WO2016009638A1 - Optical transmission device and optical transmission method - Google Patents

Optical transmission device and optical transmission method Download PDF

Info

Publication number
WO2016009638A1
WO2016009638A1 PCT/JP2015/003535 JP2015003535W WO2016009638A1 WO 2016009638 A1 WO2016009638 A1 WO 2016009638A1 JP 2015003535 W JP2015003535 W JP 2015003535W WO 2016009638 A1 WO2016009638 A1 WO 2016009638A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical transmission
optical
signal light
power
Prior art date
Application number
PCT/JP2015/003535
Other languages
French (fr)
Japanese (ja)
Inventor
喜久 稲田
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Publication of WO2016009638A1 publication Critical patent/WO2016009638A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • H04B10/293Signal power control

Definitions

  • the present invention relates to an optical transmission device and an optical transmission method.
  • the present invention particularly relates to an optical transmission device and an optical transmission method used in an optical transmission system in which signal light is distributed and amplified in an optical transmission line.
  • FIG. 11 is a diagram illustrating an example of the relationship between the wavelength of excitation light and the Raman gain spectrum in Raman amplification. Stimulated emission based on Raman scattering occurs due to the strong excitation light incident on the optical fiber.
  • Raman amplification is a phenomenon in which a light amplification effect is obtained in a wavelength range longer by about 100 nm than the wavelength of excitation light.
  • the amplification characteristic of signal light by Raman amplification varies depending on the power and wavelength of pump light and the power and wavelength of signal light.
  • Distributed Raman amplification causes Raman amplification to occur in an optical fiber that is an optical transmission line, and its low noise and low nonlinearity are expected to improve the transmission quality of optical transmission systems and increase the transmission span.
  • Patent Document 1 describes a transmission loss measuring apparatus using an OTDR (optical time domain reflexometer). Further, Patent Document 2 describes a power adjustment device in which the output power of a relay amplifier is adjusted by Raman gain efficiency obtained from the amount of change in noise light power.
  • OTDR optical time domain reflexometer
  • JP 2006-287649 A (paragraph [0048], FIG. 1)
  • the optical transmitter transmits a high output signal light and obtains a high Raman gain by a high output pump light source.
  • a high Raman amplification gain can be obtained, but when the signal light power in the optical fiber is very high, it is caused by the nonlinear optical effect of the optical fiber. This is because the signal light is distorted and the transmission quality of the signal light is deteriorated.
  • FIG. 12 is a diagram showing an example of a change in optical power when the number of wavelengths of WDM (wavelength division multiplexing) signal light changes in an optical transmission system using distributed Raman amplification.
  • a plurality of signal lights having different wavelengths are wavelength-multiplexed with the WDM signal light.
  • the power of the WDM signal light is not sufficiently small with respect to the power of the excitation light, a saturation phenomenon of Raman amplification occurs.
  • the Raman gain changes according to a change in the number of wavelengths of the WDM signal light (that is, a change in the power of the WDM signal light incident on the optical fiber). For example, when the number of wavelengths of WDM signal light decreases, the Raman gain increases.
  • the signal power per wavelength of the WDM signal light in the optical fiber increases from before the decrease in the number of wavelengths (“normal time” in FIG. 12).
  • the transmission quality may deteriorate due to the nonlinear optical effect.
  • An object of this invention is to provide the technique for implement
  • the first optical transmission apparatus includes an optical amplifying unit that amplifies input signal light, an excitation unit that outputs pumping light that causes distributed Raman amplification in an optical transmission line, and an optical amplification unit that amplifies the optical signal.
  • the signal light and the pumping light are combined and sent to the optical transmission line, and the light is generated by scattering of the propagation light propagating through the optical transmission line.
  • the first optical transmission method of the present invention amplifies input signal light, outputs pumping light that causes distributed Raman amplification in the optical transmission line, and combines the amplified signal light and the pumping light. Detecting the scattered light generated by the scattering in the optical transmission path of the propagating light propagating through the optical transmission path and transmitted to the optical transmission path. The power is measured, and the output power of the pumping light and the output power of the optical amplification means are controlled based on the maximum power.
  • the present invention has the effect of suppressing the deterioration of transmission quality due to the nonlinear optical effect and expanding the transmission span.
  • FIG. 1 is a block diagram illustrating a configuration of an optical transmission system 10 according to a first embodiment of this invention.
  • the optical communication system 10 includes an optical transmission device 100, an optical reception device 110, and an optical fiber 7.
  • the optical transmission device 100 outputs signal light to the optical fiber 7.
  • the optical receiver 110 receives the signal light propagated through the optical fiber 7.
  • the optical transmission apparatus 100 includes n (n is a natural number) optical transmitters 11-1n, an optical multiplexer 1, an optical amplifier 2, an excitation light source 3, an OTDR (optical time domain domain reflectometer) 4, an optical multiplexer 5, and a control circuit. 6 is provided.
  • the optical transmitters 11-1n output signal lights having different wavelengths.
  • the optical multiplexer 1 wavelength-multiplexes the signal light output from the optical transmitter 11-1n to generate WDM (wavelength-division-multiplexing) signal light.
  • the optical amplifier 2 amplifies the WDM signal light and outputs it to the optical multiplexer 5.
  • the pumping light source 3 outputs pumping light for generating distributed Raman amplification in the optical fiber 7 to the optical multiplexer 5.
  • OTDR4 is an optical pulse tester.
  • the OTDR 4 detects Rayleigh scattered light generated in the optical fiber 7 by the transmitted optical pulse test light (hereinafter referred to as “OTDR light”).
  • the optical fiber 7 is an optical transmission line on which distributed Raman amplification is performed.
  • the optical multiplexer 5 combines the WDM signal light, the excitation light, and the OTDR light, and sends these lights to the optical fiber 7. Further, the optical multiplexer 5 receives light (hereinafter referred to as “scattered light”) obtained by scattering the OTDR light in the optical fiber 7 and outputs the light to the OTDR 4.
  • the OTDR 4 receives the scattered light and obtains the power distribution of the OTDR light in the length direction of the optical fiber 7 (hereinafter referred to as “OTDR waveform”).
  • the control circuit 6 analyzes the OTDR waveform and controls the output power of the optical amplifier 2 and the excitation light source 3 based on the analysis result.
  • the WDM signal light transmitted to the optical transmission line 7 is received by the optical receiver 110.
  • the optical transmission device 100 may further include a CPU (central processing unit) 91 and a memory 92.
  • the memory 92 is a fixed, non-temporary recording medium composed of, for example, a nonvolatile semiconductor memory. However, the configuration of the memory 92 is not limited to these.
  • the memory 92 stores a program executed by the CPU 91.
  • the CPU 91 may realize the function of the optical transmission device 100 by executing a program stored in the memory 92.
  • the optical transmission apparatus 100 of the first embodiment will be described.
  • the WDM signal light and the pumping light are simultaneously transmitted from the optical transmission apparatus 100 to the optical fiber 7.
  • the WDM signal light is amplified by distributed Raman amplification generated by the pumping light.
  • An example of the relationship between the wavelength of the excitation light and the Raman gain spectrum has already been described with reference to FIG.
  • distributed Raman amplification optical amplification is distributed in the optical fiber 7 that is an amplification medium.
  • FIG. 2 is a diagram showing an example of the power distribution of the WDM signal light in the optical fiber 7 when distributed Raman amplification is used.
  • the output unit of the optical transmission apparatus 100 is described as “transmission end” in FIG.
  • the transmission end is a port on the multiplexing side (optical fiber 7 side) of the optical multiplexer 5 and is a connection portion between the optical transmission device 100 and the optical fiber 7.
  • the power of the WDM signal light is highest at the output section of the optical transmission apparatus 100.
  • the power of the WDM signal light is attenuated along with the propagation of the WDM signal light due to the loss of the optical fiber 7. This is indicated by a broken line in FIG. 2 as “when the excitation light source is OFF”. Therefore, when distributed Raman amplification is not used, in order to reduce the influence of the nonlinear optical effect, which is one of the main causes of signal quality degradation in the optical transmission system 10, a signal is output from the output unit of the optical transmission apparatus 100. It is sufficient to manage the transmission level of light to the optical transmission line.
  • the WDM signal light is amplified in a distributed manner in the optical fiber 7.
  • the power of the WDM signal light is not necessarily the maximum at the output unit of the optical transmission apparatus 100 (the port on the output side of the optical multiplexer 5 in FIG. 1), but is the maximum in the middle of transmission through the optical fiber 7.
  • a solid line in FIG. 2 as “when the excitation light source is ON”.
  • the optical transmission apparatus 100 sends out OTDR light to the optical fiber 7 in addition to the WDM signal light and the pumping light for Raman amplification.
  • the OTDR light is used to monitor the level change in the optical fiber 7 of the distributed Raman amplified signal light.
  • FIG. 3 and 4 are diagrams illustrating examples of wavelength arrangements of the pump light, the WDM signal light, and the OTDR light in the optical transmission apparatus 100.
  • FIG. The OTDR light is used to indirectly monitor the power distribution of the WDM signal light in the longitudinal direction of the optical fiber 7. For this reason, the wavelength of the OTDR light is arranged in a wavelength band where a distributed Raman amplification characteristic substantially similar to that of the WDM signal light can be obtained.
  • the wavelength of the OTDR light is slightly longer than the upper limit wavelength of the wavelength band of the WDM signal light.
  • the wavelength of the OTDR light is slightly shorter than the lower limit wavelength of the wavelength band of the WDM signal light.
  • the wavelength of the OTDR light is preferably set to a wavelength at which the distributed Raman amplification characteristic for the OTDR light is substantially the same as the distributed Raman amplification characteristic for the WDM signal light.
  • the wavelength of the OTDR light is a wavelength that can estimate the characteristic of the distributed Raman amplification for the WDM signal light based on the characteristic of the distributed Raman amplification for the OTDR light.
  • the wavelength of OTDR light is in the vicinity of the wavelength band of WDM signal light.
  • FIG. 5 is a diagram for explaining the operation of the optical transmission apparatus 100. Similar to the WDM signal light, the OTDR light is also lost by the optical fiber 7 and amplified by the pumping light. The OTDR 4 measures the OTDR waveform by receiving the OTDR light that returns to the optical transmission apparatus 100 due to Rayleigh scattering in the optical fiber 7. The OTDR waveform indicates the power distribution in the transmission direction of the OTDR light in the optical fiber 7.
  • the control circuit 6 analyzes the OTDR waveform generated by the OTDR 4 and controls the optical amplifier 2 and the pumping light source 3 so that the maximum power of the WDM signal light in the optical fiber 7 obtained from the OTDR waveform does not exceed a predetermined threshold. Controls output power.
  • the predetermined threshold is determined based on an allowable amount of transmission quality degradation caused by the nonlinear optical effect on the WDM signal light generated in the optical fiber 7. Since the wavelength of the OTDR light is in the vicinity of the WDM signal light, it is easy to estimate the power distribution of the WDM signal light from the OTDR waveform. For example, it may be estimated that the OTDR waveform is similar to the power distribution of the WDM signal light.
  • the difference in power between the OTDR light and the WDM signal light can be corrected, for example, by measuring the power of both at the transmission end.
  • the power distribution of the WDM signal light can be easily estimated from the OTDR waveform by keeping the ratio of the incident power of the OTDR light to the optical transmission line 7 and the power per wavelength of the WDM signal light constant.
  • a difference between an OTDR waveform by OTDR light having the same wavelength as the WDM signal light and an OTDR waveform by OTDR light having a wavelength near the WDM signal light may be acquired.
  • the power distribution of the WDM signal light can be estimated more accurately by correcting the OTDR waveform of the OTDR light having a wavelength in the vicinity of the WDM signal light with the difference acquired at the time of manufacture.
  • FIG. 6 is a flowchart illustrating an example of an operation procedure of the optical transmission device 100 according to the first embodiment.
  • the optical amplifier 2 amplifies the input WDM signal light (step S1 in FIG. 6), and the pumping light source 3 outputs pumping light for causing Raman amplification in the optical fiber 7 (step S2).
  • Step S1 and step S2 may be executed in the reverse order, or may be executed simultaneously.
  • the optical multiplexer 5 combines the amplified WDM signal light, the excitation light, and the OTDR light (step S3).
  • the OTDR 4 measures the power distribution in the optical fiber 7 of the OTDR light transmitted to the optical fiber 7 (step S4).
  • the control circuit 6 controls the output power of the pumping light source 3 and the output power of the optical amplifier 2 based on the power distribution measured by the OTDR 4 (Step S5).
  • the optical transmission device 100 monitors the level change in the transmission direction of the optical transmission line using OTDR light, and controls the optical amplifier 2 and the pumping light source 3 based on the monitoring result.
  • the control circuit 6 controls the output power of the optical amplifier 2 in order to change the power at the transmission end of the WDM signal light.
  • the control circuit 6 controls the output power of the excitation light source 3 in order to control the gain of Raman amplification.
  • Specific control contents for the optical amplifier 2 and the excitation light source 3 corresponding to the OTDR waveform input from the OTDR 4 may be set in the control circuit 6 in advance according to the characteristics of the OTDR waveform.
  • the optical transmission device 100 propagates the OTDR light together with the WDM signal light, and monitors the optical power change in the longitudinal direction of the optical fiber 7 of the OTDR light by the OTDR waveform, thereby indirectly monitoring the power distribution of the WDM signal light. it can. As a result, the optical transmission device 100 can control the output power of the optical amplifier 2 and the pumping light source 3 so that the maximum power of the WDM signal light in the optical fiber 7 does not exceed the threshold at which the influence of nonlinear waveform distortion occurs.
  • the optical transmission device 100 manages the maximum power of the WDM signal light in the transmission direction of the optical fiber 7 by such control, thereby suppressing the deterioration of the transmission quality of the signal light due to the nonlinear optical effect in the optical transmission path.
  • the transmission span can be expanded.
  • the optical transmission device 100 can monitor the power change per wavelength of the WDM signal light by monitoring the OTDR waveform even when the number of wavelengths of the WDM signal light changes. Therefore, the optical transmission device 100 controls the output power of the optical amplifier 2 and the excitation light source 3 based on the power change per wavelength of the WDM signal light, thereby suppressing the level fluctuation for each wavelength of the WDM signal light, The transmission quality of WDM signal light can be maintained.
  • the optical transmission apparatus 100 compensates for the power of the WDM signal light that has decreased due to the increase in the loss of the optical fiber by monitoring the change in the optical power per wavelength of the WDM signal light.
  • the output power of the optical amplifier 2 and the pumping light source 3 can be controlled. That is, the optical transmission device 100 can maintain the optical power per wavelength of the WDM signal light and maintain the transmission quality of the WDM signal light even when the loss of the optical fiber increases.
  • the optical transmission device includes an optical amplifier, an excitation light source, a measurement unit, an optical multiplexer, and a control circuit.
  • the optical amplifier amplifies the input signal light.
  • the pumping light source outputs pumping light that causes distributed Raman amplification in the optical transmission line.
  • the optical multiplexer combines the signal light amplified by the optical amplifier and the pumping light, and sends them to the optical transmission line.
  • the measurement unit measures the maximum power in the optical transmission line of the propagation light by detecting the scattered light generated by the scattering in the optical transmission line of the propagation light propagating through the optical transmission line.
  • the measurement unit notifies the control circuit of the maximum power of the measured propagation light.
  • the control circuit controls the output power of the pumping light and the output power of the optical amplifier based on the maximum power of the propagating light notified from the measurement unit.
  • the optical amplifier, pumping light source, measurement unit, optical multiplexer, and control circuit included in the optical transmission device according to the modification of the first embodiment are the optical amplifier 2, pumping light source included in the optical transmission device 100 illustrated in FIG. 3, OTDR 4, optical multiplexer 5, and control circuit 6.
  • the function of the measurement unit is not limited to the function of OTDR4.
  • the measurement unit only needs to have a function of measuring the maximum power of the propagation light in the optical transmission path by detecting scattered light and notifying the control circuit.
  • the optical transmission device of this modification having such a configuration is configured so that the maximum power of the light propagating in the optical transmission path does not exceed the threshold at which the influence of nonlinear waveform distortion occurs, and the output power of the optical amplifier and the pumping light source. Can be controlled. That is, by managing the maximum power inside the optical transmission line, the optical transmission device according to the modification of the first embodiment suppresses the deterioration of the transmission quality of the signal light due to the nonlinear optical effect in the optical transmission line.
  • the transmission span can be expanded.
  • FIG. 7 is a block diagram illustrating a configuration of the optical transmission system 20 according to the second embodiment.
  • FIG. 8 is a diagram illustrating an example of wavelength arrangement in the second embodiment.
  • the optical transmission system 20 according to the second embodiment includes an optical transmission device 200, an optical fiber 7, and an optical reception device 110.
  • the functions of the optical fiber 7 and the optical receiver 110 are the same as those in the first embodiment shown in FIG.
  • the optical transmission device 200 is different from the optical transmission device 100 according to the first embodiment in that the excitation light source 31 includes two light sources (LD1 and LD2). LD1 and LD2 are laser diodes, and the wavelength of LD1 is different from the wavelength of LD2 as shown in FIG.
  • the configuration and operation of the optical transmission device 200 other than the pumping light source 3 are basically the same as those of the optical transmission device 100.
  • the control circuit 6 independently controls the output power of the two LDs (LD1 and LD2) provided in the excitation light source 3 based on the OTDR waveform. Due to the excitation light source 3 having a plurality of wavelengths, the optical transmission device 200 has a wider Raman amplification band than the optical transmission device 100.
  • the OTDR light may be arranged one wavelength each on the short wavelength side and the long wavelength side of the WDM signal light.
  • the wavelengths of the OTDR light are indicated by upward arrows in FIG. 8 as OTDR wavelength 1 and OTDR wavelength 2.
  • the OTDR 4 outputs a plurality of OTDR lights having different wavelengths.
  • the wavelengths of two OTDR lights among the plurality of OTDR lights are near the upper limit and the lower limit of the wavelength of the WDM signal light, respectively.
  • a level difference between wavelengths of WDM signal light subjected to distributed Raman amplification in the optical fiber 7 (that is, wavelength dependence of distributed Raman gain). Can be estimated.
  • the control circuit 6 may obtain the power of each wavelength of the WDM signal light by interpolating the wavelength characteristics of the OTDR light 1 and the OTDR light 2.
  • the control circuit 6 may independently control the output power of the two LDs (LD1 and LD2) provided in the pumping light source 3 based on the comparison result of the respective OTDR waveforms by the OTDR light of two wavelengths.
  • the optical transmission device 200 suppresses the occurrence of optical power deviation between the wavelengths of the WDM signal light in the optical fiber 7, and the wavelength of the WDM signal light is reduced. There is an effect that a certain transmission quality can be secured over the entire area.
  • 7 and 8 show the case where both the excitation light source 3 and the OTDR light have two wavelengths.
  • the number of wavelengths of the excitation light source and the OTDR light is not limited to two wavelengths. Further, the number of wavelengths of the excitation light source and the number of wavelengths of the OTDR light may not be the same.
  • FIG. 9 is a block diagram illustrating a configuration of an optical transmission system 30 according to the third embodiment of this invention.
  • the optical transmission system 30 according to the third embodiment includes an optical transmission device 300, an optical fiber 7, and an optical reception device 110.
  • the functions of the optical fiber 7 and the optical receiver 110 are the same as those in the first embodiment shown in FIG.
  • the optical transmission device 300 is different from the optical transmission device 100 according to the first embodiment in that a dispersion compensation unit 8 is provided between the optical multiplexer 1 and the optical amplifier 2.
  • the configuration and operation of the optical transmission device 300 other than the control of the dispersion compensation unit 8 and the dispersion compensation unit 8 in the control circuit 6 are the same as those of the optical transmission device 100.
  • the dispersion compensator 8 imparts WDM signal light with an amount of chromatic dispersion that cancels out the chromatic dispersion caused by the optical fiber 7 at a point where the power of the WDM signal light propagating through the optical fiber 7 is maximum.
  • the dispersion compensator 8 adds the WDM signal light to the WDM signal light.
  • the dispersion compensation amount is given by ⁇ D ⁇ L1.
  • the distance L1 can be known from the OTDR waveform.
  • the optical transmission apparatus 300 according to the third embodiment having such a configuration has an effect of suppressing a decrease in transmission quality due to wavelength dispersion of the optical fiber 7 in addition to the effect of the first embodiment.
  • FIG. 10 is a block diagram showing the configuration of the optical transmission system 40 according to the fourth embodiment of the present invention.
  • the optical transmission system 40 according to the fourth embodiment includes an optical transmission device 400, an optical fiber 7, and an optical reception device 110.
  • the functions of the optical fiber 7 and the optical receiver 110 are the same as those in the first embodiment shown in FIG.
  • the optical transmission device 400 is different from the optical transmission device 100 of the first embodiment in that the control circuit 6 further controls the optical transmitter 11-1n.
  • the configuration and operation of other parts of the optical transmission device 400 are the same as those of the optical transmission device 100.
  • the control circuit 6 controls the transmission waveform of the optical transmitter 11-1n so that dispersion and waveform distortion caused by the optical fiber 7 are compensated.
  • These dispersion compensation and waveform distortion compensation in the optical transmission apparatus 400 may be either optical compensation or electrical compensation.
  • the optical transmission apparatus 400 may further include the dispersion compensator 8 described in the third embodiment between the optical multiplexer 1 and the optical amplifier 2.
  • the optical transmission apparatus 400 according to the fourth embodiment having such a configuration has an effect of suppressing a reduction in transmission quality due to chromatic dispersion and waveform distortion in addition to the effects of the first embodiment.
  • Optical amplification means for amplifying the input signal light; Pumping means for outputting pumping light that causes distributed Raman amplification in the optical transmission line; First optical multiplexing means for multiplexing the signal light amplified by the optical amplification means and the pumping light and sending them to the optical transmission line; Measuring means for measuring the maximum power of the propagation light in the optical transmission line by detecting scattered light generated by scattering of the propagation light propagating in the optical transmission line; Control means for controlling the output power of the pumping light and the output power of the optical amplifying means based on the maximum power notified from the measuring means;
  • An optical transmission device comprising:
  • the first optical multiplexing means further combines test light and sends it to the optical transmission line,
  • the measurement means outputs the test light to the first multiplexing means, and measures the maximum power by detecting the test light scattered in the optical transmission path as the scattered light.
  • the optical transmission device according to attachment 1.
  • Appendix 3 The optical transmission apparatus according to appendix 2, wherein the measuring means is an OTDR (optical time domain reflectometer).
  • the control means is configured so that the maximum power does not exceed a threshold value determined based on an allowable amount of deterioration in transmission quality of the signal light due to a nonlinear optical effect in the optical transmission path with respect to the signal light.
  • the optical transmission device according to any one of appendices 1 to 4, wherein the output power of the optical amplifying means is controlled.
  • Appendix 6 The light according to any one of appendices 2 to 5, wherein the wavelength of the test light is a wavelength capable of estimating the characteristic of the distributed Raman amplification with respect to the signal light based on the characteristic of the distributed Raman amplification with respect to the test light.
  • Transmission equipment The wavelength of the test light is a wavelength capable of estimating the characteristic of the distributed Raman amplification with respect to the signal light based on the characteristic of the distributed Raman amplification with respect to the test light.
  • Appendix 7 The optical transmission device according to any one of appendices 2 to 6, wherein the wavelength of the test light is in the vicinity of the wavelength of the signal light.
  • the test means outputs a plurality of the test lights having different wavelengths, and the wavelengths of the two test lights out of the plurality of test lights are in the vicinity of the upper limit and the lower limit of the wavelength multiplexed light, respectively.
  • the optical transmission apparatus according to appendix 8.
  • (Appendix 10) Further comprising dispersion compensation means connected to the input side of the amplification means, The test means measures the distance from the input end of the propagation light of the optical transmission path to a point where the power of the propagation light becomes the maximum power, and notifies the control means, the control means, The light according to any one of appendices 1 to 9, wherein the dispersion compensation unit is controlled based on a distance so as to give the signal light an amount of dispersion that cancels out the amount of dispersion of the optical transmission line generated at the point. Transmission equipment.
  • the excitation unit outputs a plurality of the excitation lights having different wavelengths, and the control unit is configured to output the plurality of excitations so that the wavelength dependence of the power distribution of the propagating light in the optical transmission path falls within a predetermined range.
  • the optical transmission device according to any one of appendices 1 to 10, wherein the light is controlled independently.
  • Appendix 12 The optical transmission apparatus according to any one of appendices 1 to 11, further comprising: an optical transmission unit connected so that the output signal light is input to the optical amplification unit.
  • Appendix 13 An optical transmitter connected so that the output signal light is input to the optical amplifier;
  • the second light is connected so that the light output from the plurality of optical transmission units having different wavelengths is combined, and the combined light output from the optical transmission unit is input to the optical amplification unit.
  • Appendix 15 The optical transmission device according to any one of appendices 1 to 14, An optical transmission path for propagating light output from the optical transmission device; An optical receiver for receiving the signal light output from the optical transmission line; An optical transmission system comprising:
  • (Appendix 16) Amplifies the input signal light, Outputs pumping light that causes distributed Raman amplification in the optical transmission line, The amplified signal light and the excitation light are combined and sent to the optical transmission line, By detecting scattered light generated by scattering in the optical transmission path of propagation light propagating through the optical transmission path, the maximum power in the optical transmission path of the signal light is measured, Controlling the output power of the pumping light and the output power of the optical amplification means based on the maximum power; Control method of optical transmission apparatus.
  • a control program for an optical transmission device for controlling the output power of pumping light that causes Raman amplification in the optical transmission line and the output power of optical amplification means that amplifies signal light and outputs it to the optical transmission line .
  • the OTDR 4 described in the first to fourth embodiments may be a coherent OTDR that uses coherent reception to detect scattered light.
  • the configuration for dispersion compensation and the configuration for waveform distortion compensation described in the third and fourth embodiments may be applied to the optical transmission device 200 of the second embodiment.
  • Optical transmission system 100 200, 300, 400
  • Optical transmission device 110 Optical reception device 1, 5
  • Optical multiplexer 2 Optical amplifier 3, 31 Excitation light source 4
  • OTDR 6 Control Circuit 7
  • Optical Fiber 8 Dispersion Compensator 11-1n
  • Optical Transmitter 91 CPU 92 memory

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

In order to achieve the suppression of degradation of transmission quality caused by a nonlinear optical effect and the increase of a transmission span, an optical transmission device is provided with: an optical amplification means which amplifies inputted signal light; an excitation means which outputs excitation light that generates distributed Raman amplification in an optical transmission path; a first optical multiplexing means which multiplexes the signal light amplified by the optical amplification means and the excitation light and sends out resultant light to the optical transmission path; a measurement means which detects scattered light generated by scattering of propagation light propagating through the optical transmission path in the optical transmission path to thereby measure the maximum power of the propagation light in the optical transmission path; and a control means which controls the output power of the excitation light and the output power of the optical amplification means on the basis of the maximum power reported from the measurement means.

Description

光伝送装置及び光伝送方法Optical transmission apparatus and optical transmission method
 本発明は、光伝送装置及び光伝送方法に関する。本発明は、特に、光伝送路で信号光が分布的に増幅される光伝送システムで用いられる光伝送装置及び光伝送方法に関する。 The present invention relates to an optical transmission device and an optical transmission method. The present invention particularly relates to an optical transmission device and an optical transmission method used in an optical transmission system in which signal light is distributed and amplified in an optical transmission line.
 伝送路に光ファイバが用いられる光伝送システムにおいて、光ファイバ内で信号光を分布的に増幅する手段の一つとして、分布ラマン増幅が知られている。図11は、ラマン増幅における励起光の波長とラマン利得スペクトルとの関係の例を示す図である。光ファイバへの強い励起光の入射により、ラマン散乱に基づく誘導放出が起こる。ラマン増幅は、図11に示すように励起光の波長より約100nm長い波長域において光の増幅効果が得られる現象である。ラマン増幅による信号光の増幅特性は、励起光のパワー及び波長、信号光のパワー及び波長により変化する。分布ラマン増幅は、ラマン増幅を光伝送路である光ファイバ内で生じさせるものであり、その低雑音性と低非線形性とにより、光伝送システムの伝送品質改善や、伝送スパンの拡大が期待される。 In an optical transmission system in which an optical fiber is used for a transmission path, distributed Raman amplification is known as one of means for amplifying signal light within the optical fiber in a distributed manner. FIG. 11 is a diagram illustrating an example of the relationship between the wavelength of excitation light and the Raman gain spectrum in Raman amplification. Stimulated emission based on Raman scattering occurs due to the strong excitation light incident on the optical fiber. As shown in FIG. 11, Raman amplification is a phenomenon in which a light amplification effect is obtained in a wavelength range longer by about 100 nm than the wavelength of excitation light. The amplification characteristic of signal light by Raman amplification varies depending on the power and wavelength of pump light and the power and wavelength of signal light. Distributed Raman amplification causes Raman amplification to occur in an optical fiber that is an optical transmission line, and its low noise and low nonlinearity are expected to improve the transmission quality of optical transmission systems and increase the transmission span. The
 本発明に関連して、特許文献1には、OTDR(optical time domain reflectometer)を用いた伝送損失測定装置が記載されている。また、特許文献2には、ノイズ光パワーの変化量から求めたラマン利得効率によって中継増幅器の出力パワーが調整される、パワー調整装置が記載されている。 In connection with the present invention, Patent Document 1 describes a transmission loss measuring apparatus using an OTDR (optical time domain reflexometer). Further, Patent Document 2 describes a power adjustment device in which the output power of a relay amplifier is adjusted by Raman gain efficiency obtained from the amount of change in noise light power.
特開2005-084041号公報(段落[0028]-[0031]、図1)Japanese Patent Laying-Open No. 2005-084041 (paragraphs [0028]-[0031], FIG. 1) 特開2006-287649号公報(段落[0048]、図1)JP 2006-287649 A (paragraph [0048], FIG. 1)
 伝送スパンの拡大のためには、光送信機が高出力の信号光を送信するとともに、高出力の励起光源によって高いラマン利得を得ることが好ましい。しかしながら、分布ラマン増幅では、光伝送路(光ファイバ)内の信号光パワーの上限を管理する必要がある。なぜならば、ラマン増幅のための励起光のパワーを増大させることで高いラマン増幅利得が得られる一方で、光ファイバ内の信号光パワーが非常に高い場合には、光ファイバの非線形光学効果に起因して信号光に歪みが生じ、信号光の伝送品質が劣化するからである。このため、分布ラマン増幅が用いられる光伝送システムでは、非線形光学効果による伝送品質への影響が少ないパワーの範囲でより高いラマン増幅利得が得られるように、信号光及び励起光の、光ファイバへの入力パワーを制御する必要がある。 In order to expand the transmission span, it is preferable that the optical transmitter transmits a high output signal light and obtains a high Raman gain by a high output pump light source. However, in distributed Raman amplification, it is necessary to manage the upper limit of signal light power in the optical transmission line (optical fiber). This is because, when the power of the pumping light for Raman amplification is increased, a high Raman amplification gain can be obtained, but when the signal light power in the optical fiber is very high, it is caused by the nonlinear optical effect of the optical fiber. This is because the signal light is distorted and the transmission quality of the signal light is deteriorated. For this reason, in an optical transmission system in which distributed Raman amplification is used, signal light and pumping light are transmitted to an optical fiber so that a higher Raman amplification gain can be obtained in a power range with less influence on transmission quality due to nonlinear optical effects. It is necessary to control the input power.
 図12は、分布ラマン増幅が用いられる光伝送システムにおける、WDM(wavelength division multiplexing、波長分割多重)信号光の波長数が変化した場合の光パワーの変化の例を示す図である。WDM信号光には、異なる波長を持つ複数の信号光が波長多重される。励起光のパワーに対してWDM信号光のパワーが充分に小さくない場合、ラマン増幅の飽和現象が発生する。ラマン増幅が飽和した場合、WDM信号光の波長数の変化(すなわち、光ファイバへ入射されるWDM信号光のパワーの変化)に応じて、ラマン利得が変化する。例えば、WDM信号光の波長数が減少した場合には、ラマン利得が増加する。すると、図12に示すように、光ファイバ中でのWDM信号光の波長当たりの信号パワーが波長数の減少前(図12の「通常時」)よりも上昇する。信号パワーの最大値が上昇することにより(図12の破線枠内)、非線形光学効果により伝送品質が低下する可能性がある。 FIG. 12 is a diagram showing an example of a change in optical power when the number of wavelengths of WDM (wavelength division multiplexing) signal light changes in an optical transmission system using distributed Raman amplification. A plurality of signal lights having different wavelengths are wavelength-multiplexed with the WDM signal light. When the power of the WDM signal light is not sufficiently small with respect to the power of the excitation light, a saturation phenomenon of Raman amplification occurs. When the Raman amplification is saturated, the Raman gain changes according to a change in the number of wavelengths of the WDM signal light (that is, a change in the power of the WDM signal light incident on the optical fiber). For example, when the number of wavelengths of WDM signal light decreases, the Raman gain increases. Then, as shown in FIG. 12, the signal power per wavelength of the WDM signal light in the optical fiber increases from before the decrease in the number of wavelengths (“normal time” in FIG. 12). As the maximum value of the signal power increases (within the broken line frame in FIG. 12), the transmission quality may deteriorate due to the nonlinear optical effect.
 逆に、WDM信号光の波長数の増加によって光ファイバへ入射するWDM信号光の総パワーが増加した場合には、ラマン利得が減少し、光ファイバ中のWDM信号光の1波長当たりの信号光パワーが減少する。このような場合には、OSNR(optical signal to noise ratio、光信号対雑音比)が低下して伝送品質が低下する可能性がある。 Conversely, when the total power of the WDM signal light incident on the optical fiber increases due to an increase in the number of wavelengths of the WDM signal light, the Raman gain decreases, and the signal light per wavelength of the WDM signal light in the optical fiber. Power is reduced. In such a case, there is a possibility that OSNR (optical signal to noise ratio) decreases and transmission quality deteriorates.
 しかしながら、特許文献1及び2に記載された技術は、ラマン増幅による光伝送路内の信号光のパワーの伝送方向の分布を測定するための構成を備えていない。このため、特許文献1及び2に記載された技術は、光伝送路の途中で信号光パワーが増大することに起因する非線形光学効果による伝送品質の悪化を抑制することができない。
(発明の目的)
 本発明は、非線形光学効果に起因する伝送品質の悪化の抑制と伝送スパンの拡大とを実現するための技術を提供することを目的とする。
However, the techniques described in Patent Documents 1 and 2 do not have a configuration for measuring the distribution in the transmission direction of the power of the signal light in the optical transmission line by Raman amplification. For this reason, the techniques described in Patent Documents 1 and 2 cannot suppress deterioration in transmission quality due to the nonlinear optical effect resulting from an increase in signal light power in the middle of the optical transmission path.
(Object of invention)
An object of this invention is to provide the technique for implement | achieving suppression of the deterioration of the transmission quality resulting from a nonlinear optical effect, and the expansion of a transmission span.
 本発明の第1の光伝送装置は、入力された信号光を増幅する光増幅手段と、光伝送路において分布ラマン増幅を生じさせる励起光を出力する励起手段と、前記光増幅手段で増幅された前記信号光と、前記励起光とを合波して前記光伝送路に送出する第1の光合波手段と、前記光伝送路を伝搬する伝搬光の前記光伝送路内の散乱によって発生した散乱光を検出することで前記伝搬光の前記光伝送路内の最大パワーを測定する測定手段と、前記測定手段から通知された前記最大パワーに基づいて前記励起光の出力パワーと前記光増幅手段の出力パワーとを制御する制御手段と、を備える。 The first optical transmission apparatus according to the present invention includes an optical amplifying unit that amplifies input signal light, an excitation unit that outputs pumping light that causes distributed Raman amplification in an optical transmission line, and an optical amplification unit that amplifies the optical signal. The signal light and the pumping light are combined and sent to the optical transmission line, and the light is generated by scattering of the propagation light propagating through the optical transmission line. Measuring means for measuring the maximum power of the propagating light in the optical transmission line by detecting scattered light, output power of the excitation light and the optical amplifying means based on the maximum power notified from the measuring means And a control means for controlling the output power.
 本発明の第1の光伝送方法は、入力された信号光を増幅し、光伝送路において分布ラマン増幅を生じさせる励起光を出力し、増幅された前記信号光と、前記励起光とを合波して前記光伝送路へ送出し、前記光伝送路を伝搬する伝搬光の前記光伝送路内の散乱によって発生した散乱光を検出することで、前記信号光の前記光伝送路内の最大パワーを測定し、前記最大パワーに基づいて前記励起光の出力パワーと前記光増幅手段の出力パワーとを制御する、ことを特徴とする。 The first optical transmission method of the present invention amplifies input signal light, outputs pumping light that causes distributed Raman amplification in the optical transmission line, and combines the amplified signal light and the pumping light. Detecting the scattered light generated by the scattering in the optical transmission path of the propagating light propagating through the optical transmission path and transmitted to the optical transmission path. The power is measured, and the output power of the pumping light and the output power of the optical amplification means are controlled based on the maximum power.
 本発明は、非線形光学効果に起因する伝送品質の悪化の抑制と伝送スパンの拡大とを実現するという効果を奏する。 The present invention has the effect of suppressing the deterioration of transmission quality due to the nonlinear optical effect and expanding the transmission span.
第1の実施形態の光伝送装置の構成を示すブロック図である。It is a block diagram which shows the structure of the optical transmission apparatus of 1st Embodiment. 分布ラマン増幅が用いられた場合の、光ファイバ中のWDM信号光のパワー分布の例を示す図である。It is a figure which shows the example of the power distribution of the WDM signal light in an optical fiber when distributed Raman amplification is used. 第1の実施形態における波長配置の例を示す図である。It is a figure which shows the example of the wavelength arrangement | positioning in 1st Embodiment. 第1の実施形態における波長配置の例を示す図である。It is a figure which shows the example of the wavelength arrangement | positioning in 1st Embodiment. 第1の実施形態の光伝送装置の動作を説明するための図である。It is a figure for demonstrating operation | movement of the optical transmission apparatus of 1st Embodiment. 第1の実施形態の光伝送装置の動作手順の例を示すフローチャートである。3 is a flowchart illustrating an example of an operation procedure of the optical transmission apparatus according to the first embodiment. 第2の実施形態の光伝送装置の構成を示すブロック図である。It is a block diagram which shows the structure of the optical transmission apparatus of 2nd Embodiment. 第2の実施形態における波長配置の例を示す図である。It is a figure which shows the example of the wavelength arrangement | positioning in 2nd Embodiment. 第3の実施形態の光伝送装置の構成を示すブロック図である。It is a block diagram which shows the structure of the optical transmission apparatus of 3rd Embodiment. 第4の実施形態の光伝送装置の構成を示すブロック図である。It is a block diagram which shows the structure of the optical transmission apparatus of 4th Embodiment. ラマン増幅における励起光の波長とラマン利得スペクトルとの関係の例を示す図である。It is a figure which shows the example of the relationship between the wavelength of the excitation light in a Raman amplification, and a Raman gain spectrum. 分布ラマン増幅が用いられた光伝送システムにおける、波長数変化時のWDM信号光の光パワー変化の例を示す図である。It is a figure which shows the example of the optical power change of the WDM signal light at the time of the wavelength change in the optical transmission system using distributed Raman amplification.
(第1の実施形態)
 図1は、本発明の第1の実施形態の光伝送システム10の構成を示すブロック図である。光通信システム10は、光伝送装置100、光受信装置110及び光ファイバ7を備える。光伝送装置100は光ファイバ7へ信号光を出力する。光受信装置110は、光ファイバ7を伝搬した信号光を受信する。
(First embodiment)
FIG. 1 is a block diagram illustrating a configuration of an optical transmission system 10 according to a first embodiment of this invention. The optical communication system 10 includes an optical transmission device 100, an optical reception device 110, and an optical fiber 7. The optical transmission device 100 outputs signal light to the optical fiber 7. The optical receiver 110 receives the signal light propagated through the optical fiber 7.
 光伝送装置100は、n台(nは自然数)の光送信機11-1n、光合波器1、光増幅器2、励起光源3、OTDR(optical time domain reflectometer)4、光合波器5及び制御回路6を備える。 The optical transmission apparatus 100 includes n (n is a natural number) optical transmitters 11-1n, an optical multiplexer 1, an optical amplifier 2, an excitation light source 3, an OTDR (optical time domain domain reflectometer) 4, an optical multiplexer 5, and a control circuit. 6 is provided.
 光送信機11-1nは、それぞれ波長が異なる信号光を出力する。光合波器1は、光送信機11-1nから出力される信号光を波長多重して、WDM(wavelength division multiplexing、波長分割多重)信号光を生成する。光増幅器2は、WDM信号光を増幅して光合波器5へ出力する。 The optical transmitters 11-1n output signal lights having different wavelengths. The optical multiplexer 1 wavelength-multiplexes the signal light output from the optical transmitter 11-1n to generate WDM (wavelength-division-multiplexing) signal light. The optical amplifier 2 amplifies the WDM signal light and outputs it to the optical multiplexer 5.
 励起光源3は、光ファイバ7において分布ラマン増幅を発生させるための励起光を光合波器5へ出力する。OTDR4は光パルス試験器である。OTDR4は、送出された光パルス試験光(以下、「OTDR光」という。)によって光ファイバ7で生成されたレイリー散乱光を検出する。光ファイバ7は、分布ラマン増幅が行われる光伝送路である。 The pumping light source 3 outputs pumping light for generating distributed Raman amplification in the optical fiber 7 to the optical multiplexer 5. OTDR4 is an optical pulse tester. The OTDR 4 detects Rayleigh scattered light generated in the optical fiber 7 by the transmitted optical pulse test light (hereinafter referred to as “OTDR light”). The optical fiber 7 is an optical transmission line on which distributed Raman amplification is performed.
 光合波器5は、WDM信号光、励起光及びOTDR光を合波して、これらの光を光ファイバ7へ送出する。また、光合波器5は、OTDR光が光ファイバ7内で散乱された光(以下、「散乱光」という。)を受信してOTDR4へ出力する。OTDR4は、散乱光を受信して、光ファイバ7の長さ方向のOTDR光のパワー分布(以下、「OTDR波形」という。)を求める。制御回路6は、OTDR波形を解析し、解析結果に基づいて光増幅器2及び励起光源3の出力パワーを制御する。光伝送路7に送出されたWDM信号光は、光受信装置110で受信される。 The optical multiplexer 5 combines the WDM signal light, the excitation light, and the OTDR light, and sends these lights to the optical fiber 7. Further, the optical multiplexer 5 receives light (hereinafter referred to as “scattered light”) obtained by scattering the OTDR light in the optical fiber 7 and outputs the light to the OTDR 4. The OTDR 4 receives the scattered light and obtains the power distribution of the OTDR light in the length direction of the optical fiber 7 (hereinafter referred to as “OTDR waveform”). The control circuit 6 analyzes the OTDR waveform and controls the output power of the optical amplifier 2 and the excitation light source 3 based on the analysis result. The WDM signal light transmitted to the optical transmission line 7 is received by the optical receiver 110.
 光伝送装置100は、さらに、CPU(central processing unit、中央処理装置)91及びメモリ92を備えていてもよい。メモリ92は、例えば不揮発性の半導体メモリで構成される、固定された、一時的でない記録媒体である。ただし、メモリ92の構成はこれらには限定されない。メモリ92は、CPU91において実行されるプログラムを記憶する。CPU91は、メモリ92に記憶されたプログラムを実行することで、光伝送装置100の機能を実現してもよい。 The optical transmission device 100 may further include a CPU (central processing unit) 91 and a memory 92. The memory 92 is a fixed, non-temporary recording medium composed of, for example, a nonvolatile semiconductor memory. However, the configuration of the memory 92 is not limited to these. The memory 92 stores a program executed by the CPU 91. The CPU 91 may realize the function of the optical transmission device 100 by executing a program stored in the memory 92.
 第1の実施形態の光伝送装置100の動作について説明する。分布ラマン増幅が用いられる光伝送システム10では、光伝送装置100から、WDM信号光と励起光とが、同時に光ファイバ7へ送出される。光ファイバ7では、励起光により発生する分布ラマン増幅により、WDM信号光が増幅される。励起光の波長とラマン利得スペクトルとの関係例は、既に図11で説明した。分布ラマン増幅においては、増幅媒体である光ファイバ7内で分布的に光増幅が行われる。 The operation of the optical transmission apparatus 100 of the first embodiment will be described. In the optical transmission system 10 in which distributed Raman amplification is used, the WDM signal light and the pumping light are simultaneously transmitted from the optical transmission apparatus 100 to the optical fiber 7. In the optical fiber 7, the WDM signal light is amplified by distributed Raman amplification generated by the pumping light. An example of the relationship between the wavelength of the excitation light and the Raman gain spectrum has already been described with reference to FIG. In distributed Raman amplification, optical amplification is distributed in the optical fiber 7 that is an amplification medium.
 図2は、分布ラマン増幅が用いられた場合の、光ファイバ7中のWDM信号光のパワー分布の例を示す図である。光伝送装置100の出力部は、図2では「送信端」と記載される。送信端は、光合波器5の合波側(光ファイバ7側)のポートであり、光伝送装置100と光ファイバ7との接続部である。 FIG. 2 is a diagram showing an example of the power distribution of the WDM signal light in the optical fiber 7 when distributed Raman amplification is used. The output unit of the optical transmission apparatus 100 is described as “transmission end” in FIG. The transmission end is a port on the multiplexing side (optical fiber 7 side) of the optical multiplexer 5 and is a connection portion between the optical transmission device 100 and the optical fiber 7.
 分布ラマン増幅が用いられない場合、あるいは励起光が光ファイバに供給されていない場合には、WDM信号光のパワーは光伝送装置100の出力部で最も高い。この場合には、WDM信号光のパワーは、光ファイバ7の損失により、WDM信号光の伝搬とともに減衰する。これは、図2において「励起光源OFF時」として破線で示される。このため、分布ラマン増幅が用いられない場合に、光伝送システム10における信号品質劣化の主要因の1つである非線形光学効果の影響を低減するためには、光伝送装置100の出力部において信号光の光伝送路への送出レベルを管理すれば充分である。 When distributed Raman amplification is not used, or when pumping light is not supplied to the optical fiber, the power of the WDM signal light is highest at the output section of the optical transmission apparatus 100. In this case, the power of the WDM signal light is attenuated along with the propagation of the WDM signal light due to the loss of the optical fiber 7. This is indicated by a broken line in FIG. 2 as “when the excitation light source is OFF”. Therefore, when distributed Raman amplification is not used, in order to reduce the influence of the nonlinear optical effect, which is one of the main causes of signal quality degradation in the optical transmission system 10, a signal is output from the output unit of the optical transmission apparatus 100. It is sufficient to manage the transmission level of light to the optical transmission line.
 一方、光伝送装置100を用いて分布ラマン増幅が行われる場合には、WDM信号光は、光ファイバ7内で分布的に増幅される。このため、WDM信号光のパワーは、光伝送装置100の出力部(図1では、光合波器5の出力側のポート)で必ずしも最大ではなく、光ファイバ7による伝送の途中で最大となる場合がある。これは、図2において「励起光源ON時」として実線で例示される。このため、分布ラマン増幅が適用された光伝送システムにおいては、光ファイバ7の長手方向(すなわち、伝送方向)のWDM信号光のパワーの変化を管理できることが望ましい。このような管理により、光ファイバ7内のWDM信号光パワーを、非線形光学効果による歪の影響が生じるレベル未満に維持できる。 On the other hand, when distributed Raman amplification is performed using the optical transmission device 100, the WDM signal light is amplified in a distributed manner in the optical fiber 7. For this reason, the power of the WDM signal light is not necessarily the maximum at the output unit of the optical transmission apparatus 100 (the port on the output side of the optical multiplexer 5 in FIG. 1), but is the maximum in the middle of transmission through the optical fiber 7. There is. This is illustrated by a solid line in FIG. 2 as “when the excitation light source is ON”. For this reason, in an optical transmission system to which distributed Raman amplification is applied, it is desirable to be able to manage changes in the power of the WDM signal light in the longitudinal direction of the optical fiber 7 (that is, the transmission direction). With such management, the WDM signal light power in the optical fiber 7 can be maintained below a level at which the influence of distortion due to the nonlinear optical effect occurs.
 光伝送装置100は、WDM信号光及びラマン増幅用の励起光に加えて、OTDR光を光ファイバ7へ送出する。OTDR光は、分布ラマン増幅された信号光の、光ファイバ7内のレベル変化を監視するために用いられる。 The optical transmission apparatus 100 sends out OTDR light to the optical fiber 7 in addition to the WDM signal light and the pumping light for Raman amplification. The OTDR light is used to monitor the level change in the optical fiber 7 of the distributed Raman amplified signal light.
 図3及び図4は、光伝送装置100における、励起光、WDM信号光、OTDR光のそれぞれの波長配置の例を示す図である。OTDR光は、WDM信号光の、光ファイバ7の長手方向のパワー分布を間接的に監視するために用いられる。このため、OTDR光の波長は、WDM信号光とほぼ同様の分布ラマン増幅特性が得られる波長帯に配置される。例えば、図3では、OTDR光の波長は、WDM信号光の波長帯の上限の波長よりもわずかに長い。図4では、OTDR光の波長は、WDM信号光の波長帯の下限の波長よりもわずかに短い。このように、OTDR光の波長は、OTDR光に対する分布ラマン増幅特性がWDM信号光に対する分布ラマン増幅特性とおおむね同一である波長に設定されることが好ましい。いいかえれば、OTDR光の波長は、OTDR光に対する分布ラマン増幅の特性に基づいてWDM信号光に対する分布ラマン増幅の特性を推定可能な波長である。例えば、OTDR光の波長は、WDM信号光の波長帯の近傍にある。 3 and 4 are diagrams illustrating examples of wavelength arrangements of the pump light, the WDM signal light, and the OTDR light in the optical transmission apparatus 100. FIG. The OTDR light is used to indirectly monitor the power distribution of the WDM signal light in the longitudinal direction of the optical fiber 7. For this reason, the wavelength of the OTDR light is arranged in a wavelength band where a distributed Raman amplification characteristic substantially similar to that of the WDM signal light can be obtained. For example, in FIG. 3, the wavelength of the OTDR light is slightly longer than the upper limit wavelength of the wavelength band of the WDM signal light. In FIG. 4, the wavelength of the OTDR light is slightly shorter than the lower limit wavelength of the wavelength band of the WDM signal light. Thus, the wavelength of the OTDR light is preferably set to a wavelength at which the distributed Raman amplification characteristic for the OTDR light is substantially the same as the distributed Raman amplification characteristic for the WDM signal light. In other words, the wavelength of the OTDR light is a wavelength that can estimate the characteristic of the distributed Raman amplification for the WDM signal light based on the characteristic of the distributed Raman amplification for the OTDR light. For example, the wavelength of OTDR light is in the vicinity of the wavelength band of WDM signal light.
 図5は、光伝送装置100の動作を説明するための図である。WDM信号光と同様に、OTDR光も、光ファイバ7による損失を受けるとともに励起光により増幅される。OTDR4は、光ファイバ7におけるレイリー散乱によって光伝送装置100に戻るOTDR光を受信することで、OTDR波形を測定する。OTDR波形は、OTDR光の光ファイバ7内の伝送方向のパワー分布を示す。 FIG. 5 is a diagram for explaining the operation of the optical transmission apparatus 100. Similar to the WDM signal light, the OTDR light is also lost by the optical fiber 7 and amplified by the pumping light. The OTDR 4 measures the OTDR waveform by receiving the OTDR light that returns to the optical transmission apparatus 100 due to Rayleigh scattering in the optical fiber 7. The OTDR waveform indicates the power distribution in the transmission direction of the OTDR light in the optical fiber 7.
 制御回路6は、OTDR4で生成されたOTDR波形を解析し、OTDR波形から求められる光ファイバ7内のWDM信号光の最大パワーが所定の閾値を超えないように、光増幅器2及び励起光源3の出力パワーを制御する。所定の閾値は、光ファイバ7で発生する、WDM信号光に対する非線形光学効果に起因する伝送品質の劣化の許容量に基づいて決定される。OTDR光の波長はWDM信号光の近傍にあるため、WDM信号光のパワー分布をOTDR波形から推定することは容易である。例えば、OTDR波形がWDM信号光のパワーの分布と相似であると推定してもよい。OTDR光とWDM信号光とのパワーの差は、例えば、送信端で両者のパワーを測定することで補正できる。あるいは、OTDR光の光伝送路7への入射パワーと、WDM信号光の1波長あたりのパワーとの比を一定にしておくことで、OTDR波形からWDM信号光のパワー分布を容易に推定できる。 The control circuit 6 analyzes the OTDR waveform generated by the OTDR 4 and controls the optical amplifier 2 and the pumping light source 3 so that the maximum power of the WDM signal light in the optical fiber 7 obtained from the OTDR waveform does not exceed a predetermined threshold. Controls output power. The predetermined threshold is determined based on an allowable amount of transmission quality degradation caused by the nonlinear optical effect on the WDM signal light generated in the optical fiber 7. Since the wavelength of the OTDR light is in the vicinity of the WDM signal light, it is easy to estimate the power distribution of the WDM signal light from the OTDR waveform. For example, it may be estimated that the OTDR waveform is similar to the power distribution of the WDM signal light. The difference in power between the OTDR light and the WDM signal light can be corrected, for example, by measuring the power of both at the transmission end. Alternatively, the power distribution of the WDM signal light can be easily estimated from the OTDR waveform by keeping the ratio of the incident power of the OTDR light to the optical transmission line 7 and the power per wavelength of the WDM signal light constant.
 また、光伝送装置100の製造時に、WDM信号光と同一の波長のOTDR光によるOTDR波形と、WDM信号光の近傍の波長のOTDR光によるOTDR波形との差分が取得されてもよい。そして、運用時には、WDM信号光の近傍の波長のOTDR光によるOTDR波形を、製造時に取得された差分により補正することで、WDM信号光のパワー分布をより正確に推定できる。 Also, at the time of manufacturing the optical transmission apparatus 100, a difference between an OTDR waveform by OTDR light having the same wavelength as the WDM signal light and an OTDR waveform by OTDR light having a wavelength near the WDM signal light may be acquired. At the time of operation, the power distribution of the WDM signal light can be estimated more accurately by correcting the OTDR waveform of the OTDR light having a wavelength in the vicinity of the WDM signal light with the difference acquired at the time of manufacture.
 図6は、第1の実施形態の光伝送装置100の動作手順の例を示すフローチャートである。光増幅器2は入力されたWDM信号光を増幅し(図6のステップS1)、励起光源3は光ファイバ7にラマン増幅を生じさせるための励起光を出力する(ステップS2)。ステップS1とステップS2とは逆の順序で実行されてもよく、同時に実行されてもよい。 FIG. 6 is a flowchart illustrating an example of an operation procedure of the optical transmission device 100 according to the first embodiment. The optical amplifier 2 amplifies the input WDM signal light (step S1 in FIG. 6), and the pumping light source 3 outputs pumping light for causing Raman amplification in the optical fiber 7 (step S2). Step S1 and step S2 may be executed in the reverse order, or may be executed simultaneously.
 光合波器5は、増幅されたWDM信号光と、励起光と、OTDR光とを合波する(ステップS3)。OTDR4は、光ファイバ7へ送出されたOTDR光の、光ファイバ7内のパワー分布を測定する(ステップS4)。制御回路6は、OTDR4によって測定されたパワー分布に基づいて、励起光源3の出力パワーと光増幅器2の出力パワーとを制御する(ステップS5)。 The optical multiplexer 5 combines the amplified WDM signal light, the excitation light, and the OTDR light (step S3). The OTDR 4 measures the power distribution in the optical fiber 7 of the OTDR light transmitted to the optical fiber 7 (step S4). The control circuit 6 controls the output power of the pumping light source 3 and the output power of the optical amplifier 2 based on the power distribution measured by the OTDR 4 (Step S5).
 第1の実施形態の光伝送装置100は、OTDR光を用いて光伝送路の伝送方向のレベル変化を監視し、監視結果に基づいて光増幅器2及び励起光源3を制御する。例えば、制御回路6は、WDM信号光の送信端におけるパワーを変化させるために光増幅器2の出力パワーを制御する。また、制御回路6は、ラマン増幅の利得を制御するために励起光源3の出力パワーを制御する。OTDR4から入力されたOTDR波形に対応する光増幅器2及び励起光源3への具体的な制御内容は、OTDR波形の特徴に応じてあらかじめ制御回路6に設定されていてもよい。 The optical transmission device 100 according to the first embodiment monitors the level change in the transmission direction of the optical transmission line using OTDR light, and controls the optical amplifier 2 and the pumping light source 3 based on the monitoring result. For example, the control circuit 6 controls the output power of the optical amplifier 2 in order to change the power at the transmission end of the WDM signal light. The control circuit 6 controls the output power of the excitation light source 3 in order to control the gain of Raman amplification. Specific control contents for the optical amplifier 2 and the excitation light source 3 corresponding to the OTDR waveform input from the OTDR 4 may be set in the control circuit 6 in advance according to the characteristics of the OTDR waveform.
 光伝送装置100は、WDM信号光とともにOTDR光を伝搬させ、OTDR波形によりOTDR光の光ファイバ7の長手方向の光パワー変化を監視することで、間接的にWDM信号光のパワーの分布を監視できる。これにより、光伝送装置100は、光ファイバ7内のWDM信号光の最大パワーが非線形波形歪による影響が発生する閾値を超えないように、光増幅器2及び励起光源3の出力パワーを制御できる。 The optical transmission device 100 propagates the OTDR light together with the WDM signal light, and monitors the optical power change in the longitudinal direction of the optical fiber 7 of the OTDR light by the OTDR waveform, thereby indirectly monitoring the power distribution of the WDM signal light. it can. As a result, the optical transmission device 100 can control the output power of the optical amplifier 2 and the pumping light source 3 so that the maximum power of the WDM signal light in the optical fiber 7 does not exceed the threshold at which the influence of nonlinear waveform distortion occurs.
 光伝送装置100は、このような制御により光ファイバ7の伝送方向のWDM信号光の最大パワーを管理することで、光伝送路内の非線形光学効果による信号光の伝送品質の悪化を抑制しつつ、伝送スパンを拡大できる。 The optical transmission device 100 manages the maximum power of the WDM signal light in the transmission direction of the optical fiber 7 by such control, thereby suppressing the deterioration of the transmission quality of the signal light due to the nonlinear optical effect in the optical transmission path. The transmission span can be expanded.
 さらに、光伝送装置100は、WDM信号光の波長数が変化した場合においても、OTDR波形を監視することで、WDM信号光の1波長当たりのパワー変化を監視できる。従って、光伝送装置100は、WDM信号光の1波長当たりのパワー変化に基づいて光増幅器2及び励起光源3の出力パワーを制御することで、WDM信号光の波長ごとのレベル変動を抑制し、WDM信号光の伝送品質を維持できる。 Furthermore, the optical transmission device 100 can monitor the power change per wavelength of the WDM signal light by monitoring the OTDR waveform even when the number of wavelengths of the WDM signal light changes. Therefore, the optical transmission device 100 controls the output power of the optical amplifier 2 and the excitation light source 3 based on the power change per wavelength of the WDM signal light, thereby suppressing the level fluctuation for each wavelength of the WDM signal light, The transmission quality of WDM signal light can be maintained.
 分布ラマン増幅は光ファイバを媒体としているため、光ファイバの損失が増加した場合には、光ファイバ内の励起光のパワーが低下し、ラマン利得が減少する。このような光ファイバの損失増加時にも、WDM信号光の1波長当たりの光パワー変化を監視することで、光伝送装置100は、光ファイバの損失増加により低下したWDM信号光のパワーを補償するように光増幅器2及び励起光源3の出力パワーを制御できる。すなわち、光伝送装置100は、光ファイバの損失が増加した場合も、WDM信号光の1波長あたりの光パワーを維持し、WDM信号光の伝送品質を維持できる。 Since distributed Raman amplification uses an optical fiber as a medium, when the loss of the optical fiber increases, the power of the pumping light in the optical fiber decreases and the Raman gain decreases. Even when the loss of such an optical fiber increases, the optical transmission apparatus 100 compensates for the power of the WDM signal light that has decreased due to the increase in the loss of the optical fiber by monitoring the change in the optical power per wavelength of the WDM signal light. Thus, the output power of the optical amplifier 2 and the pumping light source 3 can be controlled. That is, the optical transmission device 100 can maintain the optical power per wavelength of the WDM signal light and maintain the transmission quality of the WDM signal light even when the loss of the optical fiber increases.
 (第1の実施形態の変形例)
 第1の実施形態の変形例について説明する。第1の実施形態の変形例の光伝送装置は、光増幅器、励起光源、測定部、光合波器、制御回路を備える。光増幅器は、入力された信号光を増幅する。励起光源は、光伝送路において分布ラマン増幅を生じさせる励起光を出力する。光合波器は、光増幅器で増幅された信号光と、励起光とを合波して光伝送路に送出する。測定部は、光伝送路を伝搬する伝搬光の光伝送路内の散乱によって発生した散乱光を検出することで、伝搬光の光伝送路内の最大パワーを測定する。測定部は、測定された伝搬光の最大パワーを制御回路へ通知する。制御回路は、測定部から通知された伝搬光の最大パワーに基づいて、励起光の出力パワーと光増幅器の出力パワーとを制御する。
(Modification of the first embodiment)
A modification of the first embodiment will be described. The optical transmission device according to the modification of the first embodiment includes an optical amplifier, an excitation light source, a measurement unit, an optical multiplexer, and a control circuit. The optical amplifier amplifies the input signal light. The pumping light source outputs pumping light that causes distributed Raman amplification in the optical transmission line. The optical multiplexer combines the signal light amplified by the optical amplifier and the pumping light, and sends them to the optical transmission line. The measurement unit measures the maximum power in the optical transmission line of the propagation light by detecting the scattered light generated by the scattering in the optical transmission line of the propagation light propagating through the optical transmission line. The measurement unit notifies the control circuit of the maximum power of the measured propagation light. The control circuit controls the output power of the pumping light and the output power of the optical amplifier based on the maximum power of the propagating light notified from the measurement unit.
 第1の実施形態の変形例の光伝送装置が備える光増幅器、励起光源、測定部、光合波器及び制御回路は、それぞれ、図1に示した光伝送装置100が備える光増幅器2、励起光源3、OTDR4、光合波器5、制御回路6に対応する。ただし、本変形例においては、測定部の機能はOTDR4の機能に限定されない。測定部は、散乱光を検出することで伝搬光の光伝送路内の最大パワーを測定して制御回路へ通知する機能を備えていればよい。 The optical amplifier, pumping light source, measurement unit, optical multiplexer, and control circuit included in the optical transmission device according to the modification of the first embodiment are the optical amplifier 2, pumping light source included in the optical transmission device 100 illustrated in FIG. 3, OTDR 4, optical multiplexer 5, and control circuit 6. However, in the present modification, the function of the measurement unit is not limited to the function of OTDR4. The measurement unit only needs to have a function of measuring the maximum power of the propagation light in the optical transmission path by detecting scattered light and notifying the control circuit.
 このような構成を備える本変形例の光伝送装置は、光伝送路内を伝搬する光の最大パワーが非線形波形歪による影響が発生する閾値を超えないように、光増幅器及び励起光源の出力パワーを制御できる。すなわち、光伝送路の内部の最大パワーを管理することで、第1の実施形態の変形例の光伝送装置は、光伝送路内の非線形光学効果による信号光の伝送品質の悪化を抑制しつつ、伝送スパンを拡大できる。 The optical transmission device of this modification having such a configuration is configured so that the maximum power of the light propagating in the optical transmission path does not exceed the threshold at which the influence of nonlinear waveform distortion occurs, and the output power of the optical amplifier and the pumping light source. Can be controlled. That is, by managing the maximum power inside the optical transmission line, the optical transmission device according to the modification of the first embodiment suppresses the deterioration of the transmission quality of the signal light due to the nonlinear optical effect in the optical transmission line. The transmission span can be expanded.
 (第2の実施形態)
 WDM信号光が伝送される光伝送システムでは、広帯域に亘って平坦なラマン増幅特性を確保するため、複数の異なる波長を持つ励起光が励起光源として用いられる場合がある。図7は、第2の実施形態の光伝送システム20の構成を示すブロック図である。図8は、第2の実施形態における波長配置の例を示す図である。第2の実施形態の光伝送システム20は、光伝送装置200、光ファイバ7及び光受信装置110を備える。光ファイバ7及び光受信装置110の機能は、図1に示した第1の実施形態と同様である。
(Second Embodiment)
In an optical transmission system in which WDM signal light is transmitted, pump light having a plurality of different wavelengths may be used as a pump light source in order to ensure flat Raman amplification characteristics over a wide band. FIG. 7 is a block diagram illustrating a configuration of the optical transmission system 20 according to the second embodiment. FIG. 8 is a diagram illustrating an example of wavelength arrangement in the second embodiment. The optical transmission system 20 according to the second embodiment includes an optical transmission device 200, an optical fiber 7, and an optical reception device 110. The functions of the optical fiber 7 and the optical receiver 110 are the same as those in the first embodiment shown in FIG.
 光伝送装置200は、第1の実施形態の光伝送装置100と比較して、励起光源31が2個の光源(LD1及びLD2)を備える点で相違する。LD1及びLD2はレーザダイオード(laser diode)であり、図8に示すようにLD1の波長とLD2の波長とは異なる。励起光源3以外の要素の光伝送装置200の構成及び動作は、光伝送装置100と基本的に同様である。制御回路6は、OTDR波形に基づいて、励起光源3が備える2個のLD(LD1及びLD2)の出力パワーを独立に制御する。複数の波長を持つ励起光源3により、光伝送装置200は、光伝送装置100よりも広いラマン増幅帯域を持つ。 The optical transmission device 200 is different from the optical transmission device 100 according to the first embodiment in that the excitation light source 31 includes two light sources (LD1 and LD2). LD1 and LD2 are laser diodes, and the wavelength of LD1 is different from the wavelength of LD2 as shown in FIG. The configuration and operation of the optical transmission device 200 other than the pumping light source 3 are basically the same as those of the optical transmission device 100. The control circuit 6 independently controls the output power of the two LDs (LD1 and LD2) provided in the excitation light source 3 based on the OTDR waveform. Due to the excitation light source 3 having a plurality of wavelengths, the optical transmission device 200 has a wider Raman amplification band than the optical transmission device 100.
 また、図8に示すように、OTDR光はWDM信号光の短波長側と長波長側に1波長ずつ配置されてもよい。OTDR光の波長はOTDR波長1及びOTDR波長2として、図8の上向きの矢印で示される。この場合には、OTDR4は波長が異なる複数のOTDR光を出力する。例えば、複数のOTDR光のうち2つのOTDR光の波長は、それぞれWDM信号光の波長の上限の近傍及び下限の近傍にある。 Further, as shown in FIG. 8, the OTDR light may be arranged one wavelength each on the short wavelength side and the long wavelength side of the WDM signal light. The wavelengths of the OTDR light are indicated by upward arrows in FIG. 8 as OTDR wavelength 1 and OTDR wavelength 2. In this case, the OTDR 4 outputs a plurality of OTDR lights having different wavelengths. For example, the wavelengths of two OTDR lights among the plurality of OTDR lights are near the upper limit and the lower limit of the wavelength of the WDM signal light, respectively.
 波長が異なる複数のOTDR光のOTDR波形を監視して比較することにより、光ファイバ7内で分布ラマン増幅を受けたWDM信号光の波長間のレベル差(すなわち、分布ラマン利得の波長依存性)を推定できる。制御回路6は、WDM信号光の各波長のパワーを、OTDR光1及びOTDR光2の波長特性を補間して求めてもよい。制御回路6は、2波長のOTDR光によるそれぞれのOTDR波形の比較結果に基づいて、励起光源3が備える2個のLD(LD1及びLD2)の出力パワーを独立に制御してもよい。 By monitoring and comparing OTDR waveforms of a plurality of OTDR lights having different wavelengths, a level difference between wavelengths of WDM signal light subjected to distributed Raman amplification in the optical fiber 7 (that is, wavelength dependence of distributed Raman gain). Can be estimated. The control circuit 6 may obtain the power of each wavelength of the WDM signal light by interpolating the wavelength characteristics of the OTDR light 1 and the OTDR light 2. The control circuit 6 may independently control the output power of the two LDs (LD1 and LD2) provided in the pumping light source 3 based on the comparison result of the respective OTDR waveforms by the OTDR light of two wavelengths.
 このような制御により、光伝送装置200は、光伝送装置100の効果に加えて、光ファイバ7内でのWDM信号光の波長間の光パワー偏差の発生を抑制し、WDM信号光の波長の全域に亘って一定の伝送品質を確保できるという効果を奏する。なお、図7及び図8では、励起光源3及びOTDR光がいずれも2波長である場合を示した。しかし、励起光源及びOTDR光の波長数はいずれも2波長に限定されない。また、励起光源の波長数とOTDR光の波長数とは同一でなくてもよい。 By such control, in addition to the effect of the optical transmission device 100, the optical transmission device 200 suppresses the occurrence of optical power deviation between the wavelengths of the WDM signal light in the optical fiber 7, and the wavelength of the WDM signal light is reduced. There is an effect that a certain transmission quality can be secured over the entire area. 7 and 8 show the case where both the excitation light source 3 and the OTDR light have two wavelengths. However, the number of wavelengths of the excitation light source and the OTDR light is not limited to two wavelengths. Further, the number of wavelengths of the excitation light source and the number of wavelengths of the OTDR light may not be the same.
 (第3の実施形態)
 図9は、本発明の第3の実施形態の光伝送システム30の構成を示すブロック図である。第3の実施形態の光伝送システム30は、光伝送装置300、光ファイバ7及び光受信装置110を備える。光ファイバ7及び光受信装置110の機能は、図1に示した第1の実施形態と同様である。
(Third embodiment)
FIG. 9 is a block diagram illustrating a configuration of an optical transmission system 30 according to the third embodiment of this invention. The optical transmission system 30 according to the third embodiment includes an optical transmission device 300, an optical fiber 7, and an optical reception device 110. The functions of the optical fiber 7 and the optical receiver 110 are the same as those in the first embodiment shown in FIG.
 光伝送装置300は、第1の実施形態の光伝送装置100と比較して、光合波器1と光増幅器2との間に分散補償部8を備える点で相違する。光伝送装置300の、分散補償部8及び制御回路6における分散補償部8の制御以外の構成及び動作は、光伝送装置100と同様である。分散補償部8は、光ファイバ7を伝搬するWDM信号光のパワーが最大となる地点において光ファイバ7によって生じる波長分散を相殺する量の波長分散を、WDM信号光に付与する。 The optical transmission device 300 is different from the optical transmission device 100 according to the first embodiment in that a dispersion compensation unit 8 is provided between the optical multiplexer 1 and the optical amplifier 2. The configuration and operation of the optical transmission device 300 other than the control of the dispersion compensation unit 8 and the dispersion compensation unit 8 in the control circuit 6 are the same as those of the optical transmission device 100. The dispersion compensator 8 imparts WDM signal light with an amount of chromatic dispersion that cancels out the chromatic dispersion caused by the optical fiber 7 at a point where the power of the WDM signal light propagating through the optical fiber 7 is maximum.
 伝送特性の観点からは、伝搬中の信号光パワーが最大となる地点において、信号光の分散が補償された状態(すなわち、分散量が0(ps/nm)である状態)に近いほど、信号光の伝送品質が高くなる。光ファイバ7の入力端からWDM信号光のパワーが最大となる地点までの距離をL1、光ファイバの単位長さあたりの分散量をDとすると、分散補償部8においてWDM信号光に付加される分散補償量は、-D×L1で与えられる。ここで、光ファイバ7の特性が既知であれば、分散量Dの値は容易に確認できる。また、距離L1は、OTDR波形から知ることができる。 From the viewpoint of transmission characteristics, at a point where the signal light power during propagation is maximum, the closer the signal light dispersion is to the compensated state (that is, the state where the dispersion amount is 0 (ps / nm)), the more the signal The transmission quality of light increases. When the distance from the input end of the optical fiber 7 to the point where the power of the WDM signal light is maximum is L1, and the dispersion amount per unit length of the optical fiber is D, the dispersion compensator 8 adds the WDM signal light to the WDM signal light. The dispersion compensation amount is given by −D × L1. Here, if the characteristics of the optical fiber 7 are known, the value of the dispersion amount D can be easily confirmed. The distance L1 can be known from the OTDR waveform.
 このような構成を備える第3の実施形態の光伝送装置300は、第1の実施形態の効果に加えて、光ファイバ7の波長分散に起因する伝送品質の低下を抑制できるという効果を奏する。 The optical transmission apparatus 300 according to the third embodiment having such a configuration has an effect of suppressing a decrease in transmission quality due to wavelength dispersion of the optical fiber 7 in addition to the effect of the first embodiment.
 (第4の実施形態)
 図10は、本発明の第4の実施形態の光伝送システム40の構成を示すブロック図である。第4の実施形態の光伝送システム40は、光伝送装置400、光ファイバ7及び光受信装置110を備える。光ファイバ7及び光受信装置110の機能は、図1に示した第1の実施形態と同様である。
(Fourth embodiment)
FIG. 10 is a block diagram showing the configuration of the optical transmission system 40 according to the fourth embodiment of the present invention. The optical transmission system 40 according to the fourth embodiment includes an optical transmission device 400, an optical fiber 7, and an optical reception device 110. The functions of the optical fiber 7 and the optical receiver 110 are the same as those in the first embodiment shown in FIG.
 光伝送装置400は、第1の実施形態の光伝送装置100と比較して、制御回路6が、さらに、光送信機11-1nを制御する点で相違する。光伝送装置400の他の部分の構成及び動作は、光伝送装置100と同様である。制御回路6は、OTDR波形に基づいて、光ファイバ7によって生じる分散及び波形歪みが補償されるように、光送信機11-1nの送信波形を制御する。光伝送装置400におけるこれらの分散補償及び波形歪補償は、光学的な補償及び電気的な補償のいずれでもよい。なお、光伝送装置400は、さらに、第3の実施形態で説明した分散補償部8を光合波器1と光増幅器2との間に備えていてもよい。 The optical transmission device 400 is different from the optical transmission device 100 of the first embodiment in that the control circuit 6 further controls the optical transmitter 11-1n. The configuration and operation of other parts of the optical transmission device 400 are the same as those of the optical transmission device 100. Based on the OTDR waveform, the control circuit 6 controls the transmission waveform of the optical transmitter 11-1n so that dispersion and waveform distortion caused by the optical fiber 7 are compensated. These dispersion compensation and waveform distortion compensation in the optical transmission apparatus 400 may be either optical compensation or electrical compensation. The optical transmission apparatus 400 may further include the dispersion compensator 8 described in the third embodiment between the optical multiplexer 1 and the optical amplifier 2.
 このような構成を備える第4の実施形態の光伝送装置400は、第1の実施形態の効果に加えて、波長分散及び波形歪に起因する伝送品質の低下を抑制できるという効果を奏する。 The optical transmission apparatus 400 according to the fourth embodiment having such a configuration has an effect of suppressing a reduction in transmission quality due to chromatic dispersion and waveform distortion in addition to the effects of the first embodiment.
 なお、本発明の実施形態は以下の付記のようにも記載されうるが、これらには限定されない。 In addition, although embodiment of this invention can be described also as the following additional remarks, it is not limited to these.
 (付記1)
 入力された信号光を増幅する光増幅手段と、
 光伝送路において分布ラマン増幅を生じさせる励起光を出力する励起手段と、
 前記光増幅手段で増幅された前記信号光と、前記励起光とを合波して前記光伝送路に送出する第1の光合波手段と、
 前記光伝送路を伝搬する伝搬光の前記光伝送路内の散乱によって発生した散乱光を検出することで前記伝搬光の前記光伝送路内の最大パワーを測定する測定手段と、
 前記測定手段から通知された前記最大パワーに基づいて前記励起光の出力パワーと前記光増幅手段の出力パワーとを制御する制御手段と、
を備える光伝送装置。
(Appendix 1)
Optical amplification means for amplifying the input signal light;
Pumping means for outputting pumping light that causes distributed Raman amplification in the optical transmission line;
First optical multiplexing means for multiplexing the signal light amplified by the optical amplification means and the pumping light and sending them to the optical transmission line;
Measuring means for measuring the maximum power of the propagation light in the optical transmission line by detecting scattered light generated by scattering of the propagation light propagating in the optical transmission line;
Control means for controlling the output power of the pumping light and the output power of the optical amplifying means based on the maximum power notified from the measuring means;
An optical transmission device comprising:
 (付記2)
 前記第1の光合波手段はさらに試験光を合波して前記光伝送路に送出し、
 前記測定手段は前記試験光を前記第1の合波手段に出力し、前記光伝送路内で散乱された前記試験光を前記散乱光として検出することで前記最大パワーを測定する、
 付記1に記載された光伝送装置。
(Appendix 2)
The first optical multiplexing means further combines test light and sends it to the optical transmission line,
The measurement means outputs the test light to the first multiplexing means, and measures the maximum power by detecting the test light scattered in the optical transmission path as the scattered light.
The optical transmission device according to attachment 1.
 (付記3)
 前記測定手段はOTDR(optical time domain reflectometer)である、付記2に記載された光伝送装置。
(Appendix 3)
The optical transmission apparatus according to appendix 2, wherein the measuring means is an OTDR (optical time domain reflectometer).
 (付記4)
 前記OTDRは、前記散乱光の受信にコヒーレント受信を用いるコヒーレントOTDRである、付記3に記載された光伝送装置。
(Appendix 4)
The optical transmission apparatus according to attachment 3, wherein the OTDR is a coherent OTDR that uses coherent reception to receive the scattered light.
 (付記5)
 前記制御手段は、前記最大パワーが、前記信号光に対する前記光伝送路内における非線形光学効果による前記信号光の伝送品質の劣化の許容量に基づいて決定された閾値を超えないように前記励起光の出力パワーと前記光増幅手段の出力パワーとを制御する、付記1乃至4のいずれかに記載された光伝送装置。
(Appendix 5)
The control means is configured so that the maximum power does not exceed a threshold value determined based on an allowable amount of deterioration in transmission quality of the signal light due to a nonlinear optical effect in the optical transmission path with respect to the signal light. The optical transmission device according to any one of appendices 1 to 4, wherein the output power of the optical amplifying means is controlled.
 (付記6)
 前記試験光の波長は、前記試験光に対する前記分布ラマン増幅の特性に基づいて前記信号光に対する前記分布ラマン増幅の特性を推定可能な波長である、付記2乃至5のいずれかに記載された光伝送装置。
(Appendix 6)
The light according to any one of appendices 2 to 5, wherein the wavelength of the test light is a wavelength capable of estimating the characteristic of the distributed Raman amplification with respect to the signal light based on the characteristic of the distributed Raman amplification with respect to the test light. Transmission equipment.
 (付記7)
 前記試験光の波長は、前記信号光の波長の近傍にある、付記2乃至6のいずれかに記載された光伝送装置。
(Appendix 7)
The optical transmission device according to any one of appendices 2 to 6, wherein the wavelength of the test light is in the vicinity of the wavelength of the signal light.
 (付記8)
 前記信号光は波長多重された複数の光を含む、付記2乃至7のいずれかに記載された光伝送装置。
(Appendix 8)
8. The optical transmission device according to any one of appendices 2 to 7, wherein the signal light includes a plurality of wavelengths multiplexed light.
 (付記9)
 前記試験手段は波長が異なる複数の前記試験光を出力し、前記複数の試験光のうち2つの前記試験光の波長はそれぞれ前記波長多重された光の波長の上限の近傍及び下限の近傍にある、付記8に記載された光伝送装置。
(Appendix 9)
The test means outputs a plurality of the test lights having different wavelengths, and the wavelengths of the two test lights out of the plurality of test lights are in the vicinity of the upper limit and the lower limit of the wavelength multiplexed light, respectively. The optical transmission apparatus according to appendix 8.
 (付記10)
 前記増幅手段の入力側に接続された分散補償手段をさらに備え、
 前記試験手段は、前記光伝送路の、前記伝搬光の入力端から前記伝搬光のパワーが前記最大パワーとなる地点までの距離を測定して前記制御手段に通知し、前記制御手段は、前記距離に基づいて、前記地点において生じる前記光伝送路の分散量を相殺する量の分散を前記信号光に与えるように前記分散補償手段を制御する、付記1乃至9のいずれかに記載された光伝送装置。
(Appendix 10)
Further comprising dispersion compensation means connected to the input side of the amplification means,
The test means measures the distance from the input end of the propagation light of the optical transmission path to a point where the power of the propagation light becomes the maximum power, and notifies the control means, the control means, The light according to any one of appendices 1 to 9, wherein the dispersion compensation unit is controlled based on a distance so as to give the signal light an amount of dispersion that cancels out the amount of dispersion of the optical transmission line generated at the point. Transmission equipment.
 (付記11)
 前記励起手段は相異なる波長を持つ複数の前記励起光を出力し、前記制御手段は前記光伝送路内の前記伝搬光のパワー分布の波長依存性が所定の範囲となるように前記複数の励起光を独立に制御する、付記1乃至10のいずれかに記載された光伝送装置。
(Appendix 11)
The excitation unit outputs a plurality of the excitation lights having different wavelengths, and the control unit is configured to output the plurality of excitations so that the wavelength dependence of the power distribution of the propagating light in the optical transmission path falls within a predetermined range. The optical transmission device according to any one of appendices 1 to 10, wherein the light is controlled independently.
 (付記12)
 出力された前記信号光が前記光増幅手段に入力されるように接続された光送信手段をさらに備える、付記1乃至11のいずれかに記載された光伝送装置。
(Appendix 12)
The optical transmission apparatus according to any one of appendices 1 to 11, further comprising: an optical transmission unit connected so that the output signal light is input to the optical amplification unit.
 (付記13)
 出力された前記信号光が前記光増幅手段に入力されるように接続された光送信手段をさらに備え、
 前記制御手段は、前記地点において生じる前記光伝送路の分散量及び前記信号光の波形歪の少なくとも一方を相殺するように前記光送信手段を制御する、付記10に記載された光伝送装置。
(Appendix 13)
An optical transmitter connected so that the output signal light is input to the optical amplifier;
The optical transmission apparatus according to appendix 10, wherein the control unit controls the optical transmission unit so as to cancel at least one of a dispersion amount of the optical transmission path and a waveform distortion of the signal light generated at the point.
 (付記14)
 波長の異なる複数の前記光送信手段から出力された光を合波して、合波された前記光送信手段から出力された光が前記光増幅手段に入力されるように接続された第2の光合波手段をさらに備える、付記12又は13に記載された光伝送装置。
(Appendix 14)
The second light is connected so that the light output from the plurality of optical transmission units having different wavelengths is combined, and the combined light output from the optical transmission unit is input to the optical amplification unit. The optical transmission device according to appendix 12 or 13, further comprising optical multiplexing means.
 (付記15)
 付記1乃至14のいずれかに記載された光伝送装置と、
 前記光伝送装置から出力される光を伝搬させる光伝送路と、
 前記光伝送路から出力される前記信号光を受信する光受信装置と、
を備える光伝送システム。
(Appendix 15)
The optical transmission device according to any one of appendices 1 to 14,
An optical transmission path for propagating light output from the optical transmission device;
An optical receiver for receiving the signal light output from the optical transmission line;
An optical transmission system comprising:
 (付記16)
 入力された信号光を増幅し、
 光伝送路において分布ラマン増幅を生じさせる励起光を出力し、
 増幅された前記信号光と、前記励起光とを合波して前記光伝送路へ送出し、
 前記光伝送路を伝搬する伝搬光の前記光伝送路内の散乱によって発生した散乱光を検出することで、前記信号光の前記光伝送路内の最大パワーを測定し、
 前記最大パワーに基づいて前記励起光の出力パワーと前記光増幅手段の出力パワーとを制御する、
光伝送装置の制御方法。
(Appendix 16)
Amplifies the input signal light,
Outputs pumping light that causes distributed Raman amplification in the optical transmission line,
The amplified signal light and the excitation light are combined and sent to the optical transmission line,
By detecting scattered light generated by scattering in the optical transmission path of propagation light propagating through the optical transmission path, the maximum power in the optical transmission path of the signal light is measured,
Controlling the output power of the pumping light and the output power of the optical amplification means based on the maximum power;
Control method of optical transmission apparatus.
 (付記17)
 光伝送装置のコンピュータに、
 光伝送路を伝搬する伝搬光の前記光伝送路内の散乱によって発生した散乱光に基づいて測定された、前記伝搬光の前記光伝送路内の最大パワーに基づいて、
 前記光伝送路にラマン増幅を生じさせる励起光の出力パワーと、信号光を増幅して前記光伝送路に出力する光増幅手段の出力パワーと、を制御させるための、光伝送装置の制御プログラム。
(Appendix 17)
In the computer of the optical transmission device,
Based on the maximum power in the optical transmission line of the propagation light measured based on the scattered light generated by scattering in the optical transmission path of the propagation light propagating through the optical transmission line,
A control program for an optical transmission device for controlling the output power of pumping light that causes Raman amplification in the optical transmission line and the output power of optical amplification means that amplifies signal light and outputs it to the optical transmission line .
 以上、実施形態を参照して本願発明を説明したが、本願発明は上記の実施形態に限定されない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。例えば、第1乃至第4の実施形態に記載されたOTDR4は、散乱光の検出にコヒーレント受信を用いるコヒーレントOTDRであってもよい。また、第3及び第4の実施形態で説明した分散補償のための構成や波形歪み補償のための構成は、第2の実施形態の光伝送装置200に適用されてもよい。 As mentioned above, although this invention was demonstrated with reference to embodiment, this invention is not limited to said embodiment. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention. For example, the OTDR 4 described in the first to fourth embodiments may be a coherent OTDR that uses coherent reception to detect scattered light. In addition, the configuration for dispersion compensation and the configuration for waveform distortion compensation described in the third and fourth embodiments may be applied to the optical transmission device 200 of the second embodiment.
 この出願は、2014年7月18日に出願された日本出願特願2014-147408を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2014-147408 filed on July 18, 2014, the entire disclosure of which is incorporated herein.
 10、20、30、40  光伝送システム
 100、200、300、400  光伝送装置
 110  光受信装置
 1、5  光合波器
 2  光増幅器
 3、31  励起光源
 4  OTDR
 6  制御回路
 7  光ファイバ
 8  分散補償部
 11-1n  光送信機
 91  CPU
 92  メモリ
10, 20, 30, 40 Optical transmission system 100, 200, 300, 400 Optical transmission device 110 Optical reception device 1, 5 Optical multiplexer 2 Optical amplifier 3, 31 Excitation light source 4 OTDR
6 Control Circuit 7 Optical Fiber 8 Dispersion Compensator 11-1n Optical Transmitter 91 CPU
92 memory

Claims (10)

  1.  入力された信号光を増幅する光増幅手段と、
     光伝送路において分布ラマン増幅を生じさせる励起光を出力する励起手段と、
     前記光増幅手段で増幅された前記信号光と、前記励起光とを合波して前記光伝送路に送出する第1の光合波手段と、
     前記光伝送路を伝搬する伝搬光の前記光伝送路内の散乱によって発生した散乱光を検出することで前記伝搬光の前記光伝送路内の最大パワーを測定する測定手段と、
     前記測定手段から通知された前記最大パワーに基づいて前記励起光の出力パワーと前記光増幅手段の出力パワーとを制御する制御手段と、
    を備える光伝送装置。
    Optical amplification means for amplifying the input signal light;
    Pumping means for outputting pumping light that causes distributed Raman amplification in the optical transmission line;
    First optical multiplexing means for multiplexing the signal light amplified by the optical amplification means and the pumping light and sending them to the optical transmission line;
    Measuring means for measuring the maximum power of the propagation light in the optical transmission line by detecting scattered light generated by scattering of the propagation light propagating in the optical transmission line;
    Control means for controlling the output power of the pumping light and the output power of the optical amplifying means based on the maximum power notified from the measuring means;
    An optical transmission device comprising:
  2.  前記第1の光合波手段はさらに試験光を合波して前記光伝送路に送出し、
     前記測定手段は前記試験光を前記第1の合波手段に出力し、前記光伝送路内で散乱された前記試験光を前記散乱光として検出することで前記最大パワーを測定する、
     請求項1に記載された光伝送装置。
    The first optical multiplexing means further combines test light and sends it to the optical transmission line,
    The measurement means outputs the test light to the first multiplexing means, and measures the maximum power by detecting the test light scattered in the optical transmission path as the scattered light.
    The optical transmission device according to claim 1.
  3.  前記制御手段は、前記最大パワーが、前記信号光に対する前記光伝送路内における非線形光学効果による前記信号光の伝送品質の劣化の許容量に基づいて決定された閾値を超えないように前記励起光の出力パワーと前記光増幅手段の出力パワーとを制御する、請求項1又は2に記載された光伝送装置。 The control means is configured so that the maximum power does not exceed a threshold value determined based on an allowable amount of deterioration in transmission quality of the signal light due to a nonlinear optical effect in the optical transmission path with respect to the signal light. The optical transmission apparatus according to claim 1, wherein the output power of the optical amplifying unit and the output power of the optical amplifying unit are controlled.
  4.  前記試験光の波長は、前記試験光に対する前記分布ラマン増幅の特性に基づいて前記信号光に対する前記分布ラマン増幅の特性を推定可能な波長である、請求項2又は3に記載された光伝送装置。 4. The optical transmission device according to claim 2, wherein the wavelength of the test light is a wavelength capable of estimating the characteristic of the distributed Raman amplification with respect to the signal light based on the characteristic of the distributed Raman amplification with respect to the test light. .
  5.  前記信号光は波長多重された複数の光を含む、請求項2乃至4のいずれかに記載された光伝送装置。 5. The optical transmission apparatus according to claim 2, wherein the signal light includes a plurality of wavelengths multiplexed light.
  6.  前記試験手段は波長が異なる複数の前記試験光を出力し、前記複数の試験光のうち2つの前記試験光の波長はそれぞれ前記波長多重された光の波長の上限の近傍及び下限の近傍にある、請求項5に記載された光伝送装置。 The test means outputs a plurality of the test lights having different wavelengths, and the wavelengths of the two test lights out of the plurality of test lights are in the vicinity of the upper limit and the lower limit of the wavelength multiplexed light, respectively. The optical transmission device according to claim 5.
  7.  前記増幅手段の入力側に接続された分散補償手段をさらに備え、
     前記試験手段は前記光伝送路の入力端から前記伝搬光のパワーが前記最大パワーとなる地点までの距離を測定して前記制御手段に通知し、前記制御手段は、前記距離に基づいて、前記地点において生じる前記光伝送路の分散量を相殺する量の分散を前記信号光に与えるように前記分散補償手段を制御する、請求項1乃至6のいずれかに記載された光伝送装置。
    Further comprising dispersion compensation means connected to the input side of the amplification means,
    The test means measures the distance from the input end of the optical transmission line to the point where the power of the propagating light is the maximum power and notifies the control means, and the control means is based on the distance, The optical transmission apparatus according to claim 1, wherein the dispersion compensation unit is controlled to give the signal light an amount of dispersion that cancels out the amount of dispersion of the optical transmission path that occurs at a point.
  8.  出力された前記信号光が前記光増幅手段に入力されるように接続された光送信手段をさらに備える、請求項1乃至7のいずれかに記載された光伝送装置。 The optical transmission device according to any one of claims 1 to 7, further comprising an optical transmission unit connected so that the output signal light is input to the optical amplification unit.
  9.  波長の異なる複数の前記光送信手段から出力された光を合波して、合波された前記光送信手段から出力された光が前記光増幅手段に入力されるように接続された第2の光合波手段をさらに備える、請求項8に記載された光伝送装置。 The second light is connected so that the light output from the plurality of optical transmission units having different wavelengths is combined, and the combined light output from the optical transmission unit is input to the optical amplification unit. The optical transmission device according to claim 8, further comprising optical multiplexing means.
  10.  入力された信号光を増幅し、
     光伝送路において分布ラマン増幅を生じさせる励起光を出力し、
     増幅された前記信号光と、前記励起光とを合波して前記光伝送路へ送出し、
     前記光伝送路を伝搬する伝搬光の前記光伝送路内の散乱によって発生した散乱光を検出することで、前記信号光の前記光伝送路内の最大パワーを測定し、
     前記最大パワーに基づいて前記励起光の出力パワーと前記光増幅手段の出力パワーとを制御する、
    光伝送装置の制御方法。
    Amplifies the input signal light,
    Outputs pumping light that causes distributed Raman amplification in the optical transmission line,
    The amplified signal light and the excitation light are combined and sent to the optical transmission line,
    By detecting scattered light generated by scattering in the optical transmission path of propagation light propagating through the optical transmission path, the maximum power in the optical transmission path of the signal light is measured,
    Controlling the output power of the pumping light and the output power of the optical amplification means based on the maximum power;
    Control method of optical transmission apparatus.
PCT/JP2015/003535 2014-07-18 2015-07-13 Optical transmission device and optical transmission method WO2016009638A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-147408 2014-07-18
JP2014147408 2014-07-18

Publications (1)

Publication Number Publication Date
WO2016009638A1 true WO2016009638A1 (en) 2016-01-21

Family

ID=55078146

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/003535 WO2016009638A1 (en) 2014-07-18 2015-07-13 Optical transmission device and optical transmission method

Country Status (1)

Country Link
WO (1) WO2016009638A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2856435B2 (en) * 1989-06-12 1999-02-10 日本電信電話株式会社 Stabilization method of optical fiber active transmission line
JP2001235772A (en) * 2000-02-22 2001-08-31 Sumitomo Electric Ind Ltd Raman amplification control device and optical transmission system
JP2005084041A (en) * 2003-09-11 2005-03-31 Nippon Telegr & Teleph Corp <Ntt> Transmission loss measuring device of optical transmission system, and its method
JP2006279610A (en) * 2005-03-29 2006-10-12 Fujitsu Ltd Optical transmission apparatus
JP2006287649A (en) * 2005-03-31 2006-10-19 Nec Corp Optical signal transmission power adjusting device in optical transmission system and optical signal transmission power adjusting method
WO2007111797A2 (en) * 2006-03-23 2007-10-04 Xtera Communications, Inc. System and method for implementing a boosterless optical communication system
WO2011130193A1 (en) * 2010-04-16 2011-10-20 Alcatel-Lucent Usa Inc. Electronic nonlinearity compensation for optical transmission systems

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2856435B2 (en) * 1989-06-12 1999-02-10 日本電信電話株式会社 Stabilization method of optical fiber active transmission line
JP2001235772A (en) * 2000-02-22 2001-08-31 Sumitomo Electric Ind Ltd Raman amplification control device and optical transmission system
JP2005084041A (en) * 2003-09-11 2005-03-31 Nippon Telegr & Teleph Corp <Ntt> Transmission loss measuring device of optical transmission system, and its method
JP2006279610A (en) * 2005-03-29 2006-10-12 Fujitsu Ltd Optical transmission apparatus
JP2006287649A (en) * 2005-03-31 2006-10-19 Nec Corp Optical signal transmission power adjusting device in optical transmission system and optical signal transmission power adjusting method
WO2007111797A2 (en) * 2006-03-23 2007-10-04 Xtera Communications, Inc. System and method for implementing a boosterless optical communication system
WO2011130193A1 (en) * 2010-04-16 2011-10-20 Alcatel-Lucent Usa Inc. Electronic nonlinearity compensation for optical transmission systems

Similar Documents

Publication Publication Date Title
US8774624B2 (en) Optical transmission apparatus and optical communication system
US7123404B1 (en) Optical amplifier and optical amplification method
US9184864B2 (en) Optical transmission system, optical transmitting apparatus, and optical receiving apparatus
US9509370B2 (en) Optical transmission system and optical transmission device
JP4459277B2 (en) Method and apparatus for monitoring noise light by Raman amplification, and optical communication system using the same
EP2639898B1 (en) A method for controlling signal gain of a raman amplifier
US7796325B2 (en) Distributed Raman amplifier and WDM optical transmission system
JP4541574B2 (en) Optical repeater transmission system and optical repeater transmission method
EP2974082B1 (en) Tilt control through optical pump power adjustment
US11968033B2 (en) Optical transmission device, optical transmission system, and optical transmitting power control method
JP2008078728A (en) Optical transmission device
US9478935B2 (en) Optical amplifier, wavelength multiplexing optical transmission system, and program
JP2008042096A (en) Optical amplifier and light transmission system
WO2016009638A1 (en) Optical transmission device and optical transmission method
JP6132913B2 (en) Optical transmission system and node
US9001413B2 (en) Control circuit, control method, and transmission system
JP4941576B2 (en) Optical repeater transmission system and optical repeater transmission method
JP2009267950A (en) Optical communication system and optical communication apparatus
US8477030B2 (en) Optical amplifier module and dispersion compensation fiber loss detection method
JP2013074456A (en) Optical relay system and optical relay method incorporating optical raman amplifier
US11165501B2 (en) Excitation light source apparatus and optical transmission system
US11711160B2 (en) Transmission device and transmission system
US20090323173A1 (en) Light output control apparatus
JP2014171232A (en) Optical transmission device, and optical transmission system
JP2012018288A (en) Raman amplifier

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15821422

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15821422

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP