WO2016010172A1 - Organic light-emitting diode having improved light extraction efficiency - Google Patents

Organic light-emitting diode having improved light extraction efficiency Download PDF

Info

Publication number
WO2016010172A1
WO2016010172A1 PCT/KR2014/006377 KR2014006377W WO2016010172A1 WO 2016010172 A1 WO2016010172 A1 WO 2016010172A1 KR 2014006377 W KR2014006377 W KR 2014006377W WO 2016010172 A1 WO2016010172 A1 WO 2016010172A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
refractive index
light extraction
transparent electrode
light
Prior art date
Application number
PCT/KR2014/006377
Other languages
French (fr)
Korean (ko)
Inventor
이학규
Original Assignee
(주)켐옵틱스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)켐옵틱스 filed Critical (주)켐옵틱스
Publication of WO2016010172A1 publication Critical patent/WO2016010172A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices

Definitions

  • the present invention relates to an organic light emitting diode (OLED), and more particularly, to an organic light emitting diode having improved light extraction efficiency without degrading device performance by minimizing light absorption, reflection, and waveguide phenomena due to the difference in refractive index of stacked devices. It is about.
  • An organic electric device refers to a device capable of inducing a flow of electric charge between a pole and an organic material using holes and / or electrons. According to the principle of operation, the exciton formed in the organic material layer is separated into electrons and holes by photons introduced into the device from an external light source, and the separated electrons and holes are transferred to different electrodes to be used as current sources.
  • There is an electronic device of the type which is to inject holes and / or electrons to the organic material by applying a voltage or current to the two or more electrodes of the form, and operates by the injected electrons and holes.
  • organic electronic devices include organic light emitting diodes (OLEDs), organic solar cells, organic photoconductor (OPC) drums or organic transistors.
  • the organic light emitting device refers to a self-luminous device using an electroluminescence phenomenon that emits light when a current flows through the light emitting organic compound.
  • Organic light emitting devices are attracting attention as next-generation materials in various industrial fields such as displays and lighting because of their advantages of excellent thermal stability and low driving voltage.
  • total reflection occurs in the process of the light generated from the inside of the stack structure of the device, which causes the internal light extraction efficiency of the device to decrease. Research to increase the internal light extraction efficiency has been continuously made.
  • FIG. 1 is a schematic view showing a laminated structure of a substrate 10 for a general organic light emitting device.
  • the substrate 10 includes a transparent electrode 12 made of an anode to supply a current to the organic light emitting layer 13, which is a light emitter, and a cathode 14 having one surface of the organic light emitting layer 13. And is placed in the form of a sandwich on the other side.
  • the transparent electrode 12 positioned on one side of the organic light emitting layer 13 in a direction in which light is emitted uses a conventional transparent electrode ITO for transmitting light.
  • a glass substrate 11 is used on one side of the transparent electrode 12 to stack the transparent electrode 12, the organic light emitting layer 13, and the cathode 14.
  • the refractive index of the organic light emitting layer 13 is typically 1.7 to 1.8
  • the refractive index of the transparent electrode 12 is about 1.95
  • the refractive index of the glass substrate 11 is about 1.5. Therefore, since the refractive indices of the elements constituting each layer are different from each other, the reflections from the difference in the refractive indices on the first to third interfaces L1, L2, and L3, the layers absorbed by the elements constituting each layer, and the layers having high refractive index As a result, a waveguide phenomenon in which light is trapped is generated, and the light extraction efficiency of the light emitted from the organic light emitting layer 13 is reduced.
  • the transparent electrode 12 since the transparent electrode 12 has a higher refractive index than the glass substrate 11 on one side and the organic light emitting layer 13 on the other side, a waveguide phenomenon occurs in which light generated in the organic light emitting layer 13 is trapped on the transparent electrode 12. The amount of light transmitted to the substrate 11 is reduced, which is a major cause of impairing the light extraction efficiency.
  • the substrate 20 includes a glass substrate 21, a light extraction layer 25, a transparent electrode 22, an organic light emitting layer 23, and a cathode 24, which are stacked.
  • the first boundary surface L1, the fourth boundary surface L4, the fifth boundary surface L5, and the third boundary surface L3 are distinguished from one side to another in order.
  • the substrate 20 is basically a concave-convex 21a on the other surface of the glass substrate 21 using a micro lens array or the like to prevent reflection of light due to the difference in refractive index between the air layer (refractive index 1.0) and the glass substrate 21. To form. Therefore, the light scatters while passing through the unevenness 21a to reduce the difference in refractive index between the air layer and the glass substrate 21 and to prevent the reflection of light at the first interface L1.
  • the substrate 20 may additionally have a light extraction layer having a refractive index of about 1.85, which is about the middle of the refractive index of each of the glass substrate 21 and the transparent electrode 22 between the glass substrate 21 and the transparent electrode 22. Insertion of 25 reduces light reflection due to the difference in refractive index on the fourth boundary surface L4 or the fifth boundary surface L5, resulting in improved light extraction efficiency than the substrate 10 shown in FIG. .
  • the refractive index of the transparent electrode 22 layer is the highest, the waveguide phenomenon of the transparent electrode 22 layer cannot be prevented, and thus there is a limitation in improving the light extraction efficiency.
  • the substrate 30 includes a glass substrate 31, a light extraction layer 35, a transparent electrode 32, an organic light emitting layer 33, and a cathode 34, which are stacked between them.
  • the first boundary surface L1, the sixth boundary surface L6, the seventh boundary surface L7, and the third boundary surface L3 are divided in order from one side to the other side.
  • the illustrated substrate 30 also applies the unevenness 31a on the glass substrate 31, and has a refractive index of about 1.95 so that the refractive index between the glass substrate 31 and the transparent electrode 32 is larger than that of the transparent electrode 32.
  • the light extraction layer 35 is inserted to prevent the waveguide phenomenon of the transparent electrode 32 layer, thereby improving light extraction efficiency.
  • the difference in refractive index between the glass substrate 31 and the light extraction layer 35 becomes larger, the efficiency decrease due to the reflection of light on the sixth interface is inevitably accompanied.
  • the present invention has been made to solve the above problems, an object of the present invention, by applying a plurality of light extraction layer having a refractive index optimized for reflection of light and prevention of waveguide phenomenon between the glass substrate and the transparent electrode An organic light emitting device having improved extraction efficiency is provided.
  • a glass substrate, a transparent electrode of an anode disposed on the other surface of the glass substrate, an organic light emitting layer disposed on the other surface of the transparent electrode, and a cathode disposed on the other surface of the organic light emitting layer are laminated.
  • the organic light emitting device the first light extraction layer disposed between the glass substrate and the transparent electrode; And a second light extraction layer disposed between the first light extraction layer and the transparent electrode.
  • the refractive index of the second light extraction layer is higher than the refractive index of the transparent electrode, the refractive index of the first light extraction layer is lower than the refractive index of the transparent electrode and higher than the refractive index of the glass substrate.
  • the first light extraction layer, the scattering layer is applied to the scattering particles on one surface of the other surface of the glass substrate abuts; It includes, the other surface abuts one surface of the second light extraction layer is made of a flat surface.
  • the second light extracting layer may include an adhesive layer for bonding the first light extracting layer and the transparent electrode.
  • the refractive index is characterized in that the average value of the refractive index of the glass substrate and the refractive index of the transparent electrode.
  • the first light extraction layer is characterized in that the refractive index is the average value of the refractive index of the glass substrate and the refractive index of the second light extraction layer.
  • the organic light emitting device of which the light extraction efficiency of the present invention is improved by the above configuration is excellent in light extraction efficiency without degrading the performance of the device.
  • the flatness of the light extraction layer is excellent, there is an effect of excellent uniformity of light emission.
  • the process and material cost are low, and mass production is easy.
  • FIG. 1 is a schematic view showing a laminated structure of a general organic light emitting device
  • FIG. 2 is a schematic view showing a laminated structure of a conventional organic light emitting device
  • FIG. 3 is a schematic view showing a laminated structure of another organic light emitting diode according to another embodiment
  • first light extraction layer 510 scattering layer
  • L10 first boundary surface
  • L20 second boundary surface
  • L30 third boundary surface
  • L40 fourth boundary surface
  • the organic light emitting diode 1000 includes a glass substrate 100, a transparent electrode 200 of an anode, an organic light emitting layer 300, and a cathode 400, and additionally includes a first light extracting layer 500 and a first light extracting layer 500. It further comprises two light extraction layer (600).
  • the organic light emitting device 1000 has a glass substrate 100, a first light extraction layer 500, a second light extraction layer 600, a transparent electrode 200, an organic light emitting layer 300, and a cathode 400 from one side to the other side. ) Are sequentially stacked.
  • the boundary layer formed between the air and the glass substrate 100 is the first boundary layer L10
  • the boundary layer formed between the glass substrate 100 and the first light extraction layer 500 is the second boundary layer L20 and the first light.
  • the boundary layer formed between the extraction layer 500 and the second light extraction layer 600 is the third boundary layer L30
  • the boundary layer formed between the second light extraction layer 600 and the transparent electrode 200 is the fourth boundary layer L40.
  • a boundary layer formed between the transparent electrode 200 and the organic light emitting layer 500 is defined as a fifth boundary layer L50.
  • the glass substrate 100, the transparent electrode 200, the organic light emitting layer 300, and the cathode 400 may be similarly applied to the organic light emitting diode OLED. Is omitted.
  • the first light extracting layer 500 is disposed between the glass substrate 100 and the second light extracting layer 600, and reduces the difference in refractive index between the glass substrate 100 and the transparent electrode 200 to reflect the light. Configured to minimize. Therefore, the refractive index of the first light extracting layer 500 is larger than the refractive index of the glass substrate 100 and smaller than the refractive index of the transparent electrode 200. More preferably, it may be configured similarly to the average value of the refractive index of the glass substrate 100 and the refractive index of the transparent electrode 200. For example, when the refractive index of the glass substrate 100 is 1.5 and the refractive index of the transparent electrode 200 is 1.95, the refractive index of the first light extraction layer 500 is formed to exceed 1.5 and less than 1.95, more preferably.
  • the refractive index of the first light extraction layer 500 may be configured to be similar to the average value of the refractive index of the glass substrate 100 and the refractive index of the second light extraction layer 600.
  • the refractive index of the first light extraction layer 500 is formed to be greater than 1.5 but less than 2.0. More preferably, it may be formed between 1.7 and 1.9.
  • the refractive index difference between the glass substrate 100 and the transparent electrode 200 is reduced through the first light extraction layer 500 as described above, the reflection of the light transmitted from the transparent electrode 200 to the glass substrate 100 is minimized. There is an advantage that the light extraction efficiency is improved.
  • a scattering layer 510 to which scattering particles are applied may be formed on one surface of the first light extracting layer 500 that contacts the other surface of the glass substrate 100.
  • the scattering layer 510 is formed in an uneven shape according to the application of the scattering particles, and in order to minimize the reflection of light due to the difference in refractive index at the first interface L10 between the air layer (refractive index 1.0) and the glass substrate 100. It is composed. Therefore, since the light reflection of the first boundary surface L10 is minimized through the first light extraction layer 500, a separate process example for preventing the reflection of the light of the first boundary surface L10 on the glass substrate 100 will be described. For example, there is an advantage that can eliminate the irregular shape processing process.
  • a flat surface may be formed on the other surface of the first light extraction layer 500 which is in contact with one surface of the second light extraction layer 600.
  • the flat surface is formed on the other surface of the first light extraction layer 500, the light uniformity of the light is excellent by preventing scattering of light transmitted from the transparent electrode 200.
  • the second light extracting layer 600 is disposed between the first light extracting layer 500 and the transparent electrode 200 to minimize the waveguide phenomenon in which light is trapped on the transparent electrode 200. Therefore, the refractive index of the second light extracting layer 600 is larger than the refractive index of the transparent electrode 200.
  • the refractive index of the transparent electrode 200 is 1.95
  • the refractive index of the second light extraction layer 600 is configured to exceed 1.95, and more preferably, may be formed between 2.0 and 2.05. If the refractive index of the second light extracting layer 600 is less than 2.0, the waveguide phenomenon suppression effect is insignificant.
  • the refractive index of the second light extracting layer 600 is greater than 2.05, the difference in refractive index with the transparent electrode 200 is increased, and the light according to the reflection of light at the fourth boundary surface L40 is obtained. There arises a problem that the extraction efficiency is lowered.
  • the refractive index of the second light extracting layer 600 is greater than the refractive index of the transparent electrode 200, the light transmitted through the fifth interface L50 in the organic light emitting layer 300 is not trapped in the transparent electrode 200. Instead of being transmitted to the second light extraction layer 600, the light extraction efficiency is improved.
  • the second light extracting layer 600 may be configured to bond the first light extracting layer 500 and the transparent electrode 200 through the second light extracting layer 600 by using an adhesive layer having the aforementioned refractive index. .
  • one surface of the second light extraction layer 600 may be molded into a flat surface shape corresponding to the other surface of the first light extraction layer 500, and the second The other surface of the light extraction layer 600 may be molded into a flat surface shape corresponding to one surface of the transparent electrode 200, thereby preventing the scattering of light transmitted from the transparent electrode 200 to prevent the second light extraction layer ( There is an advantage that the light emission uniformity of the light passing through 600 is excellent.

Abstract

The present invention relates to an organic light-emitting diode (OLED) and, more specifically, to an OLED having improved light extraction efficiency without performance deterioration of elements by minimizing absorption, reflection, and a waveguide phenomenon of light according to the differences in refractive indexes of stacked elements.

Description

광추출 효율이 향상된 유기발광소자Organic light emitting device with improved light extraction efficiency
본 발명은 유기발광소자(OLED)에 관한 것으로, 더욱 상세하게는 적층되는 소자들의 굴절률 차이에 따른 빛의 흡수, 반사 및 도파로 현상을 최소화 하여 소자의 성능저하 없이 광추출 효율이 향상된 유기발광소자에 관한 것이다.The present invention relates to an organic light emitting diode (OLED), and more particularly, to an organic light emitting diode having improved light extraction efficiency without degrading device performance by minimizing light absorption, reflection, and waveguide phenomena due to the difference in refractive index of stacked devices. It is about.
유기전자소자(Organic Electric Device)는 정공 및/또는 전자를 이용하여 극과 유기물 사이에서 전하의 흐름을 유도할 수 있는 소자를 의미한다. 유기전자소자는 동작 원리에 따라, 외부의 광원으로부터 소자로 유입된 광자에 의하여 유기물층에서 형성된 엑시톤(exiton)이 전자와 정공으로 분리되고, 분리된 전자와 정공이 각각 다른 전극으로 전달되어 전류원으로 사용되는 형태의 전자소자 또는 둘 이상의 전극에 전압 또는 전류를 가하여 유기물에 정공 및/또는 전자를 주입하고, 주입된 전자와 정공에 의하여 동작하는 형태의 전자소자가 있다. 유기전자소자의 예에는 유기발광소자(Organic Light Emitting Diodes, OLED), 유기태양전지, 유기감광체(OPC) 드럼 또는 유기 트랜지스터 등이 포함된다.An organic electric device refers to a device capable of inducing a flow of electric charge between a pole and an organic material using holes and / or electrons. According to the principle of operation, the exciton formed in the organic material layer is separated into electrons and holes by photons introduced into the device from an external light source, and the separated electrons and holes are transferred to different electrodes to be used as current sources. There is an electronic device of the type which is to inject holes and / or electrons to the organic material by applying a voltage or current to the two or more electrodes of the form, and operates by the injected electrons and holes. Examples of organic electronic devices include organic light emitting diodes (OLEDs), organic solar cells, organic photoconductor (OPC) drums or organic transistors.
유기발광소자는 발광성 유기 화합물에 전류가 흐르면 빛을 내는 전계 발광 현상을 이용한 자체 발광형 소자를 의미한다. 유기발광소자는 열 안정성이 우수하고 구동 전압이 낮다는 장점이 있기 때문에, 디스플레이, 조명 등 다양한 산업 분야에서 차세대 소재로 관심을 받고 있다. 그러나 내부에서 발생된 빛이 소자의 적층 구조를 빠져 나오는 과정에서 전반사 등이 일어나게 되고, 이는 소자의 내부 광추출 효율을 저하시키는 원인이 된다. 이러한 내부 광추출 효율을 높이기 위한 연구가 지속적으로 이루어지고 있다.The organic light emitting device refers to a self-luminous device using an electroluminescence phenomenon that emits light when a current flows through the light emitting organic compound. Organic light emitting devices are attracting attention as next-generation materials in various industrial fields such as displays and lighting because of their advantages of excellent thermal stability and low driving voltage. However, total reflection occurs in the process of the light generated from the inside of the stack structure of the device, which causes the internal light extraction efficiency of the device to decrease. Research to increase the internal light extraction efficiency has been continuously made.
도 1에는 일반적인 유기발광소자용 기판(10)의 적층구조를 나타낸 개략도가 도시되어 있다. 도시된 바와 같이 기판(10)은, 발광체인 유기발광층(13)에 전류를 공급하기 위해 양극(Anode)으로 이루어진 투명전극(12)과, 음극(cathode, 14)이 유기발광층(13)의 일면과 타면에 샌드위치 형태로 배치된다. 빛이 나오는 방향 즉 유기발광층(13)의 일측에 위치한 투명전극(12)은 빛의 투과를 위한 통상의 투명전극(ITO)을 사용한다. 또한, 투명전극(12), 유기발광층(13) 및 음극(14)을 적층시키기 위해 투명전극(12)의 일측에 유리기판(11)을 사용한다. 이때 적층되는, 유리기판(11), 투명전극(12), 유기발광층(13) 및 음극(14) 사이에는 경계면이 존재 하며, 일측에서 타측 방향 순서대로 제1 경계면(L1), 제2 경계면(L2) 및 제3 경계면(L3)으로 구분한다.FIG. 1 is a schematic view showing a laminated structure of a substrate 10 for a general organic light emitting device. As shown in the drawing, the substrate 10 includes a transparent electrode 12 made of an anode to supply a current to the organic light emitting layer 13, which is a light emitter, and a cathode 14 having one surface of the organic light emitting layer 13. And is placed in the form of a sandwich on the other side. The transparent electrode 12 positioned on one side of the organic light emitting layer 13 in a direction in which light is emitted uses a conventional transparent electrode ITO for transmitting light. In addition, a glass substrate 11 is used on one side of the transparent electrode 12 to stack the transparent electrode 12, the organic light emitting layer 13, and the cathode 14. In this case, an interface exists between the glass substrate 11, the transparent electrode 12, the organic light emitting layer 13, and the cathode 14, which are stacked, and the first boundary surface L1 and the second boundary surface (from one side to the other direction). L2) and the third boundary surface L3.
이때 유기발광층(13)의 굴절률은 통상적으로 1.7~1.8이며, 투명전극(12)의 굴절률은 약 1.95, 유리기판(11)의 굴절률은 약 1.5이다. 따라서 각 층을 구성하는 소자의 굴절률이 서로 상이하기 때문에 제1 내지 제3 경계면(L1, L2, L3) 상에서는 상기 굴절률의 차이에서 오는 반사, 각 층을 구성하는 소자에 의한 흡수 및 굴절률이 높은 층으로 광이 트랩되는 도파로 현상 등이 발생하게 되며, 유기발광층(13)에서 나온 빛의 광추출 효율을 떨어뜨리는 요인으로 작용한다.In this case, the refractive index of the organic light emitting layer 13 is typically 1.7 to 1.8, the refractive index of the transparent electrode 12 is about 1.95, and the refractive index of the glass substrate 11 is about 1.5. Therefore, since the refractive indices of the elements constituting each layer are different from each other, the reflections from the difference in the refractive indices on the first to third interfaces L1, L2, and L3, the layers absorbed by the elements constituting each layer, and the layers having high refractive index As a result, a waveguide phenomenon in which light is trapped is generated, and the light extraction efficiency of the light emitted from the organic light emitting layer 13 is reduced.
특히 투명전극(12)은 일측의 유리기판(11) 및 타측의 유기발광층(13) 보다 굴절률이 높기 때문에 유기발광층(13)에서 발생된 빛이 투명전극(12)에 트랩되는 도파로 현상이 일어나 유리기판(11)으로 전달되는 빛의 양이 줄어들게 되어 광추출 효율을 저해 하는 주요원인이 된다.In particular, since the transparent electrode 12 has a higher refractive index than the glass substrate 11 on one side and the organic light emitting layer 13 on the other side, a waveguide phenomenon occurs in which light generated in the organic light emitting layer 13 is trapped on the transparent electrode 12. The amount of light transmitted to the substrate 11 is reduced, which is a major cause of impairing the light extraction efficiency.
도 2에는 상술된 문제점을 해결하기 위한 종래의 유기발광소자용 기판(20)의 적층구조를 나타낸 개략도가 도시되어 있다. 도시된 바와 같이 기판(20)은 적층되는 유리기판(21), 광추출층(25), 투명전극(22), 유기발광층(23) 및 음극(24)을 포함하며 이들 사이에는 경계면이 존재 하고, 일측에서 타측 방향 순서대로 제1 경계면(L1), 제4 경계면(L4), 제5 경계면(L5) 및 제3 경계면(L3)로 구분한다.2 is a schematic view showing a laminated structure of a substrate 20 for a conventional organic light emitting device for solving the above-described problems. As shown in the drawing, the substrate 20 includes a glass substrate 21, a light extraction layer 25, a transparent electrode 22, an organic light emitting layer 23, and a cathode 24, which are stacked. The first boundary surface L1, the fourth boundary surface L4, the fifth boundary surface L5, and the third boundary surface L3 are distinguished from one side to another in order.
기판(20)은 기본적으로 공기층(굴절률 1.0)과 유리기판(21) 사이의 굴절률 차이에 따른 빛의 반사를 막기 위해 마이크로 렌즈 어레이 등을 사용하여 유리기판(21)의 타측 표면에 요철(21a)을 형성한다. 따라서 빛이 요철(21a)을 통과하면서 산란하여 공기층과 유리기판(21)사이의 굴절률 차이를 줄이고, 제1 경계면(L1)에서의 빛의 반사를 방지하게 된다.The substrate 20 is basically a concave-convex 21a on the other surface of the glass substrate 21 using a micro lens array or the like to prevent reflection of light due to the difference in refractive index between the air layer (refractive index 1.0) and the glass substrate 21. To form. Therefore, the light scatters while passing through the unevenness 21a to reduce the difference in refractive index between the air layer and the glass substrate 21 and to prevent the reflection of light at the first interface L1.
또한, 기판(20)은 추가적으로 유리기판(21)과 투명전극(22) 사이에 유리기판(21)과 투명전극(22) 각각의 굴절률의 중간 정도에 해당하는 약 1.85의 굴절률을 갖는 광추출층(25)을 삽입하여 제4 경계면(L4) 또는 제5 경계면(L5) 상에서의 굴절률 차이에 의한 빛 반사를 줄여 결과적으로는 상술된 도 1에 도시된 기판(10) 보다 광추출 효율을 향상시킨다. 그러나 여전히 투명전극(22) 층의 굴절률이 가장 높기 때문에 투명전극(22) 층의 도파로 현상은 막을 수 없어 광추출 효율 향상에 제한이 있다.In addition, the substrate 20 may additionally have a light extraction layer having a refractive index of about 1.85, which is about the middle of the refractive index of each of the glass substrate 21 and the transparent electrode 22 between the glass substrate 21 and the transparent electrode 22. Insertion of 25 reduces light reflection due to the difference in refractive index on the fourth boundary surface L4 or the fifth boundary surface L5, resulting in improved light extraction efficiency than the substrate 10 shown in FIG. . However, since the refractive index of the transparent electrode 22 layer is the highest, the waveguide phenomenon of the transparent electrode 22 layer cannot be prevented, and thus there is a limitation in improving the light extraction efficiency.
도 3에는 상술된 문제점을 해결하기 위한 종래의 다른 실시 예의 유기발광소자용 기판(30)의 적층구조를 나타낸 개략도가 도시되어 있다. 도시된 바와 같이 기판(30)은 적층되는 유리기판(31), 광추출층(35), 투명전극(32), 유기발광층(33) 및 음극(34)을 포함하며 이들 사이에는 경계면이 존재 하고, 일측에서 타측 방향 순서대로 제1 경계면(L1), 제6 경계면(L6), 제7 경계면(L7) 및 제3 경계면(L3)로 구분한다.3 is a schematic view showing a laminated structure of a substrate 30 for an organic light emitting device according to another conventional embodiment for solving the above-described problems. As shown in the drawing, the substrate 30 includes a glass substrate 31, a light extraction layer 35, a transparent electrode 32, an organic light emitting layer 33, and a cathode 34, which are stacked between them. The first boundary surface L1, the sixth boundary surface L6, the seventh boundary surface L7, and the third boundary surface L3 are divided in order from one side to the other side.
도시된 기판(30) 역시 유리기판(31) 상에 요철(31a)을 적용하였으며, 유리기판(31)과 투명전극(32) 사이에 굴절률이 투명전극(32) 보다 크도록 약 1.95의 굴절률을 갖는 광추출층(35)을 삽입하여 투명전극(32) 층의 도파로 현상을 막아 광추출 효율을 향상시킨다. 하지만 유리기판(31)과 광추출층(35)사이의 굴절률 차이는 더 커지기 때문에 제6 경계면 상에서 빛의 반사에 의한 효율 저하가 어쩔 수 없이 수반 된다.The illustrated substrate 30 also applies the unevenness 31a on the glass substrate 31, and has a refractive index of about 1.95 so that the refractive index between the glass substrate 31 and the transparent electrode 32 is larger than that of the transparent electrode 32. The light extraction layer 35 is inserted to prevent the waveguide phenomenon of the transparent electrode 32 layer, thereby improving light extraction efficiency. However, since the difference in refractive index between the glass substrate 31 and the light extraction layer 35 becomes larger, the efficiency decrease due to the reflection of light on the sixth interface is inevitably accompanied.
따라서 적층되는 각각의 소자의 경계층의 굴절률 차이에 따른 빛의 반사 및 투명전극 층의 도파로 현상을 최소화하여 광추출 효율을 향상시킨 유기발광소자의 개발이 요구된다. Accordingly, there is a need for the development of an organic light emitting device that improves light extraction efficiency by minimizing light reflection and waveguide phenomenon of a transparent electrode layer according to a difference in refractive index of each layer of stacked layers.
본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로서 본 발명의 목적은, 빛의 반사 및 도파로 현상 방지를 위해 최적화된 굴절률을 갖는 복수 개의 광추출층을 유리기판과 투명전극 사이에 적용하여 광추출 효율이 향상된 유기발광소자를 제공함에 있다.The present invention has been made to solve the above problems, an object of the present invention, by applying a plurality of light extraction layer having a refractive index optimized for reflection of light and prevention of waveguide phenomenon between the glass substrate and the transparent electrode An organic light emitting device having improved extraction efficiency is provided.
본 발명은, 유리기판과, 상기 유리기판의 타면에 배치되는 양극의 투명전극과, 상기 투명전극의 타면에 배치되는 유기발광층과, 상기 유기발광층의 타면에 배치되는 음극이 적층된 형태를 이루는, 유기발광소자에 있어서, 상기 유기발광소자는, 상기 유리기판과 상기 투명전극 사이에 배치되는 제1 광추출층; 및 상기 제1 광추출층과 상기 투명전극 사이에 배치되는 제2 광추출층; 을 포함하며, 상기 제2 광추출층의 굴절률은 상기 투명전극의 굴절률보다 높고, 상기 제1 광추출층의 굴절률은 상기 투명전극의 굴절률보다 낮고 상기 유리기판의 굴절률보다 높다.According to the present invention, a glass substrate, a transparent electrode of an anode disposed on the other surface of the glass substrate, an organic light emitting layer disposed on the other surface of the transparent electrode, and a cathode disposed on the other surface of the organic light emitting layer are laminated. In an organic light emitting device, the organic light emitting device, the first light extraction layer disposed between the glass substrate and the transparent electrode; And a second light extraction layer disposed between the first light extraction layer and the transparent electrode. The refractive index of the second light extraction layer is higher than the refractive index of the transparent electrode, the refractive index of the first light extraction layer is lower than the refractive index of the transparent electrode and higher than the refractive index of the glass substrate.
이때, 상기 제1 광추출층은, 상기 유리기판의 타면이 맞닿는 일면에 산란 입자가 도포된 산란층; 을 포함하고, 상기 제2 광추출층의 일면이 맞닿는 타면이 평탄면으로 이루어진다.In this case, the first light extraction layer, the scattering layer is applied to the scattering particles on one surface of the other surface of the glass substrate abuts; It includes, the other surface abuts one surface of the second light extraction layer is made of a flat surface.
또한, 상기 제2 광추출층은, 상기 제1 광추출층과 상기 투명 전극의 접합을 위한 접착층으로 이루어진다.The second light extracting layer may include an adhesive layer for bonding the first light extracting layer and the transparent electrode.
아울러, 상기 제1 광추출층은, 굴절률이 상기 유리기판의 굴절률과, 상기 투명전극의 굴절률의 평균값인 것을 특징으로 한다.In addition, the first light extraction layer, the refractive index is characterized in that the average value of the refractive index of the glass substrate and the refractive index of the transparent electrode.
다른 실시 예로, 상기 제1 광추출층은, 굴절률이 상기 유리기판의 굴절률과, 상기 제2 광추출층의 굴절률의 평균값인 것을 특징으로 한다.In another embodiment, the first light extraction layer is characterized in that the refractive index is the average value of the refractive index of the glass substrate and the refractive index of the second light extraction layer.
상기와 같은 구성에 의한 본 발명의 광추출 효율이 향상된 유기발광소자는, 소자의 성능 저하 없이 광추출 효율이 우수한 효과가 있다. 또한, 광추출층의 평탄도가 우수하여 발광 균일도가 우수한 효과가 있다. 아울러 기존 제조공정에서 크게 벗어나지 않기 때문에 공정 및 소재 비용이 저렴하고, 대량생산이 용이한 효과가 있다.The organic light emitting device of which the light extraction efficiency of the present invention is improved by the above configuration is excellent in light extraction efficiency without degrading the performance of the device. In addition, the flatness of the light extraction layer is excellent, there is an effect of excellent uniformity of light emission. In addition, since it does not deviate significantly from the existing manufacturing process, the process and material cost are low, and mass production is easy.
도 1은 일반적인 유기발광소자의 적층구조를 나타낸 개략도1 is a schematic view showing a laminated structure of a general organic light emitting device
도 2는 종래의 유기발광소자의 적층구조를 나타낸 개략도2 is a schematic view showing a laminated structure of a conventional organic light emitting device
도 3은 종래의 다른 실시 예의 유기발광소자의 적층구조를 나타낸 개략도3 is a schematic view showing a laminated structure of another organic light emitting diode according to another embodiment
도 4는 본 발명의 유기발광소자의 적층구조를 나타낸 개략도4 is a schematic view showing the laminated structure of the organic light emitting device of the present invention
<부호의 설명><Description of the code>
1000 : 유기발광소자1000: organic light emitting device
100 : 유리기판100: glass substrate
200 : 투명전극200: transparent electrode
300 : 유기발광층300: organic light emitting layer
400 : 음극400: cathode
500 : 제1 광추출층 510 : 산란층500: first light extraction layer 510: scattering layer
600 : 제2 광추출층600: second light extraction layer
L10 : 제1 경계면 L20 : 제2 경계면L10: first boundary surface L20: second boundary surface
L30 : 제3 경계면 L40 : 제4 경계면L30: third boundary surface L40: fourth boundary surface
L50 : 제5 경계면L50: fifth boundary surface
이하, 상기와 같은 본 발명의 일실시예에 대하여 도면을 참조하여 상세히 설명한다.Hereinafter, an embodiment of the present invention as described above will be described in detail with reference to the accompanying drawings.
도 4에는 본 발명의 일실시 예에 따른 유기발광소자(1000)의 적층구조를 나타낸 개략도가 도시되어 있다. 도시된 바와 같이 유기발광소자(1000)는 유리기판(100), 양극의 투명전극(200), 유기발광층(300) 및 음극(400)을 포함하며, 추가적으로 제1 광추출층(500)과 제2 광추출층(600)을 더 포함하여 구성된다.4 is a schematic view showing a laminated structure of an organic light emitting device 1000 according to an embodiment of the present invention. As shown, the organic light emitting diode 1000 includes a glass substrate 100, a transparent electrode 200 of an anode, an organic light emitting layer 300, and a cathode 400, and additionally includes a first light extracting layer 500 and a first light extracting layer 500. It further comprises two light extraction layer (600).
유기발광소자(1000)는 일측에서 타측으로 유리기판(100), 제1 광추출층(500), 제2 광추출층(600), 투명전극(200), 유기발광층(300) 및 음극(400)이 순차적으로 적층되어 이루어진다. 이하, 공기와 유리기판(100) 사이에 형성된 경계층을 제1 경계층(L10), 유리기판(100)과 제1 광추출층(500) 사이에 형성된 경계층을 제2 경계층(L20), 제1 광추출층(500)과 제2 광추출층(600) 사이에 형성된 경계층을 제3 경계층(L30), 제2 광추출층(600)과 투명전극(200) 사이에 형성된 경계층을 제4 경계층(L40), 투명전극(200)과 유기발광층(500) 사이에 형성된 경계층을 제5 경계층(L50)으로 정의하여 설명한다. The organic light emitting device 1000 has a glass substrate 100, a first light extraction layer 500, a second light extraction layer 600, a transparent electrode 200, an organic light emitting layer 300, and a cathode 400 from one side to the other side. ) Are sequentially stacked. Hereinafter, the boundary layer formed between the air and the glass substrate 100 is the first boundary layer L10, and the boundary layer formed between the glass substrate 100 and the first light extraction layer 500 is the second boundary layer L20 and the first light. The boundary layer formed between the extraction layer 500 and the second light extraction layer 600 is the third boundary layer L30, and the boundary layer formed between the second light extraction layer 600 and the transparent electrode 200 is the fourth boundary layer L40. ), A boundary layer formed between the transparent electrode 200 and the organic light emitting layer 500 is defined as a fifth boundary layer L50.
여기서 유리기판(100), 투명전극(200), 유기발광층(300) 및 음극(400)의 구성은 통상의 유기발광소자(OLED)에 적용되는 구성이 동일유사하게 적용될 수 있는 바 이에 대한 상세한 설명은 생략한다. Herein, the glass substrate 100, the transparent electrode 200, the organic light emitting layer 300, and the cathode 400 may be similarly applied to the organic light emitting diode OLED. Is omitted.
제1 광추출층(500)은 유리기판(100)과 제2 광추출층(600)사이에 배치되며, 유리기판(100)과 투명전극(200) 사이의 굴절률의 차이를 줄여 빛의 반사를 최소화하기 위해 구성된다. 따라서 제1 광추출층(500)의 굴절률은 유리기판(100)의 굴절률보다 크고 투명전극(200)의 굴절률보다 작게 구성된다. 보다 바람직하게는 유리기판(100)의 굴절률과 투명전극(200)의 굴절률의 평균값과 유사하게 구성될 수 있다. 일예로 유리기판(100)의 굴절률이 1.5이고, 투명전극(200)의 굴절률이 1.95 일 때, 제1 광추출층(500)의 굴절률은 1.5를 초과하고 1.95에 미만하도록 형성되며, 보다 바람직하게는 1.65~1.85 사이에 형성될 수 있다. 제1 광추출층(500)의 굴절률이 1.65 미만일 경우 투명전극(200)과의 굴절률 차이가 커져 제3 경계층(L30)에서의 빛의 반사에 따른 광추출 효율이 저하되는 문제가 발생한다. 또한, 제1 광추출층(500)의 굴절률이 1.85를 초과할 경우 유리기판(100)과의 굴절률 차이가 커져 제2 경계층(L20)에서의 빛의 반사에 따른 광추출 효율이 저하되는 문제가 발생한다.The first light extracting layer 500 is disposed between the glass substrate 100 and the second light extracting layer 600, and reduces the difference in refractive index between the glass substrate 100 and the transparent electrode 200 to reflect the light. Configured to minimize. Therefore, the refractive index of the first light extracting layer 500 is larger than the refractive index of the glass substrate 100 and smaller than the refractive index of the transparent electrode 200. More preferably, it may be configured similarly to the average value of the refractive index of the glass substrate 100 and the refractive index of the transparent electrode 200. For example, when the refractive index of the glass substrate 100 is 1.5 and the refractive index of the transparent electrode 200 is 1.95, the refractive index of the first light extraction layer 500 is formed to exceed 1.5 and less than 1.95, more preferably. May be formed between 1.65 and 1.85. When the refractive index of the first light extracting layer 500 is less than 1.65, a difference in refractive index with the transparent electrode 200 increases, causing a problem in that light extraction efficiency due to reflection of light in the third boundary layer L30 is reduced. In addition, when the refractive index of the first light extracting layer 500 exceeds 1.85, the difference in refractive index with the glass substrate 100 becomes large, so that the light extraction efficiency due to the reflection of light in the second boundary layer L20 is deteriorated. Occurs.
다른 실시 예로 제1 광추출층(500)의 굴절률은, 유리기판(100)의 굴절률과 제2 광추출층(600)의 굴절률의 평균값과 유사하게 구성될 수도 있다. 일예로 유리기판(100)의 굴절률이 1.5이고, 제2 광추출층(600)의 굴절률이 2.0 일 때, 제1 광추출층(500)의 굴절률은 1.5를 초과하고 2.0에 미만하도록 형성되며, 보다 바람직하게는 1.7~1.9 사이에 형성될 수 있다.In another embodiment, the refractive index of the first light extraction layer 500 may be configured to be similar to the average value of the refractive index of the glass substrate 100 and the refractive index of the second light extraction layer 600. For example, when the refractive index of the glass substrate 100 is 1.5 and the refractive index of the second light extraction layer 600 is 2.0, the refractive index of the first light extraction layer 500 is formed to be greater than 1.5 but less than 2.0. More preferably, it may be formed between 1.7 and 1.9.
상기와 같은 제1 광추출층(500)을 통해 유리기판(100)과 투명전극(200)의 굴절률 차이를 줄여 투명전극(200)에서 유리기판(100)으로 전달되는 빛의 반사를 최소화함에 따라 광추출 효율이 향상되는 장점이 있다.As the refractive index difference between the glass substrate 100 and the transparent electrode 200 is reduced through the first light extraction layer 500 as described above, the reflection of the light transmitted from the transparent electrode 200 to the glass substrate 100 is minimized. There is an advantage that the light extraction efficiency is improved.
또한, 유리기판(100)의 타면에 맞닿는 제1 광추출층(500)의 일면에는 산란입자가 도포되는 산란층(510)이 형성될 수 있다. 산란층(510)은 산란입자의 도포에 따라 요철 형상으로 이루어지며, 공기층(굴절률 1.0)과 유리기판(100) 사이의 제1 경계면(L10)에서의 굴절률 차이에 따른 빛의 반사를 최소화하기 위해 구성된다. 따라서 제1 광추출층(500)을 통해 제1 경계면(L10)의 빛의 반사를 최소화하기 때문에 유리기판(100)상에 제1 경계면(L10)의 빛의 반사를 막기 위한 별도의 공정 예를 들면 요철 형상 가공 공정을 삭제할 수 있는 장점이 있다.In addition, a scattering layer 510 to which scattering particles are applied may be formed on one surface of the first light extracting layer 500 that contacts the other surface of the glass substrate 100. The scattering layer 510 is formed in an uneven shape according to the application of the scattering particles, and in order to minimize the reflection of light due to the difference in refractive index at the first interface L10 between the air layer (refractive index 1.0) and the glass substrate 100. It is composed. Therefore, since the light reflection of the first boundary surface L10 is minimized through the first light extraction layer 500, a separate process example for preventing the reflection of the light of the first boundary surface L10 on the glass substrate 100 will be described. For example, there is an advantage that can eliminate the irregular shape processing process.
아울러 제2 광추출층(600)의 일면에 맞닿는 제1 광추출층(500)의 타면에는 평탄면이 형성될 수 있다. 제1 광추출층(500)의 타면에 평탄면이 형성됨에 따라 투명전극(200)에서 전달되는 빛의 산란을 방지하여 빛의 발광 균일도가 우수해지는 장점이 있다.In addition, a flat surface may be formed on the other surface of the first light extraction layer 500 which is in contact with one surface of the second light extraction layer 600. As the flat surface is formed on the other surface of the first light extraction layer 500, the light uniformity of the light is excellent by preventing scattering of light transmitted from the transparent electrode 200.
제2 광추출층(600)은 제1 광추출층(500)과, 투명전극(200)사이에 배치되어 투명전극(200)상에 광이 트랩되는 도파로 현상을 최소화하기 위해 구성된다. 따라서 제2 광추출층(600)의 굴절률은 투명전극(200)의 굴절률보다 크게 구성된다. 일예로 투명전극(200)의 굴절률이 1.95 일 때, 제2 광추출층(600)의 굴절률은 1.95를 초과하도록 구성되며, 보다 바람직하게는 2.0~2.05 사이에 형성될 수 있다. 제2 광추출층(600)의 굴절률이 2.0 미만일 경우 도파로 현상 억제 효과가 미미해지며, 2.05 이상일 경우 투명전극(200)과의 굴절률 차이가 커져 제4 경계면(L40)에서의 빛의 반사에 따른 광추출 효율이 저하되는 문제가 발생한다.The second light extracting layer 600 is disposed between the first light extracting layer 500 and the transparent electrode 200 to minimize the waveguide phenomenon in which light is trapped on the transparent electrode 200. Therefore, the refractive index of the second light extracting layer 600 is larger than the refractive index of the transparent electrode 200. For example, when the refractive index of the transparent electrode 200 is 1.95, the refractive index of the second light extraction layer 600 is configured to exceed 1.95, and more preferably, may be formed between 2.0 and 2.05. If the refractive index of the second light extracting layer 600 is less than 2.0, the waveguide phenomenon suppression effect is insignificant. If the refractive index of the second light extracting layer 600 is greater than 2.05, the difference in refractive index with the transparent electrode 200 is increased, and the light according to the reflection of light at the fourth boundary surface L40 is obtained. There arises a problem that the extraction efficiency is lowered.
상기와 같은 제2 광추출층(600)의 굴절률이 투명전극(200)의 굴절률보다 크기 때문에 유기발광층(300)에서 제5 경계면(L50)을 통해 전달되는 빛이 투명전극(200)에 트랩되지 않고 제2 광추출층(600)으로 전달되도록 하여 광추출 효율이 향상되는 장점이 있다.Since the refractive index of the second light extracting layer 600 is greater than the refractive index of the transparent electrode 200, the light transmitted through the fifth interface L50 in the organic light emitting layer 300 is not trapped in the transparent electrode 200. Instead of being transmitted to the second light extraction layer 600, the light extraction efficiency is improved.
또한, 제2 광추출층(600)은 상술된 굴절률을 갖는 접착층으로 이루어져 제2 광추출층(600)을 통해 제1 광추출층(500)과 투명전극(200)을 접착하도록 구성될 수 있다. 상기와 같은 구성을 통해 제조공정이 간단해지고, 제조 비용이 저렴해지는 효과가 있다.In addition, the second light extracting layer 600 may be configured to bond the first light extracting layer 500 and the transparent electrode 200 through the second light extracting layer 600 by using an adhesive layer having the aforementioned refractive index. . Through the above configuration, the manufacturing process is simplified and the manufacturing cost is reduced.
특히 제2 광추출층(600)이 접착층으로 이루어짐에 따라 제2 광추출층(600)의 일면은 제1 광추출층(500)의 타면에 대응되는 평탄면 형상으로 성형이 가능하고, 제2 광추출층(600)의 타면은 투명전극(200)의 일면에 대응되는 평탄면 형상으로 성형이 가능하다, 이에 따라 투명전극(200)에서 전달되는 빛의 산란을 방지하여 제2 광추출층(600)을 투과하는 빛의 발광 균일도가 우수해지는 장점이 있다.In particular, as the second light extraction layer 600 is formed of an adhesive layer, one surface of the second light extraction layer 600 may be molded into a flat surface shape corresponding to the other surface of the first light extraction layer 500, and the second The other surface of the light extraction layer 600 may be molded into a flat surface shape corresponding to one surface of the transparent electrode 200, thereby preventing the scattering of light transmitted from the transparent electrode 200 to prevent the second light extraction layer ( There is an advantage that the light emission uniformity of the light passing through 600 is excellent.
본 발명의 상기한 실시 예에 한정하여 기술적 사상을 해석해서는 안 된다. 적용범위가 다양함은 물론이고, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당업자의 수준에서 다양한 변형 실시가 가능하다. 따라서 이러한 개량 및 변경은 당업자에게 자명한 것인 한 본 발명의 보호범위에 속하게 된다.The technical spirit should not be interpreted as being limited to the above embodiments of the present invention. Various modifications may be made at the level of those skilled in the art without departing from the spirit of the invention as claimed in the claims. Therefore, such improvements and modifications fall within the protection scope of the present invention as long as it will be apparent to those skilled in the art.

Claims (6)

  1. 유리기판과, 상기 유리기판의 타면에 배치되는 양극의 투명전극과, 상기 투명전극의 타면에 배치되는 유기발광층과, 상기 유기발광층의 타면에 배치되는 음극이 적층된 형태를 이루는, 유기발광소자에 있어서,In an organic light emitting device, a glass substrate, a transparent electrode of an anode disposed on the other surface of the glass substrate, an organic light emitting layer disposed on the other surface of the transparent electrode, and a cathode disposed on the other surface of the organic light emitting layer are laminated. In
    상기 유기발광소자는, The organic light emitting device,
    상기 유리기판과 상기 투명전극 사이에 배치되는 제1 광추출층; 및A first light extracting layer disposed between the glass substrate and the transparent electrode; And
    상기 제1 광추출층과 상기 투명전극 사이에 배치되는 제2 광추출층; 을 포함하며,A second light extracting layer disposed between the first light extracting layer and the transparent electrode; Including;
    상기 제2 광추출층의 굴절률은 상기 투명전극의 굴절률보다 높고, 상기 제1 광추출층의 굴절률은 상기 투명전극의 굴절률보다 낮고 상기 유리기판의 굴절률보다 높은, 광추출 효율이 향상된 유기발광소자.The refractive index of the second light extraction layer is higher than the refractive index of the transparent electrode, the refractive index of the first light extraction layer is lower than the refractive index of the transparent electrode and higher than the refractive index of the glass substrate, the organic light emitting device with improved light extraction efficiency.
  2. 제 1항에 있어서,The method of claim 1,
    상기 제1 광추출층은,The first light extraction layer,
    상기 유리기판의 타면이 맞닿는 일면에 산란 입자가 도포된 산란층; 을 포함하는, 광추출 효율이 향상된 유기발광소자.A scattering layer having scattering particles coated on one surface of the glass substrate abutting the other surface thereof; A light emitting efficiency improved organic light emitting device comprising a.
  3. 제 2항에 있어서,The method of claim 2,
    상기 제1 광추출층은,The first light extraction layer,
    상기 제2 광추출층의 일면이 맞닿는 타면이 평탄면으로 이루어지는, 광추출 효율이 향상된 유기발광소자.The organic light emitting device of which the light extraction efficiency is improved, the other surface of which the one surface of the second light extraction layer is in contact with the flat surface.
  4. 제 3항에 있어서,The method of claim 3, wherein
    상기 제2 광추출층은,The second light extraction layer,
    상기 제1 광추출층과 상기 투명 전극의 접합을 위한 접착층으로 이루어지는, 광추출 효율이 향상된 유기발광소자.An organic light emitting device having an improved light extraction efficiency, comprising an adhesive layer for bonding the first light extraction layer and the transparent electrode.
  5. 제 1항에 있어서,The method of claim 1,
    상기 제1 광추출층은,The first light extraction layer,
    굴절률이 상기 유리기판의 굴절률과, 상기 투명전극의 굴절률의 평균값인 것을 특징으로 하는, 광추출 효율이 향상된 유기발광소자.The refractive index is an average value of the refractive index of the glass substrate and the refractive index of the transparent electrode, light extraction efficiency improved organic light emitting device.
  6. 제 1항에 있어서,The method of claim 1,
    상기 제1 광추출층은,The first light extraction layer,
    굴절률이 상기 유리기판의 굴절률과, 상기 제2 광추출층의 굴절률의 평균값인 것을 특징으로 하는, 광추출 효율이 향상된 유기발광소자.The refractive index is an average value of the refractive index of the glass substrate and the refractive index of the second light extraction layer, characterized in that the light extraction efficiency improved organic light emitting device.
PCT/KR2014/006377 2014-07-15 2014-07-15 Organic light-emitting diode having improved light extraction efficiency WO2016010172A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0088965 2014-07-15
KR1020140088965A KR20160008797A (en) 2014-07-15 2014-07-15 Light Extraction Efficiency improved Organic Light Emitting Diode

Publications (1)

Publication Number Publication Date
WO2016010172A1 true WO2016010172A1 (en) 2016-01-21

Family

ID=55078657

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/006377 WO2016010172A1 (en) 2014-07-15 2014-07-15 Organic light-emitting diode having improved light extraction efficiency

Country Status (2)

Country Link
KR (1) KR20160008797A (en)
WO (1) WO2016010172A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113036055A (en) * 2021-03-03 2021-06-25 吉林奥来德光电材料股份有限公司 Flexible organic light-emitting device, preparation method thereof and display device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101896038B1 (en) * 2016-05-04 2018-09-06 주식회사 헥사솔루션 Organic light emitting device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120069575A (en) * 2010-12-20 2012-06-28 삼성전자주식회사 Substrate for light emitting device and method for manufacturing the substrate, surface light emitting device, lighting apparatus, backlight including the same
WO2012160522A1 (en) * 2011-05-25 2012-11-29 Koninklijke Philips Electronics N.V. Organic light emitting device with improved light extraction
KR20130012464A (en) * 2011-07-25 2013-02-04 포항공과대학교 산학협력단 Substrate for organic light emitting diodes and manufacturing method thereof
JP2014514716A (en) * 2011-04-12 2014-06-19 アーケマ・インコーポレイテッド Internal optical extraction layer for OLED elements
US20140175407A1 (en) * 2011-10-13 2014-06-26 Cambrios Technologies Corporation Opto-electrical devices incorporating metal nanowires

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140046728A (en) 2012-10-11 2014-04-21 삼성코닝정밀소재 주식회사 Metallic oxide thin film substrate, method of fabricating thereof and oled including the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120069575A (en) * 2010-12-20 2012-06-28 삼성전자주식회사 Substrate for light emitting device and method for manufacturing the substrate, surface light emitting device, lighting apparatus, backlight including the same
JP2014514716A (en) * 2011-04-12 2014-06-19 アーケマ・インコーポレイテッド Internal optical extraction layer for OLED elements
WO2012160522A1 (en) * 2011-05-25 2012-11-29 Koninklijke Philips Electronics N.V. Organic light emitting device with improved light extraction
KR20130012464A (en) * 2011-07-25 2013-02-04 포항공과대학교 산학협력단 Substrate for organic light emitting diodes and manufacturing method thereof
US20140175407A1 (en) * 2011-10-13 2014-06-26 Cambrios Technologies Corporation Opto-electrical devices incorporating metal nanowires

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113036055A (en) * 2021-03-03 2021-06-25 吉林奥来德光电材料股份有限公司 Flexible organic light-emitting device, preparation method thereof and display device
CN113036055B (en) * 2021-03-03 2022-07-19 吉林奥来德光电材料股份有限公司 Flexible organic light-emitting device, preparation method thereof and display device

Also Published As

Publication number Publication date
KR20160008797A (en) 2016-01-25

Similar Documents

Publication Publication Date Title
CN103682148B (en) Organic light emitting apparatus and its manufacturing method
WO2009142462A2 (en) Organic led and manufacturing method thereof
US10615355B2 (en) Organic light-emitting display panel and display device
CN103682145A (en) Organic light emitting display panel
CN102822974B (en) Optoelectronic device array
CN1691851A (en) Organic electroluminescent display device and fabricating method thereof
US20140008635A1 (en) Organic electroluminescence element
TW201409797A (en) Organic light emitting device and manufacturing method thereof
WO2016036150A1 (en) Method for manufacturing light extraction substrate for organic light-emitting diode, light extraction substrate for organic light-emitting diode, and organic light-emitting diode including same
US10529781B2 (en) Organic light-emitting diode display panel and organic light-emitting diode display device
WO2012023795A2 (en) Organic light-emitting device
WO2016105029A1 (en) Organic light emitting diode
CN104409658A (en) Organic electroluminescence device, array substrate and display device
US20150090336A1 (en) Organic-inorganic hybrid light emitting device, method for manufacturing the same, and organic-inorganic hybrid solar cell
CN105826354A (en) Array substrate, display panel and display device
KR20170002842A (en) Organic light emitting display device
WO2015172397A1 (en) Array substrate and display panel
WO2016047936A1 (en) Flexible substrate and method of manufacturing same
WO2016010172A1 (en) Organic light-emitting diode having improved light extraction efficiency
CN110620188A (en) Display panel and display device
CN104425737A (en) Organic light emitting element
JP5785851B2 (en) Organic light emitting device
CN109585496A (en) Organic light-emitting diode (OLED) display apparatus
WO2016047970A2 (en) Light extraction substrate for organic light emitting element and organic light emitting element comprising same
WO2015084013A1 (en) Organic light-emitting device for lighting

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14897525

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14897525

Country of ref document: EP

Kind code of ref document: A1