in a biological sample is detected, comprises: (a) a separation step for separating lymphocytes from peripheral blood; (b) a culture step for culturing the peripheral blood lymphocyte layer thus separated in a liquid culture medium; (c) an immunostaining step for, after culturing, immunologically staining cells sticking to culture container bottom; and (d) a detection step for detecting a circulating tumor cell in the biological sample on the basis of an observed image of the stained cells that are obtained in the immunostaining step.

Description

末梢循環癌細胞の検出方法および検出装置Peripheral circulating cancer cell detection method and detection apparatus
 本発明は、末梢循環癌細胞(CTC;Circulating Tumor Cell)を簡易に検出できる末梢循環癌細胞の検出方法および検出装置に関するものである。 The present invention relates to a peripheral circulating cancer cell detection method and a detection apparatus capable of easily detecting peripheral circulating cancer cells (CTC; Circulating Tumor Cell).
 従来から、末梢循環癌細胞(CTC)が、106~107の末梢血単核細胞中に1個の超低濃度で、上皮由来癌を有する患者の末梢血において観察されることが知られている。CTCは、進行した癌細胞が血液やリンパ液の流れに乗って循環し、離れた臓器にまで転移を起こす原因とされている。
 血液中のCTCは、乳癌や大腸癌などの転移性の癌の症例において、治療効果の判定や予後予測因子としての有用性が認められており、例えば、米国Veridex社の開発した乳癌、大腸癌などの領域の検出系のCellSearch(登録商標)システムが知られている。CellSearch(登録商標)システムでは、抗EpCAM抗体固定化磁気ビーズを利用してCTCを濃縮し分取した後、免疫染色法にてCTCを同定することで、サンプル中のCTCを計数する(例えば、非特許文献1を参照)。
Conventionally, it has been known that peripheral circulating cancer cells (CTC) are observed in the peripheral blood of patients with epithelial-derived cancer at a single ultra-low concentration in 106-107 peripheral blood mononuclear cells. . CTC is considered to cause advanced cancer cells to circulate on the flow of blood and lymph and cause metastasis to distant organs.
CTCs in the blood have been recognized as useful in determining the therapeutic effect and predicting prognosis in cases of metastatic cancer such as breast cancer and colorectal cancer. For example, breast cancer and colorectal cancer developed by Veridex, USA A CellSearch (registered trademark) system for detecting a region such as the above is known. In the CellSearch (registered trademark) system, CTCs are concentrated and sorted using anti-EpCAM antibody-immobilized magnetic beads, and then CTCs in a sample are counted by identifying the CTCs by immunostaining (for example, (Refer nonpatent literature 1).
 また、癌細胞がウロキナーゼ(ウロキナーゼ型プラスミノーゲン活性化因子(uPA))とその受容体(ウロキナーゼ型プラスミノーゲン活性化因子受容体(uPAR))を発現していることに鑑みて、ウロキナーゼ活性を指標にし、CTCを簡便かつ精度よく検出し回収する循環癌細胞の検出方法が知られている(特許文献1を参照)。 In view of the fact that cancer cells express urokinase (urokinase-type plasminogen activator (uPA)) and its receptor (urokinase-type plasminogen activator receptor (uPAR)), urokinase activity A method for detecting circulating cancer cells that detects and collects CTCs simply and accurately is known (see Patent Document 1).
特開2014-39480号公報JP 2014-39480 A
 上述したCellSearch(登録商標)システムでは、癌細胞表面に発現するEpCAM(上皮細胞表面分子)に対する抗EpCAM抗体固定化磁気ビーズを利用して、CTCを濃縮している。具体的には、ナノ鉄粒子にEpCAMに対する抗体を結合された磁性粒子により、血液中の多くの細胞から特異的に上皮細胞を分離する。分離された上皮細胞に蛍光標識したサイトケラチンモノクローナル抗体を反応させ、それと共に蛍光性のDNA染色物質で細胞核を染色する。また、白血球をCTCと識別するために、蛍光標識したCD45抗体を反応させる。その後、CTCの反応溶液は、磁石を固定したカートリッジ中に移される。磁石の発する磁力によりCTCがカートリッジ上面に移動する。カートリッジ上面の蛍光発色状況を示す蛍光画像データを解析する。 In the CellSearch (registered trademark) system described above, CTCs are concentrated using anti-EpCAM antibody-immobilized magnetic beads against EpCAM (epithelial cell surface molecule) expressed on the surface of cancer cells. Specifically, epithelial cells are specifically separated from many cells in blood by magnetic particles in which antibodies against EpCAM are bound to nano iron particles. The separated epithelial cells are reacted with a fluorescently labeled cytokeratin monoclonal antibody, and the cell nucleus is stained with a fluorescent DNA staining substance. Further, in order to distinguish white blood cells from CTC, a fluorescently labeled CD45 antibody is reacted. Thereafter, the CTC reaction solution is transferred into a cartridge having a magnet fixed thereto. The CTC moves to the upper surface of the cartridge by the magnetic force generated by the magnet. Fluorescent image data indicating the fluorescent color development state on the upper surface of the cartridge is analyzed.
 このように、CellSearch(登録商標)システムでは、CTCを濃縮、上皮細胞を特異的に分離、血中に浮遊するCTCを磁石で誘導して蛍光発色させることから、検出方法や検出装置が複雑になる。
 かかる状況に鑑みて、本発明は、末梢循環癌細胞を簡便かつ精度良く検出できる検出方法および検出装置を提供することを目的とする。
As described above, in the CellSearch (registered trademark) system, the CTC is concentrated, the epithelial cells are specifically separated, and the CTC floating in the blood is induced with a magnet to cause fluorescent color development, so that the detection method and the detection apparatus are complicated. Become.
In view of such a situation, an object of the present invention is to provide a detection method and a detection apparatus that can easily and accurately detect peripheral circulating cancer cells.
 本発明者は、末梢血から分離したリンパ球層を細胞培養したものの培養容器の底部に付着する付着細胞について鋭意研究した結果、細胞培養後に付着細胞を用いて末梢循環癌細胞を簡便かつ精度良く検出できることを知見した。 As a result of earnest research on the adherent cells adhering to the bottom of the culture vessel in a cell culture of a lymphocyte layer separated from peripheral blood, the present inventor has used peripheral cells of the peripheral circulation cancer simply and accurately using the adherent cells after cell culture. It was found that it could be detected.
 すなわち、本発明の末梢循環癌細胞の検出方法は、生体試料中の循環癌細胞を検出する方法であって、下記(a)~(d)の工程を備える。
(a)末梢血からリンパ球を分離する分離工程
(b)分離された末梢血リンパ球層を培養液で培養する培養工程
(c)培養後、培養容器の底に付着した細胞に免疫染色する免疫染色工程
(d)免疫染色工程により得られた染色細胞の観察画像に基づいて生体試料中の循環癌細胞を検出する検出工程
That is, the peripheral circulating cancer cell detection method of the present invention is a method for detecting circulating cancer cells in a biological sample, and includes the following steps (a) to (d).
(A) Separation step for separating lymphocytes from peripheral blood (b) Culturing step for culturing the separated peripheral blood lymphocyte layer in a culture solution (c) After culturing, immunostaining the cells attached to the bottom of the culture vessel Immunostaining step (d) Detection step of detecting circulating cancer cells in a biological sample based on an observation image of stained cells obtained by the immunostaining step
 ここで、上記(c)の免疫染色工程は、抗EMA(Epithelial Membrane Antigen)抗体を用いて染色することがより好ましい。抗EMA抗体を使用して免疫染色を行って得られた結果は、解析データの特異度が低く、感度が高いことから、結果的に検査のカットオフ(Cut off)値を下げたことに等しく、スクリーニングテストとして利用できるからである。 Here, the immunostaining step (c) is more preferably performed using an anti-EMA (Epithelial® Membrane® Antigen) antibody. The results obtained by immunostaining using anti-EMA antibody are equivalent to lowering the cut-off value of the test because the analysis data has low specificity and high sensitivity. This is because it can be used as a screening test.
 上記(b)の培養工程に用いる培養容器と、上記(c)の免疫染色工程に用いる免疫染色容器が同一容器であり、培養後、培養容器から上澄み液を排出して底に付着した細胞だけを残し、培養容器に免疫染色させる抗体を注入することが好ましい。より簡便に検出できるからである。 The culture vessel used in the culture step (b) and the immunostaining vessel used in the immunostaining step (c) are the same vessel, and after culturing, only the cells attached to the bottom by draining the supernatant from the culture vessel It is preferable to inject the antibody to be immunostained into the culture container. This is because it can be detected more easily.
 また培養液は、少なくとも1000U/mlのインターロイキン-2(IL-2)を含有することでも良い。末梢血リンパ球層を培養する培養液は、経験的に少なくとも1000U/mlのインターロイキン-2を含有するものが良い。
 上記(b)の培養工程は、48~72時間培養することが良い。48時間未満の培養では、経験的に循環癌細胞を検出することは困難であり、また72時間を超えた培養では、循環癌細胞が自然消滅(アポトーシス)してしまうからである。
The culture solution may contain at least 1000 U / ml interleukin-2 (IL-2). The culture medium for culturing the peripheral blood lymphocyte layer preferably empirically contains at least 1000 U / ml interleukin-2.
The culture step (b) is preferably performed for 48 to 72 hours. This is because it is difficult to detect circulatory cancer cells empirically in cultures shorter than 48 hours, and in cancer cultures longer than 72 hours, the circulating cancer cells disappear spontaneously (apoptosis).
 上記(a)の分離工程の後、分離された末梢血リンパ球層を、抗CD3抗体と抗CD161抗体の少なくとも何れかを用いて固相化することでも良い。通常、細胞培養は、抗CD3抗体や抗CD161抗体などで固相化されているフラスコを用いて行うためである。抗CD3抗体と抗CD161抗体の何れかを用いて固相化させることにより、末梢血リンパ球層に含まれる細胞が増殖および活性化する。固相化させる処理は、特に限定されるものではなく、適宜選択することが可能である。 After the separation step (a), the separated peripheral blood lymphocyte layer may be solid-phased using at least one of anti-CD3 antibody and anti-CD161 antibody. This is because cell culture is usually performed using a flask that is solid-phased with an anti-CD3 antibody, an anti-CD161 antibody, or the like. By immobilizing with either the anti-CD3 antibody or the anti-CD161 antibody, cells contained in the peripheral blood lymphocyte layer are proliferated and activated. The treatment for solid phase is not particularly limited and can be appropriately selected.
 また、本発明の癌患者と健常者をスクリーニングする方法は、上述した本発明の末梢循環癌細胞の検出方法における上記(d)の検出工程において、観察画像内の染色細胞の個数に基づいて判定する。観察画像内の染色細胞の個数によって、グレードに分けて判定する。 The method for screening cancer patients and healthy subjects of the present invention is based on the number of stained cells in the observed image in the detection step (d) in the method for detecting peripheral circulation cancer cells of the present invention described above. To do. The grade is determined according to the number of stained cells in the observation image.
 次に、本発明の末梢循環癌細胞の検出装置について説明する。
本発明の末梢循環癌細胞の検出装置は、末梢血からリンパ球を分離する分離手段と、分離された末梢血リンパ球層を培養液で培養する培養手段と、培養容器の底に付着した細胞に免疫染色する免疫染色手段と、得られた染色細胞の観察画像に基づいて生体試料中の循環癌細胞を検出する検出手段とを備える。
 免疫染色手段は、抗EMA(Epithelial Membrane Antigen)抗体を用いて染色することが好ましい。また、培養手段に用いる培養容器と、免疫染色手段に用いる免疫染色容器が同一容器であることが好ましい。培養後、培養容器から上澄み液を排出して底に付着した細胞だけを残し、培養容器に免疫染色させる抗体を注入することができ、より簡便な検出装置となる。
 培養液は、少なくとも1000U/mlのインターロイキン-2(IL-2)を含有しても良い。また、分離された末梢血リンパ球層を、抗CD3抗体と抗CD161抗体の少なくとも何れかを用いて固相化しても良い。
Next, the peripheral circulating cancer cell detection apparatus of the present invention will be described.
The peripheral circulating cancer cell detection device of the present invention comprises a separating means for separating lymphocytes from peripheral blood, a culturing means for culturing the separated peripheral blood lymphocyte layer in a culture solution, and a cell attached to the bottom of a culture vessel And immunostaining means for immunostaining, and detection means for detecting circulating cancer cells in the biological sample based on the observed images of the stained cells.
The immunostaining means is preferably stained with an anti-EMA (Epithelial Membrane Antigen) antibody. Moreover, it is preferable that the culture container used for the culture means and the immunostaining container used for the immunostaining means are the same container. After culturing, the supernatant liquid is discharged from the culture container, leaving only the cells attached to the bottom, and the antibody to be immunostained can be injected into the culture container, thus providing a simpler detection device.
The culture solution may contain at least 1000 U / ml interleukin-2 (IL-2). The separated peripheral blood lymphocyte layer may be immobilized using at least one of anti-CD3 antibody and anti-CD161 antibody.
 本発明の末梢循環癌細胞の検出方法および検出装置によれば、末梢循環癌細胞を簡便かつ精度良く検出できるといった効果がある。 According to the peripheral circulating cancer cell detection method and detection apparatus of the present invention, there is an effect that peripheral circulating cancer cells can be detected simply and accurately.
本発明の末梢循環癌細胞の検出フロー図Detection flow diagram of peripheral circulation cancer cells of the present invention 本発明の末梢循環癌細胞の検出フロー図(固相化工程を含む)Detection flow chart of peripheral circulation cancer cells of the present invention (including solid phase immobilization process) 卵巣癌患者のEMA陽性細胞電子顕微鏡写真1EMA positive cell electron micrograph of ovarian cancer patient 1 卵巣癌患者のEMA陽性細胞電子顕微鏡写真2EMA positive cell electron micrograph of ovarian cancer patient 2 健常者のEMA陽性細胞電子顕微鏡写真1EMA positive cell electron micrograph of healthy subjects 1 健常者のEMA陽性細胞電子顕微鏡写真2EMA positive cell electron micrograph of healthy subjects 2
 以下、本発明の実施形態の一例を、図面を参照しながら詳細に説明していく。なお、本発明の範囲は、以下の実施例や図示例に限定されるものではなく、幾多の変更及び変形が可能である。 Hereinafter, an example of an embodiment of the present invention will be described in detail with reference to the drawings. The scope of the present invention is not limited to the following examples and illustrated examples, and many changes and modifications can be made.
 本発明の末梢循環癌細胞の検出方法は、図1のフローに示すように、末梢血からリンパ球を分離する分離工程(ステップS1)と、分離された末梢血リンパ球層を培養液で培養する培養工程(ステップS3)と、培養後、培養容器の底に付着した細胞に免疫染色する免疫染色工程(ステップS5)と、免疫染色工程により得られた染色細胞の観察画像に基づいて生体試料中の循環癌細胞を検出する検出工程(ステップS7)とから成る。 As shown in the flow of FIG. 1, the method for detecting peripheral circulation cancer cells of the present invention includes a separation step (step S1) for separating lymphocytes from peripheral blood, and culturing the separated peripheral blood lymphocyte layer in a culture solution. A biological sample based on an observation image of the stained cells obtained by the immunostaining step (step S3), an immunostaining step (step S5) for immunostaining the cells adhering to the bottom of the culture container after the culture, And a detection step (step S7) for detecting circulating cancer cells therein.
 具体的に、分離工程(ステップS1)では、生体試料の末梢血30mlからリンパ球分離液(比重1.077±0.001)でリンパ球層を分離する。
 培養工程(ステップS3)では、75cm2プラスチックフラスコの中で、RPMI1640,IMDMを基盤とした培養液に、1000U/mlのIL-2を含有させたリンパ球培養液を調製したものを用いて、5%CO、37℃のインキュベータにて48~72時間培養する。なお、低濃度のIL-2よりも1000U/mlのIL-2を含有させることにより、細胞の増殖率及び活性度を向上させる。IL-2は細胞の増殖及び活性化に影響を与えることが知られているサイトカイン(細胞から遊離される免疫物質)であり、人工的にも合成できる。
 免疫染色工程(ステップS5)では、培養後、上澄み液を破棄し、フラスコの底に付着した細胞をセルスクレーパーで剥離した後、95%エタノールで固定し、常温にて免疫染色を行う。
 検出工程(ステップS7)では、免疫染色工程で得られた標本に対して、前処理として内因性ペルオキシダーゼブロッキングを5分間行った後、後述する6種類の抗体を20分間、DAB発色試薬を4分間、ヘマトキシリン染色を1分間行って、顕微鏡下で観察する。
Specifically, in the separation step (step S1), the lymphocyte layer is separated from 30 ml of peripheral blood of the biological sample with a lymphocyte separation liquid (specific gravity 1.077 ± 0.001).
In the culturing step (step S3), a lymphocyte culture solution prepared by adding 1000 U / ml of IL-2 to a culture solution based on RPMI1640 and IMDM in a 75 cm2 plastic flask was used. Incubate for 48 to 72 hours in an incubator at 37 ° C. with% CO 2 . In addition, by containing 1000 U / ml IL-2 rather than a low concentration of IL-2, the proliferation rate and activity of the cells are improved. IL-2 is a cytokine (immune substance released from cells) that is known to affect cell proliferation and activation, and can also be synthesized artificially.
In the immunostaining step (step S5), after culturing, the supernatant is discarded, the cells attached to the bottom of the flask are detached with a cell scraper, fixed with 95% ethanol, and immunostained at room temperature.
In the detection step (step S7), the specimen obtained in the immunostaining step is subjected to endogenous peroxidase blocking for 5 minutes as a pretreatment, and then 6 types of antibodies described later for 20 minutes and DAB coloring reagent for 4 minutes. Hematoxylin staining is performed for 1 minute and observed under a microscope.
 ここで、図2のフローに示すように、分離工程(ステップS1)の後、分離されたリンパ球層を、抗CD3抗体と抗CD161抗体の少なくとも何れかを用いて固相化する固相化工程(ステップS2)を付加しても構わない。
 固相化工程(ステップS2)では、抗CD3抗体または抗CD161抗体、或は、抗CD3抗体および抗CD161抗体を用いる。
Here, as shown in the flow of FIG. 2, after the separation step (step S1), the separated lymphocyte layer is immobilized using at least one of anti-CD3 antibody and anti-CD161 antibody. A process (step S2) may be added.
In the solid phase step (step S2), an anti-CD3 antibody or an anti-CD161 antibody, or an anti-CD3 antibody and an anti-CD161 antibody are used.
 なお、末梢循環癌細胞の検出方法において、反応に用いた試薬、ブロッキング試薬、ポリマー試薬、DAB発色試薬、洗浄液(EnvisionFLEXキット)は、Dako社製を使用した。また、ヘマトキシリンは、マイヤーのヘマトキシリンを自家調整し使用した。 In the method for detecting peripheral circulation cancer cells, the reagents used in the reaction, blocking reagent, polymer reagent, DAB coloring reagent, and washing solution (EnvisionFLEX kit) were manufactured by Dako. As for hematoxylin, Meyer's hematoxylin was self-adjusted and used.
 そして、免疫染色工程(ステップS5)で用いる抗体は、Dako社製の希釈済み抗EMA抗体、抗CEA抗体、抗CK(AE1/AE3)抗体、抗Ki-67抗体、抗CD20(L-26)抗体、或は、抗CD45RO抗体の何れかを使用し、染色は自動免疫染色装置を用いて行った。下記表1は、免疫染色に使用した6種類の抗体について、癌細胞の系譜と臨床的意義を示している。 The antibodies used in the immunostaining step (step S5) are diluted anti-EMA antibody, anti-CEA antibody, anti-CK (AE1 / AE3) antibody, anti-Ki-67 antibody, anti-CD20 (L-26) manufactured by Dako. Either an antibody or an anti-CD45RO antibody was used, and staining was performed using an automatic immunostaining apparatus. Table 1 below shows the lineage and clinical significance of cancer cells for the six types of antibodies used for immunostaining.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 以下の実施例では、本発明の末梢循環癌細胞の検出方法の有用性を示すために実施した実験の結果について説明する。以下の実施例では、図2のフローに示すように、末梢血30mlからリンパ球分離液で分離したリンパ球層を、抗CD3抗体および抗CD161抗体で固相化したフラスコの中で培養している。
 抗CD3抗体としてUCTH-1(BDバイオサイエンス社製)、抗CD161抗体として191.B8(イムノテック社製)を用いた。固相化培養容器の作製は、底部の内表面積が75cm2のフラスコに抗CD3抗体および抗CD161抗体で固相化処理を施して固相化されたフラスコを作製した。固相化処理は、1μg/mlに調整した抗CD3抗体をフラスコに注入し、24時間室温にて静置した後、余分な抗体をリン酸緩衝液で洗い流すことにより行なった。次に、10μg/mlになるように調整した抗CD161抗体をフラスコに注入し、さらに24時間室温にて静置した後、5℃の冷蔵庫に保存し、使用時に余分な抗体をリン酸緩衝液で洗い流して使用した。
 なお、図1のフローに示すように、分離されたリンパ球層を抗CD3抗体および抗CD161抗体で固相化する工程を含めずとも良い。
In the following examples, the results of experiments conducted to show the usefulness of the method for detecting peripheral circulation cancer cells of the present invention will be described. In the following examples, as shown in the flow of FIG. 2, a lymphocyte layer separated from 30 ml of peripheral blood with a lymphocyte separation solution is cultured in a flask immobilized with anti-CD3 antibody and anti-CD161 antibody. Yes.
As an anti-CD3 antibody, UCTH-1 (manufactured by BD Bioscience), and as an anti-CD161 antibody, 191. B8 (manufactured by Immunotech) was used. The solid-phase culture vessel was prepared by immobilizing a solid-phase treatment with anti-CD3 antibody and anti-CD161 antibody on a flask having an inner surface area of 75 cm 2 at the bottom. The solid-phase treatment was performed by injecting an anti-CD3 antibody adjusted to 1 μg / ml into the flask, allowing to stand for 24 hours at room temperature, and then washing off excess antibody with a phosphate buffer. Next, the anti-CD161 antibody adjusted to 10 μg / ml was poured into the flask, allowed to stand at room temperature for 24 hours, then stored in a refrigerator at 5 ° C., and excess antibody was removed from the phosphate buffer during use. Rinse and use.
As shown in the flow of FIG. 1, the step of immobilizing the separated lymphocyte layer with anti-CD3 antibody and anti-CD161 antibody may not be included.
 実施例1では、免疫染色工程(ステップS5)において抗EMA抗体を使用して免疫染色を行った結果について説明する。 Example 1 describes the result of immunostaining using an anti-EMA antibody in the immunostaining step (step S5).
(被験者の選定方法)
 被験者の選定方法としては、初めに対象者を決めるのではなく、まず正解を調べて、癌患者と健常者を、それぞれ37名(内、男性22名、女性15名)、33名(内、男性15名、女性18名)、計70名(男性37名、女性33名)を選び出した。
(Subject selection method)
As a method for selecting subjects, first, the target person is not determined, but first, the correct answer is examined, and 37 cancer patients and 22 healthy persons (including 22 males and 15 females) and 33 (of which, A total of 70 men (37 men and 33 women) were selected from 15 men and 18 women).
 表2は、癌患者検体37名(検体名P1~P37)について、それぞれ年齢、性別、癌の種類、病期(Stage)、免疫染色の結果(Positive:陽性、又は、Negative:陰性)、免疫染色の解析結果による判定グレード(0~3)を示している。
 表2に示すように、癌の種類は、肝臓癌、乳癌、胃癌、膵臓癌、食道癌、肺癌、直腸癌、肝細胞癌、大腸癌、悪性リンパ腫など多岐に及んでいる。
 また表3は、健常者検体33名(検体名N1~N33)について、それぞれ年齢、性別、免疫染色の結果(Positive:陽性、又は、Negative:陰性)、免疫染色の解析結果による判定グレード(0~3)を示している。
Table 2 shows the age, sex, type of cancer, stage (stage), immunostaining result (Positive: positive or Negative: negative), immunity for 37 cancer patient specimens (specimen names P1 to P37), respectively. The judgment grade (0 to 3) based on the analysis result of staining is shown.
As shown in Table 2, there are various types of cancer such as liver cancer, breast cancer, gastric cancer, pancreatic cancer, esophageal cancer, lung cancer, rectal cancer, hepatocellular carcinoma, colon cancer, and malignant lymphoma.
Table 3 shows the age, sex, immunostaining result (Positive: positive or Negative: negative), and determination grade (0 based on the analysis result of immunostaining for 33 healthy subjects (sample names N1 to N33), respectively. To 3).
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 抗EMA抗体を使用して免疫染色を行って得られた結果を、下記の表4,表5に示す。
 表4において、真陽性、真陰性、偽陽性および偽陰性の用語の定義は以下の通りである(本明細書中における他の表中の表記および文中の表記も同様)。
・真陽性:検査で正しく陽性であった人(本当はその病気の人:癌患者)
・真陰性:検査で正しく陰性であった人(本当はその病気でない人:健常者)
・偽陽性:本当はその病気でない人で検査陽性と判定された人
・偽陰性:本当はその病気の人で検査陰性と判定された人
The results obtained by immunostaining using an anti-EMA antibody are shown in Tables 4 and 5 below.
In Table 4, the definitions of the terms true positive, true negative, false positive and false negative are as follows (the notation in other tables and the notation in the text in this specification are also the same).
・ True positive: The person who tested positive correctly (actually, the sick person: cancer patient)
・ True negative: A person who was correctly tested negative (a person who is not really sick: a healthy person)
・ False positive: A person who is not really sick and who is judged to be positive ・ False negative: A person who is actually sick and who is judged to be negative
 また表5において、感度、特異度、陽性適中率、陰性適中率および正診率の用語の定義は以下の通りである(本明細書中における他の表中の表記および文中の表記も同様)。
・感度:被験者を正しく陽性と言えた割合
・特異度:非病者を正しく陰性と言えた割合
・陽性適中率:陽性者が正しく病気であった割合
・陰性適中率:陰性者が正しく非病気であった割合
・正診率:総数のうち正しかった割合
In Table 5, the definitions of the terms sensitivity, specificity, positive predictive value, negative predictive value, and correct diagnosis rate are as follows (the notations in other tables and the notations in the text in this specification are the same): .
・ Sensitivity: Proportion that test subjects were correctly positive ・ Specificity: Proportion that non-disease was correctly negative ・ Positive predictive value: Proportion of positive illness correctly ・ Negative predictive value: Negative was correctly non-sick Rate that was correct, rate of correct diagnosis: rate that was correct in the total number
 ここで、感度、特異度、陽性適中率、陰性適中率および正診率の5つは、通常診断精度として用いられる指標である。陽性率および有病率は診断精度の指標ではないが、データを解釈するうえで重要な指標である。表5中には、それぞれの指標の算出式を示している。
 感度が高ければ陽性者(有病者)の見落としが少なく、診断確率が高い検査である。一方、特異度が高ければ、見落とし(偽陽性者)が少ない検査である。すなわち、陽性適中率の高い検査で陽性と出ればその病気である可能性が極めて高く、陰性適中率の高い検査で陰性と出ればその病気は略否定できることになる。
Here, the sensitivity, specificity, positive predictive value, negative predictive value, and correct diagnosis rate are indicators that are usually used as diagnostic accuracy. Positive rates and prevalence are not indicators of diagnostic accuracy, but are important indicators in interpreting the data. Table 5 shows calculation formulas for each index.
If the sensitivity is high, there are few oversights of positive persons (prevalent), and the test has a high diagnosis probability. On the other hand, if the specificity is high, the test has few oversights (false positives). In other words, if a test with a high positive predictive value is positive, the possibility of the disease is very high, and if a test with a high negative predictive value is negative, the disease can be almost denied.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 上記表4に示すように、癌患者については陽性(真陽性)が28人,陰性(偽陰性)が9人であり、健常者については陽性(偽陽性)が17人,陰性(真陰性)が16人であるという結果となった。
 また上記表5に示すように、特異度は48%と低いものの、感度が76%と高く、陽性適中率は62%であるという結果となった。抗EMA抗体を使用して免疫染色を行って得られた結果は、解析データの特異度は低く、感度が高いことから、結果的に検査のカットオフ(Cut off)値を下げたことに等しく、スクリーニングテストとして利用できることがわかる。なお、逆に、解析データの特異度が高く、感度が低い場合、データのカットオフ(Cut off)値が高くなるので治療を開始する目的の検査として利用することができる。
As shown in Table 4 above, there are 28 positive (true positive) and 9 negative (false negative) for cancer patients, and 17 positive (false positive) and negative (true negative) for healthy individuals. As a result, there were 16 people.
As shown in Table 5, the specificity was as low as 48%, but the sensitivity was as high as 76%, and the positive predictive value was 62%. The results obtained by immunostaining using anti-EMA antibody are equivalent to lowering the cut-off value of the test because the analysis data has low specificity and high sensitivity. It can be seen that it can be used as a screening test. Conversely, when the analysis data has high specificity and low sensitivity, the cut-off value of the data becomes high, so that it can be used as a test for starting treatment.
 ここで、抗EMA抗体で染色された細胞の系譜について説明する。抗EMA抗体は、上皮性腫瘍細胞以外に、骨髄中の形質細胞を染色することがある。健常者では骨髄形質細胞が末梢血中に出現することはないので、検査で発現した健常者のEMA陽性細胞が形質細胞であったという可能性は排除できる。癌患者で末梢血中にEMA陽性細胞がみられる疾患としては、ホジキン病(H&L細胞)と未分化大細胞型リンパ腫(T細胞系細胞)があるが、今回これらの患者については検査していない。これらの理由から、抗EMA抗体で染色された細胞は、上皮性腫瘍細胞あるいは上皮性由来の異常細胞と考えて良いと判断した。 Here, the lineage of cells stained with anti-EMA antibody will be described. Anti-EMA antibodies may stain plasma cells in the bone marrow in addition to epithelial tumor cells. Since bone marrow plasma cells do not appear in peripheral blood in healthy individuals, the possibility that the healthy person's EMA-positive cells expressed in the test were plasma cells can be excluded. Cancer patients with EMA-positive cells in peripheral blood include Hodgkin's disease (H & L cells) and anaplastic large cell lymphoma (T-cell lineage cells), but these patients have not been examined this time . For these reasons, it was judged that cells stained with anti-EMA antibody can be considered epithelial tumor cells or epithelial abnormal cells.
 次に、細胞を培養する培養工程(ステップS3)において、培養液の組成によって、EMA陽性細胞の発現に影響があるのか否かについて、健常者4名の細胞を用いて調べた結果について説明する。
 1名はEMA陽性細胞が陰性、他の3名はEMA陽性細胞が発現した被験者を選び、RPMI1640,IMDMを基盤とした培養液を用いて、EMA陽性細胞の発現について比較した。培養は、抗CD3抗体および抗CD161抗体で固相化処理したフラスコを使用して行った。比較結果を下記表6に示す。表6から、培養液の組成によって、EMA陽性細胞の発現に影響が無いことがわかる。
Next, in the culture step of culturing cells (step S3), the results of investigation using the cells of 4 healthy individuals as to whether or not the composition of the culture solution affects the expression of EMA positive cells will be described. .
One subject was negative for EMA positive cells, and the other three were subjects who expressed EMA positive cells, and the expression of EMA positive cells was compared using culture media based on RPMI1640 and IMDM. Culturing was performed using a flask solid-phased with anti-CD3 antibody and anti-CD161 antibody. The comparison results are shown in Table 6 below. From Table 6, it can be seen that the composition of the culture solution does not affect the expression of EMA positive cells.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 上述の如く、本実施例では、図2のフローに示すように、末梢血30mlからリンパ球分離液で分離したリンパ球層を、抗CD3抗体および抗CD161抗体で固相化したフラスコの中で培養している。これは、通常、細胞培養は、抗CD3抗体および抗CD161抗体で固相化されているフラスコを用いて行うためである。固相化工程(ステップS2)の有無が、EMA陽性細胞の発現に影響を与えるか否かについて調べた。
 実験は、抗CD3抗体および抗CD161抗体で抗体処理を行ったフラスコと、抗体処理をしていないフラスコとを用いて、同時に細胞を培養後、EMA免疫染色を実施した。下記表7に示すように、抗体で固相化処理しなかったフラスコで培養してもEMA陽性細胞が発現し、抗体の固相化処理とは無関係であった。すなわち、抗体で固相化していない未処理のフラスコを使用して細胞を培養しても、EMA陽性細胞の発現に影響を与えず、固相化工程(ステップS2)の有無は、EMA陽性細胞の発現に影響を与えないことがわかった。
As described above, in this example, as shown in the flow of FIG. 2, a lymphocyte layer separated from 30 ml of peripheral blood with a lymphocyte separation solution was immobilized in a flask solid-phased with an anti-CD3 antibody and an anti-CD161 antibody. It is in culture. This is because cell culture is usually performed using a flask that is solid-phased with an anti-CD3 antibody and an anti-CD161 antibody. It was investigated whether the presence or absence of the solid phase step (step S2) affects the expression of EMA positive cells.
In the experiment, EMA immunostaining was performed after simultaneously culturing cells using a flask treated with anti-CD3 antibody and anti-CD161 antibody and a flask not treated with antibody. As shown in Table 7 below, EMA positive cells were expressed even when cultured in a flask that was not immobilized with the antibody, and was not related to the immobilized treatment of the antibody. That is, even if cells are cultured using an untreated flask that has not been immobilized with an antibody, the expression of EMA positive cells is not affected. The presence or absence of the immobilization step (step S2) It was found that it does not affect the expression of.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 次に、本実施例の末梢循環癌細胞の検出方法の再現性を調査した。下記表8に示すように、健常者5名、癌患者7名の計12名を選出し、EMA免疫染色の再現性を調査した。2回目、3回目の検査は、1回目の検査終了後、1~2か月後に実施した。表8に示すように、1例(P2)を除く11例で再現性が認められた。表8の結果は、本実施例の末梢循環癌細胞の検出方法の再現率は92%(11/12)であることを示している。 Next, the reproducibility of the method for detecting peripheral circulating cancer cells of this example was investigated. As shown in Table 8 below, a total of 12 people were selected from 5 healthy subjects and 7 cancer patients, and the reproducibility of EMA immunostaining was investigated. The second and third examinations were conducted 1-2 months after the completion of the first examination. As shown in Table 8, reproducibility was observed in 11 cases except 1 case (P2). The results in Table 8 show that the reproducibility of the peripheral circulating cancer cell detection method of this example is 92% (11/12).
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 本実施例の末梢循環癌細胞の検出方法の結果について、他の方法で測定した結果と比較した。比較は、EMA陽性細胞の被験者の検体をCellSearch(登録商標)システム(米国Veridex社の開発した乳癌、大腸癌などの領域の検出系システム)によって測定することにより行った。下記表9に示したごとく、EMA染色で得られた結果とCellSearch(登録商標)システムで得られた検査結果は一致した。このことは、本実施例の末梢循環癌細胞の検出方法が、CellSearch(登録商標)システムの測定感度に劣らないことを示している。 The results of the method for detecting peripheral circulation cancer cells of this example were compared with the results measured by other methods. The comparison was performed by measuring a specimen of a subject with EMA positive cells using a CellSearch (registered trademark) system (detection system for breast cancer, colon cancer, etc. developed by Veridex, USA). As shown in Table 9 below, the results obtained by the EMA staining and the test results obtained by the CellSearch (registered trademark) system coincided. This indicates that the peripheral circulating cancer cell detection method of this example is not inferior to the measurement sensitivity of the CellSearch (registered trademark) system.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 次に、EMA陽性細胞の電子顕微鏡写真について説明する。図3および図4は、卵巣癌患者のEMA陽性細胞の電子顕微鏡写真である。図3および図4に観察される細胞は、全体にN/C比が高く、ミトコンドリアなどの形成が観察されるものの、ゴルジ野などの他の細胞質内小器官の形成に乏しい。また核小体の形成が目立つ。細胞間接着装置の形成を認め難い一方、細胞質突起による接着が示唆される。細胞系譜の特定は困難であるが何らかの腫瘍細胞と推定できる。 Next, an electron micrograph of EMA positive cells will be described. 3 and 4 are electron micrographs of EMA positive cells of ovarian cancer patients. The cells observed in FIGS. 3 and 4 generally have a high N / C ratio, and formation of mitochondria and the like is observed, but formation of other cytoplasmic organelles such as the Golgi area is poor. The formation of nucleolus is conspicuous. While it is difficult to recognize the formation of an intercellular adhesion device, adhesion by cytoplasmic processes is suggested. Although it is difficult to specify the cell lineage, it can be assumed that it is a tumor cell.
 一方、図5および図6は、健常者のEMA陽性細胞の電子顕微鏡写真である。図5および図6では、少数ながらN/C比が高く、核小体の目立つ異型細胞が観察される。一部で細胞相互の接着像が認められるが、細胞間接着装置の発達に乏しい。ミトコンドリアなどの細胞内小器官の発育も比較的乏しいものといえる。
 上記の観察結果から、癌患者、健常者に発現したEMA陽性細胞は、細胞系譜の特定は困難であるものの、何らかの腫瘍細胞あるいは異型細胞と推察できる。下記表10は、卵巣癌患者と健常者のEMA陽性細胞の電子顕微鏡写真による観察結果の比較を纏めたものである。
On the other hand, FIG. 5 and FIG. 6 are electron micrographs of EMA positive cells of a healthy person. 5 and 6, atypical cells with a high N / C ratio and conspicuous nucleoli are observed. Although some images of cell-cell adhesion are observed, the development of cell-cell adhesion devices is poor. It can be said that the growth of organelles such as mitochondria is relatively poor.
From the above observation results, EMA positive cells expressed in cancer patients and healthy individuals can be inferred as some tumor cells or atypical cells, although it is difficult to specify the cell lineage. Table 10 below summarizes the comparison of observation results by electron micrographs of EMA positive cells of ovarian cancer patients and healthy individuals.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 ここで、EMA陽性細胞が非腫瘍性間質細胞の可能性について検討した結果を説明する。間質細胞には、免疫細胞、炎症性細胞、内皮細胞、線維芽細胞、周皮細胞がある。このうち、EMA陽性細胞が間質細胞であったかどうか疑問を解いておく必要がある。特に、血液中の免疫細胞、炎症性細胞、内皮細胞であるか否かについてである。先ず、炎症性細胞には、好中球と形質細胞があるが、好中球は免疫染色によって非特異的にCEA陽性となることはあるが、EMA陽性にはならない。また形質細胞は、ホジキン病や未分化大細胞型リンパ腫患者の末梢血に発現するが、健常者の末梢血には発現しない。ホジキン病および未分化大細胞型リンパ腫患者の疾患の患者については、今回被験者から除外されているので、形質細胞であった可能性は除外できる。また、骨髄中の形質細胞が希にEMA陽性になることがあるが、形質細胞は通常、健常者の末梢血中に現れることはないのでこの可能性も排除できる。
 次に、免疫細胞である。末梢血中に胸腺上皮細胞から発生した非腫瘍性の未熟なT細胞が出現することがある。しかし、非腫瘍性の未熟なT細胞は、健常者には認められず、胸腺腫患者の末梢血中に現れる。胸腺腫患者についても、今回被験者から除外されているので、免疫細胞である可能性も除外できる。
Here, the result of examining the possibility that the EMA positive cells are non-tumor stromal cells will be described. Stromal cells include immune cells, inflammatory cells, endothelial cells, fibroblasts, and pericytes. Of these, it is necessary to unravel whether EMA positive cells were stromal cells. In particular, whether it is an immune cell, inflammatory cell, or endothelial cell in the blood. First, inflammatory cells include neutrophils and plasma cells. Neutrophils may be nonspecifically CEA positive by immunostaining, but they are not EMA positive. Plasma cells are expressed in the peripheral blood of patients with Hodgkin's disease and anaplastic large cell lymphoma, but not in the peripheral blood of healthy individuals. Since patients with Hodgkin's disease and illness patients with anaplastic large cell lymphoma are excluded from the subject this time, the possibility of being plasma cells can be excluded. In addition, plasma cells in the bone marrow rarely become EMA positive, but plasma cells usually do not appear in the peripheral blood of healthy individuals, so this possibility can be eliminated.
Next, immune cells. Non-tumor immature T cells generated from thymic epithelial cells may appear in peripheral blood. However, non-tumor immature T cells are not found in healthy individuals and appear in the peripheral blood of thymoma patients. Thymoma patients are also excluded from the subject this time, so the possibility of being immune cells can be excluded.
 ところで、内皮細胞、線維芽細胞、あるいは周皮細胞が、末梢血EMA陽性細胞として発現した可能性はないのかという問題が残る。問題となるのが、採血時に針の穴に混入する可能性のある血管内皮細胞、皮下に存在する線維芽細胞、周皮細胞である。これらの可能性を調べるために、採血時に最初の2mlを廃棄した末梢血と、廃棄しない末梢血とを培養して比較した。 By the way, there remains a problem whether endothelial cells, fibroblasts, or pericytes may be expressed as peripheral blood EMA positive cells. The problems are vascular endothelial cells, fibroblasts, and pericytes that may be mixed into the needle hole during blood collection. In order to examine these possibilities, peripheral blood from which the first 2 ml was discarded at the time of blood collection and peripheral blood that was not discarded were cultured and compared.
 下記表11に示すように、採血時に2ml廃棄した末梢血中にも、2ml廃棄しなかった末梢血と同様にEMA陽性細胞が発現した。このことから、検出されたEMA陽性細胞は、採血時に針の穴に混入した血管内皮細胞、線維芽細胞、周皮細胞であるという可能性を排除することができる。
 以上のことから、末梢血中に存在するEMA陽性細胞は、上皮系細胞と考えられるのである。
As shown in Table 11 below, EMA positive cells were expressed in peripheral blood discarded at 2 ml at the time of blood collection as well as peripheral blood not discarded at 2 ml. From this, it is possible to exclude the possibility that the detected EMA positive cells are vascular endothelial cells, fibroblasts, and pericytes mixed in the needle holes at the time of blood collection.
From the above, EMA positive cells present in peripheral blood are considered epithelial cells.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 次に、本実施例の末梢循環癌細胞の検出方法における観察画像内の染色細胞の個数により、癌患者と健常者をスクリーニング判定する方法について説明する。
 判定はGradeで行い、例えば、Gradeは下記表12のように定める。すなわち、Grade0とは、EMA陽性細胞が0個の場合であり、この場合、癌や癌転移の心配は少ないが定期的な癌検診を受けることを勧めるものである。また、Grade1とは、EMA陽性細胞が1個出現の場合であり、癌の確率は低いが、癌検診を勧めるものである。この場合、将来的に癌に対する注意が必要である。また、Grade2とは、EMA陽性細胞が数個の場合であり、目に見えない小さな癌の存在の可能性が考えられ、癌の精密検査を受けることを勧めるものである。さらに、Grade3とは、EMA陽性細胞数が5%よりも多い場合であり、この場合、どこかに癌が存在している確率が高いので、できるだけ早期に癌の精密検査を受けることを勧めるものである。なお、EMA陽性細胞数が5%よりも多い場合であれば、EMA陽性細胞数が10%であれ30%であれ、数的な要素は考慮しないで良いとして構わない。
Next, a method for screening and determining cancer patients and healthy persons based on the number of stained cells in the observed image in the peripheral circulating cancer cell detection method of this example will be described.
The determination is made with Grade. For example, Grade is determined as shown in Table 12 below. That is, Grade 0 is a case where there are no EMA positive cells. In this case, although there is little concern about cancer or cancer metastasis, it is recommended to undergo regular cancer screening. Grade 1 is a case where one EMA-positive cell appears. Although the probability of cancer is low, cancer screening is recommended. In this case, attention to cancer in the future is necessary. Grade 2 is a case where there are several EMA positive cells, and there is a possibility of the presence of a small invisible cancer, and it is recommended to undergo a close examination of cancer. Furthermore, Grade3 is a case where the number of EMA-positive cells is more than 5%, and in this case, it is highly recommended that cancer is present somewhere, so it is recommended to undergo a detailed examination of cancer as soon as possible. It is. Note that if the number of EMA positive cells is more than 5%, the numerical element may not be considered regardless of whether the number of EMA positive cells is 10% or 30%.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 本実施例の末梢循環癌細胞の検出方法の検出結果の解釈において、癌患者のEMA陽性細胞に対し、健常者のEMA陽性細胞が必ずしも癌細胞でないということはあり得る。その理由の一つとして、EMA陽性細胞が発現した健常者で、現在、癌を発症している例はない。また、これを証明するためにEMA細胞陽性の一部の健常者において、PET-CT検査、腫瘍マーカー測定を実施した結果、現在のところ、癌などの異常を発見された人はいない。その反面、EMA陽性細胞が認められた癌患者においては、癌の転移や再発が有意(76%、真陽性28/病者数37)であり、癌患者におけるEMA陽性細胞は、癌細胞そのものをとらえている可能性が高いといえる。 In the interpretation of the detection result of the method for detecting peripheral circulating cancer cells of the present example, it is possible that the healthy subject's EMA positive cells are not necessarily cancer cells relative to the EMA positive cells of cancer patients. As one of the reasons, there is no example of a healthy person who has developed EMA positive cells and currently developing cancer. In addition, as a result of conducting PET-CT examination and tumor marker measurement in some healthy individuals positive for EMA cells in order to prove this, no one has found an abnormality such as cancer at present. On the other hand, in cancer patients with EMA positive cells, cancer metastasis or recurrence is significant (76%, true positive 28/37 patients), and EMA positive cells in cancer patients are cancer cells themselves. It can be said that there is a high possibility of capturing.
 EMA陽性細胞が発現した患者のうち、上述のCellSearch(登録商標)システムの測定結果でも、癌細胞の存在が認められている2症例(検体No=P2,P10)については、EMA陽性細胞の発現と、癌の再発や転移との関連性が推察できる。このことは転移能を持ったEMA陽性細胞の存在が予後(再発、転移)に結び付くという可能性を示唆している。癌患者のEMA陽性細胞は、癌転移能が高く、再発に関与し、健常者のEMA陽性細胞は、造腫瘍形成能が低いという可能性が考えられる。すなわち、癌患者に発現するEMA陽性細胞は、転移性のある癌細胞であり、健常者に発現するEMA陽性細胞は、将来、癌を発症させる可能性を有する分裂の遅い癌幹細胞の可能性が考えられる。また、上述したように、卵巣癌患者とEMA細胞陽性の健常者の培養細胞とを、電子顕微鏡で観察した結果からもその可能性が推察できる(図3~6を参照)。 Among the patients expressing EMA positive cells, the expression of EMA positive cells was observed in 2 cases (specimen No = P2, P10) in which the presence of cancer cells was recognized even in the measurement results of the CellSearch (registered trademark) system described above. And the relationship between cancer recurrence and metastasis. This suggests the possibility that the presence of EMA positive cells having metastatic potential may lead to prognosis (recurrence, metastasis). There is a possibility that EMA positive cells of cancer patients have high cancer metastasis and are involved in recurrence, and EMA positive cells of healthy individuals have low tumorigenicity. That is, EMA-positive cells expressed in cancer patients are metastatic cancer cells, and EMA-positive cells expressed in healthy individuals may be slow-dividing cancer stem cells that may cause cancer in the future. Conceivable. In addition, as described above, the possibility can be inferred from the results of observation of cultured cells of ovarian cancer patients and EMA cell-positive healthy individuals with an electron microscope (see FIGS. 3 to 6).
 また、検査時点において転移や再発の認められない癌患者であっても、検査後、EMA陽性細胞が確認されることによって、癌の転移や再発の確率が高くなるという可能性も考えられる。今後、癌患者や健常者におけるEMA陽性細胞が、確実に癌細胞なのか、あるいは癌幹細胞なのかを詳細に同定する必要がある。
 細胞培養中に、EMA陽性細胞が1個あるいは2個見つかった場合、それが本当に転移や再発の癌発症として成立するのかどうかは極めて重要なことである。たとえ、そのような細胞が末梢血中に100個出現しても、培養している間に99個が死んでしまう可能性もある。癌細胞が末梢血中に1万とか10万とか100万とかあって、そのうちの1個か2個で癌の転移が成立するかという確率の問題にもなる。末梢血中に発現した癌細胞は、1時間から2時間40分くらいで自然消滅(アポトーシス)するという報告もある。
In addition, even cancer patients who do not have metastasis or recurrence at the time of examination may be considered to have a higher probability of cancer metastasis or recurrence by confirming EMA positive cells after the examination. In the future, it is necessary to identify in detail whether EMA positive cells in cancer patients and healthy individuals are surely cancer cells or cancer stem cells.
If one or two EMA positive cells are found in the cell culture, it is very important whether or not they are actually established as metastatic or recurrent cancer development. Even if 100 such cells appear in peripheral blood, it is possible that 99 cells will die during culture. There is a problem of the probability that cancer cells are metastasized by one or two of the cancer cells in the peripheral blood such as 10,000, 100,000, or 1 million. There is also a report that cancer cells expressed in peripheral blood spontaneously disappear (apoptosis) in about 1 to 2 hours and 40 minutes.
 人体の中では1日に3000~4000個の癌細胞もしくは異常細胞が生み出されていると言われている。しかし、これらの細胞は免疫細胞によって排除されたり、自然消滅(アポトーシス)したりして、癌の発症が抑制されている。体内でこれらの細胞が1個でも2個でも残っていた場合、培養という条件と違い、生体内で癌が発症しないと100%否定することはできない。 In the human body, it is said that 3000 to 4000 cancer cells or abnormal cells are produced per day. However, these cells are eliminated by immune cells or spontaneously extinguished (apoptosis), and the onset of cancer is suppressed. If one or two of these cells remain in the body, unlike the culture condition, 100% cannot be denied unless cancer develops in vivo.
 一方、健常者では、末梢血中にEMA陽性細胞のような上皮性細胞が存在することは考えられない。EMA陽性細胞が健常者においても52%(上記表4における偽陽性17/非病者数33)の人に出現するという現象は、現在いわれているように男女ともに日本人の2人に1人が一生の内に癌と診断されるということを裏付けているのかもしれない。厚生労働省の2010年の試算では、生涯で癌にかかる確率は、男性60%、女性45%である。本実施例の末梢循環癌細胞の検出方法の場合でも、健常者33名(男性15名、女性18名)の内、EMA陽性細胞が出現した人は、男性9名(60%;9/15)、女性8名(44%;8/18)であり、厚生労働省の試算と一致していることは興味深い。 On the other hand, in healthy individuals, it is unlikely that epithelial cells such as EMA positive cells are present in the peripheral blood. The phenomenon that EMA-positive cells appear in 52% of healthy individuals (17 false positives / 33 non-disease in Table 4 above) is one in every two Japanese people, both men and women. May support the diagnosis of cancer in a lifetime. According to the Ministry of Health, Labor and Welfare's 2010 estimate, the probability of getting cancer in a lifetime is 60% for men and 45% for women. Even in the case of the method for detecting peripheral circulation cancer cells of this example, among 33 healthy subjects (15 men, 18 women), 9 men (60%; 9/15) had EMA positive cells. It is interesting that there are 8 women (44%; 8/18), which is in line with the Ministry of Health, Labor and Welfare's estimate.
 実施例2の末梢循環癌細胞の検出方法では、免疫染色工程(ステップS5)において、抗EMA抗体の替わりに、抗CEA抗体を使用して免疫染色を行った結果について説明する。抗CEA抗体は、大腸、肺、乳房、肝臓、膵臓などの腺癌細胞を特異的に染色するので、上記表2に示す検体の癌の種類と癌細胞の系譜から、肺癌、膵臓癌、大腸癌、胃癌などの腺癌患者を選出し、症例数について実施例1の70例(癌患者と健常者がそれぞれ37名、33名)から、52例(癌患者と健常者がそれぞれ30名、22名)に絞った。
 抗CEA抗体を使用して免疫染色を行って得られた結果を、下記の表13,表14に示す。なお、表中の用語や指標については、実施例1で説明したものと同じである。
In the peripheral circulating cancer cell detection method of Example 2, the result of immunostaining using an anti-CEA antibody instead of the anti-EMA antibody in the immunostaining step (step S5) will be described. Since the anti-CEA antibody specifically stains adenocarcinoma cells such as the large intestine, lung, breast, liver, pancreas, etc., from the types of cancer and the lineage of cancer cells shown in Table 2 above, lung cancer, pancreatic cancer, large intestine Adenocarcinoma patients such as cancer and gastric cancer were selected, and the number of cases from 70 cases of Example 1 (37 cancer patients and 33 healthy persons, respectively) to 52 cases (30 cancer patients and 30 healthy persons, respectively) 22 people).
The results obtained by immunostaining using an anti-CEA antibody are shown in Tables 13 and 14 below. The terms and indices in the table are the same as those described in the first embodiment.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 上記表13に示すように、癌患者については陽性(真陽性)が10人,陰性(偽陰性)が20人であり、健常者については陽性(偽陽性)が3人,陰性(真陰性)が19人であるという結果となった。
 また上記表14に示すように、特異度は86%と高いが、感度が33%と低く、また陽性適中率は77%であるという結果となった。抗CEA抗体を使用して免疫染色を行って得られた結果は、解析データの特異度が高く、感度が低いことから、結果的に検査のカットオフ(Cut off)値が高くなるので、実施例1に示す抗EMA抗体を用いて免疫染色する場合とは異なり、癌の治療を開始するか否かの判断のための検査として利用できることがわかる。
 上記の結果から、癌の治療を開始するか否かの判断のための検査として使える可能性があるが、抗CEA抗体は、大腸、肺、乳房、肝臓、膵臓などの腺癌細胞を特異的に染色する一方で、しばしば炎症時に現れる好中球も非特異的に染色する。そのため、実施例2の末梢循環癌細胞の検出方法、すなわち抗CEA抗体による免疫染色は、検査における抗体の特異性という観点からみると実施例1の末梢循環癌細胞の検出方法と比べて劣ることになる。
As shown in Table 13, 10 positive (true positive) and 20 negative (false negative) for cancer patients, 3 positive (false positive) and negative (true negative) for healthy subjects As a result, there were 19 people.
As shown in Table 14, the specificity was as high as 86%, but the sensitivity was as low as 33%, and the positive predictive value was 77%. The results obtained by immunostaining using anti-CEA antibody are high in specificity of analysis data and low in sensitivity, resulting in high cut-off value of the test. Unlike the case of immunostaining using the anti-EMA antibody shown in Example 1, it can be used as a test for determining whether or not to start cancer treatment.
From the above results, there is a possibility that it can be used as a test for determining whether or not to start cancer treatment. However, anti-CEA antibodies specifically adenocarcinoma cells such as the large intestine, lung, breast, liver and pancreas. Neutrophils that often appear during inflammation also stain nonspecifically. Therefore, the peripheral circulation cancer cell detection method of Example 2, that is, immunostaining with anti-CEA antibody is inferior to the peripheral circulation cancer cell detection method of Example 1 from the viewpoint of antibody specificity in the test. become.
 実施例3の末梢循環癌細胞の検出方法では、免疫染色工程(ステップS5)において、抗EMA抗体によるEMA免疫染色の結果と、抗CEA抗体によるEMA免疫染色の結果とを同時に使用して、指標の精度を向上できるか否かについて調べた結果について説明する。
 症例数について実施例1の70例(癌患者と健常者がそれぞれ37名、33名)から、57例(癌患者と健常者がそれぞれ35名、22名)に絞った。
 抗EMA抗体によるEMA免疫染色の結果と、抗CEA抗体によるEMA免疫染色の結果とを同時に使用して得られた判定結果を、下記の表15,表16に示す。なお、表中の用語や指標については、実施例1で説明したものと同じである。
In the method for detecting peripheral circulation cancer cells of Example 3, in the immunostaining step (step S5), the result of EMA immunostaining with anti-EMA antibody and the result of EMA immunostaining with anti-CEA antibody are used at the same time. The result of investigating whether or not the accuracy can be improved will be described.
The number of cases was reduced from 70 cases in Example 1 (37 cancer patients and 33 healthy persons, respectively) to 57 cases (35 cancer patients and 22 healthy persons, respectively).
The determination results obtained by simultaneously using the results of EMA immunostaining with anti-EMA antibody and the results of EMA immunostaining with anti-CEA antibody are shown in Tables 15 and 16 below. The terms and indices in the table are the same as those described in the first embodiment.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 上記表15に示すように、癌患者については陽性(真陽性)が6人,陰性(偽陰性)が29人であり、健常者については陽性(偽陽性)が2人,陰性(真陰性)が20人であるという結果となった。
 また上記表16に示すように、特異度は91%と非常に高いが、感度が17%と非常に低く、正診率が46%と5割を下回る結果となった。このことから、抗EMA抗体によるEMA免疫染色の結果と、抗CEA抗体によるEMA免疫染色の結果とを同時に使用して判定することは適当でないことがわかったが、更なるデータの蓄積によって、有用性を見出せる可能性はある。
As shown in Table 15, 6 positive (true positive) and 29 negative (false negative) for cancer patients, 2 positive (false positive) and negative (true negative) for healthy subjects As a result, there were 20 people.
As shown in Table 16 above, the specificity was very high at 91%, but the sensitivity was very low at 17%, and the correct diagnosis rate was 46%, which was less than 50%. From this fact, it was found that it is not appropriate to use the result of EMA immunostaining with anti-EMA antibody and the result of EMA immunostaining with anti-CEA antibody at the same time. There is a possibility to find sex.
 実施例4の末梢循環癌細胞の検出方法では、免疫染色工程(ステップS5)において、抗EMA抗体の替わりに、抗CK(AE1/AE3)抗体を使用して免疫染色を行った結果について説明する。抗CK(AE1/AE3)抗体は、上皮性腫瘍や細胞増殖活性細胞を特異的に染色する。症例数は30例(癌患者と健常者がそれぞれ19名、11名)である。なお、癌患者は、癌の種類に関係なく無作為に選出した。
 抗CK(AE1/AE3)抗体を使用して免疫染色を行って得られた結果を、下記の表17,表18に示す。なお、表中の用語や指標については、実施例1で説明したものと同じである。
In the peripheral circulating cancer cell detection method of Example 4, the result of immunostaining using an anti-CK (AE1 / AE3) antibody instead of the anti-EMA antibody in the immunostaining step (step S5) will be described. . Anti-CK (AE1 / AE3) antibodies specifically stain epithelial tumors and cell proliferating cells. The number of cases is 30 (19 cancer patients and 11 healthy persons, respectively). Cancer patients were randomly selected regardless of the type of cancer.
The results obtained by immunostaining using anti-CK (AE1 / AE3) antibody are shown in Tables 17 and 18 below. The terms and indices in the table are the same as those described in the first embodiment.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
 上記表17に示すように、癌患者については陽性(真陽性)が16人,陰性(偽陰性)が3人であり、健常者については陽性(偽陽性)が9人,陰性(真陰性)が2人であるという結果となった。
 上記表18に示すように、感度が84%と高いが、特異度は18%と非常に低く、感度との相関も認められなかった。そのため、現時点の結果からは、本実施例の末梢循環癌細胞の検出方法、すなわち抗CK(AE1/AE3)抗体による免疫染色を使用して判定することは適当でないことがわかったが、更なるデータの蓄積によって、有用性を見出せる可能性はあろう。
As shown in Table 17, 16 positive (true positive) and 3 negative (false negative) for cancer patients, 9 positive (false positive) for healthy individuals, and negative (true negative) As a result, there were two people.
As shown in Table 18 above, the sensitivity was as high as 84%, but the specificity was very low as 18%, and no correlation with sensitivity was observed. Therefore, from the current results, it was found that it is not appropriate to determine using the peripheral circulating cancer cell detection method of this example, that is, immunostaining with anti-CK (AE1 / AE3) antibody, but further It may be possible to find usefulness by accumulating data.
 実施例5の末梢循環癌細胞の検出方法では、免疫染色工程(ステップS5)において、抗EMA抗体の替わりに、抗Ki-67抗体を使用して免疫染色を行った結果について説明する。抗Ki-67抗体は、細胞増殖活性細胞を特異的に染色する。症例数は15例(癌患者と健常者がそれぞれ8名、7名)である。なお、癌患者は、癌の種類に関係なく無作為に選出した。
 抗Ki-67抗体を使用して免疫染色を行って得られた結果を、下記の表19,表20に示す。なお、表中の用語や指標については、実施例1で説明したものと同じである。
In the method for detecting peripheral circulating cancer cells of Example 5, the result of immunostaining using an anti-Ki-67 antibody instead of the anti-EMA antibody in the immunostaining step (step S5) will be described. Anti-Ki-67 antibody specifically stains cell proliferating active cells. The number of cases is 15 (8 cancer patients and 7 healthy persons, respectively). Cancer patients were randomly selected regardless of the type of cancer.
The results obtained by immunostaining using anti-Ki-67 antibody are shown in Tables 19 and 20 below. The terms and indices in the table are the same as those described in the first embodiment.
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
 上記表19に示すように、癌患者については陽性(真陽性)が6人,陰性(偽陰性)が2人であり、健常者については陽性(偽陽性)が5人,陰性(真陰性)が2人であるという結果となった。
 上記表20に示すように、感度が75%と高いが、特異度は29%と低く、感度との相関も認められなかった。そのため、現時点の結果からは、本実施例の末梢循環癌細胞の検出方法、すなわち抗Ki-67抗体による免疫染色を使用して判定することは適当でないことがわかったが、更なるデータの蓄積によって、有用性を見出せる可能性はあろう。
As shown in Table 19 above, 6 positive (true positive) and 2 negative (false negative) for cancer patients, 5 positive (false positive) and negative (true negative) for healthy individuals As a result, there were two people.
As shown in Table 20 above, the sensitivity was as high as 75%, but the specificity was as low as 29%, and no correlation with sensitivity was observed. Therefore, from the current results, it was found that it is not appropriate to determine using the peripheral circulating cancer cell detection method of this example, that is, immunostaining with anti-Ki-67 antibody. There is a possibility that usefulness can be found.
 実施例6の末梢循環癌細胞の検出方法では、免疫染色工程(ステップS5)において、抗EMA抗体の替わりに、抗CD20(L-26)抗体を使用して免疫染色を行った結果について説明する。抗CD20(L-26)抗体は、細胞増殖活性細胞を特異的に染色する。症例数は3例(癌患者と健常者がそれぞれ1名、2名)である。なお、癌患者は、多発性骨髄腫の患者を選出した。
 抗CD20(L-26)抗体を使用して免疫染色を行って得られた結果を、下記の表21,表22に示す。なお、表中の用語や指標については、実施例1で説明したものと同じである。
In the method for detecting peripheral circulating cancer cells of Example 6, the result of immunostaining using an anti-CD20 (L-26) antibody instead of the anti-EMA antibody in the immunostaining step (step S5) will be described. . Anti-CD20 (L-26) antibody specifically stains cell proliferating active cells. The number of cases is 3 (one cancer patient and one healthy person, respectively). As cancer patients, patients with multiple myeloma were selected.
The results obtained by immunostaining using anti-CD20 (L-26) antibody are shown in Tables 21 and 22 below. The terms and indices in the table are the same as those described in the first embodiment.
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
 上記表21に示すように、癌患者については陽性(真陽性)が1人,陰性(偽陰性)が0人であり、健常者については陽性(偽陽性)が2人,陰性(真陰性)が0人であるという結果となった。
 症例数が不足しているため、上記表22に示すように、感度が100%、特異度が0%となった。そのため、現時点の結果からは、本実施例の末梢循環癌細胞の検出方法、すなわち抗CD20(L-26)抗体による免疫染色を使用して判定することは適当でないことになるが、更なるデータの蓄積によって、有用性を見出せる可能性は十分に残されている。
As shown in Table 21 above, 1 positive (true positive) and 0 negative (false negative) for cancer patients, 2 positive (false positive) for healthy individuals, and negative (true negative) As a result, there were 0 people.
Since the number of cases was insufficient, the sensitivity was 100% and the specificity was 0% as shown in Table 22 above. Therefore, from the current results, it is not appropriate to determine using the peripheral circulating cancer cell detection method of this example, that is, immunostaining with anti-CD20 (L-26) antibody. The possibility of finding usefulness remains because of the accumulation of.
 実施例7の末梢循環癌細胞の検出方法では、免疫染色工程(ステップS5)において、抗EMA抗体の替わりに、抗CD45RO抗体を使用して免疫染色を行った結果について説明する。抗CD45RO抗体は、T細胞リンパ球腫や成熟T細胞を特異的に染色する。症例数は13例(癌患者と健常者がそれぞれ10名、3名)である。なお、癌患者は、癌の種類に関係なく無作為に選出した。
 抗CD45RO抗体を使用して免疫染色を行って得られた結果を、下記の表23,表24に示す。なお、表中の用語や指標については、実施例1で説明したものと同じである。
In the peripheral circulating cancer cell detection method of Example 7, the result of immunostaining using an anti-CD45RO antibody instead of the anti-EMA antibody in the immunostaining step (step S5) will be described. Anti-CD45RO antibody specifically stains T cell lymphoma and mature T cells. The number of cases is 13 (10 cancer patients and 3 healthy persons, respectively). Cancer patients were randomly selected regardless of the type of cancer.
The results obtained by immunostaining using an anti-CD45RO antibody are shown in Tables 23 and 24 below. The terms and indices in the table are the same as those described in the first embodiment.
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
 上記表23に示すように、癌患者については陽性(真陽性)が10人,陰性(偽陰性)が0人であり、健常者については陽性(偽陽性)が3人,陰性(真陰性)が0人であるという結果となった。
 本実施例も、上記表24に示すように、感度が100%、特異度が0%となった。そのため、現時点の結果からは、本実施例の末梢循環癌細胞の検出方法、すなわち抗CD45RO抗体による免疫染色を使用して判定することは適当でないことになるが、症例数が不足していることも考えられ、更なるデータの蓄積によって、有用性を見出せる可能性は十分に残されている。
As shown in Table 23 above, 10 positive (true positive) and 0 negative (false negative) for cancer patients, 3 positive (false positive) and negative (true negative) for healthy subjects As a result, there were 0 people.
Also in this example, as shown in Table 24, the sensitivity was 100% and the specificity was 0%. Therefore, from the current results, it is not appropriate to determine using the peripheral circulation cancer cell detection method of this example, that is, immunostaining with anti-CD45RO antibody, but the number of cases is insufficient. The possibility of finding usefulness by the accumulation of further data is still fully left.
(ベイズの定理を用いたデータ解析について)
 本実施例の末梢循環癌細胞の検出方法の検出精度について、データをベイズの定理によって解析した。ベイズの定理を用いる際、有病率は事前確率とし、陽性適中率は事後確率とした。これは、検査前には病気である確率(有病率)だったのが、検査陽性であるとわかった後は、病気である確率(陽性適中率)にまで上昇することを示している。
 ここで、データの計算は、下記表25に示す計算式に従って実施した。表25中、尤度比は、感度と特異度を組み合わせた指標で、検出精度の指標として用いられるものであり、感度、特異度、尤度比、ROC(Receiver Operating Characteristic)曲線は有病率に依存しないものとした。
(Data analysis using Bayes' theorem)
The data was analyzed by Bayes' theorem for the detection accuracy of the peripheral circulating cancer cell detection method of this example. When using Bayes' theorem, the prevalence was the prior probability and the positive predictive value was the posterior probability. This shows that the probability of being ill (prevalence) before the test increases to the probability of being ill (positive predictive value) after finding that the test is positive.
Here, the data was calculated according to the calculation formula shown in Table 25 below. In Table 25, likelihood ratio is an index combining sensitivity and specificity, and is used as an index of detection accuracy. Sensitivity, specificity, likelihood ratio, and ROC (Receiver Operating Characteristic) curves are prevalence rates. It was not dependent on
 計算によって得られたEMA免疫染色による判定、CEA免疫染色による判定、EMA免疫染色とCEA免疫染色を同時に用いて判定(EMA+CEA)したときの検出精度を下記表26に示す。
 表26の結果から解るように、感度、特異度、陽性適中率、陰性適中率、正診率、および尤度比から、EMA免疫染色がスクリーニングテストとして最も適当である。
Table 26 below shows the detection accuracy when the determination by EMA immunostaining, the determination by CEA immunostaining, and the determination by using EMA immunostaining and CEA immunostaining at the same time (EMA + CEA) were obtained.
As can be seen from the results in Table 26, from the sensitivity, specificity, positive predictive value, negative predictive value, correct diagnosis rate, and likelihood ratio, EMA immunostaining is most suitable as a screening test.
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000026
 本発明は、健常者には癌の早期発見のためのスクリーニング検査用の検出装置として、癌患者には手術後の再発検査用装置として、また、抗癌剤、放射線治療あるいは癌免疫療法の効果の判定装置として有用である。 The present invention is a detection device for screening tests for early detection of cancer for healthy individuals, a device for recurrence inspection after surgery for cancer patients, and determination of the effects of anticancer agents, radiotherapy or cancer immunotherapy. Useful as a device.
 1  EMA陽性細胞
 
 
1 EMA positive cells

Claims (12)

  1.  生体試料中の循環癌細胞を検出する方法であって、
    (a)末梢血からリンパ球を分離する分離工程と、
    (b)分離された末梢血リンパ球層を培養液で培養する培養工程と、
    (c)培養後、培養容器の底に付着した細胞に免疫染色する免疫染色工程と、
    (d)前記免疫染色工程により得られた染色細胞の観察画像に基づいて前記生体試料中の循環癌細胞を検出する検出工程と、
     を備えたことを特徴とする末梢循環癌細胞の検出方法。
    A method for detecting circulating cancer cells in a biological sample, comprising:
    (A) a separation step of separating lymphocytes from peripheral blood;
    (B) a culture step of culturing the separated peripheral blood lymphocyte layer in a culture solution;
    (C) an immunostaining step of immunostaining cells adhering to the bottom of the culture container after culturing;
    (D) a detection step of detecting circulating cancer cells in the biological sample based on an observation image of the stained cells obtained by the immunostaining step;
    A method for detecting peripheral circulating cancer cells, comprising:
  2.  前記免疫染色工程は、抗EMA(Epithelial Membrane Antigen)抗体を用いて染色することを特徴とする請求項1に記載の末梢循環癌細胞の検出方法。 The method for detecting peripheral circulating cancer cells according to claim 1, wherein the immunostaining step comprises staining with an anti-EMA (Epithelial Membrane Antigen) antibody.
  3.  前記培養工程に用いる培養容器と、前記免疫染色工程に用いる免疫染色容器が同一容器であり、培養後、前記培養容器から上澄み液を排出して底に付着した細胞だけを残し、前記培養容器に免疫染色させる抗体を注入することを特徴とする請求項1又は2に記載の末梢循環癌細胞の検出方法。 The culture vessel used in the culture step and the immunostaining vessel used in the immunostaining step are the same vessel, and after culturing, the supernatant is drained from the culture vessel, leaving only the cells attached to the bottom, The method for detecting peripheral circulating cancer cells according to claim 1 or 2, wherein an antibody to be immunostained is injected.
  4.  前記培養液が、少なくとも1000U/mlのインターロイキン-2(IL-2)を含有することを特徴とする請求項1~3の何れかに記載の末梢循環癌細胞の検出方法。 4. The method for detecting peripheral circulating cancer cells according to claim 1, wherein the culture solution contains at least 1000 U / ml interleukin-2 (IL-2).
  5.  前記培養工程は、48~72時間培養することを特徴とする請求項1~4の何れかに記載の末梢循環癌細胞の検出方法。 The method for detecting peripheral circulating cancer cells according to any one of claims 1 to 4, wherein the culturing step comprises culturing for 48 to 72 hours.
  6.  前記分離工程の後、分離された末梢血リンパ球層を、抗CD3抗体と抗CD161抗体の少なくとも何れかを用いて固相化することを特徴とする請求項1~5の何れかに記載の末梢循環癌細胞の検出方法。 6. The separated peripheral blood lymphocyte layer is solid-phased using at least one of an anti-CD3 antibody and an anti-CD161 antibody after the separation step. A method for detecting peripheral circulating cancer cells.
  7.  請求項1~6の何れかの末梢循環癌細胞の検出方法における前記検出工程において、前記観察画像内の前記染色細胞の個数により、癌患者と健常者をスクリーニングする方法。 7. A method for screening cancer patients and healthy persons based on the number of the stained cells in the observation image in the detection step of the peripheral circulating cancer cell detection method according to claim 1.
  8.  末梢血からリンパ球を分離する分離手段と、
     分離された末梢血リンパ球層を培養液で培養する培養手段と、
     培養容器の底に付着した細胞に免疫染色する免疫染色手段と、
     得られた染色細胞の観察画像に基づいて前記生体試料中の循環癌細胞を検出する検出手段と、
    を備えたことを特徴とする末梢循環癌細胞の検出装置。
    Separation means for separating lymphocytes from peripheral blood;
    A culture means for culturing the isolated peripheral blood lymphocyte layer in a culture solution;
    An immunostaining means for immunostaining the cells attached to the bottom of the culture vessel;
    Detection means for detecting circulating cancer cells in the biological sample based on the obtained observation image of the stained cells;
    A peripheral circulating cancer cell detection apparatus comprising:
  9.  前記免疫染色手段は、抗EMA(Epithelial Membrane Antigen)抗体を用いて染色することを特徴とする請求項8に記載の末梢循環癌細胞の検出装置。 9. The peripheral circulating cancer cell detection apparatus according to claim 8, wherein the immunostaining means stains using an anti-EMA (Epithelial Membrane Antigen) antibody.
  10.  前記培養手段に用いる培養容器と、前記免疫染色手段に用いる免疫染色容器が同一容器であることを特徴とする請求項8又は9に記載の末梢循環癌細胞の検出装置。 The peripheral circulating cancer cell detection device according to claim 8 or 9, wherein the culture vessel used for the culture means and the immunostaining vessel used for the immunostaining means are the same container.
  11.  前記培養液が、少なくとも1000U/mlのインターロイキン-2(IL-2)を含有することを特徴とする請求項8~10の何れかに記載の末梢循環癌細胞の検出装置。 11. The peripheral circulating cancer cell detection apparatus according to claim 8, wherein the culture solution contains at least 1000 U / ml interleukin-2 (IL-2).
  12.  分離された末梢血リンパ球層を、抗CD3抗体と抗CD161抗体の少なくとも何れかを用いて固相化することを特徴とする請求項8~11の何れかに記載の末梢循環癌細胞の検出装置。
     
    The peripheral circulating cancer cell detection according to any one of claims 8 to 11, wherein the separated peripheral blood lymphocyte layer is immobilized using at least one of an anti-CD3 antibody and an anti-CD161 antibody. apparatus.
PCT/JP2014/003855 2014-07-22 2014-07-22 Detection method and detection device for circulating tumor cell WO2016013041A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2014/003855 WO2016013041A1 (en) 2014-07-22 2014-07-22 Detection method and detection device for circulating tumor cell
KR1020167032240A KR101922322B1 (en) 2014-07-22 2014-07-22 Detection method and detection device for circulating tumor cell
CN201480078553.7A CN106796237B (en) 2014-07-22 2014-07-22 The detection device of peripheral circulation cancer cell
JP2016535556A JP6052756B2 (en) 2014-07-22 2014-07-22 Peripheral circulating cancer cell detection method and detection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/003855 WO2016013041A1 (en) 2014-07-22 2014-07-22 Detection method and detection device for circulating tumor cell

Publications (1)

Publication Number Publication Date
WO2016013041A1 true WO2016013041A1 (en) 2016-01-28

Family

ID=55162601

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/003855 WO2016013041A1 (en) 2014-07-22 2014-07-22 Detection method and detection device for circulating tumor cell

Country Status (4)

Country Link
JP (1) JP6052756B2 (en)
KR (1) KR101922322B1 (en)
CN (1) CN106796237B (en)
WO (1) WO2016013041A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106957799A (en) * 2016-12-15 2017-07-18 郭昊伦 A kind of device for the accurate treatment method of tumour based on CTC circulating tumor cells
WO2017188346A1 (en) * 2016-04-27 2017-11-02 国立大学法人 東京大学 Material for capturing and collecting blood circulating cells by using microfiber and method of using said material
JP2019060856A (en) * 2017-09-22 2019-04-18 東ソー株式会社 Method for detecting target cell
CN109791152A (en) * 2016-06-14 2019-05-21 塞勒科塔生物科学公司 For being identified and isolated from the phospholipid ether of circulating tumor cell like object

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007526761A (en) * 2003-10-31 2007-09-20 ヴィタテックス, インコーポレイテッド Blood test prototypes and methods for the detection of circulating tumor cells and endothelial cells
WO2009060865A1 (en) * 2007-11-05 2009-05-14 Tsuneo Kuramochi Pharmaceutical composition and method for production of pharmaceutical composition
JP2011257241A (en) * 2010-06-08 2011-12-22 Kanagawa Acad Of Sci & Technol Cell analyzer
WO2012017678A1 (en) * 2010-08-06 2012-02-09 株式会社ケーナインラボ Immunological function enhancing agent
WO2012067259A1 (en) * 2010-11-19 2012-05-24 株式会社オンチップ・バイオテクノロジーズ Method for detecting low concentrations of specific cell from high concentrations of contaminating cell populations, and method for collecting and analyzing detected cell
JP2012523572A (en) * 2009-04-13 2012-10-04 ユニヴァーシティ オブ ワシントン Aliquot selection by population detection
JP2013537469A (en) * 2010-05-03 2013-10-03 クリーティービー マイクロテック, インク. Polymer microfilter and manufacturing method thereof
JP2013215141A (en) * 2012-04-10 2013-10-24 Lymphotec:Kk Method for producing lymphocyte cell group consisting mainly of memory t cells
JP2014039480A (en) * 2012-08-21 2014-03-06 Nagoya Univ Method for detecting circulating tumor cell

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007526761A (en) * 2003-10-31 2007-09-20 ヴィタテックス, インコーポレイテッド Blood test prototypes and methods for the detection of circulating tumor cells and endothelial cells
WO2009060865A1 (en) * 2007-11-05 2009-05-14 Tsuneo Kuramochi Pharmaceutical composition and method for production of pharmaceutical composition
JP2012523572A (en) * 2009-04-13 2012-10-04 ユニヴァーシティ オブ ワシントン Aliquot selection by population detection
JP2013537469A (en) * 2010-05-03 2013-10-03 クリーティービー マイクロテック, インク. Polymer microfilter and manufacturing method thereof
JP2011257241A (en) * 2010-06-08 2011-12-22 Kanagawa Acad Of Sci & Technol Cell analyzer
WO2012017678A1 (en) * 2010-08-06 2012-02-09 株式会社ケーナインラボ Immunological function enhancing agent
WO2012067259A1 (en) * 2010-11-19 2012-05-24 株式会社オンチップ・バイオテクノロジーズ Method for detecting low concentrations of specific cell from high concentrations of contaminating cell populations, and method for collecting and analyzing detected cell
JP2013215141A (en) * 2012-04-10 2013-10-24 Lymphotec:Kk Method for producing lymphocyte cell group consisting mainly of memory t cells
JP2014039480A (en) * 2012-08-21 2014-03-06 Nagoya Univ Method for detecting circulating tumor cell

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017188346A1 (en) * 2016-04-27 2017-11-02 国立大学法人 東京大学 Material for capturing and collecting blood circulating cells by using microfiber and method of using said material
JPWO2017188346A1 (en) * 2016-04-27 2019-02-28 国立大学法人 東京大学 Material for capturing and collecting circulating cells in the blood using microfiber and method using the material
CN109791152A (en) * 2016-06-14 2019-05-21 塞勒科塔生物科学公司 For being identified and isolated from the phospholipid ether of circulating tumor cell like object
JP2019528456A (en) * 2016-06-14 2019-10-10 セレクター・バイオサイエンシズ・インコーポレイテッド Phosphorylated ether analogs for identifying and isolating circulating tumor cells
JP7136770B2 (en) 2016-06-14 2022-09-13 セレクター・バイオサイエンシズ・インコーポレイテッド Phosphorylated Ether Analogues for Identifying and Isolating Circulating Tumor Cells
US11467159B2 (en) 2016-06-14 2022-10-11 Cellectar Biosciences, Inc. Luminescent phospholipid analogs for the identification and isolation of circulating tumor cells
CN109791152B (en) * 2016-06-14 2023-03-03 塞勒科塔生物科学公司 Phospholipid ether analogs for identifying and isolating circulating tumor cells
CN106957799A (en) * 2016-12-15 2017-07-18 郭昊伦 A kind of device for the accurate treatment method of tumour based on CTC circulating tumor cells
JP2019060856A (en) * 2017-09-22 2019-04-18 東ソー株式会社 Method for detecting target cell
JP7119771B2 (en) 2017-09-22 2022-08-17 東ソー株式会社 Target cell detection method

Also Published As

Publication number Publication date
CN106796237A (en) 2017-05-31
JPWO2016013041A1 (en) 2017-04-27
CN106796237B (en) 2018-12-04
KR20160145179A (en) 2016-12-19
JP6052756B2 (en) 2016-12-27
KR101922322B1 (en) 2018-11-26

Similar Documents

Publication Publication Date Title
Miyamoto et al. An RNA-based digital circulating tumor cell signature is predictive of drug response and early dissemination in prostate cancer
Edwards et al. CD103+ tumor-resident CD8+ T cells are associated with improved survival in immunotherapy-naïve melanoma patients and expand significantly during anti–PD-1 treatment
Catenacci et al. Acquisition of portal venous circulating tumor cells from patients with pancreaticobiliary cancers by endoscopic ultrasound
Satelli et al. Epithelial–mesenchymal transitioned circulating tumor cells capture for detecting tumor progression
Xu et al. Optimization and evaluation of a novel size based circulating tumor cell isolation system
Zhou et al. Association of preoperative EpCAM Circulating Tumor Cells and peripheral Treg cell levels with early recurrence of hepatocellular carcinoma following radical hepatic resection
Joosse et al. Changes in keratin expression during metastatic progression of breast cancer: impact on the detection of circulating tumor cells
Bobek et al. Circulating tumor cells in pancreatic cancer patients: enrichment and cultivation
Kolostova et al. Circulating tumor cells in localized prostate cancer: isolation, cultivation in vitro and relationship to T-stage and Gleason score
Koh et al. Heterogeneous expression of programmed death receptor-ligand 1 on circulating tumor cells in patients with lung cancer
Kolostova et al. Isolation, primary culture, morphological and molecular characterization of circulating tumor cells in gynecological cancers
Malara et al. Ex-vivo characterization of circulating colon cancer cells distinguished in stem and differentiated subset provides useful biomarker for personalized metastatic risk assessment
JP6485759B2 (en) Method for detecting malignancy of peripheral circulating tumor cell unit and kit thereof
Balic et al. Micrometastasis: detection methods and clinical importance
Eroglu et al. Analysis of circulating tumor cells in breast cancer
JP6052756B2 (en) Peripheral circulating cancer cell detection method and detection apparatus
Tang et al. Blood‐based biopsies—clinical utility beyond circulating tumor cells
Xie et al. Evaluation of cell surface vimentin positive circulating tumor cells as a diagnostic biomarker for lung cancer
van der Toom et al. Analogous detection of circulating tumor cells using the AccuCyte®—CyteFinder® system and ISET system in patients with locally advanced and metastatic prostate cancer
Lugo et al. Heterotypic paracrine signaling drives fibroblast senescence and tumor progression of large cell carcinoma of the lung
CN108572255B (en) Application of reagent for detecting PD-L1+ circulating tumor cells in screening cancer risk individuals and prognosis of cancer patients
Bade et al. Development and initial clinical testing of a multiplexed circulating tumor cell assay in patients with clear cell renal cell carcinoma
Oh et al. A new size-based platform for circulating tumor cell detection in colorectal cancer patients
Tamminga et al. Investigating CTCs in NSCLC—a reaction to the study of Jia-Wei Wan: a preliminary study on the relationship between circulating tumor cells count and clinical features in patients with non-small cell lung cancer
Kuen Influence of 3D tumor cell/fibroblast co-culture on monocyte differentiation and tumor progression in pancreatic cancer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14898210

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016535556

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167032240

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14898210

Country of ref document: EP

Kind code of ref document: A1