WO2016012641A1 - Furnace for the continuous production of carbon fibre and facility for producing carbon fibre using said furnace - Google Patents

Furnace for the continuous production of carbon fibre and facility for producing carbon fibre using said furnace Download PDF

Info

Publication number
WO2016012641A1
WO2016012641A1 PCT/ES2015/070486 ES2015070486W WO2016012641A1 WO 2016012641 A1 WO2016012641 A1 WO 2016012641A1 ES 2015070486 W ES2015070486 W ES 2015070486W WO 2016012641 A1 WO2016012641 A1 WO 2016012641A1
Authority
WO
WIPO (PCT)
Prior art keywords
rollers
furnace
group
carbon fiber
stabilization
Prior art date
Application number
PCT/ES2015/070486
Other languages
Spanish (es)
French (fr)
Inventor
Manuel Torres Martinez
Original Assignee
Torres Martinez M
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Torres Martinez M filed Critical Torres Martinez M
Publication of WO2016012641A1 publication Critical patent/WO2016012641A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/28Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity for treating continuous lengths of work
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/32Apparatus therefor
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/32Apparatus therefor
    • D01F9/328Apparatus therefor for manufacturing filaments from polyaddition, polycondensation, or polymerisation products
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/30Details, accessories, or equipment peculiar to furnaces of these types
    • F27B9/36Arrangements of heating devices

Definitions

  • the present invention is related to the continuous carbon fiber manufacturing process from a precursor, proposing a furnace made with characteristics that make it functionally advantageous for the constitution of a stabilization / oxidation furnace and / or a furnace of carbonization, in a particular installation of continuous carbon fiber manufacturing, in which an optimization of the dimensions of the process line and an improvement of production is obtained, with respect to the conventional installations of said application.
  • the process of manufacturing carbon fiber from a precursor such as polyacrylonitrile (PAN) essentially comprises a stabilization / oxidation stage, a carbonization stage and a surface treatment stage. Additionally, when it comes to obtaining a high performance fiber, a graphitization stage can be added before the surface treatment stage, thereby obtaining the fiber of graphite.
  • PAN polyacrylonitrile
  • the PAN precursor undergoes a first transformation to an oxidized state, known as OPAN or oxidized polyacrylonitrile, by means of a double cyclization and dehydrogenation reaction.
  • a continuous structure in hexagonal carbon ring loops is achieved from OPAN.
  • This stage is subdivided into two phases, one at a lower temperature, in which a pyridine structure is formed, and another at a higher temperature, in which the structure collapses into a turbostratic structure.
  • the carbon fiber resulting from the carbonization stage is treated at a very high temperature, thereby increasing the size of the crystalline structure of the carbon, thus resulting in graphite fiber.
  • Both stabilization / oxidation such as carbonization and graffiti, are carried out at elevated temperatures, which in the stabilization / oxidation process are below 300 ° C, in the carbonization process up to 1800 ° C and in the graphitization process between 2500 ° C and 3000 ° C.
  • These processes are developed in specific furnaces, which in continuous manufacturing facilities require to be open to the outside in certain areas to allow the entry and exit of the fiber in the passage through them.
  • the stabilization / oxidation process requires a time of up to 120 minutes in the corresponding furnace, for the transformation of the precursor into a material suitable for carbonization; while the carbonization process only requires 90 to 120 seconds of permanence in the respective oven; which implies that, in equal furnaces, for the same speed of the fiber inside the furnaces, the length of fiber to be introduced in the stabilization / oxidation furnace must be much greater than that necessary in the carbonization furnace.
  • the length of fiber that is introduced into the stabilization / oxidation furnace is of the order of 1000 meters, with which production speeds of the order of 10-15 meters per minute are achieved.
  • the fiber is arranged in said stabilization / oxidation furnace, passing multiple round trips through a system of deflector rollers, which are usually arranged on the sides outside the oven, determining a horizontal arrangement of passage paths of the fiber through the oven, with exit to the outside at the ends of each route; although there are solutions that establish the fiber paths in vertical arrangement and inside the oven enclosure, without going outside.
  • WO 2009/126136 discloses a fiber manufacturing furnace with horizontal travel between outer rollers, providing a gas exhaust sealing system by means of adjustable plates at the entrances and exits of the fiber, with suction and air flow currents. .
  • US Patent 2012/0189968 describes a fiber manufacturing furnace with horizontal travel between outer rollers, providing a gas exhaust sealing system by means of suction and gas flow currents at the fiber inlets and outlets.
  • US Patent 2013/0171578 describes a fiber manufacturing furnace that incorporates a fiber passage arrangement by rollers arranged inside the oven but outside the oxidation chamber.
  • US Patent 4069297 describes a fiber manufacturing furnace, contemplating an option of horizontal fiber travel arrangement between outer rollers and an option of vertical fiber travel arrangement between rollers arranged inside the oven.
  • None of these solutions include, however, a provision for regulating the amount of fiber inside the oven, to obtain a flexible manufacturing system, which allows to optimize the manufacture of carbon fiber and reduce losses of precursor material at stops and threaded.
  • the carbonization process is carried out where appropriate by a low temperature stage, between 300 ° C and 1 100 ° C, and a high temperature stage, between 700 ° C and 1800 ° C, in a furnace of similar characteristics to those of the stabilization / oxidation furnace, arranged after it in the same manufacturing line.
  • an oven with performance characteristics which make it suitable, advantageously, for the determination of a stabilization / oxidation furnace and / or a carbonization furnace, for a carbon fiber manufacturing line from threads of a precursor, in an installation of particular characteristics, where
  • Each furnace allows a variable storage regulation of the precursor threads inside, by means of a scallop roller system, formed by two sets of rollers interspersed with each other, with at least one of the sets movable with respect to the other in a transverse direction.
  • Said roller system allows to optimize the storage of the precursor threads inside the oven, for adaptation to the stabilization / oxidation process or for the carbonization process, since by means of the mobile rollers it allows to adjust the length of the precursor threads contained in the oven and the speed of the same for the adaptation depending on the process to develop in each oven.
  • This system also makes it possible to simplify the threading of the precursor threads in the manufacturing line, making it easier and faster; achieving, on the other hand, minimizing material losses in the initial preparation of the manufacturing line and in maintenance stops.
  • variable storage of the precursor threads by means of the arrangement of mobile rollers, it is also achieved that, during the acceleration and deceleration in the starts and stops of the system, the quality of the product obtained is the same, since the process cycle times that are programmed are guaranteed.
  • the roller system is arranged inside the oven enclosure, whereby the openings in the oven walls for the passage of the precursor threads are reduced to an inlet opening and an outlet opening, thereby reducing energy losses and harmful gas leaks, while avoiding having to reheat the precursor threads in areas of interruption of the manufacturing process as occurs in conventional furnaces with fiber passing rollers arranged outside the oven.
  • the roller system of the precursor threads is arranged in the oven so that the mobile rollers move vertically, whereby the paths of the precursor threads are determined vertically, thus avoiding catenary problems, to the since a higher air velocity is allowed, which favors the transfer of heat to said precursor threads, thereby achieving greater efficiency of the carbon fiber manufacturing reactions, since it allows more fresh air to be in contact with the precursor threads that are used for manufacturing.
  • the vertical arrangement of the paths of the precursor threads in the oven reduces the length of the manufacturing line while maintaining a large storage capacity of said precursor threads in the oven, since eliminating the problems arising from the In the catenaries, the distance between the passing rollers of the precursor threads can be increased, making it possible to determine a large travel length of said precursor threads by increasing the height of the furnace, which translates into an optimization of the horizontal space required by the manufacturing line and, consequently, a reduction in installation costs, by reducing the area of land occupied.
  • Said vertical arrangement of the paths of the precursor threads allows, on the other hand, to determine furnaces with differentiated stages, by means of a configuration of associated consecutive modules that can be varied, allowing a flexibility of the furnace formation according to the desired production and of the speed of work in the manufacturing line.
  • the concept of furnace with variable capacity object of the invention results from very advantageous characteristics for the function to be developed, both in the stabilization / oxidation process and in the carbonization process, in the manufacture of carbon fiber , acquiring its own life and preferential character with respect to conventional ovens that are used for these functions.
  • the application of the recommended furnace is foreseen in an installation formed by an automatic wire feeder system of a precursor destined to manufacture carbon fibers, passing through a tensioner that adjusts and regulates the tension of the precursor wires to enter a stabilization furnace.
  • Figure 1 shows the assembly of an example of a carbon fiber manufacturing installation, according to the invention.
  • Figure 2 shows in cross-section an example of a furnace according to the invention, formed by multiple modules provided with independent systems of variable accumulation of precursor wire passage, for manufacturing carbon fibers.
  • Figure 3 is a sectional view of the lower part of the oven of the previous figure, with the roller assemblies of the different modules in threading position.
  • Figure 4 is a partial detail of the bottom of two modules of the oven with the roller assemblies of the modules in the threading position.
  • Figure 5 is a detail like that of the previous figure, with the movable rollers of the module roller assemblies, raised to a certain height.
  • Figure 6 is a sectional view of a furnace module according to the invention, with the mobile rollers of the module roller assembly, in threading position and incorporated in assembly with respect to a lifting system.
  • Figure 7 is a view like that of the previous figure, with the mobile rollers raised to a certain height.
  • Figure 8 is a perspective of a furnace module according to the invention, in a closed position, observing the entry and exit of multiple precursor threads for forming parallel carbon fibers.
  • Figure 9 is a perspective of the module with the door open and with a partial cut-out of the external housing, the moving rollers of the module roller assembly being observed, in an elevated position.
  • Figure 10 is a perspective of the module with a partial cut-out of the external housing, observing the gas introduction system in the module chamber and the movable rollers of the precursor wire passage roller assembly in a position just above of the threading position.
  • Figure 1 1 is a perspective of the module with a partial cut-out of the external housing, the gas introduction system in the module chamber and the mobile rollers of the passage roller assembly of the precursor threads being observed in an upper position.
  • Figure 12 is a sectioned plan view of the module, showing the transverse passage of the precursor wires and the gas introduction system at the corners of the module inner chamber.
  • the object of the invention relates to a furnace for continuous carbon fiber manufacturing from a PAN precursor, which is used as part of a process comprising a stabilization / oxidation stage, a stage of carbonization and a stage of surface treatments, being applicable both for the stabilization / oxidation stage and for the carbonization stage, and even, in processes that require it, in a stage of additional graffiti to the process.
  • the process takes place in an installation that, as seen in Figure 1, comprises a feeding system (1), from which threads (2) of a PAN precursor are continuously supplied with automatic splicing, which pass through a tensioning group (3) that adjusts and regulates the tension of said threads (2) for introduction into a stabilization / oxidation furnace (4), after which the stabilized and oxidized threads (2) pass through another tensioning group (5 ) that adjusts and regulates the tension of the same for its entry into a carbonization furnace (6), after which the carbonized threads (2) go through surface treatments (7), finally collecting the carbon fibers (8) that they are obtained, in an automatic rewind system (9).
  • a feeding system (1) from which threads (2) of a PAN precursor are continuously supplied with automatic splicing, which pass through a tensioning group (3) that adjusts and regulates the tension of said threads (2) for introduction into a stabilization / oxidation furnace (4), after which the stabilized and oxidized threads (2) pass through another tensioning group (5 ) that adjusts and regulates
  • the stabilization / oxidation furnace (4) and the carbonization furnace (6) are constituted in a similar manner according to the characteristics of the invention, with a composition formed by one or more modules (10), the number of which can be varied depending on the process to be carried out in each case and the desired production speed, for example by having the stabilization / oxidation furnace (4) with ten modules (10) and the carbonization furnace (6) with two modules (10), to meet the necessary times of permanence of the material in process in each one of them, without said compositions of formation of the mentioned furnaces (4) and (6) being limiting.
  • Each module (10) of the furnaces (4) and (6) is formed by an outer casing (1 1), of insulating structure to reduce energy losses by thermal escape, determining an inner chamber in which a storage system is housed of route of the threads (2), formed by a set of rollers comprising a first group of rollers (12.1) and a second group of rollers (12.2) interspersed between them, determining a festoon system, where at least the The second group of rollers (12.2) can be moved transversely to the first group of rollers (12.1), said groups of rollers (12.1) and (12.2) being arranged in a vertical direction, so that the movable rollers move in height.
  • the precursor threads (2) intended for the manufacture of the carbon fibers (8) are threaded transversely horizontally between the set of interleaved rollers of the first group of rollers (12.1) and the second group of rollers (12.2), as seen in Figures 3 and 4, so that when moving the movable roller group in height, for example the second group of rollers (12.2), an extension of the threads (2) accumulates inside the module (10) corresponding, as seen in Figures 2 and 5.
  • the wires (2) enter and exit in each module (10) through a single inlet opening (13) and a single outlet opening (14), made in the corresponding walls of the outer shell (11). ) of the module (10).
  • the thread path storage system (2) is provided with the first group of rollers (12.1) formed by subgroups composed of several consecutive vertically and positionally interleaved rollers between them corresponding subgroups of the second group of rollers (12.2) composed in turn of several consecutive vertical rollers, whereby threading the threads ( 2) they are arranged successively going back and forth at different heights between the roller assembly formed by the first group of rollers (12.1) and the second group of rollers (12.2), so that when the mobile group formed is displaced in height
  • the second group of rollers (12.2) after threading the threads (2), multiple vertical paths are formed in round trip of said threads (2), thus achieving a large capacity to accumulate them in each module ( 10), with the possibility of regulating said accumulation by a variable displacement of the second group of rollers (12.2), which in turn allows to adjust the time of permanence of the threads (2) in each zone of the furnaces (4) and (6) for the development of the corresponding process in the most appropriate conditions.
  • each module (10) the mobile assembly formed by the second group of rollers (12.2) is mounted on a support (15) movable in height, said support (15) being able to be operated, for example, by means of a cable or the like ( 16) related to a drive motor (17), without this embodiment being limiting, since any other conventional drive means that allows the support (15) to move up and down can be used, without altering the concept of the invention.
  • a hot gas (18) is injected into the modules (10), which is introduced through tubes ( 19) provided with a distribution of holes or slots of gas outlet (18) to the inner chamber of the corresponding module (10), thereby achieving conditions that favor the reactions of the process of transformation of the wires (2).
  • the gas injection tubes (19) are arranged in the corners of the modules (10), said pipes (19) being used as sliding guides support (15) carrier of the mobile assembly formed by the second group of rollers (12.2), for vertical displacements inside the corresponding module (10).
  • the gas injection tubes (18), as well as the component elements of the displacement system of the mobile assembly formed by the second group of rollers (12.1) must be of materials capable of withstanding those high temperatures, without altering their properties.
  • the modules (10) components thereof can be independent and be associated consecutively side by side, or they can be consecutive modules separated by an intermediate common wall among them, in a unit unit of the oven (4) or (6) corresponding subdivided into chambers that constitute the modules (10).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Inorganic Fibers (AREA)

Abstract

The invention relates to a furnace for the continuous production of carbon fibre and to a facility for producing carbon fibre using said furnace, the facility comprising a step of stabilisation/oxidation, a step of carbonisation and a step of surface treatments, wherein the stabilisation/oxidation and the carbonisation are carried out in furnaces formed by at least one module (10), each module housing a system for storing the span of filaments (2) of a precursor, formed by a set of rollers comprising a first group of rollers (12.1) and a second group of rollers (12.2) inserted therebetween, at least the second group of rollers (12.2) being moveable in the transverse direction in relation to the first group of rollers (12.1), in variable movements.

Description

DESCRIPCION  DESCRIPTION
HORNO PARA FABRICACIÓN DE FIBRA DE CARBONO EN CONTINUO E INSTALACIÓN PARA FABRICAR FIBRA DE CARBONO CON DICHO HORNO OVEN FOR MANUFACTURING CARBON FIBER IN CONTINUOUS AND INSTALLATION TO MANUFACTURE CARBON FIBER WITH SUCH OVEN
Sector de la técnica Technical sector
La presente invención está relacionada con el proceso de fabricación de fibra de carbono en continuo a partir de un precursor, proponiendo un horno realizado con unas características que le hacen funcionalmente ventajoso para la constitución de un horno de estabilización/oxidación y/o un horno de carbonización, en una instalación particular de ejecución de la fabricación de fibras de carbono en continuo, en la que se obtiene una optimización de las dimensiones de la línea de proceso y una mejora de la producción, respecto de las instalaciones convencionales de dicha aplicación. The present invention is related to the continuous carbon fiber manufacturing process from a precursor, proposing a furnace made with characteristics that make it functionally advantageous for the constitution of a stabilization / oxidation furnace and / or a furnace of carbonization, in a particular installation of continuous carbon fiber manufacturing, in which an optimization of the dimensions of the process line and an improvement of production is obtained, with respect to the conventional installations of said application.
Estado de la técnica State of the art
El proceso de fabricación de fibra de carbono a partir de un precursor como el poliacrilonitrilo (PAN), comprende esencialmente una etapa de estabilización/oxidación, una etapa de carbonización y una etapa de tratamientos superficiales. Adicionalmente, cuando se trata de obtener una fibra de altas prestaciones, se puede añadir, antes déla etapa de tratamientos superficiales, una etapa de grafitización, con lo que se obtiene fibra de gafito. The process of manufacturing carbon fiber from a precursor such as polyacrylonitrile (PAN) essentially comprises a stabilization / oxidation stage, a carbonization stage and a surface treatment stage. Additionally, when it comes to obtaining a high performance fiber, a graphitization stage can be added before the surface treatment stage, thereby obtaining the fiber of graphite.
Durante la etapa de estabilización/oxidación, el precursor PAN sufre una primera transformación a un estado oxidado, conocido como OPAN o poliacrilonitrilo oxidado, por medio de una doble reacción de ciclización y deshidrogenación. During the stabilization / oxidation stage, the PAN precursor undergoes a first transformation to an oxidized state, known as OPAN or oxidized polyacrylonitrile, by means of a double cyclization and dehydrogenation reaction.
Por otro lado, en la etapa de carbonización se consigue, a partir del OPAN, una estructura continua en lazos de anillos hexagonales de carbono. Esta etapa se subdivide en dos fases, una a temperatura inferior, en la que se forma una estructura piridínica, y otra a mayor temperatura, en la que la estructura colapsa en una estructura turbostrática. On the other hand, in the carbonization stage, a continuous structure in hexagonal carbon ring loops is achieved from OPAN. This stage is subdivided into two phases, one at a lower temperature, in which a pyridine structure is formed, and another at a higher temperature, in which the structure collapses into a turbostratic structure.
Para obtener fibra de grafito, la fibra de carbono resultante de la etapa de carbonización se trata a muy alta temperatura, con lo cual aumenta el tamaño de la estructura cristalina del carbono, resultando así fibra de grafito. Tanto la estabilización/oxidación, como la carbonización y la grafitización, se llevan a cabo a temperaturas elevadas, que en el proceso de estabilización/oxidación son inferiores 300 °C, en el proceso de carbonización hasta 1800 °C y en el proceso de grafitización entre 2500 °C y 3000 °C. Dichos procesos se desarrollan en unos hornos específicos, los cuales en instalaciones de fabricación continua requieren estar abiertos al exterior en determinadas zonas para permitir la entrada y salida de la fibra en el paso a través de ellos. To obtain graphite fiber, the carbon fiber resulting from the carbonization stage is treated at a very high temperature, thereby increasing the size of the crystalline structure of the carbon, thus resulting in graphite fiber. Both stabilization / oxidation, such as carbonization and graffiti, are carried out at elevated temperatures, which in the stabilization / oxidation process are below 300 ° C, in the carbonization process up to 1800 ° C and in the graphitization process between 2500 ° C and 3000 ° C. These processes are developed in specific furnaces, which in continuous manufacturing facilities require to be open to the outside in certain areas to allow the entry and exit of the fiber in the passage through them.
Ahora bien, el proceso de estabilización/oxidación requiere de un tiempo de hasta 120 minutos de permanencia en el horno correspondiente, para la transformación del precursor en un material adecuado para la carbonización; mientras que el proceso de la carbonización solo requiere de 90 a 120 segundos de permanencia en el horno respectivo; lo cual implica que, en hornos iguales, para una misma velocidad de la fibra en el interior de los hornos, la longitud de fibra a introducir en el horno de estabilización/oxidación, debe ser mucho mayor que la necesaria en el horno de carbonización. En las instalaciones convencionales la longitud de fibra que se introduce en el horno de estabilización/oxidación es del orden de 1000 metros, con lo que se logran velocidades de producción del orden de 10 - 15 metros por minuto. However, the stabilization / oxidation process requires a time of up to 120 minutes in the corresponding furnace, for the transformation of the precursor into a material suitable for carbonization; while the carbonization process only requires 90 to 120 seconds of permanence in the respective oven; which implies that, in equal furnaces, for the same speed of the fiber inside the furnaces, the length of fiber to be introduced in the stabilization / oxidation furnace must be much greater than that necessary in the carbonization furnace. In conventional installations the length of fiber that is introduced into the stabilization / oxidation furnace is of the order of 1000 meters, with which production speeds of the order of 10-15 meters per minute are achieved.
Para ello, la fibra se dispone en dicho horno de estabilización/oxidación, pasando en múltiples recorridos de ida y vuelta por un sistema de rodillos deflectores, los cuales habitualmente se disponen en los laterales fuera del horno, determinando una disposición horizontal de recorridos de paso de la fibra a través del horno, con salida al exterior en los extremos de cada recorrido; si bien existen soluciones que establecen los recorridos de la fibra en disposición vertical y por dentro del recinto del horno, sin salir al exterior. For this, the fiber is arranged in said stabilization / oxidation furnace, passing multiple round trips through a system of deflector rollers, which are usually arranged on the sides outside the oven, determining a horizontal arrangement of passage paths of the fiber through the oven, with exit to the outside at the ends of each route; although there are solutions that establish the fiber paths in vertical arrangement and inside the oven enclosure, without going outside.
La homogeneización de la temperatura de trabajo, así como el control de la tensión a que es sometida la fibra, son sin embargo unos factores primordiales en el proceso de la estabilización/oxidación para conseguir un producto con las características requeridas. Y por otro lado, el empleo de sistemas con rodillos deflectores situados en el exterior del horno, implica la necesidad de aberturas en las paredes del horno que permitan el paso de entrada y salida de la fibra, lo que supone que se produzcan pérdidas energéticas, tanto por escape de los gases calientes del interior del horno, como por el enfriamiento de la propia fibra al salir al exterior, haciendo necesario un recalentamiento de la misma cuando vuelve a entrar en el horno, para continuar con el proceso de estabilización/oxidaciónen adecuadas condiciones, lo cual supone la necesidad de incrementar la dimensión del horno, ya que la longitud de la zona efectiva de proceso de la estabilización/oxidación se reduce por las zonas de recalentamiento. Además, las reacciones químicas de ciclización y deshidrogenación que se producen en el proceso de estabilización/oxidación, generan gases nocivos y peligrosos, como el cianuro de hidrógeno (HCN), implicando la existencia de aberturas en las paredes del horno la posibilidad de fugas de dichos gases tóxicos. The homogenization of the working temperature, as well as the control of the tension to which the fiber is subjected, are nevertheless a primary factor in the stabilization / oxidation process to achieve a product with the required characteristics. And on the other hand, the use of systems with deflector rollers located on the outside of the furnace implies the need for openings in the furnace walls that allow the fiber to enter and exit, which means that energy losses occur, both by escaping the hot gases inside the oven, and by cooling the fiber itself when going outside, making it necessary to overheat it when it enters the oven again, to continue with the stabilization / oxidation process in adequate conditions, which implies the need to increase the size of the oven, since the Length of the effective stabilization / oxidation process zone is reduced by the reheating zones. In addition, the chemical reactions of cyclization and dehydrogenation that occur in the stabilization / oxidation process, generate harmful and dangerous gases, such as hydrogen cyanide (HCN), implying the existence of openings in the oven walls the possibility of leaks from said toxic gases.
El empleo de disposiciones con recorridos de la fibra horizontalmente, supone también que en dichos recorridos de la fibra se produzcan catenarias, las cuales obligan a una limitación de la distancia (convencionalmente por debajo de 15 metros) entre los rodillos deflectores por los que pasa la fibra, ya que se debe evitar el roce de la fibra con las paredes del horno y con las aberturas de entrada y salida, así como el contacto entre los propios recorridos de la fibra, para que ésta no se dañe. Por la misma condición, las catenarias imponen también una limitación de la velocidad de circulación del aire en el interior del horno, para evitar que mueva los recorridos de la fibra haciendo que éstos puedan tocarse, lo cual afecta a la transferencia de calor que la circulación de aire transmite a la fibra, así como a la llegada de aire fresco adecuado para la reacción química del proceso de la estabilización/oxidación de la fibra. The use of arrangements with fiber paths horizontally, also supposes that in said fiber paths catenaries are produced, which oblige a limitation of the distance (conventionally below 15 meters) between the deflector rollers through which the fiber, since the friction of the fiber with the oven walls and with the inlet and outlet openings, as well as the contact between the fiber paths themselves, should be avoided, so that it does not get damaged. Due to the same condition, the catenaries also impose a limitation on the speed of air circulation inside the oven, to avoid moving the paths of the fiber causing them to touch, which affects the heat transfer that the circulation of air transmits to the fiber, as well as the arrival of fresh air suitable for the chemical reaction of the fiber stabilization / oxidation process.
La disposición para que los recorridos de la fibra mantengan la separación entre ellos sin problemas por las catenarias, afecta por lo tanto a las posibilidades de dimensionalidad de los hornos, pudiendo ser necesario disponer múltiples hornos en serie, en instalaciones de mucha longitud (hasta 200 metros en la actualidad), para determinar líneas de fabricación que permitan desarrollar debidamente el proceso de estabilización/oxidación de la fibra de carbono que se fabrica. The provision for fiber paths to maintain the separation between them without problems by the catenaries, therefore affects the possibilities of dimensionality of the furnaces, it may be necessary to arrange multiple furnaces in series, in installations of great length (up to 200 meters at present), to determine manufacturing lines that allow to properly develop the stabilization / oxidation process of the carbon fiber that is manufactured.
Por otra parte, el empleo de un recorrido fijo de la fibra en el horno de estabilización/oxidación, implica que en el arranque del proceso y ante cualquier parada que obligue a un nuevo enhebrado de la fibra en toda la longitud de la línea, el material de partida deba ser desechado, ya que no se ha desarrollado sobre él todo el ciclo térmico necesario para su transformación, lo cual supone una pérdida importante de energía y del material precursor que se utiliza para la fabricación de la fibra de carbono. Además, el enhebrado manual de la línea en una disposición con rodillos fijos, resulta complicado y hace que el tiempo de puesta a punto del sistema sea muy elevado. Se conocen soluciones de hornos para fabricación de fibra de carbono que tratan de eliminar los problemas mencionados, en cuyo sentido, por ejemplo: La Patente US 6027337 describe un horno de fabricación de fibra de carbono, con disposición horizontal de recorridos de la fibra entre rodillos exteriores, incluyendo un sistema de sellado para evitar el escape de los gases del interior del horno, mediante toberas de impulsión de aire en las entradas y salidas de la fibra. On the other hand, the use of a fixed route of the fiber in the stabilization / oxidation furnace, implies that at the start of the process and before any stop that forces a new threading of the fiber along the entire length of the line, the Starting material must be discarded, since it has not developed on it all the thermal cycle necessary for its transformation, which implies a significant loss of energy and the precursor material used for the manufacture of carbon fiber. In addition, manual threading of the line in an arrangement with fixed rollers is complicated and makes the system set-up time very high. Furnace solutions for carbon fiber manufacturing are known which attempt to eliminate the aforementioned problems, in which sense, for example: US Patent 6027337 describes a carbon fiber manufacturing furnace, with horizontal arrangement of fiber paths between outer rollers, including a sealing system to prevent the escape of gases from the interior of the oven, by means of air discharge nozzles in fiber inputs and outputs.
La Patente WO 2009/126136 describe un horno de fabricación de fibra con recorrido horizontal entre rodillos exteriores, disponiendo un sistema de sellado del escape de gases mediante pletinas ajustables en las entradas y salidas de la fibra, con corrientes de aspiración y de impulsión de aire. WO 2009/126136 discloses a fiber manufacturing furnace with horizontal travel between outer rollers, providing a gas exhaust sealing system by means of adjustable plates at the entrances and exits of the fiber, with suction and air flow currents. .
La Patente US 2012/0189968 describe un horno de fabricación de fibra con recorrido horizontal entre rodillos exteriores, disponiendo un sistema de sellado del escape de gases mediante corrientes de succión e impulsión de gases en las entradas y salidas de la fibra. La Patente US 2013/0171578 describe un horno de fabricación de fibra que incorpora una disposición de paso de la fibra por rodillos dispuestos en el interior del horno pero fuera de la cámara de oxidación. US Patent 2012/0189968 describes a fiber manufacturing furnace with horizontal travel between outer rollers, providing a gas exhaust sealing system by means of suction and gas flow currents at the fiber inlets and outlets. US Patent 2013/0171578 describes a fiber manufacturing furnace that incorporates a fiber passage arrangement by rollers arranged inside the oven but outside the oxidation chamber.
La Patente US 4069297 describe un horno de fabricación de fibra, contemplando una opción de disposición de recorrido de la fibra en horizontal entre rodillos exteriores y una opción de disposición de recorrido de la fibra en vertical entre rodillos dispuestos en el interior del horno. US Patent 4069297 describes a fiber manufacturing furnace, contemplating an option of horizontal fiber travel arrangement between outer rollers and an option of vertical fiber travel arrangement between rollers arranged inside the oven.
Ninguna de dichas soluciones contempla, sin embargo, una disposición de regulación de la cantidad de fibra en el interior del horno, para obtener un sistema flexible de fabricación, que permita optimizar la fabricación de fibra de carbono y reducir las pérdidas de material precursor en paradas y enhebrados. None of these solutions include, however, a provision for regulating the amount of fiber inside the oven, to obtain a flexible manufacturing system, which allows to optimize the manufacture of carbon fiber and reduce losses of precursor material at stops and threaded.
El proceso de carbonización se lleva a cabo en su caso mediante una etapa a baja temperatura, entre 300 °C y 1 100 °C, y una etapa a alta temperatura, entre 700 °C y 1800 °C, en un horno de características semejantes a las del horno de estabilización/oxidación, dispuesto después de éste en la misma línea de fabricación. The carbonization process is carried out where appropriate by a low temperature stage, between 300 ° C and 1 100 ° C, and a high temperature stage, between 700 ° C and 1800 ° C, in a furnace of similar characteristics to those of the stabilization / oxidation furnace, arranged after it in the same manufacturing line.
Objeto de la invención Object of the invention
De acuerdo con la invención se propone un horno con unas características de realización que le hacen adecuado, ventajosamente, para la determinación de un horno de estabilización/oxidación y/o un horno de carbonización, para una línea de fabricación de fibras de carbono a partir de hilos de un precursor, en una instalación de particulares características, donde cada horno permite una regulación de almacenamiento variable de los hilos de precursor en su interior, mediante un sistema de rodillos tipo festón, formado por dos conjuntos de rodillos intercalados entre sí, con al menos uno de los conjuntos desplazable respecto del otro en sentido transversal. According to the invention, an oven with performance characteristics is proposed. which make it suitable, advantageously, for the determination of a stabilization / oxidation furnace and / or a carbonization furnace, for a carbon fiber manufacturing line from threads of a precursor, in an installation of particular characteristics, where Each furnace allows a variable storage regulation of the precursor threads inside, by means of a scallop roller system, formed by two sets of rollers interspersed with each other, with at least one of the sets movable with respect to the other in a transverse direction.
Dicho sistema de rodillos permite optimizar el almacenamiento de los hilos de precursor en el interior del horno, para la adaptación al proceso de estabilización/oxidación o para el proceso de carbonización, ya que mediante los rodillos móviles permite ajusfar la longitud de los hilos de precursor contenida en el horno y la velocidad de la misma para la adecuación en función del proceso a desarrollar en cada horno. Este sistema permite además simplificar el enhebrado de los hilos de precursor en la línea de fabricación, haciéndole más sencillo y rápido; consiguiéndose, por otro lado, reducir al mínimo las pérdidas de material en la preparación inicial de la línea de fabricación y en las paradas de mantenimiento. Mediante una disposición de múltiples rodillos en cada etapa de conjuntos de rodillos intercalados, se puede determinar una gran acumulación de longitud de los hilos de precursor en el interior del horno, optimizando el espacio del mismos y permitiendo aumentar la velocidad de producción de la fibra de carbono, ya que se puede establecer un eficiente control de permanencia de los hilos de precursor en el interior del horno. Said roller system allows to optimize the storage of the precursor threads inside the oven, for adaptation to the stabilization / oxidation process or for the carbonization process, since by means of the mobile rollers it allows to adjust the length of the precursor threads contained in the oven and the speed of the same for the adaptation depending on the process to develop in each oven. This system also makes it possible to simplify the threading of the precursor threads in the manufacturing line, making it easier and faster; achieving, on the other hand, minimizing material losses in the initial preparation of the manufacturing line and in maintenance stops. By means of an arrangement of multiple rollers at each stage of interleaved roller assemblies, a large accumulation of length of the precursor threads inside the furnace can be determined, optimizing the space of the furnace and allowing to increase the production speed of the fiber of carbon, since an efficient control of permanence of the precursor wires inside the furnace can be established.
Mediante el almacenamiento variable de los hilos de precursor por medio de la disposición de rodillos móviles, se logra además que, durante la aceleración y la deceleración en los arranques y paradas del sistema, la calidad del producto que se obtiene sea la misma, ya que se garantizan los tiempos del ciclo de proceso que están programados. By means of the variable storage of the precursor threads by means of the arrangement of mobile rollers, it is also achieved that, during the acceleration and deceleration in the starts and stops of the system, the quality of the product obtained is the same, since the process cycle times that are programmed are guaranteed.
El sistema de rodillos se dispone dentro del recinto del horno, con lo cual las aberturas en las paredes del horno para el paso de los hilos de precursor se reducen a una abertura de entrada y una abertura de salida, reduciéndose con ello las pérdidas de energía y los escapes de gases nocivos, a la vez que se evita tener que recalentar los hilos de precursor en zonas de interrupción del proceso de fabricación como ocurre en los hornos convencionales con rodillos de paso de la fibra dispuestos en el exterior del horno. El sistema de rodillos de paso de los hilos de precursor se dispone en el horno de forma que los rodillos móviles se desplazan verticalmente, con lo cual los recorridos de los hilos de precursor se determinan en vertical, evitándose así los problemas de catenarias, a la vez que se permite una mayor velocidad del aire, que favorece la transferencia de calor a dichos hilos de precursor, con lo que se consigue mayor eficacia de las reacciones de fabricación de la fibra de carbono, ya que permite tener más aire fresco en contacto con los hilos de precursor que se utilizan para la fabricación. The roller system is arranged inside the oven enclosure, whereby the openings in the oven walls for the passage of the precursor threads are reduced to an inlet opening and an outlet opening, thereby reducing energy losses and harmful gas leaks, while avoiding having to reheat the precursor threads in areas of interruption of the manufacturing process as occurs in conventional furnaces with fiber passing rollers arranged outside the oven. The roller system of the precursor threads is arranged in the oven so that the mobile rollers move vertically, whereby the paths of the precursor threads are determined vertically, thus avoiding catenary problems, to the since a higher air velocity is allowed, which favors the transfer of heat to said precursor threads, thereby achieving greater efficiency of the carbon fiber manufacturing reactions, since it allows more fresh air to be in contact with the precursor threads that are used for manufacturing.
La disposición vertical de los recorridos de los hilos de precursor en el horno, permite a su vez reducir la longitud de la línea de fabricación manteniendo una gran capacidad de almacenamiento de dichos hilos de precursor en el horno, ya queal eliminar los problemas derivados de las catenarias, la distancia entre los rodillos de paso de los hilos de precursor puede aumentar, permitiendo determinar una gran longitud de recorrido de dichos hilos de precursor mediante aumento de la altura del horno, lo cual se traduce en una optimización del espacio horizontal requerido por la línea de fabricación y, por consiguiente, una reducción de los costes de la instalación, al reducir la superficie de terreno ocupada. The vertical arrangement of the paths of the precursor threads in the oven, in turn, reduces the length of the manufacturing line while maintaining a large storage capacity of said precursor threads in the oven, since eliminating the problems arising from the In the catenaries, the distance between the passing rollers of the precursor threads can be increased, making it possible to determine a large travel length of said precursor threads by increasing the height of the furnace, which translates into an optimization of the horizontal space required by the manufacturing line and, consequently, a reduction in installation costs, by reducing the area of land occupied.
Dicha disposición vertical de los recorridos de los hilos de precursor permite, por otro lado, determinar hornos con etapas diferenciadas, mediante una configuración de módulos consecutivos asociados que se puede variar, permitiendo una flexibilidad de la formación del horno en función de la producción deseada y de la velocidad de trabajo en la línea de fabricación. Said vertical arrangement of the paths of the precursor threads allows, on the other hand, to determine furnaces with differentiated stages, by means of a configuration of associated consecutive modules that can be varied, allowing a flexibility of the furnace formation according to the desired production and of the speed of work in the manufacturing line.
Por lo tanto, el concepto de horno con capacidad variable objeto de la invención, resulta de unas características muy ventajosas para la función a desarrollar, tanto en el proceso de estabilización/oxidación como en el proceso de carbonización, en la fabricación de fibra de carbono, adquiriendo vida propia y carácter preferente respecto de los hornos convencionales que se utilizan para dichas funciones. La aplicación del horno preconizado se prevé en una instalación formada por un sistema alimentador automático de hilos de un precursor destinados para fabricar fibras de carbono, pasando por un tensor que ajusta y regula la tensión délos hilos del precursor para entrar en un horno de estabilización/oxidación, tras el cual los hilos del precursor estabilizados y oxidados pasan por otro tensor que ajusta y regula la tensión para entrar en otro horno de carbonización, después del cual los hiloscarbonizados pasan por unas etapas de tratamientos superficiales, recogiéndose finalmente la fibra de carbono resultante en un sistema de bobinado automático. Therefore, the concept of furnace with variable capacity object of the invention, results from very advantageous characteristics for the function to be developed, both in the stabilization / oxidation process and in the carbonization process, in the manufacture of carbon fiber , acquiring its own life and preferential character with respect to conventional ovens that are used for these functions. The application of the recommended furnace is foreseen in an installation formed by an automatic wire feeder system of a precursor destined to manufacture carbon fibers, passing through a tensioner that adjusts and regulates the tension of the precursor wires to enter a stabilization furnace. oxidation, after which the stabilized and oxidized precursor threads pass through another tensioner that adjusts and regulates the tension to enter another carbonization furnace, after which the carbonized threads go through some stages of surface treatments, finally collecting the resulting carbon fiber in a automatic winding system.
Mediante la incorporación de hornos con capacidad variable de recorrido de los hilos de precursor por su interior, según las características de la invención, se obtiene por su parte una instalación compacta de reducida longitud y a la vez de alta producción, en comparación con las instalaciones convencionales de la misma aplicación. By incorporating furnaces with variable capacity of travel of the precursor threads inside, according to the characteristics of the invention, a compact installation of reduced length and high production is obtained, in comparison with conventional installations of the same application.
Descripción de las figuras La figura 1 muestra el conjunto de un ejemplo de instalación de fabricación de fibra de carbono, según la invención. Description of the figures Figure 1 shows the assembly of an example of a carbon fiber manufacturing installation, according to the invention.
La figura 2 muestra en sección transversal un ejemplo de horno según la invención, formado por múltiples módulos provistos con sistemas independientes de acumulación variable de paso de hilos de precursor, para fabricación de fibras de carbono. Figure 2 shows in cross-section an example of a furnace according to the invention, formed by multiple modules provided with independent systems of variable accumulation of precursor wire passage, for manufacturing carbon fibers.
La figura 3 es una vista en sección de la parte inferior del horno de la figura anterior, con los conjuntos de rodillos de los distintos módulos en posición de enhebrado. La figura 4 es un detalle parcial de la parte inferior de dos módulos del horno con los conjuntos de rodillos de los módulos en la posición de enhebrado. Figure 3 is a sectional view of the lower part of the oven of the previous figure, with the roller assemblies of the different modules in threading position. Figure 4 is a partial detail of the bottom of two modules of the oven with the roller assemblies of the modules in the threading position.
La figura 5 es un detalle como el de la figura anterior, con los rodillos móviles de los conjuntos de rodillos de los módulos, elevados a una cierta altura. Figure 5 is a detail like that of the previous figure, with the movable rollers of the module roller assemblies, raised to a certain height.
La figura 6 es una vista en sección de un módulo de horno según la invención, con los rodillos móviles del conjunto de rodillos del módulo, en posición de enhebrado e incorporados en montaje respecto de un sistema de elevación. La figura 7 es una vista como la de la figura anterior, con los rodillos móviles elevados a una cierta altura. Figure 6 is a sectional view of a furnace module according to the invention, with the mobile rollers of the module roller assembly, in threading position and incorporated in assembly with respect to a lifting system. Figure 7 is a view like that of the previous figure, with the mobile rollers raised to a certain height.
La figura 8 es una perspectiva de un módulo de horno según la invención, en posición cerrada, observándose la entrada y salida de múltiples hilos de precursor para formación de fibras de carbono paralelas. La figura 9 es una perspectiva del módulo con la puerta abierta y con un recorte parcial de la carcasa externa, observándose los rodillos móviles del conjunto de rodillos del módulo, en una posición elevada. La figura 10 es una perspectiva del módulo con un recorte parcial de la carcasa externa, observándose el sistema de introducción de gases en la cámara del módulo y los rodillos móviles del conjunto de rodillos de paso de los hilos de precursor en una posición justo por encima de la posición de enhebrado. La figura 1 1 es una perspectiva del módulo con un recorte parcial de la carcasa externa, observándose el sistema de introducción de gases en la cámara del módulo y los rodillos móviles del conjunto de rodillos de paso de los hilos de precursor en una posición superior. Figure 8 is a perspective of a furnace module according to the invention, in a closed position, observing the entry and exit of multiple precursor threads for forming parallel carbon fibers. Figure 9 is a perspective of the module with the door open and with a partial cut-out of the external housing, the moving rollers of the module roller assembly being observed, in an elevated position. Figure 10 is a perspective of the module with a partial cut-out of the external housing, observing the gas introduction system in the module chamber and the movable rollers of the precursor wire passage roller assembly in a position just above of the threading position. Figure 1 1 is a perspective of the module with a partial cut-out of the external housing, the gas introduction system in the module chamber and the mobile rollers of the passage roller assembly of the precursor threads being observed in an upper position.
La figura 12 es una vista seccionada en planta del módulo, observándose el paso transversal de los hilos de precursor y el sistema de introducción de gases en las esquinas de la cámara interior del módulo. Figure 12 is a sectioned plan view of the module, showing the transverse passage of the precursor wires and the gas introduction system at the corners of the module inner chamber.
Descripción detallada de la invención El objeto de la invención se refiere a un horno para fabricación de fibra de carbono en continuo a partir de un precursor PAN, que se emplea como parte de un proceso que comprende una etapa de estabilización/oxidación, una etapa de carbonización y una etapa de tratamientos superficiales, siendo de aplicación tanto para la etapa de estabilización/oxidación como para la de carbonización, e incluso, en procesos que así lo requieran, en una etapa de grafitización adicional al proceso. DETAILED DESCRIPTION OF THE INVENTION The object of the invention relates to a furnace for continuous carbon fiber manufacturing from a PAN precursor, which is used as part of a process comprising a stabilization / oxidation stage, a stage of carbonization and a stage of surface treatments, being applicable both for the stabilization / oxidation stage and for the carbonization stage, and even, in processes that require it, in a stage of additional graffiti to the process.
El proceso se desarrolla en una instalación que, como se observa en la figura 1 , comprende un sistema de alimentación (1), desde el cual se suministran de manera continua con empalme automático hilos (2) de un precursor PAN, los cuales pasan por un grupo tensor (3) que ajusta y regula la tensión de dichos hilos (2) para su introducción en un horno de estabilización/oxidación (4), tras el cual los hilos (2) estabilizados y oxidados pasan por otro grupo tensor (5) que ajusta y regula la tensión de los mismos para su entrada en un horno de carbonización (6), después del cual los hilos (2) carbonizados pasan por unos tratamientos superficiales (7), recogiéndose finalmente las fibras de carbono (8) que se obtienen, en un sistema de rebobinado (9) automático. El horno de estabilización/oxidación (4) y el horno de carbonización (6) se constituyen de una manera semejante según las características de la invención, con una composición formada por uno o más módulos (10), cuyo número se puede variar en función del proceso a desarrollar en cada caso y de la velocidad de producción que se desee, por ejemplo disponiendo con diez módulos (10) el horno de estabilización/oxidación (4) y con dos módulos (10) el horno de carbonización (6), para cumplir los tiempos necesarios de permanencia del material en proceso en cada uno de ellos, sin que dichas composiciones de formación de los mencionados hornos (4) y (6) sean limitativas. Cada módulo (10) de los hornos (4) y (6) está formado por una carcasa exterior (1 1), de estructura aislante para reducir las pérdidas energéticas por escape térmico, determinando una cámara interior en la se aloja un sistema de almacenamiento de recorrido de los hilos (2), formado por un conjunto de rodillos que comprende un primer grupo de rodillos (12.1)y un segundo grupo de rodillos (12.2) intercalados entre ellos, determinando un sistema de tipo festón, en donde al menos el segundo grupo de rodillos (12.2) es desplazable en sentido transversal respecto del primer grupo de rodillos (12.1), estando dispuestos dichos grupos de rodillos (12.1) y (12.2) en dirección vertical, de forma que los rodillos móviles se desplazan en altura. Con ello así, los hilos (2) de precursor destinados para la fabricación de las fibras de carbono (8), se enhebran transversalmente en horizontal por entre el conjunto de rodillos intercalados del primer grupo de rodillos (12.1) y del segundo grupo de rodillos (12.2), como se observa en las figuras 3 y 4, de forma que al desplazar en altura el grupo de rodillos móvil, por ejemploel segundo grupo de rodillos (12.2), se acumula una extensión de los hilos (2) dentro del módulo (10) correspondiente, como se observa en las figuras 2 y 5. Dicho resultado de acumulación de extensión de los hilos (2) dentro módulo (10) se obtiene igualmente si el grupo de rodillos móvil es el primer grupo de rodillos (12: 1) o si son móviles tanto el primer grupo de rodillos (12.1) como el segundo grupo de rodillos (12.2); pero para facilitar la descripción se va a considerar, en lo sucesivo, el primer grupo de rodillos (12.1) fijo y el segundo grupo de rodillos (12.2) móvil. The process takes place in an installation that, as seen in Figure 1, comprises a feeding system (1), from which threads (2) of a PAN precursor are continuously supplied with automatic splicing, which pass through a tensioning group (3) that adjusts and regulates the tension of said threads (2) for introduction into a stabilization / oxidation furnace (4), after which the stabilized and oxidized threads (2) pass through another tensioning group (5 ) that adjusts and regulates the tension of the same for its entry into a carbonization furnace (6), after which the carbonized threads (2) go through surface treatments (7), finally collecting the carbon fibers (8) that they are obtained, in an automatic rewind system (9). The stabilization / oxidation furnace (4) and the carbonization furnace (6) are constituted in a similar manner according to the characteristics of the invention, with a composition formed by one or more modules (10), the number of which can be varied depending on the process to be carried out in each case and the desired production speed, for example by having the stabilization / oxidation furnace (4) with ten modules (10) and the carbonization furnace (6) with two modules (10), to meet the necessary times of permanence of the material in process in each one of them, without said compositions of formation of the mentioned furnaces (4) and (6) being limiting. Each module (10) of the furnaces (4) and (6) is formed by an outer casing (1 1), of insulating structure to reduce energy losses by thermal escape, determining an inner chamber in which a storage system is housed of route of the threads (2), formed by a set of rollers comprising a first group of rollers (12.1) and a second group of rollers (12.2) interspersed between them, determining a festoon system, where at least the The second group of rollers (12.2) can be moved transversely to the first group of rollers (12.1), said groups of rollers (12.1) and (12.2) being arranged in a vertical direction, so that the movable rollers move in height. Thus, the precursor threads (2) intended for the manufacture of the carbon fibers (8), are threaded transversely horizontally between the set of interleaved rollers of the first group of rollers (12.1) and the second group of rollers (12.2), as seen in Figures 3 and 4, so that when moving the movable roller group in height, for example the second group of rollers (12.2), an extension of the threads (2) accumulates inside the module (10) corresponding, as seen in Figures 2 and 5. Said result of accumulation of extension of the threads (2) inside module (10) is also obtained if the mobile roller group is the first group of rollers (12: 1) or if both the first group of rollers (12.1) and the second group of rollers (12.2) are movable; but to facilitate the description, the first fixed roller group (12.1) and the second mobile roller group (12.2) will be considered hereinafter.
En esa disposición, los hilos (2) entran y salen en cada módulo (10) a través de una única abertura (13) de entrada y una única abertura (14) de salida, practicadas en las paredes correspondientes de la carcasa exterior (11) del módulo (10). In that arrangement, the wires (2) enter and exit in each module (10) through a single inlet opening (13) and a single outlet opening (14), made in the corresponding walls of the outer shell (11). ) of the module (10).
El sistema de almacenamiento de recorrido de los hilos (2) se prevé con el primer grupo de rodillos (12.1) formado por subgrupos compuestos de varios rodillos consecutivos en vertical y posicionalmente intercalados entre ellos unos correspondientes subgrupos del segundo grupo de rodillos (12.2) compuestos a su vez de varios rodillos consecutivos en vertical, con lo cual en el enhebrado los hilos (2) se disponen pasando sucesivamente en ida y vuelta a distintas alturas por entre el conjunto de rodillos formado por el primer grupo de rodillos (12.1) y el segundo grupo de rodillos (12.2), de manera que al desplazarse en altura el grupo móvil formado porel segundo grupo de rodillos (12.2), después de enhebrados los hilos (2), se forman múltiples recorridos verticales en ida y vuelta de dichos hilos (2), consiguiéndose así una gran capacidad de acumulación de recorrido de los mismos en cada módulo (10), con posibilidad de regulación de dicha acumulación mediante un desplazamiento variable del segundo grupo de rodillos (12.2), lo que permite a su vez ajusfar el tiempo de permanencia de los hilos (2) en cada zona de los hornos (4) y (6) para el desarrollo del proceso correspondiente en las condiciones más adecuadas. Al aumentar la capacidad de acumulación de recorrido de los hilos (2) en los hornos (4) y (6), se puede aumentar también la velocidad de la línea de fabricación de las fibras de carbono (8), pudiendo ajustarse dicha velocidad de la manera más conveniente para el proceso a desarrollar en función de la producción deseada. En cada módulo (10), el conjunto móvil formado por el segundo grupo de rodillos (12.2) va montado en un soporte (15) desplazable en altura, pudiendo ser actuado dicho soporte (15), por ejemplo, mediante un cable o similar (16) relacionado con un motor (17) de accionamiento, sin que esta realización sea limitativa, ya que puede utilizarse cualquier otro medio convencional de accionamiento que permita desplazar hacia arriba y hacia abajo el soporte (15), sin que ello altere el concepto de la invención. The thread path storage system (2) is provided with the first group of rollers (12.1) formed by subgroups composed of several consecutive vertically and positionally interleaved rollers between them corresponding subgroups of the second group of rollers (12.2) composed in turn of several consecutive vertical rollers, whereby threading the threads ( 2) they are arranged successively going back and forth at different heights between the roller assembly formed by the first group of rollers (12.1) and the second group of rollers (12.2), so that when the mobile group formed is displaced in height By the second group of rollers (12.2), after threading the threads (2), multiple vertical paths are formed in round trip of said threads (2), thus achieving a large capacity to accumulate them in each module ( 10), with the possibility of regulating said accumulation by a variable displacement of the second group of rollers (12.2), which in turn allows to adjust the time of permanence of the threads (2) in each zone of the furnaces (4) and (6) for the development of the corresponding process in the most appropriate conditions. By increasing the accumulation capacity of the threads (2) in the furnaces (4) and (6), the speed of the carbon fiber manufacturing line (8) can also be increased, and said speed can be adjusted. the most convenient way for the process to be developed based on the desired production. In each module (10), the mobile assembly formed by the second group of rollers (12.2) is mounted on a support (15) movable in height, said support (15) being able to be operated, for example, by means of a cable or the like ( 16) related to a drive motor (17), without this embodiment being limiting, since any other conventional drive means that allows the support (15) to move up and down can be used, without altering the concept of the invention.
Para favorecer el proceso de transformación de los hilos (2) de precursor en las fibras de carbono (8) a obtener, en los módulos (10) se inyecta un gas (18) caliente, el cual se introduce a través de unos tubos (19) provistos con una distribución de orificios o ranuras de salida del gas (18) a la cámara interior del módulo (10) correspondiente, con lo cual se consiguen unas condiciones que favorecen las reacciones del proceso de transformación de los hilos (2). To favor the process of transforming the precursor wires (2) into the carbon fibers (8) to be obtained, a hot gas (18) is injected into the modules (10), which is introduced through tubes ( 19) provided with a distribution of holes or slots of gas outlet (18) to the inner chamber of the corresponding module (10), thereby achieving conditions that favor the reactions of the process of transformation of the wires (2).
En el montaje de aplicación se prevé, según una realización práctica preferente, pero no limitativa, que los tubos (19)de inyección del gas (18) vayan dispuestos en las esquinas de los módulos (10), aprovechándose dichos tubos (19) como guías de deslizamiento del soporte (15) portador del conjunto móvil formado por el segundo grupo de rodillos (12.2), para los desplazamientos verticales por el interior del módulo (10) correspondiente. In the application assembly, according to a preferred, but not limited to practical embodiment, the gas injection tubes (19) are arranged in the corners of the modules (10), said pipes (19) being used as sliding guides support (15) carrier of the mobile assembly formed by the second group of rollers (12.2), for vertical displacements inside the corresponding module (10).
Debido a las altas temperaturas de trabajo que se alcanzan en el interior de los módulos (10), los tubos (19) de inyección del gas (18), así como los elementos componentes del sistema de desplazamiento del conjunto móvil formado por el segundo grupo de rodillos (12.1), deben ser de materiales capaces de soportar esas altas temperaturas, sin alteración de sus propiedades. Due to the high working temperatures that are reached inside the modules (10), the gas injection tubes (18), as well as the component elements of the displacement system of the mobile assembly formed by the second group of rollers (12.1), must be of materials capable of withstanding those high temperatures, without altering their properties.
En la formación de cada uno de los hornos (4) y (6), los módulos (10) componentes de los mismos pueden ser independientes e ir asociados consecutivamente uno al lado del otro, o pueden ser módulos consecutivos separados por una pared común intermedia entre ellos, en un conjunto unitario del horno (4) o (6) correspondiente subdividido en cámaras que constituyen los módulos (10). In the formation of each of the furnaces (4) and (6), the modules (10) components thereof can be independent and be associated consecutively side by side, or they can be consecutive modules separated by an intermediate common wall among them, in a unit unit of the oven (4) or (6) corresponding subdivided into chambers that constitute the modules (10).

Claims

REIVINDICACIONES
1. - Horno para fabricación de fibra de carbono en continuo, comprendiendo un conjunto estructural que determina al menos una cámara interior por la que pasa un recorrido de hilos (2) de un precursor destinados para mediante un proceso de trasformación convertirlos en fibras de carbono, caracterizado porque comprende un conjunto estructural compuesto por uno o más módulos (10), cada uno de los cuales determina independientemente una cámara interior en la que se aloja un sistema de almacenamiento de recorrido de los hilos (2), formado por un conjunto de rodillos que comprende un primer grupo de rodillos (12.1) compuesto por subgrupos de varios rodillos dispuestos consecutivamente y un segundo grupo de rodillos (12.2) compuesto por subgrupos de varios rodillos que quedan intercalados entre los subgrupos del primer grupo de rodillos (12.1); siendo al menos el segundo grupo de rodillos (12.2) desplazable en sentido transversal respecto del primer grupo de rodillos (12.1), en desplazamientos variables. 1. - Furnace for continuous carbon fiber manufacturing, comprising a structural assembly that determines at least one inner chamber through which passes a thread path (2) of a precursor destined for by means of a transformation process converting them into carbon fibers , characterized in that it comprises a structural assembly consisting of one or more modules (10), each of which independently determines an inner chamber in which a thread path storage system (2) is housed, formed by a set of rollers comprising a first group of rollers (12.1) composed of subgroups of several rollers arranged consecutively and a second group of rollers (12.2) composed of subgroups of several rollers that are interspersed between the subgroups of the first group of rollers (12.1); the second group of rollers (12.2) being displaceable transversely with respect to the first group of rollers (12.1), in variable displacements.
2. - Horno para fabricación de fibra de carbono en continuo, de acuerdo con la primera reivindicación, caracterizado porque los módulos (10) van dispuestos en posición vertical, siendo desplazable el conjunto móvil del sistema de almacenamiento de recorrido de los hilos (2) , en altura a lo largo de los módulos (10) respectivos. 2. - Furnace for continuous carbon fiber manufacturing, according to the first claim, characterized in that the modules (10) are arranged in an upright position, the mobile assembly of the thread path storage system being movable (2) , in height along the respective modules (10).
3. - Horno para fabricación de fibra de carbono en continuo, de acuerdo con la primera reivindicación, caracterizado porque los módulos (10) poseen una carcasa exterior (11) de estructura térmicamente aislante. 3. - Furnace for continuous carbon fiber manufacturing, according to the first claim, characterized in that the modules (10) have an outer shell (11) of thermally insulating structure.
4.- Horno para fabricación de fibra de carbono en continuo, de acuerdo con la primera reivindicación, caracterizado porque en cada módulo (10) el conjunto móvil del sistema de almacenamiento de recorrido de los hilos (2) va incorporado en un soporte (15) que dispone de un accionamiento de desplazamiento a lo largo del módulo (10). 4. Oven for continuous carbon fiber manufacturing, according to the first claim, characterized in that in each module (10) the mobile assembly of the thread path storage system (2) is incorporated into a support (15 ) which has a travel drive along the module (10).
5.- Horno para fabricación de fibra de carbono en continuo, de acuerdo con las reivindicaciones 1 y 4, caracterizado porque en cada módulo (10) van dispuestos unos tubos (19) para inyectar un gas (18) caliente en la cámara interior, disponiéndose el soporte (15) portador del conjunto móvil del sistema de almacenamiento de recorrido de los hilos (2) en montaje deslizante sobre dichos tubos (19). 5. Oven for continuous carbon fiber manufacturing, according to claims 1 and 4, characterized in that in each module (10) tubes (19) are arranged to inject a hot gas (18) into the inner chamber, the carrier (15) carrying the mobile assembly of the thread path storage system (2) being arranged in sliding assembly on said tubes (19).
6. - Instalación para fabricar fibra de carbono en continuo con el horno de las reivindicaciones anteriores, comprendiendo una etapa de estabilización/oxidación, una etapa de carbonización y una etapa de tratamientos superficiales, caracterizada porque dispone de un sistema de alimentación (1), desde el cual se suministran en continuo hilos (2) de un precursor que pasan por un horno de estabilización/oxidación (4) y después por un horno de carbonización (6), estando constituidos dichos hornos (4) y (6) por módulos (10) consecutivos dispuestos verticalmente, alojando cada uno de ellos en su interior un sistema de almacenamiento de recorrido de los hilos (2) formado por un primer grupo de rodillos (12.1) compuesto por subgrupos de varios rodillos dispuestos consecutivamente y un segundo grupo de rodillos (12.2) compuesto por subgrupos de rodillos que quedan intercalados entre los subgrupos del primer grupo de rodillos (12.1); siendo al menos el segundo grupo de rodillos (12.2) desplazable en altura a lo largo del módulo (10) respectivo; pasando los hilos (2) que salen del horno de carbonización (6), por unos tratamientos superficiales (7), para recogerse las fibras de carbono (8) resultantes en un sistema de rebobinado (9) automático. 6. - Installation for manufacturing continuous carbon fiber with the furnace of the preceding claims, comprising a stabilization / oxidation stage, a carbonization stage and a surface treatment stage, characterized in that it has a feeding system (1), from which threads (2) of a precursor are continuously supplied passing through a stabilization / oxidation furnace (4) and then by a carbonization furnace (6), said furnaces (4) and (6) being constituted by modules (10) consecutively arranged vertically, each housing inside them a system for storing the path of the threads (2) formed by a first group of rollers (12.1) composed of subgroups of several consecutively arranged rollers and a second group of rollers (12.2) composed of subgroups of rollers that are interspersed between the subgroups of the first group of rollers (12.1); at least the second group of rollers (12.2) being movable in height along the respective module (10); passing the threads (2) leaving the carbonization furnace (6), by surface treatments (7), to collect the carbon fibers (8) resulting in an automatic rewind system (9).
7. - Instalación para fabricar fibra de carbono en continuo, de acuerdo con la sexta reivindicación, caracterizada porque después del sistema de alimentación (1) va dispuesto un grupo tensor (3) que ajusta y regula la tensión de los hilos (2) para su introducción en el horno de estabilización/oxidación (4). 7. - Installation for manufacturing continuous carbon fiber, according to the sixth claim, characterized in that after the feeding system (1) a tensioning group (3) is arranged that adjusts and regulates the tension of the wires (2) to its introduction in the stabilization / oxidation oven (4).
8. - Instalación para fabricar fibra de carbono en continuo, de acuerdo con la sexta reivindicación, caracterizado porque entre el horno de estabilización/oxidación (4) y el horno de carbonización (6) va dispuesto un grupo tensor (5) que ajusta y regula la tensión de los hilos (2) para su entrada en el horno de carbonización (6). 8. - Installation for manufacturing continuous carbon fiber, according to the sixth claim, characterized in that a tensioning group (5) is fitted between the stabilization / oxidation furnace (4) and the carbonization furnace (6) and adjusting and regulates the tension of the wires (2) for their entry into the carbonization furnace (6).
PCT/ES2015/070486 2014-07-22 2015-06-23 Furnace for the continuous production of carbon fibre and facility for producing carbon fibre using said furnace WO2016012641A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201431099A ES2528068B1 (en) 2014-07-22 2014-07-22 Furnace for continuous carbon fiber manufacturing and installation for manufacturing carbon fiber with said furnace
ESP201431099 2014-07-22

Publications (1)

Publication Number Publication Date
WO2016012641A1 true WO2016012641A1 (en) 2016-01-28

Family

ID=52396869

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2015/070486 WO2016012641A1 (en) 2014-07-22 2015-06-23 Furnace for the continuous production of carbon fibre and facility for producing carbon fibre using said furnace

Country Status (2)

Country Link
ES (1) ES2528068B1 (en)
WO (1) WO2016012641A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017158214A1 (en) * 2016-03-15 2017-09-21 Torres Martinez M Oven for the thermal treatment of filaments

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5988918A (en) * 1982-11-05 1984-05-23 Toray Ind Inc Hot air furnace for carbon fiber manufacture and threading method
US4610860A (en) * 1983-10-13 1986-09-09 Hitco Method and system for producing carbon fibers

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5988918A (en) * 1982-11-05 1984-05-23 Toray Ind Inc Hot air furnace for carbon fiber manufacture and threading method
US4610860A (en) * 1983-10-13 1986-09-09 Hitco Method and system for producing carbon fibers

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017158214A1 (en) * 2016-03-15 2017-09-21 Torres Martinez M Oven for the thermal treatment of filaments
US10895021B2 (en) 2016-03-15 2021-01-19 Manuel Torres Martinez Oven for the thermal treatment of filaments
DE112017001343B4 (en) 2016-03-15 2022-08-11 Manuel Torres Martinez FURNACE FOR THERMAL TREATMENT OF FILAMENTS

Also Published As

Publication number Publication date
ES2528068A1 (en) 2015-02-03
ES2528068B1 (en) 2015-08-13

Similar Documents

Publication Publication Date Title
KR101885344B1 (en) Oven for fiber heat treatment
RU2585644C2 (en) Oxidation furnace
ES2587759T3 (en) Catalyst regeneration zone divided into sectors for regenerative catalytic units
US8955235B2 (en) Oxidation furnace
US7004753B2 (en) Gas seal for reactors employing gas guide bodies and reactor having the gas seal
ES2784362T3 (en) Combined Heat Transfer Baking Oven
ES2528068B1 (en) Furnace for continuous carbon fiber manufacturing and installation for manufacturing carbon fiber with said furnace
JP6133359B2 (en) Method for heat-treating a metal member
CZ281967B6 (en) Process of steel wire heat treatment and apparatus for making the same
WO2014007169A1 (en) Method for producing carbon fiber bundle and heating furnace for carbon fiber precursor fiber bundle
CN102002574B (en) Online full-automatic tempering equipment and technology for same-furnace multi-strip bimetal strip saw
CN201762398U (en) Bimetallic tape saw blade on-line full-automatic tempering device with multi-tapes in one furnace
JP2012078082A (en) In-furnace combustion control method of industrial reactor
EP2580360B1 (en) Annealing installation with m-shaped strip treatment tunnel
US4395021A (en) Vertical continuous annealing furnace and its operating method
TWI810861B (en) Device and method for heat-treating a metal strip
CN107110602A (en) Smelting furnace with convection current and radiant heating
JP2002194627A (en) Heat-treating oven and method for producing carbon fiber by use of the same
JP2004197239A (en) Flame resisting treatment furnace
KR880000469B1 (en) Annealing furnaces
EP0085733B1 (en) Vertical continuous annealing furnace and its operating method
RU2574530C1 (en) Fibre heat treatment furnace
JP2012184527A (en) Heat-treatment furnace, manufacturing method for flame-resistant fiber and manufacturing method for carbon fiber
JP2023547384A (en) Vertical furnace for continuous heat treatment of metal strips
KR101211738B1 (en) Heat treatment apparatus for oxidation of carbon fiber with additional heating fan

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15824328

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15824328

Country of ref document: EP

Kind code of ref document: A1