WO2016010397A1 - Method for screening anti-inflammatory drug or anti-cancer drug - Google Patents

Method for screening anti-inflammatory drug or anti-cancer drug Download PDF

Info

Publication number
WO2016010397A1
WO2016010397A1 PCT/KR2015/007454 KR2015007454W WO2016010397A1 WO 2016010397 A1 WO2016010397 A1 WO 2016010397A1 KR 2015007454 W KR2015007454 W KR 2015007454W WO 2016010397 A1 WO2016010397 A1 WO 2016010397A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
inflammatory
inflammation
cell membrane
cancer
Prior art date
Application number
PCT/KR2015/007454
Other languages
French (fr)
Korean (ko)
Inventor
백세환
전진우
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Publication of WO2016010397A1 publication Critical patent/WO2016010397A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/531Production of immunochemical test materials
    • G01N33/532Production of labelled immunochemicals

Definitions

  • the present invention relates to a method for screening an anti-inflammatory or anticancer agent, a composition for diagnosing inflammation or cancer, and a kit including the composition.
  • biosensors using cells can observe the physiological response of cells to stimuli such as heat, chemicals, shock, and infection from outside. These physiological responses have been reported to provide useful information such as cellular metabolism, cytotoxic responses to cytotoxicity, and bioavailability of drugs. In addition, because these features are circulated by metabolism, it is well suited to continuously observe the life reaction.
  • animal cell-based biosensor-based technology has the advantage of being able to be extended not only to the food field but also to the environmental fields such as agriculture, defense, fisheries and livestock, and especially in the field of animal testing such as cosmetics and pharmaceuticals.
  • As a tool for replacing animals (Asphahani and Zhang 2007).
  • cell-based biosensors are obtained by detecting electrical signal changes or pH changes caused by changes in cell metabolism and morphology to external stimuli, or by developing and emitting chemicals and enzymes secreted into and out of cells. Techniques for detecting signals have been reported. Therefore, the cell-based assays developed to date are limited to the physical or chemical reactions of cells to external stimuli and thus have low specificity and very limited applications.
  • Inflammation is a defensive reaction in the body when a living tissue is damaged, causing redness, swelling, fever, and pain in one part of the body, such as trauma, burns, and bacterial invasion.
  • inflammatory reactions are closely linked to cancer, aging, and chronic inflammatory allergic diseases (asthma, rheumatoid arthritis, Alzheimer's disease). (Inflammation suppression), and methods of treating it are of great interest.
  • a method of confirming the change in the expression level of inflammatory mediators it is possible to check the expression level of mRNA by PCR, the method by competition reaction with derivatives containing radioisotopes, chemical reaction or phosphor such as Fura2-AM. The method can be used to measure nitric oxide or cytoplasmic calcium concentration.
  • the method of confirming the activity of NF- ⁇ B, a transcriptional regulator that induces an inflammatory response can be tested for gene adhesion activity, activity according to the presence of NF- ⁇ B (in cytoplasm or nuclear membrane), and cytokine (cytokine). Immunoassay.
  • the other methods can be observed only once by crushing cells or causing cell damage through surfactant and chemical reagent treatment.
  • the method of measuring the concentration of NO discharged from the cell is low sensitivity, the method of measuring the calcium concentration inside the cell is not specific to the inflammatory response. Therefore, there is an urgent need for the development of alternative assays to observe more specific and continuous inflammatory responses.
  • the present invention detects the inflammation caused by infection using the cell membrane receptor of the animal cells, to induce inflammation in vitro and can easily analyze the biosensing method and animal cells
  • An object of the present invention is to provide an inflammation diagnosis system.
  • it provides additional methods to induce mechanisms that suppress inflammatory responses in the body, cell-friendly immunoassay methods for measuring them semi-continuously, optical measuring devices for measuring them, and representative anti-inflammatory screening methods using the same. I would like to.
  • step (1) treating the medium with a detector-marker complex that specifically binds to the cell membrane receptor;
  • the present invention also provides a method for screening an anti-inflammatory or anticancer agent.
  • the present invention provides a composition for diagnosing inflammation or cancer, comprising an animal cell having a cell membrane receptor and a detector-marker complex that specifically binds to the cell membrane receptor.
  • the present invention also provides an inflammation or cancer diagnostic kit comprising the diagnostic composition.
  • the present invention can detect infection and inflammation in vitro more specifically than conventional assays using cell membrane receptors of animal cells as a recognition component of infection and inflammation.
  • the cell-friendly measurement of infection and inflammation can be repeated on the same cell, by using it can be continuously observed the step of suppressing the inflammation induced.
  • biosensing method using the animal cells of the present invention is not only applicable to the new drug screening system for treating inflammation as suggested in the present invention, but also to continuously measure repeated infection, inflammation, and anti-inflammatory. In this case, it is possible to replace clinical experiments using experimental animals.
  • water pollutant detection system In addition, it can be widely used throughout the industry, such as water pollutant detection system, toxic substance detection system, virus detection system in livestock farms, biological process monitoring system, food production process monitoring system.
  • 1 is a diagram showing the process of cell infection through bacterial invasion.
  • Figure 2 is a diagram showing a model for inducing and measuring in vitro the process of cell infection through bacterial invasion based on animal cells.
  • 3 to 6 is a receptor for an infection present on the cell surface by infecting Shigella sonnei , a food-induced macrophage RAW264.7 cell line, in order to confirm the applicability of an animal cell-based induction model based on animal cells. Comparative analysis by measuring changes in protein level (FIG. 3) and gene level (FIG. 4) of TLR2 and changes in secretion amount of cytokines (TNF- ⁇ and IL-6), which are representative infection markers (FIG. 5, FIG. 6). It is.
  • 8 to 11 is a graph showing the results of semi-continuously observed inflammation through the TLR1 regulatory mechanism.
  • FIG. 12 to 13 shows a TLR immunoassay (FIG. 12) excluding a cell fixation process of crushing cells in order to observe inflammation continuously for the same cell (FIG. 12) and a TLR immunoassay including a cell fixation process (FIG. 13). ) Is a graph comparing.
  • FIG. 14 to 16 is a cell-friendly optical measuring device (FIG. 14) for detecting an inflammatory signal and a processing method for analyzing the measured optical signal values (FIG. 15), and through which the cells are cultured without damage (FIG. Fig. 16 shows the results obtained.
  • FIG. 17 to 18 are graphs showing the results of observing the cell-friendly inflammation continuous measurement model (FIG. 17) and two inductions of inflammation through the same cell (FIG. 18).
  • FIG. 19 to 20 is a graph inducing an inflammatory response three times in the same cell, the response was measured by TLR immunoassay (Fig. 19) and cytokine assay (Fig. 20).
  • 21 is a schematic diagram showing a schematic diagram (A, B) through which the inflammatory signal is transmitted through the NF- ⁇ B signaling process and an inflammation suppression strategy (C) using the corresponding mechanism.
  • 22 to 24 are graphs showing the results of induction of anti-inflammatory treatment by treating CAF and sodium salicylate, an analgesic antipyretic acetaminophen, to prove the anti-inflammatory model shown in FIG. 21.
  • FIG. 25 to 26 are graphs showing a method of semi-continuously measuring an anti-inflammatory response in an affinity with an animal cell (FIG. 25) and an experimental result thereof (FIG. 26).
  • 27 to 30 is a graph showing a method for testing cytotoxicity and drug persistence through animal cells.
  • TLRs Toll-like receptors
  • membrane receptors such as TLRs recognize signaling pathways that lead to the expression of various types of immune response genes, including inflammatory cytokines, by recognizing unique pathogen-associated molecular patterns (PAMPs) that only microorganisms possess. It is known to activate. Since this signaling pathway increases the expression level of cell membrane receptors, it is possible to indirectly confirm whether the inflammatory signaling pathway is activated through the expression level of the receptors, and when using this signaling pathway, the inflammatory response as in the cytokine measurement method. Screening for anti-inflammatory candidates that inhibit
  • the biosensor based on cytokine secretion or cell membrane receptor expression is not only able to measure the inflammatory response occurring in the body, but also to observe the anti-inflammatory mechanism in which inflammation is induced and suppressed because it can be continuously observed. It is possible to evaluate the performance of anti-inflammatory agents.
  • the use of regulatory mechanisms in the body it is possible to observe the continuous response of the animal cells through repeated inflammation induction and repeated anti-inflammatory treatment for it. Therefore, it is possible to conduct experiments to confirm efficacy or toxicity through repeated administration of anti-inflammatory agents, which is not possible in the one-time limited test method developed and in use.
  • the process of screening the drug can be applied to the field of personalized drug development according to the individual currently limited to the molecular diagnostic area Do.
  • an infectious agent is inoculated into a culture medium in which an animal cell is cultured, a step of treating an infected animal cell to an infected animal cell, and detection of a cell membrane receptor attached to a marker of the animal cell.
  • Immunoassay method comprising the step of reacting with the sieve, and the process of recovering the cell membrane receptor through a detector attached with a marker in the same animal cell, a method for screening inflammation and cancer inhibitors, and Provided is an optical measuring device for measuring.
  • step (1) treating the medium with a detector-marker complex that specifically binds to the cell membrane receptor;
  • the cell membrane receptor may be a TLR as an example.
  • Typical cell-based immunoassay involves fixing cells to the bottom of the plate through formaldehyde and puncturing the outer membrane of the antibody through detergent (Tween20 or Triton X-100). The process of improving accessibility is included. These processes lead to cell death due to the characteristics of the chemical reagents used.
  • the animal cell may be adherent to a solid surface, for example, may be A549, a pulmonary epithelial cell line, as a cell line attached and growing on a plate surface. It is a cell that can be cultured without additional immobilization.
  • the specific antibody to the cell membrane receptor TLR used in the immunoassay recognizes and binds a specific part of the TLR outside the cell membrane as a binding site, thereby inducing an immune response without damaging the cell membrane and increasing permeability. . Therefore, the present inventors can devise a method that excludes two processes leading to cell damage, and thus can provide a cell-friendly immunoassay method.
  • the cell-friendly immunoassay method of the present invention was intended to minimize shear stress caused by pipetting (culture medium supply device) by limiting the washing process necessary to supply the culture solution containing the antibody to three times.
  • Cell culture medium containing 10% FBS was used as a buffer to facilitate nutrient supply to the cells during the immune response.
  • the included FBS did not need an additional blocking agent because it simultaneously plays a role in reducing the non-specific signal in the immune response.
  • the antibody concentration applied at this time should utilize twice the concentration of the conventional immunoassay.
  • the cell-friendly immunoassay method described above may be used as a method for observing inflammation and anti-inflammatory reactions in the same cell semi-continuously, and the description of the immunoassay method is the same as the anti-inflammatory or anticancer screening method of the present invention described below. Can be applied.
  • the immunoassay method does not immobilize the animal cells of step (1) through chemical treatment in order to minimize the damage of the cells, and then combines the detector with the labeled factor. Thereafter, washing may be performed through a culture solution containing FBS to stabilize cells.
  • the labeling factor is not particularly limited, but may be an enzyme that generates an optical signal (hereinafter, also referred to as an “optical signal”) by a luminol emitter. That is, after the cleaning process, an optical signal may be obtained by adding a light emitter, for example, luminol.
  • the light emitter is preferably added for a very short time of about 3 minutes or less.
  • A549 a pulmonary epithelial cell line introduced in the present invention, is a cell line that is attached to and grows on a plate surface, and is a cell that can be cultured without an additional immobilization process.
  • the specific antibody to TLR used in the immunoassay recognizes and binds a specific part of the TLR existing outside the cell membrane as a binding site, thereby inducing an immune response without damaging the cell membrane and increasing permeability. Therefore, the present inventors have devised an immunoassay method that excludes two processes leading to cell damage. In order to confirm the applicability of the cell-friendly immunoassay, the present inventors conducted an experiment simultaneously with the existing immunoassay to compare the reactivity of TLRs. .
  • FIG. 12 to 13 shows a TLR immunoassay (FIG. 12) excluding a cell fixation process of crushing cells in order to observe inflammation continuously for the same cell (FIG. 12) and a TLR immunoassay including a cell fixation process (FIG. 13). ) Is a comparison. As a result, TLR analysis was possible even when the cell fixation process was excluded, and it was confirmed that the ratio of the signal value to the background under the condition was higher than the conditions including the cell fixation process.
  • the cell immunoassay was performed (FIG. 12), and the signal-to- compared with the conventional immunoassay (FIG. 13). It was confirmed that the noise ratio was improved by 25%. This difference in results is due to the low background signal value, which is the formaldehyde reagent used to immobilize the cells.
  • Formaldehyde reagents are chemical linkers that induce crosslinking of proteins with other proteins or DNA located around them, which modify the shape of some protein residues. Such modified proteins induce nonspecific binding with TLR antibodies, resulting in high background signal values.
  • these reagents were excluded from the analysis process, resulting in a low background signal, resulting in a relatively high signal-to-noise ratio.
  • the substrate is subjected to continuous oxidation regardless of the reaction over time, it is necessary to stop the enzyme reaction (treat a strong acid such as sulfuric acid) at an appropriate time (at the time when the reaction by the enzyme is saturated). This process serves to prevent the increase of the background signal that is accumulated.
  • the reagents used to stop the reaction are highly acidic and cause cell damage.
  • FIG. 14 to 16 is a cell-friendly optical measuring device (FIG. 14) for detecting an inflammatory signal and a processing method for analyzing the measured optical signal values (FIG. 15), and through which the cells are cultured without damage (FIG. 16).
  • an optical measuring device can be used for analyzing the obtained optical signal, and the optical measuring device uses a telecentric lens on a cooled-CCD. By attaching it can be designed to adjust perspective and focus (FIG. 14).
  • the above-described optical measuring device is constructed based on a cooled-CCD and a telecentric lens, but this does not limit the technical scope of the present invention.
  • Luminol is a light emitter that generates light through oxidation and is known to exhibit optimal reactivity at pH 8.5. Such Luminol emitters are known to inhibit poly (ADP-ribose) polymerase activity at 250-1000 uM concentration levels, but they are not involved in the expression of TLRs associated with inflammation. In addition, since the amount of luminol used in the luminescence reaction is a very small amount (60 pM), it is expected that it is less likely to cause cell damage and deformation.
  • the real-time cell membrane receptors are labeled through a label such as a phosphor and a quantum dot. Monitoring can be implemented to further reduce the time it takes to recognize an infection.
  • the fluorescent substance and the quantum dots, which are markers are added to the detector through a chemical method, and then an optimized amount is added before the inoculation of the infectious agent to the cultured animal cells.
  • the detector and the marker In the early inoculation, the detector and the marker rarely react with the cell membrane receptors of the animal cells, but the binding of the detector increases in proportion to the cell membrane receptor expressed on the cell surface over time after the inoculation of the infectious agent.
  • Existing enzyme immunoassay was required to remove the unreacted detector by washing step by step.
  • TLRs toll-like receptors
  • cell membrane receptors are toll-like receptors (TLRs), ion channel receptors, G-protein coupled receptors, and receptors.
  • TLRs toll-like receptors
  • RTK Receptor tyrosine kinase
  • Cytokine receptor superfamily Tyrosine phosphataase and Serine / Threonine protein kinase (Serine) / threonine protein kinases
  • the toll-like receptors are Toll-like receptor 1 (TLR 1), Toll-like receptor 2 (TLR 2) and Toll-like receptor 4 (TLR It is preferable that it is at least one selected from 4). More preferably, the cell membrane receptors may be Toll-like receptors (TLRs).
  • the detector binds to the cell membrane receptor expressed on the surface of the animal cell, and the expression level of the cell membrane receptor can be confirmed by the labeling factor attached to the detector. From animal cells are infected to play a role in determining whether the inflammatory response occurs.
  • the detector is preferably at least one selected from the group consisting of an antibody, a binding protein, a nucleic acid, an aptamer, and a peptide specifically bound to the cell membrane receptor.
  • the detector may be more preferably an antibody.
  • the marker is attached to a detector and indicates whether the detector binds to a cell membrane receptor.
  • the marker is a phosphor, a light emitter, an enzyme, a metal particle, a plastic particle, and a magnetic particle. It is preferably one or more selected from the group consisting of, more preferably an enzyme or a phosphor.
  • the phosphor includes FITC (fluorescein isothiocyanate (yellow green fluorescence), TRITC (tetramethylrhodamine isothiocyanate: red fluorescence), quantum dot (Quantum dot), and the like.
  • Luminol Luminol
  • luciferin and the like
  • the enzymes include peroxidase (horseradish, horseradish), acid phosphatase, alkaline phosphatase, and glucose oxidase (glucose).
  • oxidase the metal particles include colloidal gold
  • the plastic particles include latex beads, and the like
  • the magnetic particles include iron oxide nanoparticles, and the like. no.
  • step (1) treating the animal cell with a detector-labeled complex which specifically binds to the cell membrane receptor, and measuring the expression concentration of the cell membrane receptor;
  • step (3) treating the animal cell with a detector-labeled complex which specifically binds to the cell membrane receptor, and measuring the expression concentration of the cell membrane receptor,
  • the anti-inflammatory agent or anti-cancer agent is selected by comparing the expression concentration of the cell membrane receptors measured in step (2) and (4).
  • the screening method is preceded by the step of treating the animal cells with inflammation or cancer inducer, and then the anti-inflammatory agent or anti-cancer drug candidate.
  • inflammation is induced by an inflammation inducer, and the concentration of the expressed membrane receptor is measured through a detector-labeled factor complex.
  • sodium salicylate is treated as an anti-inflammatory candidate, and the concentration of the expressed membrane receptor is measured through a detector-labeled complex.
  • Anti-inflammatory agents can be selected by comparing two concentrations of the cell membrane receptors obtained above.
  • step (1) treating the animal cell with a detector-labeled complex which specifically binds to the cell membrane receptor;
  • step (3) treating the animal cell with a detector-labeled complex which specifically binds to the cell membrane receptor, and measuring the expression concentration of the cell membrane receptor,
  • the anti-inflammatory or anti-cancer agent screening method is characterized in that the anti-inflammatory or anti-cancer agent is selected by comparing the expression concentrations of the cell membrane receptors measured in the above (3) and (4) steps.
  • the screening method is preceded by the step of treating the animal cell anti-inflammatory agent or anti-cancer drug candidate, and then proceeds to the step of treating the inflammation or cancer inducer.
  • sodium salicylate an anti-inflammatory candidate
  • a detector-labeled complex is treated to the animal cells to measure the concentration of the expressed membrane receptor.
  • the inflammation inducer is treated with animal cells to induce inflammation, and then the detector-labeler complex is treated to measure the concentration of the expressed membrane receptor.
  • Anti-inflammatory agents can be selected by comparing two concentrations of the cell membrane receptors obtained above.
  • the cell membrane receptor, the detector, and the marker may be equally applicable to the description of the cell-friendly immunoassay method of the present invention.
  • the animal cells may be cultured in a medium.
  • the expression concentration measurement of the cell membrane receptor may be performed by acquiring an optical signal and analyzing the obtained optical signal.
  • the immunoassay method using cell membrane receptors which play a key role in the cell-friendly immunoassay method, uses specific biomaterials such as deoxyribonucleic acid (DNA) and antibodies, which are mainly used in the immunoassay method for the existing infectious agents. Rather, the innate immune response system was used directly as an infection sensor.
  • DNA deoxyribonucleic acid
  • antibodies which are mainly used in the immunoassay method for the existing infectious agents. Rather, the innate immune response system was used directly as an infection sensor.
  • the anti-inflammatory or anti-cancer agent screening method of the present invention uses an immunoassay method of the present invention that detects infection from an infectious agent quickly through a detector having specificity and high affinity for a cell membrane receptor of an animal cell.
  • Existing complex processes for determining efficacy can be simplified.
  • cell-friendly methods can be applied, the inflammatory process and anti-inflammatory process can be detected semi-continuously in the same cell, and the inflammatory response and anti-inflammatory effect can be analyzed, and even drug efficacy can be analyzed. That is, the screening method of the present invention is not a conventional one-time drug analysis method, and may also be capable of analyzing the toxicity of an anti-inflammatory agent or an anticancer agent.
  • the animal cell is a primary cell or cell line isolated from a tissue, and the primary cell or cell line is preferably an adherent cell or a floating cell.
  • the adherent cells include epithelial cells, fibroblasts and endothelial cells, and the floating cells include T-cells, B-cells, dendritic cells, and monocytes. monocyte) and macrophage, but are not limited thereto.
  • the anti-inflammatory agent may use sodium salicylate and CAPE as an example of the present invention, but this is merely exemplary and does not limit the technical scope of the present invention.
  • the anti-inflammatory agent is an anti-inflammatory agent, preferably a drug newly developed for anti-inflammatory purposes, an anti-inflammatory drug additionally expected, at least one selected from the group consisting of natural product extracts.
  • the inflammatory inducer may be a pathogenic microorganism in a form of inhibited activity as an example of the present invention, but this is merely exemplary and does not limit the technical scope of the present invention. Therefore, the induction factor is at least one selected from the group consisting of viable pathogenic microorganisms, pathogenic microorganisms inhibited by heat activity, pathogenic microorganisms inhibited by high frequency activity, and pathogen-associated molecular pattern obtained by separation and purification from pathogenic microorganisms. desirable.
  • the quantitative analysis described by the concentration analysis of the cell membrane receptor may use a statistical analysis method (one-way analysis of variance followed by Turkey's post hoc multiple range tests), and the distribution range of the effective P-value value. Can be distinguished accordingly. For example, *** very highly significant (P ⁇ 0.001), ** highly significant (P ⁇ 0.01), * significant (P ⁇ 0.05), No significance (ns) (P> 0.05).
  • the present invention provides a composition for diagnosing inflammation or cancer, comprising an animal cell having a cell membrane receptor and a detector-marker complex that specifically binds to the cell membrane receptor.
  • the inflammation or cancer diagnostic composition may be prepared based on the cell-friendly immunoassay method of the present invention, or an anti-inflammatory or anti-cancer screening method.
  • the present invention also provides an inflammation or cancer diagnostic kit comprising the diagnostic composition.
  • the inflammation or cancer diagnosis kit may be attached with a well and a marker containing an animal cell and detecting a cell membrane receptor of the animal cell. That is, the present invention provides a kit for diagnosing infection and observing inflammation and anti-inflammatory reactions using animal cells.
  • the kit may further include a capture recognition component for recognizing the infectious agent.
  • FIG. 1 to 2 are examples, a process of infecting cells through bacterial invasion (FIG. 1) and a model of inducing and measuring such infection process in vitro based on animal cells (FIG. 2).
  • NF- ⁇ B which is a transcription factor that induces an inflammatory response
  • Fig. 1 A-1 the pathogen invades
  • Fig. 1 A-1 NF- ⁇ B
  • Fig. 1 A-2 the pathogen PAMP
  • Activated NF- ⁇ B induces inflammatory response while inducing TLR expression (Fig. 1 A-4) or secrete cytokine, an inflammatory inducer (Fig. 1 A-5), and re-recognizes the inflammatory response continuously. Induces or induces an inflammatory response of surrounding cells (FIGS. 1A-6).
  • the method of inducing and measuring such an infection process in vitro is as follows (FIG. 2).
  • Infectious pathogens are added to animal cells (infectants) immobilized in a limited space and cultured (FIG. 2 B-1).
  • the injected infectious agent is specifically recognized through the TLR present on the animal cell membrane surface, and as an infection signal thereto, the expression level of the TLR is increased (Fig. 2 B-2).
  • the concentration of TLR expressed in the cell membrane was measured by sequentially reacting a specific antibody against TLR with a polymerized secondary antibody (FIG. 2 B-3), and comparing the change in expression level of TLR through comparison with normal cells. Check it.
  • TLRs Toll-like receptors
  • PAMPs pathogen-associated molecular patterns
  • Transcription factors activated by intracellular signaling increase the expression of cell membrane receptors, such as toll-like receptors (TLRs) in animal cells, to counteract further stimulation of infectious agents.
  • TLRs cell membrane receptors
  • the increased cell membrane receptors i.e., toll-like receptors (TLRs) as an example, deliver stronger warning signals of infection into cells, thereby accelerating the induction of inflammatory responses.
  • TLRs Toll-like receptors
  • TLRs Toll-like receptors
  • Activated transcription factor is also a pro-inflammatory cytokines of interleukin-1 and tumor necrosis factor- ⁇ through transcription of inflammation-related genes. , TNF- ⁇ ), Interferon- ⁇ , etc. secrete extracellularly, which stimulate other cells to induce additional inflammatory responses, leading to additional expression of Toll-like receptors (TLRs) in other cells. do.
  • animal cells were used as infectious agents as shown in FIG.
  • the model selects toll-like receptors whose expression changes through infection as cell membrane receptors, and to measure the selected cell membrane receptors, antibodies specific for toll-like receptors and secondary antibodies attached to enzymes, and substrates for the enzymes. Were reacted sequentially.
  • 3 to 6 is a receptor for an infection present on the cell surface by infecting Shigella sonnei , a food-induced macrophage RAW264.7 cell line, in order to confirm the applicability of an animal cell-based induction model based on animal cells. Comparative analysis by measuring changes in protein level (FIG. 3) and gene level (FIG. 4) of TLR2, and changes in secretion amount of cytokines (TNF- ⁇ and IL-6), which are representative infection markers (FIG. 5, FIG. 6). It is. As a result, the expression level of TLR was increased at both the protein level and the gene level according to the concentration of the infectious agent and the reaction time (Fig. 3 and Fig.
  • TLR2 TLR2-induced by treating S. sonnei , a bacterium that causes phage poisoning bacteria, to the mouse-derived macrophages, as shown in FIG. 3, the expression level of TLR2 was observed to be changed.
  • the level of TLR2 expressed with the time of inoculation of bacteria and with the population of inoculated bacteria increased, indicating that the inflammatory signal is continuously increased by the transcriptional regulator NF- ⁇ B.
  • the expression of TLR2 was further increased because animal cells and bacteria were simultaneously cultured in the cell medium.
  • the change in the expression level of the protein in the animal cell can be proved through the change in the expression level of the mRNA, which is a transcription gene for the protein.
  • the expression level of the mRNA is increased in proportion to the concentration of the inoculated bacteria. It was.
  • Figures 5 and 6 even when measuring the amount of pro-inflammatory cytokine, a reaction product of NF- ⁇ B, a transcriptional regulator activated through an infection signal, the concentration and activity of the inoculated bacteria and the time of inoculation reaction It was confirmed that the secretion amount of the cytokine according to the change. This proved that the animal cell-based in vitro experimental model established by the inventor induces infection similarly in the body and can be observed by TLR immunoassay.
  • TLR 7 is a model for continuously observing inflammation through the TLR regulatory mechanism.
  • FIGS. 1 to 6 when pathogens invade the body, signals are transmitted into cells by TLRs (FIG. 7A-1), and cytokines are activated by transcriptional regulators activated through such signaling. It is secreted (Fig. 7 A-2) or the expression level of TLR is increased (Fig. 7 A-3). This process is called up-regulation. After the infectious agents are removed, TLRs overexpressed through the up-regulation process are regulated to normal levels through the down-regulation process. ⁇ -arrestin binds preferentially to inhibit signaling of overexpressed TLRs (FIG. 7 B-1).
  • TLR bound to ⁇ -arrestin undergoes endocytosis, which is introduced into the cell by the AP2-clathrin structure (FIG. 7 B-2).
  • TLR constructs that enter the cell are combined with ubiquitin, a signal marker that induces degradation (FIG. 7 B-3), and is finally degraded by lysosome, a proteolytic organelle (FIG. 7 B-4). .
  • Membrane receptors such as toll-like receptors
  • toll-like receptors are usually present at minimal concentrations on the cell membrane surface to continuously monitor for infection by pathogens.
  • each of the toll-like receptors present at the minimum concentration level transmits an infection signal to the body through specific binding with the pathogen (FIG. 7A-1).
  • the signal transmitted to the body activates NF- ⁇ B to induce an inflammatory response in cells and secrete cytokines to induce an inflammatory response of surrounding cells (FIG. 7 A-2).
  • Fig. 7 A-3 up-regulation in preparation for further infection.
  • the down-regulation process begins with the attachment of ⁇ -arrestin, which interferes with the signaling of toll-like receptors (Fig. 7 B-1), and the desensitized toll-like receptor surrounded by the AP2-clathrin structure and into the cytoplasm. Inducing endocytosis is induced (FIG. 7 B-2).
  • the structure introduced into the cytoplasm is combined with ubiquitin, which is a signal marker for inducing proteolysis (Fig.
  • Pseudomonas a pneumonia-inducing bacterium, as an infectious agent for implementing the inflammatory continuous observation model shown in FIG. aeruginosa
  • the bacterial disruption solution, A549, a human-derived lung cell line was selected as the subject of infection, and the inflammatory response was induced in vitro, and the response of the cells was observed through changes in TLRs (FIGS. 8 to 11). After 4 hours of infection as shown in FIG. 8, the concentration of TLRs increased through the infection process was reduced to normal levels after the infection was removed and the recovery solution was supplied at the same time. It was confirmed that (Fig. 8).
  • FIG. 8 to 11 are the results of semi-continuously observed inflammation through the TLR1 regulatory mechanism.
  • the human-derived cell line, A549 lung infection mainly were utilizing the lysate of bacterial pneumonia caused by the bacteria Pseudomonas aeruginosa infectious agents. After 4 hours of infection, the infectious agent was removed and observed over 24 hours with the recovery solution, and it was confirmed that the concentration of TLR decreased to the normal level (FIG. 8). This phenomenon showed a recovery rate of nearly 80% when infected with 100-fold diluted bacteria (Fig. 9). In addition, it was possible to observe up to three repeated infections under optimized conditions (Figs. 10 and 11). However, these experimental results are limited semi-continuous observations measured by crushing several bundles of cells over time.
  • TLR immunoassay based on cell-friendly luminescence was performed, and a detector equipped with a telecentric lens was mounted on a cooled digital camera as shown in FIG. 14 to measure the signal value.
  • signal measurement sensitivity is changed according to a reference focus.
  • animal cells are attached to and grow on the surface, it is very limited to focus on the surface of each cell in the system where the surface of the cell must be measured at the top. Therefore, in order to solve this problem, a cell well plate made of a black plastic material, in which the bottom of the surface on which the cells are cultured is a highly permeable glass material and the light is not reflected, is introduced.
  • the focus of the detector is on the bottom, so that the reflected light is concentrated on the edge of the plate.
  • a circular-type signal pattern in which optical signals reflected to the bottom of the glass material are concentrated on the surface portion of the well edge may be obtained.
  • the image measured by the luminescence detector (B-1 in Fig. 15) is converted into a digital signal through a Java-based Image J program (Figs. 15B-2 and B-3), and the converted signal values are plotted graphically. (FIG. 15 B-4).
  • the cells infected with the bacterial grind fluid as shown in B-2 and B-3 of FIG. 15 were observed to exhibit the light signal by TLRs with increased expression levels. It was confirmed that only TLR was measured.
  • the cell-friendly immunoassay method of the present invention an optical signal acquisition and analysis of the application of the inflammation measurement technology through the experiment to induce inflammation in the same cell and to measure it.
  • FIG. 17 to 18 are cell-friendly inflammatory semi-continuous measurement model for the same cell (FIG. 17) and the results of observing two times of inflammation induction (FIG. 18).
  • Cell-friendly semi-continuous measurement of cell fixation step (Fig. 17 A-1), TLR concentration measurement step of the initial cell (Fig. 17 A-2), cell preparation step (Fig. 17 A-3), inflammation induction step (Fig. 17 A-4), TLR expression expressed through induction of inflammation (Fig. 17 A-5), and recovery (Fig. 17 A-6). Except for the cell immobilization step, the process is circulated sequentially to induce repeated inflammation. As a result, it was observed that inflammation was induced and recovered twice in the same cell (FIG. 18).
  • the results of the experiment were based on the immunoassay of the TLRs of the experimental group treated with the infectious agent and the control group not treated with the infectious agent. Converted to and plotted in a linear graph (Figs. 18 and 19).
  • This process was applied to the pneumonia in vitro model (model infected with P. aeruginosa , a pneumococcal agent in A549, a pulmonary epithelial cell) shown in FIGS.
  • the inflammation signal is increased compared to the background signal in the step of causing inflammation through infection, the signal value is reduced to near the normal value in the step of removing and recovering the source of infection by replacing the culture medium I could confirm it.
  • TLR immunoassay Fig. 19
  • cytokine assay Fig. 20
  • the TLR immunoassay showed a pattern in which the ratio of signal value to background increased regularly during three inflammatory response measurements (FIG. 19).
  • the signal value was constantly reduced (Fig. 20, upper curve), and IL-6 was observed in a pattern in which the signal value was kept constant (Fig. 20, Bottom curve).
  • the cytokine measurement method is a method for obtaining an immunoassay by obtaining a cell culture solution for each process in FIG. 17, and is a very simple technique for observing an inflammatory response without cell damage.
  • cytokines are secreted at very low concentrations (less than 10 pg / mL) in human-derived cells, which is very limited for inflammatory reactions.
  • a measurable level of cytokine is secreted, but the tendency is different depending on the type of cytokine.
  • the first model measures changes in the expression level of TLR in the human-derived cell line A549
  • the second model measures cytokines (IL-6) in the mouse-derived cell line RAW264.7.
  • the first model uses human-derived cell lines, which makes it very suitable for new drug screening applications (such as drug efficacy and sustainability and toxicity testing).
  • the second model which utilizes a mouse-derived cell line, is very easy to analyze, making it more suitable for environmental, harmful bacteria and virus monitoring.
  • the present invention using a cell-friendly immunoassay method of the present invention that can measure the inflammation or cancer semi-continuously screening method for selecting an anti-inflammatory agent or anti-cancer agent that suppresses the inflammatory response and carcinogenesis from anti-inflammatory agent or anti-cancer drug candidates Can provide.
  • FIG. 21 is a schematic diagram (A, B) through which the inflammatory signal is transmitted through the NF- ⁇ B signaling process and an inflammation suppression strategy (C) using the corresponding mechanism.
  • invasion of the pathogen activates the transcriptional regulator NF- ⁇ B and, as a result, secretes TLR expression (A-1) and cytokines (A-2).
  • inflammation is induced by stimulation other than infection as follows (B).
  • B-1 Through external stimulation (B-1), bradykinin, an inflammation-inducing substance present in the body, is synthesized (B-2).
  • the synthesized bradykinin is recognized by the bradykinin receptor and stimulates NF- ⁇ B (B-3).
  • Stimulated NF- ⁇ B expresses the bradykinin receptor, which induces inflammation continuously (B-4), while synthesizing another pro-inflammatory agent, prostaglandin (B-5), which promotes inflammation through vasodilation.
  • B-6 Another pro-inflammatory agent
  • the inventors inhibited the activity of NF- ⁇ B, which plays a pivotal role in the induction of inflammation (C-1), thereby inhibiting the expression of TLR and cytokines and bradykinin receptors (C-2), thereby preventing anti-inflammatory A strategy of inducing (C-3) was devised.
  • the innate immune response through TLR recognition begins when the TLR recognizes an invasion of an infectious agent.
  • TLRs specifically bind to pathogen-associated molecular patterns (PAMPs) of infectious agents to deliver foreign invasion signals into cells, and these signals activate the transcriptional regulator NF- ⁇ B.
  • PAMPs pathogen-associated molecular patterns
  • Activated NF- ⁇ B expresses cytokine, a signaling agent between cells, spreads infection to adjacent cells and increases the number of inflammatory receptors such as TLR. Induce as much as possible (infection process).
  • NF- ⁇ B is a regulator responsible for the expression of cytokine and inflammation-related protein receptors, which are known to be activated by external stimuli (e.g. burns, pain, etc.) that cause inflammation rather than infection. have.
  • bradykinin inflammatory markers that induce vasodilation
  • the binding between the bradykinin and the receptor activates NF- ⁇ B, and the activated NF- ⁇ B pathway increases the population of the bradykinin receptor, while inducing a mechanism for synthesizing another inflammatory marker, prostaglandin (inflammation) process).
  • the infection and inflammatory processes occurring in the body are induced through the NF- ⁇ B pathway, of which NF- ⁇ B activity plays a pivotal role in the mechanism of inflammation. Therefore, the present inventors control the inflammatory response through the inhibition of NF- ⁇ B activity as shown in FIG. 21C through the theoretical background that NF- ⁇ B activity significantly influences the expression of inflammation-related proteins and related receptors.
  • reagents that inhibit the activity of NF- ⁇ B in A549 cells pulmonary epithelial cells that caused inflammation through infection
  • CAPE and sodium salicylate e.g., CAPE and sodium salicylate
  • Such a cell-based inflammatory measurement system can be used as a system for screening anti-inflammatory candidates, and can be a base technology of experimental models that can replace animal experiments.
  • NF- ⁇ B is a transcriptional regulator consisting of subunit proteins such as P60 protein that binds to DNA, P50 protein that allows passage through the nuclear membrane, and I ⁇ that binds to and inhibits the activity of the two preceding proteins.
  • FIG. 22 to 24 are the results of induction of anti-inflammatory treatment by treating NF- ⁇ B inhibitors CAPE and sodium salicylate and analgesic antipyretic acetaminophen to prove the anti-inflammatory model shown in FIG.
  • CAPE used in the experiment is known to inhibit NF- ⁇ B that enters the nuclear membrane and bind to DNA, and sodium salicylate inhibits the activity of NF- ⁇ B by inhibiting the activity of an enzyme that activates NF- ⁇ B. come.
  • This phenomenon was also observed through the TLR-based inflammation measurement method (Figs. 23 and 24), in particular, the degree of inhibition was different depending on the time point of sodium salicylate treatment (Fig. 23B-1). , B-2).
  • acetaminophen which is known to not induce anti-inflammatory, did not show any difference when compared with the inflammatory signal (FIG. 24).
  • NF- ⁇ B activity in the cytoplasm is inhibited by I ⁇ .
  • I ⁇ kinase is activated, thereby removing I ⁇ .
  • NF- ⁇ B activated by the eliminated I ⁇ passes through the nuclear membrane and binds to the DNA present inside the nuclear membrane to produce inflammation-related proteins.
  • CAPE used in the experiment is an anti-inflammatory candidate substance that is known to interfere with the transcription of NF- ⁇ B that enters the nuclear membrane by binding to P65 protein.
  • Another reagent, sodium salicylate is a salicylate-based reagent that inhibits the activity of I ⁇ B kinase and maintains the binding of I ⁇ , including aspirin, which is widely known as an anti-inflammatory agent.
  • acetaminophen an analgesic antipyretic agent
  • acetaminophen an analgesic antipyretic agent
  • FIG. 23 after treatment with sodium salicylate diluted by concentration and P. aeruginosa , which is a pneumococcal bacterium, was treated with A549, which is a pulmonary epithelial cell, the amount of TLR expression was analyzed. It was confirmed that the amount of TLR expressed according to the inhibition. In particular, when the anti-inflammatory agent was first treated before infection (FIG. 23 B-2), the expression of TLR was more strongly inhibited than when the anti-inflammatory agent was simultaneously treated with the infection (Fig. 23 B-1). This means that the anti-inflammatory effect is different depending on when the anti-inflammatory agent is treated. If such a phenomenon is used, it is possible to determine when to take the anti-inflammatory agent properly.
  • TLR expression inhibitory effect anti-inflammatory effect
  • FIG. 24 C-2 when treated with analgesics (FIG. 24 C-2), it was confirmed that TLR is constantly expressed regardless of the concentration of the reagent to be treated, and experimental results indicate that the expression of TLR is limited to the activity of NF- ⁇ B.
  • FIG. 24 C-2 when treated with analgesics (FIG. 24 C-2), it was confirmed that TLR is constantly expressed regardless of the concentration of the reagent to be treated, and experimental results indicate that the expression of TLR is limited to the activity of NF- ⁇ B. could prove that.
  • FIG. 25 to 26 is a method for semi-continuously measuring the anti-inflammatory response to the cell-friendly in animal cells (Fig. 25) and the experimental results (Fig. 26).
  • Cell-friendly anti-inflammatory semi-continuous measuring method is the same as the method described in Figures 17 to 18 cell fixation (Fig. 25 A-1) and TLR concentration measurement of the initial cells (Fig. 25 A-2), cell preparation step (Fig. 25 A-3) and anti-inflammatory treatment, inflammation induction (Fig. 25 A-4), expression suppressed TLR concentration measurement (Fig. 25 A-5) and recovery (Fig. 25 A-6).
  • the re-infection of the same cells is induced and the condition is monitored semi-continuously so that the duration of the drug efficacy after treatment with the anti-inflammatory agent or the anti-inflammatory agent treatment Applicable for testing primary cytotoxicity and cumulative cytotoxicity following repeated anti-inflammatory treatments. Therefore, in order to prove the applicability of cell membrane receptor-based anti-inflammatory screening system, we selected an inflammatory standard model that induces re-infection and recovery three times, and conducted experiments in which three anti-inflammatory agents were treated in various models.
  • FIG. 27 to 30 is a method for testing cytotoxicity and drug persistence through animal cells.
  • the cytotoxicity of the inhibitor can be confirmed by the difference in signal values against the background of normal cultured cells and cells damaged by the toxicity of the inhibitor (FIG. 27), and the appropriate level of inhibitor concentration can be selected through the cytotoxicity test. It was. This reactivity was introduced into three drug sustainability test to confirm that the drug is continued without toxicity accumulated for 80 hours (Fig. 28, 29). In addition, the results of experiments with different treatment times confirmed that this pattern was not applied after 20 hours (FIG. 30).
  • anti-inflammatory treatment was performed at different times to compare the anti-inflammatory properties under each condition. As shown in FIG. 30, when the anti-inflammatory agent was treated only in the first and second circulation reactions by dividing the three inflammatory reactions according to each cycle, the ratio of the signal value to the background was different in the inflammatory induction process except the third circulation reaction. 2 was represented and 1.5 was shown in the recovery process. In the third cycle of the anti-inflammatory treatment, the ratio of 2.5 in inflammation and 2 in recovery was found. Similarly, when anti-inflammatory agents were treated in cycles 1 and 3, the rate of signal values close to the normal infection level was observed only in the second infection.
  • the ratio of the inflammatory signal value to the background signal close to 2 which is the same as the pattern recovered after the normal infection, was shown because the TLR expressed at the high level remained.
  • the concentration of the anti-inflammatory agent used in the experiment proves that there is no toxicity even if repeated use. This phenomenon cannot be attempted in the existing reaction of one-time anti-inflammatory reactions in the same cell, which means that the drug persistence test and toxicity test, which can be performed only in experimental animals, can be replaced by a cell receptor-based system. .
  • the screening test to confirm the efficacy of the drug at the same time as well as the continuity and toxicity test of the drug and iterative dosing test to repeatedly check these tests will be able to proceed at once.
  • Such a cell receptor-based complex test method is expected to replace the existing test methods using laboratory animals.
  • Biosensing using cell membrane receptors which play a key role in the inflammation-inducing system of the cells, does not use specific biomaterials such as deoxyribonucleic acid (DNA), antibodies, etc., which are mainly used in biosensing methods for infectious agents. It is characteristic that the innate immune response system was used directly as an infection sensor. In this way, complex procedures such as culturing a large number of infectious agents can be eliminated only by inoculation of the corresponding infectious agent, so that the process can be shortened and simplified.
  • DNA deoxyribonucleic acid
  • the present invention provides a biosensing method that detects infection from an infectious agent quickly through a detector having a high affinity specific to a cell membrane receptor of an animal cell, thereby simplifying existing processes for measuring infection and inflammatory responses. This allows semi-continuous detection of inflammatory and anti-inflammatory processes in the same cell.
  • TLRs Toll-like receptors
  • FBS Fetal Bovine Serum
  • penicillin-streptomycin solution Penicillin-streptomycin, 1% (v / v), final concentration
  • the medium was removed by an inhaler to remove the penicillin-streptomycin solution, that is, antibiotics, and then DPBS (+ / +) was added to 200 Wash with addition of ⁇ l. After washing, the antibiotics were removed by inhaler again, and then RPMI1640 medium serum-free medium was added to 200 ⁇ l to give starvation. It is preferable that the animal cell used in the biosensing method is in a cell starvation state.
  • the animal cell line is cultured on a cell culture substrate such as a 96-well microtiter plate and the like, and the animal cell can react sensitively to external stimuli caused by an infectious agent through a state of attachment and starvation. Play a role.
  • a mouse macrophage RAW264.7 KCLB 40071
  • DMEM Dulbecco's Modified Eagle's Medium
  • the penicillin-streptomycin solution i.e., the medium was removed with an inhaler for antibiotic removal, followed by washing with 200 ⁇ l of DPBS (+ / +), followed by removal of the remaining antibiotics with the inhaler, and serum-free for each cell. 200 ⁇ l of the medium was added to starvation for 1 hour.
  • Live food poisoning bacteria (Sigella) for infection sonnei ) and high-frequency pulverized bacterial lysate ( Pseudomonas aeruginosa ) was diluted to the concentrations indicated in the serum-free medium used for each animal cell, and 200 ⁇ l of each well was inoculated to perform infection for the indicated time under the same conditions as described above. Wells with no addition of infectious agents were used as controls. At the end of each infection time, medium and Escherichia coli were removed through an inhaler, and washed once with Dulbecco's Phosphate Buffered Saline / modified with Calcium and Magnesium (DPBS (+ / +)) in 200 ⁇ l.
  • DPBS (+ / + Dulbecco's Phosphate Buffered Saline / modified with Calcium and Magnesium
  • Infected cells were treated with 100 ⁇ l of 4% formalin solution for 30 minutes at room temperature to fix the infected cells in the wells.
  • DPBS Dulbecco's Phosphate Buffered Saline / modified without Calcium and Magnesium
  • TLR rabbit polyclonal antibody that specifically binds to TLR was used at a rate of 1/300 using Casein-PBS (Casein-PBS-Tw) containing 0.1% (v / v) tween 20. After diluting and dispensing 100 ⁇ l each reaction for 1 hour under the same conditions, discard the reaction solution and washed three times by 200 ⁇ l three times using phosphate buffer solution (PBST) containing 0.1% tween 20. Removed.
  • Casein-PBS Casein-PBS
  • PBST phosphate buffer solution
  • HRP conjugated goat anti-rabbit IgG a secondary antibody
  • HRP conjugated goat anti-rabbit IgG was also diluted to a ratio of 1/5000 using Casein-PBS (Casein-PBS-Tw) containing 0.1% (v / v) tween 20, and then 100 ⁇ l each. After dispensing and reacting for 1 hour under the same conditions, the resultant was washed three times with PBST in the same manner.
  • TLRs Two gene sequences (5-TTGCTCCTGCGAACTCCTAT-3 and 5-AGCCTGGTGACATTCCAAGA-3) for TLRs were designed for real-time polymerase chain reaction, respectively.
  • the indicator was inserted through.
  • Real-time polymerase chain reaction was performed using Applied Biosystems' ABI 7500 Real-Time PCR System, and the conditions of use were as follows. Procedure 1: 50 ° C for 2 minutes and 95 ° C for 10 minutes, Process 2: 95 ° C for 15 seconds and 60 ° C for 1 minute. Procedures 1 and 2 were repeated 40 times.
  • a cytokine immunoassay kit sold by R & D system was used to measure TNF- ⁇ and IL-6 secreted from infected cells.
  • Inactivated S. sonnei bacteria and bacteria inactivated by treatment with antibacterial proclin300 were diluted with DMEM medium and treated with mouse macrophage RAW264.7 for a predetermined time as described in Example 2 to induce an inflammatory response.
  • Example 7 In order to observe the inflammation semi-continuously by using the TLR control mechanism shown in Figure 7, preferentially by dispensing 200 ⁇ L of medium without FBS to the cell culture well cultured in several bundles of animal cell lines as in Example 1 Cell starvation was induced for 2 hours under conditions maintained at 37 ° C. and carbon dioxide (CO 2 ). In some cell line bundles induced cell starvation, the cells were immobilized as in Example 3, and then a color-immune response to TLR was performed. The rest of the cell line was maintained at a temperature of 37 ° C. and carbon dioxide (CO 2 ) by 200 ⁇ l of serum-free medium diluted with infectious agents by removing the medium after the preparation period in which the cells were starved. Infected for 4 hours under conditions.
  • Example 3 In some infected cell line bundles, the cells were immobilized as in Example 3, and then a color-immunized reaction was performed. The remaining cell line bundle was washed three times through a medium containing 10% FBS after infection, and the wells were washed with 200 ⁇ l of 10% FBS-containing medium at 37 ° C. and carbon dioxide (CO 2). ) Recovery reaction was induced for 24 hours under the condition of 5%. Each cell line bundle was subjected to colorimetric reaction as in Example 3 in 6-hour units as shown in FIG. As a control, a bundle of cell lines that did not induce infection was prepared, and the ratio of the inflammatory signal value to the background signal value was calculated and plotted in FIG. 9.
  • the maximum recovery rate is the ratio of the expression level of TLR decreased during the recovery process to the expression level of TLR increased during the infection process.
  • the semi-continuous observation of such limited inflammation was repeated twice and three times, and the results are graphically plotted in FIGS. 10 and 11.
  • infected cells were washed three times with 200 ⁇ l each using Dulbecco's Phosphate Buffered Saline / modified without Calcium and Magnesium (DPBS (-/-)), followed by TLR binding specifically to TLR.
  • Rabbit polyclonal antibody was diluted at a rate of 1/100 using a medium containing 10% FBS (RPI1640 for A549, DMEM for RAW264.7), and 100 ⁇ l were dispensed under the same conditions. After reacting for 1 hour, the reaction solution was discarded and unreacted antibody was removed by washing three times with 200 ⁇ l using the same medium.
  • HRP conjugated goat anti-rabbit IgG a secondary antibody, was also diluted at a rate of 1/2500 using a medium containing 5% FBS, and then reacted for 1 hour under the same conditions. Washed twice.
  • a solution for generating a luminescence signal was prepared by mixing a solution of Supersignal West Femto sold by Thermo Fisher Scientific in a ratio of 1: 1, and the inventors at a point in time after 3 minutes by dispensing 200 ⁇ l of the light emitting substrate solution. Measured using an optical measuring device based on a cooled CCD camera (Fig. 14). After luminescence measurement was completed, the remaining substrate was removed by washing three times with 200 ⁇ l using a medium containing 10% FBS.
  • Example 7 In order to measure cell-friendly inflammation semi-continuously in the same cell (A549) as shown in Figure 7 (A), an inflammatory response was induced as in Example 2, and cells for TLR as shown in Example 7 Friendly enzyme luminescence immunoassay was performed. To measure initially expressed TLR, after cell adhesion process (before cell preparation period), cell-friendly enzyme luminescence immunoassay was performed, and after enzyme preparation, inflammatory response, and recovery, Luminescent immunoassay was performed. Sequential enzyme luminescence immunoassay was performed on cells that did not react with the infectious agent as a control.
  • the cycle was performed up to two or three times and is graphically illustrated in FIGS. 18 and 19.
  • the same procedure was applied to RAW264.7 cells, and the pattern of cytokines secreted was measured and analyzed as in Example 5 and illustrated in FIG. 20.
  • the anti-inflammatory response was induced by treating an inflammatory response-induced cell with an NF- ⁇ B inhibitor as in Example 2, and measured.
  • Sodium salicylate and CAPE were selected as NK- ⁇ B inhibitors, and sodium salicylate was diluted in serum-free medium to prepare 500 mM standard solution, and CAPE was diluted in DMSO to prepare 180 mM standard solution.
  • Example 2 cells fixed on the cell culture well surface for 24 hours were washed with 200 ⁇ l of DPBS (+ / +), and the remaining antibiotics were removed by inhaler again.
  • 200 ⁇ l of the inhibitor diluted by concentration is added to the serum-free medium and treated for 2 hours.
  • the bacterial lysate was reacted in the same manner as in Example 2, and signal values were measured by colorimetric immunoassay shown in Example 3.
  • the negative control group did not induce inflammation
  • the positive control group was selected for the case of induction of inflammation without treatment with an inhibitor, and the experiments were conducted simultaneously under the same conditions.
  • the results are shown in bar graphs in FIGS. 23B-1 and 24C-1.
  • the same experiment was performed by treating acetaminophen but not NF- ⁇ B inhibitor, and the results are shown in (C-2) of FIG. 24.
  • the serum-free medium containing no inhibitors is treated for 2 hours before inducing inflammation, followed by bacterial crushing fluids that induce inflammation and inhibitors that inhibit inflammation. It was mixed and treated. The result is shown in FIG.
  • Example 10 Semi-continuous on the same cell Anti-inflammatory reaction Induction and measurement

Landscapes

  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Food Science & Technology (AREA)
  • Biochemistry (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Toxicology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

The present invention relates to a method for screening an anti-inflammatory drug or anti-cancer drug, a composition for inflammation or cancer diagnosis, and a kit comprising the composition, and relates to a method capable of: detecting inflammation and cancer in vitro more specifically compared with an existing analysis method, using a cell membrane receptor of animal cells as a recognition component of inflammation and cancer; being cell-interactive; performing repetitive measurements on the same cells; and continuously observing a step in which inflammation and cancer are induced and inhibited.

Description

소염제 또는 항암제 스크리닝 방법Anti-inflammatory or anticancer screening method
본 발명은 소염제 또는 항암제 스크리닝 방법, 염증 또는 암 진단용 조성물 및 상기 조성물을 포함하는 키트에 관한 것이다.The present invention relates to a method for screening an anti-inflammatory or anticancer agent, a composition for diagnosing inflammation or cancer, and a kit including the composition.
해마다 전 세계적으로 많은 수의 동물들이 인간을 위한 실험에 사용되고 있다. 쥐, 기니피그 등의 설치류부터 토끼, 개, 고양이, 소, 돼지, 침팬지 등 다양한 종류의 동물이 의료산업이나 신약 개발은 물론, 학교, 군사시설, 산업시설, 화장품과 생활 용품 등 사회전반에 걸쳐 이루어지는 실험을 위해 희생된다. 많은 동물실험이 단순한 지적 호기심 충족, 법적 소송에 대한 방어 수단, 또는 경비 절감 등을 이유로 대체실험법이 있음에도 불구하고 윤리적 고려 없이 행해지고 있으며, 그 중 화장품에 대한 동물실험이 가장 대표적인 예이다.Every year, a large number of animals are used worldwide for human experiments. Various kinds of animals such as rodents such as rats and guinea pigs, rabbits, dogs, cats, cows, pigs, and chimpanzees are used throughout the entire society, including medical and new drug development, as well as schools, military facilities, industrial facilities, cosmetics and daily necessities. Sacrificed for the experiment. Many animal experiments are conducted without ethical considerations, although there are alternative experiments for reasons such as simply satisfying intellectual curiosity, defending against legal proceedings, or reducing costs, and animal experiments on cosmetics are the most representative examples.
현재는 동물을 이용하지 않는 대체실험의 개발로 인해 동물실험으로만 가능했던 화장품의 안전성을 검증하는 일을 보다 적은 비용으로 더 빠르고 정확하게 진행하고 있다. 그 예시로 토끼의 눈에 반복적으로 약물을 투여했던 안점막 테스트는 유정란을 사용해 혈관의 변화를 평가해 자극 정도를 판단하는 HET-CAM 테스트나 인공 모델을 사용하는 테스트 등으로 대체되었다. 그러나 이와 같이 일회성에 한정시키는 검사법의 경우 대체실험방안들이 있긴 하지만, 여전히 반복적인 투여를 통해 얻어지는 효능이나 독성을 확인하기에는 문제점이 있기 때문에 동물을 이용한 실험이 여전히 선행되고 있다. 또한 화장품과 같은 기능성 제품이 아닌 생사에 관련된 제약분야의 제품의 경우, 인간에게 적용되는 임상실험 전에 동물을 이용한 임상실험이 반드시 수행되어야만 한다. 하지만 동물실험이 선행된 경우라도, 동물과 인간 간의 서로 다른 면역체계에 기인한 면역거부반응 등의 문제점이 여전히 대두되고 있다. 따라서 이와 같은 문제점을 해결 가능한 대체실험방안들의 개발이 매우 시급한 실정이다.At present, the development of alternative experiments that do not use animals is now more quickly and accurately verifying the safety of cosmetics that were only possible with animal experiments. For example, the ocular mucosa test, which was repeatedly administered to a rabbit's eye, was replaced by a HET-CAM test using an egg and a test using an artificial model to evaluate blood vessel changes to determine the degree of stimulation. However, in the case of such a one-time limiting test method, there are alternative test methods, but there is still a problem in confirming the efficacy or toxicity obtained through repeated administration, and experiments using animals are still preceded. In addition, in the case of pharmaceutical products related to life and death, not functional products such as cosmetics, clinical trials using animals must be performed before clinical trials applied to humans. However, even if animal testing is preceded, problems such as immune rejection due to different immune systems between animals and humans are still emerging. Therefore, it is very urgent to develop alternative experimental methods that can solve such problems.
최근 들어 대상물질 분석방법의 핵심 감지체로 사용되던 유전자 또는 항체를 대신해 인간 세포와 동물세포를 이용하여 균, 독소, 환경호르몬 및 유해화합물 등의 분석물질을 탐지할 수 있는 동물세포 기반 바이오센서의 개념이 새롭게 대두되고 있다. 세포를 이용한 바이오센서의 특징은 살아있는 세포를 통해 외부로부터 열, 화학물질, 충격, 감염 등의 자극에 대한 세포의 생리학적인 반응을 관찰할 수가 있다는 점이다. 이런 생리학적인 반응을 통해 세포의 물질대사(cellular metabolism), 세포독성에 대한 세포의 응답(cytotoxic responses) 및 약물의 생리학적인 이용 효능(bioavailability) 등과 같은 유용한 정보를 얻을 수 있음이 보고 되고 있다. 또한 이러한 특징은 대사작용에 의해 순환되기 때문에 지속적으로 생명반응을 관찰하기에 매우 적합하다.The concept of an animal cell-based biosensor that can detect analytes such as bacteria, toxins, environmental hormones, and harmful compounds by using human cells and animal cells instead of genes or antibodies, which have recently been used as core detectors of target substance analysis methods. This is emerging. A characteristic of biosensors using cells is that they can observe the physiological response of cells to stimuli such as heat, chemicals, shock, and infection from outside. These physiological responses have been reported to provide useful information such as cellular metabolism, cytotoxic responses to cytotoxicity, and bioavailability of drugs. In addition, because these features are circulated by metabolism, it is well suited to continuously observe the life reaction.
따라서 동물세포 기반의 바이오센서 기반기술은 식품 분야뿐만 아니라, 농업, 국방, 수산 및 축산 등과 같은 환경분야로 확대시킬 수 있는 장점을 가지고 있으며, 특히 화장품과 제약분야 같이 동물실험을 수행하는 분야에서는 실험동물을 대체하기 위한 도구로써 각광받고 있다 (Asphahani and Zhang 2007).Therefore, animal cell-based biosensor-based technology has the advantage of being able to be extended not only to the food field but also to the environmental fields such as agriculture, defense, fisheries and livestock, and especially in the field of animal testing such as cosmetics and pharmaceuticals. As a tool for replacing animals (Asphahani and Zhang 2007).
하지만 현재까지의 세포 기반 바이오센서 동향은 대부분 외부자극에 대한 세포의 대사 및 형태 변화로부터 야기되는 전기적인 신호변화 또는 pH 변화를 감지하거나, 세포 내외로 분비되는 화학물질 및 효소를 발색, 발광시킴으로써 얻어지는 신호를 감지하는 기술들이 보고되고 있다. 따라서 현재까지 개발된 세포기반의 분석방법은 외부 자극에 대한 세포의 물리적 또는 화학적인 반응에 국한하기 때문에 특이성이 낮고, 적용 가능한 응용분야가 매우 한정적이다.However, the current trend of cell-based biosensors is obtained by detecting electrical signal changes or pH changes caused by changes in cell metabolism and morphology to external stimuli, or by developing and emitting chemicals and enzymes secreted into and out of cells. Techniques for detecting signals have been reported. Therefore, the cell-based assays developed to date are limited to the physical or chemical reactions of cells to external stimuli and thus have low specificity and very limited applications.
염증은 생체 조직이 손상을 입었을 때 체내에서 일어나는 방어적 반응으로 외상이나 화상, 세균 침입 따위로 몸의 한 부위에 충혈, 부종, 발열, 통증을 일으키는 증상이다. 최근 들어 염증반응이 암과 노화촉진, 그리고 만성적인 염증성 알러지 질환(천식,류마티스관절염, 알츠하이머)과 밀접하게 연결되어있다는 연구결과가 다수 보고되고 있어, 체내의 염증반응을 연속적으로 측정하고 제어하는 연구(염증억제), 그리고 이를 치료하는 방법들이 큰 관심을 받고 있다.Inflammation is a defensive reaction in the body when a living tissue is damaged, causing redness, swelling, fever, and pain in one part of the body, such as trauma, burns, and bacterial invasion. Recently, many studies have reported that inflammatory reactions are closely linked to cancer, aging, and chronic inflammatory allergic diseases (asthma, rheumatoid arthritis, Alzheimer's disease). (Inflammation suppression), and methods of treating it are of great interest.
기존에 사용 중이던 염증관찰 방법들은 염증성 매개체들의 발현량 변화를 확인하는 방법과 염증반응을 유도하는 전사조절인자인 NF-κB의 활성을 확인하는 방법이 있다.Existing inflammatory observation methods are used to confirm the expression level changes of inflammatory mediators and the activity of NF-κB, a transcriptional regulator that induces inflammatory responses.
염증성 매개체들의 발현량 변화를 확인하는 방법으로는 PCR을 이용해 mRNA의 발현수준을 확인하는 방법, 방사선동위원소가 포함된 유도체와의 경쟁반응을 통해 확인하는 방법, 화학반응 혹은 Fura2-AM과 같은 형광체를 이용하여 nitric oxide 혹은 cytoplasmic calcium concentration를 측정하는 방법 등이 있다. 또한 염증반응을 유도하는 전사조절인자인 NF-κB의 활성을 확인하는 방법으로는 유전자 부착활성 검사, NF-κB의 존재위치(세포질 혹은 핵막 내부)에 따른 활성검사, 사이토카인(cytokine)에 대한 면역분석 등이 있다.As a method of confirming the change in the expression level of inflammatory mediators, it is possible to check the expression level of mRNA by PCR, the method by competition reaction with derivatives containing radioisotopes, chemical reaction or phosphor such as Fura2-AM. The method can be used to measure nitric oxide or cytoplasmic calcium concentration. In addition, the method of confirming the activity of NF-κB, a transcriptional regulator that induces an inflammatory response, can be tested for gene adhesion activity, activity according to the presence of NF-κB (in cytoplasm or nuclear membrane), and cytokine (cytokine). Immunoassay.
사이토카인을 측정하는 방법을 제외한 나머지 방법들은 세포를 파쇄하거나 계면활성제 및 화학시약처리를 통해 세포 손상을 유발하여 일회성으로만 염증을 관찰 가능하다. 또한 세포에서 배출되는 NO의 농도를 측정하는 방법의 경우 측정민감도가 낮으며, 세포 내부의 칼슘농도를 측정하는 방법은 염증반응에만 특이적이지 않다. 따라서 보다 특이적이면서 연속적으로 염증반응 관찰하는 대체 측정법의 개발이 절실히 요구되고 있다. Except for the measurement of cytokines, the other methods can be observed only once by crushing cells or causing cell damage through surfactant and chemical reagent treatment. In addition, the method of measuring the concentration of NO discharged from the cell is low sensitivity, the method of measuring the calcium concentration inside the cell is not specific to the inflammatory response. Therefore, there is an urgent need for the development of alternative assays to observe more specific and continuous inflammatory responses.
상기와 같은 종래의 문제점을 해결하고자, 본 발명은 감염을 통해 유발되는 염증을 동물세포의 세포막 수용체를 활용하여 탐지함으로써, 체외에서 염증을 유도하고 이를 간편하게 분석할 수 있는 바이오센싱 방법 및 동물세포를 이용한 염증 진단시스템을 제공하는 것을 목적으로 한다. 또한 이를 활용하여 체내에서 염증반응을 억제하는 기작을 유도하는 방법과 이를 반연속적으로 측정하기 위한 세포친화적인 면역분석방법, 이를 측정하기 위한 광학측정기기, 그리고 이를 활용하는 대표적인 소염제 스크리닝 방법을 추가적으로 제공하고자 한다.In order to solve the conventional problems as described above, the present invention detects the inflammation caused by infection using the cell membrane receptor of the animal cells, to induce inflammation in vitro and can easily analyze the biosensing method and animal cells An object of the present invention is to provide an inflammation diagnosis system. In addition, it provides additional methods to induce mechanisms that suppress inflammatory responses in the body, cell-friendly immunoassay methods for measuring them semi-continuously, optical measuring devices for measuring them, and representative anti-inflammatory screening methods using the same. I would like to.
상기 목적을 달성하기 위하여 본 발명은, The present invention to achieve the above object,
(1) 세포막 수용체를 갖는 동물세포가 배양된 배지에 염증 또는 암 유도 인자를 처리하는 단계;(1) treating an inflammation or cancer inducing factor in a medium in which animal cells having a cell membrane receptor are cultured;
(2) 상기 (1) 단계 후에, 상기 배지에 상기 세포막 수용체와 특이적으로 결합하는 탐지체-표지인자 복합체를 처리하는 단계;(2) after step (1), treating the medium with a detector-marker complex that specifically binds to the cell membrane receptor;
(3) 상기 복합체 처리 후 광학신호를 획득하는 단계; 및(3) acquiring an optical signal after the complex processing; And
(4) 상기 획득된 광학신호 분석을 통해 염증 또는 암을 측정하는 것을 특징으로 하는 세포친화적인 면역분석방법을 제공한다.(4) provides a cell-friendly immunoassay method characterized by measuring the inflammation or cancer through the obtained optical signal analysis.
또한, 본 발명은 소염제 또는 항암제 스크리닝 방법을 제공한다.The present invention also provides a method for screening an anti-inflammatory or anticancer agent.
또한, 본 발명은 세포막 수용체를 갖는 동물세포 및 상기 세포막 수용체에 특이적으로 결합하는 탐지체-표지인자 복합체를 포함하는 염증 또는 암 진단용 조성물을 제공한다.In another aspect, the present invention provides a composition for diagnosing inflammation or cancer, comprising an animal cell having a cell membrane receptor and a detector-marker complex that specifically binds to the cell membrane receptor.
또한, 본 발명은 상기 진단용 조성물을 포함하는 염증 또는 암 진단 키트를 제공한다.The present invention also provides an inflammation or cancer diagnostic kit comprising the diagnostic composition.
본 발명은 동물세포의 세포막 수용체를 감염 및 염증의 인식성분으로 이용하여 기존 분석방법에 비해 보다 특이적으로 체외에서 감염 및 염증을 탐지할 수 있다. 또한 세포친화적으로 감염 및 염증을 측정하기 때문에 동일세포 상에서 반복적인 측정이 가능하고, 이를 활용하여 염증이 유도되는 단계부터 억제되는 단계를 지속적으로 관찰 가능하다.The present invention can detect infection and inflammation in vitro more specifically than conventional assays using cell membrane receptors of animal cells as a recognition component of infection and inflammation. In addition, since the cell-friendly measurement of infection and inflammation can be repeated on the same cell, by using it can be continuously observed the step of suppressing the inflammation induced.
또한, 본 발명의 동물세포를 이용한 바이오센싱 방법을 통해 상기 발명에서 제시한 바와 같이 염증을 치료하는 신약 스크리닝 시스템에 적용 가능할 뿐만 아니라 반연속적으로 반복 감염 및 염증 그리고 소염을 측정 가능하기 때문에 연구가 지속될 경우 실험동물을 이용한 임상실험을 대체 가능하다.In addition, the biosensing method using the animal cells of the present invention is not only applicable to the new drug screening system for treating inflammation as suggested in the present invention, but also to continuously measure repeated infection, inflammation, and anti-inflammatory. In this case, it is possible to replace clinical experiments using experimental animals.
또한 본 발명에서 사용된 세포주를 대신하여 사람에게서 추출한 초대세포(primary cell)를 활용하여, 약을 선별하는 과정을 진행하면 현재 분자 진단 영역에만 국한되어 있는 개개인에 따른 맞춤형 의약품개발 분야에도 적용이 가능하다.In addition, by using a primary cell extracted from humans in place of the cell line used in the present invention, if the process of screening the drug can be applied to the field of personalized drug development according to the individual currently limited to the area of molecular diagnostics Do.
그 외에도 수질 오염물질 탐지 시스템, 독성물질 탐지 시스템, 축산농가에서의 바이러스 탐지 시스템, 생물공정 모니터링 시스템, 식품 생산공정 모니터링 시스템 등 산업 전반에서 널리 활용될 수 있다.In addition, it can be widely used throughout the industry, such as water pollutant detection system, toxic substance detection system, virus detection system in livestock farms, biological process monitoring system, food production process monitoring system.
도 1은 박테리아 침입을 통해 세포가 감염되는 과정을 나타낸 그림이다.1 is a diagram showing the process of cell infection through bacterial invasion.
도 2는 박테리아 침입을 통해 세포가 감염되는 과정을 동물세포를 기반으로 체외에서 유도하고 이를 측정하는 모델을 나타낸 그림이다.Figure 2 is a diagram showing a model for inducing and measuring in vitro the process of cell infection through bacterial invasion based on animal cells.
도 3 내지 도 6은 동물세포 기반의 감염유도 체외모델의 적용가능성을 확인하기 위해 쥐 유래 대식세포인 RAW264.7 세포주에 식중독유발균인 Shigella sonnei를 감염시켜 세포표면에 존재하는 감염에 대한 수용체인 TLR2의 단백질 수준(도 3)과 유전자 수준(도 4)의 변화, 그리고 대표적인 감염마커인 사이토카인(TNF-α와 IL-6)의 분비량의 변화(도 5, 도 6)를 측정하여 비교분석한 것이다.3 to 6 is a receptor for an infection present on the cell surface by infecting Shigella sonnei , a food-induced macrophage RAW264.7 cell line, in order to confirm the applicability of an animal cell-based induction model based on animal cells. Comparative analysis by measuring changes in protein level (FIG. 3) and gene level (FIG. 4) of TLR2 and changes in secretion amount of cytokines (TNF-α and IL-6), which are representative infection markers (FIG. 5, FIG. 6). It is.
도 7은 TLR 조절기작을 통해 염증을 연속적으로 관찰하는 모델이다. 7 is a model for continuously observing inflammation through the TLR regulatory mechanism.
도 8 내지 도 11은 TLR1 조절기작을 통해 제한적으로 염증을 반연속적으로 관찰한 결과를 나타낸 그래프이다.8 to 11 is a graph showing the results of semi-continuously observed inflammation through the TLR1 regulatory mechanism.
도 12 내지 도 13은 동일세포에 대해 반연속적으로 염증을 관찰하기 위해, 세포를 파쇄하는 세포고정화 과정을 배제한 TLR 면역분석결과(도 12)와 세포고정화 과정이 포함된 TLR 면역분석결과(도 13)를 비교한 그래프이다.12 to 13 shows a TLR immunoassay (FIG. 12) excluding a cell fixation process of crushing cells in order to observe inflammation continuously for the same cell (FIG. 12) and a TLR immunoassay including a cell fixation process (FIG. 13). ) Is a graph comparing.
도 14 내지 도 16은 세포친화적으로 염증신호를 검출하기 위한 광학측정기기(도 14)와 측정된 광학신호 값을 분석하는 처리방법(도 15), 그리고 이를 통해 세포가 손상 없이 배양되는 모습(도 16)을 제시한 결과를 나타낸 도면이다.14 to 16 is a cell-friendly optical measuring device (FIG. 14) for detecting an inflammatory signal and a processing method for analyzing the measured optical signal values (FIG. 15), and through which the cells are cultured without damage (FIG. Fig. 16 shows the results obtained.
도 17 내지 도 18은 동일세포에 대한 세포친화적인 염증 연속측정 모델(도 17)과 이를 통해 2회에 걸친 염증유도를 관찰한 결과(도 18)를 나타낸 그래프이다.17 to 18 are graphs showing the results of observing the cell-friendly inflammation continuous measurement model (FIG. 17) and two inductions of inflammation through the same cell (FIG. 18).
도 19 내지 도 20은 동일세포에서 3회에 걸쳐 염증반응을 유도하고, 이러한 반응을 TLR 면역분석법(도 19)과 사이토카인 측정법(도 20)을 통해 측정한 그래프이다.19 to 20 is a graph inducing an inflammatory response three times in the same cell, the response was measured by TLR immunoassay (Fig. 19) and cytokine assay (Fig. 20).
도 21은 NF-κB 신호전달과정을 통해 염증신호가 전달되는 모식도(A,B)와 해당기전을 활용한 염증억제 전략(C)을 나타낸 구성도이다.21 is a schematic diagram showing a schematic diagram (A, B) through which the inflammatory signal is transmitted through the NF-κB signaling process and an inflammation suppression strategy (C) using the corresponding mechanism.
도 22 내지 도 24는 도 21에서 제시된 소염모델을 증명하고자, NF-κB 활성저해제인 CAPE와 sodium salicylate 그리고 진통해열제인 acetaminophen을 처리하여 소염을 유도한 결과를 나타낸 그래프이다.22 to 24 are graphs showing the results of induction of anti-inflammatory treatment by treating CAF and sodium salicylate, an analgesic antipyretic acetaminophen, to prove the anti-inflammatory model shown in FIG. 21.
도 25 내지 26은 동물세포에서 세포친화적으로 소염반응을 반연속적으로 측정하는 방법(도 25)과 그에 대한 실험결과(도 26)를 나타낸 그래프이다.25 to 26 are graphs showing a method of semi-continuously measuring an anti-inflammatory response in an affinity with an animal cell (FIG. 25) and an experimental result thereof (FIG. 26).
도 27 내지 30은 동물세포를 통해 세포독성과 약효 지속성을 검사하는 방안을 나타낸 그래프이다.27 to 30 is a graph showing a method for testing cytotoxicity and drug persistence through animal cells.
세포의 면역계는 각각 기능과 역할이 다른 선천성(innate)과 적응성(adaptive) 면역계로 나누어진다. 톨-유사 수용체(Toll-like Receptor, TLR)는 선천성 면역계를 담당하는 세포막 수용체로서, 감염 후 즉각적으로 활성화되어 감염 미생물의 증식을 재빨리 조절할 수 있으므로 림프구가 감염을 담당할 때까지의 감염 초기를 담당한다. 최근 인체의 방어 기전에서 선천성 면역계가 매우 중요하며, 근본적 기능을 한다는 것이 점차 분명해지고 있으며 선천성 면역계의 상호작용과 적응성 면역계에 대한 선천성 면역계의 조절 기능이 더욱 중요한 임상적 의미를 갖게 되었다.The cell's immune system is divided into innate and adaptive immune systems, each with a different function and role. Toll-like receptors (TLRs) are cell membrane receptors responsible for the innate immune system, which are activated immediately after infection and can quickly control the growth of infecting microorganisms, thus responsible for the early stage of infection until lymphocytes are responsible for infection. do. Recently, the innate immune system is very important in the defense mechanism of the human body, it is becoming increasingly clear that the fundamental function, and the innate immune system interaction and adaptive function of the innate immune system has become more important clinical significance.
이 중에서도 TLR과 같은 세포막 수용체들은 미생물들만 보유하고 있는 특이한 병원체연관 분자패턴(pathogen associated molecular patterns(PAMPs))을 인식해 염증성 사이토카인을 포함하는 다양한 종류의 면역반응 유전자를 표현하도록 유도하는 신호전달 경로를 활성화하는 것으로 알려져 있다. 이러한 신호전달 경로는 세포막 수용체들의 발현량을 증가시키기 때문에 수용체들의 발현량을 통해 염증 신호전달 경로가 활성화되었는지를 간접적으로 확인 가능하며, 이러한 신호전달 경로를 활용할 경우 사이토카인 측정방법에서와 같이 염증반응을 억제하는 소염제 후보군들의 선별이 가능하다.Among these, membrane receptors such as TLRs recognize signaling pathways that lead to the expression of various types of immune response genes, including inflammatory cytokines, by recognizing unique pathogen-associated molecular patterns (PAMPs) that only microorganisms possess. It is known to activate. Since this signaling pathway increases the expression level of cell membrane receptors, it is possible to indirectly confirm whether the inflammatory signaling pathway is activated through the expression level of the receptors, and when using this signaling pathway, the inflammatory response as in the cytokine measurement method. Screening for anti-inflammatory candidates that inhibit
또한 세포막 수용체들은 체내의 조절기작에 의해 자극의 세기에 따라 발현되는 양이 증가하거나 감소하기 때문에 이를 측정 마커로 활용할 경우, 체내에서 연속적으로 일어나는 대사작용을 지속적으로 관찰할 수 있다. 따라서 사이토카인 분비 혹은 세포막 수용체 발현을 기반으로 하는 바이오센서는 체내에서 발생하는 염증반응의 측정이 가능할 뿐만 아니라, 이에 대한 연속적인 관찰이 가능하기 때문에 염증이 유도되었다가 억제되는 소염기작의 관찰 및 이를 통한 소염제의 성능평가가 가능하다. 또한 체내의 조절기작을 활용할 경우, 반복적인 염증유도와 그에 대한 반복적인 소염제 처리를 통해 동물세포의 연속적인 반응관찰이 가능하게 된다. 따라서 기존에 개발되어 사용중인 일회성에 한정된 검사법에서는 불가능한 소염제 반복투여를 통한 효능이나 독성을 확인하는 실험 등을 실시하는 것이 가능하게 된다.In addition, since cell membrane receptors increase or decrease the amount expressed according to the intensity of stimulation by the regulatory mechanism in the body, when used as a measurement marker, it is possible to continuously observe the metabolism continuously occurring in the body. Therefore, the biosensor based on cytokine secretion or cell membrane receptor expression is not only able to measure the inflammatory response occurring in the body, but also to observe the anti-inflammatory mechanism in which inflammation is induced and suppressed because it can be continuously observed. It is possible to evaluate the performance of anti-inflammatory agents. In addition, the use of regulatory mechanisms in the body, it is possible to observe the continuous response of the animal cells through repeated inflammation induction and repeated anti-inflammatory treatment for it. Therefore, it is possible to conduct experiments to confirm efficacy or toxicity through repeated administration of anti-inflammatory agents, which is not possible in the one-time limited test method developed and in use.
더 나아가, TLR에 대한 agonist를 활용하여 선천성 면역계를 활성화 시킬 때 암이 억제된다는 연구결과와 antagonist를 활용하여 선천성 면역계의 활성을 저해시킬 때는 알츠하이머와 류마티스관절염을 포함한 만성염증 억제효과가 있다는 연구결과가 다수 보고되고 있다. 따라서 선천성 면역계의 활성을 조절에 주요인자인 TLR 연구를 지속할 경우 새로운 타입의 항암제와 항염증제의 개발 가능성이 있다.Furthermore, studies have shown that cancer is inhibited when activating the innate immune system using agonist against TLR and that chronic inflammatory effects including Alzheimer's and rheumatoid arthritis are inhibited when antagonist is used to inhibit the innate immune system. Many have been reported. Therefore, there is a possibility of developing new types of anticancer drugs and anti-inflammatory drugs if we continue TLR research, which is a major factor in regulating the innate immune system activity.
또한 본 발명에서 사용된 세포주를 대신하여 사람에게서 추출한 초대세포(primary cell)를 활용하여, 약을 선별하는 과정을 진행하면 현재 분자진단영역에만 국한되어 있는 개개인에 따른 맞춤형 의약품개발 분야에도 적용이 가능하다.In addition, by using the primary cells extracted from humans in place of the cell line used in the present invention, if the process of screening the drug can be applied to the field of personalized drug development according to the individual currently limited to the molecular diagnostic area Do.
이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.
본 발명은 체외에서 염증의 측정을 가능하게 하고자 감염원이 동물세포가 배양된 배지에 접종되는 단계와 염증억제물질을 감염된 동물세포에 처리하는 단계, 상기 동물세포의 세포막 수용체가 표지인자가 부착된 탐지체와 반응되는 단계, 그리고 상기 세포막 수용체가 회복되는 과정을 동일 동물세포에서 표지인자가 부착된 탐지체를 통해 확인하는 단계가 포함되는 면역분석방법, 염증 및 암 억제 물질을 선별하는 방법, 그리고 이를 측정하는 광학측정기기를 제공한다.In order to enable the measurement of inflammation in vitro, an infectious agent is inoculated into a culture medium in which an animal cell is cultured, a step of treating an infected animal cell to an infected animal cell, and detection of a cell membrane receptor attached to a marker of the animal cell. Immunoassay method comprising the step of reacting with the sieve, and the process of recovering the cell membrane receptor through a detector attached with a marker in the same animal cell, a method for screening inflammation and cancer inhibitors, and Provided is an optical measuring device for measuring.
보다 상세하게 본 발명은,In more detail, the present invention,
(1) 세포막 수용체를 갖는 동물세포가 배양된 배지에 염증 또는 암 유도 인자를 처리하는 단계;(1) treating an inflammation or cancer inducing factor in a medium in which animal cells having a cell membrane receptor are cultured;
(2) 상기 (1) 단계 후에, 상기 배지에 상기 세포막 수용체와 특이적으로 결합하는 탐지체-표지인자 복합체를 처리하는 단계;(2) after step (1), treating the medium with a detector-marker complex that specifically binds to the cell membrane receptor;
(3) 상기 복합체 처리 후 광학신호를 획득하는 단계; 및(3) acquiring an optical signal after the complex processing; And
(4) 상기 획득된 광학신호 분석을 통해 염증 또는 암을 측정하는 것을 특징으로 하는 세포친화적인 면역분석방법을 제공한다.(4) provides a cell-friendly immunoassay method characterized by measuring the inflammation or cancer through the obtained optical signal analysis.
상기 세포막 수용체는 일례로서 TLR일 수 있는데, 살아있는 세포의 TLR 발현(expression) 변화를 연속적으로 탐지하기 위해서는 세포 손상을 유발하는 화학적 세포 고정화와 세포막 침투성 증가과정을 배제시킨 새로운 세포 면역분석방법의 고안이 필요하였다. 일반적인 세포 기반의 면역분석법은 포름알데히드(formaldehyde)를 통해 세포를 플레이트(plate)의 바닥에 고정시키는 과정과 detergent(Tween20 or Triton X-100)를 통해 세포 외막에 구멍을 뚫어 대상 마커에 대한 항체의 접근성을 향상시키는 과정이 포함된다. 이와 같은 과정들은 사용되는 화학시약들의 특성에 의해 세포가 손상되어 세포사멸로 이어지게 된다. The cell membrane receptor may be a TLR as an example. In order to continuously detect changes in TLR expression of living cells, a novel cellular immunoassay method that excludes chemical cell immobilization and cell membrane permeability that causes cellular damage has been devised. Needed. Typical cell-based immunoassay involves fixing cells to the bottom of the plate through formaldehyde and puncturing the outer membrane of the antibody through detergent (Tween20 or Triton X-100). The process of improving accessibility is included. These processes lead to cell death due to the characteristics of the chemical reagents used.
상기 동물세포는 고체 표면에 부착성이 있는 것일 수 있는데, 일례로서 플레이트(plate) 표면에 부착되어 생장하는 세포주로서 폐상피세포주인 A549일 수 있다. 이는 추가적인 고정화 과정이 없이 배양이 가능한 세포이다. 또한 면역분석에 사용되는 세포막 수용체 TLR에 대한 특이항체는 세포막 외부에 존재하는 TLR의 특정부분을 결합 자리(binding site)로 인식하여 결합하기 때문에 세포막을 훼손시켜 침투성을 증가시키지 않아도 면역반응이 유도된다. 따라서 본 발명자는 세포 손상을 가져오는 두 가지 과정을 배제시킨 방법을 고안할 수 있었고 따라서 세포친화적인 면역분석방법을 제공할 수 있다.The animal cell may be adherent to a solid surface, for example, may be A549, a pulmonary epithelial cell line, as a cell line attached and growing on a plate surface. It is a cell that can be cultured without additional immobilization. In addition, the specific antibody to the cell membrane receptor TLR used in the immunoassay recognizes and binds a specific part of the TLR outside the cell membrane as a binding site, thereby inducing an immune response without damaging the cell membrane and increasing permeability. . Therefore, the present inventors can devise a method that excludes two processes leading to cell damage, and thus can provide a cell-friendly immunoassay method.
본 발명의 세포친화적인 면역분석방법은 일실시예로서 항체가 포함된 배양액을 공급할 때 필요한 세척과정을 3번으로 제한하여 파이펫팅(배양액 공급기기)에 의한 전단 응력(shear stress)을 최소화하고자 하였고, 10% FBS가 포함된 세포배양액을 버퍼(buffer)로 활용하여 면역반응 동안 세포에 영양분 공급이 원활하게 되도록 하였다. 이때 포함된 FBS는 면역반응에서 비특이한 신호를 감소시키는 역할을 동시에 수행하기 때문에 추가적인 차단제(blocking agent)가 필요하지 않았다. 단 이때 적용되는 항체 농도는 기존의 면역분석법보다 2배 높은 농도를 활용해야 한다. The cell-friendly immunoassay method of the present invention was intended to minimize shear stress caused by pipetting (culture medium supply device) by limiting the washing process necessary to supply the culture solution containing the antibody to three times. Cell culture medium containing 10% FBS was used as a buffer to facilitate nutrient supply to the cells during the immune response. At this time, the included FBS did not need an additional blocking agent because it simultaneously plays a role in reducing the non-specific signal in the immune response. However, the antibody concentration applied at this time should utilize twice the concentration of the conventional immunoassay.
상술한 세포친화적인 면역분석방법은 동일세포에서 반연속적으로 염증과 소염 반응 등을 관찰하기 위한 방안으로 이용될 수 있으며, 후술하는 본 발명의 소염제 또는 항암제 스크리닝 방법에 이러한 면역분석방법의 설명을 동일하게 적용할 수 있다.The cell-friendly immunoassay method described above may be used as a method for observing inflammation and anti-inflammatory reactions in the same cell semi-continuously, and the description of the immunoassay method is the same as the anti-inflammatory or anticancer screening method of the present invention described below. Can be applied.
상기 면역분석방법은 세포의 손상을 최소화하기 위해 상기 (1) 단계의 동물세포에 화학처리를 통한 고정화를 실시하지 않으며, 이후 표지인자가 부착된 탐지체를 결합시킨다. 이후, 세포 안정화를 도모하는 FBS가 포함된 배양액을 통해 세척을 하는 과정을 포함할 수 있다. 이때, 상기 표지인자는 특별히 한정하지 않으나 일례로서 루미놀(Luminol) 발광체에 의해 광학신호(이하 '광신호' 라고도 함)를 발생하는 효소일 수 있다. 즉, 상기 세척 과정 후에 발광체, 일례로서 루미놀을 첨가하여 광학신호를 획득할 수 있다. 상기 발광체는 약 3 분 이하의 매우 짧은 시간 동안 첨가하는 것이 바람직하다.The immunoassay method does not immobilize the animal cells of step (1) through chemical treatment in order to minimize the damage of the cells, and then combines the detector with the labeled factor. Thereafter, washing may be performed through a culture solution containing FBS to stabilize cells. At this time, the labeling factor is not particularly limited, but may be an enzyme that generates an optical signal (hereinafter, also referred to as an “optical signal”) by a luminol emitter. That is, after the cleaning process, an optical signal may be obtained by adding a light emitter, for example, luminol. The light emitter is preferably added for a very short time of about 3 minutes or less.
살아있는 세포의 TLR 발현(expression) 변화를 연속적으로 탐지하기 위해서는 세포 손상을 유발하는 화학적 세포 고정화와 세포막 침투성 증가과정을 배제시킨 새로운 세포 면역분석방법의 고안이 필요하였다. 일반적인 세포 기반의 면역분석법은 포름알데히드(formaldehyde)를 통해 세포를 플레이트(plate)의 바닥에 고정시키는 과정과 detergent(Tween20 or Triton X-100)를 통해 세포 외막에 구멍을 뚫어 대상 마커에 대한 항체의 접근성을 향상시키는 과정이 포함된다. 이와 같은 과정들은 사용되는 화학시약들의 특성에 의해 세포가 손상되어 세포사멸로 이어지게 된다. 본 발명에서 도입된 폐상피세포주인 A549는 플레이트(plate) 표면에 부착되어 생장하는 세포주로서, 추가적인 고정화 과정이 없이 배양이 가능한 세포이다. 또한 면역분석에 사용되는 TLR에 대한 특이항체는 세포막 외부에 존재하는 TLR의 특정부분을 결합 자리(binding site)로 인식하여 결합하기 때문에 세포막을 훼손시켜 침투성을 증가시키지 않아도 면역반응이 유도된다. 따라서 본 발명자는 세포 손상을 가져오는 두 가지 과정을 배제시킨 면역분석방법을 고안하였으며, 이러한 세포친화적인 면역분석법의 적용가능성을 확인하고자 기존의 면역분석법과 동시에 실험을 진행하여 TLR의 반응성을 비교하였다.The continuous detection of TLR expression in living cells required the design of new cellular immunoassays that eliminated chemical cell immobilization and increased membrane permeability, which cause cell damage. Typical cell-based immunoassay involves fixing cells to the bottom of the plate through formaldehyde and puncturing the outer membrane of the antibody through detergent (Tween20 or Triton X-100). The process of improving accessibility is included. These processes lead to cell death due to the characteristics of the chemical reagents used. A549, a pulmonary epithelial cell line introduced in the present invention, is a cell line that is attached to and grows on a plate surface, and is a cell that can be cultured without an additional immobilization process. In addition, the specific antibody to TLR used in the immunoassay recognizes and binds a specific part of the TLR existing outside the cell membrane as a binding site, thereby inducing an immune response without damaging the cell membrane and increasing permeability. Therefore, the present inventors have devised an immunoassay method that excludes two processes leading to cell damage. In order to confirm the applicability of the cell-friendly immunoassay, the present inventors conducted an experiment simultaneously with the existing immunoassay to compare the reactivity of TLRs. .
도 12 내지 도 13은 동일세포에 대해 반연속적으로 염증을 관찰하기 위해, 세포를 파쇄하는 세포고정화 과정을 배제한 TLR 면역분석결과(도 12)와 세포고정화 과정이 포함된 TLR 면역분석결과(도 13)를 비교한 것이다. 그 결과 세포고정화 과정을 배제한 경우에서도 TLR 분석이 가능하며, 해당 조건에서의 배경 대비 신호 값의 비율이 세포고정화 과정을 포함한 조건보다 더 높은 것을 확인하였다.12 to 13 shows a TLR immunoassay (FIG. 12) excluding a cell fixation process of crushing cells in order to observe inflammation continuously for the same cell (FIG. 12) and a TLR immunoassay including a cell fixation process (FIG. 13). ) Is a comparison. As a result, TLR analysis was possible even when the cell fixation process was excluded, and it was confirmed that the ratio of the signal value to the background under the condition was higher than the conditions including the cell fixation process.
도 12 내지 도 13에서와 같이 100배 희석시킨 세포 분쇄액을 4시간 동안 반응시킨 이후, 세포 면역분석을 실시한 경우(도 12), 기존의 면역분석을 실시한 경우(도 13) 대비 signal-to-noise ratio값이 25% 향상된 것을 확인할 수 있었다. 이와 같은 결과값의 차이는 낮은 배경신호 값에 의한 것으로, 이러한 배경신호를 유발하는 것은 세포를 고정화시킬 때 사용되는 포름알데히드(formaldehyde) 시약이다. 포름알데히드 시약은 단백질과 그 주변에 위치한 다른 단백질 혹은 DNA와의 교차 결합을 유도하는 화학 링커(chemical linker)로서, 일부 단백질 잔기들의 형태를 변형시킨다. 이와 같이 변형된 단백질들은 TLR 항체와의 비특이적인 결합을 유도하며, 이를 통해 높은 배경신호 값을 나타낸다. 하지만 세포친화적인 면역분석법의 경우 이러한 시약을 분석과정에서 배제하였기 때문에 낮은 배경신호를 얻게 되었으며, 이를 통해 상대적으로 높은 signal-to-noise ratio값을 지닌다. After the cell pulverized solution diluted 100-fold for 4 hours as shown in FIGS. 12 to 13, the cell immunoassay was performed (FIG. 12), and the signal-to- compared with the conventional immunoassay (FIG. 13). It was confirmed that the noise ratio was improved by 25%. This difference in results is due to the low background signal value, which is the formaldehyde reagent used to immobilize the cells. Formaldehyde reagents are chemical linkers that induce crosslinking of proteins with other proteins or DNA located around them, which modify the shape of some protein residues. Such modified proteins induce nonspecific binding with TLR antibodies, resulting in high background signal values. However, in the case of cell-friendly immunoassays, these reagents were excluded from the analysis process, resulting in a low background signal, resulting in a relatively high signal-to-noise ratio.
추가적으로 세포의 손상 없이 TLR을 측정하고자, horseradish peroxidase(HRP)의 광기질 촉매반응을 이용하여 신호를 생성하는 기술을 도입하는 것도 가능하다. 앞서 서술된 발명조건에서 사용된 발색면역분석법은 탐지항체에 중합되어 있는 효소인 HRP를 통해 환원제인 과산화수소가 기질인 3,3',5,5'-tetramethylbenzidine (TMB)을 산화시키는 작용을 촉진시켜 색상이 변하는 원리를 이용한다. 이와 같은 원리는 분석시료 내의 대상물질의 존재 여부를 확인하는 방법으로 널리 사용된다. 하지만 기질의 경우 시간이 지남에 따라 반응과 상관없이 지속적인 산화작용이 발생되기 때문에 적절한 시간(효소에 의한 반응이 포화되는 시점)에서 효소반응을 정지(황산과 같은 강산을 처리함)시켜야 한다. 이와 같은 과정은 누적되어 발생되는 배경신호의 증가를 방지하는 역할을 한다. 하지만 반응정지를 위해 사용되는 시약들은 강한 산성을 지니기 때문에 세포의 손상이 유발된다. In addition, in order to measure TLRs without damaging the cells, it is also possible to introduce a technique for generating signals using photo-catalytic catalysis of horseradish peroxidase (HRP). The chromogenic immunoassay used in the above-described invention conditions promoted the action of oxidizing 3,3 ', 5,5'-tetramethylbenzidine (TMB), a substrate of reducing hydrogen peroxide, through HRP, an enzyme polymerized in a detection antibody. Use the principle of changing color. This principle is widely used as a method of confirming the presence of a target substance in an analytical sample. However, because the substrate is subjected to continuous oxidation regardless of the reaction over time, it is necessary to stop the enzyme reaction (treat a strong acid such as sulfuric acid) at an appropriate time (at the time when the reaction by the enzyme is saturated). This process serves to prevent the increase of the background signal that is accumulated. However, the reagents used to stop the reaction are highly acidic and cause cell damage.
도 14 내지 도 16은 세포친화적으로 염증신호를 검출하기 위한 광학측정기기(도 14)와 측정된 광학신호 값을 분석하는 처리방법(도 15), 그리고 이를 통해 세포가 손상 없이 배양되는 모습(도 16)을 제시한 결과이다. 14 to 16 is a cell-friendly optical measuring device (FIG. 14) for detecting an inflammatory signal and a processing method for analyzing the measured optical signal values (FIG. 15), and through which the cells are cultured without damage (FIG. 16).
즉, 본 발명의 세포친화적인 면역분석방법에서, 획득된 광학 신호 분석을 위해 광학측정기기를 이용할 수 있으며, 상기 광학측정기기는 냉각 디지털 카메라(cooled-CCD)에 텔레센트릭(telecentric) 렌즈를 부착하여 원근감과 초점을 조절하도록 설계할 수 있다(도 14). 상술한 광학측정기기는 냉각 디지털 카메라(cooled-CCD)와 텔레센트릭(telecentric) 렌즈를 기반으로 구축하였지만, 이는 본 발명의 기술적 범위를 한정하는 것은 아니다.That is, in the cell-friendly immunoassay method of the present invention, an optical measuring device can be used for analyzing the obtained optical signal, and the optical measuring device uses a telecentric lens on a cooled-CCD. By attaching it can be designed to adjust perspective and focus (FIG. 14). The above-described optical measuring device is constructed based on a cooled-CCD and a telecentric lens, but this does not limit the technical scope of the present invention.
상기 광학측정기기를 통해 촬영된 세포 영상(도 15 B-1)은 염증 정도에 따라 발광하는 빛의 세기가 다르기 때문에(도 15 B-2, B-3), 상용화된 프로그램을 통해 빛의 밀도차이를 수치 값으로 환산하여 그래프로 작성하였다(도 15 B-4). 또한 현미경을 통한 세포관찰을 통해 발광신호검출방법 기반의 염증면역분석이 세포 손상을 유도하지 않는다는 결과를 얻을 수 있었다(도 16 C-1, C-2, C-3). 반면에 기존에 사용되었던 발색기반의 염증면역분석법은 세포의 손상을 유도하여 세포가 유실되는 결과를 얻었다(도 16 C-4). 이와 같은 현상은 도 16에서와 같이 현미경을 통해서도 쉽게 관찰 가능하다  Since the cell image (FIG. 15 B-1) photographed by the optical measuring device varies in intensity of light emitted according to the degree of inflammation (FIG. 15 B-2 and B-3), the density of light through a commercially available program. The difference was converted into a numerical value and graphed (FIG. 15 B-4). In addition, through the microscopic cell observations, inflammatory immunoassay based on the luminescence signal detection method did not induce cell damage (Fig. 16 C-1, C-2, C-3). On the other hand, the color-based inflammatory immunoassay that was used previously induced cell damage and resulted in cell loss (Fig. 16 C-4). Such a phenomenon can be easily observed through a microscope as in FIG.
따라서 본 발명에서는 다른 종류의 기질을 선별하여 세포의 손상 없이 신호를 생성하는 발광기술을 도입하게 되었다. 루미놀(Luminol)은 산화작용을 통해 광을 생성하는 발광체로서, pH 8.5에서 최적의 반응성을 나타내는 것으로 알려져 있다. 이와 같은 루미놀(Luminol) 발광체는 250 내지 1000 uM 농도 수준에서 poly(ADP-ribose) polymerase 활성을 저해한다고 알려져 있지만, 이는 염증과 관련된 TLR의 발현에는 관여하지 않는다. 또한 발광 반응 시 사용되는 루미놀의 양은 극소량(60 pM)이기 때문에 세포 손상 및 변형을 유발할 가능성이 적을 것으로 예상된다. Therefore, the present invention has introduced a light-emitting technology that selects a different type of substrate and generates a signal without damaging the cells. Luminol is a light emitter that generates light through oxidation and is known to exhibit optimal reactivity at pH 8.5. Such Luminol emitters are known to inhibit poly (ADP-ribose) polymerase activity at 250-1000 uM concentration levels, but they are not involved in the expression of TLRs associated with inflammation. In addition, since the amount of luminol used in the luminescence reaction is a very small amount (60 pM), it is expected that it is less likely to cause cell damage and deformation.
부가적으로 산화 스트레스(oxidative stress)를 유발하는 것으로 알려진 환원제인 과산화수소의 경우, 세포에 매우 짧은 시간 (3분 이내) 노출시키고, HRP의 촉매반응에 의해 기질과 매우 빠르게 반응하여 H2O로 변환되기 때문에 세포 손상을 유도할 가능성은 매우 희박하다. 실제로 도 16과 같이 현미경과 Janus green B method(미토콘드리아 염색법)를 통해 발광시약과 반응한 이후의 세포활성(도 16 C-3)을 측정한 결과 정상세포(도 16 C-1, C-2)와 동일한 것으로 확인되었다.In addition, hydrogen peroxide, a reducing agent known to cause oxidative stress, is exposed to cells for a very short time (within 3 minutes), and reacts very quickly with the substrate by HRP catalysis to convert to H 2 O. The likelihood of inducing cell damage is very slim. In fact, after the reaction with the light-emitting reagent through the microscope and Janus green B method (mitochondrial staining method) as shown in Figure 16 as a result of measuring the cell activity (Fig. 16 C-1, C-2) It was confirmed that the same as.
나아가, 본 발명에서는 톨-유사 수용체(TLRs)와 같은 세포막 수용체와 결합되는 탐지체에 효소를 이용한 효소면역분석법의 다단계 절차가 아닌, 형광체 및 양자점(Quantum dot) 등의 표지를 통하여 실시간 세포막 수용체의 모니터링을 구현하여 감염을 인지하는데 소요되는 시간을 더욱 단축시킬 수 있다. Furthermore, in the present invention, rather than a multi-step procedure of enzyme-immunoassay using an enzyme in a detector that binds to cell membrane receptors such as Toll-like receptors (TLRs), the real-time cell membrane receptors are labeled through a label such as a phosphor and a quantum dot. Monitoring can be implemented to further reduce the time it takes to recognize an infection.
즉, 상기 탐지체에 표지인자인 형광체 및 양자점을 화학적 방법을 통해 상호결합을 시킨 후, 동물세포가 배양된 곳에 감염원 접종 전 미리 최적화된 양을 첨가하여 준다. 접종 초기에는 상기 탐지체와 표지인자는 동물세포의 세포막 수용체와 반응을 거의 하지 않지만, 감염원 접종 후 시간이 지남에 따라 세포 표면에 발현되는 세포막 수용체에 비례하여 탐지체의 결합이 증가하게 된다. 기존 효소면역분석에서는 단계별로 세척을 하여 미반응 탐지체의 제거가 필수적으로 요구되었다. 그러나 형광체 및 양자점 등을 이용한 복합체의 적용 시에는 세척/분리 등의 공정이 없이 특정 파장대의 빛을 지속적으로 조사하여 세포막 수용체와 결합된 탐지체의 형광체 및 양자점 등을 여기(excitation)시킨다. 이로써 감지되는 형광신호를 측정하여 추가적인 탐지체를 이용하지 않고도 실시간으로 세포막 수용체의 변화를 감지할 수 있는 시스템을 구축할 수 있다. 따라서, 감염원의 접종만으로도 세포막 수용체인 톨-유사 수용체(TLRs) 등의 발현 양상을 실시간으로 관찰하는 것이 가능하게 됨으로써, 기존의 복잡한 식중독 발병 박테리아 등의 분석법을 동물세포를 기반으로 한 분석방법으로 변화시킬 수 있다.That is, the fluorescent substance and the quantum dots, which are markers, are added to the detector through a chemical method, and then an optimized amount is added before the inoculation of the infectious agent to the cultured animal cells. In the early inoculation, the detector and the marker rarely react with the cell membrane receptors of the animal cells, but the binding of the detector increases in proportion to the cell membrane receptor expressed on the cell surface over time after the inoculation of the infectious agent. Existing enzyme immunoassay was required to remove the unreacted detector by washing step by step. However, when applying a complex using a phosphor and a quantum dot, and excitation of the fluorescent substance and the quantum dot of the detector coupled to the cell membrane receptor by continuously irradiating light in a specific wavelength band without the process of washing / separation. This enables the construction of a system that can detect changes in cell membrane receptors in real time without the use of additional detectors by measuring the detected fluorescence signal. Therefore, the expression of toll-like receptors (TLRs), which are cell membrane receptors, can be observed in real time only by inoculation of an infectious agent, thereby changing the existing methods of complex food poisoning-causing bacteria and other methods based on animal cells. You can.
상기 본 발명의 세포친화적인 면역분석방법에서 세포막 수용체는 톨-유사 수용체(Toll-like Receptor, TLRs), 이온채널 수용체(Ion channel receptor), G-단백질 결합 수용체(G-protein coupled receptor), 리셉터 구아닐일 시클라아제(Receptor guanylyl cyclase), 리셉터 티로신 키나아제(Receptor tyrosine kinase, RTK), 사이토카인 리셉터 슈퍼패밀리(Cytokine receptor superfamily), 티로신 포스파타아제(Tyrosine phosphatases) 및 세린/트레오닌 프로테인 키나아제(Serine/threonine protein kinases)로 이루어진 군에서 선택되는 하나 이상인 것이 바람직하며, 상기 톨-유사 수용체는 톨-유사 수용체 1(TLR 1), 톨-유사 수용체 2(TLR 2) 및 톨-유사 수용체 4(TLR 4)로부터 선택되는 하나 이상인 것이 바람직하다. 더욱 바람직하게 상기 세포막 수용체는 톨-유사 수용체(Toll-like Receptor, TLRs)일 수 있다.In the cell-friendly immunoassay method of the present invention, cell membrane receptors are toll-like receptors (TLRs), ion channel receptors, G-protein coupled receptors, and receptors. Guanylyl cyclase, Receptor tyrosine kinase (RTK), Cytokine receptor superfamily, Tyrosine phosphataase and Serine / Threonine protein kinase (Serine) / threonine protein kinases) is preferably at least one selected from the group consisting of, the toll-like receptors are Toll-like receptor 1 (TLR 1), Toll-like receptor 2 (TLR 2) and Toll-like receptor 4 (TLR It is preferable that it is at least one selected from 4). More preferably, the cell membrane receptors may be Toll-like receptors (TLRs).
상기 본 발명의 세포친화적인 면역분석방법에서 상기 탐지체는 동물세포의 표면에서 발현되는 세포막 수용체와 결합하며, 탐지체에 부착되는 표지인자에 의하여 세포막 수용체의 발현 정도를 확인할 수 있고, 궁극적으로 감염원으로부터 동물세포가 감염되어 염증 반응이 일어나는지 여부를 확인할 수 있는 역할을 한다. 이때, 상기 탐지체는 상기 세포막 수용체와 특이적으로 결합되는 항체, 결합 단백질, 핵산, 압타머(Aptamer) 및 펩티드로 이루어진 군에서 선택되는 하나 이상인 것이 바람직하다. 상기 탐지체는 보다 바람직하게는 항체일 수 있다.In the cell-friendly immunoassay method of the present invention, the detector binds to the cell membrane receptor expressed on the surface of the animal cell, and the expression level of the cell membrane receptor can be confirmed by the labeling factor attached to the detector. From animal cells are infected to play a role in determining whether the inflammatory response occurs. In this case, the detector is preferably at least one selected from the group consisting of an antibody, a binding protein, a nucleic acid, an aptamer, and a peptide specifically bound to the cell membrane receptor. The detector may be more preferably an antibody.
상기 본 발명의 세포친화적인 면역분석방법에서 상기 표지인자는 탐지체에 부착되어 상기 탐지체의 세포막 수용체에 대한 결합 여부를 나타내는 물질로, 형광체, 발광체, 효소, 금속입자, 플라스틱 입자 및 자성입자로 이루어진 군에서 선택되는 하나 이상인 것이 바람직하며, 보다 바람직하게는 효소 또는 형광체일 수 있다. 구체적으로 상기 형광체는 FITC(fluorescein isothiocyanate:황녹색 형광), TRITC(tetramethylrhodamine isothiocyanate:적등색 형광), 양자점 (Quantum dot) 등이 있고, 상기 발광체는 디페닐옥살레이트(Diphenyl oxalate, Cyalume), 루미놀(Luminol), 루시페린(Luciferin) 등이 있고, 상기 효소는 퍼옥시다아제(Peroxidase, Horseradish(서양고추냉이) 등), 산성포스파타아제(acid phosphatase), 알칼리성포스파타아제(alkaline phosphatase), 글루코오스옥시다아제(glucose oxidase) 등이 있고, 상기 금속입자는 콜로이달골드(colloidal gold) 등이 있고, 상기 플라스틱 입자는 라텍스 비드(Latex bead) 등이 있고, 자성입자는 철 산화물 나노입자 등이 있으며, 이에 한정하는 것은 아니다. In the cell-friendly immunoassay method of the present invention, the marker is attached to a detector and indicates whether the detector binds to a cell membrane receptor. The marker is a phosphor, a light emitter, an enzyme, a metal particle, a plastic particle, and a magnetic particle. It is preferably one or more selected from the group consisting of, more preferably an enzyme or a phosphor. Specifically, the phosphor includes FITC (fluorescein isothiocyanate (yellow green fluorescence), TRITC (tetramethylrhodamine isothiocyanate: red fluorescence), quantum dot (Quantum dot), and the like. Luminol), luciferin, and the like, and the enzymes include peroxidase (horseradish, horseradish), acid phosphatase, alkaline phosphatase, and glucose oxidase (glucose). oxidase), the metal particles include colloidal gold, the plastic particles include latex beads, and the like, and the magnetic particles include iron oxide nanoparticles, and the like. no.
또한 본 발명은In addition, the present invention
(1) 염증 유도인자 또는 암 유도인자를 세포막 수용체를 갖는 동물세포에 처리하는 단계;(1) treating an animal cell having a membrane receptor with an inflammation inducer or cancer inducer;
(2) 상기 (1) 단계 후에, 상기 동물세포에 상기 세포막 수용체와 특이적으로 결합하는 탐지체-표지인자 복합체를 처리하고, 상기 세포막 수용체의 발현 농도를 측정하는 단계;(2) after step (1), treating the animal cell with a detector-labeled complex which specifically binds to the cell membrane receptor, and measuring the expression concentration of the cell membrane receptor;
(3) 상기 농도 측정 후에 소염제 또는 항암제 후보물질을 상기 동물세포에 처리하는 단계; 및(3) treating the animal cells with an anti-inflammatory or anticancer candidate after measuring the concentration; And
(4) 상기 (3) 단계 후에, 상기 동물세포에 상기 세포막 수용체와 특이적으로 결합하는 탐지체-표지인자 복합체를 처리하고, 상기 세포막 수용체의 발현 농도를 측정하는 단계를 포함하며,(4) after step (3), treating the animal cell with a detector-labeled complex which specifically binds to the cell membrane receptor, and measuring the expression concentration of the cell membrane receptor,
상기 (2) 단계 및 (4) 단계에서 측정된 세포막 수용체의 발현 농도를 비교하여 소염제 또는 항암제를 선별하는 것을 특징으로 하는, 소염제 또는 항암제 스크리닝 방법을 제공한다.It provides an anti-inflammatory or anti-cancer agent screening method, characterized in that the anti-inflammatory agent or anti-cancer agent is selected by comparing the expression concentration of the cell membrane receptors measured in step (2) and (4).
상기 스크리닝 방법은, 동물세포에 염증 또는 암 유도인자를 처리하는 단계가 선행되며, 이후 소염제 또는 항암제 후보물질을 처리한다.The screening method is preceded by the step of treating the animal cells with inflammation or cancer inducer, and then the anti-inflammatory agent or anti-cancer drug candidate.
즉, 일례로서 염증 유도인자로 염증을 유도하고, 이를 통해 발현된 세포막 수용체의 농도를 탐지체-표지인자 복합체를 통해 측정한다. 이후 소염제 후보물질로서 sodium salicylate를 처리하고, 발현된 세포막 수용체의 농도를 탐지체-표지인자 복합체를 통해 측정한다. 상기에서 얻어진 세포막 수용체의 농도 두 가지를 비교하여 소염제를 선별 가능하다.That is, as an example, inflammation is induced by an inflammation inducer, and the concentration of the expressed membrane receptor is measured through a detector-labeled factor complex. Thereafter, sodium salicylate is treated as an anti-inflammatory candidate, and the concentration of the expressed membrane receptor is measured through a detector-labeled complex. Anti-inflammatory agents can be selected by comparing two concentrations of the cell membrane receptors obtained above.
또한, 본 발명은In addition, the present invention
(1) 소염제 또는 항암제 후보물질을 세포막 수용체를 갖는 동물세포에 처리하는 단계;(1) treating an anti-inflammatory or anticancer candidate to an animal cell having a cell membrane receptor;
(2) 상기 (1) 단계 후에, 상기 동물세포에 상기 세포막 수용체와 특이적으로 결합하는 탐지체-표지인자 복합체를 처리하는 단계;(2) after step (1), treating the animal cell with a detector-labeled complex which specifically binds to the cell membrane receptor;
(3) 상기 탐지체-표지인자 복합체를 처리한 후에, 상기 세포막 수용체의 발현 농도를 측정한 후, 염증 유도인자 또는 암 유도인자를 상기 동물세포에 처리하는 단계; 및(3) treating the animal cell with an inflammation inducer or a cancer inducer after measuring the expression concentration of the cell membrane receptor after treating the detector-marker complex; And
(4) 상기 (3) 단계 후에, 상기 동물세포에 상기 세포막 수용체와 특이적으로 결합하는 탐지체-표지인자 복합체를 처리하고 상기 세포막 수용체의 발현 농도를 측정하는 단계를 포함하며,(4) after step (3), treating the animal cell with a detector-labeled complex which specifically binds to the cell membrane receptor, and measuring the expression concentration of the cell membrane receptor,
상기 (3) 단계 및 (4) 단계에서 측정된 세포막 수용체의 발현 농도를 비교하여 소염제 또는 항암제를 선별하는 것을 특징으로 하는, 소염제 또는 항암제 스크리닝 방법을 제공한다.The anti-inflammatory or anti-cancer agent screening method is characterized in that the anti-inflammatory or anti-cancer agent is selected by comparing the expression concentrations of the cell membrane receptors measured in the above (3) and (4) steps.
상기 스크리닝 방법은, 동물세포에 소염제 또는 항암제 후보물질을 처리하는 단계가 선행되며, 이후 염증 또는 암 유도인자를 처리하는 단계를 진행한다.The screening method is preceded by the step of treating the animal cell anti-inflammatory agent or anti-cancer drug candidate, and then proceeds to the step of treating the inflammation or cancer inducer.
즉, 일례로서 소염제 후보 물질인 sodium salicylate를 동물세포에 처리하고, 상기 동물세포에 탐지체-표지인자 복합체를 처리하여 이를 통해 발현된 세포막 수용체의 농도를 측정한다. 이후 염증 유도인자를 동물세포에 처리하여 염증을 유도한 뒤, 탐지체-표지인자 복합체를 처리해 발현된 세포막 수용체의 농도를 측정한다. 상기에서 얻어진 세포막 수용체의 농도 두 가지를 비교하여 소염제를 선별 가능하다.That is, as an example, sodium salicylate, an anti-inflammatory candidate, is treated to animal cells, and a detector-labeled complex is treated to the animal cells to measure the concentration of the expressed membrane receptor. Thereafter, the inflammation inducer is treated with animal cells to induce inflammation, and then the detector-labeler complex is treated to measure the concentration of the expressed membrane receptor. Anti-inflammatory agents can be selected by comparing two concentrations of the cell membrane receptors obtained above.
상술한 설명에서 알 수 있듯이 소염제 또는 항암제 후보 물질 처리 시기를 달리함으로써, 후보 물질 처리 시기에 다른 소염 또는 항암 작용의 정도를 확인할 수 있다. As can be seen from the above description, by varying the timing of the anti-inflammatory agent or anti-cancer drug candidate treatment time, it is possible to confirm the degree of anti-inflammatory or anti-cancer activity different at the time of the candidate material treatment time.
상술한 설명에서 알 수 있듯이 소염제 또는 항암제 후보 물질 처리 시기를 달리함으로써, 후보 물질 처리 시기에 다른 소염 또는 항암 작용의 정도를 확인할 수 있다. As can be seen from the above description, by varying the timing of the anti-inflammatory agent or anti-cancer drug candidate treatment time, it is possible to confirm the degree of anti-inflammatory or anti-cancer activity different at the time of the candidate material treatment time.
상술한 본 발명의 소염제 또는 항암제 스크리닝 방법에서 세포막 수용체, 탐지체 및 표지인자의 종류는 본 발명의 세포친화적인 면역분석방법의 설명을 동일하게 적용할 수 있다.In the anti-inflammatory or anticancer screening method of the present invention described above, the cell membrane receptor, the detector, and the marker may be equally applicable to the description of the cell-friendly immunoassay method of the present invention.
또한, 상술한 본 발명의 소염제 또는 항암제 스크리닝 방법에서 동물세포는 배지에서 배양되는 것일 수 있다.In addition, in the anti-inflammatory or anticancer screening method of the present invention described above, the animal cells may be cultured in a medium.
또한, 상술한 본 발명의 소염제 또는 항암제 스크리닝 방법에서 상기 세포막 수용체의 발현 농도 측정은 광학신호를 획득하고, 상기에서 획득된 광학 신호 분석을 통해 수행 가능할 수 있다.In addition, in the anti-inflammatory or anticancer screening method of the present invention described above, the expression concentration measurement of the cell membrane receptor may be performed by acquiring an optical signal and analyzing the obtained optical signal.
즉, 상기 세포친화적인 면역분석방법에서 핵심 역할을 하는 세포막 수용체를 이용한 면역분석방법은 기존의 감염원에 대한 면역분석방법에서 주로 이용하였던 디옥시리보핵산(DNA), 항체 등과 같은 특이적인 생체물질을 이용한 것이 아닌, 체내 선천성 면역반응 시스템을 감염 센서로서 직접적으로 이용했다는 점에 그 특징이 있다. In other words, the immunoassay method using cell membrane receptors, which play a key role in the cell-friendly immunoassay method, uses specific biomaterials such as deoxyribonucleic acid (DNA) and antibodies, which are mainly used in the immunoassay method for the existing infectious agents. Rather, the innate immune response system was used directly as an infection sensor.
본 발명의 소염제 또는 항암제 스크리닝 방법은, 동물세포의 세포막 수용체에 특이적이고 친화도가 높은 탐지체를 통해 신속하게 감염원으로부터의 감염여부를 탐지하는 본 발명의 면역분석방법을 이용함으로써, 소염제 및 항암제의 효능을 판별하기 위한 기존의 복잡한 공정들을 간편화할 수 있다. 또한 세포친화적인 방법의 적용이 가능하므로 염증과정과 소염과정을 동일세포에서 반연속적으로 탐지할 수 있도록 하여, 염증 반응 및 소염 효과가 나타나는 시점, 약효 지속성까지도 분석이 가능하다. 즉, 본 발명의 스크리닝 방법은 기존의 일회성 약효 분석 방법이 아니며, 소염제 또는 항암제의 독성 분석도 가능할 수 있다.The anti-inflammatory or anti-cancer agent screening method of the present invention uses an immunoassay method of the present invention that detects infection from an infectious agent quickly through a detector having specificity and high affinity for a cell membrane receptor of an animal cell. Existing complex processes for determining efficacy can be simplified. In addition, since cell-friendly methods can be applied, the inflammatory process and anti-inflammatory process can be detected semi-continuously in the same cell, and the inflammatory response and anti-inflammatory effect can be analyzed, and even drug efficacy can be analyzed. That is, the screening method of the present invention is not a conventional one-time drug analysis method, and may also be capable of analyzing the toxicity of an anti-inflammatory agent or an anticancer agent.
상기 동물세포는 조직에서 분리한 일차세포(primary cell) 또는 세포주(cell line)이며, 상기 일차세포 또는 세포주는 부착형 세포 또는 부유형 세포인 것이 바람직하다. 상기 부착형 세포는 상피세포(epithelial cell), 섬유아세포(fibroblast) 및 내피세포(endothelial cell) 등이 있고, 상기 부유형 세포는 T-세포, B-세포, 수지상세포(dendritic cell), 단구(monocyte) 및 대식세포(macrophage) 등이 있으며, 이에 한정하지 않는다.The animal cell is a primary cell or cell line isolated from a tissue, and the primary cell or cell line is preferably an adherent cell or a floating cell. The adherent cells include epithelial cells, fibroblasts and endothelial cells, and the floating cells include T-cells, B-cells, dendritic cells, and monocytes. monocyte) and macrophage, but are not limited thereto.
상기 소염제는, 본 발명의 일례로서 sodium salicylate와 CAPE를 사용할 수 있으나 이는 단지 예시적인 것일 뿐, 본 발명의 기술적 범위를 한정하는 것은 아니다. 상기 소염제는 염증억제물질로서, 소염 목적으로 새로 개발된 약, 소염 역활이 부가적으로 기대되는 약, 천연물 추출물로 이루어진 군에서 선택되는 하나 이상인 것이 바람직하다.The anti-inflammatory agent may use sodium salicylate and CAPE as an example of the present invention, but this is merely exemplary and does not limit the technical scope of the present invention. The anti-inflammatory agent is an anti-inflammatory agent, preferably a drug newly developed for anti-inflammatory purposes, an anti-inflammatory drug additionally expected, at least one selected from the group consisting of natural product extracts.
상기 염증유도인자는, 본 발명의 일례로서 활성이 억제된 형태의 병원성 미생물일 수 있으나 이는 단지 예시적인 것일 뿐, 본 발명의 기술적 범위를 한정하는 것은 아니다. 따라서, 상기 염증유도인자는 살아있는 병원성 미생물, 열로 활성을 억제시킨 병원성 미생물, 고주파로 활성을 억제시킨 병원성 미생물, 그리고 병원성 미생물에서 분리정제시켜 얻은 병원균-연관 분자패턴으로 이루어진 군에서 선택되는 하나 이상인 것이 바람직하다.The inflammatory inducer may be a pathogenic microorganism in a form of inhibited activity as an example of the present invention, but this is merely exemplary and does not limit the technical scope of the present invention. Therefore, the induction factor is at least one selected from the group consisting of viable pathogenic microorganisms, pathogenic microorganisms inhibited by heat activity, pathogenic microorganisms inhibited by high frequency activity, and pathogen-associated molecular pattern obtained by separation and purification from pathogenic microorganisms. desirable.
본 발명에서 상기 세포막 수용체의 농도 분석으로 설명되는 정량 분석은 통계분석방법(one-way analysis of variance followed by Turkey's post hoc multiple range tests)을 사용할 수 있으며, 유효값인 P-value값의 분포범위에 따라 구별할 수 있다. 예컨대 *** very highly significant (P < 0.001), ** highly significant (P < 0.01), * significant (P < 0.05), No significance (ns) (P > 0.05)으로 구분할 수 있다.In the present invention, the quantitative analysis described by the concentration analysis of the cell membrane receptor may use a statistical analysis method (one-way analysis of variance followed by Turkey's post hoc multiple range tests), and the distribution range of the effective P-value value. Can be distinguished accordingly. For example, *** very highly significant (P <0.001), ** highly significant (P <0.01), * significant (P <0.05), No significance (ns) (P> 0.05).
또한, 본 발명은 세포막 수용체를 갖는 동물세포 및 상기 세포막 수용체에 특이적으로 결합하는 탐지체-표지인자 복합체를 포함하는 염증 또는 암 진단용 조성물을 제공한다. 상기, 염증 또는 암 진단용 조성물은 본 발명의 세포친화적인 면역분석방법, 또는 소염제 또는 항암제 스크리닝 방법에 기반하여 제조되는 것일 수 있다.In another aspect, the present invention provides a composition for diagnosing inflammation or cancer, comprising an animal cell having a cell membrane receptor and a detector-marker complex that specifically binds to the cell membrane receptor. The inflammation or cancer diagnostic composition may be prepared based on the cell-friendly immunoassay method of the present invention, or an anti-inflammatory or anti-cancer screening method.
또한, 본 발명은 상기 진단용 조성물을 포함하는 염증 또는 암 진단 키트를 제공한다. 상기 염증 또는 암 진단 키트는 동물세포를 수용한 웰 및 표지인자가 부착되어 있고, 동물세포의 세포막 수용체를 탐지할 수 있는 탐지체를 포함하는 것일 수 있다. 즉, 동물세포를 이용한 감염 진단과 염증 및 소염반응을 관찰하는 키트를 제공한다. 이때, 상기 키트는 감염원을 인식하는 포획인식 성분을 더 포함하는 것이 바람직할 수 있다. The present invention also provides an inflammation or cancer diagnostic kit comprising the diagnostic composition. The inflammation or cancer diagnosis kit may be attached with a well and a marker containing an animal cell and detecting a cell membrane receptor of the animal cell. That is, the present invention provides a kit for diagnosing infection and observing inflammation and anti-inflammatory reactions using animal cells. In this case, the kit may further include a capture recognition component for recognizing the infectious agent.
이하, 첨부된 도면을 토대로 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings.
도 1 내지 도 2는 일례로서, 박테리아 침입을 통해 세포가 감염되는 과정(도 1)과 이러한 감염과정을 동물세포를 기반으로 체외에서 유도하고 이를 측정하는 모델(도 2)이다. 병원체가 침입하게 되면(도 1 A-1), 세포막 수용체인 TLR와 병원체의 PAMP와의 특이결합(도 1 A-2)을 통해 염증반응을 유도하는 전사인자인 NF-κB가 활성화된다(도 1 A-3). 활성화된 NF-κB는 염증반응을 유도하면서 TLR의 발현을 유도(도 1 A-4)하거나, 염증유도물질인 사이토카인을 분비시켜(도 1 A-5), 이를 재인식하여 염증반응을 지속적으로 유도하거나 주변 세포의 염증반응을 유도한다(도 1 A-6). 이와 같은 감염과정을 체외에서 유도하고 측정하는 방법은 다음과 같다(도 2). 1 to 2 are examples, a process of infecting cells through bacterial invasion (FIG. 1) and a model of inducing and measuring such infection process in vitro based on animal cells (FIG. 2). When the pathogen invades (Fig. 1 A-1), NF-κB, which is a transcription factor that induces an inflammatory response, is activated through specific binding of the cell membrane receptor TLR with the pathogen PAMP (Fig. 1 A-2) (Fig. 1 A-1). A-3). Activated NF-κB induces inflammatory response while inducing TLR expression (Fig. 1 A-4) or secrete cytokine, an inflammatory inducer (Fig. 1 A-5), and re-recognizes the inflammatory response continuously. Induces or induces an inflammatory response of surrounding cells (FIGS. 1A-6). The method of inducing and measuring such an infection process in vitro is as follows (FIG. 2).
한정적인 공간에 고정화시킨 동물세포(감염체)에 감염성병원체를 투입하여 배양한다(도 2 B-1). 투입된 감염성병원체는 동물세포 막표면에 존재하는 TLR을 통해 특이적으로 인식되고, 그에 대한 감염신호로서, TLR의 발현량이 증가된다(도 2 B-2). 세포막에 발현된 TLR의 농도는 TLR에 대한 특이항체와 효소가 중합된 2차 항체를 순차적으로 반응시켜 측정하며(도 2 B-3), 정상세포와의 비교분석을 통해 TLR의 발현량 변화를 확인한다.Infectious pathogens are added to animal cells (infectants) immobilized in a limited space and cultured (FIG. 2 B-1). The injected infectious agent is specifically recognized through the TLR present on the animal cell membrane surface, and as an infection signal thereto, the expression level of the TLR is increased (Fig. 2 B-2). The concentration of TLR expressed in the cell membrane was measured by sequentially reacting a specific antibody against TLR with a polymerized secondary antibody (FIG. 2 B-3), and comparing the change in expression level of TLR through comparison with normal cells. Check it.
상기 도 1에서 제시한 바와 같이 상기 배지에 감염원을 접종하여 동물세포를 감염 시키면 동물세포 표면에 일정량 노출된 세포막 수용체 중 하나인 톨-유사 수용체(TLRs)는 침입한 감염원의 특정 병원체연관 분자패턴(pathogen-associated molecular patterns, PAMPs) 부위를 인지하게 되어, 그 결과로서 세포내부로 외부 침입에 대한 경고를 알리는 신호전달이 일어나게 된다. As shown in FIG. 1, when infecting an animal cell by inoculating an infectious agent in the medium, Toll-like receptors (TLRs), which are one of cell membrane receptors exposed to a certain amount of animal cell surface, are exposed to specific pathogen-associated molecular patterns ( Pathogen-associated molecular patterns (PAMPs) sites are recognized, resulting in signaling that alerts the cell to external invasion.
세포 내 신호전달에 의해 활성화된 전사인자 (NF-κB)는 감염원의 추가적인 자극에 대응하기 위해 동물세포의 톨-유사 수용체(TLRs)와 같은 세포막 수용체의 발현량을 증가시키게 된다. 상기 증가된 세포막 수용체, 즉 일례로서 톨-유사 수용체(TLRs)는 세포 내로 감염에 대한 경고신호를 더욱 강하게 전달하며, 이를 통해 염증반응 유도를 가속화시키게 된다. 감염시간이 경과 할수록 해당 감염에 대해 염증반응을 유발하는 톨-유사 수용체(TLRs)가 세포 외막으로 발현되는 양은 지속적으로 증가하게 되는데, 이와 같은 세포반응은 감염원의 세기와 감염시간에 비례하여 일어나게 된다. Transcription factors (NF-κB) activated by intracellular signaling increase the expression of cell membrane receptors, such as toll-like receptors (TLRs) in animal cells, to counteract further stimulation of infectious agents. The increased cell membrane receptors, i.e., toll-like receptors (TLRs) as an example, deliver stronger warning signals of infection into cells, thereby accelerating the induction of inflammatory responses. As the infection time progresses, the amount of Toll-like receptors (TLRs), which cause inflammatory responses to the infection, is continuously expressed in the extracellular membrane. Such cellular reactions occur in proportion to the intensity of the source and the infection time. .
또한 활성화된 전사인자 (NF-κB)는 염증관련 유전자의 전사를 통해 전-염증 사이토카인(pro-inflammatory cytokines)인 인터루킨-1(Interleukin-1), 종양괴사인자-α(Tumor necrosis factor-α, TNF-α), 인터페론-γ(Interferon-γ)등을 세포 외부로 분비하는데, 이들은 다른 세포를 자극하여 추가적인 염증반응을 유도함으로써 다른 세포에서도 톨-유사 수용체(TLRs)의 추가적인 발현을 유발하게 된다.Activated transcription factor (NF-κB) is also a pro-inflammatory cytokines of interleukin-1 and tumor necrosis factor-α through transcription of inflammation-related genes. , TNF-α), Interferon-γ, etc. secrete extracellularly, which stimulate other cells to induce additional inflammatory responses, leading to additional expression of Toll-like receptors (TLRs) in other cells. do.
따라서 본 발명에서는 위에서 언급된 감염과정을 체외에서 유도하기 위해 도 2와 같이 동물세포를 감염체로 활용하고, 여기에 감염원을 접종하여 감염을 모사하는 동물세포기반의 체외모델을 수립하였다. 해당 모델은 감염을 통해 발현량이 변하는 톨-유사 수용체를 세포막 수용체로 선택하였으며, 선택된 세포막 수용체를 측정하고자 톨-유사 수용체에 대해 특이적인 항체와 효소가 부착된 2차 항체, 그리고 상기 효소에 대한 기질을 순차적으로 반응시켰다. Therefore, in the present invention, in order to induce the above-mentioned infection process in vitro, animal cells were used as infectious agents as shown in FIG. The model selects toll-like receptors whose expression changes through infection as cell membrane receptors, and to measure the selected cell membrane receptors, antibodies specific for toll-like receptors and secondary antibodies attached to enzymes, and substrates for the enzymes. Were reacted sequentially.
도 3 내지 도 6은 동물세포 기반의 감염유도 체외모델의 적용가능성을 확인하기 위해 쥐 유래 대식세포인 RAW264.7 세포주에 식중독유발균인 Shigella sonnei를 감염시켜 세포표면에 존재하는 감염에 대한 수용체인 TLR2의 단백질 수준(도 3)과 유전자 수준(도 4)의 변화, 그리고 대표적인 감염마커인 사이토카인(TNF-α와 IL-6)의 분비량의 변화(도 5, 도 6)를 측정하여 비교 분석한 것이다. 그 결과, 감염원의 농도와 반응시간에 따라 TLR의 발현량이 단백질 수준과 유전자 수준에서 모두 증가되었으며(도 3, 도 4), 살아있는 감염원을 사용하였을 때 좀 더 강한 신호를 나타냈다(도 3의 실선그래프). 두 가지 종류의 사이토카인을 분석할 때도 TLR과 동일한 결과를 얻을 수 있었다(도 5과 도 6). 이를 통해 감염유도 체외모델의 적용가능성을 증명할 수 있었다.3 to 6 is a receptor for an infection present on the cell surface by infecting Shigella sonnei , a food-induced macrophage RAW264.7 cell line, in order to confirm the applicability of an animal cell-based induction model based on animal cells. Comparative analysis by measuring changes in protein level (FIG. 3) and gene level (FIG. 4) of TLR2, and changes in secretion amount of cytokines (TNF-α and IL-6), which are representative infection markers (FIG. 5, FIG. 6). It is. As a result, the expression level of TLR was increased at both the protein level and the gene level according to the concentration of the infectious agent and the reaction time (Fig. 3 and Fig. 4), and a stronger signal was obtained when using a live infectious agent (solid line graph of Fig. 3). ). When analyzing two types of cytokines, the same results as TLRs were obtained (FIGS. 5 and 6). This proved the applicability of the IVD model.
그 결과, 도 3에서와 같이 쥐 유래 대식세포에 식중독균을 일으키는 박테리아인 S. sonnei를 처리하여 감염을 유도하였을 경우, TLR2의 발현량이 변화되는 것을 관찰 가능하였다. 박테리아가 접종된 시간에 따라 그리고 접종된 박테리아의 개체 수에 따라 발현되는 TLR2의 수준이 높아졌으며, 이와 같은 결과는 전사조절인자인 NF-κB에 의해 염증신호가 지속적으로 증가한다는 것을 증명한다. 추가적으로 살아있는 S. sonnei를 접종시킨 경우, 세포 배지 내에서 동물세포와 박테리아가 동시에 배양되기 때문에 TLR2의 발현량이 더욱 증가하는 것을 관찰할 수 있었다.As a result, when the infection was induced by treating S. sonnei , a bacterium that causes phage poisoning bacteria, to the mouse-derived macrophages, as shown in FIG. 3, the expression level of TLR2 was observed to be changed. The level of TLR2 expressed with the time of inoculation of bacteria and with the population of inoculated bacteria increased, indicating that the inflammatory signal is continuously increased by the transcriptional regulator NF-κB. In addition, when inoculated with live S. sonnei , the expression of TLR2 was further increased because animal cells and bacteria were simultaneously cultured in the cell medium.
동물세포에서의 단백질의 발현량 변화는 해당 단백질에 대한 전사유전자인 mRNA의 발현량 변화를 통해서도 증명이 가능한데, 도 4에서와 같이 mRNA의 발현량이 접종시킨 박테리아의 농도에 비례하여 증가되는 것을 확인 가능하였다. 또한 도 5와 도 6에서처럼, 감염신호를 통해 활성화되는 전사조절인자인 NF-κB의 반응산물인 전구염증 사이토카인의 분비량을 측정하였을 때도, 접종시킨 박테리아의 농도와 활성유무 그리고 접종하여 반응시킨 시간에 따라 사이토카인의 분비량이 변화되는 것을 확인하였다. 이를 통해 상기 발명자가 수립한 동물세포 기반의 체외 실험모델이 체내에서와 유사하게 감염을 유도하고, 이를 TLR 면역분석을 통해 관찰가능 하다는 사실을 증명할 수 있었다.The change in the expression level of the protein in the animal cell can be proved through the change in the expression level of the mRNA, which is a transcription gene for the protein. As shown in FIG. 4, the expression level of the mRNA is increased in proportion to the concentration of the inoculated bacteria. It was. In addition, as shown in Figures 5 and 6, even when measuring the amount of pro-inflammatory cytokine, a reaction product of NF-κB, a transcriptional regulator activated through an infection signal, the concentration and activity of the inoculated bacteria and the time of inoculation reaction It was confirmed that the secretion amount of the cytokine according to the change. This proved that the animal cell-based in vitro experimental model established by the inventor induces infection similarly in the body and can be observed by TLR immunoassay.
도 7은 TLR 조절기작을 통해 염증을 연속적으로 관찰하는 모델이다. 도 1내지 도 6에서 언급한 바와 같이, 체내에 병원체가 침입하면 TLR에 의해 세포 내부로 신호가 전달되며(도 7 A-1), 이러한 신호전달을 통해 활성화된 전사조절인사에 의해 사이토카인이 분비되거나(도 7 A-2) TLR의 발현량이 증가하게 된다(도 7 A-3). 이와 같은 과정은 상향조절(up-regulation)이라 한다. 감염원이 제거된 이후, up-regulation 과정을 통해 과발현된 TLR은 하향조절(down-regulation) 과정을 통해 정상수준으로 조절되며, 그 과정은 다음과 같다. 우선적으로 과발현된 TLR의 신호전달을 저해시키기 위해 β-아레스틴(β-arrestin)이 결합한다(도 7 B-1). β-arrestin와 결합된 TLR은 AP2-클라트린(AP2-clathrin) 구조체에 의해 세포내부로 유입되는 엔도시토시스(endocytosis)이 진행된다(도 7 B-2). 세포 내부로 들어온 TLR 구조체는 분해를 유도하는 신호표지체인 유비퀴틴(ubiquitin)과 결합되며(도 7 B-3), 최종적으로 단백질분해 소기관인 리소좀(lysosome)에 의해 분해된다(도 7 B-4).7 is a model for continuously observing inflammation through the TLR regulatory mechanism. As mentioned in FIGS. 1 to 6, when pathogens invade the body, signals are transmitted into cells by TLRs (FIG. 7A-1), and cytokines are activated by transcriptional regulators activated through such signaling. It is secreted (Fig. 7 A-2) or the expression level of TLR is increased (Fig. 7 A-3). This process is called up-regulation. After the infectious agents are removed, TLRs overexpressed through the up-regulation process are regulated to normal levels through the down-regulation process. Β-arrestin binds preferentially to inhibit signaling of overexpressed TLRs (FIG. 7 B-1). TLR bound to β-arrestin undergoes endocytosis, which is introduced into the cell by the AP2-clathrin structure (FIG. 7 B-2). TLR constructs that enter the cell are combined with ubiquitin, a signal marker that induces degradation (FIG. 7 B-3), and is finally degraded by lysosome, a proteolytic organelle (FIG. 7 B-4). .
톨-유사수용체와 같은 세포막 수용체는 평상시에는 세포막 표면에 최소농도 수준으로 존재하여 병원체에 의한 감염을 지속적으로 감시한다. 도 7의 up-regulation에서와 같이 병원체 침입을 통한 감염이 발생할 경우 최소농도 수준으로 존재하던 각각의 톨-유사수용체들은 병원체와 특이결합을 통해 체내에 감염신호를 전달하게 된다(도 7 A-1). 체내에 전달된 신호는 NF-κB를 활성화시켜 세포내의 염증반응을 유도하고, 사이토카인을 분비를 통해 주변세포의 염증반응을 유도한다(도 7 A-2). 또한 세포막 표면에 수용체의 농도를 증가시켜(도 7 A-3)(up-regulation) 추가적인 감염에 대비한다. 병원체에 의한 감염이 소멸된 이후에는 상승되었던 수용체의 농도를 정상수준으로 회복시키는 과정(down-regulation)이 일어나게 되는데, 이와 같은 기작은 과발현된 톨-유사수용체에 의해 지속적인 염증반응이 유발되는 것을 방지하기 위함이다. Down-regulation 과정은 톨-유사수용체의 신호전달을 방해하는 β-arrestin이 부착되면서부터 시작되며(도 7 B-1), 둔감화된 톨-유사수용체를 AP2-clathrin 구조체가 둘러쌓아 세포질 내부로 유입시키는 엔도시토시스(endocytosis)가 유도된다(도 7 B-2). 세포질 내부로 유입된 구조체는 단백질분해를 유도하는 신호표지체인 유비퀴틴(ubiquitin)과 결합되고(도 7 B-3), 이로 인해 단백질분해 소기관인 리소좀(lysosome)에 의해 분해된다(도 7 B-4). 따라서 본 발명자는 염증반응 유도와 밀접한 관계를 맺고 있는 톨-유사수용체의 세포막 농도를 지속적으로 측정할 경우, 체내에서 일어나는 염증반응을 연속적으로 관찰 가능할 것이라는 가능성을 가지고 가설을 세웠으며, 이를 증명하기 위해 TLR 조절기작을 통한 염증 연속관찰모델을 수립하게 되었다. Membrane receptors, such as toll-like receptors, are usually present at minimal concentrations on the cell membrane surface to continuously monitor for infection by pathogens. As shown in the up-regulation of FIG. 7, when Toll-like infection occurs, each of the toll-like receptors present at the minimum concentration level transmits an infection signal to the body through specific binding with the pathogen (FIG. 7A-1). ). The signal transmitted to the body activates NF-κB to induce an inflammatory response in cells and secrete cytokines to induce an inflammatory response of surrounding cells (FIG. 7 A-2). In addition, by increasing the concentration of the receptor on the cell membrane surface (Fig. 7 A-3) (up-regulation) in preparation for further infection. After the infection by the pathogen is eliminated, a down-regulation of the elevated receptor levels occurs to a normal level. This mechanism prevents the overexpressing toll-like receptors from causing persistent inflammatory reactions. To do this. The down-regulation process begins with the attachment of β-arrestin, which interferes with the signaling of toll-like receptors (Fig. 7 B-1), and the desensitized toll-like receptor surrounded by the AP2-clathrin structure and into the cytoplasm. Inducing endocytosis is induced (FIG. 7 B-2). The structure introduced into the cytoplasm is combined with ubiquitin, which is a signal marker for inducing proteolysis (Fig. 7 B-3), and is degraded by lysosome, a proteolytic organelle (Fig. 7 B-4). ). Therefore, the present inventors hypothesized that the continuous measurement of cell membrane concentrations of toll-like receptors, which are closely related to the induction of inflammatory responses, would be able to continuously observe the inflammatory responses in the body. Inflammation continuous observation model was established through TLR control mechanism.
도 7에서 제시된 염증 연속관찰모델을 구현하기 위해 감염원으로 폐렴 유발균인 Pseudomonas aeruginosa 균의 파쇄액을, 감염의 주체로 사람 유래 폐세포주인 A549를 선정하여 염증반응을 체외에서 유발하였으며, 이때의 세포의 반응을 TLR의 변화를 통해 관찰하였다(도 8 내지 도 11). 도 8에서와 같이 4시간에 걸친 감염과정 이후, 감염원을 제거와 동시에 회복용액을 공급한 이후 6시간마다 TLR의 농도를 관찰한 결과, 감염과정을 통해 상승되었던 TLR의 농도가 정상수준으로 감소하는 것을 확인할 수 있었다(도 8). 이와 같은 현상은 감염시킨 감염원의 농도에 상관없이 유도되는 과정임을 확인하였으며, 감염원의 농도가 높을수록 회복되는 비율이 낮아지는 것을 확인할 수 있었다. 그 중, 100 배 희석시킨 균을 감염시킨 조건에서 가장 높은 회복률을 보였으며, 이때의 회복률은 80%에 다다른다(도 9). 또한 이와 같은 세포의 반응성은 일회성으로 끝나는 것이 아니라 2회, 3회에 걸쳐 실시하였을 때도 공통적으로 유도되었다. 이와 같은 실험 결과는 도 7에서 세운 가설을 뒷받침할 수 있는 중요한 증거가 되었다. 하지만 도 8 내지 도 11에서 제시된 실험결과는 여러 묶음의 세포를 준비하여, 각각의 해당 시간에 따라 TLR을 관찰하기 위해 세포를 파쇄하면서 측정한 제한적인 반연속 측정 결과이기 때문에, 동일세포에서 연속적인 감염과 회복 그리고 이때의 TLR의 농도를 세포 손상 없이 측정하는 기술이 필요하게 되었다. Pseudomonas , a pneumonia-inducing bacterium, as an infectious agent for implementing the inflammatory continuous observation model shown in FIG. aeruginosa The bacterial disruption solution, A549, a human-derived lung cell line, was selected as the subject of infection, and the inflammatory response was induced in vitro, and the response of the cells was observed through changes in TLRs (FIGS. 8 to 11). After 4 hours of infection as shown in FIG. 8, the concentration of TLRs increased through the infection process was reduced to normal levels after the infection was removed and the recovery solution was supplied at the same time. It was confirmed that (Fig. 8). This phenomenon was confirmed that the process is induced regardless of the concentration of the infected source, the higher the concentration of the source was confirmed that the recovery rate is lower. Among them, the highest recovery rate was obtained under the condition of 100-fold dilution of bacteria, and the recovery rate reached 80% (Fig. 9). In addition, such cell reactivity was not induced in one-off but was commonly induced in two or three times. This experimental result is an important evidence that can support the hypothesis established in FIG. However, since the experimental results shown in FIGS. 8 to 11 are limited semi-continuous measurements obtained by crushing cells in order to prepare several bundles of cells and observe TLRs according to their respective time periods, There is a need for techniques to measure infection, recovery and the concentration of TLRs without cell damage.
도 8 내지 도 11은 TLR1 조절기작을 통해 제한적으로 염증을 반연속적으로 관찰한 결과이다. 감염의 주체로 사람 유래 폐세포주인 A549를, 폐렴 유발균인 Pseudomonas aeruginosa 균의 파쇄액을 감염원으로 활용하였다. 4시간에 걸친 감염 이후, 감염원을 제거하여 회복용액과 함께 24시간에 걸쳐 관찰한 결과 TLR의 농도가 정상수준으로 감소하는 것을 확인할 수 있었다(도 8). 이와 같은 현상은 100배 희석시킨 균을 감염시켰을 때 80%에 가까운 회복률을 보였다(도 9). 또한 최적화된 조건에서는 최대 3회에 걸친 반복감염을 관찰할 수 있었다(도 10, 도 11). 하지만 이와 같은 실험결과는 여러 묶음의 세포를 시간에 따라 파쇄하면서 측정한 제한적인 반연속 관찰결과이다.8 to 11 are the results of semi-continuously observed inflammation through the TLR1 regulatory mechanism. The human-derived cell line, A549 lung infection mainly were utilizing the lysate of bacterial pneumonia caused by the bacteria Pseudomonas aeruginosa infectious agents. After 4 hours of infection, the infectious agent was removed and observed over 24 hours with the recovery solution, and it was confirmed that the concentration of TLR decreased to the normal level (FIG. 8). This phenomenon showed a recovery rate of nearly 80% when infected with 100-fold diluted bacteria (Fig. 9). In addition, it was possible to observe up to three repeated infections under optimized conditions (Figs. 10 and 11). However, these experimental results are limited semi-continuous observations measured by crushing several bundles of cells over time.
세포친화적인 발광법 기반의 TLR 면역분석을 실시하고, 그 신호 값을 측정하기 위해 도 14에서와 같이 냉각 디지털 카메라에 텔레센트릭 렌즈를 장착시킨 탐지기를 제작하였다. 렌즈를 포함하는 광측정 장비는 기준이 되는 초점에 따라 신호측정감도가 달라진다. 하지만 동물세포의 경우 표면에 부착되어 생장하기 때문에 상단부에서 세포의 표면을 측정해야 하는 본 시스템에서는 각 세포의 표면에 대한 초점을 맞추는 것이 매우 제한적이다. 따라서, 이를 해결하기 위해 세포가 배양되는 표면의 바닥은 투과성이 높은 유리재질로, 테두리 부분은 빛이 반사되지 않는 검정색 플라스틱 재질로 된 세포 웰 플레이트를 도입하였다,TLR immunoassay based on cell-friendly luminescence was performed, and a detector equipped with a telecentric lens was mounted on a cooled digital camera as shown in FIG. 14 to measure the signal value. In optical measuring equipment including a lens, signal measurement sensitivity is changed according to a reference focus. However, since animal cells are attached to and grow on the surface, it is very limited to focus on the surface of each cell in the system where the surface of the cell must be measured at the top. Therefore, in order to solve this problem, a cell well plate made of a black plastic material, in which the bottom of the surface on which the cells are cultured is a highly permeable glass material and the light is not reflected, is introduced.
탐지기의 초점은 반사되는 빛들이 플레이트의 테두리부분에 집중되도록 바닥 부분에 맞추도록 하였다. 그 결과 도 15에서와 같이 유리재질 바닥으로 반사된 광신호들이 웰 테두리의 표면부분으로 집중되는 원형 타입의 신호 패턴을 얻을 수 있었다. 발광 탐지기를 통해 측정된 영상(도 15의 B-1)은 자바기반의 Image J 프로그램을 통해 디지털신호로 변환하고(도 15 B-2와 B-3), 그 변환된 신호 값은 그래프로 도식화하였다(도 15 B-4). 그 결과 도 15의 B-2와 B-3과 같이 세균 분쇄액을 통해 감염시킨 세포는 발현량이 증가된 TLR에 의해 광신호가 나타나는 것을 관찰할 수 있었고, 감염시키지 않은 정상세포의 경우 기본 농도수준의 TLR만이 측정되는 것을 확인하였다.The focus of the detector is on the bottom, so that the reflected light is concentrated on the edge of the plate. As a result, as shown in FIG. 15, a circular-type signal pattern in which optical signals reflected to the bottom of the glass material are concentrated on the surface portion of the well edge may be obtained. The image measured by the luminescence detector (B-1 in Fig. 15) is converted into a digital signal through a Java-based Image J program (Figs. 15B-2 and B-3), and the converted signal values are plotted graphically. (FIG. 15 B-4). As a result, the cells infected with the bacterial grind fluid as shown in B-2 and B-3 of FIG. 15 were observed to exhibit the light signal by TLRs with increased expression levels. It was confirmed that only TLR was measured.
상기에서 언급된, 본 발명의 세포친화적인 면역분석방법, 광학신호 획득 및 분석을 통한 염증 측정기술의 응용으로 동일세포에서 반연속적으로 염증을 유도하고 이를 측정하는 실험을 진행하였다. As mentioned above, the cell-friendly immunoassay method of the present invention, an optical signal acquisition and analysis of the application of the inflammation measurement technology through the experiment to induce inflammation in the same cell and to measure it.
도 17 내지 도 18은 동일세포에 대한 세포친화적인 염증 반연속측정 모델(도 17)과 이를 통해 2회에 걸친 염증유도를 관찰한 결과(도 18)이다. 세포친화적인 염증 반연속측정은 세포고정화 단계(도 17 A-1)와 초기 세포의 TLR 농도측정 단계(도 17 A-2), 세포준비 단계(도 17 A-3), 염증유도 단계(도 17 A-4), 염증유도를 통해 발현된 TLR 측정 단계(도 17 A-5), 그리고 회복단계(도 17 A-6)로 나누어진다. 세포 고정화 단계를 제외한 과정은 순차적으로 순환되어 반복염증을 유도한다. 그 결과, 동일세포에서 2회에 걸쳐 염증이 유도되어 회복되는 것을 관찰 가능하였다(도 18).17 to 18 are cell-friendly inflammatory semi-continuous measurement model for the same cell (FIG. 17) and the results of observing two times of inflammation induction (FIG. 18). Cell-friendly semi-continuous measurement of cell fixation step (Fig. 17 A-1), TLR concentration measurement step of the initial cell (Fig. 17 A-2), cell preparation step (Fig. 17 A-3), inflammation induction step (Fig. 17 A-4), TLR expression expressed through induction of inflammation (Fig. 17 A-5), and recovery (Fig. 17 A-6). Except for the cell immobilization step, the process is circulated sequentially to induce repeated inflammation. As a result, it was observed that inflammation was induced and recovered twice in the same cell (FIG. 18).
실험결과는 감염원을 처리한 실험군과 감염원을 처리하지 않은 대조군의 TLR을 면역분석하여 나온 결과값을 배경신호(정상세포의 TLR 발현량) 대비 염증신호(염증이 유발된 세포의 TLR 발현량) 비율로 환산하여 선형그래프로 도식화 하였다(도 18과 도 19). 이와 같은 과정은 도 1 내지 도 2에서 제시한 폐렴 체외모델 (폐상피세포인 A549에 폐렴원인균인 P. aeruginosa를 감염시킨 모델)에 적용시켰다. 그 결과 도 18에서 제시된 바와 같이, 감염을 통해 염증을 유발시키는 단계에서는 배경신호 대비 염증신호가 상승하였으며, 배양액 교체를 통해 감염원을 제거하고 회복을 시키는 단계에서는 신호 값이 정상수치 부근으로 하락하는 것을 확인할 수 있었다. The results of the experiment were based on the immunoassay of the TLRs of the experimental group treated with the infectious agent and the control group not treated with the infectious agent. Converted to and plotted in a linear graph (Figs. 18 and 19). This process was applied to the pneumonia in vitro model (model infected with P. aeruginosa , a pneumococcal agent in A549, a pulmonary epithelial cell) shown in FIGS. As a result, as shown in Figure 18, the inflammation signal is increased compared to the background signal in the step of causing inflammation through infection, the signal value is reduced to near the normal value in the step of removing and recovering the source of infection by replacing the culture medium I could confirm it.
도 19 내지 도 20은 동일세포에서 3회에 걸쳐 염증반응을 유도하고, 이러한 반응을 TLR 면역분석법(도 19)과 사이토카인 측정법(도 20)을 통해 측정한 결과이다. TLR 면역분석법의 경우 3회에 걸친 염증반응 측정 동안 배경 대비 신호 값의 비율이 규칙적으로 상승하는 패턴을 나타냈다(도 19). 이와는 다르게 사이토카인인 TNF-α의 경우, 신호 값이 일정하게 감소하는 패턴을 보였으며(도 20, 상단곡선), IL-6의 경우 신호 값이 일정하게 유지되는 패턴이 관찰되었다(도 20, 하단곡선).19 to 20 induce an inflammatory response three times in the same cell, the response was measured by TLR immunoassay (Fig. 19) and cytokine assay (Fig. 20). The TLR immunoassay showed a pattern in which the ratio of signal value to background increased regularly during three inflammatory response measurements (FIG. 19). In contrast, in the case of the cytokine TNF-α, the signal value was constantly reduced (Fig. 20, upper curve), and IL-6 was observed in a pattern in which the signal value was kept constant (Fig. 20, Bottom curve).
추가적으로 도 19에서 제시된 바와 같이, 반연속적인 염증 측정이 일회성이 아닌 2회 또는 3회에 걸친 재감염 조건에서도 재현된다는 것을 증명할 수 있었다. 이는 도 8 내지 도 11에서 제시한 TLR 조절기작을 통한 제한적인 염증 반연속관찰 결과와 동일한 결과로서, 본 발명에서 제안하는 면역분석방법이 동일세포상에서 손상 없이 염증을 반연속적으로 측정 가능하다는 것을 증명한다.In addition, as shown in FIG. 19, it could be demonstrated that the semi-continuous inflammation measurement is reproduced even in two or three reinfection conditions rather than one time. This results in the same result as the limited inflammatory semicontinuous observation through the TLR control mechanism shown in FIGS. 8 to 11, demonstrating that the immunoassay method proposed in the present invention can measure inflammation continuously without damage on the same cell. .
세포의 손상 없이 반연속적으로 염증반응을 측정할 수 있는 방법은 본 발명의 세포친화적인 면역분석방법 이외에도 도 1의 A-5에서 언급한 바와 같이 염증을 통해 분비되는 사이토카인을 측정하는 방법이 있다. 사이토카인 측정방법은 세포를 배양하는 용액을 도 17에서의 과정마다 획득하여 면역분석을 하는 방법으로, 세포 손상 없이 염증반응을 관찰할 수 있는 매우 간편한 기법이다. 하지만 사이토카인의 경우 인간 유래 세포의 경우 극저농도(10 pg/mL 이하)로 분비되기 때문에 염증반응을 관찰하기에는 매우 제한적이다. 이와는 다르게 도 20과 같이 쥐 유래 세포의 경우 측정 가능한 수준의 사이토카인이 분비되는데, 그마저도 사이토카인의 종류에 따라 그 경향이 다르다. 쥐 유래 세포에서 사이토카인을 통해 염증을 반연속적으로 측정한 결과 TNF-α의 경우 분비되는 양이 반복되는 회차에 따라 감소하는 반면에, IL-6의 경우에는 일정하게 분비되는 것을 확인할 수 있었다. 이와 같이 사이토카인을 측정하는 실험방법은 간편하기는 하지만 분석물질(사이토카인의 종류)에 따라 측정결과가 다르고 또한 인간 유래세포에서는 적용할 수 없다는 문제가 있다. In addition to the cell-friendly immunoassay method of the present invention, there is a method for measuring cytokines secreted through inflammation as mentioned in A-5 of FIG. 1. . The cytokine measurement method is a method for obtaining an immunoassay by obtaining a cell culture solution for each process in FIG. 17, and is a very simple technique for observing an inflammatory response without cell damage. However, cytokines are secreted at very low concentrations (less than 10 pg / mL) in human-derived cells, which is very limited for inflammatory reactions. Unlike this, in the case of rat-derived cells as shown in FIG. 20, a measurable level of cytokine is secreted, but the tendency is different depending on the type of cytokine. Semi-continuous measurement of cytokine inflammation in rat-derived cells revealed that the amount of TNF-α secreted decreases with repeated cycles, while IL-6 is constantly secreted. As described above, although the experimental method for measuring cytokines is simple, the measurement results vary depending on the analyte (type of cytokines) and there is a problem that it cannot be applied to human-derived cells.
따라서 반연속적으로 염증을 측정하는 방안은 두 가지로 나누어질 수 있다. 첫 번째 모델은 인간 유래세포주인 A549에서의 TLR의 발현량 변화를 측정하는 것이고, 두 번째 모델은 쥐 유래 세포주인 RAW264.7에서 사이토카인(IL-6)을 측정하는 것이다. 첫 번째 모델의 경우 인간 유래세포주를 활용하기 때문에 사람에게 적용 가능한 신약 스크리닝 분야(약의 효능 및 지속성 그리고 독성검사)에 매우 적절하다는 장점이 있다. 반면, 쥐 유래 세포주를 활용하는 두 번째 모델의 경우 분석이 매우 간편하기 때문에 환경이나 유해세균 그리고 바이러스 모니터링에 더욱 적절할 것이다.Thus, there are two ways to measure inflammation continuously. The first model measures changes in the expression level of TLR in the human-derived cell line A549, and the second model measures cytokines (IL-6) in the mouse-derived cell line RAW264.7. The first model uses human-derived cell lines, which makes it very suitable for new drug screening applications (such as drug efficacy and sustainability and toxicity testing). On the other hand, the second model, which utilizes a mouse-derived cell line, is very easy to analyze, making it more suitable for environmental, harmful bacteria and virus monitoring.
또한 본 발명에서는, 염증 또는 암을 반연속적으로 측정 가능하도록 하는 본 발명의 세포친화적인 면역분석방법을 이용하여 소염제 또는 항암제 후보물질로부터 염증반응 및 발암을 억제하는 소염제 또는 항암제를 선별하는 스크리닝 방법을 제공할 수 있다.In addition, the present invention, using a cell-friendly immunoassay method of the present invention that can measure the inflammation or cancer semi-continuously screening method for selecting an anti-inflammatory agent or anti-cancer agent that suppresses the inflammatory response and carcinogenesis from anti-inflammatory agent or anti-cancer drug candidates Can provide.
도 21은 NF-κB 신호전달과정을 통해 염증신호가 전달되는 모식도(A, B)와 해당기전을 활용한 염증억제 전략(C)이다. 도 1 내지 도 6에서 언급한 바와 같이 병원체의 침입은 전사조절인자인 NF-κB를 활성화시키고, 그 반응결과로서 TLR의 발현(A-1)과 사이토카인을 분비한다(A-2). 이와는 다르게 감염 외 자극에 의해 염증이 유발되는 경우는 다음과 같다(B). 외부자극(B-1)을 통해 체내에 존재하는 염증유도 물질인 브래디키닌(bradykinin)이 합성된다(B-2). 합성된 브래디키닌은 브래디키닌 수용체(bradykinin receptor)에 의해 인식되어 NF-κB를 자극한다(B-3). 자극된 NF-κB는 브래디키닌 수용체를 발현시켜 지속적으로 염증을 유도(B-4)시키는 한편, 또 다른 염증유도 물질인 프로스타글란딘(prostaglandin)을 합성시켜(B-5), 혈관 확장을 통해 염증을 유발한다(B-6). 따라서 상기 발명자는 염증 유도에 중추적인 역할을 하는 NF-κB의 활성을 저해시켜(C-1), TLR과 사이토카인, 그리고 브래디키닌 수용체의 발현을 억제하고(C-2), 이를 통해 소염을 유발(C-3)하는 전략을 구상하였다. 도 21에서 보는 바와 같이 TLR 인지를 통한 선천성 면역반응은 TLR이 감염원의 침입을 인식하면서부터 시작된다. TLR은 감염원의 병원체연관 분자패턴(PAMP)과 특이결합을 하여 세포 내부로 외래물질의 침입신호를 전달하고, 이때 전달된 신호는 전사조절인자인 NF-κB를 활성화 시킨다. 활성화된 NF-κB는 세포간의 신호전달물질인 사이토카인을 발현시켜 인접한 세포들에게 감염여부를 전파하는 한편, TLR과 같은 염증관련 수용체들의 개체 수를 증가시키는 기작을 통해 신호전달과정이 지속적으로 반복되도록 유도한다 (감염과정). 이와 같이 NF-κB는 염증성 신호전달 물질인 사이토카인과 염증관련 단백질수용체의 발현을 담당하는 조절인자로서, 감염이 아닌 염증을 유발하는 외부자극 (예시: 화상, 동통 등)에 의해서도 활성화되는 것으로 알려져 있다. 감염을 포함한 염증을 유발하는 외부 자극에 세포가 노출될 경우, kinin-kallikrein system에 의해 체내에 브래디키닌(혈관확장을 유도하는 염증마커)이 합성되게 되고, 이를 염증관련 수용체인 브래디키닌 수용체가 인식하는 과정이 일어나게 된다. 브래디키닌과 수용체 간의 결합은 NF-κB를 활성화시키며, 활성화된 NF-κB 경로(pathway)는 브래디키닌 수용체의 개체 수를 증가시키는 한편, 또 다른 염증마커인 프로스타글란딘을 합성하는 기작을 유도한다 (염증과정). 이와 같이 체내에서 일어나는 감염과정과 염증과정은 NF-κB 경로(pathway)를 통해 유도되며, 그 중 NF-κB의 활성은 염증이 유발되는 기작에서 중추적인 역할을 한다. 따라서 본 발명자는 NF-κB의 활성이 염증 관련 단백질과 관련 수용체들의 발현에 큰 영향을 준다는 이론적 배경을 통해 도 21의 (C)에서 제시된 바와 같이 NF-κB의 활성억제를 통해 염증반응을 제어하는 물질을 선별하는 기술을 제안하고자 한다.21 is a schematic diagram (A, B) through which the inflammatory signal is transmitted through the NF-κB signaling process and an inflammation suppression strategy (C) using the corresponding mechanism. As mentioned in FIGS. 1 to 6, invasion of the pathogen activates the transcriptional regulator NF-κB and, as a result, secretes TLR expression (A-1) and cytokines (A-2). In contrast, inflammation is induced by stimulation other than infection as follows (B). Through external stimulation (B-1), bradykinin, an inflammation-inducing substance present in the body, is synthesized (B-2). The synthesized bradykinin is recognized by the bradykinin receptor and stimulates NF-κB (B-3). Stimulated NF-κB expresses the bradykinin receptor, which induces inflammation continuously (B-4), while synthesizing another pro-inflammatory agent, prostaglandin (B-5), which promotes inflammation through vasodilation. Cause (B-6). Therefore, the inventors inhibited the activity of NF-κB, which plays a pivotal role in the induction of inflammation (C-1), thereby inhibiting the expression of TLR and cytokines and bradykinin receptors (C-2), thereby preventing anti-inflammatory A strategy of inducing (C-3) was devised. As shown in FIG. 21, the innate immune response through TLR recognition begins when the TLR recognizes an invasion of an infectious agent. TLRs specifically bind to pathogen-associated molecular patterns (PAMPs) of infectious agents to deliver foreign invasion signals into cells, and these signals activate the transcriptional regulator NF-κB. Activated NF-κB expresses cytokine, a signaling agent between cells, spreads infection to adjacent cells and increases the number of inflammatory receptors such as TLR. Induce as much as possible (infection process). As such, NF-κB is a regulator responsible for the expression of cytokine and inflammation-related protein receptors, which are known to be activated by external stimuli (e.g. burns, pain, etc.) that cause inflammation rather than infection. have. When cells are exposed to external stimuli that cause inflammation, including infection, the kinin-kallikrein system synthesizes bradykinin (inflammatory markers that induce vasodilation) in the body, which is recognized by the inflammation-related receptor bradykinin receptors. The process of doing this happens. The binding between the bradykinin and the receptor activates NF-κB, and the activated NF-κB pathway increases the population of the bradykinin receptor, while inducing a mechanism for synthesizing another inflammatory marker, prostaglandin (inflammation) process). As such, the infection and inflammatory processes occurring in the body are induced through the NF-κB pathway, of which NF-κB activity plays a pivotal role in the mechanism of inflammation. Therefore, the present inventors control the inflammatory response through the inhibition of NF-κB activity as shown in FIG. 21C through the theoretical background that NF-κB activity significantly influences the expression of inflammation-related proteins and related receptors. We propose a technique for screening materials.
일례로서, 상기에서 언급한 소염제를 선별하는 기술의 성능을 증명하기 위해, 감염을 통해 염증을 유발시킨 A549세포(폐 상피세포)에 NF-κB의 활성을 억제하는 시약 (예시: CAPE와 sodium salicylate)을 처리하여 염증반응이 억제되는 동물모델을 구축하였고, 이때의 염증억제(NF-κB의 활성 저해) 여부를 TLR의 발현량 변화를 통해 예측하는 실험을 진행하였다. 이와 같은 세포기반의 염증측정시스템은 소염제 후보군들을 스크리닝하는 시스템으로 사용가능할 뿐만 아니라, 동물실험을 대체할 수 있는 실험모델의 기반기술이 될 수 있다.As an example, to demonstrate the performance of the above-mentioned techniques for screening anti-inflammatory agents, reagents that inhibit the activity of NF-κB in A549 cells (pulmonary epithelial cells) that caused inflammation through infection (e.g., CAPE and sodium salicylate ) To build up an animal model that inhibits the inflammatory response, and the experiment was performed to predict whether the inflammation was inhibited (inhibition of NF-κB activity) by changing the expression level of TLR. Such a cell-based inflammatory measurement system can be used as a system for screening anti-inflammatory candidates, and can be a base technology of experimental models that can replace animal experiments.
NF-κB는 DNA와 결합 가능한 P60 단백질과 핵막을 통과할 수 있도록 하는 P50 단백질, 그리고 앞선 두 단백질과 결합하여 그 활성을 억제하는 Iκβα등의 소단위단백질로구성된 전사조절 단백질이다. NF-κB is a transcriptional regulator consisting of subunit proteins such as P60 protein that binds to DNA, P50 protein that allows passage through the nuclear membrane, and Iκβα that binds to and inhibits the activity of the two preceding proteins.
도 22 내지 도 24는 도 21에서 제시된 소염모델을 증명하고자, NF-κB 활성저해제인 CAPE와 sodium salicylate 그리고 진통해열제인 acetaminophen을 처리하여 소염을 유도한 결과이다. 실험에 사용된 CAPE은 핵막내부로 들어간 NF-κB가 DNA와 결합하여 전사시키는 것을 저해하고, sodium salicylate는 NF-κB를 활성화시키는 효소의 활성을 저해시켜, NF-κB의 기작을 저해하는 것으로 알려져 왔다. 이와 같은 현상은 TLR을 기반으로 하는 염증측정방법을 통해서도 관찰 가능하였으며(도 23, 도 24), 특히 sodium salicylate를 처리하는 시점에 따라 저해되는 정도가 달라지는 결과도 얻을 수 있었다(도 23 B-1, B-2). 또한 소염을 유도하지 못하는 것으로 알려진 acetaminophen의 경우 염증신호와 비교하였을 때 아무런 차이점이 나타나지 않았다 (도 24).22 to 24 are the results of induction of anti-inflammatory treatment by treating NF-κB inhibitors CAPE and sodium salicylate and analgesic antipyretic acetaminophen to prove the anti-inflammatory model shown in FIG. CAPE used in the experiment is known to inhibit NF-κB that enters the nuclear membrane and bind to DNA, and sodium salicylate inhibits the activity of NF-κB by inhibiting the activity of an enzyme that activates NF-κB. come. This phenomenon was also observed through the TLR-based inflammation measurement method (Figs. 23 and 24), in particular, the degree of inhibition was different depending on the time point of sodium salicylate treatment (Fig. 23B-1). , B-2). In addition, acetaminophen, which is known to not induce anti-inflammatory, did not show any difference when compared with the inflammatory signal (FIG. 24).
도 22와 같이 세포질 내부에서의 NF-κB 활성은 Iκβα에의해 억제된다. 하지만 감염에 의해 TLR과 PAMP가 결합할 경우 Iκβα키나아제(kinase)가 활성화되게 되고, 이를 통해 Iκβα가 제거된다. 제거된 Iκβα에 의해 활성화된 NF-κB는 핵막을 통과하여 핵막 내부에 존재하는 DNA와 결합하여 염증관련 단백질을 생산한다. 실험에 사용된 CAPE은 벌집에서 추출된 성분으로 P65 단백질과 결합하여 핵막내부로 들어간 NF-κB가 DNA와 결합하여 전사하는 것을 방해하는 것으로 알려진 소염후보물질이다. 또 다른 시약인 sodium salicylate는 IκB kinase의 활성을 억제하여 Iκβα의 결합을 유지시키는 salicylate 계열의 시약으로, 소염제로 널리 알려진 아스피린(aspirin)이 이에 포함된다. 추가적으로 TLR 기반의 염증측정 방법이 NF-κB의 활성 정도에 국한되어 반응한다는 사실을 입증하기 위해 소염효과가 없는 acetaminophen(진통해열제)을 음성 대조군으로 선정하였다.As shown in FIG. 22, NF-κB activity in the cytoplasm is inhibited by Iκβα. However, when TLR and PAMP are combined by infection, Iκβα kinase is activated, thereby removing Iκβα. NF-κB activated by the eliminated Iκβα passes through the nuclear membrane and binds to the DNA present inside the nuclear membrane to produce inflammation-related proteins. CAPE used in the experiment is an anti-inflammatory candidate substance that is known to interfere with the transcription of NF-κB that enters the nuclear membrane by binding to P65 protein. Another reagent, sodium salicylate, is a salicylate-based reagent that inhibits the activity of IκB kinase and maintains the binding of Iκβα, including aspirin, which is widely known as an anti-inflammatory agent. In addition, acetaminophen (an analgesic antipyretic agent) with no anti-inflammatory effect was selected as a negative control to demonstrate that the TLR-based inflammatory assay responds to the extent of NF-κB activity.
도 23에서와 같이 농도별로 희석시킨 염증억제물질(sodium salicylate)과 폐렴유발균인 P. aeruginosa을 폐상피세포인 A549에 처리한 다음, TLR의 발현량을 면역 분석한 결과, 처리된 소염제의 농도에 따라 발현되는 TLR의 양이 억제되는 것을 확인할 수 있었다. 특히 감염 이전에 소염제를 먼저 처리한(도 23 B-2) 경우가 감염과 동시에 소염제를 처리한 경우(도 23 B-1) 보다 더 강하게 TLR의 발현을 억제하였다. 이는 소염제를 처리하는 시기에 따라 소염효과가 다르다는 것으로 이와 같은 현상을 이용할 경우, 적절하게 소염제를 복용하는 시기를 결정할 수 있을 것이다. TLR 발현량을 통한 소염반응 측정은 도 24와 같이 CAPE를 농도 별도 처리한 조건(도 24 C-1)에서도 관찰 가능하였다. 특히 180 uM 농도의 CAPE를 처리한 조건에서 95%에 가까운 TLR 발현량 억제효과(소염효과)가 관찰되었다. 이와는 다르게 진통해열제를 처리한 경우(도 24 C-2), 처리되는 시약의 농도와 상관없이 일정하게 TLR이 발현되는 것을 확인하였고, 실험결과를 통해 TLR의 발현이 NF-κB의 활성에 국한된다는 것을 증명할 수 있었다. As shown in FIG. 23, after treatment with sodium salicylate diluted by concentration and P. aeruginosa , which is a pneumococcal bacterium, was treated with A549, which is a pulmonary epithelial cell, the amount of TLR expression was analyzed. It was confirmed that the amount of TLR expressed according to the inhibition. In particular, when the anti-inflammatory agent was first treated before infection (FIG. 23 B-2), the expression of TLR was more strongly inhibited than when the anti-inflammatory agent was simultaneously treated with the infection (Fig. 23 B-1). This means that the anti-inflammatory effect is different depending on when the anti-inflammatory agent is treated. If such a phenomenon is used, it is possible to determine when to take the anti-inflammatory agent properly. The anti-inflammatory response was measured using the expression level of TLR was observed even under the condition of CAPE treatment separately concentration (Fig. 24 C-1) as shown in FIG. In particular, nearly 95% of TLR expression inhibitory effect (anti-inflammatory effect) was observed under CAPE treatment at 180 uM. In contrast, when treated with analgesics (FIG. 24 C-2), it was confirmed that TLR is constantly expressed regardless of the concentration of the reagent to be treated, and experimental results indicate that the expression of TLR is limited to the activity of NF-κB. Could prove that.
도 22 내지 도 24에서 제시한 소염반응을 1회에 한정시키지 않고 동일세포에서 반복적으로 구현시키고자 세포친화적으로 염증을 반연속 측정하는 실험을 진행하였다.In order to repeatedly implement the anti-inflammatory reactions shown in FIGS. 22 to 24 in the same cell without being limited to one time, an experiment was carried out to measure inflammation in a semi-continuous manner.
도 25 내지 도 26은 동물세포에서 세포친화적으로 소염반응을 반연속측정하는 방법(도 25)과 그에 대한 실험결과(도 26)이다. 세포친화적인 소염 반연속측정방법은 도 17 내지 도 18의 서술된 방법과 동일하게 세포고정화(도 25 A-1)와 초기 세포의 TLR 농도측정(도 25 A-2), 세포준비단계(도 25 A-3) 및 소염제처리, 염증유도(도 25 A-4), 발현 억제된 TLR 농도측정(도 25 A-5) 및 회복단계(도 25 A-6)로 나누어진다. 소염제를 처리하지 않은 경우 염증이 유도되거나 회복될 때의 배경 대비 신호 값의 비율이 소염제를 처리한 경우 대비 높게 형성되었으며, 이러한 신호 값은 2번째 순환에서도 누적되어 가파른 상승곡선을 형성하였다(도 26 B-1). 그와는 다르게 소염제를 처리한 경우 완만한 상승곡선이 형성되었으며, 도 26의 결과와 동일하게 소염제를 처리한 시점에 따라 곡선의 완만한 기울기 정도가 다르게 나타났다(도 26 B-2, B-3).25 to 26 is a method for semi-continuously measuring the anti-inflammatory response to the cell-friendly in animal cells (Fig. 25) and the experimental results (Fig. 26). Cell-friendly anti-inflammatory semi-continuous measuring method is the same as the method described in Figures 17 to 18 cell fixation (Fig. 25 A-1) and TLR concentration measurement of the initial cells (Fig. 25 A-2), cell preparation step (Fig. 25 A-3) and anti-inflammatory treatment, inflammation induction (Fig. 25 A-4), expression suppressed TLR concentration measurement (Fig. 25 A-5) and recovery (Fig. 25 A-6). When the anti-inflammatory agent was not treated, the ratio of signal values to the background when inflammation was induced or recovered was higher than that when the anti-inflammatory agent was treated, and these signal values accumulated in the second cycle to form a steep rise curve (FIG. 26). B-1). On the contrary, when the anti-inflammatory agent was treated, a gentle upward curve was formed, and as in the result of FIG. 26, the gentle slope of the curve was different according to the time point of the anti-inflammatory agent treatment (FIGS. 26B-2 and B-3. ).
세포친화적인 소염반응 반연속측정은 도 25의 모식도처럼 세포고정화 단계(A-1)와 초기 세포의 TLR 농도측정 단계(A-2), 세포준비 단계(A-3), 염증유도 단계(A-4), 염증유도를 통해 발현된 TLR 농도 측정 단계(A-5), 그리고 회복단계(A-6)로 나누어지며, 세포 고정화 단계를 제외한 과정은 순차적으로 순환되어 반복적으로 염증유도와 억제 및 회복과정이 진행된다. 또한 세포준비 단계 혹은 염증유도 단계에서 염증억제제인 sodium salicylate를 처리하여, 도 24에서와 같이 처리시기에 따른 소염작용의 정도를 확인하였다. 그 결과 도 26과 같이 소염제 처리 후 염증을 유도시킨 경우가 소염제 처리와 염증유도를 동시에 실시한 경우보다 강하게 소염반응을 나타냈으며, 이와 같은 현상은 동일세포에서 2회까지 관찰가능 하였다. 이를 통해 상기 발명자가 고안한 시스템을 활용할 경우 동일세포에서 반연속적으로 염증이 유도되고 억제되는 현상을 관찰 가능함을 증명하였고, 이에 대한 응용으로 소염제를 선별하는 실험 예시를 추가적으로 제시하고자 하였다.Semi-continuous measurement of cell-friendly anti-inflammatory response is as shown in the schematic diagram of FIG. 25, the cell fixation step (A-1), the TLR concentration measurement step (A-2), the cell preparation step (A-3), and the inflammation induction step (A-3) of the initial cells. -4), TLR concentrations expressed through inflammation induction (A-5), and recovery (A-6) is divided into steps, except for the cell immobilization step is circulated sequentially to repeatedly induce inflammation and inhibition and The recovery process is in progress. In addition, sodium salicylate, an inflammation inhibitor, was treated in a cell preparation step or an inflammation induction step, and as shown in FIG. As a result, as shown in Fig. 26, when the anti-inflammatory treatment was induced, the anti-inflammatory treatment showed stronger anti-inflammatory response than when the anti-inflammatory treatment and inflammation induction were performed at the same time. Such a phenomenon was observed up to 2 times in the same cell. This proved that when the system designed by the inventor was used, the phenomenon of inducing and inhibiting inflammation in the same cell was observed semi-continuously, and an example of selecting an anti-inflammatory agent as an application thereof was further proposed.
동일세포에 대해서 반연속적으로 염증을 측정하는 기술의 응용성 및 적용가능성을 확인하기 위해 반복적으로 소염제를 처리했을 때의 약효 지속성 및 독성을 확인하는 실험을 진행하였다. 현재 개발된 대부분의 소염제 스크리닝 시스템들은 높은 처리량(high-throughput)으로 많은 종류의 신약 후보군들의 성능을 확인하는 일회성 검사법이다. 이러한 검사시스템들은 1회에 한정해서 소염작용을 하는지 여부만을 확인하기 때문에 해당 시약 후보군을 처리하였을 때, 약효가 지속되는 시기나 세포에 대한 독성 등을 확인하기 위해서는 추가적인 세포독성실험이나 동물을 이용한 비임상실험이 반드시 보완되어야 한다. 하지만 본 발명의 동물 세포막 수용체 기반의 반연속 염증측정시스템의 경우 동일세포에 대해 재감염을 유도하고 그 상태를 반연속적으로 모니터링하기 때문에 소염제를 처리한 이후 약효가 지속되는 기간을 확인하거나 소염제 처리에 따른 일차적인 세포 독성 그리고 반복적인 소염제처리에 따른 누적 세포독성을 검사하는데 적용 가능하다. 따라서 세포막 수용체 기반의 소염제스크리닝 시스템의 응용성을 증명하고자 3회에 걸친 재감염과 회복을 유도하는 염증표준모델을 선정하고, 해당 모델에 3종의 소염제를 다양한 방법으로 처리하는 실험을 진행하였다.In order to confirm the applicability and applicability of the technique for measuring inflammation in a semi-continuous manner to the same cell, an experiment was conducted to confirm the continuity and toxicity of the anti-inflammatory agent when repeatedly treated. Most anti-inflammatory screening systems currently developed are one-time tests that verify the performance of many types of drug candidates with high-throughput. These test systems only check whether anti-inflammatory activity is limited to one-time, so when the reagent candidate group is treated, additional cytotoxicity experiments or animal-based tests are performed to confirm the duration of drug efficacy or cell toxicity. Clinical trials must be complemented. However, in the case of the semi-continuous inflammation measuring system based on the animal cell membrane receptor of the present invention, the re-infection of the same cells is induced and the condition is monitored semi-continuously so that the duration of the drug efficacy after treatment with the anti-inflammatory agent or the anti-inflammatory agent treatment Applicable for testing primary cytotoxicity and cumulative cytotoxicity following repeated anti-inflammatory treatments. Therefore, in order to prove the applicability of cell membrane receptor-based anti-inflammatory screening system, we selected an inflammatory standard model that induces re-infection and recovery three times, and conducted experiments in which three anti-inflammatory agents were treated in various models.
도 27 내지 도 30은 동물세포를 통해 세포독성과 약효 지속성을 검사하는 방안이다. 저해제의 세포독성은 정상적으로 배양되는 세포와 저해제의 독성에 의해 손상을 입은 세포의 배경 대비 신호 값의 차이를 통해 확인 가능하며(도 27), 이러한 세포독성검사법을 통해 적정한 수준의 저해제 농도를 선별 가능하였다. 이와 같은 반응성은 3회에 걸친 약효지속성 검사에 도입되어 80시간 동안 누적되는 독성 없이 약효가 지속되는 것을 확인하였다(도 28, 도 29). 부가적으로 처리횟수를 다르게 한 실험의 결과를 통해 이러한 패턴이 20시간이 지난 시점에서는 적용되지 않는다는 것을 확인할 수 있었다 (도 30).27 to 30 is a method for testing cytotoxicity and drug persistence through animal cells. The cytotoxicity of the inhibitor can be confirmed by the difference in signal values against the background of normal cultured cells and cells damaged by the toxicity of the inhibitor (FIG. 27), and the appropriate level of inhibitor concentration can be selected through the cytotoxicity test. It was. This reactivity was introduced into three drug sustainability test to confirm that the drug is continued without toxicity accumulated for 80 hours (Fig. 28, 29). In addition, the results of experiments with different treatment times confirmed that this pattern was not applied after 20 hours (FIG. 30).
도 27과 같이 소염제(CAPE) 처리 없이 3회에 걸친 재감염과 회복을 유도할 경우, 감염 시에는 3 정도의 배경신호 대비 염증신호 값을 나타냈으며, 회복 시에는 2 정도의 수치를 나타냈다. 이와는 다르게 염증이 유도되기 전에 소염제(90 uM CAPE와 50uM salicylate)를 처리한 경우, 염증 유도과정에서 2 정도의 신호값을, 회복과정에서는 1.5 정도의 신호 값을 나타냈다. 도 22 내지 도 24에서 제시한 바와 같이 소염제 처리시 TLR 신호 값이 비정상적으로 상승하거나 감소하지 않는 것을 통해 해당 소염제 조건이 세포에 독성 띠지 않는다는 것을 확인할 수 있었다. 이와는 다르게 도 28과 같이 높은 농도의 소염제를 처리한 경우(180 uM CAPE), 세포의 손상이 유발되어 염증유도과정부터 배경 대비 신호 값의 비율이 증가하지 않는 것을 확인할 수 있었다. 이와 같은 현상은 세포 손상으로 인해 비특이적인 배경신호의 상승과 고정화된 세포의 유실 때문이다. 두 가지의 세포특성은 세포가 손상되었다는 객관적인 지표이기 때문에 세포수용체 기반의 소염제스크리닝 시스템을 활용할 경우 소염제의 효능뿐만 아니라 약에 의한 독성까지도 동시에 검사 가능하였다. 90 uM CAPE와 50 mM sodium salicylate를 3회에 걸쳐 처리하는 기간 동안 배경신호 대비 염증신호의 비율이 일정하게 유지된다는 것은 해당 시약들이 제시된 농도에서는 세포에 대한 독성이 없이 소염작용을 한다는 것을 의미한다. 또한, 도 29에서와 같이 acetaminophen의 경우, 10 mM 농도로 처리하여도 소염작용뿐만 아니라 독성도 없다는 것을 확인할 수 있었다.As shown in FIG. 27, three times of reinfection and recovery without induction of anti-inflammatory agents (CAPE) were induced, the infection signal value was about 3 compared to the background signal, and the recovery value was about 2. In contrast, when anti-inflammatory agents (90 uM CAPE and 50 uM salicylate) were treated before the induction of inflammation, signal values of about 2 during the induction of inflammation and about 1.5 during the recovery were shown. As shown in FIGS. 22 to 24, when the anti-inflammatory treatment did not increase or decrease the TLR signal value, it was confirmed that the anti-inflammatory condition is not toxic to the cells. In contrast, when treated with a high concentration of anti-inflammatory agent as shown in Figure 28 (180 uM CAPE), it was confirmed that the damage of the cells is not induced to increase the ratio of the signal value against the background from the inflammatory process. This is due to the rise of nonspecific background signals and the loss of immobilized cells due to cell damage. Since the two cell characteristics are an objective indicator of cell damage, the cytoreceptor-based anti-inflammatory screening system was able to test not only the efficacy of the anti-inflammatory agent but also the toxicity of the drug. The constant ratio of inflammatory signal to background signal during three treatments of 90 uM CAPE and 50 mM sodium salicylate means that the reagents are anti-inflammatory without toxicity to the cells at the indicated concentrations. In addition, in the case of acetaminophen as shown in Figure 29, it was confirmed that there is no toxicity as well as anti-inflammatory action even at 10 mM concentration.
추가적으로 약 효능의 지속성 및 내성을 확인하기 위해 소염제를 처리하는 시기를 각각 다르게 하여 각 조건상에서의 소염양상을 비교분석 하였다. 도 30에서와 같이 3회에 걸친 염증유도 반응을 각각 회차에 따라 구분하여 1회와 2회차 순환반응에서만 소염제를 처리한 경우, 3회차 순환반응을 제외한 염증유도 과정에는 배경 대비 신호 값의 비율이 2를 나타내었고, 회복과정에서는 1.5를 나타내었다. 소염제가 처리되지 않은 3회차 순환반응에서는 염증유도과정에서는 2.5, 회복과정에서 2의 비율이 나타났다. 마찬가지로 1회와 3회차 순환반응에서 소염제를 처리한 경우, 2차 감염에서만 정상 감염 치에 가까운 신호 값 비율이 나타났다. 특히 2차 회복 시에는 정상 감염 후 회복되는 양상과 동일한 2에 가까운 배경신호 대비 염증신호 값의 비율이 나타났는데, 이는 높은 수준으로 발현된 TLR이 잔여하기 때문이다. 또한 앞서 제시된 바와 같이 3회에 걸친 반복반응 동안 일정한 신호 값의 비율이 나타났기 때문에 실험에 사용된 소염제의 농도는 반복적으로 사용하여도 독성이 없다는 것을 증명한다. 이와 같은 현상은 동일세포에서 1회성으로 소염반응을 관찰하는 기존반응에서는 시도할 수 없는 실험으로 실험동물을 통해서만 가능한 약효지속성 검사와 독성검사를 세포수용체 기반의 시스템을 통해 대체할 수 있다는 것을 의미한다. 따라서 상기 시스템을 활용할 경우 동시에 약의 효능을 확인하는 선별 검사뿐만 아니라 약의 지속성 및 독성검사 그리고 이와 같은 검사들을 반복적으로 확인하는 반복투여검사를 한번에 진행 가능할 것이다. 이와 같은 세포수용체 기반의 복합 검사법은 실험동물을 활용하는 기존의 검사법들을 대체 가능할 것으로 기대된다.In addition, to determine the persistence and resistance of drug efficacy, anti-inflammatory treatment was performed at different times to compare the anti-inflammatory properties under each condition. As shown in FIG. 30, when the anti-inflammatory agent was treated only in the first and second circulation reactions by dividing the three inflammatory reactions according to each cycle, the ratio of the signal value to the background was different in the inflammatory induction process except the third circulation reaction. 2 was represented and 1.5 was shown in the recovery process. In the third cycle of the anti-inflammatory treatment, the ratio of 2.5 in inflammation and 2 in recovery was found. Similarly, when anti-inflammatory agents were treated in cycles 1 and 3, the rate of signal values close to the normal infection level was observed only in the second infection. Especially, in the second recovery, the ratio of the inflammatory signal value to the background signal close to 2, which is the same as the pattern recovered after the normal infection, was shown because the TLR expressed at the high level remained. In addition, since the ratio of a constant signal value appeared during the three repeated reactions as described above, the concentration of the anti-inflammatory agent used in the experiment proves that there is no toxicity even if repeated use. This phenomenon cannot be attempted in the existing reaction of one-time anti-inflammatory reactions in the same cell, which means that the drug persistence test and toxicity test, which can be performed only in experimental animals, can be replaced by a cell receptor-based system. . Therefore, when the system is utilized, the screening test to confirm the efficacy of the drug at the same time as well as the continuity and toxicity test of the drug and iterative dosing test to repeatedly check these tests will be able to proceed at once. Such a cell receptor-based complex test method is expected to replace the existing test methods using laboratory animals.
상기 세포의 염증유발 시스템에 핵심 역할을 하는 세포막 수용체를 이용한 바이오센싱 방법은 기존의 감염원에 대한 바이오센싱 방법에서 주로 이용하였던 디옥시리보핵산(DNA), 항체 등과 같은 특이적인 생체물질을 이용한 것이 아닌, 체내 선천성 면역반응 시스템을 감염 센서로서 직접적으로 이용했다는 점에 그 특징이 있다. 이를 통해, 단지 해당 감염원의 접종만으로 대량의 감염원 배양 등의 복잡한 절차를 배제시킬 수 있어 공정의 단축 및 간편화를 구현할 수 있다.Biosensing using cell membrane receptors, which play a key role in the inflammation-inducing system of the cells, does not use specific biomaterials such as deoxyribonucleic acid (DNA), antibodies, etc., which are mainly used in biosensing methods for infectious agents. It is characteristic that the innate immune response system was used directly as an infection sensor. In this way, complex procedures such as culturing a large number of infectious agents can be eliminated only by inoculation of the corresponding infectious agent, so that the process can be shortened and simplified.
본 발명은 동물세포의 세포막 수용체에 특이적이고 친화도가 높은 탐지체를 통해 신속하게 감염원으로부터의 감염여부를 탐지하는 바이오센싱 방법을 제공함으로써, 기존의 감염 및 염증반응을 측정하기 위한 공정들을 간편화하고, 이를 통해 염증과정과 소염과정을 동일세포에서 반연속적으로 탐지할 수 있도록 한다.The present invention provides a biosensing method that detects infection from an infectious agent quickly through a detector having a high affinity specific to a cell membrane receptor of an animal cell, thereby simplifying existing processes for measuring infection and inflammatory responses. This allows semi-continuous detection of inflammatory and anti-inflammatory processes in the same cell.
즉, 병원체에 대한 동물세포의 물리적 또는 화학적 변화를 측정하는 것이 아닌, 세포의 염증유발 시스템에 핵심 역할을 하는 톨-유사 수용체(TLRs)와 같은 세포막 수용체를 도입하여 이를 직접적으로 탐지함으로써 감염원에 대한 특이성과 민감도를 향상시키는 한편, 동물실험을 통해서만 얻을 수 있는 실험결과들을 체외에서 간접적으로 도출할 수 있다. In other words, rather than measuring the physical or chemical changes of animal cells to pathogens, cell membrane receptors such as Toll-like receptors (TLRs), which play a key role in the cell's inflammation system, are introduced and directly detected for infectious agents. While improving specificity and sensitivity, it is possible to indirectly derive experimental results obtained only through animal experimentation in vitro.
나아가, IT 기술을 도입하여 소형화된 측정장비를 보강하고, 이를 통해 실험실 밖의 현장에서도 본 발명의 바이오센싱 방법을 사용하는 것이 가능하다.Furthermore, it is possible to reinforce the miniaturized measuring equipment by introducing IT technology, and thus use the biosensing method of the present invention in the field outside the laboratory.
본 발명을 하기의 실시예를 통하여 보다 구체적으로 설명한다. 그러나, 이들 실시예는 단지 예시적인 것일 뿐, 본 발명의 기술적 범위를 한정하는 것은 아니다.The present invention will be described in more detail with reference to the following examples. However, these embodiments are merely exemplary and do not limit the technical scope of the present invention.
실시예Example 1. 세포 배양 및  1. Cell Culture and 부착화Attachment
RPMI1640 medium에 소태아혈청(Fetal Bovine Serum, FBS) (10% (v/v), 최종농도)과 페니실린-스트렙토마이신 용액(Penicillin-streptomycin, 1% (v/v), 최종농도)를 혼합한 배지를 이용하여, 인간 폐 상피세포주인 A-549 (ATCC CCL-185)가 각 웰(well) 당 6 x 104 cells의 개수로 유지할 수 있도록 96-웰 세포 배양 플레이트(96-well cell culture plate)에 각각 200㎕씩 주입한 후, 온도 37℃ 및 이산화탄소(CO2) 5% 가 유지되는 조건하에서 24시간 동안 배양을 하였다. 배양을 통해 A-549가 웰 표면에 고착화 된 것을 광학현미경으로 확인(100X) 한 후, 상기 페니실린-스트렙토마이신 용액, 즉 항생제 제거를 위하여 흡입기로 배지를 제거한 후, DPBS (+/+)를 200㎕로 첨가하여 세척하였다. 세척 후 다시 흡입기로 잔여 항생제를 제거한 뒤 RPMI1640 medium 무혈청 배지를 200㎕로 첨가하여 1시간을 경과시켜 세포기아(starvation)상태로 만들었다. 상기 바이오센싱 방법에 있어서 사용되는 동물세포가 세포기아(Starvation)상태인 것이 바람직하다. 이는 96-웰 마이크로틸터 플레이트(96-well microtiter plate) 등과 같은 세포배양 기판에 동물세포주를 배양하여 부착 및 세포기아(starvation)상태를 거쳐 감염원으로 인한 외부자극에 대하여 동물세포가 민감하게 반응할 수 있도록 하는 역할을 한다. 마우스 대식세포주인 RAW264.7 (KCLB 40071)를 활용할 경우, Dulbecco's Modified Eagle's Medium(DMEM)을 대체하여 사용하였다.Fetal Bovine Serum (FBS) (10% (v / v), final concentration) and penicillin-streptomycin solution (Penicillin-streptomycin, 1% (v / v), final concentration) mixed in RPMI1640 medium Using a medium, 96-well cell culture plate so that human lung epithelial cell line A-549 (ATCC CCL-185) can be maintained in the number of 6 x 10 4 cells per well. 200µl each was injected into the cells), followed by incubation for 24 hours under the condition that the temperature was maintained at 37 ° C and carbon dioxide (CO 2 ) 5%. After confirming that A-549 was fixed on the well surface through culture (100X), the medium was removed by an inhaler to remove the penicillin-streptomycin solution, that is, antibiotics, and then DPBS (+ / +) was added to 200 Wash with addition of μl. After washing, the antibiotics were removed by inhaler again, and then RPMI1640 medium serum-free medium was added to 200 μl to give starvation. It is preferable that the animal cell used in the biosensing method is in a cell starvation state. This is because the animal cell line is cultured on a cell culture substrate such as a 96-well microtiter plate and the like, and the animal cell can react sensitively to external stimuli caused by an infectious agent through a state of attachment and starvation. Play a role. When utilizing a mouse macrophage RAW264.7 (KCLB 40071), it was used in place of Dulbecco's Modified Eagle's Medium (DMEM).
실시예Example 2. 감염원을 통한  2. Through infectious agents 염증유도Inflammation
RPMI1640 medium과 Dulbecco's Modified Eagle's Medium(DMEM)에 FBS (10% (v/v), 최종농도)와 페니실린-스트렙토마이신 용액(1% (v/v), 최종농도)을 혼합한 배지를 사용하고, A-549와 RAW264.7를 각 웰 당 6 x 104 cells의 개수로 유지할 수 있도록 96-well cell culture plate에 각각 200㎕씩 주입한 후, 온도 37℃ 및 이산화탄소(CO2) 5%로 유지되는 조건하에서 표면에 부착시켜 24시간 동안 배양하였다. 배양 후 상기 페니실린-스트렙토마이신 용액, 즉 항생제 제거를 위하여 배지를 흡입기로 제거한 다음, DPBS (+/+)를 200㎕로 첨가하여 세척하고, 다시 흡입기로 잔여 항생물질을 제거한 다음 각 세포별 무혈청 배지를 200㎕로 첨가하여 1 시간 동안 세포기아(starvation)상태로 만들었다. Using a medium mixed with RPMI1640 medium and Dulbecco's Modified Eagle's Medium (DMEM) with FBS (10% (v / v), final concentration) and penicillin-streptomycin solution (1% (v / v), final concentration), Inject 200 µl of each A-549 and RAW264.7 into a 96-well cell culture plate to maintain the number of 6 x 10 4 cells per well, and keep the temperature at 37 ° C and carbon dioxide (CO 2 ) at 5%. The cells were attached to the surface and incubated for 24 hours. After incubation, the penicillin-streptomycin solution, i.e., the medium was removed with an inhaler for antibiotic removal, followed by washing with 200 μl of DPBS (+ / +), followed by removal of the remaining antibiotics with the inhaler, and serum-free for each cell. 200 μl of the medium was added to starvation for 1 hour.
감염을 위하여 살아있는 식중독균(Shigella sonnei )과 고주파로 분쇄시켜 사멸된 세균파쇄액(Pseudomonas aeruginosa)을 각 동물세포에 사용된 무혈청 배지에 제시된 농도로 희석하여 각 웰에 200㎕씩 접종을 실시하여 상기한 조건과 동일한 상태에서 감염을 제시된 시간 동안 수행하였다. 감염원을 전혀 첨가하지 않는 웰은 대조구로서 사용되었다. 각 감염시간 종료 후 흡입기를 통해 배지와 대장균을 제거하였고, Dulbecco's Phosphate Buffered Saline/modified with Calcium and Magnesium (DPBS(+/+))를 200㎕로 첨가하여 1회 세척하였다. Live food poisoning bacteria ( Sigella) for infection sonnei ) and high-frequency pulverized bacterial lysate ( Pseudomonas aeruginosa ) was diluted to the concentrations indicated in the serum-free medium used for each animal cell, and 200 µl of each well was inoculated to perform infection for the indicated time under the same conditions as described above. Wells with no addition of infectious agents were used as controls. At the end of each infection time, medium and Escherichia coli were removed through an inhaler, and washed once with Dulbecco's Phosphate Buffered Saline / modified with Calcium and Magnesium (DPBS (+ / +)) in 200 μl.
실시예Example 3. 세포기반  3. Cell based 효소발색면역Enzyme development 분석(세포 손상이 유도되는 경우) Assay (if cell damage is induced)
감염된 세포는 4% 포르말린 용액을 100㎕로 첨가하여 실내온도에서 30분 동안 처리하여 감염세포를 웰(well)에 고정시켰으며(fixation), 다음 흡입기로 4% 포르말린 용액을 제거 후 고정화가 이루어지지 않은 잔여표면을 Dulbecco's Phosphate Buffered Saline/modified without Calcium and Magnesium (DPBS(-/-))에 0.5% (w/v) 농도로 용해되어 있는 카제인단백질-인산완충용액(Casein-PBS)을 200㎕로 분주하여 습도가 100% 유지되고 온도 37oC 조건에서 1 시간 동안 반응시켰다.Infected cells were treated with 100 μl of 4% formalin solution for 30 minutes at room temperature to fix the infected cells in the wells. 200 μl of casein protein-phosphate buffer solution (Casein-PBS) dissolved in Dulbecco's Phosphate Buffered Saline / modified without Calcium and Magnesium (DPBS (-/-)) at a concentration of 0.5% (w / v). The reaction was performed at 100% humidity to react for 1 hour at 37 ° C.
다음 TLR과 특이적으로 결합되는 TLR 토끼 복합클론 항체 (rabbit polyclonal antibody)를 0.1% (v/v) tween 20이 포함된 Casein-PBS (Casein-PBS-Tw)를 사용하여 1/300의 비율로 희석하여 100㎕씩 분주하여 동일조건에서 1 시간 동안 반응시킨 후, 반응액을 버리고 0.1% tween 20이 포함된 인산완충용액(PBST)를 이용하여 200㎕씩 3회 세척을 통해 반응되지 않은 항체를 제거하였다. 다음, 2차항체인 HRP conjugated goat anti-rabbit IgG도 0.1% (v/v) tween 20이 포함된 Casein-PBS (Casein-PBS-Tw)를 사용하여 1/5000의 비율로 희석하여 100㎕씩 분주하여 동일 조건에서 1 시간 동안 반응시킨 후, PBST로 같은 방법으로 3회 세척하였다. 50mM acetate, 1% 3, 3',5,5'-tetramethylbenzidine (TMB) (w/v) 및 3% 과산화수소(v/v)를 1000 : 10 : 1의 비율로 혼합하여 신호발생을 위한 발색기질용액을 제조하고, 상기 발색기질용액을 200㎕ 분주하여 15분 동안 발색반응을 관찰한 후 2M 황산 50㎕를 분주하여 반응을 정지시켰다. 최종적으로 발색된 신호는 450nm 파장에서 ELISA plate reader (Versamax; Molecular Device, 미국)로 탐지하였다. 탐지된 결과는 도 3에서와 같이 MS excel 프로그램을 통해 그래프로 도식화하였다.Next, TLR rabbit polyclonal antibody that specifically binds to TLR was used at a rate of 1/300 using Casein-PBS (Casein-PBS-Tw) containing 0.1% (v / v) tween 20. After diluting and dispensing 100 μl each reaction for 1 hour under the same conditions, discard the reaction solution and washed three times by 200 μl three times using phosphate buffer solution (PBST) containing 0.1% tween 20. Removed. Next, HRP conjugated goat anti-rabbit IgG, a secondary antibody, was also diluted to a ratio of 1/5000 using Casein-PBS (Casein-PBS-Tw) containing 0.1% (v / v) tween 20, and then 100 μl each. After dispensing and reacting for 1 hour under the same conditions, the resultant was washed three times with PBST in the same manner. 50mM acetate, 1% 3, 3 ', 5,5'-tetramethylbenzidine (TMB) (w / v) and 3% hydrogen peroxide (v / v) in a ratio of 1000: 10: 1 A solution was prepared, and 200 µl of the color substrate solution was observed to observe the color reaction for 15 minutes, and then 50 µl of 2M sulfuric acid was dispensed to stop the reaction. The finally developed signal was detected by ELISA plate reader (Versamax; Molecular Device, USA) at 450 nm wavelength. The detected result is graphically graphed through the MS excel program as shown in FIG. 3.
실시예Example 4. 분자생물학적  4. Molecular Biology 마커분석Marker analysis
분자생물학적으로 TLR의 발현량을 확인하고자, 감염된 세포를 Dulbecco's Phosphate Buffered Saline/modified without Calcium and Magnesium (DPBS(-/-))을 이용하여 200㎕씩 3회 세척한 다음 Invitrogen 사의 TRIzol 시약을 통해 RNA를 추출하였다. 추출된 RNA에 Abcam 사의 TaqMan 역전사 시약을 반응시켜 complementary DNA (cDNA)로 합성하였다. 역전가 과정은 Bio-Rad사의 MJ Mini Thermal Cycler를 통해 유도하였다. 그 유도 조건은 25°C에서 10분간 냉각, 37℃에서 1시간 그리고 42℃에서 1시간 연장, 마지막으로 95℃에서 5분간 불화성화이다. 합성된 cDNA는 Thermo Fisher Scientific사의 NanoDrop을 통해 정량하였다. To confirm the expression level of TLR in molecular biology, infected cells were washed three times with 200 µl each using Dulbecco's Phosphate Buffered Saline / modified without Calcium and Magnesium (DPBS (-/-)), followed by RNA using TRIzol reagent from Invitrogen. Was extracted. Abcam TaqMan reverse transcriptase was reacted with the extracted RNA to synthesize complementary DNA (cDNA). The reverse transduction process was induced by Bio-Rad's MJ Mini Thermal Cycler. The induction conditions are 10 minutes cooling at 25 ° C., 1 hour at 37 ° C. and 1 hour extended at 42 ° C., and finally 5 minutes at 95 ° C. for inactivation. Synthesized cDNA was quantified by NanoDrop from Thermo Fisher Scientific.
실시간 중합효소 연쇄 반응을 위해 TLR에 대한 두 가지의 유전자시퀀스(5-TTGCTCCTGCGAACTCCTAT-3와 5-AGCCTGGTGACATTCCAAGA-3)를 각각 설계하였고, 실시간으로 연장되는 DNA를 관찰하기 위해 Abcam 사의 SYBR Green PCR Master Mix를 통해 표시물질을 삽입하였다. 실시간 중합효소 연쇄반응은 Applied Biosystems 사의 ABI 7500 Real-Time PCR System를 이용하였으며, 사용조건은 다음과 같다. 과정 1: 2분간 50°C 그리고 10분간 95°C, 과정 2: 15초간 95°C 그리고 1분간 60°C. 과정 1과 2는 40번 반복하였다. 또한 glyceraldehyde 3-phosphate dehydrogenase (mGAPDH)을 대조군으로 사용하기 위해 두 가지의 유전자시퀀스(5-TGTGTCCGTCGTGGATCTGA-3와 5-CCTGCTTCACCACCTTCTTGAT-3)를 추가적으로 제작하였으며, 대조군 대비 상대적으로 증가된 TLR의 mRNA비율을 threshold cycle 방법을 통해 수치화 하였다. 해당 결과는 도 4와 같이 MS excel 프로그램을 통해 도식화하였다.Two gene sequences (5-TTGCTCCTGCGAACTCCTAT-3 and 5-AGCCTGGTGACATTCCAAGA-3) for TLRs were designed for real-time polymerase chain reaction, respectively. The indicator was inserted through. Real-time polymerase chain reaction was performed using Applied Biosystems' ABI 7500 Real-Time PCR System, and the conditions of use were as follows. Procedure 1: 50 ° C for 2 minutes and 95 ° C for 10 minutes, Process 2: 95 ° C for 15 seconds and 60 ° C for 1 minute. Procedures 1 and 2 were repeated 40 times. In addition, two gene sequences (5-TGTGTCCGTCGTGGATCTGA-3 and 5-CCTGCTTCACCACCTTCTTGAT-3) were additionally prepared to use glyceraldehyde 3-phosphate dehydrogenase (mGAPDH) as a control, and the threshold TLR mRNA ratio was increased. It was quantified by the cycle method. The result was plotted through the MS excel program as shown in FIG.
실시예Example 5.  5. 염증유도시Inflammatory oil 분비되는 사이토카인 측정 Secretion of cytokines
감염된 세포에서 분비되는 TNF-α와 IL-6를 측정하기 위해 R&D system사에서 판매하는 사이토카인 면역분석키트를 사용하였다. 살아있는 S. sonnei균과 항균제인 proclin300을 처리하여 불활성화시킨 균을 DMEM medium을 통해 희석하고 실시예 2에서 언급한 바와 같이 마우스 대식세포주인 RAW264.7에 정해진 시간 동안 처리하여 염증반응을 유도하였다. 균 감염을 통해 분비된 사이토카인을 측정하고자, 배양액을 분석키트에서 제공되는 희석버퍼를 통해 희석(1/5 TNF-α와 1/2 IL-6)하여 사이토카인에 대한 항체가 고정되어있는 웰에 넣어 상온에서 2시간 동안 반응시켰다. 반응 이후, 키트에서 제공되는 세척버퍼를 통해 5회 세척을 실시하였고, 효소가 중합된 탐지항체를 100㎕ 분주하여 1시간 동안 상온에서 반응시켰다. 다시 한번 세척한 이후, 실시예 3에서 명시된 바와 같이 발색기질을 통해 발색반응을 유도하고 이를 측정한다. 측정된 결과는 도 5 및 도 6과 같이 그래프로 도식화하였다.A cytokine immunoassay kit sold by R & D system was used to measure TNF-α and IL-6 secreted from infected cells. Inactivated S. sonnei bacteria and bacteria inactivated by treatment with antibacterial proclin300 were diluted with DMEM medium and treated with mouse macrophage RAW264.7 for a predetermined time as described in Example 2 to induce an inflammatory response. To measure the cytokines secreted through bacterial infection, the culture medium was diluted (1/5 TNF-α and 1/2 IL-6) through the dilution buffer provided in the assay kit to fix the antibody against the cytokine. The reaction was carried out for 2 hours at room temperature. After the reaction, washing was performed five times through the washing buffer provided in the kit, and 100 μl of the polymerized detection antibody was reacted at room temperature for 1 hour. After washing once more, the color reaction is induced and measured through the color substrate as specified in Example 3. The measured results are graphically plotted as shown in FIGS. 5 and 6.
실시예Example 6.  6. TLRTLR 조절기작을Control 통한 제한적인 염증  Limited inflammation through 반연속관찰Semicontinuous observation
도 7에 제시된 TLR 조절기작을 활용하여 염증을 반연속적으로 관찰하기 위해, 우선적으로 실시예 1에서와 같이 여러 묶음의 동물세포주를 배양한 세포배양 웰에 FBS가 포함되지 않은 배지를 200㎕씩 분주하여 온도 37℃ 및 이산화탄소(CO2) 5% 로 유지되는 조건하에서 2시간 동안 세포기아상태를 유도하였다. 세포기아상태가 유도된 일부의 세포주 묶음은 실시예 3과 같이 세포고정화 이후, TLR에 대한 발색면역반응을 실시하였다. 나머지 세포주 묶음은 세포를 기아상태로 만든 준비기간 이후, 반응한 배지를 제거한 하여 감염원을 농도별로 희석시킨 무혈청배지를 200㎕씩 분주하여 온도 37oC 및 이산화탄소(CO2) 5% 로 유지되는 조건하에서 4시간 동안 감염시켰다. 감염된 일부의 세포주 묶음은 실시예 3과 같이 세포고정화 이후, 발색면역반응을 실시하였다. 나머지 세포주 묶음은 감염 이후, 10% FBS가 포함된 배지를 통해 3회에 거쳐 세척을 하였고, 세척이 완료된 웰은 10% FBS가 포함된 배지를 200㎕씩 분주하여 온도 37℃ 및 이산화탄소(CO2) 5% 로 유지되는 조건하에서 24시간 동안 회복반응유도 하였다. 각각의 세포주 묶음은 도 8과 같이 6시간 단위로 실시예 3에서와 같이 발색면역반응을 실시하였다. 대조군으로 감염을 유도하지 않은 세포주 묶음을 준비하였고, 이를 기반으로 배경신호 값 대비 염증 신호 값의 비율을 산출하여 도 9에 도식화하였다. 최대치의 회복률은 감염과정 동안 증가된 TLR의 발현수준 대비 회복과정 동안 감소된 TLR의 발현수준의 비율을 환산한 것이다. 이와 같은 제한적인 염증의 반연속적관찰은 2회 3회 반복하였으며, 그 결과를 도 10 및 도 11에 그래프로 도식화하였다.In order to observe the inflammation semi-continuously by using the TLR control mechanism shown in Figure 7, preferentially by dispensing 200 μL of medium without FBS to the cell culture well cultured in several bundles of animal cell lines as in Example 1 Cell starvation was induced for 2 hours under conditions maintained at 37 ° C. and carbon dioxide (CO 2 ). In some cell line bundles induced cell starvation, the cells were immobilized as in Example 3, and then a color-immune response to TLR was performed. The rest of the cell line was maintained at a temperature of 37 ° C. and carbon dioxide (CO 2 ) by 200 μl of serum-free medium diluted with infectious agents by removing the medium after the preparation period in which the cells were starved. Infected for 4 hours under conditions. In some infected cell line bundles, the cells were immobilized as in Example 3, and then a color-immunized reaction was performed. The remaining cell line bundle was washed three times through a medium containing 10% FBS after infection, and the wells were washed with 200 μl of 10% FBS-containing medium at 37 ° C. and carbon dioxide (CO 2). ) Recovery reaction was induced for 24 hours under the condition of 5%. Each cell line bundle was subjected to colorimetric reaction as in Example 3 in 6-hour units as shown in FIG. As a control, a bundle of cell lines that did not induce infection was prepared, and the ratio of the inflammatory signal value to the background signal value was calculated and plotted in FIG. 9. The maximum recovery rate is the ratio of the expression level of TLR decreased during the recovery process to the expression level of TLR increased during the infection process. The semi-continuous observation of such limited inflammation was repeated twice and three times, and the results are graphically plotted in FIGS. 10 and 11.
실시예Example 7. 세포친화적인 효소발광면역 분석 7. Cell-friendly enzyme luminescence immunoassay
세포친화적인 효소발광면역 분석의 경우 감염된 세포를 Dulbecco's Phosphate Buffered Saline/modified without Calcium and Magnesium (DPBS(-/-))을 이용하여 200㎕씩 3회 세척한 다음, TLR과 특이적으로 결합되는 TLR 토끼 복합클론 항체 (rabbit polyclonal antibody)를 10% FBS가 포함된 medium(A549의 경우는 RPMI1640, RAW264.7의 경우 DMEM)을 사용하여 1/100의 비율로 희석하여 100㎕씩 분주하여 동일조건에서 1 시간 동안 반응시킨 후, 반응액을 버리고 동일한 medium을 이용하여 200㎕씩 3회 세척을 통해 반응되지 않은 항체를 제거하였다. 다음, 이차항체인 HRP conjugated goat anti-rabbit IgG도 5% FBS가 포함된 medium을 사용하여 1/2500의 비율로 희석하여 100㎕씩 분주하여 동일 조건에서 1 시간 동안 반응시킨 후, 같은 방법으로 3회 세척하였다. For cell-friendly enzyme-immunoimmunoassay, infected cells were washed three times with 200 μl each using Dulbecco's Phosphate Buffered Saline / modified without Calcium and Magnesium (DPBS (-/-)), followed by TLR binding specifically to TLR. Rabbit polyclonal antibody was diluted at a rate of 1/100 using a medium containing 10% FBS (RPI1640 for A549, DMEM for RAW264.7), and 100 μl were dispensed under the same conditions. After reacting for 1 hour, the reaction solution was discarded and unreacted antibody was removed by washing three times with 200 μl using the same medium. Next, HRP conjugated goat anti-rabbit IgG, a secondary antibody, was also diluted at a rate of 1/2500 using a medium containing 5% FBS, and then reacted for 1 hour under the same conditions. Washed twice.
Thermo Fisher Scientific 사에서 판매하는 발광기질(Supersignal West Femto) 용액을 1:1의 비율로 혼합하여 발광신호발생을 위한 용액을 제조하였고, 상기 발광기질용액을 200㎕ 분주하여 3분이 지난 시점에서 본 발명자가 고안한 cooled CCD camera기반의 광학측정기기(도 14)를 통해 측정하였다. 발광측정이 완료된 이후에는 10% FBS가 포함된 medium을 이용하여 200㎕씩 3회 세척을 통해 잔여된 기질을 제거하였다.A solution for generating a luminescence signal was prepared by mixing a solution of Supersignal West Femto sold by Thermo Fisher Scientific in a ratio of 1: 1, and the inventors at a point in time after 3 minutes by dispensing 200 μl of the light emitting substrate solution. Measured using an optical measuring device based on a cooled CCD camera (Fig. 14). After luminescence measurement was completed, the remaining substrate was removed by washing three times with 200 μl using a medium containing 10% FBS.
실시예Example 8. 동일세포에 대한 세포친화적인 염증  8. Cell-Friendly Inflammation on the Same Cell 반연속측정Semi-continuous measurement
도 7의 (A)에서 제시된 바와 같이 동일한 세포(A549)에서 세포친화적으로 염증을 반연속적으로 측정하고자, 실시예 2에서와 같이 염증반응을 유도하였고, 실시예 7에 제시된 바와 같이 TLR에 대한 세포친화적인 효소발광면역분석을 실시하였다. 초기에 발현된 TLR을 측정하기 위해 세포 부착과정 이후(세포준비기간 전), 우선적으로 세포친화적인 효소발광면역분석을 실시하였고, 세포준비과정과 염증반응유도 이후, 그리고 회복과정 이후에 순차적으로 효소발광면역분석을 실시하였다. 대조군으로 감염원을 반응시키지 않은 세포에 대한 순차적인 효소발광면역분석을 실시하였다.In order to measure cell-friendly inflammation semi-continuously in the same cell (A549) as shown in Figure 7 (A), an inflammatory response was induced as in Example 2, and cells for TLR as shown in Example 7 Friendly enzyme luminescence immunoassay was performed. To measure initially expressed TLR, after cell adhesion process (before cell preparation period), cell-friendly enzyme luminescence immunoassay was performed, and after enzyme preparation, inflammatory response, and recovery, Luminescent immunoassay was performed. Sequential enzyme luminescence immunoassay was performed on cells that did not react with the infectious agent as a control.
해당 순환과정은 2회 또는 3회까지 진행하여 도 18과 도 19에 그래프로 도식화하였다. 추가적으로 RAW264.7 세포에 동일한 과정을 적용시켜 분비되는 사이토카인의 패턴을 실시예 5와 같이 측정하여 분석하였고 이를 도 20에 도식화하였다.The cycle was performed up to two or three times and is graphically illustrated in FIGS. 18 and 19. In addition, the same procedure was applied to RAW264.7 cells, and the pattern of cytokines secreted was measured and analyzed as in Example 5 and illustrated in FIG. 20.
실시예Example 9.  9. NFNF -κB 저해제를 통한 through -κB inhibitors 소염반응Anti-inflammatory reaction 유도 및 관찰 Induction and observation
체외에서 염증이 유도되고 억제되는 소염기작을 모사하기 위해, 실시예 2에서와 같이 염증반응이 유도된 세포에 NF-κB 저해제를 처리하여 소염반응을 유도하고, 이를 측정하였다. NK-κB 제해제로는 sodium salicylate와 CAPE를 선정하였으며, sodium salicylate의 경우 무혈청 배지에 희석하여 500 mM 농도의 표준용액을, CAPE는 DMSO에 희석하여 180 mM 농도의 표준용액을 준비하였다. In order to simulate the anti-inflammatory mechanism in which inflammation is induced and inhibited in vitro, the anti-inflammatory response was induced by treating an inflammatory response-induced cell with an NF-κB inhibitor as in Example 2, and measured. Sodium salicylate and CAPE were selected as NK-κB inhibitors, and sodium salicylate was diluted in serum-free medium to prepare 500 mM standard solution, and CAPE was diluted in DMSO to prepare 180 mM standard solution.
실시예 2에서 제시한 바와 같이 24시간 동안 세포배양 웰 표면에 고정된 세포를 DPBS (+/+)를 200㎕로 첨가하여 세척하고, 다시 흡입기로 잔여 항생물질을 제거한다. 저해제를 선처리 하는 경우, 무혈청 배지에 농도별로 희석된 저해제를 200㎕로 첨가하여 2 시간 동안 처리한다. 저해제를 선처리 한 이후에는 실시예 2에서 제시된 것과 동일하게 세균 파쇄액을 반응시키고 실시예 3에서 제시한 발색면역분석을 통해 신호 값을 측정하였다. 추가적으로 음성대조군으로 염증을 유도하지 않은 경우를, 양성대조군으로 저해제를 처리하지 않고 염증을 유도한 경우를 선정하여 동일조건상에서 동시에 실험을 실시하였다. 그 결과는 도 23의 (B-1)과 도 24의 (C-1)에 막대그래프로 제시하였다. 또한 NF-κB 저해제가 아닌 acetaminophen을 처리하여 동일한 실험을 실시하였고, 그 결과를 도 24의 (C-2)에 제시하였다.As shown in Example 2, cells fixed on the cell culture well surface for 24 hours were washed with 200 µl of DPBS (+ / +), and the remaining antibiotics were removed by inhaler again. When the inhibitor is pretreated, 200 μl of the inhibitor diluted by concentration is added to the serum-free medium and treated for 2 hours. After pretreatment of the inhibitor, the bacterial lysate was reacted in the same manner as in Example 2, and signal values were measured by colorimetric immunoassay shown in Example 3. In addition, the negative control group did not induce inflammation, and the positive control group was selected for the case of induction of inflammation without treatment with an inhibitor, and the experiments were conducted simultaneously under the same conditions. The results are shown in bar graphs in FIGS. 23B-1 and 24C-1. In addition, the same experiment was performed by treating acetaminophen but not NF-κB inhibitor, and the results are shown in (C-2) of FIG. 24.
염증 유도시 저해제를 동시에 처리하는 경우, 염증을 유도하기 전에 저해제가 포함되지 않은 무혈청배지를 2시간 동안 처리하여 세포기아상태를 만든 다음에 염증유도을 일으키는 세균 파쇄액과 염증을 억제하는 저해제를 동시에 혼합하여 처리하였다. 그 결과는 도 22에 제시하였다.In the case of simultaneous treatment of inhibitors, the serum-free medium containing no inhibitors is treated for 2 hours before inducing inflammation, followed by bacterial crushing fluids that induce inflammation and inhibitors that inhibit inflammation. It was mixed and treated. The result is shown in FIG.
실시예Example 10. 동일세포 상에서의 반연속적인  10. Semi-continuous on the same cell 소염반응Anti-inflammatory reaction 유도 및 측정 Induction and measurement
동일세포 상에서 도 22 내지 도 24에서 제시한 바와 같은 소염작용을 반복적으로 관찰하기 위해 실시예 7에서 제시한 세포친화적인 발광면역분석을 적용시켰다.In order to repeatedly observe the anti-inflammatory action as shown in FIGS. 22 to 24 on the same cell, the cell-friendly luminescence immunoassay shown in Example 7 was applied.
동일세포 상에서 소염작용을 반연속적으로 측정하는 과정은 도 17에 제시된 방법과 동일하게 초기에 발현된 TLR을 측정하기 위해 세포 부착과정 이후(세포준비기간 전), 우선적으로 세포친화적인 효소발광면역분석을 실시하였고, 세포준비과정(혹은 저해제 처리과정)과 염증반응유도 이후, 그리고 회복과정 이후에 순차적으로 효소발광면역분석을 실시하였다. 앞서 언급한 바와 같이 저해제는 세포준비과정에서 선처리 하였으며, 그 농도는 sodium salicylate의 경우 50mM, CAPE의 경우는 90uM이다. 음성대조군으로 감염원을 반응시키지 않은 세포에 대하여, 양성대조군으로는 저해제를 처리하고 감염원을 반응시킨 세포에 대하여 순차적인 효소발광면역분석을 실시하였다. 얻어진 결과는 배경 대비 신호 값의 비율로 환산하여 시간에 따른 선형그래프로 도식화하였다. 2회에 걸친 소염반연속측정은 도 26에, 3회에 걸친 소염반연속측정은 도 27 내지 도 30에 제시되어 있다.Semi-continuous measurement of anti-inflammatory activity on the same cell is the same as the method shown in Figure 17, after the cell attachment process (before the cell preparation period), preferentially cell-friendly enzyme luminescence immunoassay to measure the initially expressed TLR Enzyme luminescence immunoassay was performed sequentially after cell preparation (or inhibitor treatment), after inflammatory reaction, and after recovery. As mentioned above, the inhibitor was pretreated in the cell preparation process, and its concentration was 50 mM for sodium salicylate and 90 µM for CAPE. Sequential enzyme luminescence immunoassay was performed on the cells that did not react the infectious agents with the negative control group, and the cells treated with the inhibitor and the reactants with the positive control group. The results obtained are plotted as a linear graph over time in terms of ratio of signal values to background. Two anti-inflammatory semi-continuous measurements are shown in FIG. 26 and three anti-inflammatory semi-continuous measurements are shown in FIGS. 27 to 30.
추가적으로 저해제 처리횟수에 따른 약효지속성을 확인하기 위해 미리 정해놓은 각각의 순환횟수에 따라 저해제를 처리하였으며, 그 결과는 도 30에 제시하였다.In addition, the inhibitor was treated according to the predetermined number of cycles in order to confirm the drug sustainability according to the number of inhibitor treatment times, the results are shown in FIG.

Claims (13)

  1. (1) 세포막 수용체를 갖는 동물세포가 배양된 배지에 염증 또는 암 유도 인자를 처리하는 단계;(1) treating an inflammation or cancer inducing factor in a medium in which animal cells having a cell membrane receptor are cultured;
    (2) 상기 (1) 단계 후에, 상기 배지에 상기 세포막 수용체와 특이적으로 결합하는 탐지체-표지인자 복합체를 처리하는 단계;(2) after step (1), treating the medium with a detector-marker complex that specifically binds to the cell membrane receptor;
    (3) 상기 복합체 처리 후 광학신호를 획득하는 단계; 및(3) acquiring an optical signal after the complex processing; And
    (4) 상기 획득된 광학신호 분석을 통해 염증 또는 암을 측정하는 것을 특징으로 하는 세포친화적인 면역분석방법.(4) a cell-friendly immunoassay method characterized by measuring inflammation or cancer through the obtained optical signal analysis.
  2. 청구항 1에 있어서, The method according to claim 1,
    상기 표지인자는 루미놀(Luminol) 발광체에 의해 광학신호를 발생하는 효소 또는 형광체인 것을 특징으로 하는 세포친화적인 면역분석방법.The marker is a cell-friendly immunoassay method, characterized in that the enzyme or a phosphor that generates an optical signal by the Luminol (Luminol) emitter.
  3. 청구항 1에 있어서,The method according to claim 1,
    상기 광학신호 분석은 냉각 디지털 카메라에 텔레센트릭 렌즈를 장착시킨 탐지기를 이용하는 것을 특징으로 하는 세포친화적인 면역분석방법.The optical signal analysis is a cell-friendly immunoassay method characterized in that using a detector equipped with a telecentric lens in the cooling digital camera.
  4. 청구항 1에 있어서,The method according to claim 1,
    상기 동물세포는 고체표면에 부착성이 있는 것을 특징으로 하는 세포친화적인 면역분석방법.The animal cell has a cell-friendly immunoassay characterized in that the adhesion to the solid surface.
  5. 청구항 1에 있어서,The method according to claim 1,
    화학적 세포 고정화 및 세포막 침투성 증가 과정을 포함하지 않는 것을 특징으로 하는 세포친화적인 면역분석방법.Cell-friendly immunoassay method characterized in that it does not include the process of chemical cell immobilization and cell membrane permeability.
  6. 청구항 1에 있어서,The method according to claim 1,
    상기 세포막 수용체는 톨-유사 수용체(Toll-like Receptor, TLRs), 이온채널 수용체(Ion channel receptor), G-단백질 결합 수용체(G-protein coupled receptor), 리셉터 구아닐일 시클라아제(Receptor guanylyl cyclase), 리셉터 티로신 키나아제(Receptor tyrosine kinase, RTK), 사이토카인 리셉터 슈퍼패밀리(Cytokine receptor superfamily), 티로신 포스파타아제(Tyrosine phosphatases) 및 세린/트레오닌 프로테인 키나아제(Serine/threonine protein kinases)로부터 선택되는 1종 이상인 것을 특징으로 하는 세포친화적인 면역분석방법.The cell membrane receptors include toll-like receptors (TLRs), ion channel receptors, G-protein coupled receptors, and receptor guanylyl cyclases. ), Receptor tyrosine kinase (RTK), cytokine receptor superfamily, Tyrosine phosphatases and serine / threonine protein kinases Cell-friendly immunoassay characterized in that above.
  7. (1) 염증 유도인자 또는 암 유도인자를 세포막 수용체를 갖는 동물세포에 처리하는 단계;(1) treating an animal cell having a membrane receptor with an inflammation inducer or cancer inducer;
    (2) 상기 (1) 단계 후에 상기 동물세포에 상기 세포막 수용체와 특이적으로 결합하는 탐지체-표지인자 복합체를 처리하고, 상기 세포막 수용체의 발현 농도를 측정하는 단계;(2) after the step (1), the animal cell is treated with a detector-marker complex that specifically binds to the cell membrane receptor, and the expression concentration of the cell membrane receptor is measured;
    (3) 상기 농도 측정 후에 소염제 또는 항암제 후보물질을 상기 동물세포에 처리하는 단계; 및(3) treating the animal cells with an anti-inflammatory or anticancer candidate after measuring the concentration; And
    (4) 상기 (3) 단계 후에 상기 동물세포에 상기 세포막 수용체와 특이적으로 결합하는 탐지체-표지인자 복합체를 처리하고, 상기 세포막 수용체의 발현 농도를 측정하는 단계를 포함하며,(4) after the step (3), treating the animal cell with a detector-labeled complex which specifically binds to the cell membrane receptor, and measuring the expression concentration of the cell membrane receptor,
    상기 (2) 단계 및 (4) 단계에서 측정된 세포막 수용체의 발현 농도를 비교하여 소염제 또는 항암제를 선별하는 것을 특징으로 하는, 소염제 또는 항암제 스크리닝 방법. The anti-inflammatory agent or anti-cancer agent screening method, characterized in that the anti-inflammatory agent or anti-cancer agent is selected by comparing the expression concentration of the cell membrane receptor measured in step (2) and (4).
  8. (1) 소염제 또는 항암제 후보물질을 세포막 수용체를 갖는 동물세포에 처리하는 단계;(1) treating an anti-inflammatory or anticancer candidate to an animal cell having a cell membrane receptor;
    (2) 상기 (1) 단계 후에, 상기 동물세포에 상기 세포막 수용체와 특이적으로 결합하는 탐지체-표지인자 복합체를 처리하는 단계;(2) after step (1), treating the animal cell with a detector-labeled complex which specifically binds to the cell membrane receptor;
    (3) 상기 탐지체-표지인자 복합체를 처리한 후에, 상기 세포막 수용체의 발현 농도를 측정한 후, 염증 유도인자 또는 암 유도인자를 상기 동물세포에 처리하는 단계; 및(3) treating the animal cell with an inflammation inducer or a cancer inducer after measuring the expression concentration of the cell membrane receptor after treating the detector-marker complex; And
    (4) 상기 (3)단계 후에, 상기 동물세포에 상기 세포막 수용체와 특이적으로 결합하는 탐지체-표지인자 복합체를 처리하고 상기 세포막 수용체의 발현 농도를 측정하는 단계를 포함하며,(4) after step (3), treating the animal cell with a detector-marker complex that specifically binds to the cell membrane receptor, and measuring the expression concentration of the cell membrane receptor,
    상기 (3) 단계 및 (4) 단계에서 측정된 세포막 수용체의 발현 농도를 비교하여 소염제 또는 항암제를 선별하는 것을 특징으로 하는, 소염제 또는 항암제 스크리닝 방법. The anti-inflammatory agent or anti-cancer agent screening method, characterized in that the anti-inflammatory agent or anti-cancer agent is selected by comparing the expression concentration of the cell membrane receptors measured in step (3) and (4).
  9. 청구항 7 내지 8 중 어느 한 항에 있어서,The method according to any one of claims 7 to 8,
    상기 탐지체는 항체, 결합 단백질, 핵산, 압타머(Aptamer) 및 펩티드로부터 선택되는 1종 이상인 것을 특징으로 하는, 소염제 또는 항암제 스크리닝 방법.The detector is at least one selected from antibodies, binding proteins, nucleic acids, aptamers and peptides, anti-inflammatory or anticancer screening method.
  10. 청구항 7 내지 8 중 어느 한 항에 있어서,The method according to any one of claims 7 to 8,
    상기 표지인자는 형광체, 발광체, 효소, 금속입자, 플라스틱 입자 및 자성입자로부터 선택되는 1종 이상인 것을 특징으로 하는, 소염제 또는 항암제 스크리닝 방법.The marker is at least one selected from phosphors, light emitters, enzymes, metal particles, plastic particles and magnetic particles, anti-inflammatory or anticancer screening method.
  11. 청구항 7 내지 8 중 어느 한 항에 있어서,The method according to any one of claims 7 to 8,
    반연속적으로 스크리닝 가능한 것을 특징으로 하는, 소염제 또는 항암제 스크리닝 방법.A method for screening an anti-inflammatory or anticancer agent, characterized in that it is semi-continuously screenable.
  12. 세포막 수용체를 갖는 동물세포 및 상기 세포막 수용체에 특이적으로 결합하는 탐지체-표지인자 복합체를 포함하는 염증 또는 암 진단용 조성물.Composition for diagnosing inflammation or cancer comprising an animal cell having a cell membrane receptor and a detector-marker complex that specifically binds to the cell membrane receptor.
  13. 청구항 12의 진단용 조성물을 포함하는 염증 또는 암 진단 키트.Inflammation or cancer diagnostic kit comprising the diagnostic composition of claim 12.
PCT/KR2015/007454 2014-07-18 2015-07-17 Method for screening anti-inflammatory drug or anti-cancer drug WO2016010397A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20140090967 2014-07-18
KR10-2014-0090967 2014-07-18

Publications (1)

Publication Number Publication Date
WO2016010397A1 true WO2016010397A1 (en) 2016-01-21

Family

ID=55078800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/007454 WO2016010397A1 (en) 2014-07-18 2015-07-17 Method for screening anti-inflammatory drug or anti-cancer drug

Country Status (2)

Country Link
KR (1) KR101928611B1 (en)
WO (1) WO2016010397A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111944756A (en) * 2020-08-06 2020-11-17 五邑大学 Method for establishing RAW264.7 cell inflammation model

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102560138B1 (en) 2020-06-15 2023-07-27 경북대학교 산학협력단 Use for regulating neuroinflammation of glial kinases selected by multiplexed kinome-wide siRNA screening for glial cell behaviors
KR20210155408A (en) 2020-06-15 2021-12-23 경북대학교 산학협력단 Multiplexed kinome-wide siRNA screening method for glial cell behaviors

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030129649A1 (en) * 2001-04-24 2003-07-10 Kobilka Brian K. Conformational assays to detect binding to G protein-coupled receptors
US20070149453A1 (en) * 2003-09-23 2007-06-28 Tetsuya Gatanaga Treating inflammation using a biological agent that causes cells to release cytokine receptors
WO2010124226A2 (en) * 2009-04-23 2010-10-28 University Of Massachusetts Toll-like receptor-based biosensors
KR20120117190A (en) * 2011-04-14 2012-10-24 고려대학교 산학협력단 Bio sensing method using animal cell and bio kit for diagnosis of infection using animal cell
KR20140056501A (en) * 2012-10-26 2014-05-12 서울대학교산학협력단 Novel biomarker indicative of inflammatory arthritis and its uses

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030129649A1 (en) * 2001-04-24 2003-07-10 Kobilka Brian K. Conformational assays to detect binding to G protein-coupled receptors
US20070149453A1 (en) * 2003-09-23 2007-06-28 Tetsuya Gatanaga Treating inflammation using a biological agent that causes cells to release cytokine receptors
WO2010124226A2 (en) * 2009-04-23 2010-10-28 University Of Massachusetts Toll-like receptor-based biosensors
KR20120117190A (en) * 2011-04-14 2012-10-24 고려대학교 산학협력단 Bio sensing method using animal cell and bio kit for diagnosis of infection using animal cell
KR20140056501A (en) * 2012-10-26 2014-05-12 서울대학교산학협력단 Novel biomarker indicative of inflammatory arthritis and its uses

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111944756A (en) * 2020-08-06 2020-11-17 五邑大学 Method for establishing RAW264.7 cell inflammation model

Also Published As

Publication number Publication date
KR20160010363A (en) 2016-01-27
KR101928611B1 (en) 2018-12-13

Similar Documents

Publication Publication Date Title
Pila et al. A novel toll-like receptor (TLR) influences compatibility between the gastropod Biomphalaria glabrata, and the digenean trematode Schistosoma mansoni
CN102144161A (en) Pan-kinase activation and evaluation of signaling pathways
CA2925050A1 (en) Identification of cxcr8, a novel chemokine receptor
CN103154731B (en) Novel ultrasensitive cell based sensors and uses thereof
WO2016010397A1 (en) Method for screening anti-inflammatory drug or anti-cancer drug
Conlin et al. Helicobacter pylori infection targets adherens junction regulatory proteins and results in increased rates of migration in human gastric epithelial cells
US20060099650A1 (en) Toll-like receptor assays
Cueto et al. Soluble N‐ethylmaleimide‐sensitive factor attachment protein receptors required during Trypanosoma cruzi parasitophorous vacuole development
Guo et al. Elevated levels of FMRP-target MAP1B impair human and mouse neuronal development and mouse social behaviors via autophagy pathway
WO2002095061A1 (en) Methods of screening test substances for treating or preventing diseases involving an oxidative stress
NL2019390B1 (en) Screening Method
Tripathi et al. Expression of δ-and μ-opioid receptors in the ventricular and subventricular zones of the developing human neocortex
WO2016209013A1 (en) Tm4sf19 as marker for diagnosing obesity and method using same
KR101503830B1 (en) Bio sensing method using animal cell and bio kit for diagnosis of infection using animal cell
Godiwala et al. Quantification of in vitro and in vivo Cryptosporidium parvum infection by using real-time PCR
Yu et al. Effects of ten–eleven translocation 1 (Tet1) on DNA methylation and gene expression in chicken primordial germ cells
Laldinsangi et al. Expression profiling of c-kit and its impact after esiRNA silencing during gonadal development in catfish
WO2023191482A1 (en) Novel biomarker for detection of cancer metastasis
JP2023159545A (en) Method for determining senescent cell and screening method for senescent cell remover
WO2022139442A1 (en) Marker for selecting high-quality stem cells, and method for selecting high-quality stem cells using same
Baek et al. Association of the ubiquitin specific peptidase 9X-linked and Afadin expression patterns with sexual maturation in boar testis
Akash et al. Proximity ligation assay and its applications
WO2023158207A1 (en) Long non-coding rna biomarker in exosomes for diagnosing atrial fibrillation and use thereof
KR100966165B1 (en) Breast cancer diagnostic Kit using Ubc9 gene and UBC9 protein
Göngrich et al. Activin receptor ALK4 coordinates extracellular signals and intrinsic transcriptional programs to regulate development of cortical somatostatin interneurons

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15821554

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15821554

Country of ref document: EP

Kind code of ref document: A1