WO2016009734A1 - Optical structure and optical element - Google Patents

Optical structure and optical element Download PDF

Info

Publication number
WO2016009734A1
WO2016009734A1 PCT/JP2015/065936 JP2015065936W WO2016009734A1 WO 2016009734 A1 WO2016009734 A1 WO 2016009734A1 JP 2015065936 W JP2015065936 W JP 2015065936W WO 2016009734 A1 WO2016009734 A1 WO 2016009734A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
lens
light
porous
lens barrel
Prior art date
Application number
PCT/JP2015/065936
Other languages
French (fr)
Japanese (ja)
Inventor
智子 橋本
学道 重光
小原 良和
守計 中田
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2016009734A1 publication Critical patent/WO2016009734A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/118Anti-reflection coatings having sub-optical wavelength surface structures designed to provide an enhanced transmittance, e.g. moth-eye structures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses

Definitions

  • the present invention relates to an optical structure disposed in the vicinity of an optical lens, an optical element including the optical structure, and the like.
  • Patent Document 1 discloses a lens barrel in which an uneven structure having a pitch of a predetermined wavelength or less is formed on the inner wall surface of the lens barrel.
  • Patent Document 2 discloses a light absorption structure in which a plurality of minute recesses having a pitch of a predetermined wavelength or less are formed on the surface.
  • Patent Document 3 discloses a lens barrel in which the inner wall surface of the lens barrel is coated with porous fine particles.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide an optical structure or the like that can reduce processing costs and weight, and can suppress stray light. .
  • an optical structure is an optical structure disposed in the vicinity of an optical lens, and includes a porous structure including a plurality of types of holes having different hole diameters. Is at least partially formed.
  • (A) is a figure which shows the structure of the lens unit which concerns on Embodiment 1 of this invention
  • (b) is a figure which shows the structure of the proximity sensor which concerns on Embodiment 2 of this invention. It is a figure which shows an example of the formation method of a porous structure
  • (a) is a figure which shows a mode when low temperature melt
  • (b) are figures which show a mode when the said low temperature melt
  • (c) is a figure which shows a mode when a pore is formed by eluting the said low temperature melt
  • FIG. 3 It is a figure which shows another example of the formation method of a porous structure
  • (a) is a figure which shows a mode just before a resin material is irradiated with a radiation
  • (b) is a resin material by irradiation of a radiation. It is a figure which shows the state in which the locus
  • (c) is a figure which shows a mode that the etching bath is performed with respect to the resin material of the state shown to (b) of FIG. 3
  • (d) is a figure. It is a figure which shows the structure of the porous structure made porous by the said etching bath. It is a figure which shows the structure of the porous structure produced by the two-step injection molding.
  • (C) and (d) show the state when the lens barrel of the lens unit according to Embodiment 4 is moved up and down. It is a figure which shows the structure of the lens unit which concerns on Embodiment 5 of this invention. It is a figure which shows the structure of the lens unit which concerns on Embodiment 6 of this invention. It is a figure for demonstrating the problem of the lens unit of a comparative example, (a) is a figure for demonstrating one of the problems of the lens unit of the said comparative example, (b) is the said comparison. It is a figure for demonstrating another problem of the lens unit of an example. (A) is a figure which shows an example of the coating agent apply
  • (B) And (c) is a figure which shows the method of apply
  • (A) And (b) is a figure which shows the example which utilizes the said porous agent for the conventional lens barrel 103, respectively.
  • (A)-(d) is a figure which shows the example which uses the said porous agent as a light-shielding member, respectively.
  • FIGS. 1 to 10 Embodiments of the present invention will be described with reference to FIGS. 1 to 10 as follows.
  • components having the same functions as those described in the specific embodiment may be denoted by the same reference numerals and description thereof may be omitted.
  • FIG. 1A is a diagram showing a configuration of a lens unit (optical element) 10a according to Embodiment 1 of the present invention.
  • the lens unit 10a includes a detector (light receiving element) 1, a lens (optical lens) 2, and a lens barrel (optical structure).
  • the detector 1 is a light receiving element (image sensor) that receives light passing through the lens 2, for example, a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor). Consists of.
  • the lens 2 is a lens constituting an imaging optical system that irradiates light passing through the light receiving surface of the detector 1 and forms an image on the light receiving surface.
  • the lens 2 is composed of a plurality of lenses.
  • FIG. 1 shows a state in which the lens 2 is composed of three lenses for convenience, but the number of lenses constituting the lens 2 is limited to three. Not.
  • the lens barrel 3 is a casing in which a plurality of lenses (lenses 2) are assembled in the vicinity of the lens 2 and surrounds the periphery of the lens 2 in a cylindrical shape and is accommodated in the casing. is there.
  • the lens barrel 3 of the present embodiment has a cylindrical shape that surrounds the periphery of the lens 2.
  • the constituent material of the lens barrel 3 is not particularly limited, and examples thereof include olefin-based, styrene-based, elastomer-based, and synthetic rubber-based materials.
  • the whole or a part of the lens barrel 3 is formed with a porous structure (porous structure) including plural kinds of holes having different hole diameters.
  • the porous structure is preferably formed on the inner side (inner wall surface side) that accommodates the lens 2 of the lens barrel 3 or around the lens opening in order to suppress stray light.
  • Light incident on the inside of the lens barrel 3 or around the lens opening tends to be stray light.
  • the lens-barrel 3 from which a stray light component is removed favorably can be provided.
  • the porous structure described above is composed of a hole A having a pore diameter (distance d3) of 5 ⁇ m or more and a hole B having a pore diameter smaller than the hole A and having a pore diameter (distance d2) of 400 nm or more and 600 nm or less.
  • a hole diameter (d3) of 5 ⁇ m or more
  • the distance d2 is set to a size equal to or larger than the wavelength range of light received by the detector 1.
  • the porous structure as described above is easy to process and can reduce the processing cost as compared with the anti-reflective structure having an uneven surface (providing unevenness on the surface).
  • the details of the processing method (manufacturing method) of the porous structure will be described later.
  • the porous structure includes a hole A having a large hole diameter and a hole B having a small hole diameter.
  • a hole A having a large hole diameter when disturbance light is incident on the optical lens, a part thereof may become stray light and enter the lens barrel 3. When the stray light enters the lens barrel 3, it is captured by the hole A having a large hole diameter.
  • the stray light is scattered by the hole B if the hole diameter of the hole B having the smaller hole diameter is set to a size approximately equal to or larger than the wavelength range of stray light. For this reason, the stray light captured by the hole A is scattered by the hole B, and when multiple reflections are repeated by this, it may disappear as thermal energy. For this reason, part of the stray light disappears due to the porous structure, so that the stray light can be suppressed.
  • a hole A (concave portion) having a hole diameter capable of capturing light of a predetermined wavelength and the hole A are continuously formed, It can also be seen that it includes a fine concavo-convex structure F having a concavo-convex interval (distance d1 ⁇ d2) smaller than the hole diameter of the hole A that scatters light captured by the hole A.
  • the unevenness interval (unevenness size) refers to the dimension of both the height direction of the unevenness on the surface and the unevenness of the interval.
  • the unevenness on the surface of the fine concavo-convex structure F may be expressed by the surface roughness of the portion excluding the large hole A.
  • the above irregularity interval is set to a size equal to or larger than the wavelength range of the light received by the detector 1.
  • stray light is scattered by the fine concavo-convex structure if the concavo-convex interval of the fine concavo-convex structure F is set to a size about the stray light wavelength range or larger. For this reason, the stray light captured by the hole A is scattered by the fine concavo-convex structure F continuously formed with respect to the hole A, and thus, when multiple reflections are repeated, it may disappear as thermal energy. . For this reason, part of the stray light disappears due to the porous structure, so that the stray light can be suppressed.
  • the lens barrel 3 can be reduced in weight by being porous compared to a dense structure having the same volume. Further, the lens barrel 3 can be easily manufactured by forming the porous structure on at least a part of the lens barrel 3, for example, so that the processing cost can be reduced. As described above, according to the lens barrel 3, it is possible to reduce the processing cost and reduce the weight, and to suppress stray light.
  • the hole diameter (recess width) of the hole A (recess) may be 5 ⁇ m or more, and the unevenness interval of the fine uneven structure F may be 300 nm or more and 900 nm or less.
  • the lens barrel 3 from which the stray light component is satisfactorily removed can be obtained for the lens barrel 3 used in the imaging camera or the like.
  • a light receiving element (detector 1) used for an imaging camera or the like detects light in a wavelength range of approximately 400 to 800 nm, which is a visible light range, and has a high sensitivity characteristic at about 550 nm with high visual sensitivity.
  • the diameter of each of the holes A and B described above may be 10 nm or more and 10 ⁇ m or less. According to the above configuration, dust can be prevented from entering, and distortion due to cloudiness or thermal expansion of the lens 2 can be suppressed, so that the lens barrel 3 with high environmental resistance can be obtained.
  • the allowable size of dust is a few dozen ⁇ m, the size of water vapor is 4 nm, and the size of water droplets is 100 ⁇ m.
  • the whole or a part of the lens barrel 3 is formed with a porous structure having at least two types of hole diameters of holes A and B having different sizes.
  • the trapped light is scattered in the portion of the hole B having a small hole diameter, thereby repeating multiple reflections and disappearing as thermal energy, thereby reducing stray light components. It becomes possible to suppress.
  • light having an angle exceeding the total reflection critical angle is reflected by the theory of total reflection and cannot obtain a light absorption effect.
  • the lens barrel 3 described above in order to reflect light in various directions, The reflected light can be reduced satisfactorily regardless of the incident angle of light.
  • the weight is reduced by a porous amount compared to a dense lens barrel having the same volume.
  • the lens barrel 3 is reduced in weight, it is possible to perform autofocus and optical camera shake correction operations with a small amount of energy, so that power consumption can be reduced.
  • the lens barrel 3 when the lens barrel 3 is used in a mobile terminal or the like, a driving mechanism is provided for camera focus adjustment, and collision noise may be generated due to external vibration. Therefore, according to the lens barrel described above, it is possible to expect the effect that the generated vibration propagates into the porous body and is converted into thermal energy to reduce sound.
  • the lens unit 10 the following effects can be obtained. (1) It has the effect of suppressing stray light using light absorption. (2) The weight of the lens barrel 3 is reduced, the burden on the drive mechanism is reduced by the reduction in thickness, and the accompanying low power consumption effect. (3) Since an adhesive that connects the porous particles is not necessary, reflection by the adhesive is prevented. (4) The die blasting process is not necessary, and the cost is reduced. (5) Since porous particles are not sprayed, it is possible to suppress the generation of foreign particles due to particle peeling. (6) Sound waves hit the pores of the porous structure, resulting in resistance friction, and sound energy is converted into heat energy, so that a sound absorption effect is obtained. (7) Since reflection by the adhesive for holding the lens barrel 3 can be suppressed, the application range can be expanded and the holding power can be strengthened.
  • the porous structure described above is easier to process and can reduce processing costs as compared to the antireflection uneven structure by embossing (making the surface uneven).
  • embossing making the surface uneven.
  • FIG. 2 is a diagram showing an example of a method for forming a porous structure.
  • the resin material plastic powder
  • the plastic powder and the low-temperature melting particles a and b are made of materials having different characteristics such as a melting temperature.
  • a constituent material of the low-temperature dissolution particles a and b for example, water-soluble sodium chloride or sodium nitrate can be exemplified.
  • the low-temperature dissolution particles a and b made of a resin having a low dissolution temperature are eluted.
  • a porous structure in which pores (holes A and B) as shown in FIG. 2C are formed is obtained.
  • FIG. 3 is a diagram showing another example of a method for forming a porous structure.
  • the resin material is irradiated with radiation.
  • the locus of radiation remains inside the resin material.
  • the resin material with the radiation locus remaining is immersed in an etching solution, and an etching bath is performed. Then, the portion of the radiation locus remaining inside the resin material is etched to obtain a porous structure as shown in FIG.
  • FIG. 4 is a diagram showing the structure of a porous structure created by two-stage injection molding.
  • a resin in which porous fine particles having different pore diameters are mixed is injected stepwise so that the pore diameters (for example, the respective hole diameters of the holes A and B) and portions (for example, the region ⁇ ) , ⁇ ) can be controlled.
  • porous structure forming methods examples include a sintering method, a track etching method, a spacer method, and fine foam injection molding.
  • a porous structure can be obtained by fusing (sintering) only the vicinity of the surface layer of the raw material powder and molding while leaving the voids existing between the raw material powders.
  • uniform size pores can be obtained by etching with an aqueous alkali solution after irradiating the polymer material with a neutron beam or laser.
  • the lost substance is used as a spacer to adjust the porosity and pore size.
  • the foaming agent mixed resin is injected into the mold using an injection molding machine, and the foam molded product is taken out.
  • the foaming agent to be used is nitrogen or carbon dioxide in a supercritical state, and it is possible to produce a foamed structure having closed cells of 5 to 100 ⁇ m. Further, this foam injection method is also possible for the outer part of the two-stage injection.
  • a porous agent containing a material for forming a porous structure is applied to any part of a conventional lens barrel.
  • the porous agent as the coating agent may contain a material suitable for coating (for example, epoxy resin, silicone resin, acrylic resin).
  • the material suitable for application may be a material according to any part (plastic, nylon (registered trademark), LCP (Liquid Crystal Polymer), polycarbonate, etc.) of the lens barrel to be applied.
  • FIG. 11 is a figure which shows an example of the coating agent apply
  • a porous mixture 31 as a coating agent is a mixture of a porous agent 32 and a reinforcing agent 33.
  • the porous agent 32 includes a material that forms a porous structure, and may further include a material suitable for application such as a curing agent.
  • the reinforcing agent 33 enhances the strength of the hardness when the coating agent is cured, and is, for example, glass fiber, carbon fiber, polyamide fiber, plate-like talc, granular silica, filler, or the like.
  • the porous mixture 31 is not limited to use as a coating agent, and may be applied to the lens barrel 3 including a porous structure.
  • the portion where the porous agent 32 is applied in the conventional lens barrel 103 may be, for example, the inner surface of the lens barrel 103 as shown in FIG. As shown, it may be the upper periphery of the opening of the lens barrel 103.
  • the coating agent applied to the lens barrel 103 is not limited to the porous agent 32 but may be a porous mixture 31 containing a reinforcing agent.
  • the coating agent applied to the lens barrel 103 becomes a thin film including a porous structure.
  • the porous agent or the porous mixture according to the present invention by applying the porous agent or the porous mixture according to the present invention to the conventional lens barrel, the strength (hardness) strength of the lens barrel itself can be maintained and the stray light suppressing effect can be obtained. It can be obtained and can contribute to cost reduction.
  • a method for applying the porous agent 32 and the porous mixed agent 31 to the conventional lens barrel 103 will be described.
  • a porous shape is formed by mixing a volatile substance or a water-soluble substance in the coating agent (porous agent 32, porous mixing agent 31), and performing heat treatment or water washing after coating.
  • the application method is a generally known method, and examples thereof include spray coating, dip coating, and electrostatic coating.
  • FIG. 12A shows an example of a method for fixing a porous agent cover 32a (first structure) formed of a porous agent 32 on a conventional lens barrel 103 (second structure).
  • FIG. The conventional lens barrel 103 (second structure) has a dense structure as compared with the porous agent cover 32a.
  • the porous agent cover 32a covers the periphery of the opening (upper surface) and the upper side surface of the lens barrel 103, so that it is possible to obtain the effect of suppressing stray light from outside light into the lens.
  • the conventional lens barrel 103 can be used, it is possible to contribute to the problem of the strength of the lens barrel and the cost reduction for creating a new lens barrel.
  • FIG. 12 is a diagram showing an example of a method of sticking a seal-type porous agent sheet 32b (first structure) formed of a porous agent to the conventional lens barrel 103.
  • the conventional lens barrel 103 (second structure) has a dense structure as compared with the porous agent sheet 32b.
  • the seal-type porous agent sheet 32b is less expensive than the cover-type porous agent cover 32a, and the process of fixing to the lens barrel 103 is a simple operation of sticking, so that the workability is excellent. It can be easily performed for the purpose of repairing a wound.
  • the porous agent cover 32a and the porous agent sheet 32b are not limited to being formed by the porous agent 32, and may be formed by a porous agent containing a material suitable for application such as a curing agent. Alternatively, it may be formed of a porous mixture 31 mixed with a reinforcing agent.
  • FIG. 13 is a diagram showing an example in which the porous agent according to the present invention is used as a light shielding member.
  • a porous agent is used for the lens barrel 103c having the lens barrel.
  • the rear light shielding member 34 see FIG. 13A
  • the inter-lens light shielding member 35 FIG. 13B
  • a porous agent is used for the lens barrel 103d without a lens barrel.
  • the lens barrel 103d has the functions of a lens barrel and a carrier.
  • the rear light-shielding member 34 and the lens aperture stop member 37 see FIG. 13C or the fitting for bonding (adhering) the lenses together. It is a member (adhesive) 36a ((d) of FIG. 13).
  • the lens barrels 103c and 103d may be conventional lens barrels or lens barrels having a porous structure according to the present invention.
  • the porous agent to be used may be any material as long as it contains a material that forms a porous structure.
  • the porous agent may contain a material suitable for application, or a reinforcing agent may be mixed. Or a porous mixture.
  • FIG. 6 is a figure which shows the modification of a porous structure.
  • 6 (a) to 6 (c) show modified examples of three types of porous structures having different forms. These modified examples show that holes penetrate vertically in the drawing. In common. According to the above configuration, since air permeability can be ensured, a moisture absorption effect, a heat suppression effect, and an internal heat deformation prevention effect are obtained. For this reason, it is possible to promote heat dissipation and prevent condensation.
  • a substantially hemispherical recess (hole A) is formed in the upper part, and a cylindrical shape extending continuously with each of the recesses with substantially the same diameter.
  • Hole B continues to the bottom.
  • the hole diameter of the hole A is larger than the hole diameter of the hole B, in this embodiment, a structure corresponding to the fine recess structure is not observed.
  • a substantially hemispherical recess (hole A) is formed in the upper portion, and a plurality of holes having a hole diameter smaller than the hole A are continuously formed in each of the recesses. B's gathering continues to the bottom. Further, the collection of the numerous holes B forms the fine concavo-convex structure F described above.
  • FIG. 6 (c) by forming a fine concavo-convex structure that penetrates the inner and outer sides of the lens barrel (in the left-right direction) to provide air permeability, Heat dissipation and condensation can be prevented.
  • the porous structure only needs to have a plurality of types of pores having different pore diameters, and does not necessarily have a structure corresponding to a fine concavo-convex structure.
  • FIG. 1B is a diagram illustrating a configuration of the proximity sensor (optical element) 20 according to the second embodiment of the present invention.
  • the proximity sensor 20 includes a photodiode 4, a light receiving lens (optical lens) 5, a light shielding resin (optical structure) 6, a substrate 7, and an IR-LED (light emitting element) 8.
  • the configuration other than the porous structure formed on all or a part of the light-shielding resin 6 is not so much related to the essence of the invention. Omitted.
  • the structure of all the porous structures demonstrated in said Embodiment 1 is applicable to the porous structure demonstrated in this embodiment.
  • the proximity sensor 20 is a sensor that detects whether or not the detection target is close. As shown in the figure, the near-infrared light emitted from the IR-LED 8 is repeatedly reflected between the object to be detected and the surface of the light-shielding resin 6, and finally passes through the light-receiving lens 5 to the photodiode. 4 is incident.
  • the light shielding resin 6 is made of a light shielding material having a property of shielding specific light (near infrared light). In the present embodiment, a porous structure is formed on all or part of the light shielding resin 6.
  • stray light components due to multiple reflections between the light-shielding resin 6 that fills the gap between the optical lens and the light-emitting element and the cover window surface affect the detection sensitivity.
  • stray light components due to multiple reflections between the light-shielding resin 6 that fills the gap between the optical lens and the light-emitting element and the cover window surface affect the detection sensitivity.
  • a decrease in detection sensitivity due to stray light components can be suppressed.
  • stray light has a great influence on image quality deterioration, and although transmittance control is performed by a film or the like as in a visible light camera, it is desirable that stray light outside the design can be removed as much as possible.
  • Near-infrared is distributed in the range of approximately 700 nm to 1000 nm.
  • FIG. 5 is a diagram illustrating a configuration of mobile terminals (electronic devices) 30a and 30b according to Embodiment 3 of the present invention.
  • the portable terminal 30a includes a detector 1, a lens barrel 3a (or 3b), a lens holding unit 9, the lens unit 10a described above, and lens units 10b to 10d described later, a housing A transparent component 11, a casing exterior 12, and a lens light incident part 13 are provided.
  • the configuration other than the porous structure formed on all or a part of the lens barrel 3a (or 3b) has little relation to the essence of the invention. Will be omitted as appropriate.
  • the structure of all the porous structures demonstrated in said Embodiment 1 is applicable to the porous structure demonstrated in this embodiment.
  • the lens barrels 3a and 3b can have different colors by forming a porous structure on all or part of the lens barrels 3a and 3b. Therefore, it is possible to create a lens barrel of a color that matches the design of the casing of the mobile terminals 30a and 30b, and it is possible to provide a product with high design.
  • FIG. 7 is a diagram showing a state when the lens unit 100 of the comparative example is compared with the lens unit 10b according to Embodiment 4 of the present invention.
  • FIGS. 7A and 7B show a state where the lens barrel 103 of the lens unit 100 of the comparative example is moved up and down.
  • the end portion (contact portion 103a) on the side where the light receiving element (not shown; refer to the detector 1 in FIG. 1) of the lens barrel 100 is disposed is the bottom cover 113. Contact sound may be generated.
  • the side where the light receiving element (not shown) of the lens barrel 3 is disposed (the lower side relative to the paper surface).
  • a porous structure is formed only in the contact portion 3a in the vicinity of the end of the contact, and the contact sound is reduced by the elastic effect due to the porosity.
  • the porous structure may be formed only in the portion that is in contact with the vertical movement.
  • the porous air permeability leading to the suppression of sound.
  • the porous structure may not penetrate vertically (or left and right) as in the above-described modification.
  • FIG. 8 is a diagram showing a structure of a lens unit 10c according to Embodiment 5 of the present invention.
  • FIG. 10 is a diagram for explaining problems of the lens unit 100 of the comparative example.
  • the hole diameter of the holes constituting the porous structure may be increased stepwise as the lens opening is approached (for example, formed in the region Q2).
  • the diameter of the porous hole formed in the region R2 is made larger than the diameter of the porous hole formed).
  • the aperture diameter similar to that of the apodization filter is obtained by increasing the hole diameter of the pores constituting the porous structure as it approaches the lens aperture and controlling the transmittance distribution at the end (periphery) of the aperture. Since the transmittance distribution can be realized, an apodization effect can be easily obtained. It should be noted that when the lens barrel is formed, the apodization effect is higher as the hole diameter of the porous hole near the lens opening is larger.
  • FIG. 9 is a diagram showing a structure of a lens unit 10d according to Embodiment 6 of the present invention.
  • the light shielding property is proportional to the thickness of the substance. Therefore, in the lens unit 10d of the present embodiment, the transmittance of the lens is fixed at 1 within the range from the lens center O to the aperture radius r, and when the distance from the lens center exceeds the aperture radius r, the transmittance is increased.
  • a porous structure around the lens opening is formed so as to decrease monotonously. For this reason, by forming the porous structure as described above around the lens opening, it is easy to control the transmittance distribution near the lens opening and to control the light-shielding properties of portions other than the lens opening. Both can be achieved.
  • the optical structure (lens barrels 3, 3a, 3b, light-shielding resin 6) according to aspect 1 of the present invention is an optical structure disposed in the vicinity of the optical lens (lens 2, light-receiving lens 5), In this configuration, a porous structure including a plurality of types of pores (A, B) having different pore diameters is formed at least in part.
  • the porous structure includes a plurality of types of pores having different pore diameters. Such a porous structure is easy to process and can reduce the processing cost as compared with an antireflection uneven structure by embossing (making the surface uneven). Further, according to the above configuration, the porous structure includes a hole having a large hole diameter and a hole having a small hole diameter.
  • the porous structure when disturbance light is incident on the optical lens, a part thereof may become stray light and enter the optical structure. When the stray light is incident on the optical structure, it is captured by the hole having the large hole diameter.
  • the hole diameter of the hole having the smaller hole diameter is set to a size approximately equal to or larger than the wavelength range of the stray light
  • the stray light is scattered by the hole having the smaller hole diameter.
  • stray light captured by a hole having a large hole diameter is scattered by a hole having a smaller hole diameter, and if multiple reflections are repeated thereby, the heat energy may be lost.
  • part of the stray light disappears due to the porous structure, so that the stray light can be suppressed.
  • the optical structure can be reduced in weight by a porous amount compared to a dense structure having the same volume. As described above, according to the optical structure, it is possible to reduce the processing cost and reduce the weight, and to suppress stray light.
  • the optical structure according to Aspect 2 of the present invention is the optical structure according to Aspect 1, wherein the porous structure includes a recess (hole A) having a hole diameter capable of capturing light of a predetermined wavelength, and the recess.
  • the porous structure includes a recess (hole A) having a hole diameter capable of capturing light of a predetermined wavelength, and the recess.
  • it may include a fine concavo-convex structure (F) that is continuously formed and has a concavo-convex interval smaller than the diameter of the concave portion that scatters light captured by the concave portion.
  • stray light is scattered by the fine concavo-convex structure if the concavo-convex spacing of the fine concavo-convex structure is set to a size approximately equal to or larger than the wavelength range of stray light. For this reason, the stray light captured by the concave portion is scattered by the fine concavo-convex structure formed continuously with respect to the concave portion, and when multiple reflections are repeated thereby, it may disappear as thermal energy. For this reason, part of the stray light disappears due to the porous structure, so that the stray light can be suppressed.
  • the optical structure can be easily manufactured by forming the porous structure on at least a part of the optical structure, for example, so that the processing cost can be reduced. Furthermore, if the above-described porous structure is formed in at least a part of the optical structure, the optical structure can be reduced in weight by a porous amount compared to a dense structure having the same volume. As described above, according to the optical structure, it is possible to reduce the processing cost and reduce the weight, and to suppress stray light.
  • the recess width of the recess may be 5 ⁇ m or more, and the uneven spacing of the fine uneven structure may be 300 nm or more and 900 nm or less.
  • the optical structure from which a stray light component is removed favorably can be obtained about the optical structure used for an imaging camera etc., for example.
  • a light receiving element used in an imaging camera or the like detects light in a wavelength range of approximately 400 to 800 nm, which is a visible light range, and has a high sensitivity characteristic at about 550 nm with high visibility.
  • the unevenness interval of the fine unevenness structure may be 400 nm or more and 1500 nm or less.
  • an optical structure that can satisfactorily remove stray light components of visible light and near-infrared stray light that are not detected can be obtained.
  • Near-infrared cameras are used for vein authentication and proximity detection, as well as for monitoring purposes by illuminating an object with a near-infrared light source and transmission imaging utilizing the property of being hardly scattered. In surveillance imaging, high sensitivity is required, and in transmission imaging, it is desirable that there be less noise.
  • stray light has a great influence on image quality deterioration, and although transmittance control is performed by a film or the like as in a visible light camera, it is desirable that stray light outside the design can be removed as much as possible.
  • Near-infrared is distributed in the range of approximately 700 nm to 1000 nm, and by applying the fine uneven structure with the uneven interval, the stray light component of visible light and near-infrared stray light that is not detected is satisfactorily removed.
  • each of the plurality of types of holes may have a diameter of 10 nm or more and 10 ⁇ m or less.
  • the allowable size of dust is a few dozen ⁇ m
  • the size of water vapor is 4 nm
  • the size of water droplets is 100 ⁇ m.
  • the porous structure in any of the above aspects 1 to 5, may be formed so as to penetrate the optical structure.
  • optical element (lens units 10a to 10d, proximity sensor 20) according to aspect 7 of the present invention preferably includes the optical structure according to any one of aspects 1 to 6.
  • An optical element according to aspect 8 of the present invention is the optical element according to aspect 7, in which the optical element includes a lens barrel that houses the optical lens, and the porous structure is formed on the inner side of the lens barrel or the lens opening. It may be formed around.
  • the optical element from which a stray light component is removed favorably can be provided.
  • An optical element according to Aspect 9 of the present invention is the optical element according to Aspect 8, wherein the porous structure has an end (contact) on the side where the light receiving element that receives light that has passed through the optical lens is disposed. It may be formed in the part 3a).
  • the end of the lens barrel on the side where the light receiving element is disposed may come into contact with the bottom cover or the like, and contact noise may be generated.
  • the said contact sound can be reduced by the elastic effect by the said porous.
  • the optical element according to aspect 10 of the present invention is the optical element according to aspect 8 or 9, wherein the porous structure is formed around the lens opening of the lens barrel, and the pores constituting the porous structure are formed.
  • the hole diameter may increase as it approaches the lens opening.
  • the aperture diameter similar to that of the apodization filter is obtained by increasing the hole diameter of the pores constituting the porous structure as it approaches the lens aperture and controlling the transmittance distribution at the end (periphery) of the aperture. Since the transmittance distribution can be realized, an apodization effect can be easily obtained.
  • the optical element according to Aspect 11 of the present invention is the optical element according to Aspect 7, wherein the optical element is a proximity sensor (20) that detects whether or not a detection target is close to the optical element.
  • the optical element is a proximity sensor (20) that detects whether or not a detection target is close to the optical element.
  • a proximity sensor (20) that detects whether or not a detection target is close to the optical element.
  • stray light components due to multiple reflections between the light-shielding material that fills the gap between the optical lens and the light-emitting element and the cover window surface affect the detection sensitivity.
  • stray light components due to multiple reflections between the light-shielding material that fills the gap between the optical lens and the light-emitting element and the cover window surface affect the detection sensitivity.
  • the electronic device (portable terminals 30a and 30b) according to the twelfth aspect of the present invention preferably includes the optical element according to any of the seventh to eleventh aspects. According to the above configuration, it is possible to realize an electronic device capable of reducing processing cost and weight and suppressing stray light.
  • the optical structure according to Aspect 13 of the present invention may include a reinforcing agent (33) that reinforces the hardness of the optical structure according to Aspect 1 or 2.
  • a reinforcing agent (33) that reinforces the hardness of the optical structure according to Aspect 1 or 2.
  • strength of lightweight and high hardness can be obtained, and it can contribute also to cost reduction.
  • the optical structure according to the fourteenth aspect of the present invention is the optical structure according to any one of the first to fourth aspects, the first structure having the porous structure (a porous mixture 31, a porous agent 32, a porous agent cover). 32a, a porous agent sheet 32b), and a second structure (lens barrel 103) having a dense structure compared to the first structure.
  • the strength of the lens barrel itself hardness
  • a stray light suppressing effect can be obtained.
  • An optical element according to an aspect 15 of the present invention includes the optical structure according to any one of the above aspects 1 to 5, includes a lens barrel that houses the optical lens, and a thin film (porous) including the porous structure.
  • the porous material mixture 31 and the porous material 32) may be applied to the inner side or the upper surface side of the lens barrel. According to the above configuration, the strength (hardness) of the lens barrel itself can be maintained, and a stray light suppression effect can be obtained, which can contribute to cost reduction.
  • An optical element according to a sixteenth aspect of the present invention includes the optical structure according to any one of the first to fifth aspects, includes a lens barrel that houses the optical lens, and includes the porous structure.
  • Porous agent cover 32a may be fixed so as to cover the upper surface and upper side surface of the lens barrel. According to the above configuration, it is possible to obtain an effect of suppressing stray light from the outside light into the lens. Further, since the conventional lens barrel can be used, it can contribute to the problem of the strength of the lens barrel and the cost reduction required for creating a new lens barrel.
  • An optical element according to Aspect 17 of the present invention includes a lens barrel that includes the optical structure according to any one of Aspects 1 to 5, includes a lens barrel that houses the optical lens, and includes the porous structure.
  • Porous agent sheet 32b may be fixed to the upper surface of the lens barrel. According to the above configuration, the sheet is relatively inexpensive, and the process of fixing to the conventional lens barrel is a simple operation of sticking, so that it has excellent workability and is easily performed for the purpose of repairing surface scratches. Things are possible.
  • An optical element according to Aspect 18 of the present invention includes the optical structure according to any one of Aspects 1 to 5, wherein a plurality of the optical lenses are present, and between the plurality of optical lenses, or A lens unit having a light shielding member (inter-lens light shielding member 35, rear light shielding member 34) disposed on the lower surface of the lowermost lens among the plurality of optical lenses, and a lens barrel that houses the lens unit.
  • the porous structure may be formed on the light shielding member. According to the said structure, the stray light by the reflected light inside the lens of external light can be suppressed.
  • An optical element according to Aspect 19 of the present invention is an optical element including the lens barrel that includes the optical structure according to any one of Aspects 1 to 5 and that houses the optical lens.
  • An optical element according to aspect 20 of the present invention includes the optical structure according to any one of aspects 1 to 5, wherein a plurality of the optical lenses are present, and the plurality of optical lenses are adhesives (
  • An optical system comprising: a lens unit that is bonded to each other by a fitting member 36a); and a lens barrel that houses the lens unit, wherein the porous structure is formed in the adhesive. element. According to the said structure, the stray light by the reflected light inside the lens of external light can be suppressed.
  • the present invention suppresses stray light to the inside of an optical lens due to reflection of external light, enables high-quality imaging, and has an easily manufactured structure, an optical element including the optical structure, and the The present invention can be applied to an electronic device provided with an optical element.

Abstract

The purpose of the present invention is to reduce processing costs, lighten weight, and control stray light. A porous structure that includes a plurality of types of holes with diameters different from each other is formed on at least part of a lens barrel (3) disposed in the vicinity of a lens (2) or on at least part of light shielding resin (6) disposed in the vicinity of a light receiving lens (5).

Description

光学構造体および光学素子Optical structure and optical element
 本発明は、光学レンズの近傍に配置される光学構造体、および該光学構造体を備えた光学素子などに関する。 The present invention relates to an optical structure disposed in the vicinity of an optical lens, an optical element including the optical structure, and the like.
 近年、光の反射を抑制する反射防止処理が表面に施された種々の光学素子が提案されている。例えば、特許文献1には、レンズ鏡筒の内壁面に所定波長以下のピッチを有する凹凸構造を形成したレンズ鏡筒が開示されている。また、特許文献2には、表面に所定波長以下のピッチを有する複数の微小凹部を形成した光吸収構造体が開示されている。また、特許文献3には、レンズ鏡筒の内壁面を多孔質の微粒子で被膜したレンズ鏡筒が開示されている。 In recent years, various optical elements having an antireflection treatment for suppressing light reflection have been proposed. For example, Patent Document 1 discloses a lens barrel in which an uneven structure having a pitch of a predetermined wavelength or less is formed on the inner wall surface of the lens barrel. Patent Document 2 discloses a light absorption structure in which a plurality of minute recesses having a pitch of a predetermined wavelength or less are formed on the surface. Patent Document 3 discloses a lens barrel in which the inner wall surface of the lens barrel is coated with porous fine particles.
日本国公開特許公報「特許第5383188号明細書(2013年10月11日登録)」Japanese Patent Publication “Patent No. 5383188 (Registered October 11, 2013)” 日本国公開特許公報「特開2011-59548号公報(2011年3月24日公開)」Japanese Patent Publication “JP 2011-59548 A” (published March 24, 2011) 日本国公開特許公報「特開2012-2895号公報(2012年 1月 5日公開)」Japanese Patent Publication “JP 2012-2895 (January 5th, 2012)”
 しかしながら、上記特許文献1のレンズ鏡筒のようなシボ加工(表面に凹凸を形成)による凹凸構造を形成するためには、金型に凹凸パターンを作成するブラスト処理工程が必要であり、加工コストが嵩み、製品もある程度の厚みが必要となるという問題点がある。また、同文献の凹凸構造は、光を乱反射させるのみなので迷光の一部がディテクタに到達し、フレアやゴーストなどの撮像不具合が生じてしまう可能性があるという問題点もある。また、凹凸構造による光の拡散効果を用いても、光学レンズの内部への光の入射を防ぐことは容易ではなく、レンズ鏡筒を固定するために用いる接着剤による反射によって、光学レンズの内部への入射が発生し、フレアやゴーストなどの撮像不具合が生じてしまう可能性があるという問題点もある。 However, in order to form a concavo-convex structure such as the lens barrel of the above-mentioned Patent Document 1 by forming a concavo-convex structure (forming concavo-convex on the surface), a blasting process for creating a concavo-convex pattern on the mold is necessary, and the processing cost However, there is a problem that a certain amount of thickness is required for the product. In addition, since the uneven structure of the document only diffuses light, there is a problem in that part of stray light reaches the detector and imaging defects such as flare and ghost may occur. Moreover, even if the light diffusing effect due to the concavo-convex structure is used, it is not easy to prevent the light from entering the inside of the optical lens, and the reflection of the adhesive used to fix the lens barrel causes reflection of the inside of the optical lens. There is also a problem that there is a possibility that an incident to the light will occur and imaging defects such as flare and ghost may occur.
 次に、上記特許文献2の光吸収構造体では、微小凹部で光の反射を抑制しているが、樹脂材料が吸収しない光は反射されるため、この構造では、凹部以外の樹脂部分の表面反射を十分に抑制することが困難であるという問題点がある。 Next, in the light absorption structure of Patent Document 2, light reflection is suppressed by the minute recesses, but light that is not absorbed by the resin material is reflected. Therefore, in this structure, the surface of the resin portion other than the recesses is reflected. There is a problem that it is difficult to sufficiently suppress reflection.
 次に、上記特許文献3のレンズ鏡筒では、内壁面に形成した多孔質の微粒子による被膜を構成する微粒子が脱落する恐れがあり、異物化した微粒子によって撮像不具合を引き起こす可能性があるという問題点がある。また、被膜形成後の工程で光吸収処理を行うとプロセスが複雑になるだけでなく、剥がれ落ちてゴミの要因になったり、レンズ収納部の寸法精度に塗布厚誤差分の影響を与えたりするという問題点もある。 Next, in the lens barrel of the above-mentioned Patent Document 3, there is a possibility that fine particles constituting the coating film made of porous fine particles formed on the inner wall surface may drop off, and there is a possibility that imaging defects may be caused by the foreign particles. There is a point. In addition, if the light absorption process is performed in the process after film formation, the process becomes complicated, and it may come off and cause dust, and the dimensional accuracy of the lens housing may be affected by the coating thickness error. There is also a problem.
 本発明は、以上の問題点に鑑みて為されたものであって、その目的は、加工コストの低減および軽量化を図り、迷光を抑制することができる光学構造体などを提供することにある。 The present invention has been made in view of the above problems, and an object of the present invention is to provide an optical structure or the like that can reduce processing costs and weight, and can suppress stray light. .
 上記の課題を解決するために、本発明の一態様に係る光学構造体は、光学レンズの近傍に配置される光学構造体であって、互いに孔径の異なる複数種類の孔を含んだ多孔質構造が少なくとも一部に形成されていることを特徴としている。 In order to solve the above problems, an optical structure according to one embodiment of the present invention is an optical structure disposed in the vicinity of an optical lens, and includes a porous structure including a plurality of types of holes having different hole diameters. Is at least partially formed.
 本発明の一態様によれば、加工コストの低減および軽量化を図り、迷光を抑制することができるという効果を奏する。 According to one aspect of the present invention, it is possible to reduce the processing cost and reduce the weight and to suppress stray light.
(a)は、本発明の実施形態1に係るレンズユニットの構成を示す図であり、(b)は、本発明の実施形態2に係る近接センサの構成を示す図である。(A) is a figure which shows the structure of the lens unit which concerns on Embodiment 1 of this invention, (b) is a figure which shows the structure of the proximity sensor which concerns on Embodiment 2 of this invention. 多孔質構造の形成方法の一例を示す図であり、(a)は、樹脂材料(プラスチック粉末)に対して低温溶解粒子を混合して射出成型したときの様子を示す図であり、(b)は、上記低温溶解粒子を溶解させているときの様子を示す図であり、(c)は、上記低温溶解粒子を完全に溶出させることで、気孔を形成したときの様子を示す図である。It is a figure which shows an example of the formation method of a porous structure, (a) is a figure which shows a mode when low temperature melt | dissolution particle | grains are mixed with the resin material (plastic powder), and is injection-molded, (b) These are figures which show a mode when the said low temperature melt | dissolved particle is dissolved, (c) is a figure which shows a mode when a pore is formed by eluting the said low temperature melt | dissolved particle completely. 多孔質構造の形成方法の別の例を示す図であり、(a)は、樹脂材料に放射線が照射される直前の様子を示す図であり、(b)は、放射線の照射により樹脂材料に放射線の軌跡が残った状態を示す図であり、(c)は、図3の(b)に示す状態の樹脂材料に対してエッチング浴を行っている様子を示す図であり、(d)は、上記エッチング浴により多孔質化した多孔質構造の構造を示す図である。It is a figure which shows another example of the formation method of a porous structure, (a) is a figure which shows a mode just before a resin material is irradiated with a radiation, (b) is a resin material by irradiation of a radiation. It is a figure which shows the state in which the locus | trajectory of the radiation remained, (c) is a figure which shows a mode that the etching bath is performed with respect to the resin material of the state shown to (b) of FIG. 3, (d) is a figure. It is a figure which shows the structure of the porous structure made porous by the said etching bath. 二段階射出成型により作成した多孔質構造の構造を示す図である。It is a figure which shows the structure of the porous structure produced by the two-step injection molding. 本発明の実施形態3に係る携帯端末の構成を示す図であり、(a)は、上記携帯端末の一例の構成を示し、(b)は、上記携帯端末の別の例の構成を示す。It is a figure which shows the structure of the portable terminal which concerns on Embodiment 3 of this invention, (a) shows the structure of an example of the said portable terminal, (b) shows the structure of another example of the said portable terminal. 多孔質構造の変形例を示す図であり、(a)は、上記多孔質構造の一変形例を示し、(b)は、上記多孔質構造の別の変形例を示し、(c)は、上記多孔質構造のさらに別の変形例を示す。It is a figure which shows the modification of a porous structure, (a) shows one modification of the said porous structure, (b) shows another modification of the said porous structure, (c), Another modification of the porous structure will be described. 比較例のレンズユニットと本発明の実施形態4に係るレンズユニットとを比較したときの様子を示す図であり、(a)および(b)は、比較例のレンズユニットのレンズ鏡筒を上下動させたときの様子を示し、(c)および(d)は、上記実施形態4に係るレンズユニットのレンズ鏡筒を上下動させたときの様子を示す。It is a figure which shows a mode when the lens unit of a comparative example and the lens unit which concerns on Embodiment 4 of this invention are compared, (a) And (b) moves the lens barrel of the lens unit of a comparative example up and down. (C) and (d) show the state when the lens barrel of the lens unit according to Embodiment 4 is moved up and down. 本発明の実施形態5に係るレンズユニットの構造を示す図である。It is a figure which shows the structure of the lens unit which concerns on Embodiment 5 of this invention. 本発明の実施形態6に係るレンズユニットの構造を示す図である。It is a figure which shows the structure of the lens unit which concerns on Embodiment 6 of this invention. 比較例のレンズユニットの問題点を説明するための図であり、(a)は、上記比較例のレンズユニットの問題点の一つを説明するための図であり、(b)は、上記比較例のレンズユニットのもう一つの問題点を説明するための図である。It is a figure for demonstrating the problem of the lens unit of a comparative example, (a) is a figure for demonstrating one of the problems of the lens unit of the said comparative example, (b) is the said comparison. It is a figure for demonstrating another problem of the lens unit of an example. (a)は、レンズ鏡筒に塗布する塗布剤の一例を示す図である。(b)および(c)は、それぞれ多孔質構造を形成する材料を含む多孔質剤を、従来のレンズ鏡筒の任意の部位に塗布する方法を示す図である。(A) is a figure which shows an example of the coating agent apply | coated to a lens-barrel. (B) And (c) is a figure which shows the method of apply | coating the porous agent containing the material which each forms a porous structure to the arbitrary site | parts of the conventional lens barrel. (a)および(b)は、それぞれ上記多孔質剤を従来のレンズ鏡筒103に利用する例を示す図である。(A) And (b) is a figure which shows the example which utilizes the said porous agent for the conventional lens barrel 103, respectively. (a)~(d)は、それぞれ上記多孔質剤を遮光部材として使用する例を示す図である。(A)-(d) is a figure which shows the example which uses the said porous agent as a light-shielding member, respectively.
 本発明の実施の形態について図1~図10に基づいて説明すれば、次の通りである。以下、説明の便宜上、特定の実施形態にて説明した構成と同一の機能を有する構成については、同一の符号を付記し、その説明を省略する場合がある。 Embodiments of the present invention will be described with reference to FIGS. 1 to 10 as follows. Hereinafter, for convenience of explanation, components having the same functions as those described in the specific embodiment may be denoted by the same reference numerals and description thereof may be omitted.
 〔実施形態1〕
 図1の(a)は、本発明の実施形態1に係るレンズユニット(光学素子)10aの構成を示す図である。同図に示すように、レンズユニット10aは、ディテクタ(受光素子)1、レンズ(光学レンズ)2、およびレンズ鏡筒(光学構造体)を備える。
[Embodiment 1]
FIG. 1A is a diagram showing a configuration of a lens unit (optical element) 10a according to Embodiment 1 of the present invention. As shown in the figure, the lens unit 10a includes a detector (light receiving element) 1, a lens (optical lens) 2, and a lens barrel (optical structure).
 (ディテクタ1)
 ディテクタ1は、レンズ2を通過する光を受光する受光素子(イメージセンサ)であり、例えば、CCD(Charge Coupled Device:電荷結合素子)またはCMOS(Complementary Metal Oxide Semiconductor:相補型金属酸化膜半導体)などで構成される。
(Detector 1)
The detector 1 is a light receiving element (image sensor) that receives light passing through the lens 2, for example, a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor). Consists of.
 (レンズ2)
 レンズ2は、通過する光をディテクタ1の受光面に照射し、該受光面上において像を結像させる結像光学系を構成するレンズである。レンズ2は、複数枚のレンズから構成されており、図1では、便宜上、3枚のレンズから構成されている様子が示されているが、レンズ2を構成するレンズの枚数は3枚に限定されない。
(Lens 2)
The lens 2 is a lens constituting an imaging optical system that irradiates light passing through the light receiving surface of the detector 1 and forms an image on the light receiving surface. The lens 2 is composed of a plurality of lenses. FIG. 1 shows a state in which the lens 2 is composed of three lenses for convenience, but the number of lenses constituting the lens 2 is limited to three. Not.
 (レンズ鏡筒3)
 レンズ鏡筒3は、レンズ2の近傍に配置される、複数枚のレンズ(レンズ2)が組み付けられる筐体であり、レンズ2の周囲を筒状に取り囲んで筐体の内部に収容するものである。本実施形態のレンズ鏡筒3は、レンズ2の周囲を取り囲む円筒形を為している。レンズ鏡筒3の構成材料は、特に種類を限定されるものではないが、オレフィン系、スチレン系、エラストマー系、および合成ゴム系等を例示することができる。
(Lens barrel 3)
The lens barrel 3 is a casing in which a plurality of lenses (lenses 2) are assembled in the vicinity of the lens 2 and surrounds the periphery of the lens 2 in a cylindrical shape and is accommodated in the casing. is there. The lens barrel 3 of the present embodiment has a cylindrical shape that surrounds the periphery of the lens 2. The constituent material of the lens barrel 3 is not particularly limited, and examples thereof include olefin-based, styrene-based, elastomer-based, and synthetic rubber-based materials.
 また、図1に示すように、レンズ鏡筒3の全部または一部には、互いに孔径の異なる複数種類の孔を含んだ多孔質構造(ポーラス構造)が形成されている。なお、上記の多孔質構造は、迷光抑制のため、レンズ鏡筒3のレンズ2を収容する内側(内壁面の側)またはレンズ開口部の周囲に形成されていることが好ましい。レンズ鏡筒3の内側またはレンズ開口部の周囲に入射する光は、迷光となり易い。このため、上記構成によれば、迷光成分が良好に除去されるレンズ鏡筒3を提供することができる。上記の多孔質構造は、本実施形態では、孔径(距離d3)が5μm以上の孔Aと、孔Aよりも孔径が小さく、孔径(距離d2)が400nm以上、600nm以下の孔Bとの2種類の孔を含んでいる。上記の距離d2は、ディテクタ1で受光する光の波長域と等しいサイズかまたはそれより大きいサイズに設定される。なお、本実施形態では、孔径の種類は2種類であるが、孔径の種類数は、複数であれば、良く、例えば、3種類以上の互いに孔径の異なる孔を含んでいても良い。以上のような多孔質構造は、シボ加工(表面に凹凸をつける)による反射防止凹凸構造と比較して、加工が容易であり、加工コストの低減を図ることができる。なお、多孔質構造の加工方法(製造方法)の詳細については後述する。また、上記の多孔質構造には、孔径の大きな孔Aと孔径の小さな孔Bが含まれている。ここで、光学レンズに外乱光が入射すると、その一部が迷光となってレンズ鏡筒3に入射する場合がある。上記迷光は、レンズ鏡筒3に入射すると、上記孔径の大きな孔Aによって捕捉される。このとき、孔径が小さい方の孔Bの孔径を迷光の波長域程度もしくはそれよりも大きなサイズに設定しておけば、迷光は孔Bによって散乱される。このため、孔Aによって捕捉された迷光は、孔Bで散乱され、これにより多重反射が繰り返されると、熱エネルギーとして消失してしまう場合がある。このため、迷光の一部が多孔質構造により消失してしまうため、迷光を抑制することが可能になる。 Further, as shown in FIG. 1, the whole or a part of the lens barrel 3 is formed with a porous structure (porous structure) including plural kinds of holes having different hole diameters. The porous structure is preferably formed on the inner side (inner wall surface side) that accommodates the lens 2 of the lens barrel 3 or around the lens opening in order to suppress stray light. Light incident on the inside of the lens barrel 3 or around the lens opening tends to be stray light. For this reason, according to the said structure, the lens-barrel 3 from which a stray light component is removed favorably can be provided. In the present embodiment, the porous structure described above is composed of a hole A having a pore diameter (distance d3) of 5 μm or more and a hole B having a pore diameter smaller than the hole A and having a pore diameter (distance d2) of 400 nm or more and 600 nm or less. Contains kinds of holes. The distance d2 is set to a size equal to or larger than the wavelength range of light received by the detector 1. In the present embodiment, there are two types of hole diameters. However, the number of hole diameters may be plural, and for example, three or more types of holes having different hole diameters may be included. The porous structure as described above is easy to process and can reduce the processing cost as compared with the anti-reflective structure having an uneven surface (providing unevenness on the surface). The details of the processing method (manufacturing method) of the porous structure will be described later. The porous structure includes a hole A having a large hole diameter and a hole B having a small hole diameter. Here, when disturbance light is incident on the optical lens, a part thereof may become stray light and enter the lens barrel 3. When the stray light enters the lens barrel 3, it is captured by the hole A having a large hole diameter. At this time, the stray light is scattered by the hole B if the hole diameter of the hole B having the smaller hole diameter is set to a size approximately equal to or larger than the wavelength range of stray light. For this reason, the stray light captured by the hole A is scattered by the hole B, and when multiple reflections are repeated by this, it may disappear as thermal energy. For this reason, part of the stray light disappears due to the porous structure, so that the stray light can be suppressed.
 次に、本実施形態の多孔質構造を観点を変えて分析すると、所定波長の光を捕捉することが可能な孔径を有する孔A(凹部)と、孔Aに対して連続的に形成され、孔Aで捕捉した光を散乱させる孔Aの孔径よりも小さい凹凸間隔(距離d1≒d2)を有する微細凹凸構造Fと、を含んでいると見ることもできる。ここで、凹凸間隔(凹凸サイズ)とは、表面の凹凸の高さ方向および間隔の凹凸両方の寸法を指す。また、微細凹凸構造Fの表面の凹凸を、大きな孔Aを除いた部分の表面粗さで表現しても良い。上記の凹凸間隔は、ディテクタ1で受光する光の波長域と等しいサイズまたはそれより大きいサイズに設定される。 Next, when analyzing the porous structure of the present embodiment from a different viewpoint, a hole A (concave portion) having a hole diameter capable of capturing light of a predetermined wavelength and the hole A are continuously formed, It can also be seen that it includes a fine concavo-convex structure F having a concavo-convex interval (distance d1≈d2) smaller than the hole diameter of the hole A that scatters light captured by the hole A. Here, the unevenness interval (unevenness size) refers to the dimension of both the height direction of the unevenness on the surface and the unevenness of the interval. Further, the unevenness on the surface of the fine concavo-convex structure F may be expressed by the surface roughness of the portion excluding the large hole A. The above irregularity interval is set to a size equal to or larger than the wavelength range of the light received by the detector 1.
 上記構成によれば、微細凹凸構造Fの凹凸間隔を迷光の波長域程度もしくはそれよりも大きなサイズに設定しておけば、迷光は微細凹凸構造によって散乱される。このため、孔Aによって捕捉された迷光は、孔Aに対して連続的に形成された微細凹凸構造Fによって散乱され、これにより多重反射が繰り返されると、熱エネルギーとして消失してしまう場合がある。このため、迷光の一部が多孔質構造により消失してしまうため、迷光を抑制することが可能になる。また、レンズ鏡筒3の少なくとも一部に上述した多孔質構造を形成すれば、同じ容積の密な構造に比べてポーラスな分、レンズ鏡筒3の軽量化を図ることができる。また、上記のレンズ鏡筒3は、例えば、その少なくとも一部に上記多孔質構造を形成することにより簡単に製造することができるため、加工コストの低減が可能である。以上により、上記レンズ鏡筒3によれば、加工コストの低減および軽量化を図り、迷光を抑制することができる。 According to the above configuration, stray light is scattered by the fine concavo-convex structure if the concavo-convex interval of the fine concavo-convex structure F is set to a size about the stray light wavelength range or larger. For this reason, the stray light captured by the hole A is scattered by the fine concavo-convex structure F continuously formed with respect to the hole A, and thus, when multiple reflections are repeated, it may disappear as thermal energy. . For this reason, part of the stray light disappears due to the porous structure, so that the stray light can be suppressed. Further, if the above-described porous structure is formed on at least a part of the lens barrel 3, the lens barrel 3 can be reduced in weight by being porous compared to a dense structure having the same volume. Further, the lens barrel 3 can be easily manufactured by forming the porous structure on at least a part of the lens barrel 3, for example, so that the processing cost can be reduced. As described above, according to the lens barrel 3, it is possible to reduce the processing cost and reduce the weight, and to suppress stray light.
 また、光学レンズが可視光レンズである場合、孔A(凹部)の孔径(凹部幅)は、5μm以上であり、微細凹凸構造Fの凹凸間隔は、300nm以上、900nm以下であっても良い。上記構成によれば、例えば、撮像カメラ等に用いられるレンズ鏡筒3について、迷光成分が良好に除去されるレンズ鏡筒3を得ることができる。撮像カメラ等に用いられる受光素子(ディテクタ1)は可視光域であるおおよそ400~800nmの波長域の光を検知し、視感度の高い約550nmに高い感度特性を持つ。使用波長域外の光は、ガラスやレンズに作成した被膜によって遮光されているが、成膜は視感度の高い使用波長の中間帯を重視するため、使用波長端の光が設計で想定していない経路で迷光となり、その迷光がわずかな光量でも使用状況によってはゴーストやフレアとなり画質低下に影響することが多々ある。光は波長と同等もしくはそれ以上の凹凸間隔の微細凹凸構造Fによって散乱されるため、可視光を検知する撮像カメラに対しては、所定条件の孔Aと微細凹凸構造Fを備えることにより、散乱や直接孔Aに導かれた光は孔Aに対して連続的に形成された微細凹凸構造Fによる反射を繰り返し、熱エネルギーとなって消失する。 Further, when the optical lens is a visible light lens, the hole diameter (recess width) of the hole A (recess) may be 5 μm or more, and the unevenness interval of the fine uneven structure F may be 300 nm or more and 900 nm or less. According to the above configuration, for example, the lens barrel 3 from which the stray light component is satisfactorily removed can be obtained for the lens barrel 3 used in the imaging camera or the like. A light receiving element (detector 1) used for an imaging camera or the like detects light in a wavelength range of approximately 400 to 800 nm, which is a visible light range, and has a high sensitivity characteristic at about 550 nm with high visual sensitivity. Light outside the operating wavelength range is shielded by a coating made on glass or lenses, but since the emphasis is on the intermediate band of the operating wavelength with high visibility, light at the operating wavelength end is not assumed in the design The path becomes stray light, and even if the stray light is small, it often becomes a ghost or flare depending on the situation of use, which often affects image quality degradation. Since the light is scattered by the fine concavo-convex structure F having a concavo-convex interval equal to or greater than the wavelength, the imaging camera that detects visible light has a predetermined condition of the hole A and the fine concavo-convex structure F to scatter. The light directly guided to the hole A is repeatedly reflected by the fine concavo-convex structure F formed continuously with respect to the hole A, and disappears as heat energy.
 次に、上述した孔Aおよび孔Bのそれぞれの孔径は、10nm以上、10μm以下であっても良い。上記構成によれば、ゴミの侵入を防ぐことができ、レンズ2の曇りや熱膨張による歪が抑制され、耐環境性の高い性能のレンズ鏡筒3を得ることができる。なお、許容されるゴミのサイズは十数μmであり、水蒸気のサイズは4nmであり、水滴のサイズは、100μmである。 Next, the diameter of each of the holes A and B described above may be 10 nm or more and 10 μm or less. According to the above configuration, dust can be prevented from entering, and distortion due to cloudiness or thermal expansion of the lens 2 can be suppressed, so that the lens barrel 3 with high environmental resistance can be obtained. The allowable size of dust is a few dozen μm, the size of water vapor is 4 nm, and the size of water droplets is 100 μm.
 (レンズユニット10aの効果)
 上記のレンズユニット10aによれば、レンズ鏡筒3のレンズ開口部および鏡筒の内部反射による迷光を抑制することができる。光の波長と同等もしくはそれ以上の微細凹凸構造Fで光は散乱される。これは、上述した多孔質構造を適用すると、迷光は多孔内にトラップされ、多重反射を経て熱エネルギーとなって消失するからである。
(Effect of the lens unit 10a)
According to said lens unit 10a, the stray light by the lens opening part of the lens-barrel 3 and internal reflection of a lens-barrel can be suppressed. Light is scattered by the fine concavo-convex structure F equal to or longer than the wavelength of light. This is because, when the porous structure described above is applied, stray light is trapped in the pores and disappears as thermal energy through multiple reflection.
 より具体的には、レンズユニット10aでは、レンズ鏡筒3の全部または一部に、サイズの異なる孔AおよびBの、少なくとも2種類の孔径を有する多孔質構造を形成しており、大きな径の孔Aで光をトラップすることで表面反射を防ぎつつ、トラップされた光を小さな孔径の孔Bの部分で散乱させることにより、多重反射を繰り返させ、熱エネルギーとして消失させることにより、迷光成分を抑制することが可能となる。また、全反射臨界角度を超える角度の光は、全反射の理論により反射し光吸収効果を得られないが、上記のレンズ鏡筒3では、構想上、様々な方向へ光を反射させるため、光の入射角度によらず、良好に反射光を低減できる。 More specifically, in the lens unit 10a, the whole or a part of the lens barrel 3 is formed with a porous structure having at least two types of hole diameters of holes A and B having different sizes. By trapping light in the hole A and preventing surface reflection, the trapped light is scattered in the portion of the hole B having a small hole diameter, thereby repeating multiple reflections and disappearing as thermal energy, thereby reducing stray light components. It becomes possible to suppress. In addition, light having an angle exceeding the total reflection critical angle is reflected by the theory of total reflection and cannot obtain a light absorption effect. However, in the lens barrel 3 described above, in order to reflect light in various directions, The reflected light can be reduced satisfactorily regardless of the incident angle of light.
 また、上記のレンズ鏡筒3によれば、同じ容積の密なレンズ鏡筒に比べてポーラスな分軽量化される。レンズ鏡筒3が軽量化されると、少ないエネルギーでオートフォーカスや光学式手振れ補正動作を実行できることから、低消費電力化を図ることもできる。 Further, according to the lens barrel 3 described above, the weight is reduced by a porous amount compared to a dense lens barrel having the same volume. When the lens barrel 3 is reduced in weight, it is possible to perform autofocus and optical camera shake correction operations with a small amount of energy, so that power consumption can be reduced.
 また、例えば、上記のレンズ鏡筒3をモバイル端末等で利用する場合は、カメラのフォーカス調整用に駆動機構が備えられており、外部振動により、衝突音を生じる場合がある。そこで、上記のレンズ鏡筒によれば、生じた振動が多孔質内に伝搬して、熱エネルギーに変換されて響きを低減する効果を期待できる。 Also, for example, when the lens barrel 3 is used in a mobile terminal or the like, a driving mechanism is provided for camera focus adjustment, and collision noise may be generated due to external vibration. Therefore, according to the lens barrel described above, it is possible to expect the effect that the generated vibration propagates into the porous body and is converted into thermal energy to reduce sound.
 以上、纏めると、レンズユニット10によれば、下記の効果が得られる。
(1)光吸収性を用いた迷光の抑制効果を持つ。
(2)レンズ鏡筒3の部材の軽量化、薄型化による駆動機構への負担軽減、それに伴う低消費電力効果を持つ。
(3)多孔質粒子をつなぐ接着剤が必要ないので、接着剤による反射を防ぐ。
(4)金型のブラスト処理が不要となり、コスト削減となる。
(5)多孔質粒子を吹き付けないので、粒子剥がれによるゴミ異物の発生を抑止することができる。
(6)多孔質構造の細孔中に音波が当たり抵抗摩擦となり、音エネルギーが熱エネルギーに変換され吸音効果が得られる。
(7)レンズ鏡筒3を保持するための接着剤による反射を抑制できるため、塗布範囲を拡大し保持力を強化できる。
In summary, according to the lens unit 10, the following effects can be obtained.
(1) It has the effect of suppressing stray light using light absorption.
(2) The weight of the lens barrel 3 is reduced, the burden on the drive mechanism is reduced by the reduction in thickness, and the accompanying low power consumption effect.
(3) Since an adhesive that connects the porous particles is not necessary, reflection by the adhesive is prevented.
(4) The die blasting process is not necessary, and the cost is reduced.
(5) Since porous particles are not sprayed, it is possible to suppress the generation of foreign particles due to particle peeling.
(6) Sound waves hit the pores of the porous structure, resulting in resistance friction, and sound energy is converted into heat energy, so that a sound absorption effect is obtained.
(7) Since reflection by the adhesive for holding the lens barrel 3 can be suppressed, the application range can be expanded and the holding power can be strengthened.
 (多孔質構造の形成方法)
 上述した多孔質構造は、シボ加工(表面に凹凸をつける)による反射防止凹凸構造と比較して、加工が容易であり、加工コストの低減を図ることができる。以下、多孔質構造の形成方法の具体例について幾つか説明する。
(Method for forming porous structure)
The porous structure described above is easier to process and can reduce processing costs as compared to the antireflection uneven structure by embossing (making the surface uneven). Hereinafter, some specific examples of the method for forming the porous structure will be described.
 図2は、多孔質構造の形成方法の一例を示す図である。この方法では、まず、図2の(a)に示すように、樹脂材料(プラスチック粉末)に対して、低温溶解粒子a,bを混合して射出成型を行う。プラスチック粉末と低温溶解粒子a,bとは、互いに溶解温度等の特性が異なる材料で構成されている。低温溶解粒子a,bの構成材料としては、例えば、水溶性の塩化ナトリウムまたは硝酸ナトリウムを例示することができる。次に、図2の(b)に示すように、上記の射出成形後に、低い溶解温度の樹脂からなる低温溶解粒子a,bを溶出する。上記低温溶解粒子a,bを完全に溶出させると、図2の(c)に示すような気孔(孔A,B)が形成された多孔質構造が得られる。 FIG. 2 is a diagram showing an example of a method for forming a porous structure. In this method, first, as shown in FIG. 2 (a), the resin material (plastic powder) is mixed with the low-temperature dissolved particles a and b to perform injection molding. The plastic powder and the low-temperature melting particles a and b are made of materials having different characteristics such as a melting temperature. As a constituent material of the low-temperature dissolution particles a and b, for example, water-soluble sodium chloride or sodium nitrate can be exemplified. Next, as shown in FIG. 2B, after the injection molding, the low-temperature dissolution particles a and b made of a resin having a low dissolution temperature are eluted. When the low-temperature dissolution particles a and b are completely eluted, a porous structure in which pores (holes A and B) as shown in FIG. 2C are formed is obtained.
 次に、図3は、多孔質構造の形成方法の別の例を示す図である。この方法では、図3の(a)に示すように、樹脂材料に放射線を照射する。これにより、図3の(b)に示すように樹脂材料の内部に放射線の軌跡が残る。次に、図3の(c)に示すように、放射線の軌跡が残った状態の樹脂材料をエッチング液に浸し、エッチング浴を行う。すると、樹脂材料の内部に残った放射線の軌跡の部分が、エッチングされて図3の(d)に示すような多孔質構造が得られる。 Next, FIG. 3 is a diagram showing another example of a method for forming a porous structure. In this method, as shown in FIG. 3A, the resin material is irradiated with radiation. Thereby, as shown in (b) of Drawing 3, the locus of radiation remains inside the resin material. Next, as shown in FIG. 3C, the resin material with the radiation locus remaining is immersed in an etching solution, and an etching bath is performed. Then, the portion of the radiation locus remaining inside the resin material is etched to obtain a porous structure as shown in FIG.
 次に、図4は、二段階射出成型により作成した多孔質構造の構造を示す図である。同図に示すように、射出成型時に、孔径の異なる多孔質微粒子を混合した樹脂を段階的に射出することで、孔径(例えば、孔AおよびBのそれぞれの孔径)や部位(例えば、領域α,β)の制御を行うことができる。 Next, FIG. 4 is a diagram showing the structure of a porous structure created by two-stage injection molding. As shown in the figure, at the time of injection molding, a resin in which porous fine particles having different pore diameters are mixed is injected stepwise so that the pore diameters (for example, the respective hole diameters of the holes A and B) and portions (for example, the region α) , Β) can be controlled.
 その他の多孔質構造の形成方法の例としては、焼結法、トラックエッチング法、スペーサー法、および微細発泡射出成形などを例示することができる。 Examples of other porous structure forming methods include a sintering method, a track etching method, a spacer method, and fine foam injection molding.
 例えば、焼結法では、原料粉末の表層付近のみを融着(焼結)させ、原料粉末間に存在している空隙を残したまま成形すれば、多孔質構造が得られる。 For example, in the sintering method, a porous structure can be obtained by fusing (sintering) only the vicinity of the surface layer of the raw material powder and molding while leaving the voids existing between the raw material powders.
 また、トラックエッチング法では、ポリマー素材への中性子線、レーザー照射後にアルカリ水溶液でエッチング処理を行うことにより均一な大きさの細孔が得られる。 Also, in the track etching method, uniform size pores can be obtained by etching with an aqueous alkali solution after irradiating the polymer material with a neutron beam or laser.
 次に、スペーサー法(スペースホルダー法)では、消失する物質をスペーサーとして利用し気孔率や気孔サイズの調節を行う。 Next, in the spacer method (space holder method), the lost substance is used as a spacer to adjust the porosity and pore size.
 また、微細発泡射出成型では、射出成型機を用いて、発泡剤混合樹脂を金型に射出し、発泡成型品を取り出す。このとき、用いる発泡剤は超臨界状態の窒素、あるいは二酸化炭素であり、5~100μmの独立気泡を有する発砲構造体の製造が可能である。また、二段階射出の外側部分に関して、この発泡射出による手法も可能である。 Also, in the fine foam injection molding, the foaming agent mixed resin is injected into the mold using an injection molding machine, and the foam molded product is taken out. At this time, the foaming agent to be used is nitrogen or carbon dioxide in a supercritical state, and it is possible to produce a foamed structure having closed cells of 5 to 100 μm. Further, this foam injection method is also possible for the outer part of the two-stage injection.
 (従来のレンズ鏡筒への応用例)
 別の多孔質構造の形成方法の例として、上述した射出成型の他に、多孔質構造を形成する材料を含む多孔質剤を、従来のレンズ鏡筒の任意の部位に塗布する方法もある。塗布剤としての多孔質剤は、塗布に適した材料(例えば、エポキシ樹脂、シリコーン樹脂、アクリル樹脂)を含んでいてもよい。塗布に適した材料は、塗布対象となるレンズ鏡筒の任意の部位(プラスチック、ナイロン(登録商標)、LCP(Liquid Crystal Polymer)、ポリカーボネート等)に応じた材料であってもよい。
(Application example to conventional lens barrel)
As an example of another method for forming a porous structure, in addition to the above-described injection molding, there is a method in which a porous agent containing a material for forming a porous structure is applied to any part of a conventional lens barrel. The porous agent as the coating agent may contain a material suitable for coating (for example, epoxy resin, silicone resin, acrylic resin). The material suitable for application may be a material according to any part (plastic, nylon (registered trademark), LCP (Liquid Crystal Polymer), polycarbonate, etc.) of the lens barrel to be applied.
 上記構成によれば、多孔質剤を従来のレンズ鏡筒に塗布することにより、レンズ鏡筒自体の剛性(硬さ)の強度を保つとともに、迷光抑制効果を得ることが可能であり、低コスト化にも寄与する事が出来る。 According to the above configuration, by applying a porous agent to a conventional lens barrel, it is possible to maintain the rigidity (hardness) strength of the lens barrel itself and to obtain a stray light suppression effect, which is low cost. It can also contribute to the transformation.
 図11の(a)は、レンズ鏡筒に塗布する塗布剤の一例を示す図である。図示の様に、塗布剤としての多孔質混合剤31は、多孔質剤32と強化剤33とが混合されたものである。多孔質剤32は、上述した通り、多孔質構造を形成する材料を含むものであり、硬化剤等の塗布に適した材料も更に含んでいてもよい。強化剤33は、塗布剤が硬化した際の硬さの強度を強化するものであり、例えば、ガラス繊維や炭素繊維、ポリアミド繊維又は板状のタルク、粒状のシリカ、フィラー等である。なお、多孔質混合剤31は、塗布剤としての使用に限定せず、多孔質構造を含むレンズ鏡筒3に適用されてもよい。 (A) of FIG. 11 is a figure which shows an example of the coating agent apply | coated to a lens-barrel. As shown in the figure, a porous mixture 31 as a coating agent is a mixture of a porous agent 32 and a reinforcing agent 33. As described above, the porous agent 32 includes a material that forms a porous structure, and may further include a material suitable for application such as a curing agent. The reinforcing agent 33 enhances the strength of the hardness when the coating agent is cured, and is, for example, glass fiber, carbon fiber, polyamide fiber, plate-like talc, granular silica, filler, or the like. The porous mixture 31 is not limited to use as a coating agent, and may be applied to the lens barrel 3 including a porous structure.
 上記構成によれば、強化剤を多孔質剤と混合することにより、迷光抑制に加えて、軽量で高い硬さの強度を得ることができ、低コスト化にも寄与する事が出来る。 According to the above configuration, by mixing the reinforcing agent with the porous agent, in addition to the suppression of stray light, it is possible to obtain a light and high strength strength, which can contribute to cost reduction.
 従来のレンズ鏡筒103において多孔質剤32が塗布される部位は、例えば、図11の(b)に示すようにレンズ鏡筒103の内部表面であってもよく、図11の(c)に示すようにレンズ鏡筒103の開口部における上部周辺であってもよい。レンズ鏡筒103に塗布される塗布剤は、多孔質剤32に限定せず、強化剤を含む多孔質混合剤31であってもよい。また、レンズ鏡筒103に塗布された塗布剤は、多孔質構造を含む薄膜となる。 The portion where the porous agent 32 is applied in the conventional lens barrel 103 may be, for example, the inner surface of the lens barrel 103 as shown in FIG. As shown, it may be the upper periphery of the opening of the lens barrel 103. The coating agent applied to the lens barrel 103 is not limited to the porous agent 32 but may be a porous mixture 31 containing a reinforcing agent. The coating agent applied to the lens barrel 103 becomes a thin film including a porous structure.
 上記構成によれば、本発明に係る多孔質剤または多孔質混合剤を従来のレンズ鏡筒に塗布することにより、レンズ鏡筒自体の剛性(硬さ)の強度を保つとともに、迷光抑制効果を得ることが可能であり、低コスト化にも寄与する事が出来る。 According to the above configuration, by applying the porous agent or the porous mixture according to the present invention to the conventional lens barrel, the strength (hardness) strength of the lens barrel itself can be maintained and the stray light suppressing effect can be obtained. It can be obtained and can contribute to cost reduction.
 (多孔質剤の塗布方法)
 多孔質剤32および多孔質混合剤31を従来のレンズ鏡筒103に塗布する方法について、説明する。塗布剤(多孔質剤32、多孔質混合剤31)内に揮発性物質または水溶性物質を混合し、塗布後に熱処理または水洗浄を行うことにより、多孔質形状を成形する。塗布の方法としては、一般的に知られた手法であり、例えば、吹き付け塗装、浸漬塗り、静電塗装などが挙げられる。
(Application method of porous agent)
A method for applying the porous agent 32 and the porous mixed agent 31 to the conventional lens barrel 103 will be described. A porous shape is formed by mixing a volatile substance or a water-soluble substance in the coating agent (porous agent 32, porous mixing agent 31), and performing heat treatment or water washing after coating. The application method is a generally known method, and examples thereof include spray coating, dip coating, and electrostatic coating.
 (従来のレンズ鏡筒への別の応用例)
 本発明に係る多孔質剤を、従来のレンズ鏡筒103に利用する別の例について説明する。図12の(a)は、多孔質剤32で形成された多孔質剤カバー32a(第1構造体)を従来のレンズ鏡筒103(第2構造体)に被せて固定する方法の一例を示す図である。なお、従来のレンズ鏡筒103(第2構造体)は多孔質剤カバー32aと比較して緻密質な構造を有する。図示の様に、多孔質剤カバー32aが、レンズ鏡筒103における開口部周辺(上面)および側面の上方を覆うことにより、外光のレンズ内部への迷光抑制効果を得ることが可能となる。また、従来のレンズ鏡筒103を利用できるので、レンズ鏡筒の強度の問題や新規レンズ鏡筒の作成にかかるコスト削減に寄与できる。
(Another application example to a conventional lens barrel)
Another example in which the porous agent according to the present invention is used in the conventional lens barrel 103 will be described. FIG. 12A shows an example of a method for fixing a porous agent cover 32a (first structure) formed of a porous agent 32 on a conventional lens barrel 103 (second structure). FIG. The conventional lens barrel 103 (second structure) has a dense structure as compared with the porous agent cover 32a. As shown in the figure, the porous agent cover 32a covers the periphery of the opening (upper surface) and the upper side surface of the lens barrel 103, so that it is possible to obtain the effect of suppressing stray light from outside light into the lens. In addition, since the conventional lens barrel 103 can be used, it is possible to contribute to the problem of the strength of the lens barrel and the cost reduction for creating a new lens barrel.
 図12の(b)は、多孔質剤で形成されたシールタイプの多孔質剤シート32b(第1構造体)を従来のレンズ鏡筒103に貼り付ける方法の一例を示す図である。なお、従来のレンズ鏡筒103(第2構造体)は多孔質剤シート32bと比較して緻密質な構造を有する。シールタイプの多孔質剤シート32bは、カバータイプの多孔質剤カバー32aに比べて安価であり、レンズ鏡筒103に固定する工程は、貼り付けという簡易な作業であるため作業性に優れ、表面傷へのリペア目的としても容易に行う事が可能である。 (B) of FIG. 12 is a diagram showing an example of a method of sticking a seal-type porous agent sheet 32b (first structure) formed of a porous agent to the conventional lens barrel 103. The conventional lens barrel 103 (second structure) has a dense structure as compared with the porous agent sheet 32b. The seal-type porous agent sheet 32b is less expensive than the cover-type porous agent cover 32a, and the process of fixing to the lens barrel 103 is a simple operation of sticking, so that the workability is excellent. It can be easily performed for the purpose of repairing a wound.
 なお、多孔質剤カバー32aおよび多孔質剤シート32bは、多孔質剤32により形成されることに限定せず、例えば、硬化剤等の塗布に適した材料を含む多孔質剤により形成されてもよいし、強化剤が混合された多孔質混合剤31により形成されてもよい。 The porous agent cover 32a and the porous agent sheet 32b are not limited to being formed by the porous agent 32, and may be formed by a porous agent containing a material suitable for application such as a curing agent. Alternatively, it may be formed of a porous mixture 31 mixed with a reinforcing agent.
 (遮光部材への応用例)
 図13は、本発明に係る多孔質剤を遮光部材として使用する例を示す図である。図13の(a)および(b)では、レンズバレルのあるレンズ鏡筒103cに対して多孔質剤が使用されている。多孔質剤の適用部位としては、最下層のレンズの下面にある後方遮光部材34(図13の(a)参照)、レンズ間にあるレンズ間遮光部材35(図13の(b))がある。
(Example of application to light-shielding members)
FIG. 13 is a diagram showing an example in which the porous agent according to the present invention is used as a light shielding member. In FIGS. 13A and 13B, a porous agent is used for the lens barrel 103c having the lens barrel. As the application site of the porous agent, there are the rear light shielding member 34 (see FIG. 13A) on the lower surface of the lowermost lens and the inter-lens light shielding member 35 (FIG. 13B) between the lenses. .
 また、図13の(c)および(d)では、レンズバレルのないレンズ鏡筒103d対して多孔質剤が使用されている。レンズ鏡筒103dは、レンズバレルおよびキャリアの機能を兼ね備えるものである。バレルレスのレンズ鏡筒103dに対する多孔質剤32の適用部位としては、後方遮光部材34およびレンズの開口絞り部材37(図13の(c)参照)や、レンズ同士を嵌合(接着)させる嵌合部材(接着剤)36a(図13の(d))である。 In FIGS. 13C and 13D, a porous agent is used for the lens barrel 103d without a lens barrel. The lens barrel 103d has the functions of a lens barrel and a carrier. As the application site of the porous agent 32 to the barrelless lens barrel 103d, the rear light-shielding member 34 and the lens aperture stop member 37 (see FIG. 13C) or the fitting for bonding (adhering) the lenses together. It is a member (adhesive) 36a ((d) of FIG. 13).
 なお、レンズ鏡筒103cおよび103dは、従来のレンズ鏡筒であってもよいし、本発明に係る多孔質構造を有するレンズ鏡筒であってもよい。また、使用される多孔質剤は、多孔質構造を形成する材料を含むものであればよく、例えば、塗布に適した材料を含んだ多孔質剤であってもよいし、強化剤が混合された多孔質混合剤であってもよい。上記構成により、外光のレンズ内部での反射光による迷光を抑制することができる。 The lens barrels 103c and 103d may be conventional lens barrels or lens barrels having a porous structure according to the present invention. Further, the porous agent to be used may be any material as long as it contains a material that forms a porous structure. For example, the porous agent may contain a material suitable for application, or a reinforcing agent may be mixed. Or a porous mixture. With the above configuration, stray light due to reflected light inside the lens of external light can be suppressed.
 (多孔質構造の変形例)
 次に、図6は、多孔質構造の変形例を示す図である。図6の(a)~(c)には、3種類の異なる形態の多孔質構造の変形例を示しているが、これらの変形例は、紙面に対して上下に孔が貫通している点で共通している。上記構成によれば、通気性を確保することができるため、吸湿効果、熱の抑制効果、内部の熱変形の防止の効果が得られる。このため、放熱を促し、結露を防止することが可能になる。
(Modified example of porous structure)
Next, FIG. 6 is a figure which shows the modification of a porous structure. 6 (a) to 6 (c) show modified examples of three types of porous structures having different forms. These modified examples show that holes penetrate vertically in the drawing. In common. According to the above configuration, since air permeability can be ensured, a moisture absorption effect, a heat suppression effect, and an internal heat deformation prevention effect are obtained. For this reason, it is possible to promote heat dissipation and prevent condensation.
 図6の(a)に示す多孔質構造では、上部に略半球上の凹部(孔A)が形成されており、この凹部のそれぞれに連続して、一筋のほぼ同径で延在する筒型の孔Bが下部まで続いている。孔Aの孔径は、孔Bの孔径よりも大きいが、この形態では、微細凹部構造に相当する構造がみられない。 In the porous structure shown in FIG. 6 (a), a substantially hemispherical recess (hole A) is formed in the upper part, and a cylindrical shape extending continuously with each of the recesses with substantially the same diameter. Hole B continues to the bottom. Although the hole diameter of the hole A is larger than the hole diameter of the hole B, in this embodiment, a structure corresponding to the fine recess structure is not observed.
 次に、図6の(b)に示す多孔質構造では、上部に略半球上の凹部(孔A)が形成され、この凹部のそれぞれに連続して、孔径が孔Aよりも小さい多数の孔Bの集まりが、下部まで続いている。また、この多数の孔Bの集まりは、上述した微細凹凸構造Fを形成している。 Next, in the porous structure shown in FIG. 6B, a substantially hemispherical recess (hole A) is formed in the upper portion, and a plurality of holes having a hole diameter smaller than the hole A are continuously formed in each of the recesses. B's gathering continues to the bottom. Further, the collection of the numerous holes B forms the fine concavo-convex structure F described above.
 次に、図6の(c)に示す多孔質構造では、上下方向に貫通してほぼ同径で延在する筒型の孔Aと、左右方向に貫通してほぼ同径で延在する筒型の孔Bと、が形成された構造を有している。孔Aの孔径は、孔Bの孔径よりも大きいが、この形態では、微細凹部構造に相当する構造がみられない。なお、図6の(c)に示す形態のように、レンズ鏡筒の内側と外側と(左右方向)を貫通させるような微細凹凸構造を形成して、通気性を持たせることで、内部の放熱、結露の防止を図ることができる。 Next, in the porous structure shown in FIG. 6C, a cylindrical hole A that penetrates in the vertical direction and extends with substantially the same diameter, and a cylinder that penetrates in the horizontal direction and extends with substantially the same diameter. It has a structure in which a mold hole B is formed. Although the hole diameter of the hole A is larger than the hole diameter of the hole B, in this embodiment, a structure corresponding to the fine recess structure is not observed. In addition, as shown in FIG. 6 (c), by forming a fine concavo-convex structure that penetrates the inner and outer sides of the lens barrel (in the left-right direction) to provide air permeability, Heat dissipation and condensation can be prevented.
 以上のように、多孔質構造は、互いに孔径の異なる複数種類の孔が形成されていれば良く、必ずしも微細凹凸構造に相当する構造を有している必要はない。 As described above, the porous structure only needs to have a plurality of types of pores having different pore diameters, and does not necessarily have a structure corresponding to a fine concavo-convex structure.
 〔実施形態2〕
 次に、図1の(b)は、本発明の実施形態2に係る近接センサ(光学素子)20の構成を示す図である。同図に示すように、近接センサ20は、フォトダイオード4、受光レンズ(光学レンズ)5、遮光性樹脂(光学構造体)6、基板7、およびIR‐LED(発光素子)8を備える。なお、本実施形態では、遮光性樹脂6の全部または一部に形成される多孔質構造以外の構成については、発明の本質とあまり関係がないため、以下では、そのような構成の説明を適宜省略する。また、本実施形態で説明する多孔質構造は、上記の実施形態1で説明したすべての多孔質構造の構成を適用することができる。
[Embodiment 2]
Next, FIG. 1B is a diagram illustrating a configuration of the proximity sensor (optical element) 20 according to the second embodiment of the present invention. As shown in the figure, the proximity sensor 20 includes a photodiode 4, a light receiving lens (optical lens) 5, a light shielding resin (optical structure) 6, a substrate 7, and an IR-LED (light emitting element) 8. In the present embodiment, the configuration other than the porous structure formed on all or a part of the light-shielding resin 6 is not so much related to the essence of the invention. Omitted. Moreover, the structure of all the porous structures demonstrated in said Embodiment 1 is applicable to the porous structure demonstrated in this embodiment.
 近接センサ20は、検知対象が近接しているか否かを検出するセンサである。同図に示すように、IR‐LED8から出射された近赤外光は、検知対象物と遮光性樹脂6の表面との間で反射を繰り返し、最終的に受光レンズ5を介して、フォトダイオード4に入射する。遮光性樹脂6は、特定の光(近赤外光)を遮光する性質を有する遮光性材料で構成されている。本実施形態では、遮光性樹脂6の全部または一部に多孔質構造が形成されている。近赤外線デバイス、監視カメラにおいては、例えば、光学レンズと発光素子との間を埋める遮光性樹脂6とカバー窓面との多重反射による迷光成分が検出感度の低下に影響する。上記構成によれば、遮光性樹脂6の表面における光の反射を抑制することができるため、迷光成分による検出感度の低下を抑制することができる。 The proximity sensor 20 is a sensor that detects whether or not the detection target is close. As shown in the figure, the near-infrared light emitted from the IR-LED 8 is repeatedly reflected between the object to be detected and the surface of the light-shielding resin 6, and finally passes through the light-receiving lens 5 to the photodiode. 4 is incident. The light shielding resin 6 is made of a light shielding material having a property of shielding specific light (near infrared light). In the present embodiment, a porous structure is formed on all or part of the light shielding resin 6. In near-infrared devices and surveillance cameras, for example, stray light components due to multiple reflections between the light-shielding resin 6 that fills the gap between the optical lens and the light-emitting element and the cover window surface affect the detection sensitivity. According to the above configuration, since reflection of light on the surface of the light-shielding resin 6 can be suppressed, a decrease in detection sensitivity due to stray light components can be suppressed.
 本実施形態の近接センサ20を近赤外線デバイスおよび監視カメラに適用する場合、微細凹凸構造Fの凹凸間隔は、400nm以上、1500nm以下であることが好ましい。例えば、近赤外線カメラ等に用いられる近接センサ20について、検知目的外の可視光、近赤外迷光の迷光成分が良好に除去される近接センサ20を得ることができる。近赤外線カメラは、対象物を近赤外光光源で照らして監視用途や、散乱しにくい性質を利用した透過撮影の他、静脈認証や近接検知に用いられる。監視撮像では高感度が求められ、透過撮像においてはノイズの少ない方が望ましい。これらのデバイスにおいて迷光は画質劣化に影響が大きく、可視光カメラ同様に被膜等による透過率制御が施されているものの、設計外の迷光は可能な限り除去できることが望ましい。近赤外はおおよそ700nm~1000nmに分布し、上述した凹凸間隔の微細凹凸構造Fを適用することで、検知目的外の可視光、近赤外迷光の迷光成分が良好に除去される。 When the proximity sensor 20 of the present embodiment is applied to a near-infrared device and a monitoring camera, the unevenness of the fine unevenness structure F is preferably 400 nm or more and 1500 nm or less. For example, with respect to the proximity sensor 20 used for a near-infrared camera or the like, it is possible to obtain a proximity sensor 20 that can satisfactorily remove stray light components of visible light and near-infrared stray light that are not detected. Near-infrared cameras are used for vein authentication and proximity detection, as well as for monitoring purposes by illuminating an object with a near-infrared light source and transmission imaging utilizing the property of being hardly scattered. In surveillance imaging, high sensitivity is required, and in transmission imaging, it is desirable that there be less noise. In these devices, stray light has a great influence on image quality deterioration, and although transmittance control is performed by a film or the like as in a visible light camera, it is desirable that stray light outside the design can be removed as much as possible. Near-infrared is distributed in the range of approximately 700 nm to 1000 nm. By applying the fine uneven structure F with the uneven interval described above, the stray light components of the visible light and the near-infrared stray light that are not detected are satisfactorily removed.
 〔実施形態3〕
 次に、図5は、本発明の実施形態3に係る携帯端末(電子機器)30a,30bの構成を示す図である。同図に示すように、携帯端末30a(または30b)は、ディテクタ1、レンズ鏡筒3a(または3b)、レンズ保持部9、上述したレンズユニット10a、および後述するレンズユニット10b~10d、筐体透明部品11、筐体外装12、およびレンズ入光部13を備える。
[Embodiment 3]
Next, FIG. 5 is a diagram illustrating a configuration of mobile terminals (electronic devices) 30a and 30b according to Embodiment 3 of the present invention. As shown in the figure, the portable terminal 30a (or 30b) includes a detector 1, a lens barrel 3a (or 3b), a lens holding unit 9, the lens unit 10a described above, and lens units 10b to 10d described later, a housing A transparent component 11, a casing exterior 12, and a lens light incident part 13 are provided.
 なお、本実施形態では、レンズ鏡筒3a(または3b)の全部または一部に形成される多孔質構造以外の構成については、発明の本質とあまり関係がないため、以下では、そのような構成の説明を適宜省略する。また、本実施形態で説明する多孔質構造は、上記の実施形態1で説明したすべての多孔質構造の構成を適用することができる。 In the present embodiment, the configuration other than the porous structure formed on all or a part of the lens barrel 3a (or 3b) has little relation to the essence of the invention. Will be omitted as appropriate. Moreover, the structure of all the porous structures demonstrated in said Embodiment 1 is applicable to the porous structure demonstrated in this embodiment.
 レンズ鏡筒3a,3bのように、レンズ鏡筒3a,3bの全部または一部に多孔質構造を形成することにより、レンズ鏡筒3a,3bのそれぞれの色を異ならせることができる。このため、携帯端末30a,30bの筐体のデザインに合せた色のレンズ鏡筒を作成することができ、デザイン性の富んだ製品の提供が可能になる。 As in the lens barrels 3a and 3b, the lens barrels 3a and 3b can have different colors by forming a porous structure on all or part of the lens barrels 3a and 3b. Therefore, it is possible to create a lens barrel of a color that matches the design of the casing of the mobile terminals 30a and 30b, and it is possible to provide a product with high design.
 〔実施形態4〕
 次に、図7は、比較例のレンズユニット100と本発明の実施形態4に係るレンズユニット10bとを比較したときの様子を示す図である。図7の(a)および(b)は、比較例のレンズユニット100のレンズ鏡筒103を上下動させたときの様子を示す。このように、レンズ鏡筒100を上下に動作させると、レンズ鏡筒100の受光素子(不図示;図1のディテクタ1参照)が配置される側の端部(接触部103a)がボトムカバー113等に接触し、接触音が生じることがある。
[Embodiment 4]
Next, FIG. 7 is a diagram showing a state when the lens unit 100 of the comparative example is compared with the lens unit 10b according to Embodiment 4 of the present invention. FIGS. 7A and 7B show a state where the lens barrel 103 of the lens unit 100 of the comparative example is moved up and down. Thus, when the lens barrel 100 is moved up and down, the end portion (contact portion 103a) on the side where the light receiving element (not shown; refer to the detector 1 in FIG. 1) of the lens barrel 100 is disposed is the bottom cover 113. Contact sound may be generated.
 そこで、本実施形態のレンズユニット10bでは、図7の(c)および(d)に示すように、レンズ鏡筒3の受光素子(不図示)が配置される側(紙面に対して下側)の端部付近の接触部3aのみに多孔質構造を形成し、多孔質による弾性効果により接触音を低減させる。このように、レンズ鏡筒3の接触音の抑制に限定するレンズ鏡筒とするならば、上下動作時に接触する部分のみに多孔質構造を形成しても良い。 Therefore, in the lens unit 10b of the present embodiment, as shown in FIGS. 7C and 7D, the side where the light receiving element (not shown) of the lens barrel 3 is disposed (the lower side relative to the paper surface). A porous structure is formed only in the contact portion 3a in the vicinity of the end of the contact, and the contact sound is reduced by the elastic effect due to the porosity. As described above, if the lens barrel is limited to the suppression of the contact sound of the lens barrel 3, the porous structure may be formed only in the portion that is in contact with the vertical movement.
 また、高速にレンズ鏡筒3を上下動させる場合、内部の空気圧縮による風切音や他部材の振動音についても多孔質による通気性により、圧縮した空気を外部へ逃がし、音の抑制につながる。なお、吸音効果のみを求めるのであれば、多孔質構造は、上述した変形例のように上下(または左右)に貫通していなくても良い。 In addition, when the lens barrel 3 is moved up and down at high speed, wind noise caused by internal air compression and vibration sound of other members are also released by the porous air permeability, leading to the suppression of sound. . If only the sound absorption effect is desired, the porous structure may not penetrate vertically (or left and right) as in the above-described modification.
 〔実施形態5〕
 次に、図8は、本発明の実施形態5に係るレンズユニット10cの構造を示す図である。一方、図10は、比較例のレンズユニット100の問題点を説明するための図である。
[Embodiment 5]
Next, FIG. 8 is a diagram showing a structure of a lens unit 10c according to Embodiment 5 of the present invention. On the other hand, FIG. 10 is a diagram for explaining problems of the lens unit 100 of the comparative example.
 図10の(a)に示すレンズユニット100のように、レンズ開口部の周囲にシボ加工(凹凸を形成する)を行った構成では、散乱光の一部がディテクタ101に達する懸念があり、迷光対策としては不完全である。一方、図10の(b)に示すように、レンズ鏡筒103に対して何の処理も行わなかった場合、レンズ開口部による反射光がディテクタ101に到達する可能性がある。以上の点を考慮して、本実施形態のレンズユニット10cでは、レンズ開口部の周囲(領域Q1)に多孔質構造を形成している。 As in the lens unit 100 shown in FIG. 10A, in the configuration in which the texture processing is performed around the lens opening (unevenness is formed), there is a concern that part of the scattered light reaches the detector 101 and stray light. It is incomplete as a countermeasure. On the other hand, as shown in FIG. 10B, when no processing is performed on the lens barrel 103, the reflected light from the lens opening may reach the detector 101. Considering the above points, in the lens unit 10c of the present embodiment, a porous structure is formed around the lens opening (region Q1).
 なお、図8の吹き出し内の左に示す形態のように、多孔質構造を構成する孔の孔径が、レンズ開口部に近づくにつれて段階的に大きくなるようにしても良い(例えば、領域Q2に形成した多孔質の孔の孔径よりも、領域R2に形成した多孔質の孔の孔径の方を大きくする)。 In addition, as shown in the form shown on the left in the balloon in FIG. 8, the hole diameter of the holes constituting the porous structure may be increased stepwise as the lens opening is approached (for example, formed in the region Q2). The diameter of the porous hole formed in the region R2 is made larger than the diameter of the porous hole formed).
 中心部の吸収が小さく、周辺部にいくにしたがって吸収が大きくなるフィルタを射出瞳面に設置すると、開口が小さくなったような効果から、低周波数のコントラストが上がる、アポダイゼーションフィルタがある。上記構成によれば、多孔質構造を構成する孔の孔径をレンズ開口部に近づくにつれて大きくし、開口部の端部(周囲)の透過率分布を制御することで、アポダイゼーションフィルタに似た、開口透過率分布を実現できるため、容易にアポダイゼーション効果を得ることができる。なお、レンズ鏡筒の作成時、レンズ開口部付近の多孔質の孔の孔径が大きいほどアポダイゼーション効果が高い。 There is an apodization filter in which a low frequency contrast is increased due to the effect of reducing the aperture when a filter with small absorption at the center and greater absorption toward the periphery is installed on the exit pupil plane. According to the above configuration, the aperture diameter similar to that of the apodization filter is obtained by increasing the hole diameter of the pores constituting the porous structure as it approaches the lens aperture and controlling the transmittance distribution at the end (periphery) of the aperture. Since the transmittance distribution can be realized, an apodization effect can be easily obtained. It should be noted that when the lens barrel is formed, the apodization effect is higher as the hole diameter of the porous hole near the lens opening is larger.
 〔実施形態6〕
 次に、図9は、本発明の実施形態6に係るレンズユニット10dの構造を示す図である。通常、物質の厚みに対して遮光性は比例する。そこで、本実施形態のレンズユニット10dでは、レンズの中心Oから開口半径rまでの範囲内では、レンズの透過率は1で固定し、レンズ中心からの距離が開口半径rを超えると、透過率が単調に減少するようにレンズ開口部の周囲の多孔質構造を形成している。このため、レンズ開口部の周囲に、以上のような多孔質構造を形成することにより、レンズ開口部付近の透過率分布の制御と、レンズ開口部以外の部分の遮光性の制御とを容易に両立させることができる。
[Embodiment 6]
Next, FIG. 9 is a diagram showing a structure of a lens unit 10d according to Embodiment 6 of the present invention. Usually, the light shielding property is proportional to the thickness of the substance. Therefore, in the lens unit 10d of the present embodiment, the transmittance of the lens is fixed at 1 within the range from the lens center O to the aperture radius r, and when the distance from the lens center exceeds the aperture radius r, the transmittance is increased. A porous structure around the lens opening is formed so as to decrease monotonously. For this reason, by forming the porous structure as described above around the lens opening, it is easy to control the transmittance distribution near the lens opening and to control the light-shielding properties of portions other than the lens opening. Both can be achieved.
 〔まとめ〕
 本発明の態様1に係る光学構造体(レンズ鏡筒3,3a,3b,遮光性樹脂6)は、光学レンズ(レンズ2,受光レンズ5)の近傍に配置される光学構造体であって、互いに孔径の異なる複数種類の孔(A,B)を含んだ多孔質構造が少なくとも一部に形成されている構成である。
[Summary]
The optical structure (lens barrels 3, 3a, 3b, light-shielding resin 6) according to aspect 1 of the present invention is an optical structure disposed in the vicinity of the optical lens (lens 2, light-receiving lens 5), In this configuration, a porous structure including a plurality of types of pores (A, B) having different pore diameters is formed at least in part.
 上記構成によれば、多孔質構造は、互いに孔径の異なる複数種類の孔を含む。このような多孔質構造は、シボ加工(表面に凹凸をつける)による反射防止凹凸構造と比較して、加工が容易であり、加工コストの低減を図ることができる。また、上記構成によれば、多孔質構造には、孔径の大きな孔と孔径の小さな孔が含まれる。ここで、光学レンズに外乱光が入射すると、その一部が迷光となって光学構造体に入射する場合がある。上記迷光は、光学構造体に入射すると、上記孔径の大きな孔によって捕捉される。このとき、孔径が小さい方の孔の孔径を迷光の波長域程度もしくはそれよりも大きなサイズに設定しておけば、迷光は孔径が小さい方の孔によって散乱される。このため、孔径の大きな孔によって捕捉された迷光は、孔径が小さい方の孔で散乱され、これにより多重反射が繰り返されると、熱エネルギーとして消失してしまう場合がある。このため、迷光の一部が多孔質構造により消失してしまうため、迷光を抑制することが可能になる。また、光学構造体の少なくとも一部に上述した多孔質構造を形成すれば、同じ容積の密な構造に比べてポーラスな分、光学構造体の軽量化を図ることができる。以上により、上記光学構造体によれば、加工コストの低減および軽量化を図り、迷光を抑制することができる。 According to the above configuration, the porous structure includes a plurality of types of pores having different pore diameters. Such a porous structure is easy to process and can reduce the processing cost as compared with an antireflection uneven structure by embossing (making the surface uneven). Further, according to the above configuration, the porous structure includes a hole having a large hole diameter and a hole having a small hole diameter. Here, when disturbance light is incident on the optical lens, a part thereof may become stray light and enter the optical structure. When the stray light is incident on the optical structure, it is captured by the hole having the large hole diameter. At this time, if the hole diameter of the hole having the smaller hole diameter is set to a size approximately equal to or larger than the wavelength range of the stray light, the stray light is scattered by the hole having the smaller hole diameter. For this reason, stray light captured by a hole having a large hole diameter is scattered by a hole having a smaller hole diameter, and if multiple reflections are repeated thereby, the heat energy may be lost. For this reason, part of the stray light disappears due to the porous structure, so that the stray light can be suppressed. Further, if the above-described porous structure is formed on at least a part of the optical structure, the optical structure can be reduced in weight by a porous amount compared to a dense structure having the same volume. As described above, according to the optical structure, it is possible to reduce the processing cost and reduce the weight, and to suppress stray light.
 本発明の態様2に係る光学構造体は、上記態様1において、上記多孔質構造は、所定波長の光を捕捉することが可能な孔径を有する孔である凹部(孔A)と、上記凹部に対して連続的に形成され、上記凹部で捕捉した光を散乱させる上記凹部の孔径よりも小さい凹凸間隔を有する微細凹凸構造(F)と、を含んでいても良い。 The optical structure according to Aspect 2 of the present invention is the optical structure according to Aspect 1, wherein the porous structure includes a recess (hole A) having a hole diameter capable of capturing light of a predetermined wavelength, and the recess. On the other hand, it may include a fine concavo-convex structure (F) that is continuously formed and has a concavo-convex interval smaller than the diameter of the concave portion that scatters light captured by the concave portion.
 上記構成によれば、微細凹凸構造の凹凸間隔を迷光の波長域程度もしくはそれよりも大きなサイズに設定しておけば、迷光は微細凹凸構造によって散乱される。このため、凹部によって捕捉された迷光は、該凹部に対して連続的に形成された微細凹凸構造によって散乱され、これにより多重反射が繰り返されると、熱エネルギーとして消失してしまう場合がある。このため、迷光の一部が多孔質構造により消失してしまうため、迷光を抑制することが可能になる。また、上記光学構造体は、例えば、その少なくとも一部に上記多孔質構造を形成することにより簡単に製造することができるため、加工コストの低減が可能である。さらに、光学構造体の少なくとも一部に上述した多孔質構造を形成すれば、同じ容積の密な構造に比べてポーラスな分、光学構造体の軽量化を図ることができる。以上により、上記光学構造体によれば、加工コストの低減および軽量化を図り、迷光を抑制することができる。 According to the above configuration, stray light is scattered by the fine concavo-convex structure if the concavo-convex spacing of the fine concavo-convex structure is set to a size approximately equal to or larger than the wavelength range of stray light. For this reason, the stray light captured by the concave portion is scattered by the fine concavo-convex structure formed continuously with respect to the concave portion, and when multiple reflections are repeated thereby, it may disappear as thermal energy. For this reason, part of the stray light disappears due to the porous structure, so that the stray light can be suppressed. In addition, the optical structure can be easily manufactured by forming the porous structure on at least a part of the optical structure, for example, so that the processing cost can be reduced. Furthermore, if the above-described porous structure is formed in at least a part of the optical structure, the optical structure can be reduced in weight by a porous amount compared to a dense structure having the same volume. As described above, according to the optical structure, it is possible to reduce the processing cost and reduce the weight, and to suppress stray light.
 本発明の態様3に係る光学構造体は、上記態様2において、上記凹部の凹部幅は、5μm以上であり、上記微細凹凸構造の上記凹凸間隔が300nm以上、900nm以下であっても良い。上記構成によれば、例えば、撮像カメラ等に用いられる光学構造体について、迷光成分が良好に除去される光学構造体を得ることができる。撮像カメラ等に用いられる受光素子は可視光域であるおおよそ400~800nmの波長域の光を検知し、視感度の高い約550nmに高い感度特性を持つ。使用波長域外の光は、ガラスやレンズに作成した被膜によって遮光されているが、成膜は視感度の高い使用波長の中間帯を重視するため、使用波長端の光が設計で想定していない経路で迷光となり、その迷光がわずかな光量でも使用状況によってはゴーストやフレアとなり画質低下に影響することが多々ある。光は波長と同等もしくはそれ以上の凹凸間隔の微細凹凸構造によって散乱されるため、可視光を検知する撮像カメラに対しては、所定条件の凹部と微細凹凸構造を備えることにより、散乱や直接凹部に導かれた光は凹部に対して連続的に形成された微細凹凸構造による反射を繰り返し、熱エネルギーとなって消失する。 In the optical structure according to aspect 3 of the present invention, in the aspect 2, the recess width of the recess may be 5 μm or more, and the uneven spacing of the fine uneven structure may be 300 nm or more and 900 nm or less. According to the said structure, the optical structure from which a stray light component is removed favorably can be obtained about the optical structure used for an imaging camera etc., for example. A light receiving element used in an imaging camera or the like detects light in a wavelength range of approximately 400 to 800 nm, which is a visible light range, and has a high sensitivity characteristic at about 550 nm with high visibility. Light outside the operating wavelength range is shielded by a coating made on glass or lenses, but since the emphasis is on the intermediate band of the operating wavelength with high visibility, light at the operating wavelength end is not assumed in the design The path becomes stray light, and even if the stray light is small, it often becomes a ghost or flare depending on the situation of use, which often affects image quality degradation. Since light is scattered by a fine concavo-convex structure with concavo-convex intervals equal to or greater than the wavelength, for imaging cameras that detect visible light, by providing a concave and fine concavo-convex structure with predetermined conditions, scattering or direct concave The light guided to is repeatedly reflected by the fine concavo-convex structure formed continuously with respect to the concave portion and disappears as thermal energy.
 本発明の態様4に係る光学構造体は、上記態様2において、上記微細凹凸構造の上記凹凸間隔が、400nm以上、1500nm以下であっても良い。 In the optical structure according to aspect 4 of the present invention, in the aspect 2, the unevenness interval of the fine unevenness structure may be 400 nm or more and 1500 nm or less.
 上記構成によれば、例えば、近赤外線カメラ等に用いられる光学構造体について、検知目的外の可視光、近赤外迷光の迷光成分が良好に除去される光学構造体を得ることができる。近赤外線カメラは、対象物を近赤外光光源で照らして監視用途や、散乱しにくい性質を利用した透過撮影の他、静脈認証や近接検知に用いられる。監視撮像では高感度が求められ、透過撮像においてはノイズの少ない方が望ましい。これらのデバイスにおいて迷光は画質劣化に影響が大きく、可視光カメラ同様に被膜等による透過率制御が施されているものの、設計外の迷光は可能な限り除去できることが望ましい。近赤外はおおよそ700nm~1000nmに分布し、上記凹凸間隔の微細凹凸構造を適用することで、検知目的外の可視光、近赤外迷光の迷光成分が良好に除去される。 According to the above configuration, for example, with respect to an optical structure used for a near-infrared camera or the like, an optical structure that can satisfactorily remove stray light components of visible light and near-infrared stray light that are not detected can be obtained. Near-infrared cameras are used for vein authentication and proximity detection, as well as for monitoring purposes by illuminating an object with a near-infrared light source and transmission imaging utilizing the property of being hardly scattered. In surveillance imaging, high sensitivity is required, and in transmission imaging, it is desirable that there be less noise. In these devices, stray light has a great influence on image quality deterioration, and although transmittance control is performed by a film or the like as in a visible light camera, it is desirable that stray light outside the design can be removed as much as possible. Near-infrared is distributed in the range of approximately 700 nm to 1000 nm, and by applying the fine uneven structure with the uneven interval, the stray light component of visible light and near-infrared stray light that is not detected is satisfactorily removed.
 本発明の態様5に係る光学構造体は、上記態様1において、上記複数種類の孔のそれぞれの孔径が、10nm以上、10μm以下であっても良い。 In the optical structure according to aspect 5 of the present invention, in the aspect 1, each of the plurality of types of holes may have a diameter of 10 nm or more and 10 μm or less.
 上記構成によれば、ゴミの侵入を防ぐことができ、光学レンズの曇りや熱膨張による歪が抑制され、耐環境性の高い性能の光学構造体を得ることができる。なお、許容されるゴミのサイズは十数μmであり、水蒸気のサイズは4nmであり、水滴のサイズは、100μmである。 According to the above configuration, it is possible to prevent intrusion of dust, suppress distortion due to fogging or thermal expansion of the optical lens, and obtain an optical structure with high environmental resistance. The allowable size of dust is a few dozen μm, the size of water vapor is 4 nm, and the size of water droplets is 100 μm.
 本発明の態様6に係る光学構造体は、上記態様1~5のいずれかにおいて、上記多孔質構造は、上記光学構造体を貫通するように形成されていても良い。 In the optical structure according to aspect 6 of the present invention, in any of the above aspects 1 to 5, the porous structure may be formed so as to penetrate the optical structure.
 上記構成によれば、通気性を確保することができるため、吸湿効果、および熱の抑制効果が得られる。このため、放熱を促し、結露を防止することが可能になる。 According to the above configuration, since air permeability can be ensured, a moisture absorption effect and a heat suppression effect can be obtained. For this reason, it is possible to promote heat dissipation and prevent condensation.
 本発明の態様7に係る光学素子(レンズユニット10a~10d,近接センサ20)は、上記態様1~6のいずれかの光学構造体を備えていることが好ましい。 The optical element (lens units 10a to 10d, proximity sensor 20) according to aspect 7 of the present invention preferably includes the optical structure according to any one of aspects 1 to 6.
 上記構成によれば、加工コストの低減および軽量化を図り、迷光を抑制することができる光学素子を実現できる。 According to the above configuration, it is possible to realize an optical element capable of reducing processing cost and weight and suppressing stray light.
 本発明の態様8に係る光学素子は、上記態様7において、上記光学素子は、上記光学レンズを収容するレンズ鏡筒を含み、上記多孔質構造が、上記レンズ鏡筒の内側またはレンズ開口部の周囲に形成されていても良い。 An optical element according to aspect 8 of the present invention is the optical element according to aspect 7, in which the optical element includes a lens barrel that houses the optical lens, and the porous structure is formed on the inner side of the lens barrel or the lens opening. It may be formed around.
 レンズ鏡筒の内側またはレンズ開口部の周囲に入射する光は、迷光となり易い。このため、上記構成によれば、迷光成分が良好に除去される光学素子を提供することができる。 The light incident inside the lens barrel or around the lens opening tends to be stray light. For this reason, according to the said structure, the optical element from which a stray light component is removed favorably can be provided.
 本発明の態様9に係る光学素子は、上記態様8において、上記多孔質構造が、上記レンズ鏡筒の、上記光学レンズを通過した光を受光する受光素子が配置される側の端部(接触部3a)に形成されていても良い。 An optical element according to Aspect 9 of the present invention is the optical element according to Aspect 8, wherein the porous structure has an end (contact) on the side where the light receiving element that receives light that has passed through the optical lens is disposed. It may be formed in the part 3a).
 例えば、レンズ鏡筒を上下に動作させると、レンズ鏡筒の受光素子が配置される側の端部がボトムカバー等に接触し、接触音が生じることがある。上記構成によれば、上記多孔質による弾性効果により、上記接触音を低減させることができる。 For example, when the lens barrel is moved up and down, the end of the lens barrel on the side where the light receiving element is disposed may come into contact with the bottom cover or the like, and contact noise may be generated. According to the said structure, the said contact sound can be reduced by the elastic effect by the said porous.
 本発明の態様10に係る光学素子は、上記態様8または9において、上記多孔質構造は、上記レンズ鏡筒の上記レンズ開口部の周囲に形成されており、上記多孔質構造を構成する孔の孔径は、上記レンズ開口部に近づくにつれて大きくなっていても良い。 The optical element according to aspect 10 of the present invention is the optical element according to aspect 8 or 9, wherein the porous structure is formed around the lens opening of the lens barrel, and the pores constituting the porous structure are formed. The hole diameter may increase as it approaches the lens opening.
 例えば、中心部の吸収が小さく、周辺部にいくにしたがって吸収が大きくなるフィルタを射出瞳面に設置すると、開口が小さくなったような効果から、低周波数のコントラストが上がる、アポダイゼーションフィルタがある。上記構成によれば、多孔質構造を構成する孔の孔径をレンズ開口部に近づくにつれて大きくし、開口部の端部(周囲)の透過率分布を制御することで、アポダイゼーションフィルタに似た、開口透過率分布を実現できるため、容易にアポダイゼーション効果を得ることができる。 For example, there is an apodization filter in which a low-frequency contrast is increased due to the effect of reducing the aperture when a filter that absorbs less in the center and increases toward the periphery is installed on the exit pupil plane. According to the above configuration, the aperture diameter similar to that of the apodization filter is obtained by increasing the hole diameter of the pores constituting the porous structure as it approaches the lens aperture and controlling the transmittance distribution at the end (periphery) of the aperture. Since the transmittance distribution can be realized, an apodization effect can be easily obtained.
 本発明の態様11に係る光学素子は、上記態様7において、上記光学素子は、検知対象が近接しているか否かを検出する近接センサ(20)であり、上記近接センサは、上記光学レンズ(受光レンズ5)および光を出射する発光素子(IR‐LED8)を含み、上記光学レンズと上記発光素子との間は、上記多孔質構造が全部または一部に形成された特定の光を遮光する性質を有する遮光性材料(遮光性樹脂6)で埋められていても良い。 The optical element according to Aspect 11 of the present invention is the optical element according to Aspect 7, wherein the optical element is a proximity sensor (20) that detects whether or not a detection target is close to the optical element. Including a light-receiving lens 5) and a light-emitting element (IR-LED 8) that emits light, and between the optical lens and the light-emitting element, shields specific light in which the porous structure is formed in whole or in part. It may be filled with a light-shielding material (light-shielding resin 6) having properties.
 近赤外線デバイス、監視カメラにおいては、例えば、光学レンズと発光素子との間を埋める遮光性材料とカバー窓面との多重反射による迷光成分が検出感度の低下に影響する。上記構成によれば、遮光性材料の表面における光の反射を抑制することができるため、迷光成分による検出感度の低下を抑制することができる。 In near-infrared devices and surveillance cameras, for example, stray light components due to multiple reflections between the light-shielding material that fills the gap between the optical lens and the light-emitting element and the cover window surface affect the detection sensitivity. According to the above configuration, since reflection of light on the surface of the light shielding material can be suppressed, a decrease in detection sensitivity due to stray light components can be suppressed.
 本発明の態様12に係る電子機器(携帯端末30a,30b)は、上記態様7~11のいずれかの光学素子を備えていることが好ましい。上記構成によれば、加工コストの低減および軽量化を図り、迷光を抑制することができる電子機器を実現することができる。 The electronic device (portable terminals 30a and 30b) according to the twelfth aspect of the present invention preferably includes the optical element according to any of the seventh to eleventh aspects. According to the above configuration, it is possible to realize an electronic device capable of reducing processing cost and weight and suppressing stray light.
 本発明の態様13に係る光学構造体は、上記態様1または2において、上記光学構造体の硬さの強度を強化する強化剤(33)が含まれていてもよい。上記構成によれば、迷光抑制に加えて、軽量で高い硬さの強度を得ることができ、低コスト化にも寄与する事が出来る。 The optical structure according to Aspect 13 of the present invention may include a reinforcing agent (33) that reinforces the hardness of the optical structure according to Aspect 1 or 2. According to the said structure, in addition to suppression of a stray light, the intensity | strength of lightweight and high hardness can be obtained, and it can contribute also to cost reduction.
 本発明の態様14に係る光学構造体は、上記態様1から4のいずれか1態様において、上記多孔質構造を有する第1構造体(多孔質混合剤31、多孔質剤32、多孔質剤カバー32a、多孔質剤シート32b)と、上記第1構造体と比較して緻密質な構造を有する第2構造体(レンズ鏡筒103)と、で構成されていてもよい。上記構成によれば、レンズ鏡筒自体の剛性(硬さ)の強度を保つとともに、迷光抑制効果を得ることが可能となる。 The optical structure according to the fourteenth aspect of the present invention is the optical structure according to any one of the first to fourth aspects, the first structure having the porous structure (a porous mixture 31, a porous agent 32, a porous agent cover). 32a, a porous agent sheet 32b), and a second structure (lens barrel 103) having a dense structure compared to the first structure. According to the above configuration, the strength of the lens barrel itself (hardness) can be maintained, and a stray light suppressing effect can be obtained.
 本発明の態様15に係る光学素子は、上記態様1から5までのいずれか1態様の光学構造体を備え、上記光学レンズを収容するレンズ鏡筒を含み、上記多孔質構造を含む薄膜(多孔質混合剤31、多孔質剤32)が、上記レンズ鏡筒の内側または上面側に塗布されていてもよい。上記構成によれば、レンズ鏡筒自体の剛性(硬さ)の強度を保つとともに、迷光抑制効果を得ることが可能であり、低コスト化にも寄与する事が出来る。 An optical element according to an aspect 15 of the present invention includes the optical structure according to any one of the above aspects 1 to 5, includes a lens barrel that houses the optical lens, and a thin film (porous) including the porous structure. The porous material mixture 31 and the porous material 32) may be applied to the inner side or the upper surface side of the lens barrel. According to the above configuration, the strength (hardness) of the lens barrel itself can be maintained, and a stray light suppression effect can be obtained, which can contribute to cost reduction.
 本発明の態様16に係る光学素子は、上記態様1から5までのいずれか1態様に記載の光学構造体を備え、上記光学レンズを収容するレンズ鏡筒を含み、上記多孔質構造を含むカバー(多孔質剤カバー32a)が上記レンズ鏡筒の上面及び側面上部を覆うように固定されていてもよい。上記構成によれば、外光のレンズ内部への迷光抑制効果を得ることが可能となる。また、従来のレンズ鏡筒を利用できるので、レンズ鏡筒の強度の問題や新規レンズ鏡筒の作成にかかるコスト削減に寄与できる。 An optical element according to a sixteenth aspect of the present invention includes the optical structure according to any one of the first to fifth aspects, includes a lens barrel that houses the optical lens, and includes the porous structure. (Porous agent cover 32a) may be fixed so as to cover the upper surface and upper side surface of the lens barrel. According to the above configuration, it is possible to obtain an effect of suppressing stray light from the outside light into the lens. Further, since the conventional lens barrel can be used, it can contribute to the problem of the strength of the lens barrel and the cost reduction required for creating a new lens barrel.
 本発明の態様17に係る光学素子は、上記態様1から5までのいずれか1態様に記載の光学構造体を備え、上記光学レンズを収容するレンズ鏡筒を含み、上記多孔質構造を含むシート(多孔質剤シート32b)がレンズ鏡筒の上面に固定されていてもよい。上記構成によれば、シートは比較的安価であり、従来のレンズ鏡筒に固定する工程は、貼り付けという簡易な作業であるため作業性に優れ、表面傷へのリペア目的としても容易に行う事が可能である。 An optical element according to Aspect 17 of the present invention includes a lens barrel that includes the optical structure according to any one of Aspects 1 to 5, includes a lens barrel that houses the optical lens, and includes the porous structure. (Porous agent sheet 32b) may be fixed to the upper surface of the lens barrel. According to the above configuration, the sheet is relatively inexpensive, and the process of fixing to the conventional lens barrel is a simple operation of sticking, so that it has excellent workability and is easily performed for the purpose of repairing surface scratches. Things are possible.
 本発明の態様18に係る光学素子は、上記態様1から5までのいずれか1態様に記載の光学構造体を備え、上記光学レンズが複数存在しており、上記複数の光学レンズの間、または、上記複数の光学レンズのうち最下層のレンズの下面に配置される遮光部材(レンズ間遮光部材35、後方遮光部材34)を有するレンズユニットと、上記レンズユニットを収容するレンズ鏡筒と、を含み、上記多孔質構造が、上記遮光部材に形成されていてもよい。上記構成によれば、外光のレンズ内部での反射光による迷光を抑制することができる。 An optical element according to Aspect 18 of the present invention includes the optical structure according to any one of Aspects 1 to 5, wherein a plurality of the optical lenses are present, and between the plurality of optical lenses, or A lens unit having a light shielding member (inter-lens light shielding member 35, rear light shielding member 34) disposed on the lower surface of the lowermost lens among the plurality of optical lenses, and a lens barrel that houses the lens unit. In addition, the porous structure may be formed on the light shielding member. According to the said structure, the stray light by the reflected light inside the lens of external light can be suppressed.
 本発明の態様19に係る光学素子は、上記態様1から5までのいずれか1態様に記載の光学構造体を備え、上記光学レンズを収容するレンズ鏡筒を含む光学素子であって、上記多孔質構造が、レンズ保持部分と上記光学素子が一体化されたアクチュエーターのレンズ開口部またはその付近の遮光部(レンズの開口絞り部材37)の周囲に形成されていることを特徴とする光学素子。上記構成によれば、外光のレンズ内部での反射光による迷光を抑制することができる。 An optical element according to Aspect 19 of the present invention is an optical element including the lens barrel that includes the optical structure according to any one of Aspects 1 to 5 and that houses the optical lens. An optical element characterized in that a quality structure is formed around a lens opening of an actuator in which a lens holding portion and the optical element are integrated or a light shielding part (lens aperture stop member 37) in the vicinity thereof. According to the said structure, the stray light by the reflected light inside the lens of external light can be suppressed.
 本発明の態様20に係る光学素子は、上記態様1から5までのいずれか1態様に記載の光学構造体を備え、上記光学レンズが複数存在しており、上記複数の光学レンズが接着剤(嵌合部材36a)で互いに貼りあわされているレンズユニットと、上記レンズユニットを収容するレンズ鏡筒と、を含み、上記多孔質構造が、上記接着剤に形成されていることを特徴とする光学素子。上記構成によれば、外光のレンズ内部での反射光による迷光を抑制することができる。 An optical element according to aspect 20 of the present invention includes the optical structure according to any one of aspects 1 to 5, wherein a plurality of the optical lenses are present, and the plurality of optical lenses are adhesives ( An optical system comprising: a lens unit that is bonded to each other by a fitting member 36a); and a lens barrel that houses the lens unit, wherein the porous structure is formed in the adhesive. element. According to the said structure, the stray light by the reflected light inside the lens of external light can be suppressed.
 〔付記事項〕
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
[Additional Notes]
The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention. Furthermore, a new technical feature can be formed by combining the technical means disclosed in each embodiment.
 本発明は、外光の反射による光学レンズの内部への迷光を抑制し、高品質な撮像を可能とし、製造容易な構造を有する光学構造体、該光学構造体を備えた光学素子、および該光学素子を備えた電子機器に適用することができる。 The present invention suppresses stray light to the inside of an optical lens due to reflection of external light, enables high-quality imaging, and has an easily manufactured structure, an optical element including the optical structure, and the The present invention can be applied to an electronic device provided with an optical element.
 1 ディテクタ(受光素子)
 2 レンズ(光学レンズ)
 3,3a,3b レンズ鏡筒(光学構造体)
 5 受光レンズ(光学レンズ)
 6 遮光性樹脂(光学構造体)
 8 IR‐LED(発光素子)
10a~10d レンズユニット(光学素子)
20 近接センサ(光学素子)
30a,30b 携帯端末(電子機器)
31 多孔質混合剤
32 多孔質剤
33 強化剤
32a 多孔質剤カバー
32b 多孔質剤シート
1 Detector (light receiving element)
2 Lens (optical lens)
3, 3a, 3b Lens barrel (optical structure)
5 Receiving lens (optical lens)
6 Light-shielding resin (optical structure)
8 IR-LED (Light Emitting Element)
10a to 10d Lens unit (optical element)
20 Proximity sensor (optical element)
30a, 30b Mobile terminals (electronic devices)
31 Porous agent 32 Porous agent 33 Reinforcing agent 32a Porous agent cover 32b Porous agent sheet

Claims (10)

  1.  光学レンズの近傍に配置される光学構造体であって、
     互いに孔径の異なる複数種類の孔を含んだ多孔質構造が少なくとも一部に形成されていることを特徴とする光学構造体。
    An optical structure disposed in the vicinity of the optical lens,
    An optical structure, wherein a porous structure including a plurality of types of pores having different pore diameters is formed at least in part.
  2.  上記多孔質構造は、
     所定波長の光を捕捉することが可能な孔径を有する孔である凹部と、
     上記凹部に対して連続的に形成され、上記凹部で捕捉した光を散乱させる上記凹部の孔径よりも小さい凹凸間隔を有する微細凹凸構造と、を含むことを特徴とする請求項1に記載の光学構造体。
    The porous structure is
    A recess that is a hole having a hole diameter capable of capturing light of a predetermined wavelength;
    The optical system according to claim 1, further comprising: a fine concavo-convex structure formed continuously with respect to the concave portion and having a concave and convex interval smaller than a hole diameter of the concave portion that scatters light captured by the concave portion. Structure.
  3.  上記光学構造体の硬さの強度を強化する強化剤が含まれていることを特徴とする請求項1または2に記載の光学構造体。 3. The optical structure according to claim 1, further comprising a reinforcing agent that reinforces the hardness of the optical structure.
  4.  上記多孔質構造は、上記光学構造体を貫通するように形成されていることを特徴とする請求項1から3までのいずれか1項に記載の光学構造体。 The optical structure according to any one of claims 1 to 3, wherein the porous structure is formed so as to penetrate the optical structure.
  5.  上記多孔質構造を有する第1構造体と、上記第1構造体と比較して緻密質な構造を有する第2構造体と、で構成されていることを特徴とする請求項1から4までのいずれか1項に記載の光学構造体。 The first structure having the porous structure and the second structure having a dense structure as compared with the first structure are provided. The optical structure according to any one of the above.
  6.  請求項1から5までのいずれか1項に記載の光学構造体を備え、
     上記光学レンズを収容するレンズ鏡筒を含み、
     上記多孔質構造が、上記レンズ鏡筒の内側またはレンズ開口部の周囲に形成されていることを特徴とする光学素子。
    An optical structure according to any one of claims 1 to 5, comprising:
    Including a lens barrel that houses the optical lens;
    An optical element, wherein the porous structure is formed inside the lens barrel or around a lens opening.
  7.  請求項1から5までのいずれか1項に記載の光学構造体を備え、
     上記光学レンズを収容するレンズ鏡筒を含み、
     上記多孔質構造を含む薄膜が、上記レンズ鏡筒の内側または上面側に塗布されていることを特徴とする光学素子。
    An optical structure according to any one of claims 1 to 5, comprising:
    Including a lens barrel that houses the optical lens;
    An optical element, wherein a thin film containing the porous structure is applied to the inner side or the upper surface side of the lens barrel.
  8.  請求項1から5までのいずれか1項に記載の光学構造体を備え、
     上記光学レンズを収容するレンズ鏡筒を含み、
     上記多孔質構造を含むシートがレンズ鏡筒の上面に固定されていることを特徴とする光学素子。
    An optical structure according to any one of claims 1 to 5, comprising:
    Including a lens barrel that houses the optical lens;
    An optical element, wherein a sheet including the porous structure is fixed to an upper surface of a lens barrel.
  9.  請求項1から5までのいずれか1項に記載の光学構造体を備え、
     上記光学レンズが複数存在しており、
     上記複数の光学レンズの間、または、上記複数の光学レンズのうち最下層のレンズの下面に配置される遮光部材を有するレンズユニットと、
     上記レンズユニットを収容するレンズ鏡筒と、を含み、
     上記多孔質構造が、上記遮光部材に形成されていることを特徴とする光学素子。
    An optical structure according to any one of claims 1 to 5, comprising:
    There are multiple optical lenses,
    A lens unit having a light shielding member disposed between the plurality of optical lenses or on the lower surface of the lowermost lens among the plurality of optical lenses;
    A lens barrel that houses the lens unit,
    The optical element, wherein the porous structure is formed on the light shielding member.
  10.  上記多孔質構造が、上記レンズ鏡筒の、上記光学レンズを通過した光を受光する受光素子が配置される側の端部に形成されていることを特徴とする請求項6に記載の光学素子。 The optical element according to claim 6, wherein the porous structure is formed at an end of the lens barrel on a side where a light receiving element that receives light that has passed through the optical lens is disposed. .
PCT/JP2015/065936 2014-07-17 2015-06-02 Optical structure and optical element WO2016009734A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014146789 2014-07-17
JP2014-146789 2014-07-17
JP2014214044 2014-10-20
JP2014-214044 2014-10-20

Publications (1)

Publication Number Publication Date
WO2016009734A1 true WO2016009734A1 (en) 2016-01-21

Family

ID=55078237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/065936 WO2016009734A1 (en) 2014-07-17 2015-06-02 Optical structure and optical element

Country Status (1)

Country Link
WO (1) WO2016009734A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106094155A (en) * 2016-07-20 2016-11-09 瑞声科技(新加坡)有限公司 Imaging lens
JP2018018677A (en) * 2016-07-27 2018-02-01 日亜化学工業株式会社 Light source device
WO2018173794A1 (en) * 2017-03-23 2018-09-27 ソニーセミコンダクタソリューションズ株式会社 Laminated lens structure, manufacturing method therefor, and electronic device
CN110312949A (en) * 2016-12-21 2019-10-08 弗劳恩霍夫应用研究促进协会 For manufacturing the method for reducing the layer system of reflection
JP2021033269A (en) * 2019-08-15 2021-03-01 エーエーシー オプティックス ソリューションズ ピーティーイー リミテッド Lens and lens unit
US11353777B2 (en) * 2019-08-13 2022-06-07 Largan Precision Co., Ltd. Plastic lens barrel, imaging lens module and electronic device
US11579398B2 (en) * 2018-12-27 2023-02-14 Tdk Taiwan Corp. Optical member driving mechanism
US11921301B2 (en) * 2017-01-09 2024-03-05 Lg Innotek Co., Ltd. Dual lens drive device, dual camera module, and optical device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006350187A (en) * 2005-06-20 2006-12-28 Auto Network Gijutsu Kenkyusho:Kk Camera device
JP2010160262A (en) * 2009-01-07 2010-07-22 Panasonic Corp Antireflection structure, lens barrel equipped with the same, and method for manufacturing the antireflection structure
JP2010275346A (en) * 2009-05-26 2010-12-09 Teijin Chem Ltd Glass fiber-reinforced resin composition
JP2011118170A (en) * 2009-12-03 2011-06-16 Fujibo Holdings Inc Reflection suppressing sheet
JP2012002895A (en) * 2010-06-15 2012-01-05 Nikon Corp Optical component and coating
JP2012068511A (en) * 2010-09-24 2012-04-05 Pentax Ricoh Imaging Co Ltd Lens barrel base and method for manufacturing lens barrel using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006350187A (en) * 2005-06-20 2006-12-28 Auto Network Gijutsu Kenkyusho:Kk Camera device
JP2010160262A (en) * 2009-01-07 2010-07-22 Panasonic Corp Antireflection structure, lens barrel equipped with the same, and method for manufacturing the antireflection structure
JP2010275346A (en) * 2009-05-26 2010-12-09 Teijin Chem Ltd Glass fiber-reinforced resin composition
JP2011118170A (en) * 2009-12-03 2011-06-16 Fujibo Holdings Inc Reflection suppressing sheet
JP2012002895A (en) * 2010-06-15 2012-01-05 Nikon Corp Optical component and coating
JP2012068511A (en) * 2010-09-24 2012-04-05 Pentax Ricoh Imaging Co Ltd Lens barrel base and method for manufacturing lens barrel using the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106094155A (en) * 2016-07-20 2016-11-09 瑞声科技(新加坡)有限公司 Imaging lens
CN106094155B (en) * 2016-07-20 2018-10-30 瑞声科技(新加坡)有限公司 Imaging lens
JP2018018677A (en) * 2016-07-27 2018-02-01 日亜化学工業株式会社 Light source device
CN110312949A (en) * 2016-12-21 2019-10-08 弗劳恩霍夫应用研究促进协会 For manufacturing the method for reducing the layer system of reflection
US11921301B2 (en) * 2017-01-09 2024-03-05 Lg Innotek Co., Ltd. Dual lens drive device, dual camera module, and optical device
US11374045B2 (en) 2017-03-23 2022-06-28 Sony Semiconductor Solutions Corporation Stacked lens structure with a lens portion having a black resin comprising a plurality of voids
CN110431460A (en) * 2017-03-23 2019-11-08 索尼半导体解决方案公司 The manufacturing method and electronic equipment that lens arrangement is laminated, lens arrangement is laminated
WO2018173794A1 (en) * 2017-03-23 2018-09-27 ソニーセミコンダクタソリューションズ株式会社 Laminated lens structure, manufacturing method therefor, and electronic device
US11579398B2 (en) * 2018-12-27 2023-02-14 Tdk Taiwan Corp. Optical member driving mechanism
US11353777B2 (en) * 2019-08-13 2022-06-07 Largan Precision Co., Ltd. Plastic lens barrel, imaging lens module and electronic device
US11774830B2 (en) 2019-08-13 2023-10-03 Largan Precision Co., Ltd. Plastic lens barrel, imaging lens module and electronic device
JP2021033269A (en) * 2019-08-15 2021-03-01 エーエーシー オプティックス ソリューションズ ピーティーイー リミテッド Lens and lens unit
JP7005703B2 (en) 2019-08-15 2022-02-10 エーエーシー オプティックス ソリューションズ ピーティーイー リミテッド Lens and lens unit

Similar Documents

Publication Publication Date Title
WO2016009734A1 (en) Optical structure and optical element
JP6525077B2 (en) Optical filter
JP6317954B2 (en) Lens unit, imaging module, and electronic device
US20170248739A1 (en) Optical filter and imaging apparatus
KR101483386B1 (en) Optical filter, method for producing same, and image capturing device
US20180313982A1 (en) Lens sheet, lens sheet unit, imaging module, imaging device
US9144938B2 (en) Methods for attaching structures using ultraviolet and visible light curing adhesive
TWI509279B (en) An optical element and a method for manufacturing the same, an optical system, an image pickup device, an optical device, and a master disk
TWI596417B (en) Light blocking sheet, imaging lens module and electronic apparatus
JP2011158506A (en) Lens module and photographing device
KR101598258B1 (en) Camera module
JP2021500625A (en) Add-on parts with integrated camera module
US11902639B2 (en) Electronic device including window for optical module
WO2016092961A1 (en) Lighting lens, image pickup module, and electronic apparatus
TWI515468B (en) Optical lens mechanism
JP2002169225A (en) Fresnel lens sheet and manufacture of the same
TWI448760B (en) Camera module
TWI420230B (en) Spacer and camera module using same
JP2014531617A (en) Panoramic optical transparent housing
TW201818139A (en) Light blocking sheet, imaging lens module and electronic apparatus
TWI502239B (en) Camera module
CN102116920A (en) Lens, and lens module with lens
JP2009193034A (en) Manufacturing method of reflection screen
KR101014896B1 (en) Solar sensor comprising microballs on the interior face of the cap
WO2021152935A1 (en) Imaging device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15821489

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15821489

Country of ref document: EP

Kind code of ref document: A1