WO2016009897A1 - Method for producing polysilane by thermal polymerization - Google Patents

Method for producing polysilane by thermal polymerization Download PDF

Info

Publication number
WO2016009897A1
WO2016009897A1 PCT/JP2015/069522 JP2015069522W WO2016009897A1 WO 2016009897 A1 WO2016009897 A1 WO 2016009897A1 JP 2015069522 W JP2015069522 W JP 2015069522W WO 2016009897 A1 WO2016009897 A1 WO 2016009897A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
polysilane
cyclopentasilane
molecular weight
average molecular
Prior art date
Application number
PCT/JP2015/069522
Other languages
French (fr)
Japanese (ja)
Inventor
雅久 遠藤
軍 孫
裕一 後藤
永井 健太郎
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Publication of WO2016009897A1 publication Critical patent/WO2016009897A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/04Hydrides of silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/60Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which all the silicon atoms are connected by linkages other than oxygen atoms

Definitions

  • the present invention relates to polysilane and a method for producing the same. Further, the present invention relates to a silane polymer applied to uses such as integrated circuits and thin film transistors.
  • Silicon semiconductors have been studied for a long time as materials for thin film transistors (TFTs) and solar cells.
  • TFTs thin film transistors
  • a silicon film is generally formed by a vacuum process such as a CVD method.
  • a vacuum process is used, a large-scale apparatus is required, and since gas is used as a raw material, it is difficult to handle.
  • a silane polymer dissolved in an organic solvent is applied to a substrate, and after baking, a silicon film is formed by dehydrogenation.
  • a silane polymer having a polystyrene-equivalent weight average molecular weight of 800 to 5000 as measured by gel permeation chromatography by irradiating a photopolymerizable silane compound with light having a wavelength of 405 nm is produced.
  • a method for producing a polymer is disclosed (see Patent Document 2).
  • A From a solid polysilane compound synthesized by irradiating cyclopentasilane with light having a wavelength of 170 to 600 nm, (B) cyclopentasilane, and (C) a boron compound, an arsenic compound, a phosphorus compound, and an antimony compound It contains at least one selected compound, (A) a solid polysilane compound is dissolved, and (B) the ratio of (A) polysilane compound to cyclopentasilane is 0.1 to 100% by weight.
  • a characteristic silane composition for forming a semiconductor thin film is disclosed (see Patent Document 3).
  • Silylcyclopentasilane used as a radical initiator for ring-opening polymerization of cyclopentasilane has been disclosed (see Patent Document 4).
  • a composition comprising oligosilane or polysilane having a molecular weight of 450 to 2300 consisting of hydrogen and silicon and / or germanium, wherein the composition is coated on a substrate and / or printed to form an oligo or polysilane film.
  • Patent Document 5 that forms an amorphous hydrogenated semiconductor film having a carbon content of 0.1 atomic% or less after curing is disclosed.
  • oligosilane or polysilane is synthesized using a heterogeneous catalyst composed of a Group 7 to 12 transition metal element or a substrate-fixed derivative thereof.
  • a process for producing polysilane characterized in that cyclopentasilane is heated to a temperature of 50 ° C. to 120 ° C.
  • the production method according to the first aspect in which heating is performed for 0.5 to 6 hours
  • the obtained polysilane is a polymer of cyclopentasilane
  • the production method according to the first aspect or the second aspect having a weight average molecular weight of 600 to 3000
  • the Mw / Mn ratio between the weight average molecular weight Mw and the number average molecular weight Mn of the obtained polysilane is 1.03 to 1.55, according to any one of the first to third aspects.
  • cyclopentasilane is a manufacturing method as described in the 1st viewpoint thru
  • R 1 and R 2 are not hydrogen atoms at the same time.
  • R 3 and R 4 each represent a halogen atom, and n represents an integer of 4 to 6) to obtain a cyclic silane compound represented by:
  • R 1 and R 2 both represent a phenyl group
  • the production method according to the fifth aspect
  • R 3 and R 4 both represent chlorine atoms
  • cyclopentasilane is 80 mol% or more in the total cyclic silane. It is a manufacturing method as described in the 5th viewpoint
  • the present invention relates to a method for producing polysilane by thermal polymerization of cyclopentasilane.
  • Polysilane is a polymer of cyclopentasilane.
  • Thermal polymerization is performed by heating to a temperature of 50 ° C to 120 ° C.
  • polymerization of cyclopentasilane can proceed only by heating without adding a polymerization catalyst and without irradiating with ultraviolet rays.
  • it is not necessary to use a catalyst in the present invention it is not necessary to separate the product and the catalyst, and the production of polysilane can be achieved only by a simple heating device without using an apparatus necessary for ultraviolet irradiation or the like.
  • cyclopentasilane undergoes polymerization by heat. This is considered to originate from the structure peculiar to the 5-membered ring by Si and Si. It is considered that dehydrogenative condensation based on this structure occurs easily and a polymer of cyclopentasilane is produced.
  • the resulting polysilane (polymer of cyclopentasilane) has a low dimer or trimer content, a narrow molecular weight distribution, and a polymer having a uniform molecular weight.
  • the composition When polysilane (polypentasilane) produced by thermal polymerization is dissolved in an organic solvent to form a polysilane composition, the composition has the same concentration as the polysilane composition obtained by dissolving polysilane produced by a conventional method in an organic solvent. A thin film can be formed with an object.
  • the present invention is a process for producing polysilane, characterized in that cyclopentasilane is heated to a temperature of 50 ° C. to 120 ° C.
  • a polymer having a narrow molecular weight distribution and a high weight average molecular weight can be obtained by heating to a temperature of 80 ° C. to 100 ° C.
  • cyclopentasilane in a light-shielded glass tube is heated to a predetermined temperature to obtain a polymer of cyclopentasilane.
  • a polymer of cyclopentasilane is obtained by dissolving in an organic solvent (for example, cyclohexane) and then removing volatile components under reduced pressure.
  • an organic solvent for example, cyclohexane
  • the inert gas for example, nitrogen, helium, argon or the like is used.
  • the state where oxygen is shut off means a state where the oxygen concentration in the glass tube is 1 ppm or less.
  • the heating temperature is 50 to 120 ° C., and the heating time is about 0.5 to 6 hours. The heating time can be shortened within the above heating time range as the heating temperature rises.
  • the obtained polysilane is a polymer of cyclopentasilane, and is obtained, for example, as a solution in an organic solvent of 1% by mass to 20% by mass.
  • the obtained polymer of cyclopentasilane can be dissolved in a solvent to obtain a composition having a polymer concentration adjusted. For example, even when a 13.5% by mass organic solvent (cyclohexane) solution is used, a transparent solution can be obtained.
  • the resulting polymer of cyclopentasilane has a weight average molecular weight of about 600 to 3000, a Mw / Mn ratio between the weight average molecular weight Mw and the number average molecular weight Mn of 1.03 to 1.55, and a molecular weight distribution. It is a narrow polymer.
  • the yield of the polymer can be obtained in a high range of 80 to 90%.
  • the weight average molecular weight can be measured by gel permeation chromatography (GPC).
  • Measuring instrument is HLC-8320GPC (product name, manufactured by Tosoh Corporation), column is GPC / SEC (PLgel, 3 ⁇ m, 300 ⁇ 7.5 mm, manufactured by VARIAN), column temperature is 35 ° C., detector is RI, flow rate 1.0 ml / min, measurement time is 15 min, eluent is cyclohexane, and injection volume is 10 ⁇ L.
  • polymers having a linear structure of cyclopentasilane are shown below.
  • m represents the number of repeating units and is a number corresponding to the weight average molecular weight.
  • the structure of the resulting polymer of cyclopentasilane is typically a linear structure, but a structure connected in three dimensions is also conceivable.
  • the obtained polymer of cyclopentasilane can be dissolved in an organic solvent at a concentration of 5 to 8% by mass to obtain a coating type polysilane composition.
  • the organic solvent of the coating composition is determined in consideration of the solubility of polysilane and the coating property to the substrate. For example, cyclohexane, cyclooctane, a mixture thereof, or the like is used.
  • the obtained polysilane product can be purified by removing volatile components under reduced pressure, and can be dissolved in a solvent and stored.
  • Solvents used for storage of polysilane include n-hexane, n-heptane, n-octane, n-decane, cyclohexane, cyclooctane, dicyclopentane, benzene, toluene, xylene, durene, indene, tetrahydronaphthalene, decahydronaphthalene Hydrocarbon solvents such as squalane; dipropyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol methyl ethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol methyl ethyl ether, tetrahydrofuran, tetrahydropyran, 1,2-dimeth
  • the polysilane can be added with a substance containing a group 3B element or a group 5B element as a dopant.
  • a substance containing a group 3B element or a group 5B element include compounds such as phosphorus and boron.
  • An n-type or p-type silicon film can be formed by applying a polysilane composition to which such a dopant is added to a base material and performing a treatment such as heating.
  • a silicon film is obtained by applying the polysilane composition to a substrate, performing a heat treatment, etc., and performing dehydrogenation. The application is performed using an apparatus such as spin coating, roll coating, dip coating, and the heat treatment is performed after the application.
  • the spinner is rotated at a rotational speed of 500 to 1000 rpm.
  • the coating step is preferably performed in an inert gas atmosphere, for example, while flowing a gas such as nitrogen, helium or argon.
  • the heat treatment of the substrate coated with the composition is performed at a heating temperature of 100 to 425 ° C. for 10 to 20 minutes.
  • the silicon film thus obtained is obtained in a thickness range of 60 to 100 nm.
  • the substrate include transparent electrodes such as quartz, glass, and ITO, metal electrodes such as gold, silver, copper, nickel, titanium, aluminum, and tungsten, glass substrates, and plastic substrates.
  • Cyclopentasilane used in the present invention can be synthesized through the steps (A) and (B).
  • the alkyl group having 1 to 6 carbon atoms includes a methyl group, an ethyl group, an n-propyl group, an i-propyl group, a cyclopropyl group, an n-butyl group, Examples include i-butyl group, s-butyl group, t-butyl group, cyclobutyl group, 1-methyl-cyclopropyl group, 2-methyl-cyclopropyl group and n-pentyl group.
  • the cyclic silane compound is decaphenylcyclopentasilane, and this decaphenylcyclopentasilane can be preferably used as a raw material.
  • the cyclic silane compound represented by the formula (1) and the halogen or hydrogen halide can be reacted to synthesize the cyclic silane compound represented by the formula (2).
  • an aluminum halide eg, aluminum chloride, aluminum bromide
  • an organic solvent eg, cyclohexane, hexane, heptane, toluene, benzene.
  • Hydrogen halide for example, hydrogen chloride
  • the catalyst can be added at a ratio of 0.01 mol to 2 mol with respect to 1 mol of cyclic silane.
  • R 3 and R 4 in the formula (2) are chlorine atoms.
  • step (B) the cyclic silane compound represented by formula (2) is reduced with hydrogen or lithium aluminum hydride to obtain the cyclic silane represented by formula (3).
  • n is an integer of 4 to 6, but cyclopentasilane in which n is 5 is 80 mol% or more, for example, 80 to 100 mol%, 90 to 100 mol, in all the obtained silanes. It is preferable to contain it in the ratio of%. It is particularly preferable to use high-purity cyclopentasilane (100 mol%).
  • the cyclic silane compound represented by the formula (2) is dissolved in an organic solvent (for example, cyclohexane, hexane, heptane, toluene, benzene), and ether (for example, diethyl ether, tetrahydrofuran, cyclohexane) is dissolved in this solution.
  • organic solvent for example, cyclohexane, hexane, heptane, toluene, benzene
  • ether for example, diethyl ether, tetrahydrofuran, cyclohexane
  • Lithium aluminum hydride dissolved in pentylmethyl ether is gradually added to reduce the cyclic silane compound represented by the formula (2) to produce the cyclic silane represented by the formula (3).
  • the lithium aluminum hydride added at this time can be added at a ratio of 2 to 3 moles with respect to 1 mole of the cyclic silane compound represented by the formula (2).
  • a commercial item can be used for the cyclic silane compound represented by Formula (1) used as a raw material when said cyclopentasilane is synthesize
  • the alkali metal is an alkali metal such as lithium, sodium or potassium.
  • an alkali metal is dispersed in an organic solvent such as tetrahydrofuran and a silane compound represented by the formula (a) is further added, a cyclic silane compound represented by the formula (1) is generated.
  • the alkali metal used at this time is about 1.5 to 3 times mol of the silane compound represented by the formula (a). This reaction is performed at room temperature, and the obtained product is recrystallized.
  • silane compound represented by the above formula (a) examples include diphenyldichlorosilane, diphenyldibromosilane, diphenyldiiodosilane, di (phenyl chloride) dichlorosilane, dimethyldichlorosilane, and dimethyldibromosilane.
  • argon stream oxygen concentration of 1 ppm or less
  • argon stream oxygen concentration of 1 ppm or less
  • Comparative Example 1 In an argon stream (oxygen concentration of 1 ppm or less), 1.0 g of cyclopentasilane is placed in a 20 ml hard glass sample tube, lightly sealed with a light stopper, and heated at 23 ° C. for 120 minutes using an oil bath. It was. No product was obtained.
  • Comparative Example 2 In an argon stream (oxygen concentration of 1 ppm or less), 1.01 g of cyclopentasilane is placed in a 20 ml hard glass sample tube, lightly sealed with a light stopper, and heated at 150 ° C. for 60 minutes using an oil bath. It was. Although 6.43 g of cyclohexane was added to the product, the product did not dissolve, and the number average molecular weight Mn and the weight average molecular weight Mw were not measurable.
  • This solution was applied by spin coating at 1500 rpm on a silicon substrate under UV irradiation. Thereafter, after heat treatment at 100 ° C. for 10 minutes and at 425 ° C. for 20 minutes, the result of appearance observation of the obtained silicon film is shown. As a result of SEM observation of the cross section of the silicon film, the film thickness was 70 to 80 nm.
  • a polysilane having a large weight average molecular weight is prepared by heating cyclopentasilane, coating type polysilane compositions are obtained, applied to the substrate, and after firing, a good silicon thin film having high conductivity is produced on the substrate. be able to.

Abstract

[Problem] To produce polysilane having a high weight-average molecular weight by heating cyclopentasilane, obtain an application-type polysilane composition, and provide an excellent silicon thin film having high conductivity after applying these to a substrate and firing the substrate. [Solution] A method for producing polysilane characterized in that cyclopentasilane is heated to a temperature of from 50°C to 120°C. A polymer having a narrow molecular weight distribution and high weight-average molecular weight is obtained in particular by heating to from 80°C to 100°C. Heating can be carried out for from 0.5 to 6 hours. The resulting polysilane is a polymer of cyclopentasilane, and a weight-average molecular weight of from 600 to 3,000 can be obtained. The Mw/Mn ratio of the weight-average molecular weight Mw and the number-average molecular weight Mn of the resulting polysilane can be from 1.03 to 1.55. The cyclopentasilane is included in an amount of 80 mol% or more of the total cyclic silanes.

Description

加熱重合によるポリシランの製造方法Production method of polysilane by heat polymerization
 本発明はポリシランとその製造方法に関する。また、集積回路、薄膜トランジスタ等の用途に応用されるシラン重合物に関する。 The present invention relates to polysilane and a method for producing the same. Further, the present invention relates to a silane polymer applied to uses such as integrated circuits and thin film transistors.
 シリコン半導体は薄膜トランジスタ(TFT)や太陽電池の材料として古くから検討が行われてきた材料である。
 集積回路や薄膜トランジスタに応用されるシリコン薄膜のパターン形成において、CVD法等の真空プロセスによりシリコン膜を形成することが一般的に行われている。このような方法では真空プロセスが用いられているため大がかりな装置が必要であり、また原料として気体が用いられているため取り扱いにくい等の問題がある。
 これらの問題を解決するために有機溶剤に溶解したシラン重合体を基板に塗布し、焼成後、脱水素によりシリコン膜を形成する手法がある。
 例えば、シクロペンタシランを含有する溶液組成物を調製し、基板上に塗布したこの溶液組成物を紫外線照射に付した後、得られた塗膜を加熱してシリコン膜を形成する方法が開示されている(特許文献1を参照)。
Silicon semiconductors have been studied for a long time as materials for thin film transistors (TFTs) and solar cells.
In pattern formation of a silicon thin film applied to an integrated circuit or a thin film transistor, a silicon film is generally formed by a vacuum process such as a CVD method. In such a method, since a vacuum process is used, a large-scale apparatus is required, and since gas is used as a raw material, it is difficult to handle.
In order to solve these problems, there is a method in which a silane polymer dissolved in an organic solvent is applied to a substrate, and after baking, a silicon film is formed by dehydrogenation.
For example, a method for preparing a silicon film by preparing a solution composition containing cyclopentasilane, subjecting this solution composition applied on a substrate to ultraviolet irradiation, and then heating the resulting coating film is disclosed. (See Patent Document 1).
 また、光重合性を有するシラン化合物に波長405nmの光線を照射してゲルパーミエーションクロマトグラフィーで測定したポリスチレン換算の重量平均分子量が800乃至5000であるシラン重合体を生成することを特徴とするシラン重合体の製造方法が開示されている(特許文献2を参照)。
 (A)シクロペンタシランに170乃至600nmの波長の光を照射して合成された固体状のポリシラン化合物、(B)シクロペンタシラン、並びに(C)ホウ素化合物、ヒ素化合物、リン化合物、アンチモン化合物から選ばれる少なくとも一種の化合物を含有し、(A)固体状のポリシラン化合物が溶解してなり、(B)シクロペンタシランに対する(A)ポリシラン化合物の割合が0.1乃至100重量%であることを特徴とする半導体薄膜形成用シラン組成物が開示されている(特許文献3を参照)。
 シクロペンタシランの開環重合用ラジカル開始剤として使用されるシリルシクロペンタシランが開示されている(特許文献4を参照)。
 水素とシリコン及び/又はゲルマニウムとからなる450から2300の分子量を有するオリゴシラン又はポリシランを含む組成物であり、該組成物を基材上にコーティングし及び/又は印刷してオリゴ又はポリシラン膜を形成し、次いで硬化した後に0.1原子%以下の炭素含量を有する非晶質の水素化半導体膜を形成する組成物(特許文献5)が開示されている。そして、第7乃至12族遷移金属元素又はその基材固着誘導体からなる不均一系触媒を用いてオリゴシラン又はポリシランが合成されることが記載されている。
In addition, a silane polymer having a polystyrene-equivalent weight average molecular weight of 800 to 5000 as measured by gel permeation chromatography by irradiating a photopolymerizable silane compound with light having a wavelength of 405 nm is produced. A method for producing a polymer is disclosed (see Patent Document 2).
(A) From a solid polysilane compound synthesized by irradiating cyclopentasilane with light having a wavelength of 170 to 600 nm, (B) cyclopentasilane, and (C) a boron compound, an arsenic compound, a phosphorus compound, and an antimony compound It contains at least one selected compound, (A) a solid polysilane compound is dissolved, and (B) the ratio of (A) polysilane compound to cyclopentasilane is 0.1 to 100% by weight. A characteristic silane composition for forming a semiconductor thin film is disclosed (see Patent Document 3).
Silylcyclopentasilane used as a radical initiator for ring-opening polymerization of cyclopentasilane has been disclosed (see Patent Document 4).
A composition comprising oligosilane or polysilane having a molecular weight of 450 to 2300 consisting of hydrogen and silicon and / or germanium, wherein the composition is coated on a substrate and / or printed to form an oligo or polysilane film. Then, a composition (Patent Document 5) that forms an amorphous hydrogenated semiconductor film having a carbon content of 0.1 atomic% or less after curing is disclosed. And it describes that oligosilane or polysilane is synthesized using a heterogeneous catalyst composed of a Group 7 to 12 transition metal element or a substrate-fixed derivative thereof.
特開2001-262058JP 2001-262058 A 特開2005-22964JP2005-22964 特開2003-124486JP 2003-124486 A 特開2001-253706JP 2001-253706 A 特表2010-506001Special table 2010-506001
 本発明はシクロペンタシランを加熱することにより重量平均分子量の大きなポリシランを作成し、塗布型ポリシラン組成物を得ることを目的とする。また、該組成物を基板に塗布し焼成後に、導電性の高い良好なシリコン薄膜を得ることを目的とする。 The object of the present invention is to produce a polysilane having a large weight average molecular weight by heating cyclopentasilane to obtain a coating type polysilane composition. Another object of the present invention is to obtain a good silicon thin film having high conductivity after the composition is applied to a substrate and fired.
 本発明は第1観点として、シクロペンタシランを50℃乃至120℃の温度に加熱することを特徴とするポリシランの製造方法、
 第2観点として、0.5時間乃至6時間の加熱を行う第1観点に記載の製造方法、
 第3観点として、得られたポリシランがシクロペンタシランの重合物であり、重量平均分子量600乃至3000である第1観点又は第2観点に記載の製造方法、
 第4観点として、得られたポリシランの重量平均分子量Mwと数平均分子量MnとのMw/Mn比が1.03乃至1.55である第1観点乃至第3観点のいずれか一つに記載の製造方法、
 第5観点として、シクロペンタシランが下記(A)、及び(B)工程を経て得られる環状シラン中に含まれる主成分である第1観点乃至第4観点に記載の製造方法、
(A)工程:式(1):
Figure JPOXMLDOC01-appb-C000004
(式(1)中、R及びRはそれぞれ水素原子、炭素原子数1乃至6のアルキル基、又は置換されていても良いフェニル基を示し、nは4乃至6の整数を示す。但し、R及びRは同時に水素原子ではない。)で表される環状シラン化合物を、ハロゲン化アルミニウムの存在下に有機溶剤中でハロゲン化水素と反応し、式(2):
Figure JPOXMLDOC01-appb-C000005
(式(2)中、R及びRはそれぞれハロゲン原子を示し、nは4乃至6の整数を示す。)で表される環状シラン化合物を得る工程、
(B)工程:式(2)で表される環状シラン化合物を水素又はリチウムアルミニウムハイドライドで還元して式(3):
Figure JPOXMLDOC01-appb-C000006
(式(3)中、nは4乃至6の整数を示す。)で表される環状シランを得る工程、
 第6観点として、前記式(1)中、RとRが共にフェニル基を示す第5観点に記載の製造方法、
 第7観点として、前記式(2)中、R及びRが共に塩素原子を示す第5観点に記載の製造方法、及び
 第8観点として、シクロペンタシランが全環状シラン中80モル%以上の量含まれている第5観点に記載の製造方法である。
As a first aspect of the present invention, a process for producing polysilane, characterized in that cyclopentasilane is heated to a temperature of 50 ° C. to 120 ° C.,
As a second aspect, the production method according to the first aspect in which heating is performed for 0.5 to 6 hours,
As a third aspect, the obtained polysilane is a polymer of cyclopentasilane, and the production method according to the first aspect or the second aspect, having a weight average molecular weight of 600 to 3000,
As a fourth aspect, the Mw / Mn ratio between the weight average molecular weight Mw and the number average molecular weight Mn of the obtained polysilane is 1.03 to 1.55, according to any one of the first to third aspects. Production method,
As a 5th viewpoint, cyclopentasilane is a manufacturing method as described in the 1st viewpoint thru | or 4th viewpoint which is a main component contained in the cyclic silane obtained through the following (A) and (B) process,
(A) Process: Formula (1):
Figure JPOXMLDOC01-appb-C000004
(In formula (1), R 1 and R 2 each represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or an optionally substituted phenyl group, and n represents an integer of 4 to 6. , R 1 and R 2 are not hydrogen atoms at the same time.) Is reacted with a hydrogen halide in an organic solvent in the presence of an aluminum halide to obtain a compound of formula (2):
Figure JPOXMLDOC01-appb-C000005
(In the formula (2), R 3 and R 4 each represent a halogen atom, and n represents an integer of 4 to 6) to obtain a cyclic silane compound represented by:
(B) Step: Reducing the cyclic silane compound represented by the formula (2) with hydrogen or lithium aluminum hydride to formula (3):
Figure JPOXMLDOC01-appb-C000006
(In formula (3), n represents an integer of 4 to 6),
As a sixth aspect, in the formula (1), R 1 and R 2 both represent a phenyl group, the production method according to the fifth aspect,
As a seventh aspect, in the formula (2), R 3 and R 4 both represent chlorine atoms, the production method according to the fifth aspect, and as an eighth aspect, cyclopentasilane is 80 mol% or more in the total cyclic silane. It is a manufacturing method as described in the 5th viewpoint in which the quantity is contained.
 本発明はシクロペンタシランの熱重合によるポリシランの製造方法に関する。ポリシランはシクロペンタシランの重合物である。熱重合は50℃乃至120℃の温度に加熱するものである。本発明の熱重合は重合触媒の添加及び紫外線照射を行わず、加熱のみによってシクロペンタシランの重合を進行することができる。
 また、本発明では触媒を用いる必要がないため、生成物と触媒との分離操作が必要なく、また紫外線照射等に必要な装置を用いず、簡単な加熱装置のみによってポリシランの製造を達成できる。
The present invention relates to a method for producing polysilane by thermal polymerization of cyclopentasilane. Polysilane is a polymer of cyclopentasilane. Thermal polymerization is performed by heating to a temperature of 50 ° C to 120 ° C. In the thermal polymerization of the present invention, polymerization of cyclopentasilane can proceed only by heating without adding a polymerization catalyst and without irradiating with ultraviolet rays.
In addition, since it is not necessary to use a catalyst in the present invention, it is not necessary to separate the product and the catalyst, and the production of polysilane can be achieved only by a simple heating device without using an apparatus necessary for ultraviolet irradiation or the like.
 一般的な直鎖状ヒドロシランと異なり、シクロペンタシランは熱により重合を起こす。これはSiとSiによる5員環特有の構造に由来すると考えられる。この構造に基づく脱水素縮合が容易に起こり、シクロペンタシランの重合物が生成すると考えられる。得られるポリシラン(シクロペンタシランの重合物)はダイマーやトリマーの含有量が少なく分子量分布が狭く、分子量の揃った重合物が得られる。
 熱重合により製造されたポリシラン(ポリペンタシラン)は有機溶剤に溶解しポリシラン組成物としたときに、従来の方法で製造されたポリシランを有機溶剤に溶解したポリシラン組成物と比べて同じ濃度の組成物で薄膜を形成できる。
Unlike general linear hydrosilane, cyclopentasilane undergoes polymerization by heat. This is considered to originate from the structure peculiar to the 5-membered ring by Si and Si. It is considered that dehydrogenative condensation based on this structure occurs easily and a polymer of cyclopentasilane is produced. The resulting polysilane (polymer of cyclopentasilane) has a low dimer or trimer content, a narrow molecular weight distribution, and a polymer having a uniform molecular weight.
When polysilane (polypentasilane) produced by thermal polymerization is dissolved in an organic solvent to form a polysilane composition, the composition has the same concentration as the polysilane composition obtained by dissolving polysilane produced by a conventional method in an organic solvent. A thin film can be formed with an object.
 本発明はシクロペンタシランを50℃乃至120℃の温度に加熱することを特徴とするポリシランの製造方法である。特に80℃乃至100℃の温度に加熱することにより分子量分布の狭い且つ重量平均分子量の高い重合物が得られる。
 不活性ガス中で酸素を遮断した状態で、遮光したガラス管中のシクロペンタシランを所定の温度に加熱し、シクロペンタシランの重合物を得る。シクロペンタシランの重合物は有機溶剤(例えばシクロヘキサン)に溶解し、その後に減圧下で揮発成分を除去して得られる。
 上記不活性ガスとしては、例えば窒素、ヘリウム、アルゴン等が用いられる。酸素を遮断した状態とは、上記ガラス管中の酸素濃度が1ppm以下の状態をいう。
 加熱温度は50℃乃至120℃であり、加熱時間は0.5時間乃至6時間程度である。加熱時間は加熱温度の上昇と共に、上記加熱時間の範囲のなかで短縮することができる。
The present invention is a process for producing polysilane, characterized in that cyclopentasilane is heated to a temperature of 50 ° C. to 120 ° C. In particular, a polymer having a narrow molecular weight distribution and a high weight average molecular weight can be obtained by heating to a temperature of 80 ° C. to 100 ° C.
In a state where oxygen is blocked in an inert gas, cyclopentasilane in a light-shielded glass tube is heated to a predetermined temperature to obtain a polymer of cyclopentasilane. A polymer of cyclopentasilane is obtained by dissolving in an organic solvent (for example, cyclohexane) and then removing volatile components under reduced pressure.
As the inert gas, for example, nitrogen, helium, argon or the like is used. The state where oxygen is shut off means a state where the oxygen concentration in the glass tube is 1 ppm or less.
The heating temperature is 50 to 120 ° C., and the heating time is about 0.5 to 6 hours. The heating time can be shortened within the above heating time range as the heating temperature rises.
 得られたポリシランはシクロペンタシランの重合物であり、例えば1質量%乃至20質量%の有機溶剤中の溶液として得られる。得られたシクロペンタシランの重合物を溶剤に溶解して、重合物濃度を調製した組成物を得ることができる。例えば13.5質量%の有機溶剤(シクロヘキサン)溶液にした場合でも透明な溶液が得られる。 The obtained polysilane is a polymer of cyclopentasilane, and is obtained, for example, as a solution in an organic solvent of 1% by mass to 20% by mass. The obtained polymer of cyclopentasilane can be dissolved in a solvent to obtain a composition having a polymer concentration adjusted. For example, even when a 13.5% by mass organic solvent (cyclohexane) solution is used, a transparent solution can be obtained.
 得られたシクロペンタシランの重合物は、重量平均分子量が600乃至3000程度であり、重量平均分子量Mwと数平均分子量MnとのMw/Mn比が1.03乃至1.55となり、分子量分布が狭い重合物である。
 重合物の収率は80乃至90%の高い範囲で得ることができる。
 重量平均分子量はゲルパーミエーションクロマトグラフィー(GPC)によって測定することができる。測定機器は例えばHLC-8320GPC(東ソー(株)製、製品名)、カラムはGPC/SEC(PLgel、3μm、300×7.5mm、VARIAN製)、カラム温度は35℃、検出器はRI、流量は1.0ml/min、測定時間は15min、溶離液はシクロヘキサン、注入量は10μLで測定することができる。また、CPS(Mw150、RT=11.040min)、CPS-dimer(Mw298、RT=10.525min)、CPS-Trimer(Mw446、RT=9.725min)を基準物質として検量線を作成して生成物の重量平均分子量を測定することができる。
The resulting polymer of cyclopentasilane has a weight average molecular weight of about 600 to 3000, a Mw / Mn ratio between the weight average molecular weight Mw and the number average molecular weight Mn of 1.03 to 1.55, and a molecular weight distribution. It is a narrow polymer.
The yield of the polymer can be obtained in a high range of 80 to 90%.
The weight average molecular weight can be measured by gel permeation chromatography (GPC). Measuring instrument is HLC-8320GPC (product name, manufactured by Tosoh Corporation), column is GPC / SEC (PLgel, 3 μm, 300 × 7.5 mm, manufactured by VARIAN), column temperature is 35 ° C., detector is RI, flow rate 1.0 ml / min, measurement time is 15 min, eluent is cyclohexane, and injection volume is 10 μL. In addition, a calibration curve was created using CPS (Mw 150, RT = 11.040 min), CPS-dimer (Mw 298, RT = 10.525 min), and CPS-Trimer (Mw 446, RT = 9.725 min) as a reference substance to produce a product. The weight average molecular weight of can be measured.
 以下に、シクロペンタシランの直鎖構造の重合体の例を示す。
Figure JPOXMLDOC01-appb-C000007
 mは繰り返し単位の数を示し、重量平均分子量に相当する数である。得られるシクロペンタシランの重合物の構造は、代表的には直鎖構造であるが、3次元につながった構造も考えられる。
Examples of polymers having a linear structure of cyclopentasilane are shown below.
Figure JPOXMLDOC01-appb-C000007
m represents the number of repeating units and is a number corresponding to the weight average molecular weight. The structure of the resulting polymer of cyclopentasilane is typically a linear structure, but a structure connected in three dimensions is also conceivable.
 得られたシクロペンタシランの重合物は有機溶剤に、濃度5乃至8質量%で溶解し塗布型ポリシラン組成物とすることができる。
 塗布型組成物の有機溶剤は、ポリシランの溶解性と基板への塗布性を考慮して決定され、例えばシクロヘキサン、シクロオクタン、それらの混合物等が用いられる。
The obtained polymer of cyclopentasilane can be dissolved in an organic solvent at a concentration of 5 to 8% by mass to obtain a coating type polysilane composition.
The organic solvent of the coating composition is determined in consideration of the solubility of polysilane and the coating property to the substrate. For example, cyclohexane, cyclooctane, a mixture thereof, or the like is used.
 得られたポリシラン生成物は揮発成分を減圧除去することによって精製でき、溶剤中に溶解させて保存することができる。ポリシランの保存に用いる溶剤としては、n-ヘキサン、n-ヘプタン、n-オクタン、n-デカン、シクロヘキサン、シクロオクタン、ジシクロペンタン、ベンゼン、トルエン、キシレン、デュレン、インデン、テトラヒドロナフタレン、デカヒドロナフタレン、スクワランの如き炭化水素系溶媒;ジプロピルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールメチルエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールメチルエチルエーテル、テトラヒドロフラン、テトラヒドロピラン、1,2-ジメトキシエタン、ビス(2-メトキシエチル)エーテル、p-ジオキサンの如きエーテル系溶媒;さらにプロピレンカーボネート、γ-ブチロラクトン、N-メチル-2-ピロリドン、ジメチルホルムアミド、アセトニトリル、ジメチルスルホキシド等が挙げられる。
 上記溶剤中でもシクロオクタンが好ましく用いられ、シクロオクタン中に上記ポリシランを5乃至8質量%で含有してポリシラン組成物とすることができる。
The obtained polysilane product can be purified by removing volatile components under reduced pressure, and can be dissolved in a solvent and stored. Solvents used for storage of polysilane include n-hexane, n-heptane, n-octane, n-decane, cyclohexane, cyclooctane, dicyclopentane, benzene, toluene, xylene, durene, indene, tetrahydronaphthalene, decahydronaphthalene Hydrocarbon solvents such as squalane; dipropyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol methyl ethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol methyl ethyl ether, tetrahydrofuran, tetrahydropyran, 1,2-dimethoxy Ether solvents such as ethane, bis (2-methoxyethyl) ether, p-dioxane; Pyrene carbonate, .gamma.-butyrolactone, N- methyl-2-pyrrolidone, dimethyl formamide, acetonitrile, dimethyl sulfoxide and the like.
Among the solvents, cyclooctane is preferably used, and the polysilane can be obtained by containing 5 to 8% by mass of the polysilane in cyclooctane.
 上記ポリシランは3B族元素、5B族元素を含む物質をドーパントとして添加することができる。それらの物質としてはリン、ホウ素等の化合物が挙げられる。このようなドーパントを添加したポリシラン組成物を基材に塗布して、加熱等の処理を施してn型、p型のシリコン膜を形成することができる。
 シリコン膜の形成方法としては、上記ポリシラン組成物を基板に塗布し、熱処理等を行い脱水素化によりシリコン膜が得られる。塗布はスピンコート、ロールコート、ディップコート等の装置を用いて行われ、塗布した後に加熱処理が行われる。例えばスピンコート法ではスピナーの回転数500乃至1000rpmで行われる。
 塗布工程は不活性ガス雰囲気下で行われることが好ましく、例えば窒素、ヘリウム、アルゴン等のガスを流しながら行われる。
 組成物を塗布した基板の加熱処理は、100乃至425℃の加熱温度で、10乃至20分で行われる。
 この様に得られたシリコン膜は膜厚が60乃至100nmの範囲で得られる。
 上記基板としては石英、ガラス、ITOなどの透明電極、金、銀、銅、ニッケル、チタン、アルミニウム、タングステン等の金属電極、ガラス基板、プラスチック基板等が挙げられる。
The polysilane can be added with a substance containing a group 3B element or a group 5B element as a dopant. Such substances include compounds such as phosphorus and boron. An n-type or p-type silicon film can be formed by applying a polysilane composition to which such a dopant is added to a base material and performing a treatment such as heating.
As a method for forming a silicon film, a silicon film is obtained by applying the polysilane composition to a substrate, performing a heat treatment, etc., and performing dehydrogenation. The application is performed using an apparatus such as spin coating, roll coating, dip coating, and the heat treatment is performed after the application. For example, in the spin coat method, the spinner is rotated at a rotational speed of 500 to 1000 rpm.
The coating step is preferably performed in an inert gas atmosphere, for example, while flowing a gas such as nitrogen, helium or argon.
The heat treatment of the substrate coated with the composition is performed at a heating temperature of 100 to 425 ° C. for 10 to 20 minutes.
The silicon film thus obtained is obtained in a thickness range of 60 to 100 nm.
Examples of the substrate include transparent electrodes such as quartz, glass, and ITO, metal electrodes such as gold, silver, copper, nickel, titanium, aluminum, and tungsten, glass substrates, and plastic substrates.
 本発明に使用されるシクロペンタシランは上記(A)、及び(B)工程を経て合成することができる。
 式(1)で表される環状シラン化合物において、炭素原子数1乃至6のアルキル基としては、メチル基、エチル基、n-プロピル基、i-プロピル基、シクロプロピル基、n-ブチル基、i-ブチル基、s-ブチル基、t-ブチル基、シクロブチル基、1-メチル-シクロプロピル基、2-メチル-シクロプロピル基及びn-ペンチル基等が挙げられる。置換されていても良いフェニル基の置換基としては、例えば上記アルキル基が挙げられる。nは4乃至6の整数あり、式(1)で表される環状シラン化合物としては、好ましくはn=5の環状シラン化合物のみ、或いはn=5の環状シラン化合物を主成分として用いることができる。n=5であり、RとRがフェニル基である場合、環状シラン化合物はデカフェニルシクロペンタシランであり、このデカフェニルシクロペンタシランを原料として好ましく用いることができる。そして、環状シラン化合物には、n=4、n=6の環状シラン化合物を含むこともできる。
Cyclopentasilane used in the present invention can be synthesized through the steps (A) and (B).
In the cyclic silane compound represented by the formula (1), the alkyl group having 1 to 6 carbon atoms includes a methyl group, an ethyl group, an n-propyl group, an i-propyl group, a cyclopropyl group, an n-butyl group, Examples include i-butyl group, s-butyl group, t-butyl group, cyclobutyl group, 1-methyl-cyclopropyl group, 2-methyl-cyclopropyl group and n-pentyl group. Examples of the substituent of the phenyl group which may be substituted include the above alkyl groups. n is an integer of 4 to 6, and as the cyclic silane compound represented by the formula (1), preferably only the cyclic silane compound with n = 5 or the cyclic silane compound with n = 5 can be used as a main component. . When n = 5 and R 1 and R 2 are phenyl groups, the cyclic silane compound is decaphenylcyclopentasilane, and this decaphenylcyclopentasilane can be preferably used as a raw material. The cyclic silane compound can also include a cyclic silane compound with n = 4 and n = 6.
 (A)工程では式(1)で表される環状シラン化合物と、ハロゲン又はハロゲン化水素とを反応させて式(2)で表される環状シラン化合物を合成することができる。
 その際に、有機溶媒(例えば、シクロヘキサン、ヘキサン、ヘプタン、トルエン、ベンゼン)中でハロゲン化アルミニウム(例えば、塩化アルミニウム、臭化アルミニウム)を触媒として反応させることができる。ハロゲン化水素(例えば、塩化水素)は環状シラン化合物1モルに対して2nモル以上必要であり、例えば2.5nモル乃至3.5nモルとすることができ、また過剰に添加することもできる。触媒は環状シラン1モルに対して、0.01モル乃至2モルの割合で添加することができる。(A)工程で、塩化水素を用いた場合には式(2)中のRとRは塩素原子である。
In the step (A), the cyclic silane compound represented by the formula (1) and the halogen or hydrogen halide can be reacted to synthesize the cyclic silane compound represented by the formula (2).
At that time, an aluminum halide (eg, aluminum chloride, aluminum bromide) can be reacted as a catalyst in an organic solvent (eg, cyclohexane, hexane, heptane, toluene, benzene). Hydrogen halide (for example, hydrogen chloride) is required to be 2 nmol or more per mol of the cyclic silane compound, for example, 2.5 nmol to 3.5 nmol, or can be added in excess. The catalyst can be added at a ratio of 0.01 mol to 2 mol with respect to 1 mol of cyclic silane. In the step (A), when hydrogen chloride is used, R 3 and R 4 in the formula (2) are chlorine atoms.
 (B)工程では式(2)で表される環状シラン化合物を水素又はリチウムアルミニウムハイドライドで還元して式(3)で表される環状シランを得るものである。式(3)中で、nは4乃至6の整数であるが、得られた全シラン中にnが5であるシクロペンタシランが80モル%以上、例えば80乃至100モル%、90乃至100モル%の割合で含有していることが好ましい。特に好ましくは純度の高いシクロペンタシラン(100モル%)を用いることが好ましい。
 (B)工程では、式(2)で表される環状シラン化合物を有機溶剤(例えば、シクロヘキサン、ヘキサン、ヘプタン、トルエン、ベンゼン)に溶解し、この溶液にエーテル(例えば、ジエチルエーテル、テトラヒドロフラン、シクロペンチメチルエーテル)中に溶解したリチウムアルミニウムハイドライドを徐々に添加して、式(2)で表される環状シラン化合物を還元して式(3)で表される環状シランを製造することができる。この時に添加するリチウムアルミニウムハイドライドは、式(2)で表される環状シラン化合物の1モルに対して、2乃至3モルの割合で添加することができる。
In step (B), the cyclic silane compound represented by formula (2) is reduced with hydrogen or lithium aluminum hydride to obtain the cyclic silane represented by formula (3). In the formula (3), n is an integer of 4 to 6, but cyclopentasilane in which n is 5 is 80 mol% or more, for example, 80 to 100 mol%, 90 to 100 mol, in all the obtained silanes. It is preferable to contain it in the ratio of%. It is particularly preferable to use high-purity cyclopentasilane (100 mol%).
In the step (B), the cyclic silane compound represented by the formula (2) is dissolved in an organic solvent (for example, cyclohexane, hexane, heptane, toluene, benzene), and ether (for example, diethyl ether, tetrahydrofuran, cyclohexane) is dissolved in this solution. Lithium aluminum hydride dissolved in pentylmethyl ether) is gradually added to reduce the cyclic silane compound represented by the formula (2) to produce the cyclic silane represented by the formula (3). The lithium aluminum hydride added at this time can be added at a ratio of 2 to 3 moles with respect to 1 mole of the cyclic silane compound represented by the formula (2).
 上記のシクロペンタシランを合成するときの原料となる式(1)で表される環状シラン化合物は市販品を用いることができる。また、合成する場合には式(a):
Figure JPOXMLDOC01-appb-C000008
(式(a)中、R及びRはそれぞれ水素原子、炭素原子数1乃至6のアルキル基、又は置換されていても良いフェニル基を示し、Xはハロゲン原子を示す。但し、R及びRは同時に水素原子ではない。)で表されるシラン化合物を有機溶剤中でアルカリ金属の存在下に反応し、上記式(1)で表される環状シラン化合物を得ることができる。
 ここで炭素原子数1乃至6のアルキル基及び置換されていても良いフェニル基としては上述の例を挙げることができる。ハロゲン原子としてはフッ素、塩素、臭素、ヨウ素が挙げられるが、塩素を好ましく用いることができる。アルカリ金属としてはリチウム、ナトリウム、カリウム等のアルカリ金属である。テトラヒドロフラン等の有機溶剤中にアルカリ金属を分散し、更に式(a)で表されるシラン化合物を添加すると式(1)で表される環状シラン化合物が生成する。このとき使用されるアルカリ金属は式(a)で表されるシラン化合物の1.5乃至3倍モル程度である。この反応は室温下で行われ、得られた生成物は再結晶等が行われる。
 上記式(a)で表されるシラン化合物としては例えば、ジフェニルジクロロシラン、ジフェニルジブロモシラン、ジフェニルジヨードシラン、ジ(塩化フェニル)ジクロロシラン、ジメチルジクロロシラン、ジメチルジブロモシラン等が挙げられる。
A commercial item can be used for the cyclic silane compound represented by Formula (1) used as a raw material when said cyclopentasilane is synthesize | combined. In the case of synthesis, the formula (a):
Figure JPOXMLDOC01-appb-C000008
(In formula (a), R 1 and R 2 each represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or an optionally substituted phenyl group, and X represents a halogen atom, provided that R 1 represents R 1. And R 2 are not hydrogen atoms at the same time) in the presence of an alkali metal in an organic solvent to obtain a cyclic silane compound represented by the above formula (1).
Examples of the alkyl group having 1 to 6 carbon atoms and the optionally substituted phenyl group include the above-described examples. Examples of the halogen atom include fluorine, chlorine, bromine and iodine, but chlorine can be preferably used. The alkali metal is an alkali metal such as lithium, sodium or potassium. When an alkali metal is dispersed in an organic solvent such as tetrahydrofuran and a silane compound represented by the formula (a) is further added, a cyclic silane compound represented by the formula (1) is generated. The alkali metal used at this time is about 1.5 to 3 times mol of the silane compound represented by the formula (a). This reaction is performed at room temperature, and the obtained product is recrystallized.
Examples of the silane compound represented by the above formula (a) include diphenyldichlorosilane, diphenyldibromosilane, diphenyldiiodosilane, di (phenyl chloride) dichlorosilane, dimethyldichlorosilane, and dimethyldibromosilane.
 実施例1
 アルゴン気流中(酸素濃度1ppm以下)、シクロペンタシラン0.6gを、20mlの硬質ガラス製サンプル管に入れ、緩く栓をして遮光し、オイルバスを用いて50℃で150分間の加熱を行った。生成物にシクロヘキサンを4.41g加え、12.0質量%溶液を作成した。その後、ナスフラスコに移し、減圧(20Torr以下)下でポリシランが0.49g(収率82%)得られた。得られたポリシランの数平均分子量Mnは784、重量平均分子量Mwは832、Mw/Mn=1.06であり、透明な溶液が得られた。
Example 1
In an argon stream (oxygen concentration of 1 ppm or less), 0.6 g of cyclopentasilane is placed in a 20 ml hard glass sample tube, lightly sealed with a light stopper, and heated at 50 ° C. for 150 minutes using an oil bath. It was. 4.41 g of cyclohexane was added to the product to make a 12.0% by mass solution. Then, it moved to the eggplant flask, and 0.49g (yield 82%) of polysilane was obtained under pressure reduction (20 Torr or less). The number average molecular weight Mn of the obtained polysilane was 784, the weight average molecular weight Mw was 832, and Mw / Mn = 1.06, and a transparent solution was obtained.
 実施例2
 アルゴン気流中(酸素濃度1ppm以下)、シクロペンタシラン0.61gを、20mlの硬質ガラス製サンプル管に入れ、緩く栓をして遮光し、オイルバスを用いて80℃で150分間の加熱を行った。生成物にシクロヘキサンを3.87g加え、13.4質量%溶液を作成した。その後、ナスフラスコに移し、減圧(20Torr以下)下でポリシランが0.43g(収率72%)得られた。得られたポリシランの数平均分子量Mnは979、重量平均分子量Mwは1207、Mw/Mn=1.23であり、透明な溶液が得られた。
Example 2
In an argon stream (oxygen concentration 1 ppm or less), 0.61 g of cyclopentasilane is placed in a 20 ml hard glass sample tube, lightly sealed with a stopper, and heated at 80 ° C. for 150 minutes using an oil bath. It was. 3.87 g of cyclohexane was added to the product to make a 13.4% by weight solution. Thereafter, the resultant was transferred to an eggplant flask, and 0.43 g (yield 72%) of polysilane was obtained under reduced pressure (20 Torr or less). The number average molecular weight Mn of the obtained polysilane was 979, the weight average molecular weight Mw was 1207, and Mw / Mn = 1.23, and a transparent solution was obtained.
 実施例3
 アルゴン気流中(酸素濃度1ppm以下)、シクロペンタシラン1.0gを、20mlの硬質ガラス製サンプル管に入れ、緩く栓をして遮光し、オイルバスを用いて100℃で240分間の加熱を行った。生成物にシクロヘキサンを6.43g加え、13.5質量%溶液を作成した。その後、ナスフラスコに移し、減圧(20Torr以下)下でポリシランが0.82g(収率82%)得られた。得られたポリシランの数平均分子量Mnは1124、重量平均分子量Mwは1458、Mw/Mn=1.30であり、透明な溶液が得られた。
Example 3
In an argon stream (oxygen concentration of 1 ppm or less), 1.0 g of cyclopentasilane is placed in a 20 ml hard glass sample tube, lightly sealed with a light stopper, and heated at 100 ° C. for 240 minutes using an oil bath. It was. 6.43 g of cyclohexane was added to the product to make a 13.5% by mass solution. Thereafter, the resultant was transferred to an eggplant flask, and 0.82 g (yield 82%) of polysilane was obtained under reduced pressure (20 Torr or less). The number average molecular weight Mn of the obtained polysilane was 1124, the weight average molecular weight Mw was 1458, and Mw / Mn = 1.30, and a transparent solution was obtained.
 実施例4
 アルゴン気流中(酸素濃度1ppm以下)、シクロペンタシラン1.0gを、20mlの硬質ガラス製サンプル管に入れ、緩く栓をして遮光し、オイルバスを用いて120℃で80分間の加熱を行った。生成物にシクロヘキサンを6.43g加え、13.5質量%溶液を作成した。その後、ナスフラスコに移し、減圧(20Torr以下)下でポリシランが0.90g(収率90%)得られた。得られたポリシランの数平均分子量Mnは1450、重量平均分子量Mwは2201、Mw/Mn=1.52であり、透明な溶液が得られた。
Example 4
In an argon stream (oxygen concentration of 1 ppm or less), 1.0 g of cyclopentasilane is placed in a 20 ml hard glass sample tube, lightly plugged and shielded from light, and heated at 120 ° C. for 80 minutes using an oil bath. It was. 6.43 g of cyclohexane was added to the product to make a 13.5% by mass solution. Thereafter, the resultant was transferred to an eggplant flask, and 0.90 g (yield 90%) of polysilane was obtained under reduced pressure (20 Torr or less). The number average molecular weight Mn of the obtained polysilane was 1450, the weight average molecular weight Mw was 2201, Mw / Mn = 1.52, and a transparent solution was obtained.
 比較例1
 アルゴン気流中(酸素濃度1ppm以下)、シクロペンタシラン1.0gを、20mlの硬質ガラス製サンプル管に入れ、緩く栓をして遮光し、オイルバスを用いて23℃で120分間の加熱を行った。生成物は得られなかった。
Comparative Example 1
In an argon stream (oxygen concentration of 1 ppm or less), 1.0 g of cyclopentasilane is placed in a 20 ml hard glass sample tube, lightly sealed with a light stopper, and heated at 23 ° C. for 120 minutes using an oil bath. It was. No product was obtained.
 比較例2
 アルゴン気流中(酸素濃度1ppm以下)、シクロペンタシラン1.01gを、20mlの硬質ガラス製サンプル管に入れ、緩く栓をして遮光し、オイルバスを用いて150℃で60分間の加熱を行った。生成物にシクロヘキサンを6.43g加えたが、生成物は溶解せず、数平均分子量Mnと、重量平均分子量Mwは測定不能であった。
Comparative Example 2
In an argon stream (oxygen concentration of 1 ppm or less), 1.01 g of cyclopentasilane is placed in a 20 ml hard glass sample tube, lightly sealed with a light stopper, and heated at 150 ° C. for 60 minutes using an oil bath. It was. Although 6.43 g of cyclohexane was added to the product, the product did not dissolve, and the number average molecular weight Mn and the weight average molecular weight Mw were not measurable.
 実施例5
 アルゴン気流中(酸素濃度1ppm以下)、シクロペンタシラン3.51gを、50mlの硬質ガラス製サンプル管に入れ、緩く栓をして遮光し、オイルバスを用いて80℃で310分間の加熱を行った。加熱後、ポリシランが3.23g(収率92%)得られた。得られたポリシランの数平均分子量Mnは1049、重量平均分子量Mwは1353、Mw/Mn=1.29であり、透明な溶液が得られた。
 このポリシランに、シクロヘキサン:シクロオクタン=95:5の重量比の混合溶剤を加えて4質量%溶液とし、フィルター(PTFE製、孔径0.10μm)でろ過してポリシラン組成物を作成した。この溶液をUV照射の下でシリコン基板上に1500rpmでスピンコート法により塗布した。その後、100℃で10分間、そして425℃で20分間の加熱処理を行った後に、得られたシリコン膜の外観観察結果を示した。シリコン膜の断面のSEM観察の結果、膜厚は70乃至80nmであった。
Example 5
In an argon stream (oxygen concentration of 1 ppm or less), 3.51 g of cyclopentasilane is placed in a 50 ml hard glass sample tube, lightly plugged and shielded from light, and heated at 80 ° C. for 310 minutes using an oil bath. It was. After heating, 3.23 g (yield 92%) of polysilane was obtained. The number average molecular weight Mn of the obtained polysilane was 1049, the weight average molecular weight Mw was 1353, and Mw / Mn = 1.29, and a transparent solution was obtained.
To this polysilane, a mixed solvent having a weight ratio of cyclohexane: cyclooctane = 95: 5 was added to make a 4% by mass solution, and filtered through a filter (PTFE, pore size: 0.10 μm) to prepare a polysilane composition. This solution was applied by spin coating at 1500 rpm on a silicon substrate under UV irradiation. Thereafter, after heat treatment at 100 ° C. for 10 minutes and at 425 ° C. for 20 minutes, the result of appearance observation of the obtained silicon film is shown. As a result of SEM observation of the cross section of the silicon film, the film thickness was 70 to 80 nm.
 シクロペンタシランを加熱することにより重量平均分子量の大きなポリシランを作成し、塗布型ポリシラン組成物を得て、それらを基板に塗布し焼成後に、導電性の高い良好なシリコン薄膜を基板上に製造することができる。 A polysilane having a large weight average molecular weight is prepared by heating cyclopentasilane, coating type polysilane compositions are obtained, applied to the substrate, and after firing, a good silicon thin film having high conductivity is produced on the substrate. be able to.

Claims (8)

  1.  シクロペンタシランを50℃乃至120℃の温度に加熱することを特徴とするポリシランの製造方法。 A process for producing polysilane, characterized in that cyclopentasilane is heated to a temperature of 50 ° C to 120 ° C.
  2.  0.5時間乃至6時間の加熱を行う請求項1に記載の製造方法。 The manufacturing method according to claim 1, wherein the heating is performed for 0.5 to 6 hours.
  3.  得られたポリシランがシクロペンタシランの重合物であり、重量平均分子量600乃至3000である請求項1又は請求項2に記載の製造方法。 The method according to claim 1 or 2, wherein the obtained polysilane is a polymer of cyclopentasilane and has a weight average molecular weight of 600 to 3,000.
  4.  得られたポリシランの重量平均分子量Mwと数平均分子量MnとのMw/Mn比が1.03乃至1.55である請求項1乃至請求項3のいずれか1項に記載の製造方法。 The production method according to any one of claims 1 to 3, wherein an Mw / Mn ratio between the weight average molecular weight Mw and the number average molecular weight Mn of the obtained polysilane is 1.03 to 1.55.
  5.  シクロペンタシランが下記(A)、及び(B)工程を経て得られる環状シラン中に含まれる主成分である請求項1乃至請求項4に記載の製造方法。
    (A)工程:式(1):
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、R及びRはそれぞれ水素原子、炭素原子数1乃至6のアルキル基、又は置換されていても良いフェニル基を示し、nは4乃至6の整数を示す。但し、R及びRは同時に水素原子ではない。)で表される環状シラン化合物を、ハロゲン化アルミニウムの存在下に有機溶剤中でハロゲン化水素と反応させ、式(2):
    Figure JPOXMLDOC01-appb-C000002
    (式(2)中、R及びRはそれぞれハロゲン原子を示し、nは4乃至6の整数を示す。)で表される環状シラン化合物を得る工程、
    (B)工程:式(2)で表される環状シラン化合物を水素又はリチウムアルミニウムハイドライドで還元して式(3):
    Figure JPOXMLDOC01-appb-C000003
    (式(3)中、nは4乃至6の整数を示す。)で表される環状シランを得る工程
    The manufacturing method according to claim 1, wherein cyclopentasilane is a main component contained in the cyclic silane obtained through the following steps (A) and (B).
    (A) Process: Formula (1):
    Figure JPOXMLDOC01-appb-C000001
    (In formula (1), R 1 and R 2 each represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or an optionally substituted phenyl group, and n represents an integer of 4 to 6. , R 1 and R 2 are not hydrogen atoms at the same time.) Is reacted with a hydrogen halide in an organic solvent in the presence of an aluminum halide to obtain a compound of formula (2):
    Figure JPOXMLDOC01-appb-C000002
    (In the formula (2), R 3 and R 4 each represent a halogen atom, and n represents an integer of 4 to 6) to obtain a cyclic silane compound represented by:
    (B) Step: Reducing the cyclic silane compound represented by the formula (2) with hydrogen or lithium aluminum hydride to formula (3):
    Figure JPOXMLDOC01-appb-C000003
    (In formula (3), n represents an integer of 4 to 6).
  6.  前記式(1)中、RとRが共にフェニル基を示す請求項5に記載の製造方法。 The production method according to claim 5, wherein in the formula (1), R 1 and R 2 both represent a phenyl group.
  7.  前記式(2)中、R及びRが共に塩素原子を示す請求項5に記載の製造方法。 The process according to claim 5 in the formula (2), R 3 and R 4 represents together chlorine atom.
  8.  シクロペンタシランが全環状シラン中80モル%以上の量含まれている請求項5に記載の製造方法。 The production method according to claim 5, wherein cyclopentasilane is contained in an amount of 80 mol% or more in the total cyclic silane.
PCT/JP2015/069522 2014-07-16 2015-07-07 Method for producing polysilane by thermal polymerization WO2016009897A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-145820 2014-07-16
JP2014145820A JP2017149790A (en) 2014-07-16 2014-07-16 Method for producing polysilane by thermal polymerization

Publications (1)

Publication Number Publication Date
WO2016009897A1 true WO2016009897A1 (en) 2016-01-21

Family

ID=55078393

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/069522 WO2016009897A1 (en) 2014-07-16 2015-07-07 Method for producing polysilane by thermal polymerization

Country Status (3)

Country Link
JP (1) JP2017149790A (en)
TW (1) TW201609876A (en)
WO (1) WO2016009897A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001262058A (en) * 2000-03-13 2001-09-26 Jsr Corp Composition and process for forming silicon film
JP2005022964A (en) * 2003-06-13 2005-01-27 Jsr Corp Silane polymer and method for forming silicon film
WO2010005107A1 (en) * 2008-07-11 2010-01-14 独立行政法人科学技術振興機構 Polysilane manufacturing method
JP2010506001A (en) * 2006-10-06 2010-02-25 コヴィオ インコーポレイテッド Silicon polymer, method for polymerizing silicon compounds, and method for forming thin films from such silicon polymers
JP2011524329A (en) * 2008-06-17 2011-09-01 エボニック デグサ ゲーエムベーハー Method for producing high-grade hydridosilane

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001262058A (en) * 2000-03-13 2001-09-26 Jsr Corp Composition and process for forming silicon film
JP2005022964A (en) * 2003-06-13 2005-01-27 Jsr Corp Silane polymer and method for forming silicon film
JP2010506001A (en) * 2006-10-06 2010-02-25 コヴィオ インコーポレイテッド Silicon polymer, method for polymerizing silicon compounds, and method for forming thin films from such silicon polymers
JP2011524329A (en) * 2008-06-17 2011-09-01 エボニック デグサ ゲーエムベーハー Method for producing high-grade hydridosilane
WO2010005107A1 (en) * 2008-07-11 2010-01-14 独立行政法人科学技術振興機構 Polysilane manufacturing method

Also Published As

Publication number Publication date
TW201609876A (en) 2016-03-16
JP2017149790A (en) 2017-08-31

Similar Documents

Publication Publication Date Title
CN100392008C (en) Silane composition, silicon film forming method and manufacture of solar cells
JP5013128B2 (en) Methods and compositions for silicon film formation
JP4508428B2 (en) Coating composition
JP6099563B2 (en) p-type doped silicon layer
WO2016010038A1 (en) Method for producing cyclic silane using concentration method
JP2022522440A (en) Method for producing hydride silane oligomer
JP6652488B2 (en) High molecular weight polysilane and method for producing the same
WO2016009897A1 (en) Method for producing polysilane by thermal polymerization
US20110184141A1 (en) Polymer production process
JP6673845B2 (en) Silane polymerization inhibitor
JP4748288B2 (en) Composition containing spiro [4.4] nonasilane
WO2016072226A1 (en) Method for producing organic solvent including oxide of silicon hydride
JP2001089572A (en) Phosphorus-modified silicon polymer, its production, composition containing the same and production of phosphorus-modified silicone
JP2011114162A (en) Passivation film containing borazine frame, and display device using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15821666

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016534382

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15821666

Country of ref document: EP

Kind code of ref document: A1