WO2016009814A1 - Contactless power transmission apparatus and rotating electric machine - Google Patents

Contactless power transmission apparatus and rotating electric machine Download PDF

Info

Publication number
WO2016009814A1
WO2016009814A1 PCT/JP2015/068490 JP2015068490W WO2016009814A1 WO 2016009814 A1 WO2016009814 A1 WO 2016009814A1 JP 2015068490 W JP2015068490 W JP 2015068490W WO 2016009814 A1 WO2016009814 A1 WO 2016009814A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotating
phase
electrode
holding
rotor
Prior art date
Application number
PCT/JP2015/068490
Other languages
French (fr)
Japanese (ja)
Inventor
高三 正己
山本 幸宏
航大 鈴木
Original Assignee
株式会社 豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 豊田自動織機 filed Critical 株式会社 豊田自動織機
Publication of WO2016009814A1 publication Critical patent/WO2016009814A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/02Details
    • H02K21/10Rotating armatures

Definitions

  • the present invention relates to a non-contact power transmission device and a rotating electric machine.
  • a non-contact power transmission device that performs non-contact power transmission is known.
  • the non-contact power transmission device includes, for example, a cylindrical rotating electrode that rotates with the rotation of the rotating body, and a cylindrical holding electrode that is held so as not to rotate with the rotation of the rotating body.
  • a non-contact power transmission device power transmission is performed in a non-contact manner via a coupling capacitor configured by disposing the rotating electrode and the holding electrode so as to face each other in the radial direction.
  • An object of the present invention is to provide a non-contact power transmission device capable of suitably performing non-contact power transmission via a coupling capacitor, and a rotating electrical machine including the non-contact power transmission device.
  • the first mode for achieving the above object provides a non-contact power transmission apparatus.
  • the non-contact power transmission device is fixed to a rotatable rotating body, and has a flat plate ring-shaped rotating electrode protruding in a radial direction from an outer peripheral surface of the rotating body, and an insertion hole through which the rotating body is inserted, A flat ring-shaped holding electrode that is held so as not to rotate with the rotation of the rotating body, and the rotating electrode and the holding electrode are coupled by being arranged opposite to each other in the axial direction of the rotating body.
  • a capacitor is formed, and contactless power transmission is performed via the coupling capacitor.
  • a second mode for achieving the above object provides a rotating electric machine.
  • the rotating electrical machine includes a rotor provided with a coil and the non-contact power transmission device according to the first aspect.
  • the rotating electrode is connected to the coil.
  • FIG. 9 is a sectional view taken along line 9-9 in FIG.
  • the rotating electrical machine is mounted on a vehicle having a power storage device such as a battery, and is used to drive the vehicle using the power of the power storage device.
  • the rotating electrical machine generates regenerative power when the vehicle is decelerated, for example.
  • the regenerative power is used for applications such as charging of power storage devices.
  • FIG. 1 and FIG. 2 show only a part of the u-phase coil 24u out of the three coils 24u to 24w. Further, in FIG. 1, only a part of the stator 14 is shown by a two-dot chain line.
  • the rotating electrical machine 11 includes a rotating shaft 12, a rotor 13 to which the rotating shaft 12 is fixed and rotating integrally with the rotating shaft 12, and a stator 14 disposed outside the rotor 13. Yes.
  • the rotating electrical machine 11 is a so-called three-phase AC motor.
  • the rotating electrical machine 11 includes a housing (not shown) in which a rotating shaft 12, a rotor 13, and a stator 14 are accommodated, and a bearing that supports the rotating shaft 12 is accommodated in the housing.
  • the stator 14 and the housing are thermally coupled. For this reason, the stator 14 can be cooled by the housing.
  • the rotor 13 has a bottomed cylindrical shape as a whole.
  • the rotor 13 includes a main body portion 21 and a core 22 fixed to the outer peripheral surface of the main body portion 21.
  • the main body 21 has an insertion hole 21a through which the rotary shaft 12 is inserted at the bottom.
  • the core 22 has a substantially cylindrical shape as a whole.
  • a plurality of slots 23 are juxtaposed in the circumferential direction of the core 22 on the outer peripheral surface of the core 22. Each slot 23 extends in the axial direction of the rotor 13. In the plurality of slots 23, a plurality of coils 24u to 24w are wound.
  • the stator 14 is a permanent magnet, for example.
  • the stator 14 has a curved shape and is disposed at a position facing the outer peripheral surface of the core 22 of the rotor 13. That is, the rotating electrical machine 11 is of a type in which a plurality of coils 24 u to 24 w are provided on the rotor 13 disposed inside the stator 14.
  • the rotating electrical machine 11 includes a rotating body 30 that rotates as the rotor 13 rotates.
  • the rotating body 30 is made of an insulating material (for example, resin).
  • the rotating body 30 is provided inside the main body 21 of the rotor 13.
  • the rotating body 30 has a cylindrical shape having the same inner diameter as the rotating shaft 12, and the axial direction of the rotating body 30 coincides with the axial direction of the rotor 13.
  • the rotating shaft 12 is inserted through the rotating body 30 so as to rotate integrally with the rotating body 30.
  • the axial direction of the rotating shaft 12, the axial direction of the rotating body 30, and the axial direction of the rotor 13 are the same.
  • the rotating body 30 and the rotor 13 have a common axis O (FIG. 3). That is, the rotating shaft 12, the rotating body 30, and the rotor 13 are arranged concentrically around the axis O.
  • the rotating body 30 is composed of an enlarged diameter portion 31 disposed near the bottom of the main body portion 21 and a reduced diameter portion 32 having an outer diameter smaller than that of the enlarged diameter portion 31.
  • the enlarged diameter portion 31 is fixed to the bottom portion of the main body portion 21 of the rotor 13. Thereby, the rotating body 30 rotates as the rotor 13 rotates.
  • the rotating electrical machine 11 is attached to the reduced diameter portion 32 of the rotating body 30, and includes a non-contact power transmission device 50 that performs non-contact power transmission to the plurality of coils 24u to 24w.
  • the rotating electrical machine 11 has a configuration for electrically connecting the non-contact power transmission device 50 and the coils 24u to 24w.
  • the connection configuration of the non-contact power transmission device 50 and the coils 24u to 24w will be briefly described.
  • the rotating electrical machine 11 holds a u-phase bus bar 42u electrically connected to a u-phase lead wire 41u drawn from the coil end of the u-phase coil 24u, and a u-phase bus bar 42u. And a bus bar holding portion 43.
  • the bus bar holding portion 43 has an insulating property and is attached to the bottom portion of the main body portion 21 from the outside.
  • rod-shaped u-phase rotor wiring 44 u extending in the axial direction of the rotating body 30 is embedded in the rotating body 30.
  • the u-phase rotor wiring 44 u passes through the bottom portion of the main body 21 and the bus bar holding portion 43, and a part of the u-phase rotor wiring 44 u protrudes from the bus bar holding portion 43.
  • the u-phase bus bar 42u is fixed (fastened in detail) to the bus bar holding portion 43 in a state where the u-phase rotor wiring 44u and the u-phase lead wire 41u are connected.
  • the rotating electrical machine 11 includes a v-phase lead wire (not shown) drawn from the coil end of the v-phase coil 24v and a v-phase rotor wiring (not shown) embedded in the rotating body 30.
  • V-phase bus bar 42v Then, the rotating electrical machine 11 connects the w-phase lead wire (not shown) drawn from the coil end of the w-phase coil 24 w and the w-phase rotor wiring (not shown) embedded in the rotating body 30. 42w.
  • the bus bar holding unit 43 holds the bus bars 42u, 42v, and 42w.
  • the non-contact power transmission device 50 includes a u-phase unit 50u corresponding to the u-phase coil 24u, a v-phase unit 50v corresponding to the v-phase coil 24v, and a w-phase unit 50w corresponding to the w-phase coil 24w.
  • Each of the phase units 50u to 50w is attached to a reduced diameter portion 32 of the rotating body 30 disposed inside the rotor 13.
  • the phase units 50u to 50w are arranged at a predetermined interval in the axial direction of the rotating body 30. Since each of these phase units 50u to 50w has basically the same configuration, the u-phase unit 50u will be described in detail below with reference to FIGS.
  • the u-phase unit 50u includes a plate-ring-shaped u-phase rotating electrode 51u protruding in the radial direction from the outer peripheral surface of the reduced diameter portion 32 of the rotating body 30.
  • the u-phase rotating electrode 51 u is fixed to the rotating body 30 and rotates as the rotating body 30 rotates.
  • the u-phase rotating electrode 51u is connected to the u-phase rotor wiring 44u embedded in the rotating body 30. Thereby, the u-phase rotating electrode 51u is connected to the u-phase coil 24u via the u-phase rotor wiring 44u, the u-phase bus bar 42u, and the u-phase lead wire 41u.
  • the u-phase unit 50u includes a plate-ring-shaped u-phase holding electrode 52u that is held so as not to rotate with the rotation of the rotating body 30.
  • the u-phase holding electrode 52u has an insertion hole 52uc through which the rotating body 30 is inserted.
  • the insertion hole 52uc is formed to be slightly larger than the reduced diameter portion 32 of the rotating body 30.
  • the u-phase holding electrode 52u is held such that the inner peripheral surface thereof does not contact the reduced diameter portion 32 of the rotating body 30.
  • the u-phase rotating electrode 51 u and the u-phase holding electrode 52 u are disposed on the same axis and opposed to each other in the axial direction of the rotating body 30. Thereby, the u-phase coupling capacitor Cu is configured.
  • the u-phase rotating electrode 51u and the u-phase holding electrode 52u are not always in direct contact with each other during the operation of the rotating electrical machine. As described above, the u-phase rotating electrode 51u and the u-phase holding electrode 52u are not in mechanical contact with each other.
  • the u-phase rotating electrode 51u and the u-phase holding electrode 52u are circular rings as viewed from the axial direction of the rotating body 30, and the outer diameters of both are set to be the same.
  • the u-phase rotating electrode 51u has a rotation-facing surface 51ua that faces the u-phase holding electrode 52u.
  • the rotation facing surface 51 ua is a flat surface orthogonal to the axial direction of the rotating body 30. That is, the rotation opposing surface 51ua is a flat surface extending in the radial direction of the rotating body 30.
  • a first rotating dielectric layer 61 (rotating dielectric portion) having a dielectric constant higher than that of air is provided on the rotation facing surface 51ua.
  • a second rotating dielectric layer 62 having a dielectric constant higher than that of air is provided on a surface 51ub of the u-phase rotating electrode 51u opposite to the rotation facing surface 51ua.
  • the first rotating dielectric layer 61 and the second rotating dielectric layer 62 have a plate ring shape like the u-phase rotating electrode 51u.
  • the u-phase rotating electrode 51 u is sandwiched between the first rotating dielectric layer 61 and the second rotating dielectric layer 62 from the axial direction of the rotating body 30.
  • the u-phase rotating electrode 51u, the first rotating dielectric layer 61, and the second rotating dielectric layer 62 are unitized by a process such as sintering.
  • the u-phase holding electrode 52u has a holding facing surface 52ua that faces the u-phase rotating electrode 51u.
  • the holding facing surface 52 ua is a flat surface that is orthogonal to the axial direction of the rotating body 30. That is, the holding facing surface 52 ua is a flat surface extending in the radial direction of the rotating body 30.
  • the holding facing surface 52ua is provided with a first holding dielectric layer 71 (holding dielectric portion) having a dielectric constant higher than that of air.
  • a second holding dielectric layer 72 having a dielectric constant higher than that of air is provided on the surface 52ub of the u-phase holding electrode 52u opposite to the holding facing surface 52ua.
  • the u-phase holding electrode 52u, the first holding dielectric layer 71, and the second holding dielectric layer 72 are unitized by a process such as sintering.
  • each of the dielectric layers 61, 62, 71, 72 is arbitrary as long as it has a dielectric constant higher than that of air.
  • it is a dielectric ceramic such as barium titanate.
  • the surface of the first rotating dielectric layer 61 and the surface of the first holding dielectric layer 71 are flat surfaces orthogonal to the axial direction of the rotating body 30. That is, the surface of the first rotating dielectric layer 61 and the surface of the first holding dielectric layer 71 are flat surfaces extending in the radial direction of the rotating body 30.
  • first rotating dielectric layer 61 and the first holding dielectric layer 71 are configured to be more slippery than the u-phase rotating electrode 51u and the u-phase holding electrode 52u.
  • the friction coefficient of the dielectric ceramics that is the constituent material of the first rotating dielectric layer 61 and the first holding dielectric layer 71 is smaller than the friction coefficient of the u-phase rotating electrode 51u and the u-phase holding electrode 52u.
  • a fluid lubricating oil 80 is disposed as a lubricant between the first rotating dielectric layer 61 and the first holding dielectric layer 71. That is, the u-phase coupling capacitor Cu includes the u-phase rotating electrode 51u and the u-phase holding electrode 52u that are opposed to each other in the axial direction of the rotating body 30, the first rotating dielectric layer 61, the lubricating oil 80, and the first phase interposed therebetween. And a holding dielectric layer 71.
  • the lubricating oil 80 is made of a material having a dielectric constant higher than that of air. However, in this embodiment, the dielectric constant of the lubricating oil 80 is lower than the dielectric constants of both the dielectric layers 61 and 71.
  • the capacitance of the u-phase coupling capacitor Cu configured as described above is that the dielectric constants of both the dielectric layers 61 and 71 and the lubricating oil 80 and the opposing direction of the u-phase rotating electrode 51u and the u-phase holding electrode 52u (that is, It depends on conditions such as the inter-electrode distance dx, which is a separation distance in the axial direction of the rotating body 30, and the facing area between the u-phase rotating electrode 51u and the u-phase holding electrode 52u.
  • the facing area is an area of an overlapping region of the rotating facing surface 51ua and the holding facing surface 52ua as viewed from the axial direction of the rotating body 30, and depends on the areas of the rotating facing surface 51ua and the holding facing surface 52ua.
  • the insertion hole 52uc is formed to be slightly larger than the rotating body 30, and the outer diameter is the same.
  • the area matches the area of the holding facing surface 52ua.
  • the non-contact power transmission device 50 includes a holding member 81 that is used to hold the u-phase holding electrode 52 u.
  • the holding member 81 is made of an insulating material such as resin.
  • the holding member 81 has, for example, a cylindrical shape having an inner diameter larger than the outer diameter of the u-phase rotating electrode 51u and the u-phase holding electrode 52u and an outer diameter smaller than the inner diameter of the main body portion 21.
  • the holding member 81 covers each of the phase units 50u to 50w from the outside in the radial direction of the rotating body 30. One end of the holding member 81 in the axial direction is fixed to the housing. For this reason, the holding member 81 does not rotate with the rotation of the rotating body 30.
  • the u-phase unit 50 u of the non-contact power transmission device 50 includes a u-phase holding unit 82 u that holds the u-phase holding electrode 52 u while being movable in the axial direction of the rotating body 30.
  • a plurality (for example, four) are provided.
  • Each of the plurality of u-phase holding portions 82u is made of an elastic member such as a spring or elastic rubber (rubber).
  • the plurality of u-phase holding portions 82u are arranged apart from each other in the circumferential direction of the rotating body 30.
  • each u-phase holding part 82u is connected to a unit body composed of the u-phase holding electrode 52u, the first holding dielectric layer 71, and the second holding dielectric layer 72, and the other end of each u-phase holding part 82u. Is connected to the inner peripheral surface of the holding member 81.
  • the plurality of u-phase holding portions 82u allow the unit body to move in the axial direction of the rotating body 30 that is the opposing direction of the u-phase rotating electrode 51u and the u-phase holding electrode 52u, while rotating the unit body (that is, (Movement of the rotating body 30 in the circumferential direction) is regulated.
  • the u-phase holding electrode 52u is held so as not to rotate with the rotation of the rotating body 30 while being movable in the axial direction of the rotating body 30.
  • the u-phase unit 50 u of the non-contact power transmission device 50 serves as a pressing unit that presses the u-phase holding electrode 52 u toward the u-phase rotating electrode 51 u from the axial direction of the rotating body 30.
  • the u-phase disc spring 83u is provided.
  • a u-phase wall portion 84 u that protrudes radially inward from the inner peripheral surface is provided on the inner peripheral surface of the holding member 81.
  • the u-phase wall portion 84u has a plate ring shape having an inner diameter that is slightly larger than that of the rotating body 30.
  • the u-phase wall portion 84u is disposed on the opposite side of the u-phase holding electrode 52u from the u-phase rotating electrode 51u side, and is fixed to the holding member 81 at that position.
  • the u-phase disc spring 83u is disposed between the u-phase wall portion 84u and the u-phase holding electrode 52u. In this case, the u-phase holding electrode 52u is pressed from the axial direction of the rotating body 30 toward the u-phase rotating electrode 51u by the biasing force of the u-phase disc spring 83u.
  • the axial direction of the rotating body 30, which is the opposing direction of the u-phase rotating electrode 51u and the u-phase holding electrode 52u, is defined as the thickness direction.
  • the thickness of the first rotating dielectric layer 61 and the thickness of the first holding dielectric layer 71 are set to be the same (hereinafter referred to as dielectric layer thickness d1).
  • the thickness d2 of the lubricating oil 80 when the u-phase rotating electrode 51u is rotating in a state where the u-phase holding electrode 52u is pressed by the u-phase disc spring 83u is thinner than the dielectric layer thickness d1.
  • the non-contact power transmission device 50 includes a u-phase stator wiring 85u connected to the u-phase holding electrode 52u.
  • a part of the u-phase stator wiring 85u is embedded in the holding member 81 and connected to an inverter 100 (see FIG. 5) as a drive circuit for driving the rotating electrical machine 11.
  • Another part of the u-phase stator wiring 85u is connected in a relaxed state between the portion embedded in the holding member 81 and the u-phase holding electrode 52u.
  • the u-phase stator wiring 85u is configured such that the u-phase holding electrode 52u follows the movement of the rotating body 30 in the axial direction.
  • the v-phase unit 50v similarly to the u-phase unit 50u, the v-phase unit 50v has a v-phase coupling capacitor Cv composed of components such as a v-phase rotating electrode 51v and a v-phase holding electrode 52v.
  • the v-phase rotating electrode 51v is connected to the v-phase coil 24v via the v-phase rotor wiring and the v-phase bus bar 42v.
  • the v-phase holding electrode 52v is connected to the inverter 100 via a v-phase stator wiring (not shown) partially embedded in the holding member 81.
  • the w-phase unit 50w has a w-phase coupling capacitor Cw composed of components such as a w-phase rotating electrode 51w and a w-phase holding electrode 52w.
  • the w-phase rotating electrode 51w is connected to the w-phase coil 24w via the w-phase rotor wiring and the w-phase bus bar 42w.
  • the w-phase holding electrode 52 w is connected to the inverter 100 via w-phase stator wiring (not shown) partially embedded in the holding member 81.
  • the capacitance of the coupling capacitors Cu to Cw is one parameter that defines the power value at which non-contact power transmission is performed. Specifically, as the capacitances of the coupling capacitors Cu to Cw are larger, the value of electric power transmitted in a non-contact manner can be increased. In this embodiment, since the coupling capacitors Cu to Cw have the same shape, the capacitances of the coupling capacitors Cu to Cw are the same.
  • the non-contact power transmission device 50 includes a v-phase holding unit, a v-phase disc spring 83v and a v-phase wall portion 84v, and a w-phase holding unit, a w-phase disc spring 83w and a w-phase wall portion 84w. These configurations are the same as the corresponding configurations in the u phase.
  • a specific method for manufacturing the non-contact power transmission device 50 of the present embodiment is arbitrary.
  • there are components such as holding electrodes 52u to 52w having a dielectric layer formed on both surfaces, holding portions, and disc springs 83u to 83w.
  • the unit body of the attached holding member 81 is divided along the axial direction.
  • the divided parts of the unit body are perpendicular to the axial direction of the rotating body 30 (for example, the vertical direction, ie, the radial direction). ), And in that state, joining is performed by a joining method such as sintering or welding, and then the rotating body 30 is fixed to the main body 21.
  • inverter 100 corresponds to u-phase switching elements Qu1 and Qu2 corresponding to u-phase coil 24u, v-phase switching elements Qv1 and Qv2 corresponding to v-phase coil 24v, and w-phase coil 24w.
  • w-phase switching elements Qw1 and Qw2 are provided.
  • Each of the switching elements Qu1, Qu2, Qv1, Qv2, Qw1, and Qw2 (hereinafter simply referred to as switching elements Qu1 to Qw2) is composed of, for example, an IGBT.
  • the u-phase switching elements Qu1 and Qu2 are connected to each other in series via a connection line, and the connection line is connected to the u-phase holding electrode 52u. And direct-current power is input from the battery B mounted in the vehicle with respect to the series connection body of each u-phase switching element Qu1, Qu2. Since the other switching elements Qv1, Qv2, Qw1, and Qw2 have the same connection mode as the u-phase switching elements Qu1 and Qu2 except that the corresponding holding electrodes are different, detailed description thereof is omitted.
  • Each of the coils 24u to 24w is, for example, delta-connected.
  • the inverter 100 includes a control circuit 101 that controls the switching operation of the switching elements Qu1 to Qw2.
  • the control circuit 101 converts the DC power into AC power by periodically turning on / off the switching elements Qu1 to Qw2, and supplies the AC power to the holding electrodes 52u to 52w.
  • the AC power is supplied in a non-contact manner to the coils 24u to 24w via the coupling capacitors Cu to Cw. Thereby, the rotor 13 rotates.
  • the plurality of switching elements Qu1 to Qw2 have body diodes (parasitic diodes) Du1 to Dw2, respectively.
  • the regenerative power generated in each of the coils 24u to 24w is rectified by the body diodes Du1 to Dw2 and input to the battery B. Thereby, the battery B is charged. That is, the inverter 100 is a power conversion unit capable of bidirectional conversion between DC power and AC power.
  • the first u-phase switching element Qu1 when the first u-phase switching element Qu1 is in the ON state, the second u-phase switching element Qu2 is in the OFF state, the first v-phase switching element Qv1 is in the OFF state, and the second v-phase switching element Qv2 is in the ON state.
  • Power transmission is performed through a path of u-phase coupling capacitor Cu ⁇ u-phase coil 24u ⁇ v-phase coupling capacitor Cv.
  • a series resonance circuit is configured by the u-phase coupling capacitor Cu, the u-phase coil 24u, and the v-phase coupling capacitor Cv. That is, the u-phase coil 24u constitutes the series resonance circuit in cooperation with the u-phase coupling capacitor Cu and the v-phase coupling capacitor Cv.
  • a series resonance circuit is configured by two coupling capacitors among the coupling capacitors Cu to Cw and one coil among the coils 24u to 24w.
  • the inductances of the coils 24u to 24w are the same. As already described, the capacitances of the coupling capacitors Cu to Cw are the same. Therefore, the resonance frequency is the same regardless of which series resonance circuit is configured.
  • the control circuit 101 performs ON / OFF control of the switching elements Qu1 to Qw2 in accordance with the resonance frequency. That is, the control circuit 101 performs ON / OFF control of the switching elements Qu1 to Qw2 so that AC power having the same frequency as the resonance frequency is output.
  • the control circuit 101 variably controls the rotational speed of the rotor 13 by variably controlling the ON / OFF duty ratios of the switching elements Qu1 to Qw2.
  • the AC power output from the inverter 100 is supplied to the coils 24u to 24w in a non-contact manner via the coupling capacitors Cu to Cw.
  • the rotor 13 and the rotary body 30 rotate.
  • an oil film pressure is generated in the lubricating oil 80 by the rotation of the u-phase rotating electrode 51u in a state where the u-phase holding electrode 52u is pressed toward the u-phase rotating electrode 51u.
  • the balance of force is maintained and the thickness d2 of the lubricating oil 80 is kept constant.
  • the non-contact power transmission device 50 is fixed to a rotatable rotating body 30, and a flat plate ring-shaped u-phase rotating electrode 51 u protruding radially from the outer peripheral surface of the rotating body 30 and the rotating body 30 are inserted. And a flat plate ring-shaped u-phase holding electrode 52u that is held so as not to rotate with the rotation of the rotating body 30.
  • the u-phase rotating electrode 51 u and the u-phase holding electrode 52 u are disposed to face each other in the axial direction of the rotating body 30.
  • the non-contact power transmission device 50 is configured to perform non-contact power transmission via a u-phase coupling capacitor Cu configured by a u-phase rotating electrode 51u and a u-phase holding electrode 52u.
  • a u-phase coupling capacitor Cu configured by a u-phase rotating electrode 51u and a u-phase holding electrode 52u.
  • the end faces in the axial direction (rotation facing surface 51 ua and holding facing surface 52 ua) of the plate-shaped u-phase rotating electrode 51 u and u phase holding electrode 52 u are opposed to each other in the axial direction of the rotating body 30. Therefore, the local variation in the interelectrode distance dx can be relatively easily suppressed as compared with the configuration in which the curved electrodes face each other in the radial direction.
  • the capacitance of the coupling capacitor depends on the axial length of the rotating electrode and the holding electrode.
  • the capacitance of the u-phase coupling capacitor Cu depends on the areas of the rotation facing surface 51ua and the holding facing surface 52ua. The area depends on the square of the radius of the u-phase rotating electrode 51u and the u-phase holding electrode 52u.
  • the capacitance of the u-phase coupling capacitor Cu can be improved while suppressing an increase in the size of the rotating body 30 in the axial direction. Through this, non-contact power transmission with a larger power value becomes possible.
  • a first rotating dielectric layer 61 serving as a dielectric portion having a dielectric constant higher than that of air is provided on the rotation facing surface 51ua of the u phase rotating electrode 51u facing the u phase holding electrode 52u.
  • a first holding dielectric layer 71 as the dielectric portion is provided on the holding facing surface 52ua of the u-phase holding electrode 52u that faces the u-phase rotating electrode 51u.
  • the contact between the u-phase rotating electrode 51u and the u-phase holding electrode 52u is regulated by the both dielectric layers 61 and 71. Thereby, the insulation between the u-phase rotating electrode 51u and the u-phase holding electrode 52u can be improved.
  • the electrostatic property of the u-phase coupling capacitor Cu is obtained.
  • the interelectrode distance dx can be increased while improving the capacity. Thereby, even when a high voltage is applied between the u-phase rotating electrode 51u and the u-phase holding electrode 52u, dielectric breakdown is unlikely to occur. Therefore, it is possible to improve the withstand voltage while improving the capacitance of the u-phase coupling capacitor Cu.
  • a decrease in capacitance which can be caused by increasing the interelectrode distance dx in order to improve the pressure resistance, is caused by a high dielectric constant between the u-phase rotating electrode 51u and the u-phase holding electrode 52u. It can be said that this is alleviated by arranging the two dielectric layers 61 and 71.
  • Lubricating oil 80 as a lubricant is provided between the u-phase rotating electrode 51u and the u-phase holding electrode 52u, specifically between both dielectric layers 61 and 71. Thereby, the u-phase rotating electrode 51u is smoothly rotated. Therefore, the rotation of the u-phase rotating electrode 51u is inhibited due to the sliding between the first rotating dielectric layer 61 and the first holding dielectric layer 71, and the wear and noise due to the sliding are suppressed. Can do.
  • the lubricating oil 80 is made of a material having a dielectric constant higher than that of air. As a result, the capacitance of the u-phase coupling capacitor Cu can be further improved.
  • the non-contact power transmission device 50 holds the u-phase holding electrode 52u in a state in which the u-phase holding electrode 52u can move in the axial direction of the rotating body 30 and does not rotate as the rotating body 30 rotates.
  • 82u and a u-phase disc spring 83u as a pressing portion that presses the u-phase holding electrode 52u from the axial direction of the rotating body 30 toward the u-phase rotating electrode 51u.
  • an oil film pressure is generated in the lubricating oil 80 when the u-phase rotating electrode 51u rotates in a state where the u-phase holding electrode 52u is pressed toward the u-phase rotating electrode 51u.
  • a thin layer of the lubricating oil 80 exists stably between the both dielectric layers 61 and 71. Therefore, contact between both dielectric layers 61 and 71 can be suppressed.
  • the thickness d2 of the lubricating oil 80 for suppressing the contact between the two dielectric layers 61 and 71 can be reduced, and accordingly, the lubricating oil is correspondingly increased.
  • the dielectric layer thickness d1 which is the thickness of both dielectric layers 61 and 71 having a dielectric constant higher than 80, can be increased, and the inter-electrode distance dx can be decreased. As a result, the capacitance of the u-phase coupling capacitor Cu can be improved.
  • the surface of the first rotating dielectric layer 61 and the surface of the first holding dielectric layer 71 are flat surfaces orthogonal to the axial direction of the rotating body 30.
  • Such a flat surface can be formed with relatively high accuracy as compared with a curved surface. Thereby, concentration of the charge can be suppressed.
  • the rotating electrical machine 11 includes a rotor 13 provided with three coils 24u to 24w and a non-contact power transmission device 50 having three phase units 50u to 50w.
  • the rotating electrodes 51u to 51w of the three phase units 50u to 50w are connected to the three coils 24u to 24w. According to such a configuration, electric power can be transmitted to each of the coils 24u to 24w in a non-contact manner without using a slip ring or the like.
  • non-contact power transmission using an electric field instead of a magnetic field is employed, so that it is not necessary to consider the interference of the magnetic field as described above. Thereby, non-contact electric power transmission is realizable, without inhibiting rotation of rotor 13.
  • a resonance circuit is constituted by the coils 24u to 24w and the coupling capacitors Cu to Cw.
  • the resonance phenomenon can be used, the power value transmitted through the coupling capacitors Cu to Cw can be improved. That is, the coils 24u to 24w for rotating the rotor 13 contribute to the performance improvement of non-contact power transmission using the coupling capacitors Cu to Cw. Therefore, non-contact power transmission can be suitably performed using the existing configuration of the rotating electrical machine 11.
  • the rotor 13 is disposed inside the stator 14. In this case, since the stator 14 can exchange heat with components such as a housing, the stator 14 is more easily cooled than the rotor 13.
  • the stator In a normal brushless rotating electrical machine, the stator is provided with a coil, and the rotor is a permanent magnet. For this reason, if the rotor is disposed inside the stator, the permanent magnet is likely to generate heat. Then, we are anxious about the magnetic force fall of a permanent magnet. However, a permanent magnet that can suppress a decrease in magnetic force due to heat generation tends to be expensive.
  • the stator 14 can be a permanent magnet.
  • a configuration for supplying power to the rotating coils 24u to 24w is essential.
  • the non-contact power transmission device 50 having the rotating electrodes 51u to 51w and the holding electrodes 52u to 52w is adopted as the power transmission to the coils 24u to 24w. Yes.
  • the above embodiment may be modified as follows.
  • One or both of the first rotating dielectric layer 61 and the first holding dielectric layer 71 may be omitted.
  • the inter-electrode distance dx may be reduced accordingly.
  • the opposing surfaces 51ua and 52ua are flat surfaces orthogonal to the axial direction of the rotating body 30. Since such a flat surface can be formed with relatively high accuracy, the electrodes are considered in consideration of local variations in the inter-electrode distance dx so that the u-phase rotating electrode 51u and the u-phase holding electrode 52u do not come into contact with each other.
  • the lubricating oil 80 be present between the two opposing surfaces 51ua and 52ua. Thereby, various inconveniences caused by sliding between the u-phase rotating electrode 51u and the u-phase holding electrode 52u can be suppressed.
  • the non-contact power transmission device 50 is disposed inside the rotor 13, but is not limited thereto.
  • the rotating body 30 may extend longer in the axial direction than the rotor 13, and a part of the rotating body 30 may protrude from the rotor 13. Then, each phase unit 50u to 50w of the non-contact power transmission device 50 may be provided in a portion protruding from the rotor 13 in the rotating body 30.
  • the non-contact power transmission device 50 holds the u-phase holding electrode 52 u so that it can move in the axial direction of the rotating body 30 and does not rotate as the rotating body 30 rotates.
  • a link mechanism 91 may be provided.
  • the non-contact power transmission device 50 includes a plurality of coil springs 92 connected to the u-phase wall portion 84 u and the second holding dielectric layer 72 instead of the u-phase disc spring 83 u. May be.
  • an arbitrary elastic member such as elastic rubber (rubber) may be used instead of the coil spring 92. In short, as long as the “holding portion” and the “pressing portion” can exhibit their functions, their specific configurations are arbitrary.
  • the u-phase holding electrode 52u may be held in a state in which it cannot move in the axial direction of the rotating body 30.
  • the u-phase holding electrode 52u may be configured to be attached to the rotating body 30 via a bearing, or may be configured to be fixed to the inner peripheral surface of the holding member 81.
  • the u-phase holding electrode 52u only needs to be held so as not to rotate as the rotating body 30 rotates.
  • the disc springs 83u to 83w and the wall portions 84u to 84w may be omitted.
  • the both dielectric layers 61 and 71 may be arranged to face each other with a minute interval in the axial direction of the rotating body 30.
  • the surface of the first rotating dielectric layer 61 and the surface of the first holding dielectric layer 71 are flat surfaces orthogonal to the axial direction of the rotating body 30. Since such a flat surface can be formed with relatively high accuracy, the distance between the two dielectric layers 61 and 71 can be reduced while the contact between the two dielectric layers 61 and 71 is suppressed accordingly.
  • the lubricating oil 80 may or may not be present between the both dielectric layers 61 and 71.
  • Dielectric ceramic particles such as barium titanate may be mixed in the lubricating oil 80. Thereby, the dielectric constant of the lubricating oil 80 can be improved.
  • the lubricating oil 80 may be omitted, and both dielectric layers 61 and 71 may be in contact with each other. In this case, both dielectric layers 61 and 71 slide.
  • the friction coefficient of both dielectric layers 61 and 71 is smaller than the friction coefficient of the u-phase rotating electrode 51u and the u-phase holding electrode 52u, the u-phase rotating electrode 51u and the u-phase holding electrode 52u slide. Compared with the structure to perform, the abrasion and noise resulting from sliding can be suppressed.
  • a coating layer having a smaller coefficient of friction than both dielectric layers 61 and 71 may be separately provided on the surfaces of both dielectric layers 61 and 71.
  • At least one of the second rotating dielectric layer 62 and the second holding dielectric layer 72 may be omitted.
  • a solid lubricant for example, tetrafluoroethylene resin or polyphenylene sulfide
  • tetrafluoroethylene resin or polyphenylene sulfide may be provided.
  • the u-phase rotating electrode 51u and the u-phase holding electrode 52u are circular rings as viewed from the axial direction of the rotating body 30, but are not limited thereto, and may be, for example, a rectangular ring. Further, the outer diameter of the u-phase rotating electrode 51u and the outer diameter of the u-phase holding electrode 52u may be different.
  • the dielectric part provided in both opposing surfaces 51ua and 52ua may be a laminated structure of a plurality of dielectric layers having different dielectric constants.
  • a cut extending in the radial direction may be formed in the rotating electrodes 51u to 51w and the holding electrodes 52u to 52w.
  • the shapes of the rotating electrodes 51u to 51w and the holding electrodes 52u to 52w are not limited to a closed state without a break.
  • one coupling capacitor is provided for one coil.
  • the present invention is not limited to this, and a plurality of coupling capacitors may be provided for one coil.
  • power transmission may be performed by connecting a plurality of coupling capacitors in series or in parallel.
  • the stator 14 is not limited to a permanent magnet, and may be composed of a core and a coil. In this case, the permanent magnet can be omitted.
  • a coil may be separately provided on a connection line connecting the inverter 100 and the holding electrodes 52u to 52w.
  • the mounting position of the inverter 100 is arbitrary, and may be integrated with the rotating electrical machine 11, for example, or may be provided separately from the rotating electrical machine 11. The same applies to the battery B.
  • connection mode of the coils 24u to 24w is not limited to the delta connection, and may be a Y connection, for example.
  • the non-contact electric power transmission apparatus 50 was attached to the rotary body 30, However, It is not restricted to this, What is necessary is just to be attached to what rotates with rotation of the rotor 13.
  • FIG. the non-contact power transmission device 50 may be attached to the rotating shaft 12 or the main body 21 of the rotor 13.
  • the rotary electric machine 11 may be a double rotor type having one stator and two rotors.
  • the double rotor type structure will be briefly described with reference to FIGS.
  • FIG. 8 for convenience of illustration, the rotating body 30 and the holding member 81 are shown in a side view, and both the rotors 13 and 120 and the stator 110 are shown in a sectional view.
  • the rotating electrical machine 11 includes a stator 110 provided on the radially outer side with respect to the rotor 13 (hereinafter referred to as the first rotor 13), and between the first rotor 13 and the stator 110. And a second rotor 120 provided.
  • the second rotor 120 has a cylindrical shape that is slightly larger than the first rotor 13 (specifically, a cylindrical shape), and the stator 110 has a cylindrical shape that is slightly larger than the second rotor 120 (details). Is cylindrical).
  • Both rotors 13 and 120 and the stator 110 are arranged on the same axis, and are arranged in the order of the first rotor 13 ⁇ the second rotor 120 ⁇ the stator 110 from the inner side to the outer side in the radial direction.
  • the stator 110 has a cylindrical stator core 111. As shown in FIG. 9, a plurality of slots 112 are arranged in the circumferential direction of the stator core 111 on the inner peripheral surface of the stator core 111.
  • the stator 110 has a plurality of coils 113u to 113w wound around a plurality of slots 112. Each of the coils 113u to 113w is connected to the battery B via an inverter different from the inverter 100.
  • the second rotor 120 has a predetermined interval with respect to the inner circumferential surface 120 a that is radially opposed to the first rotor 13 with a predetermined interval and the stator 110. It has the outer peripheral surface 120b which is spaced apart and opposes to radial direction. Moreover, as shown in FIG. 9, the 2nd rotor 120 has the permanent magnet 121 as what generates a magnetic field. The permanent magnet 121 is embedded in the second rotor 120.
  • the first rotor 13 is connected to the drive shaft of the engine, and the second rotor 120 is connected to the axle.
  • the first rotor 13 and the second rotor 120 cooperate to function as the first rotating electrical machine
  • the second rotor 120 and the stator 110 cooperate to function as the second rotating electrical machine.
  • power is supplied from the battery B to the coils 113u to 113w of the stator 110.
  • the 2nd rotor 120 can be rotated and a vehicle can be driven through it.
  • the first rotor 13 can be rotated by the power of the engine.
  • an induced current flows through each of the coils 24u to 24w of the first rotor 13
  • the second rotor 120 is rotated by the interaction between the dielectric current and the magnetic flux of the permanent magnet 121, and the axle is rotated.
  • the engine power is transmitted to the second rotor 120 and used for traveling of the vehicle.
  • AC power generated in each of the coils 24 u to 24 w is taken out via the non-contact power transmission device 50.
  • the extracted AC power is input to the inverter 100 and used for charging the battery B, for example.
  • the second rotor 120 can employ the permanent magnet 121 to generate a magnetic field. Thereby, complication of composition can be controlled.
  • a configuration for transmitting power to the coils 24u to 24w of the rotating first rotor 13 is essential.
  • the non-contact power transmission device 50 as a power transmission to the coils 24u to 24w, the power transmission can be performed without using a slip ring or a brush. As a result, inconveniences unique to contact-type power transmission such as brush wear can be avoided. From the above, in the configuration having the two rotors 13 and 120, the rotating electrical machine 11 can be suitably driven while achieving brushlessness and suppressing the complexity of the configuration.
  • connection destination of the rotating electrodes 51u to 51w that is, the load is not limited to the coils 24u to 24w, but is arbitrary.
  • the application target of the non-contact power transmission device 50 is not limited to the rotating electrical machine 11 and is arbitrary.
  • the non-contact power transmission device 50 may be applied to supply power to a load provided on the rotating body.
  • the contactless power transmission device 50 has the three units 50u to 50w because of the application to the three-phase AC motor, but is not limited thereto, and may have a configuration having two units. In short, the number of units may be set corresponding to the load.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

This contactless power transmission apparatus is provided with a rotary electrode and a stationary electrode. The rotary electrode is fixed to a rotatable rotary body and is shaped like a flat ring protruding in the radial direction from an outer circumferential surface of the rotary body. The stationary electrode has an insertion through-hole through which the rotary body is inserted and is shaped like a flat ring that is retained so as not to rotate along with the rotation of the rotary body. The rotary electrode and the stationary electrode are disposed opposite each other in the axial direction of the rotary body to form a coupling capacitor. Power is transmitted via the coupling capacitor in a contactless manner.

Description

非接触電力伝送装置及び回転電機Non-contact power transmission device and rotating electric machine
 本発明は、非接触電力伝送装置及び回転電機に関する。 The present invention relates to a non-contact power transmission device and a rotating electric machine.
 非接触の電力伝送を行う非接触電力伝送装置が知られている。非接触電力伝送装置は、例えば回転体の回転に伴って回転する円筒状の回転電極と、回転体の回転に伴って回転しないように保持された円筒状の保持電極とを備えている。例えば特許文献1参照。このような非接触電力伝送装置においては、回転電極と保持電極とが径方向に対向配置することによって構成された結合コンデンサを介して、非接触で電力伝送が行われる。 A non-contact power transmission device that performs non-contact power transmission is known. The non-contact power transmission device includes, for example, a cylindrical rotating electrode that rotates with the rotation of the rotating body, and a cylindrical holding electrode that is held so as not to rotate with the rotation of the rotating body. For example, see Patent Document 1. In such a non-contact power transmission device, power transmission is performed in a non-contact manner via a coupling capacitor configured by disposing the rotating electrode and the holding electrode so as to face each other in the radial direction.
特開2011-19293号公報JP 2011-19293 A
 結合コンデンサを介して非接触の電力伝送を行う構成においては、比較的大きな電力値の非接触の電力伝送を行うために、結合コンデンサの静電容量の向上が求められる場合がある。また、上記のように回転電極と保持電極とが円筒状であって互いに径方向に対向する構成である場合、両電極が湾曲しているため、周方向の位置によって電極間距離が局所的にばらつくおそれがある。この場合、電荷の集中が生じ、非接触の電力伝送に支障が生じる場合があり得る。かといって、上記電極間距離の局所的なばらつきを抑制するために、回転電極及び保持電極を精度よく形成することはコスト等の観点から好ましくない。以上のことから、結合コンデンサを介して非接触の電力伝送を行う構成には未だに改善の余地がある。 In a configuration in which contactless power transmission is performed via a coupling capacitor, an improvement in the capacitance of the coupling capacitor may be required in order to perform contactless power transmission with a relatively large power value. In addition, when the rotating electrode and the holding electrode are cylindrical and are configured to face each other in the radial direction as described above, since both the electrodes are curved, the distance between the electrodes is locally determined depending on the circumferential position. There is a risk of variation. In this case, concentration of electric charges may occur, and trouble may occur in non-contact power transmission. However, it is not preferable from the viewpoint of cost and the like to form the rotating electrode and the holding electrode with high accuracy in order to suppress the local variation in the inter-electrode distance. From the above, there is still room for improvement in the configuration for performing non-contact power transmission via the coupling capacitor.
 本発明の目的は結合コンデンサを介した非接触の電力伝送を好適に行うことができる非接触電力伝送装置及びその非接触電力伝送装置を備えた回転電機を提供することである。 An object of the present invention is to provide a non-contact power transmission device capable of suitably performing non-contact power transmission via a coupling capacitor, and a rotating electrical machine including the non-contact power transmission device.
 上記目的を達成する第1の態様は非接触電力伝送装置を提供する。非接触電力伝送装置は、回転可能な回転体に固定され、当該回転体の外周面から径方向に突出した平板リング状の回転電極と、前記回転体が挿通された挿通孔を有し、前記回転体の回転に伴って回転しないように保持された平板リング状の保持電極と、を備え、前記回転電極と前記保持電極とは、前記回転体の軸線方向に対向配置されていることによって結合コンデンサを構成しており、前記結合コンデンサを介して非接触の電力伝送が行われる。 The first mode for achieving the above object provides a non-contact power transmission apparatus. The non-contact power transmission device is fixed to a rotatable rotating body, and has a flat plate ring-shaped rotating electrode protruding in a radial direction from an outer peripheral surface of the rotating body, and an insertion hole through which the rotating body is inserted, A flat ring-shaped holding electrode that is held so as not to rotate with the rotation of the rotating body, and the rotating electrode and the holding electrode are coupled by being arranged opposite to each other in the axial direction of the rotating body. A capacitor is formed, and contactless power transmission is performed via the coupling capacitor.
 上記目的を達成する第2の態様は回転電機を提供する。回転電機は、コイルが設けられたロータと、第1の態様の非接触電力伝送装置と、を備える。前記回転電極は、前記コイルに接続されている。 A second mode for achieving the above object provides a rotating electric machine. The rotating electrical machine includes a rotor provided with a coil and the non-contact power transmission device according to the first aspect. The rotating electrode is connected to the coil.
回転電機のロータを主として示す斜視図。The perspective view which mainly shows the rotor of a rotary electric machine. 回転電機のロータを主として示す断面斜視図。The cross-sectional perspective view which mainly shows the rotor of a rotary electric machine. 非接触電力伝送装置を模式的に示す断面図。Sectional drawing which shows a non-contact electric power transmission apparatus typically. u相ユニットの分解斜視図。The exploded perspective view of a u phase unit. インバータ及び回転電機の回路図。The circuit diagram of an inverter and a rotary electric machine. 別例の回転電機を示す模式図。The schematic diagram which shows the rotary electric machine of another example. 別例の非接触電力伝送装置を模式的に示す断面図。Sectional drawing which shows typically the non-contact electric power transmission apparatus of another example. 更に別の回転電機を示す模式図。Furthermore, the schematic diagram which shows another rotary electric machine. 図8の9-9線断面図。FIG. 9 is a sectional view taken along line 9-9 in FIG.
 以下、非接触電力伝送装置を適用した回転電機の一実施形態について説明する。ちなみに、回転電機は、例えばバッテリなどの蓄電装置を有する車両に搭載されており、当該蓄電装置の電力を用いて車両を走行させるのに用いられる。また、当該回転電機は、例えば車両の減速時においては回生電力を生成する。回生電力は、蓄電装置の充電などの用途に用いられる。 Hereinafter, an embodiment of a rotating electrical machine to which a non-contact power transmission device is applied will be described. Incidentally, the rotating electrical machine is mounted on a vehicle having a power storage device such as a battery, and is used to drive the vehicle using the power of the power storage device. The rotating electrical machine generates regenerative power when the vehicle is decelerated, for example. The regenerative power is used for applications such as charging of power storage devices.
 図示の都合上、図1及び図2については、3つのコイル24u~24wのうちu相コイル24uの一部のみを図示する。また、図1においては、ステータ14を2点鎖線で一部のみ示す。 For convenience of illustration, FIG. 1 and FIG. 2 show only a part of the u-phase coil 24u out of the three coils 24u to 24w. Further, in FIG. 1, only a part of the stator 14 is shown by a two-dot chain line.
 最初に、回転電機11の概要を説明する。図1に示すように、回転電機11は、回転軸12と、当該回転軸12が固定され、回転軸12と一体回転するロータ13と、ロータ13の外側に配置されたステータ14とを備えている。回転電機11は、所謂三相交流モータである。 First, an outline of the rotating electrical machine 11 will be described. As shown in FIG. 1, the rotating electrical machine 11 includes a rotating shaft 12, a rotor 13 to which the rotating shaft 12 is fixed and rotating integrally with the rotating shaft 12, and a stator 14 disposed outside the rotor 13. Yes. The rotating electrical machine 11 is a so-called three-phase AC motor.
 回転電機11は、回転軸12、ロータ13及びステータ14が収容されたハウジング(図示略)を備えており、当該ハウジング内には回転軸12を支持する軸受が収容されている。ステータ14とハウジングとは熱的に結合している。このため、ステータ14はハウジングによって冷却され得る。 The rotating electrical machine 11 includes a housing (not shown) in which a rotating shaft 12, a rotor 13, and a stator 14 are accommodated, and a bearing that supports the rotating shaft 12 is accommodated in the housing. The stator 14 and the housing are thermally coupled. For this reason, the stator 14 can be cooled by the housing.
 ロータ13は、全体として有底円筒状である。ロータ13は、本体部21と、当該本体部21の外周面に固定されたコア22とを備えている。本体部21は、底部に回転軸12が挿通される挿通孔21aを有する。コア22は、全体として略円筒状である。当該コア22の外周面には、複数のスロット23がコア22の周方向に並設されている。各スロット23は、ロータ13の軸線方向に延びている。そして、複数のスロット23には、複数のコイル24u~24wが捲回されている。 The rotor 13 has a bottomed cylindrical shape as a whole. The rotor 13 includes a main body portion 21 and a core 22 fixed to the outer peripheral surface of the main body portion 21. The main body 21 has an insertion hole 21a through which the rotary shaft 12 is inserted at the bottom. The core 22 has a substantially cylindrical shape as a whole. A plurality of slots 23 are juxtaposed in the circumferential direction of the core 22 on the outer peripheral surface of the core 22. Each slot 23 extends in the axial direction of the rotor 13. In the plurality of slots 23, a plurality of coils 24u to 24w are wound.
 ステータ14は、例えば永久磁石である。ステータ14は、湾曲形状であり、ロータ13のコア22の外周面と対向する位置に配置されている。すなわち、本回転電機11は、ステータ14の内側に配置されたロータ13に複数のコイル24u~24wが設けられているタイプのものである。 The stator 14 is a permanent magnet, for example. The stator 14 has a curved shape and is disposed at a position facing the outer peripheral surface of the core 22 of the rotor 13. That is, the rotating electrical machine 11 is of a type in which a plurality of coils 24 u to 24 w are provided on the rotor 13 disposed inside the stator 14.
 図2に示すように、回転電機11は、ロータ13の回転に伴って回転する回転体30を備えている。回転体30は、絶縁性を有する材料(例えば樹脂)で構成されている。回転体30は、ロータ13の本体部21の内側に設けられている。回転体30は、回転軸12と同一径の内径を有する筒状であり、回転体30の軸線方向とロータ13の軸線方向とは一致している。そして、回転軸12は、回転体30と一体回転する状態で回転体30に挿通されている。この場合、回転軸12の軸線方向、回転体30の軸線方向及びロータ13の軸線方向は一致している。回転体30及びロータ13は共通の軸線O(図3)を有する。すなわち、回転軸12、回転体30、及びロータ13は、軸線Oを中心に同心状に並んで配置されている。 As shown in FIG. 2, the rotating electrical machine 11 includes a rotating body 30 that rotates as the rotor 13 rotates. The rotating body 30 is made of an insulating material (for example, resin). The rotating body 30 is provided inside the main body 21 of the rotor 13. The rotating body 30 has a cylindrical shape having the same inner diameter as the rotating shaft 12, and the axial direction of the rotating body 30 coincides with the axial direction of the rotor 13. The rotating shaft 12 is inserted through the rotating body 30 so as to rotate integrally with the rotating body 30. In this case, the axial direction of the rotating shaft 12, the axial direction of the rotating body 30, and the axial direction of the rotor 13 are the same. The rotating body 30 and the rotor 13 have a common axis O (FIG. 3). That is, the rotating shaft 12, the rotating body 30, and the rotor 13 are arranged concentrically around the axis O.
 回転体30は、本体部21の底部寄りに配置された拡径部31と、拡径部31よりも小さい外径を有する縮径部32とで構成されている。拡径部31は、ロータ13の本体部21の底部に固定されている。これにより、回転体30は、ロータ13の回転に伴って回転する。 The rotating body 30 is composed of an enlarged diameter portion 31 disposed near the bottom of the main body portion 21 and a reduced diameter portion 32 having an outer diameter smaller than that of the enlarged diameter portion 31. The enlarged diameter portion 31 is fixed to the bottom portion of the main body portion 21 of the rotor 13. Thereby, the rotating body 30 rotates as the rotor 13 rotates.
 回転電機11は、回転体30の縮径部32に取り付けられているものであって、複数のコイル24u~24wに対して非接触の電力伝送を行う非接触電力伝送装置50を備えている。 The rotating electrical machine 11 is attached to the reduced diameter portion 32 of the rotating body 30, and includes a non-contact power transmission device 50 that performs non-contact power transmission to the plurality of coils 24u to 24w.
 回転電機11は、非接触電力伝送装置50とコイル24u~24wとを電気的に接続するための構成を備えている。非接触電力伝送装置50の具体的な構成の説明の前に、非接触電力伝送装置50とコイル24u~24wとの接続構成について簡単に説明する。 The rotating electrical machine 11 has a configuration for electrically connecting the non-contact power transmission device 50 and the coils 24u to 24w. Before describing the specific configuration of the non-contact power transmission device 50, the connection configuration of the non-contact power transmission device 50 and the coils 24u to 24w will be briefly described.
 図1及び図2に示すように、回転電機11は、u相コイル24uのコイルエンドから引き出されたu相リード線41uと電気的に接続されたu相バスバー42uと、u相バスバー42uを保持するバスバー保持部43とを備えている。バスバー保持部43は、絶縁性を有しており、本体部21の底部に対して外側から取り付けられている。 As shown in FIGS. 1 and 2, the rotating electrical machine 11 holds a u-phase bus bar 42u electrically connected to a u-phase lead wire 41u drawn from the coil end of the u-phase coil 24u, and a u-phase bus bar 42u. And a bus bar holding portion 43. The bus bar holding portion 43 has an insulating property and is attached to the bottom portion of the main body portion 21 from the outside.
 また、図2に示すように、回転体30には、回転体30の軸線方向に延びた棒状のu相ロータ配線44uが埋設されている。u相ロータ配線44uは、本体部21の底部及びバスバー保持部43を貫通しており、u相ロータ配線44uの一部は、バスバー保持部43から突出している。u相バスバー42uは、u相ロータ配線44uとu相リード線41uとを接続した状態で、バスバー保持部43に固定(詳細には締結)されている。 Further, as shown in FIG. 2, rod-shaped u-phase rotor wiring 44 u extending in the axial direction of the rotating body 30 is embedded in the rotating body 30. The u-phase rotor wiring 44 u passes through the bottom portion of the main body 21 and the bus bar holding portion 43, and a part of the u-phase rotor wiring 44 u protrudes from the bus bar holding portion 43. The u-phase bus bar 42u is fixed (fastened in detail) to the bus bar holding portion 43 in a state where the u-phase rotor wiring 44u and the u-phase lead wire 41u are connected.
 u相にかかる構成と同様に、回転電機11は、v相コイル24vのコイルエンドから引き出されたv相リード線(図示略)と、回転体30に埋設されたv相ロータ配線(図示略)とを接続するv相バスバー42vとを備えている。そして、回転電機11は、w相コイル24wのコイルエンドから引き出されたw相リード線(図示略)と、回転体30に埋設されたw相ロータ配線(図示略)とを接続するw相バスバー42wとを備えている。バスバー保持部43は、各バスバー42u,42v,42wを保持している。 Similar to the configuration relating to the u-phase, the rotating electrical machine 11 includes a v-phase lead wire (not shown) drawn from the coil end of the v-phase coil 24v and a v-phase rotor wiring (not shown) embedded in the rotating body 30. V-phase bus bar 42v. Then, the rotating electrical machine 11 connects the w-phase lead wire (not shown) drawn from the coil end of the w-phase coil 24 w and the w-phase rotor wiring (not shown) embedded in the rotating body 30. 42w. The bus bar holding unit 43 holds the bus bars 42u, 42v, and 42w.
 次に、非接触電力伝送装置50の具体的な構成について説明する。
 非接触電力伝送装置50は、u相コイル24uに対応するu相ユニット50u、v相コイル24vに対応するv相ユニット50v及びw相コイル24wに対応するw相ユニット50wを備えている。各相ユニット50u~50wは、ロータ13の内側に配置された回転体30の縮径部32に取り付けられている。各相ユニット50u~50wは、回転体30の軸線方向に所定の間隔を隔てて配列されている。これら各相ユニット50u~50wは基本的には同一の構成であるため、以下u相ユニット50uについて図3及び図4を用いて詳細に説明し、v相ユニット50v及びw相ユニット50wの詳細な説明を省略する。図4においては、図示の都合上、回転体30を2点鎖線で示し、保持部材81の図示を省略する。
Next, a specific configuration of the non-contact power transmission device 50 will be described.
The non-contact power transmission device 50 includes a u-phase unit 50u corresponding to the u-phase coil 24u, a v-phase unit 50v corresponding to the v-phase coil 24v, and a w-phase unit 50w corresponding to the w-phase coil 24w. Each of the phase units 50u to 50w is attached to a reduced diameter portion 32 of the rotating body 30 disposed inside the rotor 13. The phase units 50u to 50w are arranged at a predetermined interval in the axial direction of the rotating body 30. Since each of these phase units 50u to 50w has basically the same configuration, the u-phase unit 50u will be described in detail below with reference to FIGS. 3 and 4, and the details of the v-phase unit 50v and the w-phase unit 50w will be described in detail. Description is omitted. In FIG. 4, for convenience of illustration, the rotating body 30 is indicated by a two-dot chain line, and the illustration of the holding member 81 is omitted.
 図3及び図4に示すように、u相ユニット50uは、回転体30の縮径部32の外周面から径方向に突出した平板リング状のu相回転電極51uを備えている。u相回転電極51uは、回転体30に固定されており、回転体30の回転に伴って回転する。 As shown in FIGS. 3 and 4, the u-phase unit 50u includes a plate-ring-shaped u-phase rotating electrode 51u protruding in the radial direction from the outer peripheral surface of the reduced diameter portion 32 of the rotating body 30. The u-phase rotating electrode 51 u is fixed to the rotating body 30 and rotates as the rotating body 30 rotates.
 u相回転電極51uは、回転体30に埋設されたu相ロータ配線44uに接続されている。これにより、u相回転電極51uは、u相ロータ配線44u、u相バスバー42u及びu相リード線41uを介して、u相コイル24uに接続されている。 The u-phase rotating electrode 51u is connected to the u-phase rotor wiring 44u embedded in the rotating body 30. Thereby, the u-phase rotating electrode 51u is connected to the u-phase coil 24u via the u-phase rotor wiring 44u, the u-phase bus bar 42u, and the u-phase lead wire 41u.
 u相ユニット50uは、回転体30の回転に伴って回転しないように保持された平板リング状のu相保持電極52uを備えている。u相保持電極52uは、回転体30が挿通された挿通孔52ucを有している。挿通孔52ucは、回転体30の縮径部32よりも一回り大きく形成されている。u相保持電極52uは、その内周面が回転体30の縮径部32と当接しないように保持されている。u相回転電極51uとu相保持電極52uとは、同一軸線上であって回転体30の軸線方向に対向配置されている。これにより、u相結合コンデンサCuが構成されている。 The u-phase unit 50u includes a plate-ring-shaped u-phase holding electrode 52u that is held so as not to rotate with the rotation of the rotating body 30. The u-phase holding electrode 52u has an insertion hole 52uc through which the rotating body 30 is inserted. The insertion hole 52uc is formed to be slightly larger than the reduced diameter portion 32 of the rotating body 30. The u-phase holding electrode 52u is held such that the inner peripheral surface thereof does not contact the reduced diameter portion 32 of the rotating body 30. The u-phase rotating electrode 51 u and the u-phase holding electrode 52 u are disposed on the same axis and opposed to each other in the axial direction of the rotating body 30. Thereby, the u-phase coupling capacitor Cu is configured.
 u相回転電極51uとu相保持電極52uとは、回転電機の動作中において常に互いに直接接触することはない。このように、u相回転電極51uとu相保持電極52uとは、互いに機械的に非接触である。 The u-phase rotating electrode 51u and the u-phase holding electrode 52u are not always in direct contact with each other during the operation of the rotating electrical machine. As described above, the u-phase rotating electrode 51u and the u-phase holding electrode 52u are not in mechanical contact with each other.
 本実施形態では、u相回転電極51u及びu相保持電極52uは、回転体30の軸線方向から見て円形のリング状であって、両者の外径は同一に設定されている。
 図3に示すように、u相回転電極51uは、u相保持電極52uと対向する回転対向面51uaを有している。回転対向面51uaは、回転体30の軸線方向に直交する平坦面である。即ち、回転対向面51uaは、回転体30の径方向に延びる平坦面である。回転対向面51uaには、空気よりも高い誘電率を有する第1回転誘電層61(回転誘電部)が設けられている。同様に、u相回転電極51uにおける回転対向面51uaとは反対側の面51ubには、空気よりも高い誘電率を有する第2回転誘電層62が設けられている。第1回転誘電層61及び第2回転誘電層62は、u相回転電極51uと同様に平板リング状である。u相回転電極51uは、第1回転誘電層61及び第2回転誘電層62によって回転体30の軸線方向から挟まれている。u相回転電極51u、第1回転誘電層61及び第2回転誘電層62は、焼結等の処理によってユニット化されている。
In the present embodiment, the u-phase rotating electrode 51u and the u-phase holding electrode 52u are circular rings as viewed from the axial direction of the rotating body 30, and the outer diameters of both are set to be the same.
As shown in FIG. 3, the u-phase rotating electrode 51u has a rotation-facing surface 51ua that faces the u-phase holding electrode 52u. The rotation facing surface 51 ua is a flat surface orthogonal to the axial direction of the rotating body 30. That is, the rotation opposing surface 51ua is a flat surface extending in the radial direction of the rotating body 30. A first rotating dielectric layer 61 (rotating dielectric portion) having a dielectric constant higher than that of air is provided on the rotation facing surface 51ua. Similarly, a second rotating dielectric layer 62 having a dielectric constant higher than that of air is provided on a surface 51ub of the u-phase rotating electrode 51u opposite to the rotation facing surface 51ua. The first rotating dielectric layer 61 and the second rotating dielectric layer 62 have a plate ring shape like the u-phase rotating electrode 51u. The u-phase rotating electrode 51 u is sandwiched between the first rotating dielectric layer 61 and the second rotating dielectric layer 62 from the axial direction of the rotating body 30. The u-phase rotating electrode 51u, the first rotating dielectric layer 61, and the second rotating dielectric layer 62 are unitized by a process such as sintering.
 同様に、u相保持電極52uは、u相回転電極51uと対向する保持対向面52uaを有している。保持対向面52uaは、回転体30の軸線方向に直交する平坦面である。即ち、保持対向面52uaは、回転体30の径方向に延びる平坦面である。保持対向面52uaには、空気よりも高い誘電率を有する第1保持誘電層71(保持誘電部)が設けられている。u相保持電極52uにおける保持対向面52uaとは反対側の面52ubには、空気よりも高い誘電率を有する第2保持誘電層72が設けられている。u相保持電極52u、第1保持誘電層71及び第2保持誘電層72は、焼結等の処理によりユニット化されている。 Similarly, the u-phase holding electrode 52u has a holding facing surface 52ua that faces the u-phase rotating electrode 51u. The holding facing surface 52 ua is a flat surface that is orthogonal to the axial direction of the rotating body 30. That is, the holding facing surface 52 ua is a flat surface extending in the radial direction of the rotating body 30. The holding facing surface 52ua is provided with a first holding dielectric layer 71 (holding dielectric portion) having a dielectric constant higher than that of air. A second holding dielectric layer 72 having a dielectric constant higher than that of air is provided on the surface 52ub of the u-phase holding electrode 52u opposite to the holding facing surface 52ua. The u-phase holding electrode 52u, the first holding dielectric layer 71, and the second holding dielectric layer 72 are unitized by a process such as sintering.
 各誘電層61,62,71,72の構成材料は、空気よりも高い誘電率を有するものであれば任意であるが、例えばチタン酸バリウム等の誘電性セラミックスである。第1回転誘電層61の表面及び第1保持誘電層71の表面はそれぞれ、回転体30の軸線方向に直交する平坦面である。即ち、第1回転誘電層61の表面及び第1保持誘電層71の表面はそれぞれ、回転体30の径方向に延びる平坦面である。 The constituent material of each of the dielectric layers 61, 62, 71, 72 is arbitrary as long as it has a dielectric constant higher than that of air. For example, it is a dielectric ceramic such as barium titanate. The surface of the first rotating dielectric layer 61 and the surface of the first holding dielectric layer 71 are flat surfaces orthogonal to the axial direction of the rotating body 30. That is, the surface of the first rotating dielectric layer 61 and the surface of the first holding dielectric layer 71 are flat surfaces extending in the radial direction of the rotating body 30.
 また、第1回転誘電層61及び第1保持誘電層71は、u相回転電極51u及びu相保持電極52uと比較して、滑り易く構成されている。詳細には、第1回転誘電層61及び第1保持誘電層71の構成材料である誘電体セラミックスの摩擦係数は、u相回転電極51u及びu相保持電極52uの摩擦係数よりも小さい。 Further, the first rotating dielectric layer 61 and the first holding dielectric layer 71 are configured to be more slippery than the u-phase rotating electrode 51u and the u-phase holding electrode 52u. Specifically, the friction coefficient of the dielectric ceramics that is the constituent material of the first rotating dielectric layer 61 and the first holding dielectric layer 71 is smaller than the friction coefficient of the u-phase rotating electrode 51u and the u-phase holding electrode 52u.
 図3に示すように、第1回転誘電層61と第1保持誘電層71との間には、潤滑材として流体の潤滑油80が配置されている。すなわち、u相結合コンデンサCuは、回転体30の軸線方向に対向するu相回転電極51u及びu相保持電極52uと、両者の間に介在する第1回転誘電層61、潤滑油80及び第1保持誘電層71とによって構成されている。潤滑油80は、空気よりも高い誘電率を有する材料で構成されている。但し、本実施形態では、潤滑油80の誘電率は、両誘電層61,71の誘電率よりも低い。 As shown in FIG. 3, a fluid lubricating oil 80 is disposed as a lubricant between the first rotating dielectric layer 61 and the first holding dielectric layer 71. That is, the u-phase coupling capacitor Cu includes the u-phase rotating electrode 51u and the u-phase holding electrode 52u that are opposed to each other in the axial direction of the rotating body 30, the first rotating dielectric layer 61, the lubricating oil 80, and the first phase interposed therebetween. And a holding dielectric layer 71. The lubricating oil 80 is made of a material having a dielectric constant higher than that of air. However, in this embodiment, the dielectric constant of the lubricating oil 80 is lower than the dielectric constants of both the dielectric layers 61 and 71.
 上記のように構成されたu相結合コンデンサCuの静電容量は、両誘電層61,71及び潤滑油80の誘電率と、u相回転電極51uとu相保持電極52uとの対向方向(すなわち回転体30の軸線方向)の離間距離である電極間距離dxと、u相回転電極51uとu相保持電極52uとの対向面積等の条件に依存する。 The capacitance of the u-phase coupling capacitor Cu configured as described above is that the dielectric constants of both the dielectric layers 61 and 71 and the lubricating oil 80 and the opposing direction of the u-phase rotating electrode 51u and the u-phase holding electrode 52u (that is, It depends on conditions such as the inter-electrode distance dx, which is a separation distance in the axial direction of the rotating body 30, and the facing area between the u-phase rotating electrode 51u and the u-phase holding electrode 52u.
 対向面積とは、回転体30の軸線方向から見た回転対向面51uaと保持対向面52uaとの重なり領域の面積であり、回転対向面51ua及び保持対向面52uaの面積に依存する。厳密には、本実施形態では、回転体30との摺動を回避するべく、挿通孔52ucが回転体30よりも一回り大きく形成されており、且つ、外径が同一である関係上、対向面積は、保持対向面52uaの面積と一致している。 The facing area is an area of an overlapping region of the rotating facing surface 51ua and the holding facing surface 52ua as viewed from the axial direction of the rotating body 30, and depends on the areas of the rotating facing surface 51ua and the holding facing surface 52ua. Strictly speaking, in the present embodiment, in order to avoid sliding with the rotating body 30, the insertion hole 52uc is formed to be slightly larger than the rotating body 30, and the outer diameter is the same. The area matches the area of the holding facing surface 52ua.
 u相保持電極52uの保持に係る構成について説明する。図2及び図3に示すように、非接触電力伝送装置50は、u相保持電極52uを保持するのに用いられる保持部材81を備えている。保持部材81は、例えば樹脂などの絶縁性を有する材料で構成されている。保持部材81は、例えばu相回転電極51u及びu相保持電極52uの外径よりも大きい内径と、本体部21の内径よりも小さい外径とを有する円筒状である。保持部材81は、各相ユニット50u~50wを、回転体30の径方向の外側から覆っている。保持部材81の軸線方向の一端部はハウジングに固定されている。このため、保持部材81は、回転体30の回転に伴って回転しない。 A configuration related to holding of the u-phase holding electrode 52u will be described. As shown in FIGS. 2 and 3, the non-contact power transmission device 50 includes a holding member 81 that is used to hold the u-phase holding electrode 52 u. The holding member 81 is made of an insulating material such as resin. The holding member 81 has, for example, a cylindrical shape having an inner diameter larger than the outer diameter of the u-phase rotating electrode 51u and the u-phase holding electrode 52u and an outer diameter smaller than the inner diameter of the main body portion 21. The holding member 81 covers each of the phase units 50u to 50w from the outside in the radial direction of the rotating body 30. One end of the holding member 81 in the axial direction is fixed to the housing. For this reason, the holding member 81 does not rotate with the rotation of the rotating body 30.
 図3及び図4に示すように、非接触電力伝送装置50のu相ユニット50uは、u相保持電極52uを、回転体30の軸線方向に移動可能な状態で保持するu相保持部82uを複数(例えば4つ)備えている。複数のu相保持部82uはそれぞれ、例えばバネや弾性ゴム(ラバー)等の弾性部材で構成されている。複数のu相保持部82uは、回転体30の周方向に離間して配置されている。各u相保持部82uの一端は、u相保持電極52u、第1保持誘電層71及び第2保持誘電層72で構成されたユニット体に接続されており、各u相保持部82uの他端は、保持部材81の内周面に接続されている。複数のu相保持部82uは、u相回転電極51uとu相保持電極52uとの対向方向である回転体30の軸線方向における上記ユニット体の移動を許容する一方、上記ユニット体の回転(すなわち回転体30の周方向の移動)を規制している。これにより、u相保持電極52uは、回転体30の軸線方向には移動可能な状態で、回転体30の回転に伴って回転しないように保持されている。 As illustrated in FIGS. 3 and 4, the u-phase unit 50 u of the non-contact power transmission device 50 includes a u-phase holding unit 82 u that holds the u-phase holding electrode 52 u while being movable in the axial direction of the rotating body 30. A plurality (for example, four) are provided. Each of the plurality of u-phase holding portions 82u is made of an elastic member such as a spring or elastic rubber (rubber). The plurality of u-phase holding portions 82u are arranged apart from each other in the circumferential direction of the rotating body 30. One end of each u-phase holding part 82u is connected to a unit body composed of the u-phase holding electrode 52u, the first holding dielectric layer 71, and the second holding dielectric layer 72, and the other end of each u-phase holding part 82u. Is connected to the inner peripheral surface of the holding member 81. The plurality of u-phase holding portions 82u allow the unit body to move in the axial direction of the rotating body 30 that is the opposing direction of the u-phase rotating electrode 51u and the u-phase holding electrode 52u, while rotating the unit body (that is, (Movement of the rotating body 30 in the circumferential direction) is regulated. Thus, the u-phase holding electrode 52u is held so as not to rotate with the rotation of the rotating body 30 while being movable in the axial direction of the rotating body 30.
 図3及び図4に示すように、非接触電力伝送装置50のu相ユニット50uは、u相保持電極52uを、回転体30の軸線方向からu相回転電極51uに向けて押圧する押圧部としてのu相皿バネ83uを備えている。保持部材81の内周面には、当該内周面から径方向内側に突出したu相壁部84uが設けられている。u相壁部84uは、回転体30よりも一回り大きい内径を有する平板リング状である。u相壁部84uは、u相保持電極52uに対して、u相回転電極51u側とは反対側に配置されており、その位置にて保持部材81に固定されている。u相皿バネ83uは、u相壁部84uとu相保持電極52uとの間にて配置されている。この場合、u相保持電極52uは、u相皿バネ83uの付勢力によって回転体30の軸線方向からu相回転電極51uに向けて押圧されている。 As shown in FIGS. 3 and 4, the u-phase unit 50 u of the non-contact power transmission device 50 serves as a pressing unit that presses the u-phase holding electrode 52 u toward the u-phase rotating electrode 51 u from the axial direction of the rotating body 30. The u-phase disc spring 83u is provided. A u-phase wall portion 84 u that protrudes radially inward from the inner peripheral surface is provided on the inner peripheral surface of the holding member 81. The u-phase wall portion 84u has a plate ring shape having an inner diameter that is slightly larger than that of the rotating body 30. The u-phase wall portion 84u is disposed on the opposite side of the u-phase holding electrode 52u from the u-phase rotating electrode 51u side, and is fixed to the holding member 81 at that position. The u-phase disc spring 83u is disposed between the u-phase wall portion 84u and the u-phase holding electrode 52u. In this case, the u-phase holding electrode 52u is pressed from the axial direction of the rotating body 30 toward the u-phase rotating electrode 51u by the biasing force of the u-phase disc spring 83u.
 u相回転電極51uとu相保持電極52uとの対向方向である回転体30の軸線方向を厚さ方向と定義する。この場合、図3に示すように、第1回転誘電層61の厚さと第1保持誘電層71の厚さとは同一に設定されている(以下誘電層厚さd1という)。そして、u相皿バネ83uによってu相保持電極52uが押圧されている状況においてu相回転電極51uが回転している場合の潤滑油80の厚さd2は誘電層厚さd1よりも薄い。 The axial direction of the rotating body 30, which is the opposing direction of the u-phase rotating electrode 51u and the u-phase holding electrode 52u, is defined as the thickness direction. In this case, as shown in FIG. 3, the thickness of the first rotating dielectric layer 61 and the thickness of the first holding dielectric layer 71 are set to be the same (hereinafter referred to as dielectric layer thickness d1). The thickness d2 of the lubricating oil 80 when the u-phase rotating electrode 51u is rotating in a state where the u-phase holding electrode 52u is pressed by the u-phase disc spring 83u is thinner than the dielectric layer thickness d1.
 図3に示すように、非接触電力伝送装置50は、u相保持電極52uに接続されたu相ステータ配線85uを備えている。u相ステータ配線85uの一部は、保持部材81に埋設されており、回転電機11を駆動させる駆動回路としてのインバータ100(図5参照)に接続されている。u相ステータ配線85uの別の一部は、緩んだ状態で、保持部材81に埋設されている部分と、u相保持電極52uとを接続している。これにより、u相ステータ配線85uは、u相保持電極52uが回転体30の軸線方向の移動に追従するように構成されている。 As shown in FIG. 3, the non-contact power transmission device 50 includes a u-phase stator wiring 85u connected to the u-phase holding electrode 52u. A part of the u-phase stator wiring 85u is embedded in the holding member 81 and connected to an inverter 100 (see FIG. 5) as a drive circuit for driving the rotating electrical machine 11. Another part of the u-phase stator wiring 85u is connected in a relaxed state between the portion embedded in the holding member 81 and the u-phase holding electrode 52u. Thereby, the u-phase stator wiring 85u is configured such that the u-phase holding electrode 52u follows the movement of the rotating body 30 in the axial direction.
 図2に示すように、u相ユニット50uと同様に、v相ユニット50vは、v相回転電極51v及びv相保持電極52v等の部品から構成されるv相結合コンデンサCvを有している。v相回転電極51vは、v相ロータ配線及びv相バスバー42vを介して、v相コイル24vに接続されている。v相保持電極52vは、保持部材81に一部が埋設されたv相ステータ配線(図示略)を介してインバータ100に接続されている。 As shown in FIG. 2, similarly to the u-phase unit 50u, the v-phase unit 50v has a v-phase coupling capacitor Cv composed of components such as a v-phase rotating electrode 51v and a v-phase holding electrode 52v. The v-phase rotating electrode 51v is connected to the v-phase coil 24v via the v-phase rotor wiring and the v-phase bus bar 42v. The v-phase holding electrode 52v is connected to the inverter 100 via a v-phase stator wiring (not shown) partially embedded in the holding member 81.
 同様に、w相ユニット50wは、w相回転電極51w及びw相保持電極52w等の部品から構成されるw相結合コンデンサCwを有している。w相回転電極51wは、w相ロータ配線及びw相バスバー42wを介して、w相コイル24wに接続されている。w相保持電極52wは、保持部材81に一部が埋設されたw相ステータ配線(図示略)を介してインバータ100に接続されている。 Similarly, the w-phase unit 50w has a w-phase coupling capacitor Cw composed of components such as a w-phase rotating electrode 51w and a w-phase holding electrode 52w. The w-phase rotating electrode 51w is connected to the w-phase coil 24w via the w-phase rotor wiring and the w-phase bus bar 42w. The w-phase holding electrode 52 w is connected to the inverter 100 via w-phase stator wiring (not shown) partially embedded in the holding member 81.
 ここで、結合コンデンサCu~Cwの静電容量は、非接触の電力伝送が行われる電力値を規定している1パラメータである。詳細には、結合コンデンサCu~Cwの静電容量が大きいほど非接触で電力伝送される電力値を大きくすることができる。本実施形態では、各結合コンデンサCu~Cwは同一形状であるため、各結合コンデンサCu~Cwの静電容量は同一である。 Here, the capacitance of the coupling capacitors Cu to Cw is one parameter that defines the power value at which non-contact power transmission is performed. Specifically, as the capacitances of the coupling capacitors Cu to Cw are larger, the value of electric power transmitted in a non-contact manner can be increased. In this embodiment, since the coupling capacitors Cu to Cw have the same shape, the capacitances of the coupling capacitors Cu to Cw are the same.
 また、非接触電力伝送装置50は、v相保持部、v相皿バネ83v及びv相壁部84vと、w相保持部、w相皿バネ83w及びw相壁部84wとを備えている。これらの構成は、u相における対応する構成と同様である。 Further, the non-contact power transmission device 50 includes a v-phase holding unit, a v-phase disc spring 83v and a v-phase wall portion 84v, and a w-phase holding unit, a w-phase disc spring 83w and a w-phase wall portion 84w. These configurations are the same as the corresponding configurations in the u phase.
 本実施形態の非接触電力伝送装置50の具体的な製造方法については任意であるが、例えば両面に誘電層が形成された保持電極52u~52w、保持部及び皿バネ83u~83w等の部品が取り付けられた保持部材81のユニット体を軸線方向に沿って分割する。そして、両面に誘電層が形成された回転電極51u~51wが固定された回転体30に対して上記ユニット体の分割パーツを回転体30の軸線方向と直交する方向(例えば上下方向、即ち径方向)から取り付け、その状態で焼結や溶接等の接合方法によって接合し、その後回転体30を本体部21に固定するといった手法が考えられる。 A specific method for manufacturing the non-contact power transmission device 50 of the present embodiment is arbitrary. For example, there are components such as holding electrodes 52u to 52w having a dielectric layer formed on both surfaces, holding portions, and disc springs 83u to 83w. The unit body of the attached holding member 81 is divided along the axial direction. Then, with respect to the rotating body 30 to which the rotating electrodes 51u to 51w having dielectric layers formed on both surfaces are fixed, the divided parts of the unit body are perpendicular to the axial direction of the rotating body 30 (for example, the vertical direction, ie, the radial direction). ), And in that state, joining is performed by a joining method such as sintering or welding, and then the rotating body 30 is fixed to the main body 21.
 次に、本回転電機11の電気的構成及びインバータ100について詳細に説明する。
 図5に示すように、インバータ100は、u相コイル24uに対応するu相スイッチング素子Qu1,Qu2と、v相コイル24vに対応するv相スイッチング素子Qv1,Qv2と、w相コイル24wに対応するw相スイッチング素子Qw1,Qw2と、を備えている。各スイッチング素子Qu1,Qu2,Qv1,Qv2,Qw1,Qw2(以降単に各スイッチング素子Qu1~Qw2と示す)は例えばIGBTで構成されている。
Next, the electrical configuration of the rotary electric machine 11 and the inverter 100 will be described in detail.
As shown in FIG. 5, inverter 100 corresponds to u-phase switching elements Qu1 and Qu2 corresponding to u-phase coil 24u, v-phase switching elements Qv1 and Qv2 corresponding to v-phase coil 24v, and w-phase coil 24w. w-phase switching elements Qw1 and Qw2 are provided. Each of the switching elements Qu1, Qu2, Qv1, Qv2, Qw1, and Qw2 (hereinafter simply referred to as switching elements Qu1 to Qw2) is composed of, for example, an IGBT.
 各u相スイッチング素子Qu1,Qu2は接続線を介して互いに直列に接続されており、その接続線は、u相保持電極52uに接続されている。そして、各u相スイッチング素子Qu1,Qu2の直列接続体に対して、車両に搭載されたバッテリBから直流電力が入力されている。他のスイッチング素子Qv1,Qv2,Qw1,Qw2については、対応する保持電極が異なる点を除いて、u相スイッチング素子Qu1,Qu2と同様の接続態様であるため、詳細な説明を省略する。各コイル24u~24wは、例えばデルタ結線されている。 The u-phase switching elements Qu1 and Qu2 are connected to each other in series via a connection line, and the connection line is connected to the u-phase holding electrode 52u. And direct-current power is input from the battery B mounted in the vehicle with respect to the series connection body of each u-phase switching element Qu1, Qu2. Since the other switching elements Qv1, Qv2, Qw1, and Qw2 have the same connection mode as the u-phase switching elements Qu1 and Qu2 except that the corresponding holding electrodes are different, detailed description thereof is omitted. Each of the coils 24u to 24w is, for example, delta-connected.
 インバータ100は、各スイッチング素子Qu1~Qw2のスイッチング動作を制御する制御回路101を備えている。制御回路101は、各スイッチング素子Qu1~Qw2を周期的にON/OFFさせることにより、直流電力を交流電力に変換し、当該交流電力を各保持電極52u~52wに対して供給する。当該交流電力は、各結合コンデンサCu~Cwを介して、各コイル24u~24wに非接触で供給される。これにより、ロータ13が回転する。 The inverter 100 includes a control circuit 101 that controls the switching operation of the switching elements Qu1 to Qw2. The control circuit 101 converts the DC power into AC power by periodically turning on / off the switching elements Qu1 to Qw2, and supplies the AC power to the holding electrodes 52u to 52w. The AC power is supplied in a non-contact manner to the coils 24u to 24w via the coupling capacitors Cu to Cw. Thereby, the rotor 13 rotates.
 また、複数のスイッチング素子Qu1~Qw2はそれぞれボディダイオード(寄生ダイオード)Du1~Dw2を有している。各コイル24u~24wにて発生した回生電力は、ボディダイオードDu1~Dw2によって整流されて、バッテリBに入力される。これにより、バッテリBが充電される。すなわち、本インバータ100は、直流電力と交流電力との双方向変換が可能な電力変換部である。 The plurality of switching elements Qu1 to Qw2 have body diodes (parasitic diodes) Du1 to Dw2, respectively. The regenerative power generated in each of the coils 24u to 24w is rectified by the body diodes Du1 to Dw2 and input to the battery B. Thereby, the battery B is charged. That is, the inverter 100 is a power conversion unit capable of bidirectional conversion between DC power and AC power.
 例えば第1u相スイッチング素子Qu1がON状態であり、第2u相スイッチング素子Qu2がOFF状態であり、第1v相スイッチング素子Qv1がOFF状態であり、第2v相スイッチング素子Qv2がON状態である場合、u相結合コンデンサCu→u相コイル24u→v相結合コンデンサCvという経路で電力伝送が行われる。この場合、u相結合コンデンサCu、u相コイル24u及びv相結合コンデンサCvによって直列共振回路が構成されている。つまり、u相コイル24uは、u相結合コンデンサCu及びv相結合コンデンサCvと協働して、上記直列共振回路を構成している。 For example, when the first u-phase switching element Qu1 is in the ON state, the second u-phase switching element Qu2 is in the OFF state, the first v-phase switching element Qv1 is in the OFF state, and the second v-phase switching element Qv2 is in the ON state. Power transmission is performed through a path of u-phase coupling capacitor Cu → u-phase coil 24u → v-phase coupling capacitor Cv. In this case, a series resonance circuit is configured by the u-phase coupling capacitor Cu, the u-phase coil 24u, and the v-phase coupling capacitor Cv. That is, the u-phase coil 24u constitutes the series resonance circuit in cooperation with the u-phase coupling capacitor Cu and the v-phase coupling capacitor Cv.
 なお、上述したスイッチング態様とは別のスイッチング態様においても、結合コンデンサCu~Cwのうち2つの結合コンデンサと、コイル24u~24wのうち1つのコイルとによって直列共振回路が構成されている。 In a switching mode different from the switching mode described above, a series resonance circuit is configured by two coupling capacitors among the coupling capacitors Cu to Cw and one coil among the coils 24u to 24w.
 各コイル24u~24wのインダクタンスは同一である。そして、既に説明した通り、各結合コンデンサCu~Cwの静電容量は同一である。このため、いずれの直列共振回路が構成された場合であっても、共振周波数は同一である。 The inductances of the coils 24u to 24w are the same. As already described, the capacitances of the coupling capacitors Cu to Cw are the same. Therefore, the resonance frequency is the same regardless of which series resonance circuit is configured.
 制御回路101は、上記共振周波数に対応させて、各スイッチング素子Qu1~Qw2のON/OFF制御を行う。すなわち、制御回路101は、上記共振周波数と同一周波数の交流電力が出力されるように各スイッチング素子Qu1~Qw2のON/OFF制御を行う。制御回路101は、各スイッチング素子Qu1~Qw2のON/OFFのデューティ比を可変制御することにより、ロータ13の回転数を可変制御する。 The control circuit 101 performs ON / OFF control of the switching elements Qu1 to Qw2 in accordance with the resonance frequency. That is, the control circuit 101 performs ON / OFF control of the switching elements Qu1 to Qw2 so that AC power having the same frequency as the resonance frequency is output. The control circuit 101 variably controls the rotational speed of the rotor 13 by variably controlling the ON / OFF duty ratios of the switching elements Qu1 to Qw2.
 次に本実施形態の作用について説明する。
 インバータ100から出力される交流電力は、各結合コンデンサCu~Cwを介して、非接触で各コイル24u~24wに供給される。これにより、ロータ13及び回転体30が回転する。この場合、u相保持電極52uがu相回転電極51uに向けて押圧されている状況下でu相回転電極51uが回転することによって、潤滑油80において油膜圧力が発生する。このため、力の均衡が保たれ、潤滑油80の厚さd2が一定に保たれる。
Next, the operation of this embodiment will be described.
The AC power output from the inverter 100 is supplied to the coils 24u to 24w in a non-contact manner via the coupling capacitors Cu to Cw. Thereby, the rotor 13 and the rotary body 30 rotate. In this case, an oil film pressure is generated in the lubricating oil 80 by the rotation of the u-phase rotating electrode 51u in a state where the u-phase holding electrode 52u is pressed toward the u-phase rotating electrode 51u. For this reason, the balance of force is maintained and the thickness d2 of the lubricating oil 80 is kept constant.
 以上詳述した本実施形態によれば以下の効果を奏する。説明の便宜上、一部の効果については、u相についてのみ説明するが、v相及びw相についても同様の効果を奏する。
 (1)非接触電力伝送装置50は、回転可能な回転体30に固定され、当該回転体30の外周面から径方向に突出した平板リング状のu相回転電極51uと、回転体30が挿通された挿通孔52ucを有し、且つ、回転体30の回転に伴って回転しないように保持された平板リング状のu相保持電極52uと、を備えている。u相回転電極51uとu相保持電極52uとは、回転体30の軸線方向に対向配置されている。非接触電力伝送装置50は、u相回転電極51uとu相保持電極52uとによって構成されたu相結合コンデンサCuを介して非接触の電力伝送を行うように構成されている。かかる構成によれば、平板リング状のu相回転電極51u及びu相保持電極52uの軸線方向の端面(回転対向面51ua及び保持対向面52ua)同士が回転体30の軸線方向に対向することとなるため、湾曲した電極が径方向に対向する構成と比較して、電極間距離dxの局所的なばらつきを比較的容易に抑制することができる。
According to the embodiment described above in detail, the following effects are obtained. For convenience of explanation, some effects will be described only for the u phase, but the same effects can be achieved for the v phase and the w phase.
(1) The non-contact power transmission device 50 is fixed to a rotatable rotating body 30, and a flat plate ring-shaped u-phase rotating electrode 51 u protruding radially from the outer peripheral surface of the rotating body 30 and the rotating body 30 are inserted. And a flat plate ring-shaped u-phase holding electrode 52u that is held so as not to rotate with the rotation of the rotating body 30. The u-phase rotating electrode 51 u and the u-phase holding electrode 52 u are disposed to face each other in the axial direction of the rotating body 30. The non-contact power transmission device 50 is configured to perform non-contact power transmission via a u-phase coupling capacitor Cu configured by a u-phase rotating electrode 51u and a u-phase holding electrode 52u. According to this configuration, the end faces in the axial direction (rotation facing surface 51 ua and holding facing surface 52 ua) of the plate-shaped u-phase rotating electrode 51 u and u phase holding electrode 52 u are opposed to each other in the axial direction of the rotating body 30. Therefore, the local variation in the interelectrode distance dx can be relatively easily suppressed as compared with the configuration in which the curved electrodes face each other in the radial direction.
 詳述すると、仮に円筒状の回転電極と保持電極とが径方向に対向する構成においては、周方向の位置によって電極間距離dxが変動しないように、回転電極と保持電極とを湾曲させて形成する必要がある。このような湾曲形成は、平坦面の形成と比較して、精度が低くなり易い。これに対して、本実施形態では、回転対向面51ua及び保持対向面52uaの双方は平坦面であればよいため、湾曲形成させる構成と比較して、容易に所望の精度を得ることができる。これにより、電極間距離dxの局所的なばらつきを比較的容易に抑制することができ、それを通じて電荷の集中を好適に抑制することができる。 More specifically, if the cylindrical rotating electrode and the holding electrode are opposed to each other in the radial direction, the rotating electrode and the holding electrode are curved so that the inter-electrode distance dx does not vary depending on the position in the circumferential direction. There is a need to. Such curve formation tends to be less accurate than the formation of a flat surface. On the other hand, in this embodiment, since both rotation opposing surface 51ua and holding | maintenance opposing surface 52ua should just be flat surfaces, compared with the structure formed curvedly, desired precision can be obtained easily. Thereby, the local dispersion | variation in the distance dx between electrodes can be suppressed comparatively easily, and the concentration of an electric charge can be suppressed suitably through it.
 特に、回転電極及び保持電極が円筒状であって径方向に対向する構成である場合、結合コンデンサの静電容量は、回転電極及び保持電極の軸線方向の長さに依存する。一方、u相回転電極51u及びu相保持電極52uが平板リング状である場合、u相結合コンデンサCuの静電容量は、回転対向面51ua及び保持対向面52uaの面積に依存する。当該面積は、u相回転電極51u及びu相保持電極52uの半径の2乗に依存する。このため、u相回転電極51u及びu相保持電極52uの外径を大きくすることによって、回転体30の軸線方向への大型化を抑制しつつ、u相結合コンデンサCuの静電容量の向上を図ることができ、それを通じてより大きな電力値の非接触の電力伝送が可能となる。 In particular, when the rotating electrode and the holding electrode are cylindrical and are configured to face each other in the radial direction, the capacitance of the coupling capacitor depends on the axial length of the rotating electrode and the holding electrode. On the other hand, when the u-phase rotating electrode 51u and the u-phase holding electrode 52u are plate ring shapes, the capacitance of the u-phase coupling capacitor Cu depends on the areas of the rotation facing surface 51ua and the holding facing surface 52ua. The area depends on the square of the radius of the u-phase rotating electrode 51u and the u-phase holding electrode 52u. For this reason, by increasing the outer diameters of the u-phase rotating electrode 51u and the u-phase holding electrode 52u, the capacitance of the u-phase coupling capacitor Cu can be improved while suppressing an increase in the size of the rotating body 30 in the axial direction. Through this, non-contact power transmission with a larger power value becomes possible.
 (2)u相回転電極51uにおけるu相保持電極52uと対向する回転対向面51uaには、空気よりも高い誘電率を有する誘電部としての第1回転誘電層61が設けられている。u相保持電極52uにおけるu相回転電極51uと対向する保持対向面52uaには、上記誘電部としての第1保持誘電層71が設けられている。これにより、u相回転電極51uとu相保持電極52uとの間には、両誘電層61,71が介在しているため、u相結合コンデンサCuの静電容量の向上を図ることができる。また、両誘電層61,71によって、u相回転電極51uとu相保持電極52uとの接触が規制されている。これにより、u相回転電極51uとu相保持電極52uとの絶縁性の向上を図ることができる。 (2) A first rotating dielectric layer 61 serving as a dielectric portion having a dielectric constant higher than that of air is provided on the rotation facing surface 51ua of the u phase rotating electrode 51u facing the u phase holding electrode 52u. A first holding dielectric layer 71 as the dielectric portion is provided on the holding facing surface 52ua of the u-phase holding electrode 52u that faces the u-phase rotating electrode 51u. Thereby, since both dielectric layers 61 and 71 are interposed between the u-phase rotating electrode 51u and the u-phase holding electrode 52u, the capacitance of the u-phase coupling capacitor Cu can be improved. Further, the contact between the u-phase rotating electrode 51u and the u-phase holding electrode 52u is regulated by the both dielectric layers 61 and 71. Thereby, the insulation between the u-phase rotating electrode 51u and the u-phase holding electrode 52u can be improved.
 u相結合コンデンサCuの静電容量の向上を図るためには、電極間距離dxを小さくすることも考えられる。しかしながら、電極間距離dxを小さくすると、高電圧が印加された場合に絶縁破壊が生じやすい。 In order to improve the capacitance of the u-phase coupling capacitor Cu, it is conceivable to reduce the inter-electrode distance dx. However, if the inter-electrode distance dx is reduced, dielectric breakdown tends to occur when a high voltage is applied.
 これに対して、本実施形態では、u相回転電極51uとu相保持電極52uとの間に高い誘電率を有する両誘電層61,71を介在させることによって、u相結合コンデンサCuの静電容量の向上を図りつつ、電極間距離dxを大きくすることができる。これにより、u相回転電極51uとu相保持電極52uとの間に高電圧が印加された場合であっても、絶縁破壊が生じにくい。よって、u相結合コンデンサCuの静電容量の向上を図りつつ、耐圧性の向上を図ることができる。換言すれば、耐圧性の向上を図るべく電極間距離dxを大きくすることによって生じ得る不都合である静電容量の低下を、u相回転電極51uとu相保持電極52uとの間に高誘電率の両誘電層61,71を配置することによって軽減していると言える。 On the other hand, in the present embodiment, by interposing both dielectric layers 61 and 71 having a high dielectric constant between the u-phase rotating electrode 51u and the u-phase holding electrode 52u, the electrostatic property of the u-phase coupling capacitor Cu is obtained. The interelectrode distance dx can be increased while improving the capacity. Thereby, even when a high voltage is applied between the u-phase rotating electrode 51u and the u-phase holding electrode 52u, dielectric breakdown is unlikely to occur. Therefore, it is possible to improve the withstand voltage while improving the capacitance of the u-phase coupling capacitor Cu. In other words, a decrease in capacitance, which can be caused by increasing the interelectrode distance dx in order to improve the pressure resistance, is caused by a high dielectric constant between the u-phase rotating electrode 51u and the u-phase holding electrode 52u. It can be said that this is alleviated by arranging the two dielectric layers 61 and 71.
 (3)u相回転電極51uとu相保持電極52uとの間、詳細には両誘電層61,71の間には、潤滑材としての潤滑油80が設けられている。これにより、u相回転電極51uの回転が円滑に行われる。よって、第1回転誘電層61と第1保持誘電層71との摺動に起因してu相回転電極51uの回転が阻害されることや、上記摺動に起因した摩耗や騒音を抑制することができる。 (3) Lubricating oil 80 as a lubricant is provided between the u-phase rotating electrode 51u and the u-phase holding electrode 52u, specifically between both dielectric layers 61 and 71. Thereby, the u-phase rotating electrode 51u is smoothly rotated. Therefore, the rotation of the u-phase rotating electrode 51u is inhibited due to the sliding between the first rotating dielectric layer 61 and the first holding dielectric layer 71, and the wear and noise due to the sliding are suppressed. Can do.
 (4)潤滑油80は、空気よりも高い誘電率を有する材料で構成されている。これにより、u相結合コンデンサCuの静電容量の更なる向上を図ることができる。
 (5)非接触電力伝送装置50は、u相保持電極52uを、回転体30の軸線方向に移動可能な状態であって回転体30の回転に伴って回転しないように保持するu相保持部82uと、u相保持電極52uを、回転体30の軸線方向からu相回転電極51uに向けて押圧する押圧部としてのu相皿バネ83uとを備えている。かかる構成によれば、u相保持電極52uがu相回転電極51uに向けて押圧されている状況においてu相回転電極51uが回転することによって、潤滑油80にて油膜圧力が生じる。これにより、両誘電層61,71の間には、潤滑油80の薄い層が安定して存在することとなる。よって、両誘電層61,71の接触を抑制できる。
(4) The lubricating oil 80 is made of a material having a dielectric constant higher than that of air. As a result, the capacitance of the u-phase coupling capacitor Cu can be further improved.
(5) The non-contact power transmission device 50 holds the u-phase holding electrode 52u in a state in which the u-phase holding electrode 52u can move in the axial direction of the rotating body 30 and does not rotate as the rotating body 30 rotates. 82u and a u-phase disc spring 83u as a pressing portion that presses the u-phase holding electrode 52u from the axial direction of the rotating body 30 toward the u-phase rotating electrode 51u. According to such a configuration, an oil film pressure is generated in the lubricating oil 80 when the u-phase rotating electrode 51u rotates in a state where the u-phase holding electrode 52u is pressed toward the u-phase rotating electrode 51u. Thereby, a thin layer of the lubricating oil 80 exists stably between the both dielectric layers 61 and 71. Therefore, contact between both dielectric layers 61 and 71 can be suppressed.
 また、本実施形態によれば、油膜圧力を利用することにより、両誘電層61,71の接触を抑制するための潤滑油80の厚さd2を薄くすることができるため、その分だけ潤滑油80よりも誘電率の高い両誘電層61,71の厚さである誘電層厚さd1を厚くすることができたり、電極間距離dxを小さくしたりできる。これにより、u相結合コンデンサCuの静電容量の向上を図ることができる。 Further, according to the present embodiment, by using the oil film pressure, the thickness d2 of the lubricating oil 80 for suppressing the contact between the two dielectric layers 61 and 71 can be reduced, and accordingly, the lubricating oil is correspondingly increased. The dielectric layer thickness d1, which is the thickness of both dielectric layers 61 and 71 having a dielectric constant higher than 80, can be increased, and the inter-electrode distance dx can be decreased. As a result, the capacitance of the u-phase coupling capacitor Cu can be improved.
 (6)両誘電層61,71の表面同士が対向している構成においては、両誘電層61,71の表面凹凸や微小な湾曲に基づいて、両誘電層61,71間の距離が局所的に変動し得る。この場合、電荷の集中が懸念される。特に、両誘電層61,71の対向距離である潤滑油80の厚さd2が薄くなると、上記電荷の集中が顕著になり易い。 (6) In the configuration in which the surfaces of both dielectric layers 61 and 71 are opposed to each other, the distance between both dielectric layers 61 and 71 is locally based on the surface irregularities and minute curvature of both dielectric layers 61 and 71. Can vary. In this case, there is a concern about charge concentration. In particular, when the thickness d2 of the lubricating oil 80, which is the distance between the two dielectric layers 61 and 71, is reduced, the concentration of the charges tends to become remarkable.
 これに対して、本実施形態では、第1回転誘電層61の表面及び第1保持誘電層71の表面はそれぞれ、回転体30の軸線方向に直交する平坦面である。このような平坦面は、湾曲面と比較して、比較的精度よく形成することができる。これにより、上記電荷の集中を抑制することができる。 In contrast, in the present embodiment, the surface of the first rotating dielectric layer 61 and the surface of the first holding dielectric layer 71 are flat surfaces orthogonal to the axial direction of the rotating body 30. Such a flat surface can be formed with relatively high accuracy as compared with a curved surface. Thereby, concentration of the charge can be suppressed.
 (7)両誘電層61,71の摩擦係数は、u相回転電極51u及びu相保持電極52uの摩擦係数よりも小さい。これにより、仮に何らかの要因によって両誘電層61,71が摺動することとなったとしても、u相回転電極51uとu相保持電極52uとが摺動する構成と比較して、摺動に起因する摩耗や騒音を抑制できる。 (7) The friction coefficients of both dielectric layers 61 and 71 are smaller than the friction coefficients of the u-phase rotating electrode 51u and the u-phase holding electrode 52u. As a result, even if both dielectric layers 61 and 71 slide due to some factor, compared to the configuration in which the u-phase rotating electrode 51u and the u-phase holding electrode 52u slide, Wear and noise can be suppressed.
 (8)回転電機11は、3つのコイル24u~24wが設けられたロータ13と、3つの相ユニット50u~50wを有する非接触電力伝送装置50とを備えている。そして、3つの相ユニット50u~50wの回転電極51u~51wは、3つのコイル24u~24wに接続されている。かかる構成によれば、スリップリング等を用いることなく、各コイル24u~24wに対して非接触で電力を伝送することができる。 (8) The rotating electrical machine 11 includes a rotor 13 provided with three coils 24u to 24w and a non-contact power transmission device 50 having three phase units 50u to 50w. The rotating electrodes 51u to 51w of the three phase units 50u to 50w are connected to the three coils 24u to 24w. According to such a configuration, electric power can be transmitted to each of the coils 24u to 24w in a non-contact manner without using a slip ring or the like.
 非接触の電力伝送を行う方式として、電磁誘導方式や磁場共鳴方式を採用することも考えられる。しかしながら、上記のような2つの方式では1次側コイル及び2次側コイルによる磁場の形成が必須となる。すると、当該磁場と、ロータ13とステータ14との間の磁場とが干渉し、ロータ13の回転に支障が生じる場合があり得る。 It is also possible to adopt an electromagnetic induction method or a magnetic field resonance method as a method for performing non-contact power transmission. However, in the above two methods, it is essential to form a magnetic field by the primary side coil and the secondary side coil. As a result, the magnetic field and the magnetic field between the rotor 13 and the stator 14 may interfere with each other, which may hinder the rotation of the rotor 13.
 これに対して、本実施形態では、磁場ではなく電界を利用した非接触の電力伝送が採用されているため、上記のような磁場の干渉を考慮する必要がない。これにより、ロータ13の回転を阻害することなく、非接触の電力伝送を実現できる。 On the other hand, in the present embodiment, non-contact power transmission using an electric field instead of a magnetic field is employed, so that it is not necessary to consider the interference of the magnetic field as described above. Thereby, non-contact electric power transmission is realizable, without inhibiting rotation of rotor 13.
 特に、回転電機11のコイル24u~24wが回転電極51u~51wに接続されているため、当該コイル24u~24wと結合コンデンサCu~Cwとによって共振回路が構成されている。これにより、共振現象を利用することができるため、それを通じて結合コンデンサCu~Cwを介して電力伝送される電力値の向上を図ることができる。つまり、ロータ13を回転させるためのコイル24u~24wが、結合コンデンサCu~Cwを用いた非接触の電力伝送の性能向上に寄与している。よって、回転電機11の既存の構成を用いて、非接触の電力伝送を好適に行うことができる。 In particular, since the coils 24u to 24w of the rotating electrical machine 11 are connected to the rotating electrodes 51u to 51w, a resonance circuit is constituted by the coils 24u to 24w and the coupling capacitors Cu to Cw. Thereby, since the resonance phenomenon can be used, the power value transmitted through the coupling capacitors Cu to Cw can be improved. That is, the coils 24u to 24w for rotating the rotor 13 contribute to the performance improvement of non-contact power transmission using the coupling capacitors Cu to Cw. Therefore, non-contact power transmission can be suitably performed using the existing configuration of the rotating electrical machine 11.
 (9)ロータ13は、ステータ14の内側に配置されている。この場合、ステータ14は、ハウジング等の部品と熱交換が可能であるため、ロータ13よりもステータ14の方が冷却され易い。 (9) The rotor 13 is disposed inside the stator 14. In this case, since the stator 14 can exchange heat with components such as a housing, the stator 14 is more easily cooled than the rotor 13.
 通常のブラシレス回転電機においては、ステータにコイルが設けられており、ロータが永久磁石となっている。このため、仮にロータがステータの内側に配置されている場合、永久磁石は発熱し易い。すると、永久磁石の磁力低下が懸念される。かといって、発熱に伴う磁力低下を抑制可能な永久磁石は高価なものとなり易い。 In a normal brushless rotating electrical machine, the stator is provided with a coil, and the rotor is a permanent magnet. For this reason, if the rotor is disposed inside the stator, the permanent magnet is likely to generate heat. Then, we are anxious about the magnetic force fall of a permanent magnet. However, a permanent magnet that can suppress a decrease in magnetic force due to heat generation tends to be expensive.
 これに対して、本実施形態では、ロータ13に各コイル24u~24wが設けられているため、ステータ14を永久磁石にすることができる。これにより、永久磁石を好適に冷却することができるため、上述した不都合を抑制できる。しかしながら、ロータ13に各コイル24u~24wが設けられている構成では、回転する各コイル24u~24wに対して電力供給を行うための構成が必須となる。 On the other hand, in the present embodiment, since the rotor 13 is provided with the coils 24u to 24w, the stator 14 can be a permanent magnet. Thereby, since a permanent magnet can be cooled suitably, the inconvenience mentioned above can be controlled. However, in the configuration in which the coils 24u to 24w are provided in the rotor 13, a configuration for supplying power to the rotating coils 24u to 24w is essential.
 この点、本実施形態では、上述した通り、コイル24u~24wに対して電力伝送を行うものとして、回転電極51u~51wと保持電極52u~52wとを有する非接触電力伝送装置50が採用されている。これにより、回転電極51u~51w及び保持電極52u~52wの摩耗を抑制しつつ、ロータ13に設けられている各コイル24u~24wに対して好適に電力伝送を行うことができる。 In this regard, in the present embodiment, as described above, the non-contact power transmission device 50 having the rotating electrodes 51u to 51w and the holding electrodes 52u to 52w is adopted as the power transmission to the coils 24u to 24w. Yes. As a result, it is possible to suitably transmit power to the coils 24u to 24w provided in the rotor 13 while suppressing wear of the rotating electrodes 51u to 51w and the holding electrodes 52u to 52w.
 上記実施形態は以下のように変更してもよい。
 ○ 第1回転誘電層61及び第1保持誘電層71のいずれか一方又は双方を省略してもよい。例えば、第1回転誘電層61及び第1保持誘電層71の双方が省略された場合、その分だけ電極間距離dxを小さくしてもよい。この場合、既に説明した通り、両対向面51ua,52uaは、回転体30の軸線方向に直交する平坦面である。このような平坦面は、比較的精度よく形成することができるため、u相回転電極51uとu相保持電極52uとが接触しないように、電極間距離dxの局所的なばらつきを考慮して電極間距離dxを広く確保する必要がない。これにより、両対向面51ua,52uaの接触を抑制しつつ、電極間距離dxを小さくすることができるため、u相結合コンデンサCuの静電容量の向上を図ることができる。但し、耐圧と静電容量との両立に着目すれば、両誘電層61,71の少なくとも一方が設けられている方が好ましい。
The above embodiment may be modified as follows.
One or both of the first rotating dielectric layer 61 and the first holding dielectric layer 71 may be omitted. For example, when both the first rotating dielectric layer 61 and the first holding dielectric layer 71 are omitted, the inter-electrode distance dx may be reduced accordingly. In this case, as already described, the opposing surfaces 51ua and 52ua are flat surfaces orthogonal to the axial direction of the rotating body 30. Since such a flat surface can be formed with relatively high accuracy, the electrodes are considered in consideration of local variations in the inter-electrode distance dx so that the u-phase rotating electrode 51u and the u-phase holding electrode 52u do not come into contact with each other. It is not necessary to secure a wide distance dx. Thereby, since the distance dx between electrodes can be made small, suppressing the contact of both opposing surface 51ua, 52ua, the electrostatic capacitance of u phase coupling capacitor Cu can be aimed at. However, if attention is paid to both the breakdown voltage and the electrostatic capacity, it is preferable that at least one of the both dielectric layers 61 and 71 is provided.
 本別例においては、両対向面51ua,52uaの間に潤滑油80があるとよい。これにより、u相回転電極51uとu相保持電極52uとの摺動に起因する各種不都合を抑制できる。 In this example, it is preferable that the lubricating oil 80 be present between the two opposing surfaces 51ua and 52ua. Thereby, various inconveniences caused by sliding between the u-phase rotating electrode 51u and the u-phase holding electrode 52u can be suppressed.
 ○ 実施形態では、非接触電力伝送装置50はロータ13の内側に配置されていたが、これに限られない。例えば、図6に示すように、回転体30は、ロータ13よりも軸線方向に長く延びており、回転体30の一部がロータ13から突出してもよい。そして、回転体30におけるロータ13から突出している部分に、非接触電力伝送装置50の各相ユニット50u~50wが設けられていてもよい。 In the embodiment, the non-contact power transmission device 50 is disposed inside the rotor 13, but is not limited thereto. For example, as illustrated in FIG. 6, the rotating body 30 may extend longer in the axial direction than the rotor 13, and a part of the rotating body 30 may protrude from the rotor 13. Then, each phase unit 50u to 50w of the non-contact power transmission device 50 may be provided in a portion protruding from the rotor 13 in the rotating body 30.
 ○ 図7に示すように、非接触電力伝送装置50は、u相保持電極52uを回転体30の軸線方向に移動可能な状態であって回転体30の回転に伴って回転しないように保持するリンク機構91を備えていてもよい。また、図7に示すように、非接触電力伝送装置50は、u相皿バネ83uに代えて、u相壁部84uと第2保持誘電層72とに接続された複数のコイルバネ92を備えていてもよい。また、コイルバネ92に代えて、弾性ゴム(ラバー)等の任意の弾性部材を用いてもよい。要は、「保持部」及び「押圧部」は、その機能を発揮できるものであれば、その具体的な構成は任意である。 As shown in FIG. 7, the non-contact power transmission device 50 holds the u-phase holding electrode 52 u so that it can move in the axial direction of the rotating body 30 and does not rotate as the rotating body 30 rotates. A link mechanism 91 may be provided. Further, as shown in FIG. 7, the non-contact power transmission device 50 includes a plurality of coil springs 92 connected to the u-phase wall portion 84 u and the second holding dielectric layer 72 instead of the u-phase disc spring 83 u. May be. Further, instead of the coil spring 92, an arbitrary elastic member such as elastic rubber (rubber) may be used. In short, as long as the “holding portion” and the “pressing portion” can exhibit their functions, their specific configurations are arbitrary.
 ○ u相保持電極52uは、回転体30の軸線方向に移動不能な状態で保持されていてもよい。例えば、u相保持電極52uは、軸受を介して回転体30に取り付けられている構成であってもよいし、保持部材81の内周面に固定されている構成であってもよい。要は、u相保持電極52uは、回転体30の回転に伴って回転しないように保持されていればよい。 ○ The u-phase holding electrode 52u may be held in a state in which it cannot move in the axial direction of the rotating body 30. For example, the u-phase holding electrode 52u may be configured to be attached to the rotating body 30 via a bearing, or may be configured to be fixed to the inner peripheral surface of the holding member 81. In short, the u-phase holding electrode 52u only needs to be held so as not to rotate as the rotating body 30 rotates.
 ○ 皿バネ83u~83w及び壁部84u~84wを省略してもよい。この場合、両誘電層61,71は、回転体30の軸線方向に微小な間隔を隔てて対向配置されてもよい。
 既に説明した通り、第1回転誘電層61の表面及び第1保持誘電層71の表面はそれぞれ、回転体30の軸線方向に直交する平坦面である。このような平坦面は、比較的精度よく形成することができるため、その分だけ両誘電層61,71の接触を抑制しつつ、両誘電層61,71の間隔を狭くすることができる。よって、両誘電層61,71の接触を抑制しつつ、u相結合コンデンサCuの静電容量の向上を図ることができる。本別例においては、両誘電層61,71の間に潤滑油80があってもよいし、なくてもよい。
The disc springs 83u to 83w and the wall portions 84u to 84w may be omitted. In this case, the both dielectric layers 61 and 71 may be arranged to face each other with a minute interval in the axial direction of the rotating body 30.
As already described, the surface of the first rotating dielectric layer 61 and the surface of the first holding dielectric layer 71 are flat surfaces orthogonal to the axial direction of the rotating body 30. Since such a flat surface can be formed with relatively high accuracy, the distance between the two dielectric layers 61 and 71 can be reduced while the contact between the two dielectric layers 61 and 71 is suppressed accordingly. Therefore, it is possible to improve the capacitance of the u-phase coupling capacitor Cu while suppressing contact between both the dielectric layers 61 and 71. In this other example, the lubricating oil 80 may or may not be present between the both dielectric layers 61 and 71.
 ○ 潤滑油80に、チタン酸バリウム等の誘電体セラミックスの粒を混入してもよい。これにより、潤滑油80の誘電率の向上を図ることができる。
 ○ 潤滑油80を省略して、両誘電層61,71が接触するようにしてもよい。この場合、両誘電層61,71が摺動することとなる。既に説明した通り、両誘電層61,71の摩擦係数は、u相回転電極51u及びu相保持電極52uの摩擦係数よりも小さいため、u相回転電極51uとu相保持電極52uとが摺動する構成と比較して、摺動に起因する摩耗や騒音を抑制できる。両誘電層61,71の表面に、両誘電層61,71よりも摩擦係数が小さいコーティング層を別途設けてもよい。
O Dielectric ceramic particles such as barium titanate may be mixed in the lubricating oil 80. Thereby, the dielectric constant of the lubricating oil 80 can be improved.
O The lubricating oil 80 may be omitted, and both dielectric layers 61 and 71 may be in contact with each other. In this case, both dielectric layers 61 and 71 slide. As already described, since the friction coefficient of both dielectric layers 61 and 71 is smaller than the friction coefficient of the u-phase rotating electrode 51u and the u-phase holding electrode 52u, the u-phase rotating electrode 51u and the u-phase holding electrode 52u slide. Compared with the structure to perform, the abrasion and noise resulting from sliding can be suppressed. A coating layer having a smaller coefficient of friction than both dielectric layers 61 and 71 may be separately provided on the surfaces of both dielectric layers 61 and 71.
 ○ 第2回転誘電層62及び第2保持誘電層72の少なくとも一方を省略してもよい。
 ○ 流体の潤滑油80に代えて、固体の潤滑材(例えば四フッ化エチレン樹脂やポリフェニレンサルファイド)を設けてもよい。
O At least one of the second rotating dielectric layer 62 and the second holding dielectric layer 72 may be omitted.
In place of the fluid lubricating oil 80, a solid lubricant (for example, tetrafluoroethylene resin or polyphenylene sulfide) may be provided.
 ○ u相回転電極51u及びu相保持電極52uは、回転体30の軸線方向から見て円形のリング状であったが、これに限られず、例えば方形のリング状であってもよい。また、u相回転電極51uの外径とu相保持電極52uの外径とは異なっていてもよい。 ○ The u-phase rotating electrode 51u and the u-phase holding electrode 52u are circular rings as viewed from the axial direction of the rotating body 30, but are not limited thereto, and may be, for example, a rectangular ring. Further, the outer diameter of the u-phase rotating electrode 51u and the outer diameter of the u-phase holding electrode 52u may be different.
 ○ 両対向面51ua,52uaに設けられている誘電部は、誘電率が相違する複数の誘電層の積層構造であってもよい。
 ○ 回転電極51u~51w及び保持電極52u~52wに、径方向に延びた切れ目が形成されていてもよい。要は、回転電極51u~51w及び保持電極52u~52wの形状は、切れ目のない閉じた状態に限られない。
The dielectric part provided in both opposing surfaces 51ua and 52ua may be a laminated structure of a plurality of dielectric layers having different dielectric constants.
A cut extending in the radial direction may be formed in the rotating electrodes 51u to 51w and the holding electrodes 52u to 52w. In short, the shapes of the rotating electrodes 51u to 51w and the holding electrodes 52u to 52w are not limited to a closed state without a break.
 ○ 実施形態では、1つのコイルに対して、1つの結合コンデンサが設けられていたが、これに限られず、1つのコイルに対して、複数の結合コンデンサが設けられていてもよい。この場合、複数の結合コンデンサを直列又は並列に接続して電力伝送を行うとよい。 In the embodiment, one coupling capacitor is provided for one coil. However, the present invention is not limited to this, and a plurality of coupling capacitors may be provided for one coil. In this case, power transmission may be performed by connecting a plurality of coupling capacitors in series or in parallel.
 ○ ステータ14は永久磁石に限られず、コアとコイルとで構成されていてもよい。この場合、永久磁石を省略することができる。
 ○ インバータ100と各保持電極52u~52wとを接続する接続線上にコイルを別途設けてもよい。
The stator 14 is not limited to a permanent magnet, and may be composed of a core and a coil. In this case, the permanent magnet can be omitted.
A coil may be separately provided on a connection line connecting the inverter 100 and the holding electrodes 52u to 52w.
 ○ インバータ100の取付位置は任意であり、例えば回転電機11に一体化されていてもよいし、回転電機11とは別に設けられていてもよい。バッテリBについても同様である。 ○ The mounting position of the inverter 100 is arbitrary, and may be integrated with the rotating electrical machine 11, for example, or may be provided separately from the rotating electrical machine 11. The same applies to the battery B.
 ○ 各コイル24u~24wの接続態様は、デルタ結線に限られず、例えばY結線であってもよい。
 ○ 実施形態では、回転体30に非接触電力伝送装置50が取り付けられていたが、これに限られず、ロータ13の回転に伴って回転するものに取り付けられていればよい。例えば、回転軸12やロータ13の本体部21に非接触電力伝送装置50が取り付けられていてもよい。
The connection mode of the coils 24u to 24w is not limited to the delta connection, and may be a Y connection, for example.
In embodiment, the non-contact electric power transmission apparatus 50 was attached to the rotary body 30, However, It is not restricted to this, What is necessary is just to be attached to what rotates with rotation of the rotor 13. FIG. For example, the non-contact power transmission device 50 may be attached to the rotating shaft 12 or the main body 21 of the rotor 13.
 ○ 回転電機11は、1つのステータと2つのロータとを有するダブルロータ型であってもよい。ダブルロータ型の構造について図8及び図9を用いて簡単に説明する。図8においては、図示の都合上、回転体30及び保持部材81等を側面図で示し、両ロータ13,120及びステータ110等を断面図で示す。 ○ The rotary electric machine 11 may be a double rotor type having one stator and two rotors. The double rotor type structure will be briefly described with reference to FIGS. In FIG. 8, for convenience of illustration, the rotating body 30 and the holding member 81 are shown in a side view, and both the rotors 13 and 120 and the stator 110 are shown in a sectional view.
 図8及び図9に示すように、回転電機11は、ロータ13(以降第1ロータ13という)に対して径方向外側に設けられたステータ110と、第1ロータ13とステータ110との間に設けられた第2ロータ120とを備えている。第2ロータ120は、第1ロータ13よりも一回り大きく形成された筒状(詳細には円筒状)であり、ステータ110は、第2ロータ120よりも一回り大きく形成された筒状(詳細には円筒状)である。両ロータ13,120及びステータ110は、同一軸線上に配置されており、径方向の内側から外側に向かって、第1ロータ13→第2ロータ120→ステータ110の順に配置されている。 As shown in FIGS. 8 and 9, the rotating electrical machine 11 includes a stator 110 provided on the radially outer side with respect to the rotor 13 (hereinafter referred to as the first rotor 13), and between the first rotor 13 and the stator 110. And a second rotor 120 provided. The second rotor 120 has a cylindrical shape that is slightly larger than the first rotor 13 (specifically, a cylindrical shape), and the stator 110 has a cylindrical shape that is slightly larger than the second rotor 120 (details). Is cylindrical). Both rotors 13 and 120 and the stator 110 are arranged on the same axis, and are arranged in the order of the first rotor 13 → the second rotor 120 → the stator 110 from the inner side to the outer side in the radial direction.
 ステータ110は、円筒状のステータコア111を有している。図9に示すように、ステータコア111の内周面には、スロット112がステータコア111の周方向に複数並設されている。そして、ステータ110は、複数のスロット112に捲回された複数のコイル113u~113wを有している。各コイル113u~113wは、インバータ100とは別のインバータを介してバッテリBに接続されている。 The stator 110 has a cylindrical stator core 111. As shown in FIG. 9, a plurality of slots 112 are arranged in the circumferential direction of the stator core 111 on the inner peripheral surface of the stator core 111. The stator 110 has a plurality of coils 113u to 113w wound around a plurality of slots 112. Each of the coils 113u to 113w is connected to the battery B via an inverter different from the inverter 100.
 図8及び図9に示すように、第2ロータ120は、第1ロータ13に対して所定の間隔を隔てて径方向に対向する内周面120a、及び、ステータ110に対して所定の間隔を隔てて径方向に対向する外周面120bを有している。また、図9に示すように、第2ロータ120は、磁界を発生させるものとして永久磁石121を有している。永久磁石121は第2ロータ120に埋設されている。 As shown in FIGS. 8 and 9, the second rotor 120 has a predetermined interval with respect to the inner circumferential surface 120 a that is radially opposed to the first rotor 13 with a predetermined interval and the stator 110. It has the outer peripheral surface 120b which is spaced apart and opposes to radial direction. Moreover, as shown in FIG. 9, the 2nd rotor 120 has the permanent magnet 121 as what generates a magnetic field. The permanent magnet 121 is embedded in the second rotor 120.
 車両に回転電機11とエンジンとの双方が搭載されている場合、例えば第1ロータ13はエンジンの駆動軸に連結され、第2ロータ120は車軸に連結される。
 かかる構成によれば、第1ロータ13と第2ロータ120とが協働して第1の回転電機として機能し、第2ロータ120とステータ110とが協働して第2の回転電機として機能する。詳細には、例えば上記のように第1ロータ13がエンジンの駆動軸に連結され、第2ロータ120が車軸に連結されている場合、バッテリBからステータ110の各コイル113u~113wに対して電力供給を行うことによって、第2ロータ120を回転させることができ、それを通じて車両を走行させることができる。
When both the rotating electrical machine 11 and the engine are mounted on the vehicle, for example, the first rotor 13 is connected to the drive shaft of the engine, and the second rotor 120 is connected to the axle.
According to such a configuration, the first rotor 13 and the second rotor 120 cooperate to function as the first rotating electrical machine, and the second rotor 120 and the stator 110 cooperate to function as the second rotating electrical machine. To do. Specifically, for example, when the first rotor 13 is connected to the drive shaft of the engine and the second rotor 120 is connected to the axle as described above, power is supplied from the battery B to the coils 113u to 113w of the stator 110. By supplying, the 2nd rotor 120 can be rotated and a vehicle can be driven through it.
 一方、エンジンの動力によって第1ロータ13を回転させることができる。この場合、所定の条件下では、第1ロータ13の各コイル24u~24wに誘導電流が流れ、当該誘電電流と永久磁石121の磁束との相互作用によって第2ロータ120が回転し、車軸が回転する。すなわち、エンジンの動力は、第2ロータ120に伝達され、車両の走行に用いられる。また、各コイル24u~24wにて発生した交流電力は、非接触電力伝送装置50を介して取り出される。取り出された交流電力は、例えばインバータ100に入力されてバッテリBの充電に用いられる。 On the other hand, the first rotor 13 can be rotated by the power of the engine. In this case, under a predetermined condition, an induced current flows through each of the coils 24u to 24w of the first rotor 13, the second rotor 120 is rotated by the interaction between the dielectric current and the magnetic flux of the permanent magnet 121, and the axle is rotated. To do. That is, the engine power is transmitted to the second rotor 120 and used for traveling of the vehicle. Further, AC power generated in each of the coils 24 u to 24 w is taken out via the non-contact power transmission device 50. The extracted AC power is input to the inverter 100 and used for charging the battery B, for example.
 上記のように、2つのロータ13,120が存在している構成においては、回転制御等を行う関係上、両ロータ13,120のうちいずれか一方にコイルを設ける必要がある。そして、第2ロータ120が、第1ロータ13とステータ110との間に配置されている構成では、第2ロータ120にコイルを設けることは構成の複雑化となり易く、またそのようなコイルに対して電力伝送を行う装置は複雑なものとなり易い。 As described above, in a configuration in which the two rotors 13 and 120 are present, it is necessary to provide a coil in either one of the rotors 13 and 120 in order to perform rotation control or the like. In the configuration in which the second rotor 120 is disposed between the first rotor 13 and the stator 110, providing a coil in the second rotor 120 tends to complicate the configuration. Therefore, a device that performs power transmission tends to be complicated.
 これに対して、第1ロータ13にコイル24u~24wを設けることによって、第2ロータ120としては、磁界を発生させるものとして永久磁石121を採用できる。これにより、構成の複雑化を抑制できる。この場合、回転する第1ロータ13のコイル24u~24wに対して電力伝送を行う構成が必須となる。これに対して、当該コイル24u~24wに対して電力伝送を行うものとして非接触電力伝送装置50を採用することにより、スリップリングやブラシ等を用いることなく電力伝送を行うことができる。これにより、ブラシの摩耗等といった接触式の電力伝送特有の不都合を回避することができる。以上のことから、2つのロータ13,120を有する構成において、ブラシレス化と構成の複雑化の抑制とを図りつつ、好適に回転電機11を駆動させることができる。 On the other hand, by providing the first rotor 13 with the coils 24u to 24w, the second rotor 120 can employ the permanent magnet 121 to generate a magnetic field. Thereby, complication of composition can be controlled. In this case, a configuration for transmitting power to the coils 24u to 24w of the rotating first rotor 13 is essential. On the other hand, by adopting the non-contact power transmission device 50 as a power transmission to the coils 24u to 24w, the power transmission can be performed without using a slip ring or a brush. As a result, inconveniences unique to contact-type power transmission such as brush wear can be avoided. From the above, in the configuration having the two rotors 13 and 120, the rotating electrical machine 11 can be suitably driven while achieving brushlessness and suppressing the complexity of the configuration.
 ○ 回転電極51u~51wの接続先、すなわち負荷は、コイル24u~24wに限られず、任意である。
 ○ 非接触電力伝送装置50の適用対象は、回転電機11に限られず任意である。例えば、回転体に設けられた負荷への電力供給に非接触電力伝送装置50を適用してもよい。
The connection destination of the rotating electrodes 51u to 51w, that is, the load is not limited to the coils 24u to 24w, but is arbitrary.
The application target of the non-contact power transmission device 50 is not limited to the rotating electrical machine 11 and is arbitrary. For example, the non-contact power transmission device 50 may be applied to supply power to a load provided on the rotating body.
 ○ 実施形態では、三相交流モータに適用した関係上、非接触電力伝送装置50は、3つのユニット50u~50wを有していたが、これに限られず、2つのユニットを有する構成でもよい。要は、ユニット数は、負荷に対応させて設定されているとよい。 In the embodiment, the contactless power transmission device 50 has the three units 50u to 50w because of the application to the three-phase AC motor, but is not limited thereto, and may have a configuration having two units. In short, the number of units may be set corresponding to the load.

Claims (8)

  1.  回転可能な回転体に固定され、当該回転体の外周面から径方向に突出した平板リング状の回転電極と、
     前記回転体が挿通された挿通孔を有し、前記回転体の回転に伴って回転しないように保持された平板リング状の保持電極と、
    を備え、
     前記回転電極と前記保持電極とは、前記回転体の軸線方向に対向配置されていることによって結合コンデンサを構成しており、
     前記結合コンデンサを介して非接触の電力伝送が行われる非接触電力伝送装置。
    A rotating electrode in the form of a flat plate ring fixed to a rotatable rotating body and projecting radially from the outer peripheral surface of the rotating body;
    A plate ring-shaped holding electrode that has an insertion hole through which the rotating body is inserted and is held so as not to rotate with the rotation of the rotating body;
    With
    The rotating electrode and the holding electrode constitute a coupling capacitor by being opposed to each other in the axial direction of the rotating body,
    A non-contact power transmission device in which non-contact power transmission is performed via the coupling capacitor.
  2.  前記回転電極は、前記保持電極と対向する回転対向面を有し、前記保持電極は、前記回転電極と対向する保持対向面を有し、前記回転対向面及び前記保持対向面の少なくとも一方には、空気よりも高い誘電率を有する誘電部が設けられている請求項1に記載の非接触電力伝送装置。 The rotation electrode has a rotation facing surface facing the holding electrode, the holding electrode has a holding facing surface facing the rotation electrode, and at least one of the rotation facing surface and the holding facing surface The contactless power transmission device according to claim 1, wherein a dielectric portion having a dielectric constant higher than that of air is provided.
  3.  前記回転電極と前記保持電極との間には潤滑材が配置されている請求項1に記載の非接触電力伝送装置。 The non-contact power transmission device according to claim 1, wherein a lubricant is disposed between the rotating electrode and the holding electrode.
  4.  前記潤滑材は流体の潤滑油であり、
     前記非接触電力伝送装置は、
     前記保持電極を、前記回転体の軸線方向に移動可能な状態であって前記回転体の回転に伴って回転しないように保持する保持部と、
     前記保持電極を、前記回転体の軸線方向から前記回転電極に向けて押圧する押圧部と、を備えている請求項3に記載の非接触電力伝送装置。
    The lubricant is a fluid lubricant;
    The non-contact power transmission device is
    A holding unit that holds the holding electrode in a state that is movable in the axial direction of the rotating body and does not rotate with the rotation of the rotating body;
    The non-contact power transmission device according to claim 3, further comprising: a pressing portion that presses the holding electrode toward the rotating electrode from an axial direction of the rotating body.
  5.  前記誘電部は、前記回転対向面に設けられた回転誘電部と、前記保持対向面に設けられた保持誘電部とを含み、
     前記回転誘電部及び前記保持誘電部の各々は、前記回転体の軸線方向に直交する平坦面を有する請求項2に記載の非接触電力伝送装置。
    The dielectric portion includes a rotating dielectric portion provided on the rotation facing surface, and a holding dielectric portion provided on the holding facing surface,
    The contactless power transmission device according to claim 2, wherein each of the rotating dielectric portion and the holding dielectric portion has a flat surface orthogonal to the axial direction of the rotating body.
  6.  前記回転誘電部及び前記保持誘電部の摩擦係数は、前記回転電極及び前記保持電極の摩擦係数よりも小さい請求項5に記載の非接触電力伝送装置。 The contactless power transmission device according to claim 5, wherein a friction coefficient of the rotating dielectric part and the holding dielectric part is smaller than a friction coefficient of the rotating electrode and the holding electrode.
  7.  コイルが設けられたロータと、
     請求項1~6のうちいずれか一項に記載の非接触電力伝送装置と、
    を備えた回転電機であって、
     前記回転電極は、前記コイルに接続されている回転電機。
    A rotor provided with a coil;
    The non-contact power transmission device according to any one of claims 1 to 6,
    A rotating electric machine with
    The rotating electrode is a rotating electrical machine connected to the coil.
  8.  前記ロータは筒状の第1ロータであり、
     前記第1ロータに対して径方向外側に設けられたステータと、
     前記第1ロータと前記ステータとの間に設けられ、前記第1ロータと対向する内周面及び前記ステータと対向する外周面を有する筒状の第2ロータと、
    を備え、
     前記第2ロータは永久磁石を有している請求項7に記載の回転電機。
    The rotor is a cylindrical first rotor;
    A stator provided radially outward with respect to the first rotor;
    A cylindrical second rotor provided between the first rotor and the stator and having an inner peripheral surface facing the first rotor and an outer peripheral surface facing the stator;
    With
    The rotating electrical machine according to claim 7, wherein the second rotor has a permanent magnet.
PCT/JP2015/068490 2014-07-17 2015-06-26 Contactless power transmission apparatus and rotating electric machine WO2016009814A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014146920A JP2016025697A (en) 2014-07-17 2014-07-17 Non-contact power transmission device and rotary electric machine
JP2014-146920 2014-07-17

Publications (1)

Publication Number Publication Date
WO2016009814A1 true WO2016009814A1 (en) 2016-01-21

Family

ID=55078312

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/068490 WO2016009814A1 (en) 2014-07-17 2015-06-26 Contactless power transmission apparatus and rotating electric machine

Country Status (2)

Country Link
JP (1) JP2016025697A (en)
WO (1) WO2016009814A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07284263A (en) * 1994-04-11 1995-10-27 Nippondenso Co Ltd Motor and its manufacture
JP2011019293A (en) * 2009-07-07 2011-01-27 Takenaka Komuten Co Ltd Power supply system
WO2013065756A1 (en) * 2011-10-31 2013-05-10 昭和電工株式会社 Transmission sheet, transmission unit, and non-contact electric-power transmission system provided therewith
JP2014027837A (en) * 2012-07-30 2014-02-06 Toyota Industries Corp Rotary electric machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07284263A (en) * 1994-04-11 1995-10-27 Nippondenso Co Ltd Motor and its manufacture
JP2011019293A (en) * 2009-07-07 2011-01-27 Takenaka Komuten Co Ltd Power supply system
WO2013065756A1 (en) * 2011-10-31 2013-05-10 昭和電工株式会社 Transmission sheet, transmission unit, and non-contact electric-power transmission system provided therewith
JP2014027837A (en) * 2012-07-30 2014-02-06 Toyota Industries Corp Rotary electric machine

Also Published As

Publication number Publication date
JP2016025697A (en) 2016-02-08

Similar Documents

Publication Publication Date Title
CN212518805U (en) Power transmission system for generating an electric current in an excitation winding of a rotor of an electric machine, electric machine and motor vehicle
US8542085B2 (en) High frequency rotary transformer for synchronous electrical machines
CN106464066B (en) Motor
US10680499B2 (en) Electrical machine
US11539251B2 (en) Motor designs having spline structure connecting motor shaft and stator structure
JP2009207255A (en) Coil fixing member and dynamo-electric machine
CN111566915B (en) Axial gap type rotating electric machine
US20200144882A1 (en) Electric machine with compressible layer
CN213243690U (en) Motor and electric pump
CN105103416B (en) Motor and the electrical equipment with the motor
WO2016009814A1 (en) Contactless power transmission apparatus and rotating electric machine
US10084353B2 (en) Rotor and motor having the same
JP2016208644A (en) Rotating electric machine with brush
US20240204621A1 (en) Electric machine
KR101360059B1 (en) Electric motor
US20240204609A1 (en) Electric machine
JP2016025698A (en) Non-contact power transmission device and rotary electric machine
JP4525026B2 (en) Rotating electric machine
JP2016025699A (en) Non-contact power transmission device and rotary electric machine
US20180366998A1 (en) Rotor and motor having the same
JP2017028892A (en) Non-contact power transmission device and rotary electric machine
JP7286032B1 (en) Rotating electric machine
JP2020182300A (en) Terminal connection structure of rotating machine
JP2020010595A (en) Compressor driving device and method of manufacturing the same
JP2016025696A (en) Rotary electric machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15822652

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15822652

Country of ref document: EP

Kind code of ref document: A1