WO2016009831A1 - Laminate - Google Patents

Laminate Download PDF

Info

Publication number
WO2016009831A1
WO2016009831A1 PCT/JP2015/068954 JP2015068954W WO2016009831A1 WO 2016009831 A1 WO2016009831 A1 WO 2016009831A1 JP 2015068954 W JP2015068954 W JP 2015068954W WO 2016009831 A1 WO2016009831 A1 WO 2016009831A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin layer
acrylic resin
laminate
laminate according
mass
Prior art date
Application number
PCT/JP2015/068954
Other languages
French (fr)
Japanese (ja)
Inventor
谷口 浩一郎
記央 佐藤
大希 野澤
勝司 池田
潤 西岡
陽 宮下
Original Assignee
三菱樹脂株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱樹脂株式会社 filed Critical 三菱樹脂株式会社
Publication of WO2016009831A1 publication Critical patent/WO2016009831A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters

Definitions

  • the present invention relates to a laminate, and more specifically, is used as a substrate material or a protective material, and can be suitably used as a cover material for a surface protective panel of an image display device, a mobile phone, a smartphone, a tablet device, or the like. It relates to a laminate.
  • glass has been mainly used as a cover material for image display devices.
  • the resin material is mainly required to have impact resistance, surface hardness, and shape stability in a high temperature and high humidity environment.
  • Polycarbonate resin plates are transparent and have excellent impact resistance and heat resistance, so they are used for soundproofing partitions, carports, signboards, glazing materials, lighting equipment, etc. There is a drawback that it is easy to stick, and its use is limited.
  • Patent Document 1 discloses a resin laminate in which a hard coat treatment is applied to a laminate obtained by coextruding a polycarbonate resin and an acrylic resin in order to improve this defect.
  • Patent Document 2 discloses a resin laminate in which a methyl methacrylate-styrene copolymer resin (MS resin) is laminated on a polycarbonate resin as a method for suppressing warpage.
  • MS resin methyl methacrylate-styrene copolymer resin
  • Patent Document 3 discloses a resin laminate in which a glass transition temperature difference and a water absorption difference are defined for each layer in which a polycarbonate resin is laminated.
  • Patent Document 1 Although the surface hardness is improved to some extent by adopting a two-layer structure, in applications where environmental changes such as high temperature and high humidity occur, heat resistance represented by mainly glass transition temperatures of polycarbonate resin and acrylic resin There is a problem that a dimensional change difference occurs due to a difference in water absorption characteristics and the like, and as a result, a large warp tends to occur.
  • the MS resin has a lower water absorption than the acrylic resin, so that the effect of improving the warp is seen.
  • the temperature of the environmental test is 40 ° C. and the humidity is 90%. RH is still insufficient as a condition for high temperature and high humidity.
  • the MS resin having a reduced water absorption rate by increasing the styrene content of the copolymer component (40% by mass or more) is likely to have a low heat resistance and a low compatibility with the acrylic resin.
  • the means for achieving it is substantially fine stretching by the speed ratio of the roll when cooling the laminate. Is an essential manufacturing method. When the laminate is stretched slightly during the cooling process, there is a problem that heat shrinkability is imparted.
  • the modified polycarbonate resin specifically used is a special raw material and has a problem in economy.
  • the object of the present invention is to use a general-purpose material as a main raw material, which is excellent in economic efficiency, used for substrate materials and protective materials, transparency, impact resistance, surface hardness, and shape stability in high temperature and high humidity environments. It is providing the laminated body which is excellent in property.
  • the present inventors have made a laminate having a specific acrylic resin layer on at least one side of a polycarbonate resin layer, so that the impact resistance, surface hardness, high temperature and high humidity can be obtained. It has been found that the shape stability is excellent, and the present invention has been completed. That is, according to the present invention, the following (1) to (20) are provided.
  • a laminate having an acrylic resin layer (A) on at least one surface of a polycarbonate resin layer (B), wherein the acrylic resin layer (A) comprises an acrylic resin (A1) and an aromatic vinyl Copolymer (A2) having a monomer unit, a (meth) acrylic acid ester monomer unit and an unsaturated dicarboxylic anhydride monomer unit, and the mixing mass ratio thereof is (A1) / (A2 ) 80-20 / 20-80.
  • the acrylic resin (A1) has a methyl methacrylate monomer unit as a main component, and has a rr structure out of mm, mr and rr of triad fractions determined by nuclear magnetic resonance measurement ( 1 H-NMR).
  • the laminate according to (1) above which has the highest molar ratio.
  • the constituent unit of the copolymer (A2) is 45 to 85% by mass of an aromatic vinyl monomer unit, 4 to 45% by mass of a (meth) acrylic acid ester monomer unit, and an unsaturated dicarboxylic acid anhydride unit amount
  • the glass transition temperature of the acrylic resin layer (A) measured at a heating rate of 10 ° C./min using a differential scanning calorimeter is 100 to 140 ° C., and the polycarbonate resin layer (B) 6.
  • the polycarbonate-based resin layer (B) contains a polycarbonate-based resin (B1) and at least one modifier (B2) selected from the following: The laminated body of any one of Claims.
  • Modifier (B2) (B2-1): As the carboxylic acid monomer (A) unit, 80 mol% or more of aromatic dicarboxylic acid and as the glycol monomer (B) unit, 40 mol% or more of 1,4-cyclohexanedimethanol are contained.
  • Polyester resin comprising structural units (B2-2): acrylic copolymer (9) comprising 5 to 80% by mass of aromatic (meth) acrylate monomer units and 95 to 20% by mass of methyl methacrylate monomer units 9.
  • the laminate according to any one of (1) to (8) above, wherein a phosphite antioxidant is mixed in the acrylic resin layer (A).
  • the laminate which is excellent in economy by using a general-purpose material as a main raw material, and excellent in transparency, impact resistance, surface hardness, and shape stability in a high temperature and high humidity environment.
  • the laminate can be used as various substrate materials and protective materials. Specifically, portable display devices (mobile phone terminals, smartphones, portable electronic playground equipment, personal digital assistants, tablet devices, mobile PCs, etc.) and stationary display devices (LCD TVs, LCD monitors, desktop PCs, car navigation systems, It can be suitably used for automobile instruments and the like.
  • the present invention is a laminate having an acrylic resin layer (A) on at least one side of a polycarbonate resin layer (B).
  • the acrylic resin layer (A) includes an acrylic resin (A1), an aromatic vinyl monomer unit, a (meth) acrylic acid ester monomer unit, and an unsaturated dicarboxylic anhydride monomer unit. And a polymer (A2).
  • the acrylic resin layer (A) shares a function of expressing the surface hardness, heat resistance, etc., among the functions of the laminate. Therefore, the acrylic resin layer (A) may be laminated on both surfaces of the polycarbonate resin layer (B) described later, but it is necessary that the acrylic resin layer (A) be laminated on at least one surface. In the case of a display panel or the like, the acrylic resin layer (A) is preferably laminated on the outer surface side.
  • the acrylic resin (A1) is a resin containing a (co) polymer obtained by polymerizing a (meth) acrylic acid ester monomer unit as a main component and a derivative thereof as a main component.
  • the (meth) acrylic acid ester monomer unit means an acrylic acid ester monomer unit or a methacrylic acid ester monomer unit.
  • the monomer unit comprised here is methyl methacrylate, methacrylic acid, acrylic acid, benzyl (meth) acrylate, n-butyl (meth) acrylate, i-butyl (meth) acrylate, t-butyl (meth) acrylate.
  • the homopolymer of methyl methacrylate or the copolymer of methyl methacrylate and methyl acrylate or ethyl acrylate. Coalescence can be suitably used.
  • the stereoregularity is not particularly limited, but the three-dimensional structure of the (meth) acrylic acid ester monomer unit is preferably a syndiotactic structure because the glass transition temperature becomes higher and the heat resistance is improved.
  • the triad fractions of mm, mr, and rr those having the highest molar ratio of the rr structure can be suitably used.
  • the triad fraction can be measured by a known method using a nuclear magnetic resonance measuring apparatus ( 1 H-NMR).
  • acrylic resin (A1) used in the present invention Commercially available products may be used as the acrylic resin (A1) used in the present invention. Specific examples include trade names “Acrypet” manufactured by Mitsubishi Rayon Co., Ltd., and products manufactured by Sumitomo Chemical Co., Ltd. Examples include the name “SUMIPEX” and the product name “PARAPET” manufactured by Kuraray Co., Ltd.
  • the copolymer (A2) is a copolymer having an aromatic vinyl monomer unit, a (meth) acrylic acid ester monomer unit, and an unsaturated dicarboxylic anhydride monomer unit.
  • aromatic vinyl monomer unit styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, 2,4-dimethylstyrene, ethylstyrene, p-tert-butylstyrene, ⁇ -methyl
  • aromatic vinyl monomer units can be used alone or in combination of two or more.
  • styrene units and ⁇ -methylstyrene units are preferred.
  • Styrene units are preferred because they are easily available industrially and are economical, and ⁇ -methylstyrene units are preferred because they can improve the glass transition temperature.
  • (Meth) acrylic acid ester monomer units include methyl methacrylate monomers such as methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, 2-ethylhexyl methacrylate, dicyclopentanyl methacrylate, and isobornyl methacrylate. And units derived from an acrylate monomer such as methyl acrylate, ethyl acrylate, n-butyl acrylate, 2-methylhexyl acrylate, 2-ethylhexyl acrylate, and decyl acrylate. These (meth) acrylic acid ester monomer units can be used alone or in combination of two or more.
  • a methyl methacrylate monomer unit can be used suitably from compatibility with an acrylic resin (A1), an external appearance, etc.
  • Examples of the unsaturated dicarboxylic acid anhydride monomer unit include units derived from respective anhydride monomers such as maleic acid anhydride, itaconic acid anhydride, citraconic acid anhydride, and aconitic acid anhydride. These unsaturated dicarboxylic acid anhydride monomer units can be used alone or in combination of two or more.
  • a maleic anhydride monomer unit can be preferably used in view of compatibility with the acrylic resin (A1) and transparency.
  • the constituent unit of the copolymer (A2) used in the present invention is preferably 45 to 85% by mass of an aromatic vinyl monomer unit, 4 to 45% by mass of a (meth) acrylic acid ester monomer unit, and an unsaturated dicarboxylic acid.
  • Anhydride monomer unit is 8 to 20% by weight, more preferably aromatic vinyl monomer unit 55 to 85% by weight, (meth) acrylic acid ester monomer unit 5 to 30% by weight, unsaturated dicarboxylic acid
  • the range of anhydride is 10 to 18% by mass.
  • the structural unit of the copolymer (A2) can be qualitatively and quantitatively analyzed by a known method, for example, a nuclear magnetic resonance (NMR) measuring device or other instrumental analyzer.
  • NMR nuclear magnetic resonance
  • the aromatic vinyl monomer unit is preferably 45% by mass or more, more preferably 55% by mass or more, the thermal stability is improved, and a good appearance is obtained when mixed with the acrylic resin (A1). Is preferable, and water absorption can be reduced.
  • the (meth) acrylic acid ester monomer unit is preferably 4% by mass or more, and more preferably 5% by mass or more, since the compatibility with the acrylic resin (A1) is improved and the transparency is improved. If the unsaturated dicarboxylic acid anhydride monomer unit is preferably 8% by mass or more, more preferably 10% by mass or more, compatibility with the acrylic resin (A1) is improved, and transparency and heat resistance are improved. Therefore, it is preferable.
  • the aromatic vinyl monomer unit is preferably 85% by mass or less, it is preferable because heat resistance can be improved and water absorption can be reduced while maintaining mixing with the acrylic resin (A1).
  • the (meth) acrylic acid ester monomer unit is preferably 45% by mass or less, more preferably 30% by mass or less, water absorption can be suppressed while ensuring compatibility with the acrylic resin (A1). preferable.
  • the unsaturated dicarboxylic acid anhydride monomer unit is preferably 20% by mass or less, more preferably 18% by mass or less, the thermal stability of the acrylic resin (A1) is ensured while ensuring compatibility with the acrylic resin (A1). It is preferable because improvement and water absorption can be suppressed.
  • the copolymer (A2) used in the present invention is a copolymerizable monomer other than an aromatic vinyl monomer unit, a (meth) acrylic acid ester monomer unit, and an unsaturated dicarboxylic anhydride monomer unit.
  • the copolymer unit may be contained in the copolymer within a range not inhibiting the effect of the present invention, and the content of the copolymerizable monomer unit is preferably 100% by mass of the copolymer (A2). 5% by mass or less.
  • the copolymerizable units include vinyl cyanide monomers such as acrylonitrile and methacrylonitrile, vinyl carboxylic acid monomers such as acrylic acid and methacrylic acid, N-methylmaleimide, N-ethylmaleimide, and N-butylmaleimide. Units derived from monomers such as N-alkylmaleimide monomers such as N-cyclohexylmaleimide, N-arylmaleimide monomers such as N-phenylmaleimide, N-methylphenylmaleimide and N-chlorophenylmaleimide Is mentioned. These copolymerizable monomer units can be used alone or in combination of two or more.
  • the copolymer (A2) used in the present invention preferably has a polystyrene-equivalent weight average molecular weight (Mw) measured by gel permeation chromatography (GPC) of 100,000 to 200,000.
  • Mw polystyrene-equivalent weight average molecular weight measured by gel permeation chromatography
  • GPC gel permeation chromatography
  • the method for producing the copolymer (A2) used in the present invention is not particularly limited and can be produced by a known polymerization method.
  • solution polymerization, bulk polymerization, and the like can be applied, and batch, semi-batch, and continuous methods can be appropriately employed as the polymerization process.
  • a batch polymerization process can be suitably used in solution polymerization because there are few by-products and molecular weight adjustment and transparency can be easily controlled.
  • the copolymer (A2) used in the present invention may be a commercially available product. Specific examples include trade names “Regisphi® R-100”, “Regisphi® R-200” and “Regisphi® R-200” manufactured by Denki Kagaku Kogyo Co., Ltd. “Regisfi® R-300” can be exemplified.
  • the mixing ratio of the acrylic resin (A1) and the copolymer (A2) is within the above range, the surface is excellent in interlayer adhesion with the polycarbonate resin layer (B) and is a characteristic of the acrylic resin. It is preferable because heat resistance is improved and water absorption is suppressed while maintaining hardness and transparency.
  • (A1) / (A2) 80 to 55/20 to 45.
  • (A1) ) / (A2) 50-20 / 50-80.
  • various additives and other resins can be appropriately blended as long as the effects of the present invention are not impaired.
  • the additive include an antioxidant, an ultraviolet absorber, a light stabilizer, a lubricant, a flame retardant, and a colorant.
  • the other resin include methyl methacrylate-maleic anhydride copolymer.
  • antioxidant As the antioxidant, various commercially available products can be applied, and various types such as monophenol type, bisphenol type, polymer type phenol type, sulfur type and phosphite type can be exemplified. Examples of monophenols include 2,6-di-tert-butyl-p-cresol, butylated hydroxyanisole, 2,6-di-tert-butyl-4-ethylphenol, and the like.
  • bisphenols examples include 2,2'-methylene-bis- (4-methyl-6-tert-butylphenol), 2,2'-methylene-bis- (4-ethyl-6-tert-butylphenol), 4,4 '-Thiobis- (3-methyl-6-tert-butylphenol), 4,4'-butylidene-bis- (3-methyl-6-tert-butylphenol), 3,9-bis [ ⁇ 1,1-dimethyl- Examples include 2- ⁇ - (3-tert-butyl-4-hydroxy-5-methylphenyl) propionyloxy ⁇ ethyl ⁇ 2,4,9,10-tetraoxaspiro] 5,5-undecane.
  • Examples of the high molecular phenolic compound include 1,1,3-tris- (2-methyl-4-hydroxy-5-tert-butylphenyl) butane, 1,3,5-trimethyl-2,4,6-tris ( 3,5-di-tert-butyl-4-bidoxybenzyl) benzene, tetrakis- ⁇ methylene-3- (3 ', 5'-di-tert-butyl-4'-hydroxyphenyl) propionate ⁇ methane, bis ⁇ (3,3'-bis-4'-hydroxy-3'-tert-butylphenyl) butyric acid ⁇ glycol ester, 1,3,5-tris (3 ', 5'-di-tert-butyl- Examples thereof include 4'-hydroxybenzyl) -s-triazine-2,4,6- (1H, 3H, 5H) trione, tocopherol (vitamin E) and the like.
  • sulfur-based compounds examples include dilauryl thiodipropionate, dimyristyl thiodipropionate, and distearyl thiopropionate.
  • phosphites include triphenyl phosphite, diphenylisodecyl phosphite, phenyl diisodecyl phosphite, 4,4′-butylidene-bis (3-methyl-6-tert-butylphenyl-di-tridecyl) phosphite, Crick neopentanetetrayl bis (octadecyl phosphite), tris (mono and / or di) phenyl phosphite, diisodecyl pentaerythritol diphosphite, 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10- Oxide, 10- (3,5-di-tert-butyl-4-hydroxybenzyl) -9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, 10-decyloxy-9,10 pho
  • phenolic and phosphite-based antioxidants such as high-molecular-weight phenols are preferred in view of the effect of antioxidants, thermal stability, economy, etc.
  • phosphite-based ones having excellent thermal decomposition resistance are preferred.
  • Antioxidants are more preferred.
  • the amount of the antioxidant added is in the range of 0.001 to 0.5 parts by mass with respect to 100 parts by mass of the resin composition constituting the acrylic resin layer (A), and 0.05 to 0.3 It is preferable to add part by mass.
  • UV absorber As the ultraviolet absorber, various commercially available products can be applied, and various types such as benzophenone, benzotriazole, triazine, and salicylic acid ester can be exemplified.
  • benzophenone ultraviolet absorbers include 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxy-2′-carboxybenzophenone, 2-hydroxy-4-octoxybenzophenone, 2-hydroxy-4-n-dodecyl.
  • Benzotriazole-based UV absorbers include hydroxyphenyl-substituted benzotriazole compounds including 2- (2-hydroxy-5-methylphenyl) benzotriazole and 2- (2-hydroxy-5-tert-butylphenyl) benzotriazole 2- (2-hydroxy-3,5-dimethylphenyl) benzotriazole, 2- (2-methyl-4-hydroxyphenyl) benzotriazole, 2- (2-hydroxy-3-methyl-5-tert-butylphenyl) And benzotriazole, 2- (2-hydroxy-3,5-di-t-amylphenyl) benzotriazole, 2- (2-hydroxy-3,5-di-t-butylphenyl) benzotriazole, and the like.
  • triazine ultraviolet absorbers examples include 2- [4,6-bis (2,4-dimethylphenyl) -1,3,5-triazin-2-yl] -5- (octyloxy) phenol, 2- (4 , 6-diphenyl-1,3,5-triazin-2-yl) -5- (hexyloxy) phenol and the like.
  • salicylic acid esters examples include phenyl salicylate and p-octylphenyl salicylate.
  • the said ultraviolet absorber can be used individually by 1 type or in combination of 2 or more types.
  • the addition amount of the ultraviolet absorber is in the range of 0.3 to 5.0 parts by mass with respect to 100 parts by mass of the resin composition constituting the acrylic resin layer (A). It is preferable to add part by mass.
  • hindered amine light stabilizers can be suitably used as light stabilizers that impart weather resistance.
  • the hindered amine light stabilizer does not absorb ultraviolet rays like the ultraviolet absorber, but exhibits a remarkable synergistic effect when used together with the ultraviolet absorber.
  • hindered amine light stabilizers include dimethyl-1- (2-hydroxyethyl) succinate-4-hydroxy-2,2,6,6-tetramethylpiperidine polycondensate, poly [ ⁇ 6- (1,1 , 3,3-tetramethylbutyl) amino-1,3,5-triazine-2,4-diyl ⁇ ⁇ (2,2,6,6-tetramethyl-4-piperidyl) imino ⁇ hexamethylene ⁇ 2, 2,6,6-tetramethyl-4-piperidyl ⁇ imino ⁇ ], N, N′-bis (3-aminopropyl) ethylenediamine-2,4-bis [N-butyl-N- (1,2,2, 6,6-pentamethyl-4-piperidyl) amino] -6-chloro-1,3,5-triazine condensate, bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, 2- (3 , 5-Di-tert
  • Polycarbonate resin layer (B) The polycarbonate resin layer (B) shares a function of expressing the impact resistance, heat resistance, etc., among the functions of the laminate. For this reason, although the polycarbonate-type resin layer (B) may use the polycarbonate-type resin (B1) alone, it can be used by mixing with various modifiers (B2).
  • an aromatic polycarbonate resin can be preferably used, but an aliphatic polycarbonate resin may be used. Moreover, either a homopolymer or a copolymer with another copolymerizable monomer may be used. Furthermore, the structure may be a branched structure, a linear structure, or a mixture of a branched structure and a linear structure.
  • any known method such as a phosgene method, a transesterification method, or a pyridine method may be used.
  • the weight-average molecular weight of the polycarbonate resin (B1) used in the present invention is usually in the range of 10,000 to 100,000, preferably 20,000 to 40,000, particularly preferably 22,000 to 28,000. Can be used.
  • the polycarbonate resin (B1) can be used alone or in combination of two or more.
  • the weight average molecular weight is in the above range, impact resistance is ensured and extrusion moldability is also good, which is preferable.
  • a commercially available product can be used as the polycarbonate resin (B1) used in the present invention.
  • Specific examples of the aromatic polycarbonate resin include trade names “CALIBER”, manufactured by Sumika Stylon Polycarbonate Co., Ltd., “ “SD POLYCA”, trade name “Iupilon” manufactured by Mitsubishi Engineering Plastics, “NOVAREX”, trade name “Panlite” manufactured by Teijin Limited, etc. Can be illustrated.
  • a trade name “DURABIO” manufactured by Mitsubishi Chemical Corporation can be exemplified.
  • the modifier (B2) used by mixing with the polycarbonate resin (B1) is used for the purpose of adjusting the glass transition temperature and the melt viscosity and improving the hardness.
  • examples thereof include a resin (B2-1) and a specific acrylic resin (B2-2).
  • the specific polyester resin (B2-1) is composed of 80 mol% or more of aromatic dicarboxylic acid as a carboxylic acid monomer (A) unit and 1,4-cyclohexanedimethanol as a glycol monomer (B) unit. Is a polyester resin composed of structural units containing 40 mol% or more.
  • the carboxylic acid monomer (A) unit of the polyester resin (B2-1) contains 80 mol% or more of aromatic dicarboxylic acid.
  • the aromatic dicarboxylic acid is 80 mol% or more in the carboxylic acid monomer (A) unit because the resulting polyester resin (B2-1) has sufficient heat resistance and mechanical strength.
  • the aromatic dicarboxylic acid is more preferably contained in the carboxylic acid monomer (a) unit with a lower limit of 85 mol% or more, and an upper limit of 100 mol% or less. preferable.
  • the aromatic dicarboxylic acid is not particularly limited, and includes terephthalic acid, isophthalic acid, naphthalene-1,4 or 2,6-dicarboxylic acid, anthracene dicarboxylic acid, 4,4′-diphenyldicarboxylic acid, 4,4′- Examples thereof include diphenyl ether dicarboxylic acid, 5-sulfoisophthalic acid, sodium 3-sulfoisophthalate and the like.
  • the aromatic dicarboxylic acid may be subjected to polymerization as its ester.
  • the ester of said aromatic dicarboxylic acid is preferable, and lower alkyl ester, aryl ester, carbonate ester, acid halide, etc. are mentioned.
  • the carboxylic acid monomer (a) unit may contain a small amount of an aliphatic dicarboxylic acid (usually in a range of less than 20 mol%).
  • the aliphatic dicarboxylic acid is not particularly limited, and oxalic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, sebacic acid, azelaic acid, dodecanedioic acid, dimer acid, 1,3 or 1,4-cyclohexanedicarboxylic acid And acid, cyclopentane dicarboxylic acid, 4,4′-dicyclohexyl dicarboxylic acid and the like.
  • These carboxylic acid monomers (I) can be used alone or in combination of two or more.
  • the glycol monomer (B) unit of the polyester resin (B2-1) contains 40 mol% or more of 1,4-cyclohexanedimethanol.
  • the glycol used in the glycol monomer (b) other than the above-mentioned components.
  • Ethylene glycol diethylene glycol (including by-product components), 1,2-propylene glycol, 1,3- Propanediol, 2,2-dimethyl-1,3-propanediol, trans- or -2,2,4,4-tetramethyl-1,3-cyclobutanediol, 1,4-butanediol, neopentyl glycol, 1 , 5-pentanediol, 1,6-hexanediol, 1,3-cyclohexanedimethanol, decamethylene glycol, cyclohexanediol, p-xylenediol, bisphenol A, tetrabromobisphenol A, tetrabromobisphenol A-bis (2- Hydroxyethyl ether) and the like.
  • glycol monomers (b) can be used alone or in combination of two or more, and appropriately impart color tone, transparency, heat resistance, impact resistance, etc. to the polyester resin.
  • ethylene glycol can be preferably used because it can provide thermal stability during molding of the resulting polyester-based resin and is inexpensive and easily available industrially.
  • 1,4-cyclohexanedimethanol used for the glycol monomer (b) mainly imparts impact resistance to the resulting polyester resin (B2-1) and has a phase with the polycarbonate resin (B1). It improves solubility.
  • 1,4-cyclohexanedimethanol has two types of isomers, cis-type and trans-type, and any of them may be used.
  • the content in the glycol monomer (b) unit is 40 mol% or more, the effect of imparting impact resistance to the resulting polyester resin (B2-1) is sufficient, and the polycarbonate resin This is preferable because the compatibility with the resin (B1) is improved and the transparency is hardly lowered.
  • 1,4-cyclohexanedimethanol preferably has a lower limit of 50 mol% or more in the glycol monomer (b) unit, and an upper limit of 100 mol% or less. Is more preferable, and 80 mol% or less is more preferable.
  • the polyester-based resin (B2-1) may be a commercially available product. Specific examples include a product name “SKYGREEN J2003” manufactured by SK Chemical Co., Ltd., and Eastman Chemical Co., Ltd. The product name “Easter (PCG Copolyester 24635)” can be exemplified.
  • the glass transition temperature of the acrylic resin layer (A) used in the present invention is preferably 100 to 140 ° C., more preferably 110 to 140 ° C., further preferably 115 to 140 ° C., 120 A temperature of ⁇ 140 ° C. is particularly preferred.
  • the absolute value of the difference between the glass transition temperature of the acrylic resin layer (A) and the glass transition temperature of the polycarbonate resin layer (B) is 30 ° C. or less, for example, at a temperature of 85 ° C. and a humidity of 85% RH. Even when exposed to such a high temperature and high humidity environment, warpage of the laminate can be suppressed, which is preferable. From this viewpoint, the absolute value of the difference is more preferably 20 ° C. or less, further preferably 10 ° C.
  • the acrylic resin layer (A) is susceptible to various strain relaxation phenomena due to a decrease in softening temperature due to water absorption, but the absolute value of the difference is within the above range. It is considered that the dimensional change behavior of both layers becomes close in a high temperature and high humidity environment, and as a result, warpage is suppressed.
  • the glass transition temperature is measured using a differential scanning calorimeter at a heating rate of 10 ° C./min according to JIS K7121, but other known instrumental analyzers such as dynamic viscosity are used. It can also be measured with an elastic device.
  • the specific acrylic resin (B2-2) is an acrylic copolymer composed of 5 to 80% by mass of aromatic (meth) acrylate monomer units and 95 to 20% by mass of methyl methacrylate monomer units.
  • the aromatic (meth) acrylate monomer unit include phenyl (meth) acrylate and benzyl (meth) acrylate. These can be used alone or in combination of two or more.
  • phenyl methacrylate and benzyl methacrylate are preferable from the viewpoint of compatibility with the polycarbonate resin (B1), and phenyl methacrylate is more preferable.
  • the acrylic resin (B2-2) can contain other copolymerizable monomer units other than the aromatic (meth) acrylate monomer unit and the methyl methacrylate monomer unit, if necessary. . When other monomer units are contained, the content is preferably 0.1 to 10% by mass in the acrylic resin (B2-2).
  • the aromatic (meth) acrylate monomer unit and the methyl methacrylate monomer unit are in the above ranges since compatibility with the polycarbonate resin (B1) and an effect of improving the surface hardness can be expressed.
  • the aromatic (meth) acrylate monomer unit is preferably 10 to 70% by mass and the methyl methacrylate monomer unit 90 to 30% by mass, and the aromatic (meth) acrylate monomer unit 25 to More preferably, it is 60% by mass and 75 to 40% by mass of methyl methacrylate monomer units.
  • the acrylic resin (B2-2) preferably has a polystyrene-reduced weight average molecular weight (Mw) of 5,000 to 30,000 as measured by gel permeation chromatography (GPC).
  • Mw polystyrene-reduced weight average molecular weight
  • GPC gel permeation chromatography
  • the range of the weight average molecular weight (Mw) is more preferably 10,000 to 28,000.
  • acrylic resin (B2-2) a commercially available product can be used.
  • a trade name “MATEBLEN H-880” manufactured by Mitsubishi Rayon Co., Ltd. can be exemplified.
  • the above-described various additives and other resins can be appropriately blended within a range that does not impair the effects of the present invention.
  • the additive include an antioxidant, an ultraviolet absorber, a light stabilizer, a lubricant, a flame retardant, a colorant, and a hydrolysis inhibitor.
  • hydrolysis inhibitors include phenolic compounds, carbodiimide compound monomers or polymers, and oxazoline compound monomers or polymers.
  • a monomer or polymer of a carbodiimide compound can be preferably used.
  • Examples of the carbodiimide compound include those having a basic structure represented by the following general formula (1).
  • n is an integer of 1 or more, and R represents an organic bond unit.
  • R can be either aliphatic, alicyclic, or aromatic.
  • n is usually selected from an appropriate integer between 1 and 50.
  • R of 2 or more may be the same or different. Specific examples include bis (propylphenyl) carbodiimide, bis (dipropylphenyl) carbodiimide, poly (4,4′-diphenylmethanecarbodiimide), poly (p-phenylenecarbodiimide), poly (m-phenylenecarbodiimide), poly (tolyl).
  • Carbodiimide poly (diisopropylphenylene carbodiimide), poly (methyl-diisopropylphenylene carbodiimide), poly (triisopropylphenylene carbodiimide), aromatic polycarbodiimide, and the like, and carbodiimide compounds.
  • the said carbodiimide compound can be used individually by 1 type or in combination of 2 or more types.
  • the polymer of the carbodiimide compound preferably has a molecular weight of 2,000 to 50,000.
  • the carbodiimide compound may be a commercially available product. Specific examples thereof include trade names “Stabaxol P”, “Stabaxol P100” manufactured by Rhein ⁇ Chemie GmbH, and products manufactured by Nisshinbo Chemical Co., Ltd. Examples include the names “CARBODILITE HMV-8CA” and “CARBODILITE LA-1”.
  • the addition amount of the hydrolysis inhibitor is in the range of 0.001 to 1.0 part by mass with respect to 100 parts by mass of the resin composition constituting the polycarbonate resin layer (B), and 0.05 to 0.00. It is preferable to add 5 parts by mass.
  • the laminate of the present invention has an acrylic resin layer (A) on at least one side of a polycarbonate resin layer (B).
  • a hard coat layer (C) described later can be further laminated on each layer.
  • the layer structure include (A) / (B), (A) / (B) / (A), and a structure having a hard coat layer (C), (C) / (A) / (B) , (C) / (A) / (B) / (A), (C) / (A) / (B) / (C) and (C) / (A) / (B) / (A) / ( C) can be exemplified.
  • the layers may have the same composition or different compositions.
  • (A) / (B), (C) / (A) / (B) and (C) / (A) / (B) / (C) configurations are preferred.
  • the total thickness of the acrylic resin layer (A) and the polycarbonate resin layer (B) of the laminate of the present invention is not particularly limited, but is usually 0.1 to 3.0 mm.
  • the total thickness is preferably 0.1 to 1.5 mm, and more preferably 0.15 to 1.2 mm.
  • the total thickness has a preferable range depending on the application of the laminate of the present invention.
  • the thickness is preferably 0.5 to 1.5 mm, more preferably 0.6 to 1.2 mm, and 0.7 to 1. More preferably, it is 1 mm. If it is in this range, it is preferable because it is excellent in lightness, rigidity, and shape stability in a high temperature and high humidity environment.
  • an adhesive layer or the like is laminated on the laminate of the present invention to protect it from dirt or scratches on the surface of glass or the like, or to prevent scattering of broken pieces or the like.
  • 0. It is preferably 1 to 0.6 mm, and more preferably 0.15 to 0.5 mm.
  • the thickness of the acrylic resin layer (A) of the laminate of the present invention is not particularly limited, but the surface hardness and impact resistance of the laminate and shape stability in high temperature and high humidity environments. Etc. From this viewpoint, the thickness of the acrylic resin layer (A) is preferably 0.01 to 0.25 mm, more preferably 0.04 to 0.20 mm, and 0.06 to 0.10 mm. More preferably it is. Further, when the total thickness of the acrylic resin layer (A) and the polycarbonate resin layer (B) is (T), the thickness ratio of the acrylic resin layer (A) 1 layer ((A) / (T) ) Is preferably from 0.01 to 0.35, more preferably from 0.05 to 0.30, and even more preferably from 0.07 to 0.20. If it is in the range of the said thickness and thickness ratio, since it is excellent in the surface hardness of this laminated body, impact resistance, and the shape stability in high temperature and a high humidity environment, it is preferable.
  • Total light transmittance When the total light transmittance is used as an index of transparency of the laminate of the present invention, it is preferably 85% or more, and more preferably 89% or more.
  • the total light transmittance in the present invention is measured according to JIS K7361-1.
  • the amount of warpage is preferably 1.5 mm or less, more preferably 1.0 mm or less, further preferably 0.5 mm or less, and most preferably 0 mm. If it is in the said range, since a laminated body can be used in a wider use and environment, it is preferable.
  • the warpage evaluation was performed in the present invention under the conditions of a temperature of 85 ° C. and a humidity of 85% RH.
  • conditions such as a temperature of 60 ° C., a humidity of 90% RH, a temperature of 70 ° C., a humidity of 90% RH, etc. May be used.
  • a method for reducing warpage there is a method in which a film is formed so as not to give a strain that adversely affects the production of a laminate, or a strain is relaxed by annealing for several hours to several days in the vicinity of Tg. Specifically, it may be adjusted so as to reduce the thermal contraction rate under the environmental conditions to be evaluated. Furthermore, it can also adjust with the application
  • a film forming method a known method, for example, a single-screw extruder, a multi-screw extruder, a Banbury mixer, a kneader or the like has melt mixing equipment, and an extrusion casting method using a T die is a surface such as handleability and productivity. Can be suitably used.
  • a method for forming the laminate a method in which a melt-kneaded resin is co-extruded with a T-die having a feed block or a multi-manifold can be suitably used.
  • molding roll metal elastic roll, polishing roll, etc.
  • the molding temperature in the extrusion casting method using a T-die is appropriately adjusted depending on the flow characteristics and film forming properties of the resin composition to be used, but is generally 300 ° C. or less, preferably 230 to 270 ° C.
  • the forming roll is generally 90 to 130 ° C, preferably 95 to 115 ° C.
  • each layer of the extruder preferably has a vent function and a filter function.
  • the vent function is preferable because it can be used for drying the resin composition used for each layer, removing a small amount of volatile components, and the like, and a laminate having few defects such as bubbles can be obtained.
  • filter functions there are various types of filter functions, and specific examples include a leaf disc filter, a back disc filter, a cone type filter, a candle filter, and a cylindrical filter. Among them, a leaf disk filter that can easily secure an effective filtration area is preferable.
  • the filter function can remove foreign matters, minute gels, and the like, and a laminated body with few appearance defects can be obtained.
  • the resin composition used in the present invention may be used by mixing each component in advance using a mixer such as a tumbler, V-type blender, Banbury mixer, or extruder, and each component measured at the supply port of the extruder may be used.
  • the components may be directly supplied, or the components weighed separately may be supplied to each supply port of an extruder having two or more supply ports.
  • the mixing method of various additives can use a well-known method. For example, (a) a master batch in which various additives are mixed in a suitable base resin at a high concentration (typically about 3 to 60% by mass) is prepared separately, and the concentration is added to the resin used. And (b) a method of directly mixing various additives into the resin to be used.
  • the hard coat layer (C) is a layer that imparts excellent surface hardness and scratch resistance to the laminate of the present invention.
  • the pencil hardness can be evaluated as one index.
  • the pencil hardness was measured with respect to the surface to be measured with a load of 750 gf according to JIS K5600-5-4.
  • the pencil hardness is preferably H or higher, more preferably 2H or higher, and particularly preferably 3H or higher.
  • the pencil hardness is 4H or more, It is more preferable that it is 5H or more, It is especially preferable that it is 7H or more.
  • the pencil hardness is 4H or more, a laminate having excellent surface hardness can be provided.
  • the pencil hardness is preferably F or more, and more preferably H or more. If the pencil hardness is F or more, it can function as a scratch-preventing layer for preventing the layered product from being scratched during transportation and processing within the process.
  • the steel wool test can be evaluated as one index.
  • the number of reciprocations until scratching is 20 times or more when rubbing with a load of 1000 gf using # 0000 steel wool. If the number of reciprocations until the surface is scratched when rubbed with the steel wool is 20 times or more, it is possible to provide a scratch-resistant laminate having excellent scratch resistance. From this point of view, the number of reciprocations until the surface is scratched is preferably 20 times or more, more preferably 300 times or more, and particularly preferably 500 times or more.
  • the hard coating agent is not particularly limited in the present invention, but a hard coating agent that cures by irradiating energy beams such as an electron beam, radiation, or ultraviolet rays, or that cures by heating can be applied.
  • energy beams such as an electron beam, radiation, or ultraviolet rays
  • it is preferably made of an ultraviolet curable resin from the viewpoint of molding time and productivity.
  • specific examples of the curable resin include acrylate compounds, urethane acrylate compounds, epoxy acrylate compounds, carboxyl group-modified epoxy acrylate compounds, polyester acrylate compounds, copolymer acrylates, alicyclic epoxy resins, glycidyl ether epoxy resins, Examples include vinyl ether compounds and oxetane compounds.
  • curable resins can be used alone or in combination of two or more.
  • curable resins that impart superior surface hardness include radical polymerization curable compounds such as polyfunctional acrylate compounds, polyfunctional urethane acrylate compounds, and polyfunctional epoxy acrylate compounds, and heat such as alkoxysilanes and alkylalkoxysilanes.
  • radical polymerization curable compounds such as polyfunctional acrylate compounds, polyfunctional urethane acrylate compounds, and polyfunctional epoxy acrylate compounds
  • heat such as alkoxysilanes and alkylalkoxysilanes.
  • Polymerizable curable compounds can be mentioned, and an organic / inorganic composite curable resin composition obtained by adding an inorganic component to the curable resin can also be used.
  • An organic / inorganic hybrid curable resin composition can be exemplified as a curable resin composition that imparts particularly excellent surface hardness.
  • the organic / inorganic hybrid curable resin composition include those composed of a curable resin composition containing an inorganic component having a reactive functional group in the curable resin. Utilizing such an inorganic component having a reactive functional group, for example, an organic / inorganic composite in which this inorganic component is copolymerized and crosslinked with a radical polymerizable monomer, so that the organic binder simply contains the inorganic component.
  • an organic / inorganic hybrid curable resin composition containing ultraviolet-reactive colloidal silica as an inorganic component having a reactive functional group can be mentioned as a more preferable example.
  • Examples of means for imparting particularly excellent surface hardness include a method of adjusting the concentration of the inorganic component and / or the inorganic component having a reactive functional group contained in the hard coat layer (C).
  • a preferable concentration range of the inorganic component and / or the inorganic component having a reactive functional group contained in the hard coat layer (C) is 10% by mass or more and 65% by mass or less.
  • the lower limit of the preferred concentration is preferably 10% by mass or more, more preferably 20% by mass or more, and particularly preferably 40% by mass or more.
  • a concentration of 10% by mass or more is preferable because an effect of imparting excellent surface hardness to the hard coat layer (C) can be obtained.
  • the upper limit value of the preferred concentration is preferably 65% by mass or less, more preferably 60% by mass or less, and particularly preferably 55% by mass or less. If the concentration is 65% by mass or less, the hard coat layer (C) can be filled with an inorganic component and / or an inorganic component having a reactive functional group most closely, and an excellent surface hardness can be obtained. It is preferable because it can be applied to the target.
  • a method for forming the hard coat layer (C) for example, after coating the surface of the resin layer as a paint obtained by dissolving or dispersing the curable resin composition in an organic solvent, a cured film is obtained.
  • a method of forming and laminating on the surface of the resin layer it is not limited to this method.
  • a known method is used as a method of laminating with the resin layer. For example, laminating method using cover film, dip coating method, natural coating method, reverse coating method, comma coater method, roll coating method, spin coating method, wire bar method, extrusion method, curtain coating method, spray coating method, The gravure coat method etc. are mentioned.
  • a method of laminating the hard coat layer (C) on the resin layer using a transfer sheet in which the hard coat layer (C) is formed on the release layer may be employed.
  • various surface treatments such as corona treatment, plasma treatment and primer treatment can be performed on the surface of the resin layer for the purpose of improving the adhesion between the hard coat layer (C) and the resin layer.
  • the curable resin composition for forming the hard coat layer (C) is preferably made of an ultraviolet curable resin from the viewpoint of molding time and productivity, that is, one that is cured by irradiation with ultraviolet rays.
  • an electrodeless high-pressure mercury lamp an electroded high-pressure mercury lamp, an electrodeless metal halide lamp, an electroded metal halide lamp, a xenon lamp, an ultra-high pressure mercury lamp, a mercury xenon lamp, or the like can be used.
  • an electrodeless high-pressure mercury lamp is preferable because it is easy to obtain ultraviolet rays with high illuminance and is advantageous for curing an ultraviolet curable resin.
  • the added photopolymerization initiator absorbs ultraviolet rays and is excited and activated to cause a polymerization reaction, and a curing reaction of the ultraviolet curable resin occurs. Therefore, it is preferable to select a light source according to the photopolymerization initiator added to the ultraviolet curable resin, that is, according to the excitation wavelength of the photopolymerization initiator, which is advantageous for curing the ultraviolet curable resin.
  • photopolymerization initiator When the curable resin composition is made of an ultraviolet curable resin and is cured by irradiation with ultraviolet rays, a photopolymerization initiator is used as a curing agent.
  • the photopolymerization initiator include benzyl, benzophenone and derivatives thereof, thioxanthones, benzyldimethyl ketals, ⁇ -hydroxyalkylphenones, ⁇ -hydroxyacetophenones, hydroxyketones, aminoalkylphenones, acylphosphine oxides. Etc. Of these, ⁇ -hydroxyalkylphenones are preferred because they hardly cause yellowing during curing and a transparent cured product is obtained.
  • aminoalkylphenones are preferable because they have very high reactivity and a cured product having excellent hardness can be obtained.
  • the said photoinitiator can be used individually by 1 type or in combination of 2 or more types.
  • the addition amount of the photopolymerization initiator is preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the curable resin.
  • photopolymerization initiators can be used. Specific examples include “IRGACURE651”, “IRGACURE184”, “IRGACURE500”, “IRGACURE1000”, “IRGACURE2959”, “DAROCUR1173”, “IRGACURE127”, “IRGACURE907”.
  • examples of the above-mentioned ⁇ -hydroxyalkylphenones include “IRGACURE184”, while examples of the aminoalkylphenones include “IRGACURE907”, “IRGACURE369”, “IRGACURE379”. Can be mentioned.
  • the curable resin composition forming the hard coat layer (C) can contain a leveling agent as a surface conditioning component.
  • a leveling agent include silicone leveling agents and acrylic leveling agents.
  • those having a reactive functional group at the terminal are preferable, and those having a reactive functional group having two or more functionalities are more preferable. preferable.
  • polyester-modified polydimethylsiloxane having an acrylic group having double bonds at both ends for example, trade names “BYK-UV 3500” and “BYK-UV 3530” manufactured by BYK Chemie Japan Co., Ltd.
  • polyester-modified polydimethylsiloxane having an acrylic group having two double bonds at the end in total (trade name “BYK-UV 3570” manufactured by Big Chemie Japan Co., Ltd.).
  • polyester-modified polydimethylsiloxane having an acrylic group that has a stable haze value and contributes to improvement of scratch resistance is particularly preferable.
  • the curable resin composition for forming the hard coat layer (C) includes, for example, a lubricant such as a silicon compound, a fluorine compound, or a mixed compound thereof, an antioxidant, and an ultraviolet absorber.
  • a lubricant such as a silicon compound, a fluorine compound, or a mixed compound thereof, an antioxidant, and an ultraviolet absorber.
  • Various additives such as an agent, an antistatic agent, a flame retardant such as a silicone compound, a filler, glass fiber, and an impact modifier can be contained within a range that does not impair the effects of the present invention.
  • the resin composition When the curable resin composition is made of an ultraviolet curable resin and is cured by irradiating with ultraviolet rays, the resin composition has a high degree of transparency with respect to the ultraviolet rays. Because of the oxygen disorder), curing may be delayed on the surface of the resin composition. For this oxygen disorder, it is preferable to irradiate the resin composition with a nitrogen gas atmosphere by supplying nitrogen gas and then irradiate with ultraviolet rays, since the curing of the surface can proceed rapidly together with the inside of the resin composition. .
  • the thickness of the hard coat layer (C) is not particularly limited, but is preferably in the range of 1 to 30 ⁇ m, more preferably in the range of 3 to 25 ⁇ m, and in the range of 5 to 20 ⁇ m. More preferably, it is in the range of 7 to 15 ⁇ m.
  • the thickness of the hard coat layer (C) is in the above range because scratch resistance can be imparted and cracks due to stress are unlikely to occur.
  • the thickness of each hard coat layer may be the same or different, but both are in the range of 7 to 15 ⁇ m, and the acrylic resin layer (A)
  • the thickness of the hard coat layer on the surface is preferably equal to or greater than the thickness of the hard coat layer on the surface of the polycarbonate resin layer (B).
  • One or more of antireflection treatment, antifouling treatment, antistatic treatment, weather resistance treatment and antiglare treatment is applied to one or both sides of the laminate having the hard coat layer (C) according to the present invention.
  • Each processing method is not particularly limited, and a known method can be used. For example, a method of applying a reflection reducing coating, a method of depositing a dielectric thin film, a method of applying an antistatic coating, and the like can be exemplified.
  • the laminate of the present invention is excellent in economy by using a general-purpose material as a main raw material, and is excellent in transparency, impact resistance, surface hardness, and shape stability in a high temperature and high humidity environment. It can be applied to various uses such as a substrate material and a protective material, and the use is not particularly limited. In particular, the laminate can be used as various substrate materials and protective materials. Specifically, portable display devices (mobile phone terminals, smartphones, portable electronic playground equipment, personal digital assistants, tablet devices, mobile PCs, etc.) and stationary display devices (LCD TVs, LCD monitors, desktop PCs, car navigation systems, It can be suitably used for automobile instruments and the like.
  • portable display devices mobile phone terminals, smartphones, portable electronic playground equipment, personal digital assistants, tablet devices, mobile PCs, etc.
  • stationary display devices LCD TVs, LCD monitors, desktop PCs, car navigation systems, It can be suitably used for automobile instruments and the like.
  • the laminate of the present invention may be given a shape by various processing methods. Specific examples include a method of heating and pressurizing using a mold, a pressure forming method, a vacuum forming method, and a roll homing method.
  • a method of heating and pressurizing using a mold e.g., a mold, a pressure forming method, a vacuum forming method, and a roll homing method.
  • application to an image display device having a curved surface and various flexible devices can be expected.
  • the above shape can be imparted in the same manner even when the laminate of the present invention has other layers such as the hard coat layer (C).
  • Tg Glass transition temperature
  • a differential scanning calorimeter manufactured by PerkinElmer Co., Ltd., trade name “Pyris1 DSC”, according to JIS K7121 about 10 mg of the sample was heated from ⁇ 40 ° C. to 200 ° C. at a heating rate of 10 ° C./min. After holding at 200 ° C. for 1 minute, the temperature was lowered to ⁇ 40 ° C. at a cooling rate of 10 ° C./min, and again from the thermogram measured when the temperature was raised to 200 ° C. at a heating rate of 10 ° C./min, the glass transition temperature (Tg ) (° C). In addition, the value of Tg was rounded off to the first decimal place.
  • Total light transmittance A test piece of 50 mm square was cut out from the obtained laminate, the total light transmittance was measured according to JIS K7361-1, and the value was evaluated according to the following criteria. ( ⁇ ) Total light transmittance is 89% or more ( ⁇ ) Total light transmittance is 85% or more and less than 89% ( ⁇ ) Total light transmittance is less than 85%
  • Pencil hardness The pencil hardness was measured on the surface to be measured with a load of 750 gf according to JIS K5600-5-4.
  • the pencil hardness on the surface of the acrylic resin layer (A) is H or higher, and the pencil hardness on the surface of the polycarbonate resin layer (B) having the hard coat layer (C) is F or higher (O). .
  • Polycarbonate resin (B1)) (B1-1): polycarbonate resin (manufactured by Sumika Stylon Polycarbonate Co., Ltd., trade name: Caliber 301-4, density: 1.20 g / cm 3 , Tg: 149 ° C., MFR (temperature: 300 ° C., load: 11.8 N): 4.0 g / 10 min)
  • Modifier (B2) Polyethylene resin (B2-1)) (B2-1-1); polyester resin (manufactured by SK Chemical Co., Ltd., trade name: SKYGREEN J2003, density: 1.23 g / cm 3 , Tg: 87 ° C.)
  • Example 1 As shown in Table 1, as acrylic resin layer (A), 60 parts by mass of acrylic resin (A1-1), 40 parts by mass of copolymer (A2-1) and (X-1) 0. A resin composition mixed at a ratio of 15 parts by mass, and as a polycarbonate resin layer (B), 60 parts by mass of a polycarbonate resin (B1-1), 40 parts by mass of a polyester resin (B2-1-1) and an addition The resin compositions mixed at a ratio of 0.15 parts by weight of (X-1) and 0.10 parts by weight of (X-2) as an agent are supplied to separate extruders having a vent function and a filter function, respectively.
  • Examples 2 to 8> As shown in Table 1, except that the resin composition of each layer was changed in Example 1, a laminate having a total thickness of 0.70 mm and excellent appearance and flatness was obtained. The extrusion temperature, mirror roll temperature, etc. were adjusted as appropriate according to the Tg and melt viscosity of each layer. The results of evaluation using the laminate are shown in Table 1.
  • Example 1 As shown in Table 1, the raw material of the acrylic resin layer (A) in Example 1 is not included in the copolymer (A-2), but in the resin composition part including only the acrylic resin (A1-1) alone. A laminated body having a total thickness of 0.70 mm and excellent appearance and flatness was obtained in the same manner except that it was changed. The results of evaluation using the laminate are shown in Table 1.
  • Example 2 As shown in Table 1, in Example 1, the raw material of the acrylic resin layer (A) contains 15 parts by mass of the acrylic resin (A1-1) and 85 parts by mass of the copolymer (A2-1). A laminate having a total thickness of 0.70 mm was obtained in the same manner except that the product was changed to a product. However, since the adhesion between the acrylic resin layer (A) and the polycarbonate resin layer (B) was insufficient, the evaluation was stopped because it was easily peelable by hand.
  • Example 3 As shown in Table 1, in Example 1, the total thickness was set to be 0.00 except that the copolymer (A2-1) contained in the raw material of the acrylic resin layer (A) was changed to (P-1). A 70 mm laminate was obtained. However, since the compatibility between the acrylic resin (A1-1) and the MS resin (P-1) was poor, the acrylic resin layer (A) was cloudy and the evaluation was stopped.
  • Organic / inorganic hybrid ultraviolet curable resin composition (product name “UVHC7800G”, manufactured by MOMENTIVE, containing inorganic silica containing reactive functional groups) on the surface of the acrylic resin layer (A) of the laminate obtained in Example 1 (Amount: 30 to 40% by mass) is applied using a metal bar coater, dried at 90 ° C. for 1 minute, exposed to an exposure dose of 500 mJ / cm 2 using an ultraviolet irradiation device, and a hard coat having a thickness of 12 ⁇ m.
  • a laminate having the layer (C) was obtained.
  • Table 2 shows the results of evaluating the hard coat layer of the laminate.
  • Example 10 to 14> As shown in Table 2, a laminate was obtained in the same manner except that the laminate used in Example 9 and the application surface and thickness of the hard coat layer were changed. Table 2 shows the results of evaluating the hard coat layer of the laminate. In addition, when apply
  • Example 15 100 parts by mass of the polycarbonate resin (B1-3) contained in the raw material of the polycarbonate resin layer (B) was changed to 90 parts by mass of (B1-2) and 10 parts by mass of (B2-2-1).
  • the resulting laminate had good appearance and excellent flatness.
  • the pencil hardness of the polycarbonate resin layer (B) was improved from 2B to F by mixing the acrylic resin (B2-2-1).
  • Table 2 shows the results of evaluating the hard coat layer of the laminate.
  • a laminate having an acrylic resin layer (A) on at least one side of a polycarbonate resin layer (B), the laminate containing the resin composition defined in the present invention in a specific range is transparent. It can be confirmed that it has excellent properties, surface hardness and shape stability under high temperature and high humidity environment (Examples 1 to 8).
  • a laminate in which the absolute value of the difference between the glass transition temperature of the acrylic resin layer (A) and the glass transition temperature of the polycarbonate resin layer (B) is 5 ° C. or less has shape stability in a high temperature and high humidity environment. It can be confirmed that they are more excellent (Example 1, Examples 3 to 5).
  • the laminate outside the range defined in the present invention has one or more defects (Comparative Examples 1 to 3). If the acrylic resin layer (A) is a general-purpose acrylic resin alone, the shape stability under high temperature and high humidity environment is insufficient (Comparative Example 1), and the mixing ratio of the resin composition of the acrylic resin layer (A) is The adhesion between the layers is insufficient outside the specified range of the present invention (Comparative Example 2), and the copolymer mixed with the acrylic resin layer (A) is not the specified range of the present invention with the acrylic resin (A1). It can be confirmed that the compatibility is not expressed and the transparency is not obtained (Comparative Example 3).
  • the laminate of the present invention can impart surface hardness improvement and scratch resistance by having a hard coat layer (C) on the surface. Moreover, it can confirm that the hard-coat layer (C) of the laminated body surface of this invention is excellent also in adhesiveness with another layer (Acrylic resin layer (A) or a polycarbonate-type resin layer (B)). (Examples 9 to 15).
  • the hard coat layer (C) applied to the outer surface side of the laminate of the present invention shares the function of developing excellent surface hardness, while the hard coat layer (C) applied to the inner surface side is used in the process. The function can be shared as an anti-scratch layer for preventing frictional scratches from entering the laminate during transportation or processing.

Abstract

 Provided is a laminate having, on at least one surface of a polycarbonate resin layer (B), an acrylic resin layer (A) containing an acrylic resin (A1) and a copolymer (A2) having aromatic vinyl monomer units, (meth)acrylic acid ester monomer units, and unsaturated dicarboxylic acid anhydride monomer units, the mixture ratio of mass thereof being (A1)/(A2) = 80-20/20-80, wherein the laminate is intended for use as a substrate material or protective material, and has excellent transparency, impact resistance, surface hardness, and shape stability in high temperature or high humidity environments.

Description

積層体Laminated body
 本発明は、積層体に関し、さらに詳細には、基板材料や保護材料に使用され、特に画像表示装置の表面保護パネルや携帯電話やスマートフォンおよびタブレット機器等のカバー材として好適に使用することができる積層体に関する。 The present invention relates to a laminate, and more specifically, is used as a substrate material or a protective material, and can be suitably used as a cover material for a surface protective panel of an image display device, a mobile phone, a smartphone, a tablet device, or the like. It relates to a laminate.
 画像表示装置のカバー材としては、従来からガラスが主に用いられてきた。しかしながら、ガラスは衝撃により割れ易く、また重量が重いことから樹脂材料での代替が検討されている。ここで、該樹脂材料には、耐衝撃性や表面硬度および高温や高湿な環境における形状安定性が主に求められる。 Conventionally, glass has been mainly used as a cover material for image display devices. However, since glass is easily broken by impact and is heavy, substitution with a resin material has been studied. Here, the resin material is mainly required to have impact resistance, surface hardness, and shape stability in a high temperature and high humidity environment.
 ポリカーボネート樹脂板は、透明性を有し、耐衝撃性や耐熱性に優れるため、防音隔壁やカーポート、看板、グレージング材、照明用器具などに利用されているが、表面硬度が低いために傷がつきやすいという欠点があり用途が制限されている。 Polycarbonate resin plates are transparent and have excellent impact resistance and heat resistance, so they are used for soundproofing partitions, carports, signboards, glazing materials, lighting equipment, etc. There is a drawback that it is easy to stick, and its use is limited.
 例えば、特許文献1には、この欠点を改良する為にポリカーボネート樹脂とアクリル樹脂を共押出した積層体にハードコート処理を施した樹脂積層体が開示されている。 For example, Patent Document 1 discloses a resin laminate in which a hard coat treatment is applied to a laminate obtained by coextruding a polycarbonate resin and an acrylic resin in order to improve this defect.
 反りを抑制する方法として特許文献2には、ポリカーボネート樹脂上にメチルメタクリレート-スチレン共重合体樹脂(MS樹脂)を積層した樹脂積層体が開示されている。 Patent Document 2 discloses a resin laminate in which a methyl methacrylate-styrene copolymer resin (MS resin) is laminated on a polycarbonate resin as a method for suppressing warpage.
 反りを抑制する方法として特許文献3には、ポリカーボネート系樹脂を積層した各層のガラス転移温度差と吸水率差を規定した樹脂積層体が開示されている。 As a method for suppressing warpage, Patent Document 3 discloses a resin laminate in which a glass transition temperature difference and a water absorption difference are defined for each layer in which a polycarbonate resin is laminated.
特開2006-103169号公報JP 2006-103169 A 特開2010-167659号公報JP 2010-167659 A 国際公開第2014/061817号International Publication No. 2014/061817
 特許文献1では、2層構成とすることにより、表面硬度はある程度向上するものの、高温高湿など環境変化が生じる用途では、ポリカーボネート樹脂とアクリル樹脂の主にガラス転移温度に代表される耐熱性や吸水特性などの違いにより寸法変化差が生じ、結果として大きな反りになり易いという問題があった。
  特許文献2では、MS樹脂は、アクリル樹脂よりも吸水率が低いため反り改良の効果はみられるが、実施例での評価にも記載されているように環境試験の温度40℃、湿度90%RHは高温高湿の条件としては未だ不十分である。また、共重合成分のスチレン含有量を上げる(40質量%以上)ことにより吸水率を低減したMS樹脂は耐熱性が低下し易く、また、アクリル樹脂との相溶性も低下する。
  特許文献3では、反り改良の効果はみられるが、発明の開示や実施例にも記載されているようにその達成手段は実質、積層体を冷却する際のロールの速度比により微延伸することが必須の製造方法である。積層体を冷却過程で微延伸すると熱収縮性が付与されてしまうといった問題があった。また、具体的に用いられている変性ポリカーボネート樹脂は特殊な原料であり経済性にも問題があった。
In Patent Document 1, although the surface hardness is improved to some extent by adopting a two-layer structure, in applications where environmental changes such as high temperature and high humidity occur, heat resistance represented by mainly glass transition temperatures of polycarbonate resin and acrylic resin There is a problem that a dimensional change difference occurs due to a difference in water absorption characteristics and the like, and as a result, a large warp tends to occur.
In Patent Document 2, the MS resin has a lower water absorption than the acrylic resin, so that the effect of improving the warp is seen. However, as described in the evaluation in the examples, the temperature of the environmental test is 40 ° C. and the humidity is 90%. RH is still insufficient as a condition for high temperature and high humidity. Further, the MS resin having a reduced water absorption rate by increasing the styrene content of the copolymer component (40% by mass or more) is likely to have a low heat resistance and a low compatibility with the acrylic resin.
In Patent Document 3, the effect of improving the warp is seen, but as described in the disclosure and examples of the present invention, the means for achieving it is substantially fine stretching by the speed ratio of the roll when cooling the laminate. Is an essential manufacturing method. When the laminate is stretched slightly during the cooling process, there is a problem that heat shrinkability is imparted. In addition, the modified polycarbonate resin specifically used is a special raw material and has a problem in economy.
 そこで本発明の目的は、汎用材料を主原料として用いることで経済性に優れ、基板材料や保護材料に使用される、透明性、耐衝撃性、表面硬度および高温や高湿な環境における形状安定性に優れる積層体を提供することにある。 Therefore, the object of the present invention is to use a general-purpose material as a main raw material, which is excellent in economic efficiency, used for substrate materials and protective materials, transparency, impact resistance, surface hardness, and shape stability in high temperature and high humidity environments. It is providing the laminated body which is excellent in property.
 本発明者らは、鋭意検討を重ねた結果、ポリカーボネート系樹脂層の少なくとも片面に特定のアクリル系樹脂層を有する積層体とすることにより、耐衝撃性や表面硬度および高温や高湿な環境における形状安定性に優れることを見出し、本発明を完成するに至った。
  すなわち、本発明によれば、下記(1)~(20)が提供される。
(1)ポリカーボネート系樹脂層(B)の少なくとも片面にアクリル系樹脂層(A)を有する積層体であって、該アクリル系樹脂層(A)がアクリル系樹脂(A1)と、芳香族ビニル単量体単位、(メタ)アクリル酸エステル単量体単位及び不飽和ジカルボン酸無水物単量体単位を有する共重合体(A2)と、を含有し、その混合質量比が(A1)/(A2)=80~20/20~80であることを特徴とする積層体。
(2)アクリル系樹脂(A1)がメタクリル酸メチル単量体単位を主成分とし、核磁気共鳴測定(H-NMR)で求められるトリアッド分率のmm、mr、rrの内、rr構造のモル比率が最も高いものであることを特徴とする上記(1)記載の積層体。
(3)共重合体(A2)の構成単位が芳香族ビニル単量体単位45~85質量%、(メタ)アクリル酸エステル単量体単位4~45質量%、不飽和ジカルボン酸無水物単量体単位8~20質量%であることを特徴とする上記(1)又は(2)記載の積層体。
(4)アクリル系樹脂(A1)と共重合体(A2)との混合質量比が(A1)/(A2)=80~55/20~45であることを特徴とする上記(1)~(3)のいずれか1項に記載の積層体。
(5)アクリル系樹脂(A1)と共重合体(A2)との混合質量比が(A1)/(A2)=50~20/50~80であることを特徴とする上記(1)~(3)のいずれか1項に記載の積層体。
(6)示差走査熱量計を用いて、加熱速度10℃/分で測定されるアクリル系樹脂層(A)のガラス転移温度が100~140℃であり、かつ、ポリカーボネート系樹脂層(B)のガラス転移温度との差の絶対値が20℃以下であることを特徴とする上記(1)~(5)のいずれか1項に記載の積層体。
(7)示差走査熱量計を用いて、加熱速度10℃/分で測定されるアクリル系樹脂層(A)ガラス転移温度が115~140℃であり、かつ、ポリカーボネート系樹脂層(B)のガラス転移温度との差の絶対値が10℃以下であることを特徴とする上記(1)~(5)のいずれか1項に記載の積層体。
(8)ポリカーボネート系樹脂層(B)がポリカーボネート系樹脂(B1)と下記から選ばれる少なくとも1種の改質剤(B2)とを含有することを特徴とする上記(1)~(7)のいずれか1項に記載の積層体。
改質剤(B2)
  (B2-1):カルボン酸単量体(イ)単位として、芳香族ジカルボン酸を80モル%以上、グリコール単量体(ロ)単位として、1,4-シクロヘキサンジメタノールを40モル%以上含む構成単位からなるポリエステル系樹脂
  (B2-2):芳香族(メタ)アクリレート単量体単位5~80質量%およびメチルメタクリレート単量体単位95~20質量%からなるアクリル系共重合体
(9)アクリル系樹脂層(A)にホスファイト系の酸化防止剤が混合されていることを特徴とする上記(1)~(8)のいずれか1項に記載の積層体。
(10)ポリカーボネート系樹脂層(B)にカルボジイミド化合物が混合されていることを特徴とする上記(1)~(9)のいずれか1項に記載の積層体。
(11)アクリル系樹脂層(A)の厚みが、0.01~0.25mmであることを特徴とする上記(1)~(10)のいずれか1項に記載の積層体。
(12)アクリル系樹脂層(A)とポリカーボネート系樹脂層(B)との合計厚みを(T)した場合、アクリル系樹脂層(A)1層の厚み比((A)/(T))が、0.01~0.35であることを特徴とする上記(1)~(11)のいずれか1項に記載の積層体。
(13)共押出成形されたことを特徴とする上記(1)~(12)のいずれか1項に記載の積層体。
(14)上記積層体の少なくとも片面にハードコート層(C)が積層されたことを特徴とする上記(1)~(13)のいずれか1項に記載の積層体。
(15)ハードコート層(C)の表面の鉛筆硬度が4H以上であることを特徴とする上記(14)記載の積層体。
(16)ハードコート層(C)が有機・無機ハイブリッド系硬化性樹脂組成物からなることを特徴とする上記(14)又は(15)記載の積層体。
(17)片面または両面に反射防止処理、防汚処理、帯電防止処理、耐候性処理および防眩処理のいずれか一つ以上の処理がされていることを特徴とする上記(1)~(16)のいずれか1項に記載の積層体。
(18)上記(1)~(17)のいずれか1項に記載の積層体を用いた基板材料。
(19)上記(1)~(17)のいずれか1項に記載の積層体を用いた保護材料。
(20)上記(1)~(17)のいずれか1項に記載の積層体を含む画像表示装置。
As a result of intensive studies, the present inventors have made a laminate having a specific acrylic resin layer on at least one side of a polycarbonate resin layer, so that the impact resistance, surface hardness, high temperature and high humidity can be obtained. It has been found that the shape stability is excellent, and the present invention has been completed.
That is, according to the present invention, the following (1) to (20) are provided.
(1) A laminate having an acrylic resin layer (A) on at least one surface of a polycarbonate resin layer (B), wherein the acrylic resin layer (A) comprises an acrylic resin (A1) and an aromatic vinyl Copolymer (A2) having a monomer unit, a (meth) acrylic acid ester monomer unit and an unsaturated dicarboxylic anhydride monomer unit, and the mixing mass ratio thereof is (A1) / (A2 ) = 80-20 / 20-80.
(2) The acrylic resin (A1) has a methyl methacrylate monomer unit as a main component, and has a rr structure out of mm, mr and rr of triad fractions determined by nuclear magnetic resonance measurement ( 1 H-NMR). The laminate according to (1) above, which has the highest molar ratio.
(3) The constituent unit of the copolymer (A2) is 45 to 85% by mass of an aromatic vinyl monomer unit, 4 to 45% by mass of a (meth) acrylic acid ester monomer unit, and an unsaturated dicarboxylic acid anhydride unit amount The laminate according to (1) or (2) above, wherein the body unit is 8 to 20% by mass.
(4) The mixing mass ratio of the acrylic resin (A1) and the copolymer (A2) is (A1) / (A2) = 80 to 55/20 to 45, The laminate according to any one of 3).
(5) A mixing mass ratio of the acrylic resin (A1) and the copolymer (A2) is (A1) / (A2) = 50 to 20/50 to 80, The laminate according to any one of 3).
(6) The glass transition temperature of the acrylic resin layer (A) measured at a heating rate of 10 ° C./min using a differential scanning calorimeter is 100 to 140 ° C., and the polycarbonate resin layer (B) 6. The laminate according to any one of (1) to (5) above, wherein the absolute value of the difference from the glass transition temperature is 20 ° C. or less.
(7) Acrylic resin layer (A) measured at a heating rate of 10 ° C./min using a differential scanning calorimeter, glass transition temperature of 115 to 140 ° C., and glass of polycarbonate resin layer (B) 6. The laminate according to any one of (1) to (5) above, wherein the absolute value of the difference from the transition temperature is 10 ° C. or less.
(8) The above-mentioned (1) to (7), wherein the polycarbonate-based resin layer (B) contains a polycarbonate-based resin (B1) and at least one modifier (B2) selected from the following: The laminated body of any one of Claims.
Modifier (B2)
(B2-1): As the carboxylic acid monomer (A) unit, 80 mol% or more of aromatic dicarboxylic acid and as the glycol monomer (B) unit, 40 mol% or more of 1,4-cyclohexanedimethanol are contained. Polyester resin comprising structural units (B2-2): acrylic copolymer (9) comprising 5 to 80% by mass of aromatic (meth) acrylate monomer units and 95 to 20% by mass of methyl methacrylate monomer units 9. The laminate according to any one of (1) to (8) above, wherein a phosphite antioxidant is mixed in the acrylic resin layer (A).
(10) The laminate as described in any one of (1) to (9) above, wherein a carbodiimide compound is mixed in the polycarbonate resin layer (B).
(11) The laminate as described in any one of (1) to (10) above, wherein the acrylic resin layer (A) has a thickness of 0.01 to 0.25 mm.
(12) When the total thickness of the acrylic resin layer (A) and the polycarbonate resin layer (B) is (T), the thickness ratio of the acrylic resin layer (A) 1 layer ((A) / (T)) The laminate according to any one of the above (1) to (11), wherein is from 0.01 to 0.35.
(13) The laminate as described in any one of (1) to (12) above, which is coextruded.
(14) The laminate as described in any one of (1) to (13) above, wherein the hard coat layer (C) is laminated on at least one surface of the laminate.
(15) The laminate according to (14), wherein the surface of the hard coat layer (C) has a pencil hardness of 4H or more.
(16) The laminate as described in (14) or (15) above, wherein the hard coat layer (C) comprises an organic / inorganic hybrid curable resin composition.
(17) The above (1) to (16), wherein at least one of antireflection treatment, antifouling treatment, antistatic treatment, weather resistance treatment and antiglare treatment is performed on one side or both sides The laminated body of any one of (1).
(18) A substrate material using the laminate according to any one of (1) to (17) above.
(19) A protective material using the laminate according to any one of (1) to (17) above.
(20) An image display device comprising the laminate according to any one of (1) to (17).
 本発明によれば、汎用材料を主原料として用いることで経済性に優れ、透明性、耐衝撃性や表面硬度および高温や高湿な環境における形状安定性に優れる積層体が提供される。該積層体は各種基板材料や保護材料などとして用いることができる。具体的には、携帯型ディスプレイデバイス(携帯電話端末、スマートフォン、携帯型電子遊具、携帯情報端末、タブレット機器、モバイルパソコンなど)や設置型ディスプレイデバイス(液晶テレビ、液晶モニター、デスクトップパソコン、カーナビゲーション、自動車計器など)などに好適に用いることができる。 According to the present invention, it is possible to provide a laminate which is excellent in economy by using a general-purpose material as a main raw material, and excellent in transparency, impact resistance, surface hardness, and shape stability in a high temperature and high humidity environment. The laminate can be used as various substrate materials and protective materials. Specifically, portable display devices (mobile phone terminals, smartphones, portable electronic playground equipment, personal digital assistants, tablet devices, mobile PCs, etc.) and stationary display devices (LCD TVs, LCD monitors, desktop PCs, car navigation systems, It can be suitably used for automobile instruments and the like.
 以下、本発明を詳しく説明する。
  本発明は、ポリカーボネート系樹脂層(B)の少なくとも片面にアクリル系樹脂層(A)を有する積層体である。
The present invention will be described in detail below.
The present invention is a laminate having an acrylic resin layer (A) on at least one side of a polycarbonate resin layer (B).
<アクリル系樹脂層(A)>
 該アクリル系樹脂層(A)は、アクリル系樹脂(A1)と、芳香族ビニル単量体単位、(メタ)アクリル酸エステル単量体単位及び不飽和ジカルボン酸無水物単量体単位を有する共重合体(A2)と、を含有する層である。
  該アクリル系樹脂層(A)は、積層体の機能の内、特に表面硬度や耐熱性などを発現させる機能を分担するものである。このため該アクリル系樹脂層(A)は、後述するポリカーボネート系樹脂層(B)の両面に積層されてもよいが、少なくとも片面に積層されていることが必要である。ディスプレイパネルなどの場合には、外面側に該アクリル系樹脂層(A)が積層されていることが好ましい。
<Acrylic resin layer (A)>
The acrylic resin layer (A) includes an acrylic resin (A1), an aromatic vinyl monomer unit, a (meth) acrylic acid ester monomer unit, and an unsaturated dicarboxylic anhydride monomer unit. And a polymer (A2).
The acrylic resin layer (A) shares a function of expressing the surface hardness, heat resistance, etc., among the functions of the laminate. Therefore, the acrylic resin layer (A) may be laminated on both surfaces of the polycarbonate resin layer (B) described later, but it is necessary that the acrylic resin layer (A) be laminated on at least one surface. In the case of a display panel or the like, the acrylic resin layer (A) is preferably laminated on the outer surface side.
<アクリル系樹脂(A1)>
 該アクリル系樹脂(A1)は、(メタ)アクリル酸エステル単量体単位を主成分として重合した(共)重合体およびその誘導体を主成分として含有する樹脂である。尚、本明細書においては、(メタ)アクリル酸エステル単量体単位は、アクリル酸エステル単量体単位又はメタクリル酸エステル単量体単位を意味する。ここで構成する単量体単位としては、メタクリル酸メチル、メタクリル酸、アクリル酸、ベンジル(メタ)アクリレート、n-ブチル(メタ)アクリレート、i-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、トリデシル(メタ)アクリレート、ステアリル(メタ)アクリレート、グリシジル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、2-メトキシエチル(メタ)アクリレート、2-エトキシエチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ノルボルニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、アクリル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、コハク酸2-(メタ)アクロイルオキシエチル、マレイン酸2-(メタ)アクロイルオキシエチル、フタル酸2-(メタ)アクロイルオキシエチル、ヘキサヒドロフタル酸2-(メタ)アクリオイルオキシエチル、ペンタメチルピペリジル(メタ)アクリレート、テトラメチルピペリジル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレートなどが例示できる。これらは、1種のみを単独で又は2種以上を組み合わせて用いることができる。また、これらのアクリル系単量体単位と重合され得る他の単量体単位としては、例えばオレフィン系単量体単位、ビニル系単量体単位等が挙げられる。
<Acrylic resin (A1)>
The acrylic resin (A1) is a resin containing a (co) polymer obtained by polymerizing a (meth) acrylic acid ester monomer unit as a main component and a derivative thereof as a main component. In the present specification, the (meth) acrylic acid ester monomer unit means an acrylic acid ester monomer unit or a methacrylic acid ester monomer unit. The monomer unit comprised here is methyl methacrylate, methacrylic acid, acrylic acid, benzyl (meth) acrylate, n-butyl (meth) acrylate, i-butyl (meth) acrylate, t-butyl (meth) acrylate. 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, tridecyl (meth) acrylate, stearyl (meth) acrylate, glycidyl (meth) acrylate, hydroxypropyl (meth) acrylate, 2-methoxyethyl (meth) acrylate, 2 -Ethoxyethyl (meth) acrylate, cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, norbornyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentanyl (meth) acrylate , Dicyclopentenyloxyethyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, acrylic (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2- (meth) acryloyloxyethyl succinate, maleic acid 2 -(Meth) acryloyloxyethyl, 2- (meth) acryloyloxyethyl phthalate, 2- (meth) acryloyloxyethyl hexahydrophthalate, pentamethylpiperidyl (meth) acrylate, tetramethylpiperidyl (meth) acrylate Examples thereof include dimethylaminoethyl (meth) acrylate and diethylaminoethyl (meth) acrylate. These can be used alone or in combination of two or more. Examples of other monomer units that can be polymerized with these acrylic monomer units include olefin monomer units and vinyl monomer units.
 ここで本発明においては、共重合体(A2)との相溶性や工業的に入手し易いことなどからメタクリル酸メチルの単独重合体やメタクリル酸メチルとアクリル酸メチルまたはアクリル酸エチルとの共重合体が好適に用いることができる。また、立体規則性についても特に制限はないが、(メタ)アクリル酸エステル単量体単位の立体構造はシンジオタクチック構造であるほどガラス転移温度が高くなり耐熱性が向上するため好ましい。具体的には、トリアッド分率のmm、mr、rrの内、rr構造のモル比率が最も高いものが好適に用いることができる。なお、トリアッド分率は、核磁気共鳴測定装置(H-NMR)を用い、公知の方法で測定することができる。 Here, in the present invention, because of the compatibility with the copolymer (A2) and industrial availability, the homopolymer of methyl methacrylate or the copolymer of methyl methacrylate and methyl acrylate or ethyl acrylate. Coalescence can be suitably used. The stereoregularity is not particularly limited, but the three-dimensional structure of the (meth) acrylic acid ester monomer unit is preferably a syndiotactic structure because the glass transition temperature becomes higher and the heat resistance is improved. Specifically, among the triad fractions of mm, mr, and rr, those having the highest molar ratio of the rr structure can be suitably used. The triad fraction can be measured by a known method using a nuclear magnetic resonance measuring apparatus ( 1 H-NMR).
 本発明に用いるアクリル系樹脂(A1)は市販品を用いることも可能であり、具体例としては三菱レイヨン(株)製の商品名「アクリペット(Acrypet)」、住友化学(株)製の商品名「スミペックス(SUMIPEX)」、(株)クラレ製の商品名「パラペット(PARAPET)」などが例示できる。 Commercially available products may be used as the acrylic resin (A1) used in the present invention. Specific examples include trade names “Acrypet” manufactured by Mitsubishi Rayon Co., Ltd., and products manufactured by Sumitomo Chemical Co., Ltd. Examples include the name “SUMIPEX” and the product name “PARAPET” manufactured by Kuraray Co., Ltd.
<共重合体(A2)>
 該共重合体(A2)は、芳香族ビニル単量体単位、(メタ)アクリル酸エステル単量体単位及び不飽和ジカルボン酸無水物単量体単位を有する共重合体である。
<Copolymer (A2)>
The copolymer (A2) is a copolymer having an aromatic vinyl monomer unit, a (meth) acrylic acid ester monomer unit, and an unsaturated dicarboxylic anhydride monomer unit.
 ここで、芳香族ビニル単量体単位としては、スチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、2,4-ジメチルスチレン、エチルスチレン、p-tert-ブチルスチレン、α-メチルスチレン、α-メチル-p-メチルスチレン等の各スチレン系単量体に由来する単位が挙げられる。これら芳香族ビニル単量体単位は、1種のみを単独で又は2種以上を組み合わせて用いることができる。本発明においては、スチレン単位やα-メチルスチレン単位が好ましい。スチレン単位は、工業的に入手し易く、また経済性に優れるため好ましく、α-メチルスチレン単位はガラス転移温度を向上させることができるため好ましい。 Here, as the aromatic vinyl monomer unit, styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, 2,4-dimethylstyrene, ethylstyrene, p-tert-butylstyrene, α-methyl Examples include units derived from styrene monomers such as styrene and α-methyl-p-methylstyrene. These aromatic vinyl monomer units can be used alone or in combination of two or more. In the present invention, styrene units and α-methylstyrene units are preferred. Styrene units are preferred because they are easily available industrially and are economical, and α-methylstyrene units are preferred because they can improve the glass transition temperature.
 (メタ)アクリル酸エステル単量体単位としては、メタクリル酸メチル、メタクリル酸エチル、n-ブチルメタクリレート、2-エチルヘキシルメタクリレート、ジシクロペンタニルメタクリレート、イソボルニルメタクリレート等の各メタクリル酸エステル単量体、及びアクリル酸メチル、アクリル酸エチル、n-ブチルアクリレート、2-メチルヘキシルアクリレート、2-エチルヘキシルアクリレート、デシルアクリレート等のアクリル酸エステル単量体に由来する単位が挙げられる。これら(メタ)アクリル酸エステル単量体単位は、1種のみを単独で又は2種以上を組み合わせて用いることができる。ここで本発明においては、アクリル系樹脂(A1)との相溶性や外観などからメタクリル酸メチル単量体単位が好適に用いることができる。 (Meth) acrylic acid ester monomer units include methyl methacrylate monomers such as methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, 2-ethylhexyl methacrylate, dicyclopentanyl methacrylate, and isobornyl methacrylate. And units derived from an acrylate monomer such as methyl acrylate, ethyl acrylate, n-butyl acrylate, 2-methylhexyl acrylate, 2-ethylhexyl acrylate, and decyl acrylate. These (meth) acrylic acid ester monomer units can be used alone or in combination of two or more. Here, in this invention, a methyl methacrylate monomer unit can be used suitably from compatibility with an acrylic resin (A1), an external appearance, etc.
 不飽和ジカルボン酸無水物単量体単位としては、マレイン酸無水物、イタコン酸無水物、シトラコン酸無水物、アコニット酸無水物などの各無水物単量体に由来する単位が挙げられる。これら不飽和ジカルボン酸無水物単量体単位は、1種のみを単独で又は2種以上を組み合わせて用いることができる。ここで本発明においては、アクリル系樹脂(A1)との相溶性や透明性などからマレイン酸無水物単量体単位が好適に用いることができる。 Examples of the unsaturated dicarboxylic acid anhydride monomer unit include units derived from respective anhydride monomers such as maleic acid anhydride, itaconic acid anhydride, citraconic acid anhydride, and aconitic acid anhydride. These unsaturated dicarboxylic acid anhydride monomer units can be used alone or in combination of two or more. Here, in the present invention, a maleic anhydride monomer unit can be preferably used in view of compatibility with the acrylic resin (A1) and transparency.
 本発明で用いる共重合体(A2)の構成単位は、好ましくは芳香族ビニル単量体単位45~85質量%、(メタ)アクリル酸エステル単量体単位4~45質量%、不飽和ジカルボン酸無水物単量体単位8~20質量%であり、より好ましくは芳香族ビニル単量体単位55~85質量%、(メタ)アクリル酸エステル単量体単位5~30質量%、不飽和ジカルボン酸無水物10~18質量%の範囲である。
  ここで、共重合体(A2)の構成単位は、周知の方法、例えば、核磁気共鳴(NMR)測定装置、その他の機器分析装置で定性定量分析することができる。
The constituent unit of the copolymer (A2) used in the present invention is preferably 45 to 85% by mass of an aromatic vinyl monomer unit, 4 to 45% by mass of a (meth) acrylic acid ester monomer unit, and an unsaturated dicarboxylic acid. Anhydride monomer unit is 8 to 20% by weight, more preferably aromatic vinyl monomer unit 55 to 85% by weight, (meth) acrylic acid ester monomer unit 5 to 30% by weight, unsaturated dicarboxylic acid The range of anhydride is 10 to 18% by mass.
Here, the structural unit of the copolymer (A2) can be qualitatively and quantitatively analyzed by a known method, for example, a nuclear magnetic resonance (NMR) measuring device or other instrumental analyzer.
 ここで、芳香族ビニル単量体単位が好ましくは45質量%以上、より好ましくは55質量%以上であれば、熱安定性が向上し、アクリル系樹脂(A1)と混合した際に良好な外観が得られ、また、吸水性を低減できるので好ましい。(メタ)アクリル酸エステル単量体単位が好ましくは4質量%以上、より好ましく5質量%以上であれば、アクリル系樹脂(A1)との相溶性が向上し透明性が良好になるため好ましい。また、不飽和ジカルボン酸無水物単量体単位が好ましくは8質量%以上、より好ましく10質量%以上であれば、アクリル系樹脂(A1)との相溶性が向上し透明性や耐熱性が向上するため好ましい。 Here, if the aromatic vinyl monomer unit is preferably 45% by mass or more, more preferably 55% by mass or more, the thermal stability is improved, and a good appearance is obtained when mixed with the acrylic resin (A1). Is preferable, and water absorption can be reduced. The (meth) acrylic acid ester monomer unit is preferably 4% by mass or more, and more preferably 5% by mass or more, since the compatibility with the acrylic resin (A1) is improved and the transparency is improved. If the unsaturated dicarboxylic acid anhydride monomer unit is preferably 8% by mass or more, more preferably 10% by mass or more, compatibility with the acrylic resin (A1) is improved, and transparency and heat resistance are improved. Therefore, it is preferable.
 一方、芳香族ビニル単量体単位が好ましくは85質量%以下であれば、アクリル系樹脂(A1)との混合性を保持しながら、耐熱性の向上や吸水性の低減などが出来るため好ましい。(メタ)アクリル酸エステル単量体単位が好ましくは45質量%以下、より好ましくは30質量%以下であれば、アクリル系樹脂(A1)との相溶性を確保しながら、吸水性を抑制できるため好ましい。また、不飽和ジカルボン酸無水物単量体単位が好ましくは20質量%以下、より好ましくは18質量%以下であれば、アクリル系樹脂(A1)との相溶性を確保しながら、熱安定性の向上や吸水性を抑制できるため好ましい。 On the other hand, if the aromatic vinyl monomer unit is preferably 85% by mass or less, it is preferable because heat resistance can be improved and water absorption can be reduced while maintaining mixing with the acrylic resin (A1). If the (meth) acrylic acid ester monomer unit is preferably 45% by mass or less, more preferably 30% by mass or less, water absorption can be suppressed while ensuring compatibility with the acrylic resin (A1). preferable. Further, if the unsaturated dicarboxylic acid anhydride monomer unit is preferably 20% by mass or less, more preferably 18% by mass or less, the thermal stability of the acrylic resin (A1) is ensured while ensuring compatibility with the acrylic resin (A1). It is preferable because improvement and water absorption can be suppressed.
 本発明で用いる共重合体(A2)は、芳香族ビニル単量体単位、(メタ)アクリル酸エステル単量体単位、および不飽和ジカルボン酸無水物単量体単位以外の、共重合可能な単量体単位を共重合体中に本発明の効果を阻害しない範囲で含んでもよく、該共重合可能な単量体単位の含有量は、共重合体(A2)100質量%に対して好ましくは5質量%以下である。共重合可能な単位としては、アクリロニトリル、メタクリロニトリルなどのシアン化ビニル単量体、アクリル酸、メタクリル酸などのビニルカルボン酸単量体、N-メチルマレイミド、N-エチルマレイミド、N-ブチルマレイミド、N-シクロヘキシルマレイミドなどのN-アルキルマレイミド単量体、N-フェニルマレイミド、N-メチルフェニルマレイミド、N-クロルフェニルマレイミドなどのN-アリールマレイミド単量体などの各単量体に由来する単位が挙げられる。これら共重合可能な単量体単位は、1種のみを単独で又は2種以上を組み合わせて用いることができる。 The copolymer (A2) used in the present invention is a copolymerizable monomer other than an aromatic vinyl monomer unit, a (meth) acrylic acid ester monomer unit, and an unsaturated dicarboxylic anhydride monomer unit. The copolymer unit may be contained in the copolymer within a range not inhibiting the effect of the present invention, and the content of the copolymerizable monomer unit is preferably 100% by mass of the copolymer (A2). 5% by mass or less. The copolymerizable units include vinyl cyanide monomers such as acrylonitrile and methacrylonitrile, vinyl carboxylic acid monomers such as acrylic acid and methacrylic acid, N-methylmaleimide, N-ethylmaleimide, and N-butylmaleimide. Units derived from monomers such as N-alkylmaleimide monomers such as N-cyclohexylmaleimide, N-arylmaleimide monomers such as N-phenylmaleimide, N-methylphenylmaleimide and N-chlorophenylmaleimide Is mentioned. These copolymerizable monomer units can be used alone or in combination of two or more.
 本発明に用いる共重合体(A2)は、ゲルパーミエーションクロマトグラフィー(GPC)にて測定されるポリスチレン換算の重量平均分子量(Mw)が100,000~200,000であることが好ましい。ここで重量平均分子量(Mw)が該範囲であるとアクリル系樹脂(A1)と混合して得られるアクリル系樹脂層(A)の成形性や外観などに優れるため好ましい。かかる観点から、より好ましい重量平均分子量(Mw)の範囲は110,000~180,000である。 The copolymer (A2) used in the present invention preferably has a polystyrene-equivalent weight average molecular weight (Mw) measured by gel permeation chromatography (GPC) of 100,000 to 200,000. Here, it is preferable that the weight average molecular weight (Mw) is in this range because the acrylic resin layer (A) obtained by mixing with the acrylic resin (A1) is excellent in moldability and appearance. From this viewpoint, a more preferable range of weight average molecular weight (Mw) is 110,000 to 180,000.
 本発明に用いる共重合体(A2)の製造方法は、公知の重合方法で製造可能であり特に限定されるものではない。例えば、溶液重合や塊状重合等が適用でき、重合プロセスも回分式や半回分式および連続式などを適宜採用することができる。本発明においては、副生成物が少なく、また、分子量調整と透明性を制御し易いことなどから溶液重合で回分式重合プロセスが好適に用いることができる。 The method for producing the copolymer (A2) used in the present invention is not particularly limited and can be produced by a known polymerization method. For example, solution polymerization, bulk polymerization, and the like can be applied, and batch, semi-batch, and continuous methods can be appropriately employed as the polymerization process. In the present invention, a batch polymerization process can be suitably used in solution polymerization because there are few by-products and molecular weight adjustment and transparency can be easily controlled.
 本発明に用いる共重合体(A2)は市販品を用いることも可能であり、具体例としては電気化学工業(株)製の商品名「レジスファイ R-100」、「レジスファイ R-200」および「レジスファイ R-300」などが例示できる。 The copolymer (A2) used in the present invention may be a commercially available product. Specific examples include trade names “Regisphi® R-100”, “Regisphi® R-200” and “Regisphi® R-200” manufactured by Denki Kagaku Kogyo Co., Ltd. “Regisfi® R-300” can be exemplified.
 次に本発明のアクリル系樹脂層(A)は、アクリル系樹脂(A1)と、芳香族ビニル単量体単位、(メタ)アクリル酸エステル単量体単位及び不飽和ジカルボン酸無水物単量体単位を有する共重合体(A2)と、を含有し、その混合質量比が(A1)/(A2)=80~20/20~80である。ここで、アクリル系樹脂(A1)と共重合体(A2)との混合割合が上記範囲内であれば、ポリカーボネート樹脂層(B)との層間密着性に優れ、アクリル系樹脂の特徴である表面硬度や透明性を維持しつつ、耐熱性の向上や吸水性が抑制されるため好ましい。また、表面硬度を重視する場合には、(A1)/(A2)=80~55/20~45であることが好ましく、耐熱性の向上や吸水性の抑制を重視する場合には、(A1)/(A2)=50~20/50~80であることが好ましい。 Next, the acrylic resin layer (A) of the present invention comprises an acrylic resin (A1), an aromatic vinyl monomer unit, a (meth) acrylic acid ester monomer unit, and an unsaturated dicarboxylic anhydride monomer. And a copolymer (A2) having units, and the mixing mass ratio thereof is (A1) / (A2) = 80 to 20/20 to 80. Here, when the mixing ratio of the acrylic resin (A1) and the copolymer (A2) is within the above range, the surface is excellent in interlayer adhesion with the polycarbonate resin layer (B) and is a characteristic of the acrylic resin. It is preferable because heat resistance is improved and water absorption is suppressed while maintaining hardness and transparency. Further, when importance is attached to the surface hardness, it is preferable that (A1) / (A2) = 80 to 55/20 to 45. When importance is attached to improvement of heat resistance and suppression of water absorption, (A1) ) / (A2) = 50-20 / 50-80.
 本発明のアクリル系樹脂層(A)には、本発明の効果を阻害しない範囲で適宜、種々の添加剤や他の樹脂を配合することができる。ここで添加剤としては、例えば酸化防止剤、紫外線吸収剤、光安定剤、滑剤、難燃剤、着色剤などが挙げられる。また、他の樹脂としては、メタクリル酸メチル-無水マレイン酸共重合体などが挙げられる。 In the acrylic resin layer (A) of the present invention, various additives and other resins can be appropriately blended as long as the effects of the present invention are not impaired. Examples of the additive include an antioxidant, an ultraviolet absorber, a light stabilizer, a lubricant, a flame retardant, and a colorant. Examples of the other resin include methyl methacrylate-maleic anhydride copolymer.
(酸化防止剤)
 酸化防止剤としては、種々の市販品が適用でき、モノフェノール系、ビスフェノール系、高分子型フェノール系、硫黄系、ホスファイト系など各種タイプのものを挙げることができる。
  モノフェノール系としては、2,6-ジ-tert-ブチル-p-クレゾール、ブチル化ヒドロキシアニゾール、2,6-ジ-tert-ブチル-4-エチルフェノールなどを挙げることができる。ビスフェノール系としては、2,2′-メチレン-ビス-(4-メチル-6-tert-ブチルフェノール)、2,2′-メチレン-ビス-(4-エチル-6-tert-ブチルフェノール)、4,4′-チオビス-(3-メチル-6-tert-ブチルフェノール)、4,4′-ブチリデン-ビス-(3-メチル-6-tert-ブチルフェノール)、3,9-ビス〔{1,1-ジメチル-2-{β-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ}エチル}2,4,9,10-テトラオキサスピロ〕5,5-ウンデカンなどが例示できる。
(Antioxidant)
As the antioxidant, various commercially available products can be applied, and various types such as monophenol type, bisphenol type, polymer type phenol type, sulfur type and phosphite type can be exemplified.
Examples of monophenols include 2,6-di-tert-butyl-p-cresol, butylated hydroxyanisole, 2,6-di-tert-butyl-4-ethylphenol, and the like. Examples of bisphenols include 2,2'-methylene-bis- (4-methyl-6-tert-butylphenol), 2,2'-methylene-bis- (4-ethyl-6-tert-butylphenol), 4,4 '-Thiobis- (3-methyl-6-tert-butylphenol), 4,4'-butylidene-bis- (3-methyl-6-tert-butylphenol), 3,9-bis [{1,1-dimethyl- Examples include 2- {β- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionyloxy} ethyl} 2,4,9,10-tetraoxaspiro] 5,5-undecane.
 高分子型フェノール系としては、1,1,3-トリス-(2-メチル-4-ヒドロキシ-5-tert-ブチルフェニル)ブタン、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-tert-ブチル-4-ビドロキシベンジル)ベンゼン、テトラキス-{メチレン-3-(3′,5′-ジ-tert-ブチル-4′-ヒドロキスフェニル)プロピオネート}メタン、ビス{(3,3′-ビス-4′-ヒドロキシ-3′-tert-ブチルフェニル)ブチリックアシッド}グルコールエステル、1,3,5-トリス(3′,5′-ジ-tert-ブチル-4′-ヒドロキシベンジル)-s-トリアジン-2,4,6-(1H,3H,5H)トリオン、トコフェロール(ビタミンE)などが例示できる。 Examples of the high molecular phenolic compound include 1,1,3-tris- (2-methyl-4-hydroxy-5-tert-butylphenyl) butane, 1,3,5-trimethyl-2,4,6-tris ( 3,5-di-tert-butyl-4-bidoxybenzyl) benzene, tetrakis- {methylene-3- (3 ', 5'-di-tert-butyl-4'-hydroxyphenyl) propionate} methane, bis {(3,3'-bis-4'-hydroxy-3'-tert-butylphenyl) butyric acid} glycol ester, 1,3,5-tris (3 ', 5'-di-tert-butyl- Examples thereof include 4'-hydroxybenzyl) -s-triazine-2,4,6- (1H, 3H, 5H) trione, tocopherol (vitamin E) and the like.
 硫黄系としては、ジラウリルチオジプロピオネート、ジミリスチルチオジプロピオネート、ジステアリルチオプロピオネートなどを挙げることができる。 Examples of sulfur-based compounds include dilauryl thiodipropionate, dimyristyl thiodipropionate, and distearyl thiopropionate.
 ホスファイト系としては、トリフェニルホスファイト、ジフェニルイソデシルホスファイト、フェニルジイソデシルホスファイト、4,4′-ブチリデン-ビス(3-メチル-6-tert-ブチルフェニル-ジ-トリデシル)ホスファイト、サイクリックネオペンタンテトライルビス(オクタデシルホスファイト)、トリス(モノおよび/またはジ)フェニルホスファイト、ジイソデシルペンタエリスリトールジホスファイト、9,10-ジヒドロ-9-オキサ-10-ホスファフェナスレン-10-オキサイド、10-(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)-9,10-ジヒドロ-9-オキサ-10-ホスファフェナンスレン-10-オキサイド、10-デシロキシ-9,10-ジヒドロ-9-オキサ-10-ホスファフェナンスレン、サイクリックネオペンタンテトライルビス(2,4-ジ-tert-ブチルフェニル)ホスファイト、サイクリックネオペンタンテトライルビス(2,6-ジ-tert-メチルフェニル)ホスファイト、2,2-メチレンビス(4,6-tert-ブチルフェニル)オクチルホスファイトなどが例示できる。
  上記酸化防止剤は、1種のみを単独で又は2種以上を組み合わせて用いることができる。
Examples of phosphites include triphenyl phosphite, diphenylisodecyl phosphite, phenyl diisodecyl phosphite, 4,4′-butylidene-bis (3-methyl-6-tert-butylphenyl-di-tridecyl) phosphite, Crick neopentanetetrayl bis (octadecyl phosphite), tris (mono and / or di) phenyl phosphite, diisodecyl pentaerythritol diphosphite, 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10- Oxide, 10- (3,5-di-tert-butyl-4-hydroxybenzyl) -9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, 10-decyloxy-9,10 -Dihydro-9-oxa-10-fo Phaphenanthrene, cyclic neopentanetetraylbis (2,4-di-tert-butylphenyl) phosphite, cyclic neopentanetetraylbis (2,6-di-tert-methylphenyl) phosphite, 2 , 2-methylenebis (4,6-tert-butylphenyl) octyl phosphite.
The said antioxidant can be used individually by 1 type or in combination of 2 or more types.
 本発明においては、酸化防止剤の効果、熱安定性、経済性等から高分子型フェノール系などのフェノール系およびホスファイト系の酸化防止剤が好ましく、中でも耐熱分解性に優れたホスファイト系の酸化防止剤がより好ましい。
  該酸化防止剤の添加量は、アクリル系樹脂層(A)を構成する樹脂組成物100質量部に対して、0.001~0.5質量部の範囲であり、0.05~0.3質量部添加することが好ましい。
In the present invention, phenolic and phosphite-based antioxidants such as high-molecular-weight phenols are preferred in view of the effect of antioxidants, thermal stability, economy, etc. Among them, phosphite-based ones having excellent thermal decomposition resistance are preferred. Antioxidants are more preferred.
The amount of the antioxidant added is in the range of 0.001 to 0.5 parts by mass with respect to 100 parts by mass of the resin composition constituting the acrylic resin layer (A), and 0.05 to 0.3 It is preferable to add part by mass.
(紫外線吸収剤)
 紫外線吸収剤としては、種々の市販品が適用でき、ベンゾフェノン系、ベンゾトリアゾール系、トリアジン系、サリチル酸エステル系など各種タイプのものを挙げることができる。
  ベンゾフェノン系紫外線吸収剤としては、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-メトキシ-2’-カルボキシベンゾフェノン、2-ヒドロキシ-4-オクトキシベンゾフェノン、2-ヒドロキシ-4-n-ドデシルオキシベンゾフェノン、2-ヒドロキシ-4-n-オクタデシルオキシベンゾフェノン、2-ヒドロキシ-4-ベンジルオキシベンゾフェノン、2-ヒドロキシ-4-メトキシ-5-スルホベンゾフェノン、2-ヒドロキシ-5- クロロベンゾフェノン、2,4-ジヒドロキシベンゾフェノン、2,2’-ジヒドロキシ-4-メトキシベンゾフェノン、2,2’-ジヒドロキシ-4,4’-ジメトキシベンゾフェノン、2,2’,4,4’-テトラヒドロキシベンゾフェノンなどが例示できる。
(UV absorber)
As the ultraviolet absorber, various commercially available products can be applied, and various types such as benzophenone, benzotriazole, triazine, and salicylic acid ester can be exemplified.
Examples of benzophenone ultraviolet absorbers include 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxy-2′-carboxybenzophenone, 2-hydroxy-4-octoxybenzophenone, 2-hydroxy-4-n-dodecyl. Oxybenzophenone, 2-hydroxy-4-n-octadecyloxybenzophenone, 2-hydroxy-4-benzyloxybenzophenone, 2-hydroxy-4-methoxy-5-sulfobenzophenone, 2-hydroxy-5-chlorobenzophenone, 2,4 Examples include -dihydroxybenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone, 2,2'-dihydroxy-4,4'-dimethoxybenzophenone, 2,2 ', 4,4'-tetrahydroxybenzophenone.
 ベンゾトリアゾール系紫外線吸収剤としては、ヒドロキシフェニル置換ベンゾトリアゾール化合物であって、2-(2-ヒドロキシ-5-メチルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-5-t-ブチルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-3,5-ジメチルフェニル)ベンゾトリアゾール、2-(2-メチル-4-ヒドロキシフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-3-メチル-5-t-ブチルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-3,5-ジ-t-アミルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-3,5-ジ-t-ブチルフェニル)ベンゾトリアゾールなどが例示できる。
  トリアジン系紫外線吸収剤としては、2-[4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン-2-イル]-5-(オクチルオキシ)フェノール、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-(ヘキシルオキシ)フェノールなどが例示できる。
  サリチル酸エステル系としては、フェニルサリチレート、p-オクチルフェニルサリチレートなどが例示できる。
  上記紫外線吸収剤は、1種のみを単独で又は2種以上を組み合わせて用いることができる。
  該紫外線吸収剤の添加量は、アクリル系樹脂層(A)を構成する樹脂組成物100質量部に対して、0.3~5.0質量部の範囲であり、0.5~2.0質量部添加することが好ましい。
Benzotriazole-based UV absorbers include hydroxyphenyl-substituted benzotriazole compounds including 2- (2-hydroxy-5-methylphenyl) benzotriazole and 2- (2-hydroxy-5-tert-butylphenyl) benzotriazole 2- (2-hydroxy-3,5-dimethylphenyl) benzotriazole, 2- (2-methyl-4-hydroxyphenyl) benzotriazole, 2- (2-hydroxy-3-methyl-5-tert-butylphenyl) And benzotriazole, 2- (2-hydroxy-3,5-di-t-amylphenyl) benzotriazole, 2- (2-hydroxy-3,5-di-t-butylphenyl) benzotriazole, and the like.
Examples of triazine ultraviolet absorbers include 2- [4,6-bis (2,4-dimethylphenyl) -1,3,5-triazin-2-yl] -5- (octyloxy) phenol, 2- (4 , 6-diphenyl-1,3,5-triazin-2-yl) -5- (hexyloxy) phenol and the like.
Examples of salicylic acid esters include phenyl salicylate and p-octylphenyl salicylate.
The said ultraviolet absorber can be used individually by 1 type or in combination of 2 or more types.
The addition amount of the ultraviolet absorber is in the range of 0.3 to 5.0 parts by mass with respect to 100 parts by mass of the resin composition constituting the acrylic resin layer (A). It is preferable to add part by mass.
(光安定剤)
 上記の紫外線吸収剤以外に耐候性を付与する光安定剤としては、ヒンダードアミン系光安定剤が好適に用いることができる。ヒンダードアミン系光安定剤は、紫外線吸収剤のようには紫外線を吸収しないが、紫外線吸収剤と併用することによって著しい相乗効果を示す。
(Light stabilizer)
In addition to the above UV absorbers, hindered amine light stabilizers can be suitably used as light stabilizers that impart weather resistance. The hindered amine light stabilizer does not absorb ultraviolet rays like the ultraviolet absorber, but exhibits a remarkable synergistic effect when used together with the ultraviolet absorber.
(ヒンダードアミン系光安定化剤)
 ヒンダードアミン系光安定化剤としては、コハク酸ジメチル-1-(2-ヒドロキシエチル)-4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン重縮合物、ポリ[{6-(1,1,3,3-テトラメチルブチル)アミノ-1,3,5-トリアジン-2,4-ジイル}{(2,2,6,6-テトラメチル-4-ピペリジル)イミノ}ヘキサメチレン{{2,2,6,6-テトラメチル-4-ピペリジル}イミノ}]、N,N′-ビス(3-アミノプロピル)エチレンジアミン-2,4-ビス[N-ブチル-N-(1,2,2,6,6-ペンタメチル-4-ピペリジル)アミノ]-6-クロロ-1,3,5-トリアジン縮合物、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、2-(3,5-ジ-tert-4-ヒドロキシベンジル)-2-n-ブチルマロン酸ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)などが例示できる。
  該ヒンダードアミン系光安定剤の添加量は、アクリル系樹脂層(A)を構成する樹脂組成物100質量部に対して、0.01~0.5質量部の範囲であり、0.05~0.3質量部添加することが好ましい。
(Hindered amine light stabilizer)
Examples of hindered amine light stabilizers include dimethyl-1- (2-hydroxyethyl) succinate-4-hydroxy-2,2,6,6-tetramethylpiperidine polycondensate, poly [{6- (1,1 , 3,3-tetramethylbutyl) amino-1,3,5-triazine-2,4-diyl} {(2,2,6,6-tetramethyl-4-piperidyl) imino} hexamethylene {{2, 2,6,6-tetramethyl-4-piperidyl} imino}], N, N′-bis (3-aminopropyl) ethylenediamine-2,4-bis [N-butyl-N- (1,2,2, 6,6-pentamethyl-4-piperidyl) amino] -6-chloro-1,3,5-triazine condensate, bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, 2- (3 , 5-Di-tert-4- Mud alkoxybenzylacetic) -2-n-butyl malonic acid bis (1,2,2,6,6-pentamethyl-4-piperidyl), and others.
The amount of the hindered amine light stabilizer added is in the range of 0.01 to 0.5 parts by mass with respect to 100 parts by mass of the resin composition constituting the acrylic resin layer (A), and 0.05 to 0 It is preferable to add 3 parts by mass.
<ポリカーボネート系樹脂層(B)>
 該ポリカーボネート系樹脂層(B)は、積層体の機能の内、特に耐衝撃性や耐熱性などを発現させる機能を分担するものである。このため該ポリカーボネート系樹脂層(B)は、ポリカーボネート系樹脂(B1)を単体で用いてもよいが、種々の改質剤(B2)と混合して用いることができる。
<Polycarbonate resin layer (B)>
The polycarbonate resin layer (B) shares a function of expressing the impact resistance, heat resistance, etc., among the functions of the laminate. For this reason, although the polycarbonate-type resin layer (B) may use the polycarbonate-type resin (B1) alone, it can be used by mixing with various modifiers (B2).
(ポリカーボネート系樹脂(B1))
 ポリカーボネート系樹脂(B1)は、芳香族ポリカーボネート系樹脂が好ましく用いることができるが脂肪族ポリカーボネート系樹脂でもよい。また、単独重合体でも他の共重合可能なモノマーとの共重合体のいずれであってもよい。さらに構造は分岐構造であっても、直鎖構造であってもよいし、分岐構造と直鎖構造との混合物であってもよい。
  本発明に用いるポリカーボネート系樹脂(B1)の製造方法はホスゲン法やエステル交換法、ピリジン法など公知のいずれの方法を用いてもかまわない。
(Polycarbonate resin (B1))
As the polycarbonate resin (B1), an aromatic polycarbonate resin can be preferably used, but an aliphatic polycarbonate resin may be used. Moreover, either a homopolymer or a copolymer with another copolymerizable monomer may be used. Furthermore, the structure may be a branched structure, a linear structure, or a mixture of a branched structure and a linear structure.
As a method for producing the polycarbonate resin (B1) used in the present invention, any known method such as a phosgene method, a transesterification method, or a pyridine method may be used.
 本発明に用いるポリカーボネート系樹脂(B1)の重量平均分子量は、通常、10,000~100,000、好ましくは、20,000~40,000、特に好ましくは、22,000~28,000の範囲のものを用いることができる。ポリカーボネート系樹脂(B1)は1種のみを単独で又は2種以上を組み合わせて用いることができる。ここで重量平均分子量が上記範囲にあれば、耐衝撃性が確保され、押出成形性も良好であるため好ましい。 The weight-average molecular weight of the polycarbonate resin (B1) used in the present invention is usually in the range of 10,000 to 100,000, preferably 20,000 to 40,000, particularly preferably 22,000 to 28,000. Can be used. The polycarbonate resin (B1) can be used alone or in combination of two or more. Here, if the weight average molecular weight is in the above range, impact resistance is ensured and extrusion moldability is also good, which is preferable.
 本発明に用いるポリカーボネート系樹脂(B1)は市販品を用いることも可能であり、芳香族ポリカーボネート系樹脂の具体例としては住化スタイロンポリカーボネート(株)製の商品名「カリバー(CALIBRE)」、「SDポリカ(SD POLYCA)」、三菱エンジニアリングプラスチックス(株)製の商品名「ユーピロン(Iupilon)」、「ノバレックス(NOVAREX)」、帝人(株)製の商品名「パンライト(Panlite)」などが例示できる。また、脂肪族ポリカーボネート系樹脂の具体例としては三菱化学(株)製の商品名「デュラビオ(DURABIO)」などが例示できる。 A commercially available product can be used as the polycarbonate resin (B1) used in the present invention. Specific examples of the aromatic polycarbonate resin include trade names “CALIBER”, manufactured by Sumika Stylon Polycarbonate Co., Ltd., “ “SD POLYCA”, trade name “Iupilon” manufactured by Mitsubishi Engineering Plastics, “NOVAREX”, trade name “Panlite” manufactured by Teijin Limited, etc. Can be illustrated. Moreover, as a specific example of the aliphatic polycarbonate resin, a trade name “DURABIO” manufactured by Mitsubishi Chemical Corporation can be exemplified.
(改質剤(B2))
 本発明においてポリカーボネート系樹脂(B1)と混合して用いる改質剤(B2)としては、ガラス転移温度や溶融粘度の調整および硬度向上などの目的で用いられ、具体的には、特定のポリエステル系樹脂(B2-1)や特定のアクリル系樹脂(B2-2)などが例示できる。
(Modifier (B2))
In the present invention, the modifier (B2) used by mixing with the polycarbonate resin (B1) is used for the purpose of adjusting the glass transition temperature and the melt viscosity and improving the hardness. Examples thereof include a resin (B2-1) and a specific acrylic resin (B2-2).
(特定のポリエステル系樹脂(B2-1))
 特定のポリエステル系樹脂(B2-1)は、カルボン酸単量体(イ)単位として、芳香族ジカルボン酸を80モル%以上、グリコール単量体(ロ)単位として、1,4-シクロヘキサンジメタノールを40モル%以上含む構成単位からなるポリエステル系樹脂である。
(Specific polyester resin (B2-1))
The specific polyester resin (B2-1) is composed of 80 mol% or more of aromatic dicarboxylic acid as a carboxylic acid monomer (A) unit and 1,4-cyclohexanedimethanol as a glycol monomer (B) unit. Is a polyester resin composed of structural units containing 40 mol% or more.
 ここで、ポリエステル系樹脂(B2-1)のカルボン酸単量体(イ)単位は、芳香族ジカルボン酸を80モル%以上含むものである。ここで、カルボン酸単量体(イ)単位中に芳香族ジカルボン酸が80モル%以上あれば、得られるポリエステル系樹脂(B2-1)の耐熱性および機械的強度が十分であるため好ましい。かかる観点から、芳香族ジカルボン酸は、カルボン酸単量体(イ)単位中に、下限値が85モル%以上含まれることがさらに好ましく、また、上限値が100モル%以下含まれることがさらに好ましい。
  該芳香族ジカルボン酸としては、特に制限はなく、テレフタル酸、イソフタル酸、ナフタレン-1,4または2,6-ジカルボン酸、アントラセンジカルボン酸、4,4’-ジフェニルジカルボン酸、4,4’-ジフェニルエーテルジカルボン酸、5-スルホイソフタル酸、3-スルホイソフタル酸ナトリウム等が挙げられる。芳香族ジカルボン酸は、そのエステルとして重合に供される場合もある。芳香族ジカルボン酸エステルとしては、特に制限はなく、上記の芳香族ジカルボン酸のエステルが好ましく、低級アルキルエステル、アリールエステル、炭酸エステル、酸ハロゲン化物等が挙げられる。また、カルボン酸単量体(イ)単位には、脂肪族ジカルボン酸を少量(通常、20モル%未満の範囲)含んでもよい。脂肪族ジカルボン酸としては、特に制限はなく、シュウ酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、セバシン酸、アゼライン酸、ドデカンジオン酸、ダイマー酸、1,3または1,4-シクロヘキサンジカルボン酸、シクロペンタンジカルボン酸、4,4’-ジシクロヘキシルジカルボン酸等が挙げられる。これらのカルボン酸単量体(イ)は、1種のみを単独で又は2種以上を組み合わせて用いることができる。
Here, the carboxylic acid monomer (A) unit of the polyester resin (B2-1) contains 80 mol% or more of aromatic dicarboxylic acid. Here, it is preferable that the aromatic dicarboxylic acid is 80 mol% or more in the carboxylic acid monomer (A) unit because the resulting polyester resin (B2-1) has sufficient heat resistance and mechanical strength. From such a viewpoint, the aromatic dicarboxylic acid is more preferably contained in the carboxylic acid monomer (a) unit with a lower limit of 85 mol% or more, and an upper limit of 100 mol% or less. preferable.
The aromatic dicarboxylic acid is not particularly limited, and includes terephthalic acid, isophthalic acid, naphthalene-1,4 or 2,6-dicarboxylic acid, anthracene dicarboxylic acid, 4,4′-diphenyldicarboxylic acid, 4,4′- Examples thereof include diphenyl ether dicarboxylic acid, 5-sulfoisophthalic acid, sodium 3-sulfoisophthalate and the like. The aromatic dicarboxylic acid may be subjected to polymerization as its ester. There is no restriction | limiting in particular as aromatic dicarboxylic acid ester, The ester of said aromatic dicarboxylic acid is preferable, and lower alkyl ester, aryl ester, carbonate ester, acid halide, etc. are mentioned. The carboxylic acid monomer (a) unit may contain a small amount of an aliphatic dicarboxylic acid (usually in a range of less than 20 mol%). The aliphatic dicarboxylic acid is not particularly limited, and oxalic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, sebacic acid, azelaic acid, dodecanedioic acid, dimer acid, 1,3 or 1,4-cyclohexanedicarboxylic acid And acid, cyclopentane dicarboxylic acid, 4,4′-dicyclohexyl dicarboxylic acid and the like. These carboxylic acid monomers (I) can be used alone or in combination of two or more.
 次に、ポリエステル系樹脂(B2-1)のグリコール単量体(ロ)単位は、1,4-シクロヘキサンジメタノールを40モル%以上含むものである。グリコール単量体(ロ)に使用されるグリコールには、上記した成分以外には特に制限はなく、エチレングリコール、ジエチレングリコール(副成する成分も含む)、1,2-プロピレングリコール、1,3-プロパンジオール、2,2-ジメチル-1,3-プロパンジオール、トランス-または-2,2,4,4-テトラメチル-1,3-シクロブタンジオール、1,4-ブタンジオール、ネオペンチルグリコール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,3-シクロヘキサンジメタノール、デカメチレングリコール、シクロヘキサンジオール、p-キシレンジオール、ビスフェノールA、テトラブロモビスフェノールA、テトラブロモビスフェノールA-ビス(2-ヒドロキシエチルエーテル)などが挙げられる。これらのグリコール単量体(ロ)は、1種のみを単独で又は2種以上を組み合わせて用いることができ、ポリエステル系樹脂に色調、透明性、耐熱性、耐衝撃性等を適宜付与することができるが、得られるポリエステル系樹脂の成形時における熱安定性を付与できる点や安価で工業的に入手が容易なことから、エチレングリコールが好ましく用いることができる。 Next, the glycol monomer (B) unit of the polyester resin (B2-1) contains 40 mol% or more of 1,4-cyclohexanedimethanol. There are no particular limitations on the glycol used in the glycol monomer (b) other than the above-mentioned components. Ethylene glycol, diethylene glycol (including by-product components), 1,2-propylene glycol, 1,3- Propanediol, 2,2-dimethyl-1,3-propanediol, trans- or -2,2,4,4-tetramethyl-1,3-cyclobutanediol, 1,4-butanediol, neopentyl glycol, 1 , 5-pentanediol, 1,6-hexanediol, 1,3-cyclohexanedimethanol, decamethylene glycol, cyclohexanediol, p-xylenediol, bisphenol A, tetrabromobisphenol A, tetrabromobisphenol A-bis (2- Hydroxyethyl ether) and the like. These glycol monomers (b) can be used alone or in combination of two or more, and appropriately impart color tone, transparency, heat resistance, impact resistance, etc. to the polyester resin. However, ethylene glycol can be preferably used because it can provide thermal stability during molding of the resulting polyester-based resin and is inexpensive and easily available industrially.
 グリコール単量体(ロ)に使用される1,4-シクロヘキサンジメタノールは、得られるポリエステル系樹脂(B2-1)に主に耐衝撃性を付与するとともに、ポリカーボネート系樹脂(B1)との相溶性を向上させるものである。また、1,4-シクロヘキサンジメタノールには、シス型とトランス型の2種類の異性体が存在するが、いずれであってもよい。ここで、グリコール単量体(ロ)単位中の含有量が40モル%以上であれば、得られるポリエステル系樹脂(B2-1)に耐衝撃性を付与する効果が十分であり、また、ポリカーボネート系樹脂(B1)との相溶性が向上し、透明性が低下しにくいため好ましい。かかる観点から、1,4-シクロヘキサンジメタノールは、グリコール単量体(ロ)単位中に、下限値が50モル%以上含まれることがさらに好ましく、また、上限値が100モル%以下含まれることが好ましく、80モル%以下含まれることがさらに好ましい。 1,4-cyclohexanedimethanol used for the glycol monomer (b) mainly imparts impact resistance to the resulting polyester resin (B2-1) and has a phase with the polycarbonate resin (B1). It improves solubility. In addition, 1,4-cyclohexanedimethanol has two types of isomers, cis-type and trans-type, and any of them may be used. Here, if the content in the glycol monomer (b) unit is 40 mol% or more, the effect of imparting impact resistance to the resulting polyester resin (B2-1) is sufficient, and the polycarbonate resin This is preferable because the compatibility with the resin (B1) is improved and the transparency is hardly lowered. From this point of view, 1,4-cyclohexanedimethanol preferably has a lower limit of 50 mol% or more in the glycol monomer (b) unit, and an upper limit of 100 mol% or less. Is more preferable, and 80 mol% or less is more preferable.
 該ポリエステル系樹脂(B2-1)は市販品を用いることも可能であり具体例としては、SKケミカル(株)製の商品名「スカイグリーン(SKYGREEN)J2003」、イーストマン・ケミカル(株)製の商品名「イースター(EASTAR)PCTG Copolyester24635」などが例示できる。 The polyester-based resin (B2-1) may be a commercially available product. Specific examples include a product name “SKYGREEN J2003” manufactured by SK Chemical Co., Ltd., and Eastman Chemical Co., Ltd. The product name “Easter (PCG Copolyester 24635)” can be exemplified.
 ポリカーボネート系樹脂(B1)と上記ポリエステル系樹脂(B2-1)との混合質量比は特に制限されるものではないが、(B1)/(B2-1)=99~1/1~99であることが好ましく、95~5/5~95であることがより好ましく、90~10/10~90であることがさらに好ましい。両者の混合組成物は相溶するためポリカーボネート系樹脂(B1)のガラス転移温度とポリエステル系樹脂(B2-1)のガラス転移温度との間で任意に調整することができるため好ましい。
  本発明に用いるアクリル系樹脂層(A)のガラス転移温度は、100~140℃であることが好ましく、110~140℃であることがより好ましく、115~140℃であることがさらに好ましく、120~140℃であることが特に好ましい。ここで、ポリカーボネート系樹脂層(B)のガラス転移温度は、100~160℃であることが好ましいが、上記混合割合を(B1)/(B2-1)=80~20/20~80とすることにより、100~140℃程度に調整することができる。また、アクリル系樹脂層(A)のガラス転移温度とポリカーボネート系樹脂層(B)のガラス転移温度との差の絶対値は、30℃以下であると、例えば温度85℃、湿度85%RHのような高温高湿環境にさらした場合でも、積層体の反りが抑制できるため好ましい。かかる観点から、該差の絶対値は、20℃以下であることがより好ましく、10℃以下であることがさらに好ましく、5℃以下であることが特に好ましい。これは、高温高湿環境下において、アクリル系樹脂層(A)は吸水により軟化温度が低下することで種々の歪の緩和現象が生じ易いが、該差の絶対値が上記範囲内であれば、高温高湿環境下で両層の寸法変化挙動が近くなり、結果として反りが抑制されるものと考えられる。
  本発明において、上記ガラス転移温度は、示差走査熱量計を用いて、JIS K7121に準じて加熱速度10℃/分で測定したものであるが、その他の公知の機器分析装置、例えば、動的粘弾性装置などでも測定することができる。
The mixing mass ratio between the polycarbonate resin (B1) and the polyester resin (B2-1) is not particularly limited, but (B1) / (B2-1) = 99 to 1/1 to 99. It is preferably 95 to 5/5 to 95, more preferably 90 to 10/10 to 90. Since the mixed composition of the two is compatible, it can be arbitrarily adjusted between the glass transition temperature of the polycarbonate resin (B1) and the glass transition temperature of the polyester resin (B2-1), and thus is preferable.
The glass transition temperature of the acrylic resin layer (A) used in the present invention is preferably 100 to 140 ° C., more preferably 110 to 140 ° C., further preferably 115 to 140 ° C., 120 A temperature of ˜140 ° C. is particularly preferred. Here, the glass transition temperature of the polycarbonate resin layer (B) is preferably 100 to 160 ° C., but the mixing ratio is (B1) / (B2-1) = 80 to 20/20 to 80. Thus, the temperature can be adjusted to about 100 to 140 ° C. The absolute value of the difference between the glass transition temperature of the acrylic resin layer (A) and the glass transition temperature of the polycarbonate resin layer (B) is 30 ° C. or less, for example, at a temperature of 85 ° C. and a humidity of 85% RH. Even when exposed to such a high temperature and high humidity environment, warpage of the laminate can be suppressed, which is preferable. From this viewpoint, the absolute value of the difference is more preferably 20 ° C. or less, further preferably 10 ° C. or less, and particularly preferably 5 ° C. or less. This is because, under a high temperature and high humidity environment, the acrylic resin layer (A) is susceptible to various strain relaxation phenomena due to a decrease in softening temperature due to water absorption, but the absolute value of the difference is within the above range. It is considered that the dimensional change behavior of both layers becomes close in a high temperature and high humidity environment, and as a result, warpage is suppressed.
In the present invention, the glass transition temperature is measured using a differential scanning calorimeter at a heating rate of 10 ° C./min according to JIS K7121, but other known instrumental analyzers such as dynamic viscosity are used. It can also be measured with an elastic device.
(特定のアクリル系樹脂(B2-2))
 次に特定のアクリル系樹脂(B2-2)は、芳香族(メタ)アクリレート単量体単位5~80質量%およびメチルメタクリレート単量体単位95~20質量%からなるアクリル系共重合体である。
  ここで、芳香族(メタ)アクリレート単量体単位としては、フェニル(メタ)アクリレート、ベンジル(メタ)アクリレートなどが例示できる。これらは1種のみを単独で又は2種以上を組み合わせて用いることができる。ここで本発明においては、ポリカーボネート系樹脂(B1)との相溶性などからフェニルメタクリレートやベンジルメタクリレートが好ましく、フェニルメタクリレートがより好ましい。
  アクリル系樹脂(B2-2)には、必要に応じて芳香族(メタ)アクリレート単量体単位およびメチルメタクリレート単量体単位以外の共重合可能な他の単量体単位を含有させることができる。その他の単量体単位を含有させる場合には、アクリル系樹脂(B2-2)中に0.1~10質量%であることが好ましい。
(Specific acrylic resin (B2-2))
Next, the specific acrylic resin (B2-2) is an acrylic copolymer composed of 5 to 80% by mass of aromatic (meth) acrylate monomer units and 95 to 20% by mass of methyl methacrylate monomer units. .
Here, examples of the aromatic (meth) acrylate monomer unit include phenyl (meth) acrylate and benzyl (meth) acrylate. These can be used alone or in combination of two or more. Here, in the present invention, phenyl methacrylate and benzyl methacrylate are preferable from the viewpoint of compatibility with the polycarbonate resin (B1), and phenyl methacrylate is more preferable.
The acrylic resin (B2-2) can contain other copolymerizable monomer units other than the aromatic (meth) acrylate monomer unit and the methyl methacrylate monomer unit, if necessary. . When other monomer units are contained, the content is preferably 0.1 to 10% by mass in the acrylic resin (B2-2).
 芳香族(メタ)アクリレート単量体単位とメチルメタクリレート単量体単位とが上記範囲内にあれば、ポリカーボネート系樹脂(B1)との相溶性や表面硬度向上効果が発現できるため好ましい。かかる観点から、芳香族(メタ)アクリレート単量体単位10~70質量%およびメチルメタクリレート単量体単位90~30質量%であることがより好ましく、芳香族(メタ)アクリレート単量体単位25~60質量%およびメチルメタクリレート単量体単位75~40質量%であることがさらに好ましい。 It is preferable that the aromatic (meth) acrylate monomer unit and the methyl methacrylate monomer unit are in the above ranges since compatibility with the polycarbonate resin (B1) and an effect of improving the surface hardness can be expressed. From this viewpoint, the aromatic (meth) acrylate monomer unit is preferably 10 to 70% by mass and the methyl methacrylate monomer unit 90 to 30% by mass, and the aromatic (meth) acrylate monomer unit 25 to More preferably, it is 60% by mass and 75 to 40% by mass of methyl methacrylate monomer units.
 該アクリル系樹脂(B2-2)は、ゲルパーミエーションクロマトグラフィー(GPC)にて測定されるポリスチレン換算の重量平均分子量(Mw)が5,000~30,000であることが好ましい。ここで重量平均分子量(Mw)が該範囲であるとポリカーボネート系樹脂(B1)との相溶性が良好であり、得られるポリカーボネート系樹脂層(B)の成形性や表面硬度向上効果および外観などに優れるため好ましい。かかる観点から、重量平均分子量(Mw)の範囲は10,000~28,000であることがより好ましい。 The acrylic resin (B2-2) preferably has a polystyrene-reduced weight average molecular weight (Mw) of 5,000 to 30,000 as measured by gel permeation chromatography (GPC). Here, when the weight average molecular weight (Mw) is within this range, the compatibility with the polycarbonate resin (B1) is good, and the resulting polycarbonate resin layer (B) has a moldability, surface hardness improvement effect and appearance. It is preferable because it is excellent. From such a viewpoint, the range of the weight average molecular weight (Mw) is more preferably 10,000 to 28,000.
 該アクリル系樹脂(B2-2)は市販品を用いることも可能であり具体例としては、三菱レイヨン(株)製の商品名「メタブレン(MATABLEN)H-880」などが例示できる。 As the acrylic resin (B2-2), a commercially available product can be used. As a specific example, a trade name “MATEBLEN H-880” manufactured by Mitsubishi Rayon Co., Ltd. can be exemplified.
 ポリカーボネート系樹脂(B1)と上記アクリル系樹脂(B2-2)との混合割合は特に制限されるものではないが、(B1)/(B2-2)=99~65/1~35質量%であることが好ましい。ここで混合割合が該範囲内にあれば得られるポリカーボネート系樹脂層(B)の成形性や表面硬度向上効果および外観などに優れるため好ましい。かかる観点から、(B1)/(B2-2)=95~70/5~30質量%であることがより好ましい。 The mixing ratio of the polycarbonate resin (B1) and the acrylic resin (B2-2) is not particularly limited, but (B1) / (B2-2) = 99 to 65/1 to 35% by mass. Preferably there is. Here, if the mixing ratio is within this range, the polycarbonate-based resin layer (B) obtained is preferable because it is excellent in moldability, surface hardness improvement effect, appearance, and the like. From this viewpoint, it is more preferable that (B1) / (B2-2) = 95 to 70/5 to 30% by mass.
 本発明のポリカーボネート系樹脂層(B)を構成する樹脂組成物には、本発明の効果を阻害しない範囲で適宜、上記した種々の添加剤や他の樹脂を配合することができる。ここで添加剤としては、例えば酸化防止剤、紫外線吸収剤、光安定剤、滑剤、難燃剤、着色剤、加水分解防止剤などが挙げられる。 In the resin composition constituting the polycarbonate-based resin layer (B) of the present invention, the above-described various additives and other resins can be appropriately blended within a range that does not impair the effects of the present invention. Examples of the additive include an antioxidant, an ultraviolet absorber, a light stabilizer, a lubricant, a flame retardant, a colorant, and a hydrolysis inhibitor.
(加水分解防止剤)
 加水分解防止剤としては、フェノール系化合物、カルボジイミド化合物の単量体または重合体およびオキサゾリン化合物の単量体または重合体などが例示できる。本発明においては、カルボジイミド化合物の単量体または重合体が好適に用いることができる。
(Hydrolysis inhibitor)
Examples of hydrolysis inhibitors include phenolic compounds, carbodiimide compound monomers or polymers, and oxazoline compound monomers or polymers. In the present invention, a monomer or polymer of a carbodiimide compound can be preferably used.
 該カルボジイミド化合物としては、下記一般式(1)に示す基本構造を有するものが挙げられる。 Examples of the carbodiimide compound include those having a basic structure represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 一般式(1)中、nは1以上の整数であり、Rは有機系結合単位を示す。例えば、Rは、脂肪族、脂環族、芳香族のいずれかであることができる。また、nは、通常、1~50の間の適当な整数が選択される。nが2以上の整数である場合に、2以上のRは同一でも異なっていてもよい。
  具体例としては、ビス(プロピルフェニル)カルボジイミド、ビス(ジプロピルフェニル)カルボジイミド、ポリ(4,4’-ジフェニルメタンカルボジイミド)、ポリ(p-フェニレンカルボジイミド)、ポリ(m-フェニレンカルボジイミド)、ポリ(トリルカルボジイミド)、ポリ(ジイソプロピルフェニレンカルボジイミド)、ポリ(メチル-ジイソプロピルフェニレンカルボジイミド)、ポリ(トリイソプロピルフェニレンカルボジイミド)、芳香族ポリカルボジイミド等、および、これらの単量体が、カルボジイミド化合物が例示できる。上記カルボジイミド化合物は、1種のみを単独で又は2種以上を組み合わせて用いることができる。カルボジイミド化合物の重合体としては分子量が2,000~50,000であることが好ましい。
In the general formula (1), n is an integer of 1 or more, and R represents an organic bond unit. For example, R can be either aliphatic, alicyclic, or aromatic. Also, n is usually selected from an appropriate integer between 1 and 50. When n is an integer of 2 or more, R of 2 or more may be the same or different.
Specific examples include bis (propylphenyl) carbodiimide, bis (dipropylphenyl) carbodiimide, poly (4,4′-diphenylmethanecarbodiimide), poly (p-phenylenecarbodiimide), poly (m-phenylenecarbodiimide), poly (tolyl). Carbodiimide), poly (diisopropylphenylene carbodiimide), poly (methyl-diisopropylphenylene carbodiimide), poly (triisopropylphenylene carbodiimide), aromatic polycarbodiimide, and the like, and carbodiimide compounds. The said carbodiimide compound can be used individually by 1 type or in combination of 2 or more types. The polymer of the carbodiimide compound preferably has a molecular weight of 2,000 to 50,000.
 該カルボジイミド化合物は市販品を用いることも可能であり具体例としては、Rhein Chemie GmbH社製の商品名「スタバクゾール(Stabaxol)P」、「スタバクゾール(Stabaxol)P100」、日清紡ケミカル(株)製の商品名「カルボジライト(CARBODILITE)HMV-8CA」、「カルボジライト(CARBODILITE)LA-1」などが例示できる。 The carbodiimide compound may be a commercially available product. Specific examples thereof include trade names “Stabaxol P”, “Stabaxol P100” manufactured by Rhein 清 Chemie GmbH, and products manufactured by Nisshinbo Chemical Co., Ltd. Examples include the names “CARBODILITE HMV-8CA” and “CARBODILITE LA-1”.
 該加水分解防止剤の添加量は、ポリカーボネート系樹脂層(B)を構成する樹脂組成物100質量部に対して、0.001~1.0質量部の範囲であり、0.05~0.5質量部添加することが好ましい。 The addition amount of the hydrolysis inhibitor is in the range of 0.001 to 1.0 part by mass with respect to 100 parts by mass of the resin composition constituting the polycarbonate resin layer (B), and 0.05 to 0.00. It is preferable to add 5 parts by mass.
<積層体>
 本発明の積層体は、ポリカーボネート系樹脂層(B)の少なくとも片面にアクリル系樹脂層(A)を有するものである。本発明においては、各層の上にさらに後述するハードコート層(C)を積層することができる。層構成の具体例としては、(A)/(B)、(A)/(B)/(A)、ハードコート層(C)を有する構成として、(C)/(A)/(B)、(C)/(A)/(B)/(A)、(C)/(A)/(B)/(C)および(C)/(A)/(B)/(A)/(C)が例示できる。ここで層構成の中に同一分類層を2層以上有する場合には、該層は同一組成でもよいし、異なった組成でもよい。本発明においては、(A)/(B)、(C)/(A)/(B)および(C)/(A)/(B)/(C)構成が好ましい。また、ディスプレイパネルなどの場合には、(外面側)(C)/(A)/(B)/(C)(内面側)や(外面側)(C)/(A)/(B)(内面側)となるように配置することがより好ましい。
<Laminated body>
The laminate of the present invention has an acrylic resin layer (A) on at least one side of a polycarbonate resin layer (B). In the present invention, a hard coat layer (C) described later can be further laminated on each layer. Specific examples of the layer structure include (A) / (B), (A) / (B) / (A), and a structure having a hard coat layer (C), (C) / (A) / (B) , (C) / (A) / (B) / (A), (C) / (A) / (B) / (C) and (C) / (A) / (B) / (A) / ( C) can be exemplified. Here, when two or more identical classification layers are included in the layer structure, the layers may have the same composition or different compositions. In the present invention, (A) / (B), (C) / (A) / (B) and (C) / (A) / (B) / (C) configurations are preferred. In the case of a display panel or the like, (outer side) (C) / (A) / (B) / (C) (inner side) or (outer side) (C) / (A) / (B) ( It is more preferable to arrange so that the inner surface side).
(積層体の厚み)
 本発明の積層体のアクリル系樹脂層(A)とポリカーボネート系樹脂層(B)との合計厚みは、特に制限されるものではないが、通常、0.1~3.0mmである。該合計厚みは、0.1~1.5mmであることが好ましく、0.15~1.2mmであることがより好ましい。
  また、該合計厚みは、本発明の積層体の適用用途によっても好ましい範囲がある。例えば、各種画像表示装置のフロントカバー材に適用する場合には、0.5~1.5mmであることが好ましく、0.6~1.2mmであることがより好ましく、0.7~1.1mmであることがさらに好ましい。該範囲内であれば、軽量性、剛性および高温や高湿な環境における形状安定性に優れるため好ましい。また、本発明の積層体に粘着層などを積層し、ガラスなどの表面の汚れや傷付きから保護したり、破壊した破片などの飛散を防止したりする用途に適用する場合には、0.1~0.6mmであることが好ましく、0.15~0.5mmであることがより好ましい。
(Thickness of laminate)
The total thickness of the acrylic resin layer (A) and the polycarbonate resin layer (B) of the laminate of the present invention is not particularly limited, but is usually 0.1 to 3.0 mm. The total thickness is preferably 0.1 to 1.5 mm, and more preferably 0.15 to 1.2 mm.
Further, the total thickness has a preferable range depending on the application of the laminate of the present invention. For example, when applied to the front cover material of various image display devices, the thickness is preferably 0.5 to 1.5 mm, more preferably 0.6 to 1.2 mm, and 0.7 to 1. More preferably, it is 1 mm. If it is in this range, it is preferable because it is excellent in lightness, rigidity, and shape stability in a high temperature and high humidity environment. In addition, when an adhesive layer or the like is laminated on the laminate of the present invention to protect it from dirt or scratches on the surface of glass or the like, or to prevent scattering of broken pieces or the like, 0. It is preferably 1 to 0.6 mm, and more preferably 0.15 to 0.5 mm.
 次に、本発明の積層体のアクリル系樹脂層(A)の厚みは、特に制限されるものではないが、該積層体の表面硬度や耐衝撃性および高温や高湿な環境における形状安定性などに影響する。かかる観点から、アクリル系樹脂層(A)の厚みは、0.01~0.25mmであることが好ましく、0.04~0.20mmであることがより好ましく、0.06~0.10mmであることがさらに好ましい。また、上記したアクリル系樹脂層(A)とポリカーボネート系樹脂層(B)との合計厚みを(T)した場合、アクリル系樹脂層(A)1層の厚み比((A)/(T))は、0.01~0.35であることが好ましく、0.05~0.30であることがより好ましく、0.07~0.20であることがさらに好ましい。上記厚みと厚み比の範囲内であれば、該積層体の表面硬度や耐衝撃性および高温や高湿な環境における形状安定性に優れるため好ましい。 Next, the thickness of the acrylic resin layer (A) of the laminate of the present invention is not particularly limited, but the surface hardness and impact resistance of the laminate and shape stability in high temperature and high humidity environments. Etc. From this viewpoint, the thickness of the acrylic resin layer (A) is preferably 0.01 to 0.25 mm, more preferably 0.04 to 0.20 mm, and 0.06 to 0.10 mm. More preferably it is. Further, when the total thickness of the acrylic resin layer (A) and the polycarbonate resin layer (B) is (T), the thickness ratio of the acrylic resin layer (A) 1 layer ((A) / (T) ) Is preferably from 0.01 to 0.35, more preferably from 0.05 to 0.30, and even more preferably from 0.07 to 0.20. If it is in the range of the said thickness and thickness ratio, since it is excellent in the surface hardness of this laminated body, impact resistance, and the shape stability in high temperature and a high humidity environment, it is preferable.
(全光線透過率)
 本発明の積層体の透明性の指標として全光線透過率を用いた場合、85%以上であることが好ましく、89%以上であることがより好ましい。本発明における全光線透過率は、JIS K7361-1に準じて測定したものである。
(Total light transmittance)
When the total light transmittance is used as an index of transparency of the laminate of the present invention, it is preferably 85% or more, and more preferably 89% or more. The total light transmittance in the present invention is measured according to JIS K7361-1.
(反り評価)
 本発明の積層体の反り評価は、次のようにして行ったものである。すなわち、得られた積層体から100mm角の試験片(n=3)を切り出し、まず、温度23℃、湿度50%RH環境下に24時間放置した。次に各試験片を温度85℃、湿度85%RH環境下に120時間放置し、次いで温度23℃、湿度50%RH環境下に24時間放置した後、試験片を定盤に静置させ、四隅の定盤からの高さを反り量として測定しその絶対値の平均値を評価したものである。高温高湿環境下に放置する前後の環境条件を同一にすることで高温高湿環境下での影響のみを測定することができる。
  本発明においては、該反り量は、1.5mm以下であることが好ましく、1.0mm以下であることがより好ましく、0.5mm以下であることがさらに好ましく、0mmであることが最も好ましい。上記範囲内であれば、積層体をより広い用途や環境下で使用できるため好ましい。
(Warp evaluation)
The warpage evaluation of the laminate of the present invention is performed as follows. That is, a 100 mm square test piece (n = 3) was cut out from the obtained laminate, and first left for 24 hours in a temperature 23 ° C., humidity 50% RH environment. Next, each test piece was allowed to stand for 120 hours in a temperature of 85 ° C. and a humidity of 85% RH, and then left for 24 hours in a temperature of 23 ° C. and a humidity of 50% RH. Then, the test piece was allowed to stand on a surface plate. The height from the platen at the four corners was measured as the amount of warpage, and the average value of the absolute values was evaluated. By making the environmental conditions the same before and after leaving in a high temperature and high humidity environment, only the influence under the high temperature and high humidity environment can be measured.
In the present invention, the amount of warpage is preferably 1.5 mm or less, more preferably 1.0 mm or less, further preferably 0.5 mm or less, and most preferably 0 mm. If it is in the said range, since a laminated body can be used in a wider use and environment, it is preferable.
 上記反り評価については、本発明では温度85℃、湿度85%RH環境下で評価したが高温高湿環境としては、温度60℃、湿度90%RHや温度70℃、湿度90%RHなどの条件が用いられる場合もある。
  また、反りの低減方法としては、積層体を製造する際に悪影響を与える歪を付与しないように製膜したり、Tg近傍で数時間~数日のアニーリングにより歪を緩和させたりする方法などが例示でき、具体的には、評価する環境条件下での熱収縮率を低減するように調整すればよい。さらに、後述するハードコート層(C)の表裏面への塗布厚みや種類により調整することもできる。
The warpage evaluation was performed in the present invention under the conditions of a temperature of 85 ° C. and a humidity of 85% RH. However, as a high temperature and high humidity environment, conditions such as a temperature of 60 ° C., a humidity of 90% RH, a temperature of 70 ° C., a humidity of 90% RH, etc. May be used.
Further, as a method for reducing warpage, there is a method in which a film is formed so as not to give a strain that adversely affects the production of a laminate, or a strain is relaxed by annealing for several hours to several days in the vicinity of Tg. Specifically, it may be adjusted so as to reduce the thermal contraction rate under the environmental conditions to be evaluated. Furthermore, it can also adjust with the application | coating thickness and kind to the front and back of the hard-coat layer (C) mentioned later.
(積層体の製造方法)
 次に、本発明の積層体の製造方法について説明するが、特に限定されるものではない。製膜方法としては、公知の方法、例えば単軸押出機、多軸押出機、バンバリーミキサー、ニーダーなどの溶融混合設備を有し、Tダイを用いる押出キャスト法がハンドリング性や生産性等の面から好適に用いることができる。積層体の形成方法としては、溶融混練された樹脂をフィードブロックあるいはマルチマニホールドを有するTダイにより共押出成形される方法が好適に用いることができる。また、積層体の外観を良好にするためには、表面を鏡面処理された成形ロール(金属弾性ロールやポリシングロールなど)を用いることが好ましい。
  Tダイを用いる押出キャスト法での成形温度は、用いる樹脂組成物の流動特性や製膜性等によって適宜調整されるが、概ね300℃以下、好ましくは、230~270℃である。成形ロールは、概ね90~130℃、好ましくは、95~115℃である。
(Laminate manufacturing method)
Next, although the manufacturing method of the laminated body of this invention is demonstrated, it does not specifically limit. As a film forming method, a known method, for example, a single-screw extruder, a multi-screw extruder, a Banbury mixer, a kneader or the like has melt mixing equipment, and an extrusion casting method using a T die is a surface such as handleability and productivity. Can be suitably used. As a method for forming the laminate, a method in which a melt-kneaded resin is co-extruded with a T-die having a feed block or a multi-manifold can be suitably used. Moreover, in order to make the external appearance of a laminated body favorable, it is preferable to use the shaping | molding roll (metal elastic roll, polishing roll, etc.) by which the surface was mirror-finished.
The molding temperature in the extrusion casting method using a T-die is appropriately adjusted depending on the flow characteristics and film forming properties of the resin composition to be used, but is generally 300 ° C. or less, preferably 230 to 270 ° C. The forming roll is generally 90 to 130 ° C, preferably 95 to 115 ° C.
 本発明においては、単軸押出機や多軸押出機が好適に用いることができるが各層の押出機にはベント機能とフィルター機能を有することが好ましい。ベント機能は、各層に用いる樹脂組成物の乾燥や微量の揮発成分の除去などに活用でき、気泡などの欠陥が少ない積層体を得ることができるため好ましい。また、フィルター機能は、種々の方式があり、具体的には、リーフディスクフィルター、バックディスクフィルター、コーン型フィルター、キャンドルフィルター、円筒型フィルターなどが例示できる。中でも有効ろ過面積を確保し易いリーフディスクフィルターが好ましい。フィルター機能により異物や微小ゲルブツなどを除去することができ、外観不良の少ない積層体を得ることができるため好ましい。 In the present invention, a single screw extruder or a multi-screw extruder can be preferably used, but each layer of the extruder preferably has a vent function and a filter function. The vent function is preferable because it can be used for drying the resin composition used for each layer, removing a small amount of volatile components, and the like, and a laminate having few defects such as bubbles can be obtained. Further, there are various types of filter functions, and specific examples include a leaf disc filter, a back disc filter, a cone type filter, a candle filter, and a cylindrical filter. Among them, a leaf disk filter that can easily secure an effective filtration area is preferable. The filter function can remove foreign matters, minute gels, and the like, and a laminated body with few appearance defects can be obtained.
 本発明で用いる樹脂組成物は、予め各成分をタンブラー、V型ブレンダー、バンバリーミキサー、押出機などの混合機により混合して使用してもよく、また押出機の供給口に計量した各成分を直接供給したり、更には2ヶ所以上の供給口を有する押出機の各供給口に別々に計量した成分を供給したりしてもよい。さらに各種添加剤の混合方法は、公知の方法を用いることができる。例えば、(a)各種添加剤を適当なベース樹脂に高濃度(代表的な含有量としては3~60質量%程度)に混合したマスターバッチを別途作製しておき、これを使用する樹脂に濃度を調整して混合する方法、(b)使用する樹脂に直接各種添加剤を混合する方法などが挙げられる。 The resin composition used in the present invention may be used by mixing each component in advance using a mixer such as a tumbler, V-type blender, Banbury mixer, or extruder, and each component measured at the supply port of the extruder may be used. The components may be directly supplied, or the components weighed separately may be supplied to each supply port of an extruder having two or more supply ports. Furthermore, the mixing method of various additives can use a well-known method. For example, (a) a master batch in which various additives are mixed in a suitable base resin at a high concentration (typically about 3 to 60% by mass) is prepared separately, and the concentration is added to the resin used. And (b) a method of directly mixing various additives into the resin to be used.
<ハードコート層(C)>
 ハードコート層(C)は、本発明の積層体に優れた表面硬度や耐擦傷性を付与する層である。
  ここで表面硬度については、鉛筆硬度をひとつの指標として評価することができる。本発明においては、測定する表面に対して、JIS K5600-5-4に準じて荷重750gfで鉛筆硬度を測定した。
  本発明の積層体のアクリル系樹脂層(A)の表面については、鉛筆硬度がH以上であることが好ましく、2H以上であることがより好ましく、3H以上であることが特に好ましい。また、外面側に適用するハードコート層(C)の表面については、鉛筆硬度は、4H以上であることが好ましく、5H以上であることがより好ましく、7H以上であることが特に好ましい。鉛筆硬度が4H以上であれば、優れた表面硬度を有する積層体を提供することができる。内面側に適用するハードコート層(C)の表面については、鉛筆硬度は、F以上であることが好ましく、H以上であることがより好ましい。鉛筆硬度がF以上であれば、工程内での輸送や加工時に積層体に摩擦傷が入るのを防ぐための傷付防止層として機能することができる。
<Hard coat layer (C)>
The hard coat layer (C) is a layer that imparts excellent surface hardness and scratch resistance to the laminate of the present invention.
Here, regarding the surface hardness, the pencil hardness can be evaluated as one index. In the present invention, the pencil hardness was measured with respect to the surface to be measured with a load of 750 gf according to JIS K5600-5-4.
Regarding the surface of the acrylic resin layer (A) of the laminate of the present invention, the pencil hardness is preferably H or higher, more preferably 2H or higher, and particularly preferably 3H or higher. Moreover, about the surface of the hard-coat layer (C) applied to an outer surface side, it is preferable that pencil hardness is 4H or more, It is more preferable that it is 5H or more, It is especially preferable that it is 7H or more. When the pencil hardness is 4H or more, a laminate having excellent surface hardness can be provided. As for the surface of the hard coat layer (C) applied to the inner surface side, the pencil hardness is preferably F or more, and more preferably H or more. If the pencil hardness is F or more, it can function as a scratch-preventing layer for preventing the layered product from being scratched during transportation and processing within the process.
 次に、外面側に適用するハードコート層(C)の表面の耐擦傷性については、スチールウール試験をひとつの指標として評価することができる。ここで、#0000のスチールウールを用いて荷重1000gfで擦ったときに、傷が発生するまでの往復回数が20回以上であることが好ましい。上記スチールウールで擦ったときに、表面に傷が発生するまでの往復回数が20回以上であれば、優れた耐擦傷性を有する傷のつきにくい積層体を提供することができる。かかる観点から、表面に傷が発生するまでの往復回数は20回以上であることが好ましく、300回以上であることがより好ましく、500回以上であることが特に好ましい。 Next, regarding the scratch resistance of the surface of the hard coat layer (C) applied to the outer surface side, the steel wool test can be evaluated as one index. Here, it is preferable that the number of reciprocations until scratching is 20 times or more when rubbing with a load of 1000 gf using # 0000 steel wool. If the number of reciprocations until the surface is scratched when rubbed with the steel wool is 20 times or more, it is possible to provide a scratch-resistant laminate having excellent scratch resistance. From this point of view, the number of reciprocations until the surface is scratched is preferably 20 times or more, more preferably 300 times or more, and particularly preferably 500 times or more.
(ハードコート剤)
 ハードコート剤としては、本発明において特に制限されるものではないが、電子線、放射線、紫外線などのエネルギー線を照射することにより硬化するか、あるいは加熱により硬化するものなどが適用できる。本発明においては、成形時間および生産性の観点から紫外線硬化性樹脂からなることが好ましい。
  ここで、硬化性樹脂の具体例としては、アクリレート化合物、ウレタンアクリレート化合物、エポキシアクリレート化合物、カルボキシル基変性エポキシアクリレート化合物、ポリエステルアクリレート化合物、共重合系アクリレート、脂環式エポキシ樹脂、グリシジルエーテルエポキシ樹脂、ビニルエーテル化合物、オキセタン化合物などが例示できる。これらの硬化性樹脂は、1種のみを単独で又は2種以上を組み合わせて用いることができる。より優れた表面硬度を付与する硬化性樹脂としては、多官能アクリレート化合物、多官能ウレタンアクリレート化合物、多官能エポキシアクリレート化合物など、ラジカル重合系の硬化性化合物や、アルコキシシラン、アルキルアルコキシシランなど、熱重合系の硬化性化合物を挙げることができ、さらに、上記硬化性樹脂に無機成分を含有させてなる有機・無機複合系硬化性樹脂組成物とすることもできる。
(Hard coat agent)
The hard coating agent is not particularly limited in the present invention, but a hard coating agent that cures by irradiating energy beams such as an electron beam, radiation, or ultraviolet rays, or that cures by heating can be applied. In the present invention, it is preferably made of an ultraviolet curable resin from the viewpoint of molding time and productivity.
Here, specific examples of the curable resin include acrylate compounds, urethane acrylate compounds, epoxy acrylate compounds, carboxyl group-modified epoxy acrylate compounds, polyester acrylate compounds, copolymer acrylates, alicyclic epoxy resins, glycidyl ether epoxy resins, Examples include vinyl ether compounds and oxetane compounds. These curable resins can be used alone or in combination of two or more. Examples of curable resins that impart superior surface hardness include radical polymerization curable compounds such as polyfunctional acrylate compounds, polyfunctional urethane acrylate compounds, and polyfunctional epoxy acrylate compounds, and heat such as alkoxysilanes and alkylalkoxysilanes. Polymerizable curable compounds can be mentioned, and an organic / inorganic composite curable resin composition obtained by adding an inorganic component to the curable resin can also be used.
 特に優れた表面硬度を付与する硬化性樹脂組成物として、有機・無機ハイブリッド系硬化性樹脂組成物を挙げることができる。有機・無機ハイブリッド系硬化性樹脂組成物としては、上記硬化性樹脂に反応性官能基を有する無機成分を含有させた硬化性樹脂組成物から構成されるものを挙げることができる。
  このような反応性官能基を有する無機成分を利用して、例えば、この無機成分がラジカル重合性モノマーと共重合および架橋することで、単に有機バインダーに無機成分を含有させてなる有機・無機複合系硬化性樹脂組成物に比べて、硬化収縮が生じにくく、かつ高い表面硬度を発現することができるので好ましい。さらに、硬化収縮の低減の観点からは、反応性官能基を有する無機成分として紫外線反応性のコロイダルシリカを含む有機・無機ハイブリッド系硬化性樹脂組成物をより好ましい例として挙げることができる。
An organic / inorganic hybrid curable resin composition can be exemplified as a curable resin composition that imparts particularly excellent surface hardness. Examples of the organic / inorganic hybrid curable resin composition include those composed of a curable resin composition containing an inorganic component having a reactive functional group in the curable resin.
Utilizing such an inorganic component having a reactive functional group, for example, an organic / inorganic composite in which this inorganic component is copolymerized and crosslinked with a radical polymerizable monomer, so that the organic binder simply contains the inorganic component. Compared to the system curable resin composition, it is preferable because curing shrinkage hardly occurs and high surface hardness can be expressed. Furthermore, from the viewpoint of reducing curing shrinkage, an organic / inorganic hybrid curable resin composition containing ultraviolet-reactive colloidal silica as an inorganic component having a reactive functional group can be mentioned as a more preferable example.
 特に優れた表面硬度を付与する手段としては、ハードコート層(C)に含有される無機成分および/または反応性官能基を有する無機成分の濃度で調整する方法が挙げられる。
  ハードコート層(C)に含有される無機成分および/または反応性官能基を有する無機成分の好ましい濃度の範囲は、10質量%以上、65質量%以下である。好ましい濃度の下限値は、10質量%以上であることが好ましく、20質量%以上であることがさらに好ましく、40質量%以上であることが特に好ましい。濃度が、10質量%以上であれば、ハードコート層(C)に優れた表面硬度を付与する効果が得られるので好ましい。一方、好ましい濃度の上限値は、65質量%以下であることが好ましく、60質量%以下であることがより好ましく、55質量%以下であることが特に好ましい。濃度が、65質量%以下であれば、ハードコート層(C)において、無機成分および/または反応性官能基を有する無機成分を最密に充填することが可能になり、優れた表面硬度を効果的に付与することができるので好ましい。
Examples of means for imparting particularly excellent surface hardness include a method of adjusting the concentration of the inorganic component and / or the inorganic component having a reactive functional group contained in the hard coat layer (C).
A preferable concentration range of the inorganic component and / or the inorganic component having a reactive functional group contained in the hard coat layer (C) is 10% by mass or more and 65% by mass or less. The lower limit of the preferred concentration is preferably 10% by mass or more, more preferably 20% by mass or more, and particularly preferably 40% by mass or more. A concentration of 10% by mass or more is preferable because an effect of imparting excellent surface hardness to the hard coat layer (C) can be obtained. On the other hand, the upper limit value of the preferred concentration is preferably 65% by mass or less, more preferably 60% by mass or less, and particularly preferably 55% by mass or less. If the concentration is 65% by mass or less, the hard coat layer (C) can be filled with an inorganic component and / or an inorganic component having a reactive functional group most closely, and an excellent surface hardness can be obtained. It is preferable because it can be applied to the target.
 ハードコート層(C)の形成方法としては、例えば、上記した硬化性樹脂組成物を有機溶剤に溶解、あるいは分散させた塗料として樹脂層の表面に塗工した後、硬化膜とすることにより、樹脂層の表面に形成・積層する方法があるが、この方法に限定されるものではない。
  樹脂層との積層方法としては、公知の方法が使用される。例えば、カバーフィルムを使用するラミネート方式、ディップコート法、ナチュラルコート法、リバースコート法、カンマコーター法、ロールコート法、スピンコート法、ワイヤーバー法、エクストルージョン法、カーテンコート法、スプレコート法、グラビアコート法等が挙げられる。その他、例えば、離型層にハードコート層(C)が形成されてなる転写シートを用いて、該ハードコート層(C)を樹脂層に積層する方法を採用してもよい。
  また、該ハードコート層(C)と樹脂層との密着性を向上させる目的で、樹脂層の表面にコロナ処理やプラズマ処理及びプライマー処理などの各種表面処理を行うことができる。
As a method for forming the hard coat layer (C), for example, after coating the surface of the resin layer as a paint obtained by dissolving or dispersing the curable resin composition in an organic solvent, a cured film is obtained. Although there is a method of forming and laminating on the surface of the resin layer, it is not limited to this method.
A known method is used as a method of laminating with the resin layer. For example, laminating method using cover film, dip coating method, natural coating method, reverse coating method, comma coater method, roll coating method, spin coating method, wire bar method, extrusion method, curtain coating method, spray coating method, The gravure coat method etc. are mentioned. In addition, for example, a method of laminating the hard coat layer (C) on the resin layer using a transfer sheet in which the hard coat layer (C) is formed on the release layer may be employed.
In addition, various surface treatments such as corona treatment, plasma treatment and primer treatment can be performed on the surface of the resin layer for the purpose of improving the adhesion between the hard coat layer (C) and the resin layer.
 ハードコート層(C)を形成する硬化性樹脂組成物は、成形時間および生産性の観点から紫外線硬化性樹脂からなるもの、即ち紫外線を照射することにより硬化するものからなることが好ましい。ここで紫外線を発する光源としては、無電極高圧水銀灯、有電極高圧水銀灯、無電極メタルハライドランプ、有電極メタルハライドランプ、キセノンランプ、超高圧水銀灯または水銀キセノンランプ等を用いることができる。中でも無電極高圧水銀灯は、高照度の紫外線を得られやすく、紫外線硬化性樹脂の硬化には有利となり好ましい。
  また、紫外線硬化性樹脂は、添加される光重合開始剤が紫外線を吸収して、励起、活性化されることで重合反応を起こし、紫外線硬化性樹脂の硬化反応が起こる。したがって、紫外線硬化性樹脂に添加されている光重合開始剤に応じた、即ち光重合開始剤の励起波長に応じた光源を選択すると、紫外線硬化性樹脂の硬化に有利となり好ましい。
The curable resin composition for forming the hard coat layer (C) is preferably made of an ultraviolet curable resin from the viewpoint of molding time and productivity, that is, one that is cured by irradiation with ultraviolet rays. Here, as a light source that emits ultraviolet rays, an electrodeless high-pressure mercury lamp, an electroded high-pressure mercury lamp, an electrodeless metal halide lamp, an electroded metal halide lamp, a xenon lamp, an ultra-high pressure mercury lamp, a mercury xenon lamp, or the like can be used. Among these, an electrodeless high-pressure mercury lamp is preferable because it is easy to obtain ultraviolet rays with high illuminance and is advantageous for curing an ultraviolet curable resin.
Further, in the ultraviolet curable resin, the added photopolymerization initiator absorbs ultraviolet rays and is excited and activated to cause a polymerization reaction, and a curing reaction of the ultraviolet curable resin occurs. Therefore, it is preferable to select a light source according to the photopolymerization initiator added to the ultraviolet curable resin, that is, according to the excitation wavelength of the photopolymerization initiator, which is advantageous for curing the ultraviolet curable resin.
(光重合開始剤)
 硬化性樹脂組成物が紫外線硬化性樹脂からなり紫外線を照射することにより硬化させる場合、硬化剤として光重合開始剤を使用する。光重合開始剤としては、例えば、ベンジル、ベンゾフェノンやその誘導体、チオキサントン類、ベンジルジメチルケタール類、α-ヒドロキシアルキルフェノン類、α-ヒドロキシアセトフェノン類、ヒドロキシケトン類、アミノアルキルフェノン類、アシルホスフィンオキサイド類などが挙げられる。中でも、α-ヒドロキシアルキルフェノン類は硬化時に黄変を起こしにくく、透明な硬化物が得られるので好ましい。また、アミノアルキルフェノン類は、非常に高い反応性を備え、優れた硬度の硬化物が得られるので好ましい。上記光重合開始剤は、1種のみを単独で又は2種以上を組み合わせて用いることができる。なお、光重合開始剤の添加量は、硬化性樹脂100質量部に対して、0.1~5質量部添加することが好ましい。
(Photopolymerization initiator)
When the curable resin composition is made of an ultraviolet curable resin and is cured by irradiation with ultraviolet rays, a photopolymerization initiator is used as a curing agent. Examples of the photopolymerization initiator include benzyl, benzophenone and derivatives thereof, thioxanthones, benzyldimethyl ketals, α-hydroxyalkylphenones, α-hydroxyacetophenones, hydroxyketones, aminoalkylphenones, acylphosphine oxides. Etc. Of these, α-hydroxyalkylphenones are preferred because they hardly cause yellowing during curing and a transparent cured product is obtained. In addition, aminoalkylphenones are preferable because they have very high reactivity and a cured product having excellent hardness can be obtained. The said photoinitiator can be used individually by 1 type or in combination of 2 or more types. The addition amount of the photopolymerization initiator is preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the curable resin.
 該光重合開始剤は市販品を用いることも可能であり具体例としては、“IRGACURE651”、“IRGACURE184”、“IRGACURE500”、“IRGACURE1000”、“IRGACURE2959”、“DAROCUR1173”、“IRGACURE127”、“IRGACURE907”、“IRGACURE369”、“IRGACURE379”、“IRGACURE1700”、“IRGACURE1800”、“IRGACURE819”、“IRGACURE784”〔以上のIRGACURE(イルガキュア)シリーズおよびDAROCUR(ダロキュア)シリーズは、BASF・ジャパン(株)製の商品名〕、“KAYACUREITX”、“KAYACUREDETX-S”、“KAYACUREBP-100”、“KAYACUREBMS”、“KAYACURE2-EAQ”〔以上のKAYACURE(カヤキュア)シリーズは、日本化薬(株)製の商品名〕などが例示できる。このうち、上記したα-ヒドロキシアルキルフェノン類に属するものとしては、例えば“IRGACURE184”を挙げることができ、一方、アミノアルキルフェノン類に属するものとして、例えば“IRGACURE907”、“IRGACURE369”、“IRGACURE379”を挙げることができる。 Commercially available photopolymerization initiators can be used. Specific examples include “IRGACURE651”, “IRGACURE184”, “IRGACURE500”, “IRGACURE1000”, “IRGACURE2959”, “DAROCUR1173”, “IRGACURE127”, “IRGACURE907”. ”,“ IRGACURE 369 ”,“ IRGACURE 379 ”,“ IRGACURE 1700 ”,“ IRGACURE 1800 ”,“ IRGACURE 819 ”,“ IRGACURE 784 ”[The above IRGACURE (IRGACURE) series and DAROCUR (Darocur) series are BASF Japan products) Name], “KAYACUREITX”, “KAYACUREDETX-S”, “KAYA UREBP-100 "," KAYACUREBMS "," KAYACURE2-EAQ "[more KAYACURE (Kayacure) series, manufactured by Nippon Kayaku Co., Ltd. under the trade name], and others. Among these, examples of the above-mentioned α-hydroxyalkylphenones include “IRGACURE184”, while examples of the aminoalkylphenones include “IRGACURE907”, “IRGACURE369”, “IRGACURE379”. Can be mentioned.
(表面調整成分)
 ハードコート層(C)を形成する硬化性樹脂組成物は、表面調整成分としてレベリング剤を含むことができる。レベリング剤としては、シリコーン系レベリング剤、アクリル系レベリング剤などを挙げることができ、特に、末端に反応性の官能基を有するものが好ましく、2官能以上の反応性の官能基を有するものがより好ましい。
  具体的には、両末端に2重結合を有するアクリル基を有するポリエーテル変性ポリジメチルシロキサン(例えば、ビックケミー・ジャパン(株)製の商品名「BYK-UV 3500」、「BYK-UV 3530」)や、2重結合を末端に2個ずつ計4個有するアクリル基を有するポリエステル変性ポリジメチルシロキサン(ビックケミー・ジャパン(株)製の商品名「BYK-UV 3570」)などが挙げられる。これらの中でも、ヘイズの値が安定し、かつ耐擦傷性の向上に寄与するアクリル基を有するポリエステル変性ポリジメチルシロキサンが特に好ましい。
(Surface conditioning component)
The curable resin composition forming the hard coat layer (C) can contain a leveling agent as a surface conditioning component. Examples of the leveling agent include silicone leveling agents and acrylic leveling agents. In particular, those having a reactive functional group at the terminal are preferable, and those having a reactive functional group having two or more functionalities are more preferable. preferable.
Specifically, polyether-modified polydimethylsiloxane having an acrylic group having double bonds at both ends (for example, trade names “BYK-UV 3500” and “BYK-UV 3530” manufactured by BYK Chemie Japan Co., Ltd.)) And a polyester-modified polydimethylsiloxane having an acrylic group having two double bonds at the end in total (trade name “BYK-UV 3570” manufactured by Big Chemie Japan Co., Ltd.). Among these, polyester-modified polydimethylsiloxane having an acrylic group that has a stable haze value and contributes to improvement of scratch resistance is particularly preferable.
(その他の成分)
 ハードコート層(C)を形成する硬化性樹脂組成物は、硬化性樹脂成分のほかに、例えば、ケイ素系化合物、フッ素系化合物、またはこれらの混合化合物などの滑剤や、酸化防止剤、紫外線吸収剤、帯電防止剤、シリコーン系化合物などの難燃剤、フィラー、ガラス繊維、耐衝撃性改質剤等の各種添加剤を本発明の効果を阻害しない範囲で含有することができる。
(Other ingredients)
In addition to the curable resin component, the curable resin composition for forming the hard coat layer (C) includes, for example, a lubricant such as a silicon compound, a fluorine compound, or a mixed compound thereof, an antioxidant, and an ultraviolet absorber. Various additives such as an agent, an antistatic agent, a flame retardant such as a silicone compound, a filler, glass fiber, and an impact modifier can be contained within a range that does not impair the effects of the present invention.
 硬化性樹脂組成物が紫外線硬化性樹脂からなり紫外線を照射することにより硬化させる場合、紫外線に対して透明度が高いため樹脂組成物の内部の硬化は速やかに進行する反面、酸素による硬化阻害作用(酸素障害と称する)のため、樹脂組成物の表面では硬化が滞る場合がある。この酸素障害に対しては、窒素ガスの供給により樹脂組成物周囲を窒素ガス雰囲気下とした上で紫外線を照射すると、樹脂組成物の内部とともに表面の硬化を速やかに進行させることができるので好ましい。 When the curable resin composition is made of an ultraviolet curable resin and is cured by irradiating with ultraviolet rays, the resin composition has a high degree of transparency with respect to the ultraviolet rays. Because of the oxygen disorder), curing may be delayed on the surface of the resin composition. For this oxygen disorder, it is preferable to irradiate the resin composition with a nitrogen gas atmosphere by supplying nitrogen gas and then irradiate with ultraviolet rays, since the curing of the surface can proceed rapidly together with the inside of the resin composition. .
 上記したハードコート層(C)の厚みは、特に制限されるものではないが、1~30μmの範囲であることが好ましく、3~25μmの範囲であることがより好ましく、5~20μmの範囲であることがさらに好ましく、7~15μmの範囲であることが特に好ましい。ここで、ハードコート層(C)の厚みが上記範囲にあれば、耐擦傷性が付与でき、また、応力によるクラックが発生し難いため好ましい。また、両面にハードコート層(C)を有する場合、各ハードコート層の厚みは、同一でもよいし異なっていてもよいが共に7~15μmの範囲であり、かつ、アクリル系樹脂層(A)表面のハードコート層の厚みがポリカーボネート系樹脂層(B)表面のハードコート層の厚みと同等以上であることが好ましい。 The thickness of the hard coat layer (C) is not particularly limited, but is preferably in the range of 1 to 30 μm, more preferably in the range of 3 to 25 μm, and in the range of 5 to 20 μm. More preferably, it is in the range of 7 to 15 μm. Here, it is preferable if the thickness of the hard coat layer (C) is in the above range because scratch resistance can be imparted and cracks due to stress are unlikely to occur. When the hard coat layer (C) is provided on both sides, the thickness of each hard coat layer may be the same or different, but both are in the range of 7 to 15 μm, and the acrylic resin layer (A) The thickness of the hard coat layer on the surface is preferably equal to or greater than the thickness of the hard coat layer on the surface of the polycarbonate resin layer (B).
 本発明の積層体およびハードコート層(C)を有する積層体にはその片面または両面に反射防止処理、防汚処理、帯電防止処理、耐候性処理および防眩処理のいずれか一つ以上を施すことができる。各々の処理の方法は特に限定されず、公知の方法を用いることができる。例えば反射低減塗料を塗布する方法、誘電体薄膜を蒸着する方法、帯電防止塗料を塗布する方法などが例示できる。 One or more of antireflection treatment, antifouling treatment, antistatic treatment, weather resistance treatment and antiglare treatment is applied to one or both sides of the laminate having the hard coat layer (C) according to the present invention. be able to. Each processing method is not particularly limited, and a known method can be used. For example, a method of applying a reflection reducing coating, a method of depositing a dielectric thin film, a method of applying an antistatic coating, and the like can be exemplified.
(想定用途)
 以上説明したように、本発明の積層体は、汎用材料を主原料として用いることで経済性に優れ、透明性、耐衝撃性、表面硬度および高温や高湿な環境における形状安定性に優れるため、基板材料や保護材料等の種々の用途に適用することができ、用途は特に制限されるものではない。
  特に、該積層体は各種基板材料や保護材料などとして用いることができる。具体的には、携帯型ディスプレイデバイス(携帯電話端末、スマートフォン、携帯型電子遊具、携帯情報端末、タブレット機器、モバイルパソコンなど)や設置型ディスプレイデバイス(液晶テレビ、液晶モニター、デスクトップパソコン、カーナビゲーション、自動車計器など)などに好適に用いることができる。
  さらに、本発明の積層体は、種々の加工方法で形状を付与してもよい。具体的には、金型を用いて加熱・加圧する方法、圧空成型や真空成型、ロールホーミング法などが例示できる。形状を付与することで曲面を有する画像表示装置や各種フレキシブル機器への適用が期待できる。なお、上記形状の付与は、本発明の積層体がハードコート層(C)などの他の層を有する場合でも、同様に行うことができる。
(Assumed use)
As described above, the laminate of the present invention is excellent in economy by using a general-purpose material as a main raw material, and is excellent in transparency, impact resistance, surface hardness, and shape stability in a high temperature and high humidity environment. It can be applied to various uses such as a substrate material and a protective material, and the use is not particularly limited.
In particular, the laminate can be used as various substrate materials and protective materials. Specifically, portable display devices (mobile phone terminals, smartphones, portable electronic playground equipment, personal digital assistants, tablet devices, mobile PCs, etc.) and stationary display devices (LCD TVs, LCD monitors, desktop PCs, car navigation systems, It can be suitably used for automobile instruments and the like.
Furthermore, the laminate of the present invention may be given a shape by various processing methods. Specific examples include a method of heating and pressurizing using a mold, a pressure forming method, a vacuum forming method, and a roll homing method. By applying the shape, application to an image display device having a curved surface and various flexible devices can be expected. The above shape can be imparted in the same manner even when the laminate of the present invention has other layers such as the hard coat layer (C).
 以下に実施例でさらに詳しく説明するが、これらにより本発明は何ら制限を受けるものではない。なお、本明細書中に表示される種々の測定値および評価は次のようにして行った。 In the following, the present invention will be described in more detail with reference to examples. Various measured values and evaluations displayed in this specification were performed as follows.
(1)ガラス転移温度(Tg)
 (株)パーキンエルマー製の示差走査熱量計、商品名「Pyris1 DSC」を用いて、JIS K7121に準じて、試料約10mgを加熱速度10℃/分で-40℃から200℃まで昇温し、200℃で1分間保持した後、冷却速度10℃/分で-40℃まで降温し、再度、加熱速度10℃/分で200℃まで昇温した時に測定されたサーモグラムからガラス転移温度(Tg)(℃)を求めた。なお、Tgの値は、少数第一位を四捨五入して記載した。
(1) Glass transition temperature (Tg)
Using a differential scanning calorimeter manufactured by PerkinElmer Co., Ltd., trade name “Pyris1 DSC”, according to JIS K7121, about 10 mg of the sample was heated from −40 ° C. to 200 ° C. at a heating rate of 10 ° C./min. After holding at 200 ° C. for 1 minute, the temperature was lowered to −40 ° C. at a cooling rate of 10 ° C./min, and again from the thermogram measured when the temperature was raised to 200 ° C. at a heating rate of 10 ° C./min, the glass transition temperature (Tg ) (° C). In addition, the value of Tg was rounded off to the first decimal place.
(2)全光線透過率
 得られた積層体から50mm角の試験片を切り出し、JIS K7361-1に準じて全光線透過率を測定し、その値を下記の基準で評価した。
(◎)全光線透過率が89%以上
(○)全光線透過率が85%以上、89%未満
(×)全光線透過率が85%未満
(2) Total light transmittance A test piece of 50 mm square was cut out from the obtained laminate, the total light transmittance was measured according to JIS K7361-1, and the value was evaluated according to the following criteria.
(◎) Total light transmittance is 89% or more (○) Total light transmittance is 85% or more and less than 89% (×) Total light transmittance is less than 85%
(3)鉛筆硬度
 測定する表面に対して、JIS K5600-5-4に準じて荷重750gfで鉛筆硬度を測定した。アクリル系樹脂層(A)表面の鉛筆硬度はH以上を合格(○)とし、ハードコート層(C)を有するポリカーボネート系樹脂層(B)表面の鉛筆硬度はF以上を合格(○)とした。
(3) Pencil hardness The pencil hardness was measured on the surface to be measured with a load of 750 gf according to JIS K5600-5-4. The pencil hardness on the surface of the acrylic resin layer (A) is H or higher, and the pencil hardness on the surface of the polycarbonate resin layer (B) having the hard coat layer (C) is F or higher (O). .
(4)反り評価
 得られた積層体から100mm角の試験片(n=3)を切り出し、まず、温度23℃、湿度50%RH環境下に24時間放置した。次に各試験片を温度85℃、湿度85%RH環境下に120時間放置し、次いで温度23℃、湿度50%RH環境下に24時間放置した後、試験片を定盤に静置させ、四隅の定盤からの高さを反り量として測定しその絶対値の平均値を下記の基準で評価した。
(◎)反り量が0.5mm以下
(○)反り量が0.5mmを超え、1.5mm以下
(×)反り量が1.5mmを超える
(4) Warpage Evaluation A 100 mm square test piece (n = 3) was cut out from the obtained laminate, and first left for 24 hours in a temperature 23 ° C., humidity 50% RH environment. Next, each test piece was allowed to stand for 120 hours in a temperature of 85 ° C. and a humidity of 85% RH, and then left for 24 hours in a temperature of 23 ° C. and a humidity of 50% RH. Then, the test piece was allowed to stand on a surface plate. The height from the surface plate at the four corners was measured as the amount of warpage, and the average absolute value was evaluated according to the following criteria.
(◎) Warpage amount is 0.5mm or less (○) Warpage amount is more than 0.5mm, 1.5mm or less (x) Warpage amount is more than 1.5mm
(5)密着性
 積層体表面のハードコート層(C)と他の層との密着性については、JIS K5600-5-6に準じて、クロスカット試験を行い、ハードコート層の剥離が見られなったものを合格(○)とした。
(5) Adhesiveness Regarding the adhesiveness between the hard coat layer (C) on the surface of the laminate and other layers, a cross-cut test was conducted according to JIS K5600-5-6, and the hard coat layer was peeled off. The result was determined to be a pass (O).
(6)耐擦傷性評価
 ハードコート層(C)の耐擦傷性については、下記の装置および条件で測定し、傷が発生するまでの往復回数が500回以上のものを合格(○)とした。
・装置:摩擦堅牢度試験機 学振型((株)大栄科学精器製作所製)
・スチールウール番手:♯0000
・試験荷重:1000gf
・試験速度:30往復/分
・試験ストローク:120mm
(6) Scratch resistance evaluation The scratch resistance of the hard coat layer (C) was measured with the following apparatus and conditions, and the number of reciprocations until the scratch occurred was 500 or more and passed (O). .
・ Equipment: Friction fastness tester Gakushin type (manufactured by Daiei Scientific Instruments)
・ Steel wool count: # 0000
・ Test load: 1000gf
・ Test speed: 30 reciprocations / minute ・ Test stroke: 120 mm
 実施例、比較例に用いた主な原料を下記する。
(アクリル系樹脂(A1))
(A1-1);アクリル系樹脂(三菱レイヨン(株)製、商品名:アクリペット VH001、密度:1.19g/cm、メタクリル酸メチル/アクリル酸メチル=99/1質量%、立体規則性(トリアッド分率):mm(9.2モル%)、mr(41.8モル%)、rr(49.0モル%)、Tg:111℃、MFR(温度:230℃、荷重:37.3N):2.0g/10min)
The main raw materials used in Examples and Comparative Examples are described below.
(Acrylic resin (A1))
(A1-1); acrylic resin (manufactured by Mitsubishi Rayon Co., Ltd., trade name: Acrypet VH001, density: 1.19 g / cm 3 , methyl methacrylate / methyl acrylate = 99/1% by mass, stereoregularity (Triad fraction): mm (9.2 mol%), mr (41.8 mol%), rr (49.0 mol%), Tg: 111 ° C., MFR (temperature: 230 ° C., load: 37.3 N) ): 2.0 g / 10 min)
(A1-2);アクリル系樹脂(住友化学(株)製、商品名:スミペックス EX、密度:1.19g/cm、メタクリル酸メチル=100質量%、Tg:106℃、MFR(温度:230℃、荷重:37.3N):1.5g/10min) (A1-2); acrylic resin (manufactured by Sumitomo Chemical Co., Ltd., trade name: Sumipex EX, density: 1.19 g / cm 3 , methyl methacrylate = 100% by mass, Tg: 106 ° C., MFR (temperature: 230) ° C, load: 37.3 N): 1.5 g / 10 min)
(共重合体(A2))
(A2-1);共重合体(電気化学工業(株)製、商品名:レジスファイ R-100、密度:1.14g/cm、スチレン/メタクリル酸メチル/マレイン酸無水物=75/15/10質量%、Tg:127℃、MFR(温度:230℃、荷重:37.3N):4.2g/10min)
(Copolymer (A2))
(A2-1); copolymer (manufactured by Denki Kagaku Kogyo Co., Ltd., trade name: Regisphi R-100, density: 1.14 g / cm 3 , styrene / methyl methacrylate / maleic anhydride = 75/15 / 10% by mass, Tg: 127 ° C., MFR (temperature: 230 ° C., load: 37.3 N): 4.2 g / 10 min)
(A2-2);共重合体(電気化学工業(株)製、商品名:レジスファイ R-300、密度:1.12g/cm、スチレン/メタクリル酸メチル/マレイン酸無水物=84/5/11質量%、Tg:131℃、MFR(温度:230℃、荷重:37.3N):4.3/10min) (A2-2); copolymer (manufactured by Denki Kagaku Kogyo Co., Ltd., trade name: Regisphi R-300, density: 1.12 g / cm 3 , styrene / methyl methacrylate / maleic anhydride = 84/5 / 11% by mass, Tg: 131 ° C., MFR (temperature: 230 ° C., load: 37.3 N): 4.3 / 10 min)
(ポリカーボネート系樹脂(B1))
(B1-1);ポリカーボネート系樹脂(住化スタイロンポリカーボネート(株)製、商品名:カリバー 301-4、密度:1.20g/cm、Tg:149℃、MFR(温度:300℃、荷重:11.8N):4.0g/10min)
(Polycarbonate resin (B1))
(B1-1): polycarbonate resin (manufactured by Sumika Stylon Polycarbonate Co., Ltd., trade name: Caliber 301-4, density: 1.20 g / cm 3 , Tg: 149 ° C., MFR (temperature: 300 ° C., load: 11.8 N): 4.0 g / 10 min)
(B1-2);ポリカーボネート系樹脂(住化スタイロンポリカーボネート(株)製、商品名:カリバー 301-10、密度:1.20g/cm、Tg:149℃、MFR(温度:300℃、荷重:11.8N):10.0g/10min) (B1-2); polycarbonate resin (manufactured by Sumika Stylon Polycarbonate Co., Ltd., trade name: Caliber 301-10, density: 1.20 g / cm 3 , Tg: 149 ° C., MFR (temperature: 300 ° C., load: 11.8N): 10.0 g / 10 min)
(B1-3);ポリカーボネート系樹脂(住化スタイロンポリカーボネート(株)製、商品名:カリバー 301-15、密度:1.20g/cm、Tg:149℃、MFR(温度:300℃、荷重:11.8N):15.0g/10min) (B1-3); polycarbonate resin (manufactured by Sumika Stylon Polycarbonate Co., Ltd., trade name: Caliber 301-15, density: 1.20 g / cm 3 , Tg: 149 ° C., MFR (temperature: 300 ° C., load: 11.8 N): 15.0 g / 10 min)
(改質剤(B2))
(ポリエステル系樹脂(B2-1))
(B2-1-1);ポリエステル系樹脂(SKケミカル(株)製、商品名:SKYGREEN J2003、密度:1.23g/cm、Tg:87℃)
(Modifier (B2))
(Polyester resin (B2-1))
(B2-1-1); polyester resin (manufactured by SK Chemical Co., Ltd., trade name: SKYGREEN J2003, density: 1.23 g / cm 3 , Tg: 87 ° C.)
(アクリル系樹脂(B2-2))
(B2-2-1);アクリル系樹脂(三菱レイヨン(株)製、商品名:メタブレン H-880、フェニルメタクリレート/メチルメタクリレート=34/66質量%、重量平均分子量:14,000)
(Acrylic resin (B2-2))
(B2-2-1); acrylic resin (manufactured by Mitsubishi Rayon Co., Ltd., trade name: Methabrene H-880, phenyl methacrylate / methyl methacrylate = 34/66 mass%, weight average molecular weight: 14,000)
(添加剤)(X)
(X-1);ホスファイト系酸化防止剤((株)ADEKA製、商品名:アデカスタブ PEP-36)
(X-2);加水分解防止剤(日清紡ケミカル(株)製、商品名:カルボジライト LA-1)
(Additive) (X)
(X-1); Phosphite antioxidant (manufactured by ADEKA, trade name: ADK STAB PEP-36)
(X-2); hydrolysis inhibitor (Nisshinbo Chemical Co., Ltd., trade name: Carbodilite LA-1)
(その他)
(P-1);MS樹脂(新日鐵住金化学(株)製、商品名:エスチレン MS-600、密度:1.13g/cm、メチルメタクリレート/スチレン=60/40質量%、MFR(温度:230℃、荷重:37.3N):5.0g/10min)
(Other)
(P-1): MS resin (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., trade name: Estyrene MS-600, density: 1.13 g / cm 3 , methyl methacrylate / styrene = 60/40 mass%, MFR (temperature : 230 ° C., load: 37.3 N): 5.0 g / 10 min)
<実施例1>
 表1に示すように、アクリル系樹脂層(A)として、アクリル系樹脂(A1-1)60質量部、共重合体(A2-1)40質量部および添加剤として(X-1)0.15質量部の割合で混合した樹脂組成物、また、ポリカーボネート系樹脂層(B)として、ポリカーボネート系樹脂(B1-1)60質量部、ポリエステル系樹脂(B2-1-1)40質量部ならびに添加剤として(X-1)0.15質量部および(X-2)0.10質量部の割合で混合した樹脂組成物をそれぞれベント機能とフィルター機能とを有する別々の押出機に供給し、樹脂温240~265℃で溶融混練し、フィードブロックで(A)層/(B)層の積層構成となるように、260℃のTダイにて共押出成形した後、95℃の鏡面ロールでキャスト冷却し、総厚みが0.70mm、各層厚みが(A)層/(B)層=0.08mm/0.62mmである積層体を得た。得られた積層体は外観が良好であり、また平面性にも優れていた。該積層体を用いて評価した結果を表1に示す。
<Example 1>
As shown in Table 1, as acrylic resin layer (A), 60 parts by mass of acrylic resin (A1-1), 40 parts by mass of copolymer (A2-1) and (X-1) 0. A resin composition mixed at a ratio of 15 parts by mass, and as a polycarbonate resin layer (B), 60 parts by mass of a polycarbonate resin (B1-1), 40 parts by mass of a polyester resin (B2-1-1) and an addition The resin compositions mixed at a ratio of 0.15 parts by weight of (X-1) and 0.10 parts by weight of (X-2) as an agent are supplied to separate extruders having a vent function and a filter function, respectively. It is melt-kneaded at a temperature of 240 to 265 ° C., coextruded with a 260 ° C. T-die so as to form a layered structure of (A) layer / (B) layer with a feed block, and then cast with a mirror roll at 95 ° C. Cooling, the total thickness is .70Mm, to give each layer thickness of the layer (A) / (B) layer = the laminate is 0.08 mm / 0.62 mm. The resulting laminate had good appearance and excellent flatness. The results of evaluation using the laminate are shown in Table 1.
<実施例2~8>
 表1に示すように、実施例1において各層の樹脂組成物を変更した以外は同様にして総厚みが0.70mmで外観と平面性に優れた積層体を得た。各層のTgや溶融粘度などにより適宜押出温度や鏡面ロール温度などを調整した。該積層体を用いて評価した結果を表1に示す。
<Examples 2 to 8>
As shown in Table 1, except that the resin composition of each layer was changed in Example 1, a laminate having a total thickness of 0.70 mm and excellent appearance and flatness was obtained. The extrusion temperature, mirror roll temperature, etc. were adjusted as appropriate according to the Tg and melt viscosity of each layer. The results of evaluation using the laminate are shown in Table 1.
<比較例1>
 表1に示すように、実施例1においてアクリル系樹脂層(A)の原料を、共重合体(A-2)を含まず、アクリル系樹脂(A1-1)単体のみを含む樹脂組成部に変更した以外は同様にして総厚みが0.70mmで外観と平面性に優れた積層体を得た。該積層体を用いて評価した結果を表1に示す。
<Comparative Example 1>
As shown in Table 1, the raw material of the acrylic resin layer (A) in Example 1 is not included in the copolymer (A-2), but in the resin composition part including only the acrylic resin (A1-1) alone. A laminated body having a total thickness of 0.70 mm and excellent appearance and flatness was obtained in the same manner except that it was changed. The results of evaluation using the laminate are shown in Table 1.
<比較例2>
 表1に示すように、実施例1においてアクリル系樹脂層(A)の原料を、アクリル系樹脂(A1-1)15質量部と共重合体(A2-1)85質量部とを含む樹脂組成物に変更した以外は同様にして総厚みが0.70mmの積層体を得た。しかし、アクリル系樹脂層(A)とポリカーボネート系樹脂層(B)との層間の接着性が不十分なため手で容易に剥離できるものであり評価を中止した。
<Comparative example 2>
As shown in Table 1, in Example 1, the raw material of the acrylic resin layer (A) contains 15 parts by mass of the acrylic resin (A1-1) and 85 parts by mass of the copolymer (A2-1). A laminate having a total thickness of 0.70 mm was obtained in the same manner except that the product was changed to a product. However, since the adhesion between the acrylic resin layer (A) and the polycarbonate resin layer (B) was insufficient, the evaluation was stopped because it was easily peelable by hand.
<比較例3>
 表1に示すように、実施例1においてアクリル系樹脂層(A)の原料に含まれる共重合体(A2-1)を(P-1)に変更した以外は同様にして総厚みが0.70mmの積層体を得た。しかし、アクリル系樹脂(A1-1)とMS樹脂(P-1)との相溶性が悪いためアクリル系樹脂層(A)が白濁したものであり評価を中止した。
<Comparative Example 3>
As shown in Table 1, in Example 1, the total thickness was set to be 0.00 except that the copolymer (A2-1) contained in the raw material of the acrylic resin layer (A) was changed to (P-1). A 70 mm laminate was obtained. However, since the compatibility between the acrylic resin (A1-1) and the MS resin (P-1) was poor, the acrylic resin layer (A) was cloudy and the evaluation was stopped.
<実施例9>
 実施例1で得た積層体のアクリル系樹脂層(A)の表面に有機・無機ハイブリッド系紫外線硬化性樹脂組成物(MOMENTIVE社製、商品名「UVHC7800G」、反応性官能基を有する無機シリカ含有量:30~40質量%)を、金属製バーコーターを用いて塗布し、90℃で1分間乾燥後、紫外線照射装置を用いて500mJ/cmの露光量で露光し、厚み12μmのハードコート層(C)を有する積層体を得た。該積層体のハードコート層を評価した結果を表2に示す。
<Example 9>
Organic / inorganic hybrid ultraviolet curable resin composition (product name “UVHC7800G”, manufactured by MOMENTIVE, containing inorganic silica containing reactive functional groups) on the surface of the acrylic resin layer (A) of the laminate obtained in Example 1 (Amount: 30 to 40% by mass) is applied using a metal bar coater, dried at 90 ° C. for 1 minute, exposed to an exposure dose of 500 mJ / cm 2 using an ultraviolet irradiation device, and a hard coat having a thickness of 12 μm. A laminate having the layer (C) was obtained. Table 2 shows the results of evaluating the hard coat layer of the laminate.
<実施例10~14>
 表2に示すように、実施例9において用いる積層体ならびにハードコート層の塗布面および厚みを変更した以外は同様にして積層体を得た。該積層体のハードコート層を評価した結果を表2に示す。なお、両面に塗布する場合は、片面ずつハードコート層を形成し、各面に同様に紫外線照射を行った。
<Examples 10 to 14>
As shown in Table 2, a laminate was obtained in the same manner except that the laminate used in Example 9 and the application surface and thickness of the hard coat layer were changed. Table 2 shows the results of evaluating the hard coat layer of the laminate. In addition, when apply | coating to both surfaces, the hard-coat layer was formed for each surface, and ultraviolet irradiation was similarly performed to each surface.
<実施例15>
 実施例8において、ポリカーボネート系樹脂層(B)の原料に含まれるポリカーボネート系樹脂(B1-3)100質量部を(B1-2)90質量部および(B2-2-1)10質量部に、各層の厚みを(A)層/(B)層=0.08mm/0.92mm変更した以外は同様にして総厚みが1.00mmの積層体を得た。得られた積層体は外観が良好であり、また平面性にも優れていた。ここで、ポリカーボネート系樹脂層(B)の鉛筆硬度は、アクリル系樹脂(B2-2-1)の混合により2BからFまで向上した。次いで、表2に示すように、実施例9において用いる積層体ならびにハードコート層の塗布面および厚みを変更した以外は同様にしてハードコート層(C)を有する積層体を得た。該積層体のハードコート層を評価した結果を表2に示す。
<Example 15>
In Example 8, 100 parts by mass of the polycarbonate resin (B1-3) contained in the raw material of the polycarbonate resin layer (B) was changed to 90 parts by mass of (B1-2) and 10 parts by mass of (B2-2-1). A laminate having a total thickness of 1.00 mm was obtained in the same manner except that the thickness of each layer was changed to (A) layer / (B) layer = 0.08 mm / 0.92 mm. The resulting laminate had good appearance and excellent flatness. Here, the pencil hardness of the polycarbonate resin layer (B) was improved from 2B to F by mixing the acrylic resin (B2-2-1). Next, as shown in Table 2, a laminate having a hard coat layer (C) was obtained in the same manner except that the laminate used in Example 9 and the application surface and thickness of the hard coat layer were changed. Table 2 shows the results of evaluating the hard coat layer of the laminate.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1より、ポリカーボネート系樹脂層(B)の少なくとも片面にアクリル系樹脂層(A)を有する積層体であって、本発明で規定した樹脂組成物を特定の範囲で含有する積層体は、透明性、表面硬度および高温高湿環境下における形状安定性に優れることが確認できる(実施例1~8)。また、アクリル系樹脂層(A)のガラス転移温度とポリカーボネート系樹脂層(B)のガラス転移温度の差の絶対値が5℃以下である積層体は、高温高湿環境下における形状安定性がより優れることが確認できる(実施例1、実施例3~5)。
  これに対して、本発明で規定した範囲外の積層体は1つ以上の不具合があることが確認できる(比較例1~3)。アクリル系樹脂層(A)が汎用のアクリル系樹脂のみでは高温高湿環境下における形状安定性が不十分であり(比較例1)、アクリル系樹脂層(A)の樹脂組成物の混合割合が本発明の規定範囲外では層間の接着性が不十分であり(比較例2)、アクリル系樹脂層(A)に混合する共重合体が本発明の規定外ではアクリル系樹脂(A1)との相溶性が発現せず透明性が得られないことが確認できる(比較例3)。
From Table 1, a laminate having an acrylic resin layer (A) on at least one side of a polycarbonate resin layer (B), the laminate containing the resin composition defined in the present invention in a specific range is transparent. It can be confirmed that it has excellent properties, surface hardness and shape stability under high temperature and high humidity environment (Examples 1 to 8). In addition, a laminate in which the absolute value of the difference between the glass transition temperature of the acrylic resin layer (A) and the glass transition temperature of the polycarbonate resin layer (B) is 5 ° C. or less has shape stability in a high temperature and high humidity environment. It can be confirmed that they are more excellent (Example 1, Examples 3 to 5).
On the other hand, it can be confirmed that the laminate outside the range defined in the present invention has one or more defects (Comparative Examples 1 to 3). If the acrylic resin layer (A) is a general-purpose acrylic resin alone, the shape stability under high temperature and high humidity environment is insufficient (Comparative Example 1), and the mixing ratio of the resin composition of the acrylic resin layer (A) is The adhesion between the layers is insufficient outside the specified range of the present invention (Comparative Example 2), and the copolymer mixed with the acrylic resin layer (A) is not the specified range of the present invention with the acrylic resin (A1). It can be confirmed that the compatibility is not expressed and the transparency is not obtained (Comparative Example 3).
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表2より、本発明の積層体は、表面にハードコート層(C)を有することにより表面硬度の向上や耐擦傷性を付与できることが確認できる。また、本発明の積層体表面のハードコート層(C)は、他の層(アクリル系樹脂層(A)又はポリカーボネート系樹脂層(B))との密着性にも優れていることが確認できる(実施例9~15)。本発明の積層体の外面側に適用するハードコート層(C)は、優れた表面硬度を発現する機能を分担し、一方、内面側に適用するハードコート層(C)は、工程内での輸送や加工時に積層体に摩擦傷が入るのを防ぐための傷付防止層として機能を分担することができる。 From Table 2, it can be confirmed that the laminate of the present invention can impart surface hardness improvement and scratch resistance by having a hard coat layer (C) on the surface. Moreover, it can confirm that the hard-coat layer (C) of the laminated body surface of this invention is excellent also in adhesiveness with another layer (Acrylic resin layer (A) or a polycarbonate-type resin layer (B)). (Examples 9 to 15). The hard coat layer (C) applied to the outer surface side of the laminate of the present invention shares the function of developing excellent surface hardness, while the hard coat layer (C) applied to the inner surface side is used in the process. The function can be shared as an anti-scratch layer for preventing frictional scratches from entering the laminate during transportation or processing.

Claims (20)

  1.  ポリカーボネート系樹脂層(B)の少なくとも片面にアクリル系樹脂層(A)を有する積層体であって、該アクリル系樹脂層(A)がアクリル系樹脂(A1)と、芳香族ビニル単量体単位、(メタ)アクリル酸エステル単量体単位及び不飽和ジカルボン酸無水物単量体単位を有する共重合体(A2)と、を含有し、その混合質量比が(A1)/(A2)=80~20/20~80であることを特徴とする積層体。 A laminate having an acrylic resin layer (A) on at least one surface of a polycarbonate resin layer (B), wherein the acrylic resin layer (A) comprises an acrylic resin (A1) and an aromatic vinyl monomer unit. And a copolymer (A2) having a (meth) acrylic acid ester monomer unit and an unsaturated dicarboxylic anhydride monomer unit, and the mixing mass ratio thereof is (A1) / (A2) = 80. A laminate characterized by being from 20/20 to 80.
  2.  前記アクリル系樹脂(A1)がメタクリル酸メチル単量体単位を主成分とし、核磁気共鳴測定(H-NMR)で求められるトリアッド分率のmm、mr、rrの内、rr構造のモル比率が最も高いものであることを特徴とする請求項1記載の積層体。 The acrylic resin (A1) has a methyl methacrylate monomer unit as a main component, and the molar ratio of the rr structure among mm, mr, and rr of triad fractions determined by nuclear magnetic resonance measurement ( 1 H-NMR). The laminate according to claim 1, wherein is the highest.
  3.  前記共重合体(A2)の構成単位が前記芳香族ビニル単量体単位45~85質量%、前記(メタ)アクリル酸エステル単量体単位4~45質量%、前記不飽和ジカルボン酸無水物単量体単位8~20質量%であることを特徴とする請求項1又は2記載の積層体。 The structural unit of the copolymer (A2) is 45 to 85% by mass of the aromatic vinyl monomer unit, 4 to 45% by mass of the (meth) acrylic acid ester monomer unit, and the unsaturated dicarboxylic acid anhydride unit. The laminate according to claim 1 or 2, wherein the unit is 8 to 20% by mass of a monomer unit.
  4.  前記アクリル系樹脂(A1)と前記共重合体(A2)との混合質量比が(A1)/(A2)=80~55/20~45であることを特徴とする請求項1~3のいずれか1項に記載の積層体。 4. The mixing mass ratio of the acrylic resin (A1) and the copolymer (A2) is (A1) / (A2) = 80 to 55/20 to 45, The laminate according to claim 1.
  5.  前記アクリル系樹脂(A1)と前記共重合体(A2)との混合質量比が(A1)/(A2)=50~20/50~80であることを特徴とする請求項1~3のいずれか1項に記載の積層体。 4. The mixing mass ratio between the acrylic resin (A1) and the copolymer (A2) is (A1) / (A2) = 50 to 20/50 to 80, The laminate according to claim 1.
  6.  示差走査熱量計を用いて、加熱速度10℃/分で測定される前記アクリル系樹脂層(A)のガラス転移温度が100~140℃であり、かつ、前記ポリカーボネート系樹脂層(B)のガラス転移温度との差の絶対値が20℃以下であることを特徴とする請求項1~5のいずれか1項に記載の積層体。 The glass transition temperature of the acrylic resin layer (A) measured at a heating rate of 10 ° C./min using a differential scanning calorimeter is 100 to 140 ° C., and the glass of the polycarbonate resin layer (B) The laminate according to any one of claims 1 to 5, wherein an absolute value of a difference from the transition temperature is 20 ° C or less.
  7.  示差走査熱量計を用いて、加熱速度10℃/分で測定される前記アクリル系樹脂層(A)のガラス転移温度が115~140℃であり、かつ、前記ポリカーボネート系樹脂層(B)のガラス転移温度との差の絶対値が10℃以下であることを特徴とする請求項1~5のいずれか1項に記載の積層体。 The glass transition temperature of the acrylic resin layer (A) measured at a heating rate of 10 ° C./min using a differential scanning calorimeter is 115 to 140 ° C., and the glass of the polycarbonate resin layer (B) The laminate according to any one of claims 1 to 5, wherein an absolute value of a difference from the transition temperature is 10 ° C or less.
  8.  前記ポリカーボネート系樹脂層(B)がポリカーボネート系樹脂(B1)と下記から選ばれる少なくとも1種の改質剤(B2)とを含有することを特徴とする請求項1~7のいずれか1項に記載の積層体。
    改質剤(B2)
     (B2-1):カルボン酸単量体(イ)単位として、芳香族ジカルボン酸を80モル%以上、グリコール単量体(ロ)単位として、1,4-シクロヘキサンジメタノールを40モル%以上含む構成単位からなるポリエステル系樹脂
     (B2-2):芳香族(メタ)アクリレート単量体単位5~80質量%およびメチルメタクリレート単量体単位95~20質量%からなるアクリル系共重合体
    The polycarbonate resin layer (B) contains a polycarbonate resin (B1) and at least one modifier (B2) selected from the following, according to any one of claims 1 to 7, The laminated body of description.
    Modifier (B2)
    (B2-1): As the carboxylic acid monomer (A) unit, 80 mol% or more of aromatic dicarboxylic acid and as the glycol monomer (B) unit, 40 mol% or more of 1,4-cyclohexanedimethanol are contained. Polyester resin composed of structural units (B2-2): acrylic copolymer comprising 5 to 80% by mass of aromatic (meth) acrylate monomer units and 95 to 20% by mass of methyl methacrylate monomer units
  9.  前記アクリル系樹脂層(A)にホスファイト系の酸化防止剤が混合されていることを特徴とする請求項1~8のいずれか1項に記載の積層体。 The laminate according to any one of claims 1 to 8, wherein a phosphite antioxidant is mixed in the acrylic resin layer (A).
  10.  前記ポリカーボネート系樹脂層(B)にカルボジイミド化合物が混合されていることを特徴とする請求項1~9のいずれか1項に記載の積層体。 The laminate according to any one of claims 1 to 9, wherein a carbodiimide compound is mixed in the polycarbonate resin layer (B).
  11.  前記アクリル系樹脂層(A)の厚みが、0.01~0.25mmであることを特徴とする請求項1~10のいずれか1項に記載の積層体。 The laminate according to any one of claims 1 to 10, wherein the acrylic resin layer (A) has a thickness of 0.01 to 0.25 mm.
  12.  前記アクリル系樹脂層(A)と前記ポリカーボネート系樹脂層(B)との合計厚みを(T)した場合、前記アクリル系樹脂層(A)1層の厚み比((A)/(T))が、0.01~0.35であることを特徴とする請求項1~11のいずれか1項に記載の積層体。 When the total thickness of the acrylic resin layer (A) and the polycarbonate resin layer (B) is (T), the thickness ratio of the acrylic resin layer (A) 1 layer ((A) / (T)) The laminate according to any one of Claims 1 to 11, wherein is from 0.01 to 0.35.
  13.  共押出成形されたことを特徴とする請求項1~12のいずれか1項に記載の積層体。 The laminate according to any one of claims 1 to 12, wherein the laminate is co-extruded.
  14.  前記積層体の少なくとも片面にハードコート層(C)が積層されたことを特徴とする請求項1~13のいずれか1項に記載の積層体。 The laminate according to any one of claims 1 to 13, wherein a hard coat layer (C) is laminated on at least one surface of the laminate.
  15.  前記ハードコート層(C)の表面の鉛筆硬度が4H以上であることを特徴とする請求項14記載の積層体。 The laminate according to claim 14, wherein the surface of the hard coat layer (C) has a pencil hardness of 4H or more.
  16.  前記ハードコート層(C)が有機・無機ハイブリッド系硬化性樹脂組成物からなることを特徴とする請求項14又は15記載の積層体。 The laminate according to claim 14 or 15, wherein the hard coat layer (C) comprises an organic / inorganic hybrid curable resin composition.
  17.  片面または両面に反射防止処理、防汚処理、帯電防止処理、耐候性処理および防眩処理のいずれか一つ以上の処理がされていることを特徴とする請求項1~16のいずれか1項に記載の積層体。 The antireflection treatment, the antifouling treatment, the antistatic treatment, the weather resistance treatment and the antiglare treatment are performed on one side or both sides. The laminated body as described in.
  18.  請求項1~17のいずれか1項に記載の積層体を用いた基板材料。 A substrate material using the laminate according to any one of claims 1 to 17.
  19.  請求項1~17のいずれか1項に記載の積層体を用いた保護材料。 A protective material using the laminate according to any one of claims 1 to 17.
  20.  請求項1~17のいずれか1項に記載の積層体を含む画像表示装置。 An image display device comprising the laminate according to any one of claims 1 to 17.
PCT/JP2015/068954 2014-07-14 2015-07-01 Laminate WO2016009831A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014144320A JP6693041B2 (en) 2014-07-14 2014-07-14 Laminate
JP2014-144320 2014-07-14

Publications (1)

Publication Number Publication Date
WO2016009831A1 true WO2016009831A1 (en) 2016-01-21

Family

ID=55078329

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/068954 WO2016009831A1 (en) 2014-07-14 2015-07-01 Laminate

Country Status (2)

Country Link
JP (1) JP6693041B2 (en)
WO (1) WO2016009831A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016132743A1 (en) * 2015-02-20 2016-08-25 株式会社クラレ Resin composition, molded article and laminate
CN114502651A (en) * 2019-10-08 2022-05-13 帝人株式会社 Resin composition

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017164969A (en) * 2016-03-16 2017-09-21 三菱瓦斯化学株式会社 Thermoplastic resin laminate
TWI735619B (en) * 2016-09-05 2021-08-11 日商理研科技股份有限公司 Manufacturing method of multilayer film, manufacturing method of article with multilayer film, and article with multilayer film
KR102590074B1 (en) * 2017-06-13 2023-10-16 리껭테크노스 가부시키가이샤 multilayer film
WO2019049704A1 (en) * 2017-09-06 2019-03-14 三菱瓦斯化学株式会社 High-hardness molding resin sheet and molded article using same
JP2021080345A (en) * 2019-11-18 2021-05-27 三菱瓦斯化学株式会社 Resin composition, flat plate-shaped molding, multilayer body, and antireflection film

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0596692A (en) * 1991-10-14 1993-04-20 Mitsubishi Rayon Co Ltd Polycarbonate resin laminated product
JP2006103169A (en) * 2004-10-06 2006-04-20 Mitsubishi Gas Chem Co Inc Polycarbonate resin laminate for liquid crystal display cover
JP2008268913A (en) * 2007-03-29 2008-11-06 Asahi Kasei Chemicals Corp Laminated optical film
JP2009248416A (en) * 2008-04-04 2009-10-29 Sumitomo Chemical Co Ltd Scratch-resistant resin plate and its use
JP2010167659A (en) * 2009-01-22 2010-08-05 Teijin Chem Ltd Resin laminate
JP2013071318A (en) * 2011-09-28 2013-04-22 Sumitomo Bakelite Co Ltd Multi-layer sheet and method of molding the same
WO2013065740A1 (en) * 2011-11-01 2013-05-10 ミドリ安全株式会社 Resin composition and molded body
JP2013208896A (en) * 2012-02-28 2013-10-10 Mitsubishi Plastics Inc Scratch-resistant resin laminate, front cover material for display, and image display device
JP2014113813A (en) * 2012-11-16 2014-06-26 Sumika Styron Polycarbonate Ltd Laminated body
JP2014198454A (en) * 2013-03-13 2014-10-23 住友化学株式会社 Resin laminate and scratch-resistant resin laminate using the same
WO2015050051A1 (en) * 2013-10-02 2015-04-09 株式会社クラレ Laminate
WO2015079867A1 (en) * 2013-11-26 2015-06-04 三菱瓦斯化学株式会社 Transparent resin laminate

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5840970B2 (en) * 1979-01-29 1983-09-09 旭化成株式会社 Styrenic copolymer and its manufacturing method
JP5087843B2 (en) * 2005-07-08 2012-12-05 東レ株式会社 Resin composition and molded article comprising the same
WO2007015448A1 (en) * 2005-08-04 2007-02-08 Toray Industries, Inc. Resin composition and molded article comprising the same
JP2011031498A (en) * 2009-07-31 2011-02-17 Sumitomo Chemical Co Ltd Multilayer film
JP2012171984A (en) * 2011-02-17 2012-09-10 Gunze Ltd Color tone correction film and functional film using the same
RU2623732C2 (en) * 2012-07-30 2017-06-29 Денка Компани Лимитед Copolymer for improving thermal resistance of methacrylic resin
JP2014045085A (en) * 2012-08-27 2014-03-13 Mitsubishi Electric Corp Support apparatus, support method and program
TWI612091B (en) * 2013-05-16 2018-01-21 可樂麗股份有限公司 Methacrylic resin composition, manufacturing method thereof, and molded article thereof
WO2015133530A1 (en) * 2014-03-07 2015-09-11 株式会社クラレ Laminate body
WO2015178437A1 (en) * 2014-05-22 2015-11-26 電気化学工業株式会社 Copolymer for transparent, scratch-resistant plate, and laminate for transparent, scratch-resistant plate

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0596692A (en) * 1991-10-14 1993-04-20 Mitsubishi Rayon Co Ltd Polycarbonate resin laminated product
JP2006103169A (en) * 2004-10-06 2006-04-20 Mitsubishi Gas Chem Co Inc Polycarbonate resin laminate for liquid crystal display cover
JP2008268913A (en) * 2007-03-29 2008-11-06 Asahi Kasei Chemicals Corp Laminated optical film
JP2009248416A (en) * 2008-04-04 2009-10-29 Sumitomo Chemical Co Ltd Scratch-resistant resin plate and its use
JP2010167659A (en) * 2009-01-22 2010-08-05 Teijin Chem Ltd Resin laminate
JP2013071318A (en) * 2011-09-28 2013-04-22 Sumitomo Bakelite Co Ltd Multi-layer sheet and method of molding the same
WO2013065740A1 (en) * 2011-11-01 2013-05-10 ミドリ安全株式会社 Resin composition and molded body
JP2013208896A (en) * 2012-02-28 2013-10-10 Mitsubishi Plastics Inc Scratch-resistant resin laminate, front cover material for display, and image display device
JP2014113813A (en) * 2012-11-16 2014-06-26 Sumika Styron Polycarbonate Ltd Laminated body
JP2014198454A (en) * 2013-03-13 2014-10-23 住友化学株式会社 Resin laminate and scratch-resistant resin laminate using the same
WO2015050051A1 (en) * 2013-10-02 2015-04-09 株式会社クラレ Laminate
WO2015079867A1 (en) * 2013-11-26 2015-06-04 三菱瓦斯化学株式会社 Transparent resin laminate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016132743A1 (en) * 2015-02-20 2016-08-25 株式会社クラレ Resin composition, molded article and laminate
CN107250261A (en) * 2015-02-20 2017-10-13 株式会社可乐丽 Resin combination, products formed and layered product
JPWO2016132743A1 (en) * 2015-02-20 2017-11-30 株式会社クラレ Resin composition, molded article and laminate
CN114502651A (en) * 2019-10-08 2022-05-13 帝人株式会社 Resin composition

Also Published As

Publication number Publication date
JP2016020052A (en) 2016-02-04
JP6693041B2 (en) 2020-05-13

Similar Documents

Publication Publication Date Title
JP6693041B2 (en) Laminate
JP6571528B2 (en) Transparent resin laminate
TWI534009B (en) Forming body, material for front cover of display, and image display device
JP6508330B2 (en) Laminate
JP6680036B2 (en) Laminate
TW201615720A (en) Thermoplastic resin film
TWI661934B (en) Synthetic resin laminate
JP2017040825A (en) Multilayer film, polarizer protective film, and polarizing plate
JP6712926B2 (en) Transparent resin laminate
JP6420924B1 (en) Resin laminate
TW201736131A (en) Transparent resin laminate
JP6908083B2 (en) Laminate
JP2016107468A (en) Laminate
JP6565573B2 (en) Laminated body and manufacturing method thereof
JP2020011517A (en) Laminate
TW201800432A (en) Resin film
JP6420925B1 (en) Curved resin laminate
JP5237506B1 (en) Scratch-resistant resin laminate, display front cover material, and image display device
CN105419207B (en) Thermoplastic resin film
JP2018030338A (en) Laminate
JP2014004747A (en) Thermoplastic resin laminate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15821924

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15821924

Country of ref document: EP

Kind code of ref document: A1