WO2016010372A1 - 무선 충전 모듈 - Google Patents

무선 충전 모듈 Download PDF

Info

Publication number
WO2016010372A1
WO2016010372A1 PCT/KR2015/007373 KR2015007373W WO2016010372A1 WO 2016010372 A1 WO2016010372 A1 WO 2016010372A1 KR 2015007373 W KR2015007373 W KR 2015007373W WO 2016010372 A1 WO2016010372 A1 WO 2016010372A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet
magnetic
wireless charging
ferrite
charging module
Prior art date
Application number
PCT/KR2015/007373
Other languages
English (en)
French (fr)
Inventor
진병수
이웅용
김성태
임병국
Original Assignee
주식회사 아모텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 아모텍 filed Critical 주식회사 아모텍
Publication of WO2016010372A1 publication Critical patent/WO2016010372A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers

Definitions

  • the present invention relates to a wireless charging module, and more particularly to a wireless charging module (WIRELESS CHARGE MODULE) capable of simultaneously charging a plurality of portable terminals with the same efficiency and time.
  • a wireless charging module WiLESS CHARGE MODULE
  • Portable terminals such as mobile phones and tablets are powered by built-in batteries.
  • a separate charging device is used to charge the electrical energy into the battery.
  • the charging device is in contact with a terminal formed in the portable terminal to charge the battery, or as the battery separated from the portable terminal is in contact with the contact terminal of the battery to charge the battery.
  • Such a contact type charging device has a problem in that the contact terminals are contaminated by foreign matters or are damaged due to frequent detachment and detachment so that the contact efficiency decreases.
  • the wireless charging device does not have a contact between the battery and the terminal of the charging device, and simply places the portable terminal with the battery on the wireless charging device to charge the battery through wireless power transmission and reception.
  • the wireless charging device includes an electromagnetic (magnetic field) induction method using a coil, a resonance method using a resonance, and a radio wave radiation (RF / Micro Wave Radiation) method that converts electrical energy into microwaves and transmits them.
  • electromagnetic field electromagnetic field
  • resonance method using a resonance
  • radio wave radiation RF / Micro Wave Radiation
  • Recently developed magnetic resonance method uses the magnetic resonance (magnetic resonance phenomenon) between the Tx coil module and the Rx coil module using the primary coil (Tx, charging device) and the secondary coil (Rx, portable terminal, portable electronic devices, etc.).
  • Tx magnetic resonance
  • Rx portable terminal
  • portable electronic devices etc.
  • the charging efficiency is different depending on the position of the portable terminal mounted on the charging device, and thus, the charging time varies depending on the position of the same charger.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a wireless charging module that can maintain a constant charging efficiency regardless of the position where the portable terminal is placed.
  • the wireless charging module is coupled to a base sheet on which a coil for wireless charging is formed and a rear surface of the base sheet, and has a first magnetic body sheet having a first permeability and a front side of the base sheet. And a second magnetic sheet disposed and having a second magnetic permeability lower than the first magnetic permeability.
  • the first magnetic sheet has a Ni-Zn ferrite sheet or FeSiAl or FeSiCr metal having a magnetic permeability (u ') of 30 to 2000 at a magnetic resonance frequency (6.78 MHz for the A4WP specification) and a tan ⁇ (u "/ u') of 0.05 or less. It may include a polymer sheet containing a magnetic powder.
  • the second magnetic sheet has a Ni-Zn ferrite sheet or FeSiAl or FeSiCr metal having a magnetic permeability (u ') of 2 to 10 at a magnetic resonance frequency (6.78 MHz for A4WP specification) and a tan ⁇ (u "/ u') of 0.1 or less. It may include a polymer sheet containing a magnetic powder.
  • the second magnetic sheet may be formed in a mesh structure by stacking at least one or more slotted ferrite sheets.
  • ferrite stacks formed by stacking at least one ferrite cell may be arranged in a matrix.
  • At least one or more slotted ferrite sheets may be stacked, and a plurality of ferrite stacks may be arranged in the slot.
  • the wireless charging module of the present invention includes a wireless charger case having a top surface spaced apart from the base sheet by a predetermined interval, the second magnetic sheet may be disposed in any one of the inside or the outside of the top surface of the wireless charger case. have.
  • the magnetic field generated in the wireless charging coil can be uniformly distributed in all areas. It can be effective.
  • the wireless charging module arranges the high magnetic permeability magnetic sheet on the rear side of the wireless charging coil and the low magnetic permeability magnetic sheet on the front surface to uniformly distribute the magnetic field generated in the wireless charging coil in all areas, thereby providing a portable terminal.
  • the charging time of the portable terminal can be kept constant by keeping the charging efficiency constant regardless of the raised position.
  • the wireless charging module is capable of concentrating the magnetic field only in the direction in which the portable terminal is raised by arranging a magnetic permeability sheet having a high permeability on the rear side of the coil mounted in the charging device, and suppressing the magnetic field radiation in a direction that is not required. There is an effect that can minimize the human hazards caused by.
  • FIG. 1 is a view for explaining a wireless charging module according to an embodiment of the present invention.
  • FIG. 2 is a view for explaining a second magnetic sheet.
  • 3 to 5 show various embodiments of a second magnetic sheet disposed on top of a wireless charging coil.
  • 6 to 10 are diagrams for comparing the antenna characteristics of the conventional wireless charging module and the wireless charging module according to an embodiment of the present invention.
  • 11 and 12 are cross-sectional views schematically showing the relationship between the second magnetic sheet and the wireless charger case according to the present embodiment.
  • the wireless charging module may include a base sheet 100, a first magnetic sheet 200, and a second magnetic sheet 300.
  • the base sheet 100 may be formed on one side of the wireless charging coil 120 to form a magnetic field for magnetic resonance. That is, the base sheet 100 may have a loop-shaped wireless charging coil 120 in which a wire is wound a plurality of times on a front surface of the flexible circuit board.
  • the first magnetic body sheet 200 is formed of a magnetic sheet having a high permeability and is bonded to the rear surface of the base sheet 100. Specifically, the first magnetic sheet 200 has Ni-Zn having a magnetic permeability (u ') of 30 to 2000 at a magnetic resonance frequency (6.78 MHz in the case of the A4WP standard) and a tan ⁇ (u "/ u') of 0.05 or less.
  • the first magnetic sheet 200 may be approximately 30 ⁇ m or more according to the power of the coil 120 for wireless charging of the base sheet 100 It may be formed to a thickness of 5 mm or less, preferably 50 ⁇ m or more and 2 mm or less.
  • the second magnetic sheet 300 is formed of a magnetic sheet having a low permeability and is disposed on the front surface of the base sheet 100.
  • the second magnetic sheet 300 diffuses (disperses) the magnetic field emitted from the coil 120 for wireless charging of the base sheet 100. That is, the second magnetic sheet 300 absorbs and diffuses (disperses) the magnetic field emitted from the coil 120 for wireless charging, so that the magnetic field is broadly and uniformly formed over the entire area of the wireless charging module.
  • the second magnetic sheet 300 has a Ni-Zn ferrite having a magnetic permeability (u ') of 2 to 10 at a magnetic resonance frequency (6.78 MHz for the A4WP standard) and a tan ⁇ (u "/ u') of 0.1 or less.
  • the second magnetic sheet 300 is formed by stacking a plurality of ferrite sheets having a plurality of slots 310 formed therein. That is, as shown in FIG. 2, the second magnetic sheet 300 is formed by stacking a plurality of ferrite sheets having a mesh structure in which a plurality of slots 310 are formed. In this case, the ferrite sheet may be formed with a plurality of slots 310 having different sizes and shapes to uniformly distribute the magnetic field.
  • the second magnetic sheet 300 may be formed by arranging ferrite stacks 320 in a matrix. That is, the second magnetic sheet 300 may be formed by arranging ferrite stacks 320 in which a plurality of ferrite cells 322 having a predetermined shape are stacked in a multi-column array. In this case, the ferrite cell 322 may be formed in a variety of forms, such as jeongja shape, cross shape.
  • the second magnetic sheet 300 may include a slot formed first magnetic stack 330 and second magnetic stacks 340.
  • the first magnetic laminate 330 is formed by stacking a plurality of ferrite cells 332 having slots therein.
  • the second magnetic laminate 340 is formed by stacking ferrite cells 342 having a predetermined shape.
  • the second magnetic sheet 300 is formed by arranging a plurality of second magnetic stacks 340 in a multi-column array in a slot of the first magnetic stack 330.
  • the conventional wireless charging module is formed in a structure in which a ferrite sheet is not laminated to a coil for wireless charging.
  • the conventional wireless charging module has a magnetic field is formed on the front and rear of the coil for wireless charging.
  • the conventional wireless charging module forms a magnetic field only in the region where the wireless charging coil is formed, and can obtain a high charging efficiency of about -3.29 dB.
  • the conventional wireless charging module uses a plurality of portable terminals because the magnetic field formed in the wireless charging coil is not evenly distributed in the entire area of the wireless charging module, and the magnetic field is formed only in the region in which the wireless charging coil 120 is formed.
  • the charging time increases depending on the location, or the charging time varies for each mobile terminal.
  • another conventional wireless charging module is formed in a structure in which a ferrite sheet having a high permeability is disposed only on the rear surface of the wireless charging coil 120. Accordingly, as shown in FIG. 7, in the conventional wireless charging module, a magnetic field is concentrated on the front surface of the wireless charging coil 120 to obtain a charging efficiency of about -2.46 dB.
  • the conventional wireless charging module has a higher charging efficiency than the wireless charging module (ie, the structure of FIG. 6) in which only the wireless charging coil 120 is formed, and a magnetic field is distributed in the entire area of the wireless charging module.
  • the magnetic field is strongly formed in the region where the wireless charging coil 120 is formed and the high permeability ferrite sheet outer region, and in other regions, a relatively weak magnetic field is formed to form the entire region of the wireless charging module.
  • the magnetic field is not evenly distributed at.
  • the conventional wireless charging module charges the battery of the portable terminal with different charging efficiencies depending on the position where the portable terminal is placed.
  • the wireless charging module arranges the first magnetic sheet 200 (for example, a high permeability ferrite sheet) on the rear surface of the wireless charging coil 120 and the second magnetic sheet 300; For example, a ferrite sheet having a low permeability is disposed on the front surface (front surface) of the coil 120 for wireless charging.
  • the wireless charging module concentrates a magnetic field on the front surface of the coil 120 for wireless charging, and the magnetic field formed on the front surface by the low permeability ferrite sheet disposed on the front surface of the wireless charging module.
  • FIGS. 9 and 10 it can be seen that the wireless charging module has a uniform magnetic field distribution in the horizontal direction than in the related art.
  • FIG. 9 illustrates a magnetic field distribution of a conventional wireless charging module in which ferrite sheets are not stacked on the front surface
  • FIG. 10 illustrates a magnetic field distribution of the wireless charging module according to an embodiment of the present invention.
  • the wireless charging module can charge the battery of the portable terminal with the same charging efficiency regardless of the position where the portable terminal is placed.
  • the wireless charging module may form a uniform magnetic field regardless of the position, thereby maintaining the same charging efficiency for all portable terminals even when simultaneously charging a plurality of portable terminals.
  • the second magnetic sheet 300 may be directly disposed on the upper surface of the wireless charging coil 120 formed on the base sheet 100. In this case, the second magnetic sheet 300 may be close to the coil 120 for wireless charging within 1mm.
  • the second magnetic sheet 300 may be arranged to be spaced apart from the upper side of the coil 120 for wireless charging.
  • the second magnetic sheet 300 may be disposed at any one of the inner surface 11 or the upper surface 12 of the upper surface of the wireless charger case 10.
  • the second magnetic sheet 300 may be spaced apart from the coil 120 for wireless charging 5mm ⁇ 50mm.
  • the wireless charging module distributes the magnetic field generated in the wireless charging coil uniformly in all areas by arranging the high magnetic permeability magnetic sheet on the rear side of the wireless charging coil and the low magnetic permeability magnetic sheet on the front surface. Can be.
  • the charging efficiency is kept constant regardless of the location where the portable terminal is placed, thereby preventing an increase in charging time due to a difference in position, and minimizing the difference in charging time between the portable terminals even when simultaneously charging multiple portable terminals. Can be.
  • the wireless charging module is capable of concentrating the magnetic field only in the direction in which the portable terminal is raised by arranging a magnetic permeability sheet having a high permeability on the rear side of the coil mounted in the charging device, and suppressing the magnetic field radiation in a direction that is not required. There is an effect that can minimize the human hazards caused by.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)

Abstract

본 실시예에 따른 무선 충전 모듈은 무선 충전용 코일이 형성된 베이스 시트, 상기 베이스 시트의 후면에 결합되고, 제 1 투자율을 가지는 제 1 자성체 시트 및 상기 베이스 시트의 전면측에 배치되고, 상기 제 1 투자율보다 낮은 제 2 투자율을 가지는 제 2 자성체 시트를 포함하며, 이에 의하면, 무선 충전용 코일의 후면에 고투자율 자성체 시트를 배치하고, 전면에 저투자율 자성체 시트를 배치함으로써, 무선 충전용 코일에서 발생하는 자기장을 전 영역에서 균일하게 분포시킬 수 있다.

Description

무선 충전 모듈
본 발명은 무선 충전 모듈에 관한 것으로, 더욱 상세하게는 복수의 휴대용 단말기를 동시에 동일한 효율 및 시간으로 충전할 수 있는 무선 충전 모듈(WIRELESS CHARGE MODULE)에 관한 것이다.
본 발명은 2014년 7월 15일 출원된 한국특허출원 제10-2014-0089186호의 출원일의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.
휴대폰, 태블릿 등과 같은 휴대용 단말기는 내장된 배터리로 구동된다. 휴대용 단말기의 배터리를 충전하기 위해서는 별도의 충전 장치를 이용해 배터리에 전기 에너지를 충전한다. 일반적으로 충전 장치는 휴대용 단말기에 형성된 단자와 접촉되어 배터리를 충전하거나, 휴대용 단말기에서 분리된 배터리가 충전 장치 내에 삽입됨에 따라 배터리의 접촉단자와 접촉되어 배터리를 충전한다.
이러한 접촉 방식의 충전 장치는 접촉 단자가 이물질에 의해 오염되거나, 잦은 탈부착으로 인해 파손되어 접촉 효율이 떨어지는 문제점이 발생한다.
최근에는 접촉 방식 충전 장치의 문제점을 해결하기 위해 무선 충전 장치가 개발되어 사용자에게 보급되고 있다.
무선 충전 장치는 배터리와 충전 장치의 단자 간 접촉이 없어 배터리를 내장한 휴대용 단말기를 무선 충전 장치에 올려놓기만 하면 무선 전력 송수신을 통해 배터리를 충전한다.
무선 충전 장치는 코일을 이용한 전자기(자기장) 유도방식, 공진(Resonance)을 이용한 공진 방식과, 전기적 에너지를 마이크로파로 변환시켜 전달하는 전파 방사(RF/Micro Wave Radiation) 방식이 있다.
최근에 개발되고 있는 자기공진 방식은 Tx 코일모듈과 Rx 코일모듈 간의 자기공진(자기공명현상)을 이용하여 1차 코일(Tx, 충전 장치)과 2차 코일 (Rx, 휴대용 단말기, 휴대용 전자기기 등) 간의 전력을 전송하는 방식으로 충전 시 Tx ~ Rx 사이의 충전 거리 및 충전기 위에서의 Rx 위치에 대한 자유도가 높고 다수의 Rx (휴대용 단말기, 휴대용 전자기기 등)를 동시에 충전할 수 있는 장점이 있다.
하지만, 자기공진 방식의 경우 충전 장치에 올려지는 휴대용 단말기의 위치에 따라 충전 효율이 상이하여 동일 충전기에서도 위치에 따라 충전시간이 달라지는 문제점이 있다.
본 발명은 상기한 바와 같은 문제를 감안하여 안출된 것으로, 휴대용 단말기가 올려지는 위치에 관계없이 충전 효율을 일정하게 유지할 수 있는 무선 충전 모듈을 제공하는 것을 목적으로 한다.
상기 목적을 달성하기 위하여 본 발명의 실시예에 따른 무선 충전 모듈은 무선 충전용 코일이 형성된 베이스 시트, 베이스 시트의 후면에 결합되고, 제 1 투자율을 가지는 제 1 자성체 시트 및 베이스 시트의 전면측에 배치되고, 제 1 투자율보다 낮은 제 2 투자율을 가지는 제 2 자성체 시트를 포함한다.
제 1 자성체 시트는 자기공진 주파수(A4WP 규격의 경우 6.78 MHz) 에서의 투자율(u')이 30 ~ 2000 이며 Tan△(u"/u')이 0.05 이하인 Ni-Zn 페라이트 시트 또는 FeSiAl 또는 FeSiCr 금속 자성분말을 포함하는 폴리머 시트를 포함할 수 있다.
제 2 자성체 시트는 자기공진 주파수(A4WP 규격의 경우 6.78 MHz)에서의 투자율(u')이 2~10 이며 Tan△(u"/u')이 0.1 이하인 Ni-Zn 페라이트 시트 또는 FeSiAl 또는 FeSiCr 금속 자성분말을 포함하는 폴리머 시트를 포함할 수 있다.
제 2 자성체 시트는 슬롯이 형성된 페라이트 시트가 적어도 하나 이상 적층되어 메쉬 구조로 형성될 수 있다.
제 2 자성체 시트는 적어도 하나 이상의 페라이트 셀이 적층되어 형성되는 페라이트 적층체들이 행렬 배치될 수 있다.
제 2 자성체 시트는 슬롯이 형성된 페라이트 시트가 적어도 하나 이상 적층되고, 슬롯의 내부에 복수의 페라이트 적층체들이 행렬 배치될 수 있다.
또한, 본 발명의 무선 충전 모듈은 베이스 시트와 일정 간격 이격 배치되는 상부면을 갖는 무선충전기 케이스를 포함하고, 제 2 자성체 시트는, 무선충전기 케이스 상부면의 내측 또는 외측 중 어느 한 곳에 배치될 수 있다.
본 발명에 의하면, 무선 충전 모듈은 무선 충전용 코일의 후면에 고투자율 자성체 시트를 배치하고, 전면에 저투자율 자성체 시트를 배치함으로써, 무선 충전용 코일에서 발생하는 자기장을 전 영역에서 균일하게 분포시킬 수 있는 효과가 있다.
또한, 무선 충전 모듈은 무선 충전용 코일의 후면에 고투자율 자성체 시트를 배치하고, 전면에 저투자율 자성체 시트를 배치하여 무선 충전용 코일에서 발생하는 자기장을 전 영역에서 균일하게 분포시킴으로써, 휴대용 단말기가 올려지는 위치에 관계없이 충전 효율을 일정하게 유지하여 휴대용 단말기의 충전 시간을 일정하게 유지할 수 있다.
또한, 복수의 휴대용 단말기를 동시에 충전하는 경우에도 휴대용 단말기들 간의 충전 시간 차이를 최소화할 수 있는 효과가 있다.
또한, 무선 충전 모듈은 충전 장치에 실장되는 코일의 후면에 고투자율의 자성체 시트를 배치함으로써, 휴대용 단말기가 올려지는 방향만으로 자기장을 집중시킬 수 있고, 필요하지 않은 방향으로의 자기장 방사를 억제하여 자기장으로 인한 인체 유해성을 최소화할 수 있는 효과가 있다.
도 1은 본 발명의 실시예에 따른 무선 충전 모듈을 설명하기 위한 도면.
도 2는 제 2 자성체 시트를 설명하기 위한 도면.
도 3 내지 도 5는 무선 충전 코일의 상부에 배치되는 제2자성체 시트의 여러 실시예를 나타낸 도면.
도 6 내지 도 10은 종래의 무선 충전 모듈과 본 발명의 실시예에 따른 무선 충전 모듈의 안테나 특성을 비교 설명하기 위한 도면.
도 11 및 도 12는 본 실시예에 따른 제 2 자성체 시트와 무선충전기 케이스의 배치관계를 개략적으로 나타낸 단면도.
이하, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있을 정도로 상세히 설명하기 위하여, 본 발명의 가장 바람직한 실시예를 첨부 도면을 참조하여 설명하기로 한다. 우선 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.
도 1에 도시된 바와 같이, 무선 충전 모듈은 베이스 시트(100), 제 1 자성체 시트(200), 제 2 자성체 시트(300)를 포함할 수 있다.
베이스 시트(100)는 자기공진을 위한 자기장을 형성하는 무선 충전용 코일(120)이 일측 면에 형성될 수 있다. 즉, 베이스 시트(100)는 연성회로기판의 전면에 와이어가 복수 회 감긴 루프 형상의 무선 충전용 코일(120)이 형성될 수 있다.
제 1 자성체 시트(200)는 고투자율의 자성시트로 형성되어, 베이스 시트(100)의 후면에 결합된다. 구체적으로, 제 1 자성체 시트(200)는 자기공진 주파수(A4WP 규격의 경우 6.78 MHz)에서의 투자율(u')이 30~2000이며, Tan△(u"/u')이 0.05 이하인 Ni-Zn 페라이트 시트나 FeSiAl 또는 FeSiCr 자성 분말을 포함하는 폴리머 시트로 구성될 수 있다. 이때, 제 1 자성체 시트(200)는 베이스 시트(100)의 무선 충전용 코일(120)의 전력에 따라 대략 30㎛ 이상 5㎜ 이하의 두께, 바람직하게는 50㎛ 이상 2㎜ 이하의 두께로 형성될 수 있다.
제 2 자성체 시트(300)는 저투자율의 자성시트로 형성되어, 베이스 시트(100)의 전면에 배치된다. 제 2 자성체 시트(300)는 베이스 시트(100)의 무선 충전용 코일(120)에서 방출되는 자기장을 확산(분산)시킨다. 즉, 제 2 자성체 시트(300)는 무선 충전용 코일(120)에서 방출되는 자기장을 흡수한 후 확산(분산)시켜, 무선 충전 모듈의 전체 영역에 걸쳐 넓고 균일하게 자기장이 형성되도록 한다.
이를 위해, 제 2 자성체 시트(300)는 자기공진 주파수(A4WP 규격의 경우 6.78 MHz) 에서의 투자율(u')이 2~10 이며 Tan△(u"/u')이 0.1 이하인 Ni-Zn 페라이트 시트나 FeSiAl 또는 FeSiCr 자성 분말을 포함하는 폴리머 시트로 구성될 수 있다. 이때, 제 2 자성체 시트(300)는 베이스 시트(100)의 무선 충전용 코일(120)의 전력에 따라 대략 30㎛ 이상 5㎜ 이하의 두께, 바람직하게는 50㎛ 이상 2㎜ 이하의 두께로 형성될 수 있다.
제 2 자성체 시트(300)는 복수의 슬롯(310)이 형성된 복수의 페라이트 시트들이 적층되어 형성된다. 즉, 도 2에 도시된 바와 같이, 제 2 자성체 시트(300)는 복수의 슬롯(310)이 형성된 메쉬(mesh) 구조로 형성된 복수의 페라이트 시트가 적층되어 형성된다. 이때, 페라이트 시트는 자기장을 균일하게 분포시키기 위해 크기 및 형상이 서로 다른 복수의 슬롯(310)이 형성될 수 있다.
도 3 및 도 4를 참조하면, 제 2 자성체 시트(300)는 페라이트 적층체(320)들이 행렬로 배치되어 형성될 수도 있다. 즉, 제 2 자성체 시트(300)는 소정 형상으로 형성된 복수의 페라이트 셀(322)이 적층된 페라이트 적층체(320)들이 다행 다열로 배치되어 형성될 수 있다. 이때, 페라이트 셀(322)은 정(井)자 형상, 십(十)자 형상 등과 같이 다양한 형태로 형성될 수 있다.
도 5를 참조하면, 제 2 자성체 시트(300)는 슬롯이 형성된 제 1 자성 적층체(330) 및 제 2 자성 적층체(340)들을 포함하여 구성될 수도 있다. 이때, 제 1 자성 적층체(330)는 내부에 슬롯이 형성된 복수의 페라이트 셀(332)들이 적층되어 형성된다. 제 2 자성 적층체(340)는 소정 형상의 페라이트 셀(342)들이 적층되어 형성된다. 제 2 자성체 시트(300)는 제 1 자성 적층체(330)의 슬롯 내부에 복수의 제 2 자성 적층체(340)들이 다행 다열로 배치되어 형성된다.
도 6 내지 도 10을 참조하여 종래의 무선 충전 모듈과 본 발명의 실시예에 따른 무선 충전 모듈의 안테나 특성을 비교 설명하면 아래와 같다.
종래의 무선 충전 모듈은 무선충전용 코일에 페라이트 시트를 적층하지 않는 구조로 형성된다. 이에, 도 6에 도시된 바와 같이, 종래의 무선 충전 모듈은 무선 충전용 코일의 전면 및 후면으로 자기장이 형성된다. 이때, 종래의 무선 충전 모듈은 무선 충전용 코일이 형성된 영역에서만 자기장을 형성하며, 대략 -3.29 dB 정도의 높은 충전 효율을 얻을 수 있다.
하지만, 종래의 무선 충전 모듈은 무선 충전용 코일에서 형성되는 자기장이 무선 충전 모듈의 전체 영역에서 고르게 분포되지 않고, 무선 충전용 코일(120)이 형성된 영역에서만 자기장이 형성되기 때문에 복수의 휴대용 단말기를 동시에 충전하는 경우 위치에 따라 충전 시간이 증가하거나, 휴대용 단말기별로 충전 시간이 달라진다.
한편, 다른 종래의 무선 충전 모듈은 무선 충전용 코일(120)의 후면에만 고투자율의 페라이트 시트를 배치하는 구조로 형성된다. 그에 따라, 도 7에 도시된 바와 같이, 종래의 무선 충전 모듈은 무선 충전용 코일(120)의 전면으로 자기장이 집중되어 대략 -2.46 dB 정도의 충전 효율을 얻을 수 있다. 종래의 무선 충전 모듈은 무선 충전용 코일(120)만 형성된 무선 충전 모듈(즉, 도 6의 구조)보다 충전 효율이 증가하고, 무선 충전 모듈의 전체 영역에 자기장이 분포된다.
하지만, 종래의 무선 충전 모듈은 무선 충전용 코일(120)이 형성된 영역과 고투자율의 페라이트 시트 외주부 영역에서 자기장이 강하게 형성되고, 이외의 영역에서는 상대적으로 약한 자기장이 형성되어 무선 충전 모듈의 전체 영역에서 자기장이 고르게 분포되지 않는다.
따라서, 종래의 무선 충전 모듈은 휴대용 단말기가 올려지는 위치에 따라 서로 다른 충전 효율로 휴대용 단말기의 배터리를 충전한다.
이에 반해, 본 발명의 실시예에 따른 무선 충전 모듈은 제 1 자성체 시트(200; 예컨대, 고투자율의 페라이트 시트)를 무선 충전용 코일(120)의 후면에 배치하고, 제 2 자성체 시트(300; 예컨대, 저투자율의 페라이트 시트)를 무선 충전용 코일(120)의 전면(전면)에 배치한다. 이에, 도 8에 도시된 바와 같이, 무선 충전 모듈은 무선 충전용 코일(120)의 전면으로 자기장이 집중되고, 전면에 배치된 저투자율 페라이트 시트에 의해 전면에 형성된 자기장을 무선 충전 모듈의 전체 영역에 고르게 확산시킨다. 즉, 도 9 및 도 10을 참조하면 무선 충전 모듈은 종래에 비해 수평 방향의 자기장 분포가 고르게 형성되는 것을 알 수 있다. 여기서, 도 9는 전면에 페라이트 시트가 적층되지 않은 종래의 무선 충전 모듈의 자기장 분포를 도시하고, 도 10은 본 발명의 실시예에 따른 무선 충전 모듈의 자기장 분포를 도시한다.
따라서, 무선 충전 모듈은 휴대용 단말기가 올려지는 위치와 관계없이 동일한 충전 효율로 휴대용 단말기의 배터리를 충전할 수 있다.
또한, 무선 충전 모듈은 위치와 관계없이 균일한 자기장을 형성함으로써, 복수의 휴대용 단말기들을 동시에 충전하는 경우에도 모든 휴대용 단말기들에 대한 충전 효율을 동일하게 유지할 수 있다.
한편, 도 11에 도시된 바와 같이, 제 2 자성체 시트(300)는 베이스 시트(100)에 형성된 무선 충전용 코일(120)의 상부면에 직접 배치될 수 있다. 이 경우, 제 2 자성체 시트(300)는 무선충전용 코일(120)과 1mm 이내로 근접할 수 있다.
또한, 도 12에 도시된 바와 같이, 제 2 자성체 시트(300)는 무선충전용 코일(120)의 상측으로부터 일정 거리 이격되도록 배치될 수도 있다. 이 경우, 제 2 자성체 시트(300)는 무선충전기 케이스(10) 상부면의 내측면(11) 또는 상부면(12) 중 어느 한 곳에 배치될 수도 있다. 이 경우, 제 2 자성체 시트(300)는 무선충전용 코일(120)과 5mm ~ 50mm 이격 배치될 수 있다.
상술한 바와 같이, 무선 충전 모듈은 무선 충전용 코일의 후면에 고투자율 자성체 시트를 배치하고, 전면에 저투자율 자성체 시트를 배치함으로써, 무선 충전용 코일에서 발생하는 자기장을 전 영역에서 균일하게 분포시킬 수 있다.
따라서, 휴대용 단말기가 올려지는 위치에 관계없이 충전 효율을 일정하게 유지하여 위치 차이에 따른 충전 시간의 증가를 방지하고, 복수의 휴대용 단말기를 동시에 충전하는 경우에도 휴대용 단말기들 간의 충전 시간 차이를 최소화할 수 있다.
또한, 무선 충전 모듈은 충전 장치에 실장되는 코일의 후면에 고투자율의 자성체 시트를 배치함으로써, 휴대용 단말기가 올려지는 방향만으로 자기장을 집중시킬 수 있고, 필요하지 않은 방향으로의 자기장 방사를 억제하여 자기장으로 인한 인체 유해성을 최소화할 수 있는 효과가 있다.
이상에서 본 발명에 따른 바람직한 실시예에 대해 설명하였으나, 다양한 형태로 변형이 가능하며, 본 기술분야에서 통상의 지식을 가진자라면 본 발명의 특허청구범위를 벗어남이 없이 다양한 변형예 및 수정예를 실시할 수 있을 것으로 이해된다.

Claims (7)

  1. 무선 충전용 코일이 형성된 베이스 시트;
    상기 베이스 시트의 후면에 결합되고, 제 1 투자율을 가지는 제 1 자성체 시트; 및
    상기 베이스 시트의 전면측에 배치되고, 상기 제 1 투자율보다 낮은 제 2 투자율을 가지는 제 2 자성체 시트를 포함하는 무선 충전 모듈.
  2. 제1항에 있어서,
    상기 제 1 자성체 시트는,
    자기공진 주파수(A4WP 규격의 경우 6.78 MHz) 에서의 투자율(u')이 30 ~ 2000 이며 Tan△(u"/u')이 0.05 이하인 Ni-Zn 페라이트 시트 또는 FeSiAl 또는 FeSiCr 금속 자성분말을 포함하는 폴리머 시트를 포함하는 것을 특징으로 하는 무선 충전 모듈.
  3. 제1항에 있어서,
    상기 제 2 자성체 시트는,
    자기공진 주파수(A4WP 규격의 경우 6.78 MHz)에서의 투자율(u')이 2~10 이며 Tan△(u"/u')이 0.1 이하인 Ni-Zn 페라이트 시트 또는 FeSiAl 또는 FeSiCr 금속 자성분말을 포함하는 폴리머 시트를 포함하는 것을 특징으로 하는 무선 충전 모듈.
  4. 제1항에 있어서,
    상기 제 2 자성체 시트는,
    슬롯이 형성된 페라이트 시트가 적어도 하나 이상 적층되어 메쉬 구조로 형성되는 것을 특징으로 하는 무선 충전 모듈.
  5. 제1항에 있어서,
    상기 제 2 자성체 시트는,
    적어도 하나 이상의 페라이트 셀이 적층되어 형성되는 페라이트 적층체들이 행렬 배치되는 것을 특징으로 하는 무선 충전 모듈.
  6. 제1항에 있어서,
    상기 제 2 자성체 시트는,
    슬롯이 형성된 페라이트 시트가 적어도 하나 이상 적층되고, 상기 슬롯의 내부에 복수의 페라이트 적층체들이 행렬 배치되는 것을 특징으로 하는 무선 충전 모듈.
  7. 제1항에 있어서,
    상기 베이스 시트와 일정 간격 이격 배치되는 상부면을 갖는 무선충전기 케이스를 포함하고, 상기 제 2 자성체 시트는, 상기 무선충전기 케이스 상부면의 내측 또는 외측 중 어느 한 곳에 배치되는 것을 특징으로 하는 무선 충전 모듈.
PCT/KR2015/007373 2014-07-15 2015-07-15 무선 충전 모듈 WO2016010372A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20140089186 2014-07-15
KR10-2014-0089186 2014-07-15

Publications (1)

Publication Number Publication Date
WO2016010372A1 true WO2016010372A1 (ko) 2016-01-21

Family

ID=55078781

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/007373 WO2016010372A1 (ko) 2014-07-15 2015-07-15 무선 충전 모듈

Country Status (2)

Country Link
KR (1) KR101685168B1 (ko)
WO (1) WO2016010372A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113540754A (zh) * 2020-04-22 2021-10-22 江原磁石技术株式会社 利用多线嵌入的收发天线模块

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4213168A1 (en) * 2020-09-10 2023-07-19 SKC Co., Ltd. Wireless charging device and moving means including same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130060995A (ko) * 2011-11-30 2013-06-10 엘지이노텍 주식회사 복합자성시트 유닛 및 이를 포함하는 휴대단말의 리어케이스
KR20130072181A (ko) * 2011-12-21 2013-07-01 주식회사 아모센스 무선 충전기용 자기장 차폐시트 및 그의 제조방법과 이를 이용한 무선충전기용 수신장치
JP2013140880A (ja) * 2012-01-05 2013-07-18 Nitto Denko Corp 無線電力伝送を用いたモバイル端末用受電モジュール及び当該モバイル端末用受電モジュールを備えたモバイル端末用充電池
WO2014017351A1 (ja) * 2012-07-26 2014-01-30 デクセリアルズ株式会社 コイルモジュール及び受電装置
US20140168019A1 (en) * 2011-11-02 2014-06-19 Panasonic Corporation Non-contact wireless communication coil, transmission coil, and portable wireless terminal

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5231993B2 (ja) * 2006-03-24 2013-07-10 株式会社東芝 非接触充電装置用受電装置
KR101823542B1 (ko) * 2012-10-04 2018-01-30 엘지이노텍 주식회사 무선충전용 전자기 부스터 및 그 제조방법
KR20140066415A (ko) 2012-11-23 2014-06-02 삼성전기주식회사 무선 충전 장치 및 이를 구비하는 전자 기기
KR102115459B1 (ko) 2012-12-07 2020-06-05 삼성전자주식회사 무선 충전 장치 및 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140168019A1 (en) * 2011-11-02 2014-06-19 Panasonic Corporation Non-contact wireless communication coil, transmission coil, and portable wireless terminal
KR20130060995A (ko) * 2011-11-30 2013-06-10 엘지이노텍 주식회사 복합자성시트 유닛 및 이를 포함하는 휴대단말의 리어케이스
KR20130072181A (ko) * 2011-12-21 2013-07-01 주식회사 아모센스 무선 충전기용 자기장 차폐시트 및 그의 제조방법과 이를 이용한 무선충전기용 수신장치
JP2013140880A (ja) * 2012-01-05 2013-07-18 Nitto Denko Corp 無線電力伝送を用いたモバイル端末用受電モジュール及び当該モバイル端末用受電モジュールを備えたモバイル端末用充電池
WO2014017351A1 (ja) * 2012-07-26 2014-01-30 デクセリアルズ株式会社 コイルモジュール及び受電装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113540754A (zh) * 2020-04-22 2021-10-22 江原磁石技术株式会社 利用多线嵌入的收发天线模块

Also Published As

Publication number Publication date
KR20160008996A (ko) 2016-01-25
KR101685168B1 (ko) 2016-12-09

Similar Documents

Publication Publication Date Title
KR102017621B1 (ko) 무선 충전용 코일 기판 및 이를 구비하는 전자 기기
WO2017078481A1 (ko) 콤보형 안테나 모듈
WO2016010374A1 (ko) 적층형 메타물질 시트 및 그 제조방법과, 이를 이용한 무선 충전 모듈
WO2015115789A1 (ko) 무선 충전 기판 및 장치
WO2013137546A1 (ko) 무선인식 및 무선충전 겸용 전자파흡수체와 이를 포함하는 무선인식 및 무선충전 겸용 무선안테나, 그것의 제조방법
WO2016072779A1 (ko) 무선충전기용 송신장치
KR101865540B1 (ko) 무선 충전 모듈 및 이를 포함하는 휴대용 보조배터리
CN108199493B (zh) 一种电磁屏蔽装置、无线充电发射端、接收端及系统
WO2014204153A2 (ko) 수신 안테나 및 이를 포함하는 무선 전력 수신 장치
WO2016028010A1 (ko) 무선 전력 수신 장치
KR102565032B1 (ko) 무선전력전송용 일체형 자기장 차폐성 방열유닛 및 이를 포함하는 무선전력 전송 모듈
WO2016085269A1 (ko) 무선 충전 모듈 및 무선충전기용 자기장 차폐시트
WO2017069581A1 (ko) 차량용 안테나 모듈
CN111527666B (zh) 无线电力传输装置
WO2016186444A1 (ko) 무선충전용 차폐유닛 및 이를 포함하는 무선전력 전송모듈
KR20140089192A (ko) 무선 전력 수신 장치의 안테나용 연자성 시트, 연자성 플레이트 및 연자성 소결체
WO2018147649A1 (ko) 자성시트 및 이를 포함하는 무선 전력 수신 장치
KR20130076067A (ko) 무접점충전 및 근거리무선통신이 가능한 이동통신단말기
EP2940792B1 (en) Case apparatus
WO2016010372A1 (ko) 무선 충전 모듈
WO2014178645A1 (ko) 무선충전기용 수신부 안테나 제조방법 및 이를 이용해 제조된 무선충전기용 수신부 안테나
WO2019045457A1 (en) ELECTRONIC DEVICE HOUSING AND ELECTRONIC DEVICE
WO2014208913A1 (ko) 수신 안테나 및 이를 포함하는 무선 전력 수신 장치
KR101740785B1 (ko) 자성체 시트를 포함하는 코일 어셈블리 및 이를 포함하는 기기
WO2022169162A1 (ko) 안테나 모듈

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15822881

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15822881

Country of ref document: EP

Kind code of ref document: A1