WO2016011634A1 - 差分波束调整方法、用户设备及基站 - Google Patents

差分波束调整方法、用户设备及基站 Download PDF

Info

Publication number
WO2016011634A1
WO2016011634A1 PCT/CN2014/082887 CN2014082887W WO2016011634A1 WO 2016011634 A1 WO2016011634 A1 WO 2016011634A1 CN 2014082887 W CN2014082887 W CN 2014082887W WO 2016011634 A1 WO2016011634 A1 WO 2016011634A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame data
pilot
transmitting
user equipment
sinr
Prior art date
Application number
PCT/CN2014/082887
Other languages
English (en)
French (fr)
Inventor
乔德礼
吴晔
王磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2014/082887 priority Critical patent/WO2016011634A1/zh
Publication of WO2016011634A1 publication Critical patent/WO2016011634A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/10Polarisation diversity; Directional diversity

Definitions

  • the present invention relates to the field of mobile communications, and in particular, to a differential beam adjustment method, a user equipment, and a base station.
  • a differential beam adjustment method a user equipment
  • a base station BACKGROUND OF THE INVENTION
  • FDD frequency division duplexing
  • a pilot is usually transmitted by a user equipment to a base station, and the base station performs data transmission using the estimated beam.
  • TDD Time Division Duplexing
  • the closed-loop transmission scheme of the TDD system when the number of antennas is large, the beam formed by precoding is very thin, and when the channel changes rapidly (such as when the user moves at a high speed) or when there is a hardware error, beam matching is easily caused. Problems that seriously affect performance.
  • the antenna gain of the antenna cannot be tapped.
  • the transmission scheme based on the user's long-term statistical information such as the Direction of Arrival (DOA) estimation algorithm
  • DOA estimation algorithm generally determines the beam of the transmitted data according to the user equipment information or the pilot transmitted by the user equipment to the base station.
  • the Interference And Noise Ratio is low, which makes the data transmission efficiency lower, which in turn reduces the performance of the base station.
  • SINR Interference And Noise Ratio
  • the present invention provides a differential beam adjustment method, a user equipment, and a base station, thereby improving data transmission efficiency and thereby improving base station performance.
  • the embodiment of the present invention provides a differential beam adjustment method, including: receiving, by a user equipment, first frame data and a first pilot that are sent by a base station; and determining, by the user equipment, a signal of a beam that sends the first frame data.
  • Interference noise ratio SINR and SINR of the beam transmitting the first pilot the user equipment according to the estimated signal interference noise ratio SINR of the beam transmitting the first frame data and the transmitting the first
  • the SINR of the pilot beam determines the base beam identifier; the user equipment sends the base beam identifier to the base station, and the base beam corresponding to the base beam identifier is used by the base station to send the second frame data and the second guide frequency.
  • the transmitting the first pilot beam includes two different coverage areas.
  • the two different coverage areas are the differential beams of the beam that sends the first frame data;
  • the beam that sends the first frame data is the differential beam that sends the one of the two different coverage areas.
  • the user equipment according to the estimated beam that sends the first frame data, The signal interference noise ratio SINR and the SINR of the beam transmitting the first pilot determine the base beam, and the method includes: the signal interference noise ratio SINR of the beam that the user equipment sends the first frame data, and the sending the first The beam corresponding to the maximum value in the SINR of the pilot beam is determined as the base beam.
  • the embodiment of the present invention provides a differential beam adjustment method, including: sending, by a base station, first frame data and a first pilot to a user equipment, so that the user equipment estimates a beam for transmitting the first frame data. a signal interference noise ratio SINR and an SINR of a beam transmitting the first pilot; the base station receiving a base beam identifier sent by the user equipment, where the base beam identifier is obtained by the user equipment according to the estimated transmission station Determining a signal to interference noise ratio SINR of a beam of the first frame data and an SINR of the beam transmitting the first pilot; and determining, by the base station, a beam and a second guide for transmitting the second frame data according to the basic beam identifier Frequency beam.
  • the transmitting the second pilot beam includes two different coverage areas.
  • the determining, by the base station, the beam that sends the second frame data and the beam of the second pilot, according to the basic beam includes: determining, by the base station, the base beam as a beam that sends the second frame data; The two different coverage areas of the beam are used to transmit the second pilot.
  • the two different coverage areas are the differential beams of the beam that sends the second frame data;
  • the beam that sends the second frame data is the differential beam that sends the one of the two different coverage areas.
  • the embodiment of the present invention provides a user equipment, including: a receiving module, configured to receive first frame data and a first pilot that are sent by a base station; and an estimation module, configured to estimate a beam that sends the first frame data a signal interference noise ratio SINR and an SINR of the beam transmitting the first pilot; a determining module, configured to perform, according to the estimated signal interference noise ratio SINR of the beam transmitting the first frame data, and the transmitting station
  • the SINR of the beam of the first pilot determines the basic beam identifier;
  • the sending module is configured to send the basic beam identifier to the base station, where the basic beam corresponding to the basic beam identifier is used by the base station to send the second frame data And the second pilot.
  • the transmitting the first pilot beam includes two different coverage areas.
  • the two different coverage areas are the differential beams of the beam that sends the first frame data;
  • the beam that sends the first frame data is the differential beam that sends the one of the two different coverage areas.
  • the determining module is specifically configured to send the beam of the first frame data
  • the signal interference noise is determined as the base beam corresponding to the SINR and the maximum of the SINR of the beam transmitting the first pilot.
  • the embodiment of the present invention provides a base station, including: a sending module, configured to send, to a user equipment, first frame data and a first pilot, so that the user equipment estimates a beam for transmitting the first frame data.
  • the signal interference noise ratio SINR and the SINR of the beam transmitting the first pilot ; the receiving module, configured to receive a basic beam identifier sent by the user equipment, where the basic beam identifier is obtained by the user equipment according to the estimated a signal interference noise ratio SINR of a beam transmitting the first frame data and an SINR of the beam transmitting the first pilot
  • a determining module configured to determine, according to the basic beam identifier, a beam that transmits the second frame data and a beam that is the second pilot.
  • the transmitting the second pilot beam includes two beams with different coverage areas.
  • the determining module is specifically configured to determine the basic beam as a beam that sends the second frame data, The two different coverage areas of the beam are used to transmit the second pilot.
  • the two different coverage areas are the differential beams of the beam that sends the second frame data; Or the beam that sends the second frame data is the differential beam that sends the one of the two different coverage areas.
  • the present invention provides a differential beam adjustment method, a user equipment, and a base station, where the method includes: First, the user equipment receives the first frame data and the first pilot transmitted by the base station; second, the user equipment estimates the beam of the first frame data. Signal interference noise ratio SINR and SINR of the beam transmitting the first pilot; Finally, the user equipment determines the base beam according to the estimated signal interference noise ratio SINR of the beam transmitting the first frame data and the SINR of the beam transmitting the first pilot Identifying and transmitting the base beam identity to the base station. In order to enable the base station to transmit the next frame data through the beam with a large SINR, the data transmission efficiency is improved, thereby improving the performance of the base station.
  • 1 is a flowchart of a method for adjusting a differential beam according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of beam grading according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram 1 of differential beam adjustment according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram 2 of differential beam adjustment according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram 3 of differential beam adjustment according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of performance comparison according to an embodiment of the present invention.
  • FIG. 8 is a flowchart of a method for adjusting a differential beam according to another embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a user equipment according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • the technical solutions in the embodiments of the present invention are clearly and completely described in the following with reference to the accompanying drawings in the embodiments of the present invention.
  • the embodiments are a part of the embodiments of the invention, and not all of the embodiments. All other embodiments obtained by a person of ordinary skill in the art based on the embodiments of the present invention without departing from the inventive scope are the scope of the present invention.
  • FIG. 1 is a flowchart of a differential beam adjustment method according to an embodiment of the present invention, where the method can be applied to a multi-antenna transmission scenario, and the execution body of the method can be a user equipment, and the differential beam adjustment method provided in this embodiment Including the following steps:
  • S101 Receive first frame data and a first pilot sent by the base station.
  • the user equipment receives the first frame data sent by the base station, where the first frame data includes data content sent by the base station to the user equipment, for example, image, voice, and the like, and the user equipment further receives the first a pilot, the first pilot includes channel information for transmitting second frame data, and the like.
  • the transmitting the first pilot beam comprises two different coverage areas.
  • S102 Estimate a signal interference noise ratio SINR of a beam transmitting the first frame data and an SINR of a beam transmitting the first pilot.
  • S103 Determine a basic beam identifier according to the estimated signal interference noise ratio SINR of the estimated beam for transmitting the first frame data and the SINR of the beam transmitting the first pilot.
  • the two beams with different coverage areas are differential beams of the beam that transmits the first frame data; or the beam that transmits the first frame data is a differential beam that transmits one of the two beams with different coverage areas.
  • the user equipment determines the basic beam according to the estimated signal interference noise ratio SINR of the beam that transmits the first frame data and the SINR of the beam that transmits the first pilot, and specifically includes: the user equipment sends the beam of the first frame data.
  • the signal interference noise is determined as the base beam corresponding to the SINR and the maximum of the SINR of the beam transmitting the first pilot.
  • S104 The user equipment sends the basic beam identifier to the base station, where the base beam corresponding to the base beam identifier is used by the base station to send the second frame data and the second pilot.
  • Example 1 the embodiment is based on the beam grading feature, wherein the beam is divided into The level can be any way or any shape, and can be adjusted accordingly as the business changes.
  • the grading characteristics of the beam are characterized by an initial beam width of 120°, 60°, 30°, 15°, 8°, 4°, 2°, and 1°.
  • FIG. 2 is a schematic diagram of beam grading according to an embodiment of the present invention. As shown in Figure 2, 120° represents the full beam coverage beam.
  • the differential beam adjustment process specifically includes:
  • FIG. 3 is a schematic diagram of differential beam adjustment according to an embodiment of the present invention. As shown in FIG.
  • the base station transmits the first data by using a beam having an initial width of 30°, and the base station further sends the first data to the user equipment.
  • a pilot where the beam transmitting the first pilot includes two 15° beams with different coverage areas, that is, the beams with different coverage areas are the differential beams of the beam transmitting the first frame data, when the user equipment receives the After a data and a first pilot, the signal corresponding to the signal interference noise ratio SINR of the beam transmitting the first frame data and the maximum value of the SINR of the beam transmitting the first pilot is determined as the base beam, for example, 30°.
  • the SINR of the first data transmitted by the beam is 10 dB
  • the orthogonal beam IDs of the beams transmitting the first pilot are "0" and “1", respectively
  • the ID is If the SINR of the beam of "1" is 13 dB, the beam adjustment information fed back by the user equipment to the base station is "01", that is, the base beam is a thinner beam with the ID "1".
  • FIG. 4 is a schematic diagram 2 of differential beam adjustment according to an embodiment of the present invention.
  • the base station transmits the first data by using a beam having an initial width of 8°, and the base station further sends a first pilot to the user equipment, where the beam transmitting the first pilot includes two different coverage areas of the 8° beam upper level.
  • the beam of ° that is, the beam that transmits the first frame data is a differential beam that transmits one of the two beams with different coverage areas.
  • the first frame data is sent.
  • the beam corresponding to the signal interference noise of the beam corresponding to the SINR and the maximum value of the SINR of the beam transmitting the first pilot is determined as the base beam.
  • the SINR of the beam is 8 dB, and the SINR of the beam with ID "1" is 3 dB.
  • the beam adjustment information fed back by the user equipment to the base station is "00", that is, the base beam is a wider beam with the ID "0".
  • FIG. 5 is a schematic diagram 3 of differential beam adjustment according to an embodiment of the present invention.
  • the base station transmits the first data for the initial data transmission beam with the initial width of 120°, that is, the first data is transmitted for the beam covering the entire sector, and the base station also sends the first pilot to the user equipment, where
  • the first pilot beam includes two 60° beams with different coverage areas, that is, the two beams with different coverage areas are differential beams of the beam that transmits the first frame data, and the user equipment receives the first data and the first guide. After the frequency, the signal of the beam of the first frame data will be transmitted.
  • FIG. 6 is a schematic diagram of performance comparison according to an embodiment of the present invention.
  • the graph is a cumulative distribution function graph
  • the right line is the experimental result of the present invention
  • the left line is the experimental result of the DOA estimation algorithm, and the comparison is performed.
  • the results show that the present invention can determine that a signal has a larger interference-to-noise ratio to transmit data.
  • the present invention provides a differential beam adjustment method, including: receiving, by a user equipment, first frame data and a first pilot transmitted by a base station, and then estimating a signal interference noise ratio SINR of the beam transmitting the first frame data and transmitting the first guide
  • the SINR of the frequency beam is finally determined by the user equipment according to the estimation result, and the basic beam identifier is sent to the base station, so that the beam with the higher SINR is sent to transmit the next frame data, thereby improving the data transmission efficiency and improving the data transmission efficiency.
  • Base station performance including: receiving, by a user equipment, first frame data and a first pilot transmitted by a base station, and then estimating a signal interference noise ratio SINR of the beam transmitting the first frame data and transmitting the first guide
  • the SINR of the frequency beam is finally determined by the user equipment according to the estimation result, and the basic beam identifier is sent to the base station, so that the beam with the higher SINR is sent to transmit the next frame data, thereby improving the data transmission efficiency and improving the data transmission
  • FIG. 7 is a flowchart of a method for adjusting a differential beam according to another embodiment of the present invention, where the method is applicable to a multi-antenna transmission scenario, and the execution body of the method may be a base station.
  • the differential beam adjustment method provided in this embodiment includes The following steps:
  • the base station sends the first frame data and the first pilot to the user equipment.
  • the base station sends the first frame data and the first pilot to the user equipment, so that the user equipment estimates the signal interference noise ratio SINR of the beam that transmits the first frame data and the SINR of the beam that transmits the first pilot; where the first frame
  • the data includes data content sent by the base station to the user equipment, for example, image, voice, and the like.
  • the user equipment further receives a first pilot sent by the base station, where the first pilot includes channel information for transmitting the second frame data. Wait.
  • the transmitting the second pilot beam includes two different coverage areas.
  • the base station receives the basic beam identifier sent by the user equipment.
  • the user equipment estimates a signal interference noise ratio SINR of a beam that transmits the first frame data and an SINR of a beam that transmits the first pilot. And the signal interference noise ratio of the beam transmitting the first frame data corresponds to the maximum value of the SINR and the SINR of the beam transmitting the first pilot.
  • the beam is determined as the base beam, and then the user equipment sends the base beam ID corresponding to the base beam to the terminal.
  • the base station determines, according to the basic beam identifier, a beam that transmits the second frame data and a beam that is the second pilot.
  • the base station determines the base beam as a beam for transmitting the second frame data; and two beams with different coverage areas are used to transmit the second pilot. Further, the two different coverage areas are the differential beams of the beams transmitting the second frame data; or the beams transmitting the second frame data are the differential beams transmitting one of the two different coverage areas.
  • the second frame data includes data content sent by the base station to the user equipment in the second frame, and the second pilot includes channel information for transmitting the third frame data.
  • the present invention provides a differential beam adjustment method, including: first, a base station sends first frame data and a first pilot to a user equipment, so that the user equipment determines a signal interference noise ratio SINR of the beam that transmits the first frame data, and sends the first The maximum value of the SINR of the pilot beam, and then the base station receives the basic beam identifier corresponding to the user equipment according to the maximum value, and finally the base station determines the beam for transmitting the second frame data and the beam for the second pilot according to the basic beam identifier. Therefore, the base station transmits the next frame data through the beam with a higher SINR, thereby improving data transmission efficiency and improving base station performance.
  • FIG. 8 is a schematic structural diagram of a user equipment according to an embodiment of the present invention.
  • the user equipment is applicable to a multi-antenna transmission scenario, and may be used to perform a differential beam adjustment method.
  • the user equipment specifically includes: a receiving module 801, configured to receive a base station.
  • a first frame data and a first pilot that are sent a first frame data and a first pilot that are sent; an estimation module 802, configured to estimate a signal to interference noise ratio SINR of a beam that transmits the first frame data, and an SINR of a beam that transmits the first pilot; determining module 803 And determining, by the estimated signal interference noise ratio SINR of the beam that sends the first frame data and the SINR of the beam that sends the first pilot, a sending module 804, configured to: The basic beam identifier is sent to the base station, and the basic beam corresponding to the basic beam identifier is used by the base station to send the second frame data and the second pilot.
  • the beam that sends the first pilot includes two beams that have different coverage areas.
  • the two different coverage areas are the differential beams of the beam that sends the first frame data; or the beam that sends the first frame data is the beam that sends the two coverage areas different.
  • the determining module 803 is specifically configured to determine, as the signal interference noise ratio of the beam transmitting the first frame data, a beam corresponding to a maximum value of a SINR and a SINR of a beam transmitting the first pilot as Basic beam.
  • the user equipment provided in this embodiment may be used to implement the implementation technical solution of the differential beam adjustment method in FIG. 1.
  • the implementation principle and technical effects are similar, and details are not described herein again.
  • FIG. 9 is a schematic structural diagram of a base station according to an embodiment of the present invention, where the user equipment is applicable to a multi-antenna transmission scenario, and may be used to perform a differential beam adjustment method, where the base station specifically includes: a sending module 901, configured to send to a user equipment a first frame data and a first pilot, so that the user equipment estimates a signal interference noise ratio SINR of a beam that transmits the first frame data and an SINR of a beam that transmits the first pilot; and the receiving module 902 uses And receiving the basic beam identifier sent by the user equipment, where the basic beam identifier is used by the user equipment according to the estimated signal interference noise ratio SINR of the beam that sends the first frame data, and the sending the first The SINR of the pilot beam is determined; the determining module 903 is configured to determine, according to the basic beam identifier, a beam that transmits the second frame data and a beam that is the second pilot.
  • the base station specifically includes: a sending module 901, configured to send to
  • the transmitting the second pilot beam comprises two different coverage areas.
  • the determining module 903 is specifically configured to determine the basic beam as a beam for transmitting the second frame data, where different beams of the two coverage areas are used to send the second pilot.
  • the two different coverage areas are the differential beams of the beam that sends the second frame data; or the beam that sends the second frame data is the beam that sends the two coverage areas different.
  • a differential beam is specifically configured to determine the basic beam as a beam for transmitting the second frame data, where different beams of the two coverage areas are used to send the second pilot.
  • the two different coverage areas are the differential beams of the beam that sends the second frame data; or the beam that sends the second frame data is the beam that sends the two coverage areas different.
  • a differential beam is specifically configured to determine the basic beam as a beam for transmitting the second frame data, where different beams of the two coverage areas are used to send the second pilot.
  • the two different coverage areas are the differential beams of the beam that sends the second frame data
  • the base station implements precoding of the beam for transmitting data on the other hand, and on the other hand, pre-encoding the beam for transmitting the pilot.
  • the base station provided in this embodiment may be used to implement the technical solution of the differential beam adjustment method in FIG. 7.
  • the implementation principle and technical effects are similar, and details are not described herein again.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

本发明提供了一种差分波束调整方法、用户设备及基站,其中该方法包括:用户设备接收基站发送的第一帧数据和第一导频;用户设备估计发送第一帧数据的波束的信号干扰噪音比SINR以及发送第一导频的波束的SINR;用户设备根据估计得到的发送第一帧数据的波束的信号干扰噪音比SINR以及发送第一导频的波束的SINR确定基础波束标识,并且将基础波束标识发送给基站。以使基站通过基础波束标识对应的波束发送下一帧数据,从而提高数据传输效率,进而提高基站性能。

Description

差分波束调整方法、 用户设备及基站
技术领域 本发明涉及一种移动通信领域, 尤其涉及一种差分波束调整方法、 用户 设备及基站。 背景技术 在针对未来 5G通信系统的研究中, 大规模天线系统被广泛认为是一种 必要的解决方案。 由于基站的天线很多, 采用现有的频分双工 (Frequency Division Duplexing, FDD) 系统时, 基站为用户设备估计发送数据的波束时, 通常基站向用户设备会发送导频, 然而这样会造成基站在进行波束估计时将 带来很大的导频开销, 将使得系统无法进行有效的数据传输。 另外, 在时分 双工 (Time Division Duplexing, TDD)系统中,通常是由用户设备向基站发送导 频, 基站利用估计到的波束进行数据传输。然而基于 TDD系统的闭环传输方 案, 在天线数目很大时, 预编码形成的波束很细, 而信道变化较快时 (如用 户的移动速度很高) 或存在硬件误差时, 很容易造成波束匹配问题, 严重影 响性能。 另一方面, 使用开环传输方案时, 则不能挖掘天线的阵列增益。
综上考虑,基于用户的长时统计信息的传输方案如波达方向(Direction of Arrival, DOA )估计算法为有效的传输方案。 其中 DOA估计算法一般 是根据用户设备信息或者用户设备向基站发送的导频来确定传输数据的 波束。
然而仅仅基于 DOA估计的用于发送数据的波束确定方法会存在一定 的误差, 会存在用于发送数据的波束的信号干扰噪音比 (Signal To
Interference And Noise Ratio , SINR)低的情况, 从而使得数据传输效率较 低, 进而降低了基站性能。 发明内容 本发明提供一种差分波束调整方法、 用户设备及基站, 从而提高数据传 输效率, 进而提高基站性能。 第一方面, 本发明实施例提供一种差分波束调整方法, 包括: 用户设 备接收基站发送的第一帧数据和第一导频; 所述用户设备估计发送所述第 一帧数据的波束的信号干扰噪音比 SINR以及发送所述第一导频的波束的 SINR;所述用户设备根据估计得到的所述发送所述第一帧数据的波束的信 号干扰噪音比 SINR以及所述发送所述第一导频的波束的 SINR确定基础 波束标识; 所述用户设备将所述基础波束标识发送给所述基站, 所述基础 波束标识对应的基础波束用于所述基站发送第二帧数据和第二导频。
结合第一方面, 在第一方面的第一种可能实施方式中, 所述发送所述 第一导频的波束包括两个覆盖区域不同的波束。
结合第一方面的第一种可能实施方式, 在第一方面的第二种可能实施 方式中, 所述两个覆盖区域不同的波束为所述发送所述第一帧数据的波束 的差分波束; 或者, 所述发送第一帧数据的波束为所述发送所述两个覆盖 区域不同的波束其中一个的差分波束。
结合第一方面或者第一种可能实施方式或者第二种可能实施方式, 在 第一方面的第三种可能实施方式中, 所述用户设备根据估计得到的发送所 述第一帧数据的波束的信号干扰噪音比 SINR以及发送所述第一导频的波 束的 SINR确定基础波束, 具体包括: 所述用户设备将发送所述第一帧数 据的波束的信号干扰噪音比 SINR以及发送所述第一导频的波束的 SINR 中的最大值对应的波束确定为基础波束。
第二方面, 本发明实施例提供一种差分波束调整方法, 包括: 基站向 用户设备发送第一帧数据和第一导频, 以使所述用户设备估计发送所述第 一帧数据的波束的信号干扰噪音比 SINR以及发送所述第一导频的波束的 SINR; 所述基站接收所述用户设备发送的基础波束标识, 所述基础波束标 识由所述用户设备根据估计得到的所述发送所述第一帧数据的波束的信 号干扰噪音比 SINR以及所述发送所述第一导频的波束的 SINR确定; 所 述基站根据所述基础波束标识确定发送第二帧数据的波束和第二导频的 波束。
结合第二方面, 在第二方面的第一种可能实施方式中, 所述发送所述 第二导频的波束包括两个覆盖区域不同的波束。
结合第二方面的第一种可能实施方式, 在第二方面的第二种可能实施 方式中, 所述基站根据所述基础波束确定发送第二帧数据的波束和第二导 频的波束, 具体包括: 所述基站将所述基础波束确定为发送所述第二帧数 据的波束; 所述两个覆盖区域不同的波束用于发送所述第二导频。
结合第二方面的第二种可能实施方式, 在第二方面的第三种可能实施 方式中, 所述两个覆盖区域不同的波束为所述发送所述第二帧数据的波束 的差分波束; 或者, 所述发送第二帧数据的波束为所述发送所述两个覆盖 区域不同的波束其中一个的差分波束。
第三方面, 本发明实施例提供一种用户设备, 包括: 接收模块, 用于 接收基站发送的第一帧数据和第一导频; 估计模块, 用于估计发送所述第 一帧数据的波束的信号干扰噪音比 SINR以及发送所述第一导频的波束的 SINR; 确定模块, 用于根据估计得到的所述发送所述第一帧数据的波束的 信号干扰噪音比 SINR以及所述发送所述第一导频的波束的 SINR确定基 础波束标识; 发送模块, 用于将所述基础波束标识发送给所述基站, 所述 基础波束标识对应的基础波束用于所述基站发送第二帧数据和第二导频。
结合第三方面, 在第三方面的第一种可能实施方式中, 所述发送所述 第一导频的波束包括两个覆盖区域不同的波束。
结合第三方面的第一种可能实施方式, 在第三方面的第二种可能实施 方式中, 所述两个覆盖区域不同的波束为所述发送所述第一帧数据的波束 的差分波束; 或者, 所述发送第一帧数据的波束为所述发送所述两个覆盖 区域不同的波束其中一个的差分波束。
结合第三方面或者第一种可能实施方式或者第二种可能实施方式, 在 第三方面的第三种可能实施方式中, 所述确定模块, 具体用于将发送所述 第一帧数据的波束的信号干扰噪音比 SINR以及发送所述第一导频的波束 的 SINR中的最大值对应的波束确定为基础波束。
第四方面, 本发明实施例提供一种基站, 包括: 发送模块, 用于向用 户设备发送第一帧数据和第一导频, 以使所述用户设备估计发送所述第一 帧数据的波束的信号干扰噪音比 SINR以及发送所述第一导频的波束的 SINR; 接收模块, 用于接收所述用户设备发送的基础波束标识, 所述基础 波束标识由所述用户设备根据估计得到的所述发送所述第一帧数据的波 束的信号干扰噪音比 SINR以及所述发送所述第一导频的波束的 SINR确 定; 确定模块, 用于根据所述基础波束标识确定发送第二帧数据的波束和 第二导频的波束。
结合第四方面, 在第四方面的第一种可能实施方式中, 所述发送所述 第二导频的波束包括两个覆盖区域不同的波束。
结合第四方面的第一种可能实施方式, 在第四方面的第二种可能实施 方式中, 所述确定模块, 具体用于将所述基础波束确定为发送所述第二帧 数据的波束, 所述两个覆盖区域不同的波束用于发送所述第二导频。
结合第四方面的第二种可能实施方式, 在第四方面的第三种可能实施 方式中, 所述两个覆盖区域不同的波束为所述发送所述第二帧数据的波束 的差分波束; 或者, 所述发送第二帧数据的波束为所述发送所述两个覆盖 区域不同的波束其中一个的差分波束。
本发明提供了差分波束调整方法、用户设备及基站,其中该方法包括: 首先, 用户设备接收基站发送的第一帧数据和第一导频; 其次, 用户设备 估计发送第一帧数据的波束的信号干扰噪音比 SINR以及发送第一导频的 波束的 SINR; 最后, 用户设备根据估计得到的发送第一帧数据的波束的 信号干扰噪音比 SINR以及发送第一导频的波束的 SINR确定基础波束标 识, 并且将基础波束标识发送给基站。 以使基站通过 SINR较大的波束发 送下一帧数据, 从而提高数据传输效率, 进而提高基站性能。 附图说明 图 1为本发明一实施例提供的一种差分波束调整方法的流程图; 图 2为本发明一实施例提供的波束分级示意图;
图 3为本发明一实施例提供的差分波束调整示意图一;
图 4为本发明一实施例提供的差分波束调整示意图二;
图 5为本发明一实施例提供的差分波束调整示意图三;
图 6为本发明一实施例提供的性能比较示意图;
图 7为本发明另一实施例提供一种差分波束调整方法的流程图; 图 8为本发明一实施例提供的用户设备的结构示意图;
图 9为本发明一实施例提供的基站的结构示意图。 具体实施方式 为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描述, 显然, 所描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基于 本发明中的实施例, 本领域普通技术人员在没有做出创造性劳动前提下所获 得的所有其他实施例, 都属于本发明保护的范围。
图 1为本发明一实施例提供的一种差分波束调整方法的流程图, 其中 该方法可应用于多天线传输场景, 该方法的执行主体可以为用户设备, 本 实施例提供的差分波束调整方法包括如下歩骤:
S101 : 接收基站发送的第一帧数据和第一导频。
具体地, 用户设备接收基站发送的第一帧数据, 其中第一帧数据包括 基站向用户设备发送的数据内容, 例如: 图像、 语音等信息, 除此之外, 用户设备还接收基站发送的第一导频, 该第一导频包括发送第二帧数据的 信道信息等。
可选地, 所述发送所述第一导频的波束包括两个覆盖区域不同的波 束。
S102: 估计发送第一帧数据的波束的信号干扰噪音比 SINR以及发送 第一导频的波束的 SINR。
S103 : 根据估计得到的发送第一帧数据的波束的信号干扰噪音比 SINR以及发送第一导频的波束的 SINR确定基础波束标识。
可选地, 两个覆盖区域不同的波束为发送第一帧数据的波束的差分波 束; 或者, 发送第一帧数据的波束为发送两个覆盖区域不同的波束其中一 个的差分波束。
进一歩地, 用户设备根据估计得到的发送第一帧数据的波束的信号干 扰噪音比 SINR以及发送第一导频的波束的 SINR确定基础波束, 具体包 括: 用户设备将发送第一帧数据的波束的信号干扰噪音比 SINR以及发送 第一导频的波束的 SINR中的最大值对应的波束确定为基础波束。
S104: 用户设备将基础波束标识发送给基站, 基础波束标识对应的基 础波束用于基站发送第二帧数据和第二导频。
实例一, 本实施例是建立在波束分级特征的基础之上的, 其中波束分 级可以为任意方式或任意形状, 可以随业务变化而相应调整。 该实例以初 始波束宽度 120°,60°,30°,15°,8°, 4°,2°,1°来表征波束的分级特征, 图 2为本 发明一实施例提供的波束分级示意图, 如图 2所示, 120°表示全波束覆盖 波束。 差分波束调整过程具体包括: 图 3为本发明一实施例提供的差分波 束调整示意图一, 如图 3所示, 基站以初始宽度为 30°波束发送第一数据, 同时基站还向用户设备发送第一导频, 其中发送第一导频的波束包括两个 覆盖区域不同的 15°的波束, 即两个覆盖区域不同的波束为发送第一帧数 据的波束的差分波束, 当用户设备接收到第一数据和第一导频之后, 则将 发送第一帧数据的波束的信号干扰噪音比 SINR以及发送第一导频的波束 的 SINR中的最大值对应的波束确定为基础波束, 比如, 30°波束发送的第 一数据的 SINR=10dB, 发送第一导频的波束所包括的正交波束 ID分别为 " 0"和 " 1 " , 并且 ID为 " 0" 的波束的 SINR=6dB, ID为" 1 " 的波束 的 SINR=13dB, 则用户设备向基站反馈的波束调整信息为 " 01 ", 即基础 波束为更细的 ID为 " 1 " 的波束。
实例二, 图 4为本发明一实施例提供的差分波束调整示意图二, 如图
4所示, 基站以初始宽度为 8°波束发送第一数据, 同时基站还向用户设备 发送第一导频,其中发送第一导频的波束包括 8°波束上级的两个覆盖区域 不同的 15°的波束, 即发送第一帧数据的波束为发送两个覆盖区域不同的 波束其中一个的差分波束, 当用户设备接收到第一数据和第一导频之后, 则将发送第一帧数据的波束的信号干扰噪音比 SINR以及发送第一导频的 波束的 SINR中的最大值对应的波束确定为基础波束, 比如, 8°波束发送 的第一数据的 SINR=6dB, ID为" 0 " 的波束的 SINR=8dB, ID为" 1 " 的 波束的 SINR=3dB, 则用户设备向基站反馈的波束调整信息为 " 00" , 即 基础波束为更宽的 ID为 "0 " 的波束。
实例三, 图 5为本发明一实施例提供的差分波束调整示意图三, 如图
5所示, 基站以初始宽度为 120°波束发送第一数据进行初始数据传输的波 束, 即为覆盖整个扇区的波束发送第一数据, 同时基站还向用户设备发送 第一导频,其中发送第一导频的波束包括两个覆盖区域不同的 60°的波束, 即两个覆盖区域不同的波束为发送第一帧数据的波束的差分波束, 当用户 设备接收到第一数据和第一导频之后, 则将发送第一帧数据的波束的信号 干扰噪音比 SINR以及发送第一导频的波束的 SINR中的最大值对应的波 束确定为基础波束, 比如, 120°波束发送的第一数据的 SINR=6dB, ID为 " 0" 的波束的 SINR=8dB, ID为" 1 " 的波束的 SINR=10dB, 则用户设 备向基站反馈的波束调整信息为 " 00 " , 即基础波束为更细的 ID为 " 0 " 的波束。
图 6为本发明一实施例提供的性能比较示意图, 如图 6所示, 该图为 累积分布函数图, 右侧线条为本发明的实验结果, 左侧线条为 DOA估计 算法的实验结果, 比较结果表明本发明可以确定出信号干扰噪音比更大的 波束来发送数据。
本发明提供了一种差分波束调整方法, 包括: 用户设备接收基站发送 的第一帧数据和第一导频, 然后, 估计发送第一帧数据的波束的信号干扰 噪音比 SINR以及发送第一导频的波束的 SINR,最后用户设备根据估计结 果确定基础波束标识, 并将基础波束标识发送给基站, 从而可以确定出 SINR较高的波束发送下一帧数据, 从而提高数据传输效率, 进而提高了 基站性能。
图 7为本发明另一实施例提供一种差分波束调整方法的流程图, 其中 该方法可应用于多天线传输场景, 该方法的执行主体可以为基站, 本实施 例提供的差分波束调整方法包括如下歩骤:
S701 : 基站向用户设备发送第一帧数据和第一导频。
具体地, 基站向用户设备发送第一帧数据和第一导频以使用户设备估 计发送第一帧数据的波束的信号干扰噪音比 SINR以及发送第一导频的波 束的 SINR; 其中第一帧数据包括基站向用户设备发送的数据内容, 例如: 图像、 语音等信息, 除此之外, 用户设备还接收基站发送的第一导频, 该 第一导频包括发送第二帧数据的信道信息等。
可选的, 所述发送所述第二导频的波束包括两个覆盖区域不同的波 束。
S702: 基站接收用户设备发送的基础波束标识。
具体地, 用户设备估计发送第一帧数据的波束的信号干扰噪音比 SINR以及发送第一导频的波束的 SINR。并将发送第一帧数据的波束的信 号干扰噪音比 SINR以及发送第一导频的波束的 SINR中的最大值对应的 波束确定为基础波束, 然后用户设备将该基础波束对应的基础波束 ID发 送给终端。
S703 : 基站根据基础波束标识确定发送第二帧数据的波束和第二导频 的波束。
具体地, 基站将基础波束确定为发送第二帧数据的波束; 并且两个覆 盖区域不同的波束用于发送第二导频。 进一歩地, 两个覆盖区域不同的波 束为发送第二帧数据的波束的差分波束; 或者, 发送第二帧数据的波束为 发送两个覆盖区域不同的波束其中一个的差分波束。 其中第二帧数据包括 基站在第二帧向用户设备发送的数据内容, 该第二导频包括发送第三帧数 据的信道信息等。
本发明提供了一种差分波束调整方法, 包括: 首先基站向用户设备发 送第一帧数据和第一导频, 以使用户设备确定发送第一帧数据的波束的信 号干扰噪音比 SINR以及发送第一导频的波束的 SINR中的最大值, 然后 基站接收用户设备根据最大值所对应的基础波束标识, 最后基站根据基础 波束标识确定发送第二帧数据的波束和第二导频的波束。 从而使得基站通 过 SINR较高的波束发送下一帧数据, 进而提高数据传输效率, 并且提高 了基站性能。
图 8为本发明一实施例提供的用户设备的结构示意图, 其中该用户设 备可应用于多天线传输场景, 可用于执行差分波束调整方法, 该用户设备 具体包括: 接收模块 801, 用于接收基站发送的第一帧数据和第一导频; 估计模块 802, 用于估计发送所述第一帧数据的波束的信号干扰噪音比 SINR以及发送所述第一导频的波束的 SINR; 确定模块 803, 用于根据估 计得到的所述发送所述第一帧数据的波束的信号干扰噪音比 SINR以及所 述发送所述第一导频的波束的 SINR确定基础波束标识; 发送模块 804, 用于将所述基础波束标识发送给所述基站, 所述基础波束标识对应的基础 波束用于所述基站发送第二帧数据和第二导频。
可选地, 所述发送所述第一导频的波束包括两个覆盖区域不同的波 束。所述两个覆盖区域不同的波束为所述发送所述第一帧数据的波束的差 分波束; 或者, 所述发送第一帧数据的波束为所述发送所述两个覆盖区域 不同的波束其中一个的差分波束。 进一歩地, 所述确定模块 803, 具体用于将发送所述第一帧数据的波 束的信号干扰噪音比 SINR以及发送所述第一导频的波束的 SINR中的最 大值对应的波束确定为基础波束。
本实施例提供的用户设备, 可以用于执行图 1对应差分波束调整方法 的实施技术方案, 其实现原理和技术效果类似, 此处不再赘述。
图 9为本发明一实施例提供的基站的结构示意图, 其中该用户设备可 应用于多天线传输场景,可用于执行差分波束调整方法,该基站具体包括: 发送模块 901, 用于向用户设备发送第一帧数据和第一导频, 以使所述用 户设备估计发送所述第一帧数据的波束的信号干扰噪音比 SINR以及发送 所述第一导频的波束的 SINR; 接收模块 902, 用于接收所述用户设备发送 的基础波束标识, 所述基础波束标识由所述用户设备根据估计得到的所述 发送所述第一帧数据的波束的信号干扰噪音比 SINR以及所述发送所述第 一导频的波束的 SINR确定; 确定模块 903, 用于根据所述基础波束标识 确定发送第二帧数据的波束和第二导频的波束。
可选地, 所述发送所述第二导频的波束包括两个覆盖区域不同的波 束。 所述确定模块 903, 具体用于将所述基础波束确定为发送所述第二帧 数据的波束, 所述两个覆盖区域不同的波束用于发送所述第二导频。 所述 两个覆盖区域不同的波束为所述发送所述第二帧数据的波束的差分波束; 或者, 所述发送第二帧数据的波束为所述发送所述两个覆盖区域不同的波 束其中一个的差分波束。
进一歩地, 基站在波束生成过程中, 一方面基站侧实现了对发送数据 的波束进行预编码, 另一方面, 还实现了对发送导频的波束进行预编码。
本实施例提供的基站, 可以用于执行图 7对应差分波束调整方法的实 施技术方案, 其实现原理和技术效果类似, 此处不再赘述。
最后应说明的是: 以上实施例仅用以说明本发明的技术方案, 而非对 其限制; 尽管参照前述实施例对本发明进行了详细的说明, 本领域的普通 技术人员应当理解: 其依然可以对前述各实施例所记载的技术方案进行修 改, 或者对其中部分技术特征进行等同替换; 而这些修改或者替换, 并不 使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims

权利要求书
1、 一种差分波束调整方法, 其特征在于, 包括:
用户设备接收基站发送的第一帧数据和第一导频;
所述用户设备估计发送所述第一帧数据的波束的信号干扰噪音比
SINR以及发送所述第一导频的波束的 SINR;
所述用户设备根据估计得到的所述发送所述第一帧数据的波束的信 号干扰噪音比 SINR以及所述发送所述第一导频的波束的 SINR确定基础 波束标识;
所述用户设备将所述基础波束标识发送给所述基站, 所述基础波束标 识对应的基础波束用于所述基站发送第二帧数据和第二导频。
2、 根据权利要求 1所述的方法, 其特征在于, 所述发送所述第一导 频的波束包括两个覆盖区域不同的波束。
3、 根据权利要求 2所述的方法, 其特征在于, 所述两个覆盖区域不 同的波束为所述发送所述第一帧数据的波束的差分波束; 或者,
所述发送第一帧数据的波束为所述发送所述两个覆盖区域不同的波 束其中一个的差分波束。
4、 根据权利要求 1-3任一项所述的方法, 其特征在于, 所述用户设备 根据估计得到的发送所述第一帧数据的波束的信号干扰噪音比 SINR以及 发送所述第一导频的波束的 SINR确定基础波束, 具体包括:
所述用户设备将发送所述第一帧数据的波束的信号干扰噪音比 SINR 以及发送所述第一导频的波束的 SINR中的最大值对应的波束确定为基础 波束。
5、 一种差分波束调整方法, 其特征在于, 包括:
基站向用户设备发送第一帧数据和第一导频, 以使所述用户设备估计 发送所述第一帧数据的波束的信号干扰噪音比 SINR以及发送所述第一导 频的波束的 SINR;
所述基站接收所述用户设备发送的基础波束标识, 所述基础波束标识 由所述用户设备根据估计得到的所述发送所述第一帧数据的波束的信号 干扰噪音比 SINR以及所述发送所述第一导频的波束的 SINR确定; 所述基站根据所述基础波束标识确定发送第二帧数据的波束和第二 导频的波束。
6、 根据权利要求 5所述的方法, 其特征在于, 所述发送所述第二导 频的波束包括两个覆盖区域不同的波束。
7、 根据权利要求 6所述的方法, 其特征在于, 所述基站根据所述基 础波束确定发送第二帧数据的波束和第二导频的波束, 具体包括:
所述基站将所述基础波束确定为发送所述第二帧数据的波束; 所述两个覆盖区域不同的波束用于发送所述第二导频。
8、 根据权利要求 7所述的方法, 其特征在于, 所述两个覆盖区域不 同的波束为所述发送所述第二帧数据的波束的差分波束; 或者,
所述发送第二帧数据的波束为所述发送所述两个覆盖区域不同的波 束其中一个的差分波束。
9、 一种用户设备, 其特征在于, 包括:
接收模块, 用于接收基站发送的第一帧数据和第一导频;
估计模块, 用于估计发送所述第一帧数据的波束的信号干扰噪音比
SINR以及发送所述第一导频的波束的 SINR;
确定模块, 用于根据估计得到的所述发送所述第一帧数据的波束的信 号干扰噪音比 SINR以及所述发送所述第一导频的波束的 SINR确定基础 波束标识;
发送模块, 用于将所述基础波束标识发送给所述基站, 所述基础波束 标识对应的基础波束用于所述基站发送第二帧数据和第二导频。
10、 根据权利要求 9所述的用户设备, 其特征在于, 所述发送所述第 一导频的波束包括两个覆盖区域不同的波束。
11、 根据权利要求 10所述的用户设备, 其特征在于, 所述两个覆盖 区域不同的波束为所述发送所述第一帧数据的波束的差分波束; 或者, 所述发送第一帧数据的波束为所述发送所述两个覆盖区域不同的波 束其中一个的差分波束。
12、根据权利要求 9-11任一项所述的用户设备, 其特征在于, 所述确 定模块, 具体用于将发送所述第一帧数据的波束的信号干扰噪音比 SINR 以及发送所述第一导频的波束的 SINR中的最大值对应的波束确定为基础 波束。
13、 一种基站, 其特征在于, 包括:
发送模块, 用于向用户设备发送第一帧数据和第一导频, 以使所述用 户设备估计发送所述第一帧数据的波束的信号干扰噪音比 SINR以及发送 所述第一导频的波束的 SINR;
接收模块, 用于接收所述用户设备发送的基础波束标识, 所述基础波 束标识由所述用户设备根据估计得到的所述发送所述第一帧数据的波束 的信号干扰噪音比 SINR以及所述发送所述第一导频的波束的 SINR确定; 确定模块, 用于根据所述基础波束标识确定发送第二帧数据的波束和 第二导频的波束。
14、 根据权利要求 13所述的基站, 其特征在于, 所述发送所述第二 导频的波束包括两个覆盖区域不同的波束。
15、 根据权利要求 14所述的基站, 其特征在于, 所述确定模块, 具 体用于将所述基础波束确定为发送所述第二帧数据的波束, 所述两个覆盖 区域不同的波束用于发送所述第二导频。
16、 根据权利要求 15所述的基站, 其特征在于, 所述两个覆盖区域 不同的波束为所述发送所述第二帧数据的波束的差分波束; 或者,
所述发送第二帧数据的波束为所述发送所述两个覆盖区域不同的波 束其中一个的差分波束。
PCT/CN2014/082887 2014-07-24 2014-07-24 差分波束调整方法、用户设备及基站 WO2016011634A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/082887 WO2016011634A1 (zh) 2014-07-24 2014-07-24 差分波束调整方法、用户设备及基站

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/082887 WO2016011634A1 (zh) 2014-07-24 2014-07-24 差分波束调整方法、用户设备及基站

Publications (1)

Publication Number Publication Date
WO2016011634A1 true WO2016011634A1 (zh) 2016-01-28

Family

ID=55162433

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/082887 WO2016011634A1 (zh) 2014-07-24 2014-07-24 差分波束调整方法、用户设备及基站

Country Status (1)

Country Link
WO (1) WO2016011634A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107041012A (zh) * 2016-02-03 2017-08-11 北京三星通信技术研究有限公司 基于差分波束的随机接入方法、基站设备及用户设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004028037A1 (ja) * 2002-09-20 2004-04-01 Mitsubishi Denki Kabushiki Kaisha 無線通信システム
CN101174870A (zh) * 2007-11-20 2008-05-07 华中科技大学 一种基于波束集选择的随机波束成形传输方法
CN101582710A (zh) * 2008-05-14 2009-11-18 大唐移动通信设备有限公司 一种天线模式选择方法、系统及装置
CN101674273A (zh) * 2008-09-08 2010-03-17 上海交通大学 多用户调度方法、多用户调度装置、信息反馈装置、基站和移动台

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004028037A1 (ja) * 2002-09-20 2004-04-01 Mitsubishi Denki Kabushiki Kaisha 無線通信システム
CN101174870A (zh) * 2007-11-20 2008-05-07 华中科技大学 一种基于波束集选择的随机波束成形传输方法
CN101582710A (zh) * 2008-05-14 2009-11-18 大唐移动通信设备有限公司 一种天线模式选择方法、系统及装置
CN101674273A (zh) * 2008-09-08 2010-03-17 上海交通大学 多用户调度方法、多用户调度装置、信息反馈装置、基站和移动台

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107041012A (zh) * 2016-02-03 2017-08-11 北京三星通信技术研究有限公司 基于差分波束的随机接入方法、基站设备及用户设备
CN107041012B (zh) * 2016-02-03 2022-11-22 北京三星通信技术研究有限公司 基于差分波束的随机接入方法、基站设备及用户设备

Similar Documents

Publication Publication Date Title
US10264471B2 (en) Adaptive multi-antenna data transmission method, apparatus, and system
WO2018137424A1 (zh) 上行测量参考信号的功率控制方法、网络设备及终端设备
WO2019041470A1 (zh) 大规模mimo鲁棒预编码传输方法
WO2014173301A1 (zh) 波束赋形方法和设备
JP6148793B2 (ja) 信号調整方法及び装置並びにセル
KR20130094343A (ko) 부분 채널 상태 정보를 이용한 다층 빔포밍
WO2016015282A1 (zh) 数据传输的方法和装置
CN114145052A (zh) 用于无线通信系统中的侧行链路功率控制的装置和方法
EP4022781A1 (en) Uplink beam management
WO2014171129A1 (ja) 通信システムおよび通信制御方法
US12003353B2 (en) Coverage enhanced reciprocity-based precoding scheme
WO2010072053A1 (zh) 天线协作组确定方法和装置、基站协作组确定方法和装置
US20130109431A1 (en) Method and apparatus for open loop power control
TWI759920B (zh) 非正交多重接取系統中的功率分配方法及使用所述方法的基地台
WO2014089992A1 (zh) 协作消除干扰的方法、装置及系统
Dong et al. Waveform design for communication-assisted sensing in 6G perceptive networks
WO2017118079A1 (zh) 一种双流波束赋形的方法、装置及基站
WO2016011634A1 (zh) 差分波束调整方法、用户设备及基站
TW201304448A (zh) 通訊系統中傳輸資料之方法及其第一網路節點及第二網路節點
CN107395260B (zh) 基于人造噪声的分布式安全波束成型方法及装置
US20230052506A1 (en) Method of sounding reference signal (srs)-assisted sd beam and fd vector reporting for type ii channel state information (csi)
US10111234B2 (en) Frequency assignment method and transmission apparatus therefor
CN109450506B (zh) 一种基于双路干扰信号调整的多干扰协作干扰对齐方法
KR101236078B1 (ko) 효과적으로 자기 간섭을 제거하는 릴레이 시스템 및 필터 설정 방법
US10715222B2 (en) Multi-input multi-output pilot signals

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14898213

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14898213

Country of ref document: EP

Kind code of ref document: A1