WO2016008346A1 - Control interface for an electronic device - Google Patents

Control interface for an electronic device Download PDF

Info

Publication number
WO2016008346A1
WO2016008346A1 PCT/CN2015/081541 CN2015081541W WO2016008346A1 WO 2016008346 A1 WO2016008346 A1 WO 2016008346A1 CN 2015081541 W CN2015081541 W CN 2015081541W WO 2016008346 A1 WO2016008346 A1 WO 2016008346A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic device
control interface
accordance
dial
user
Prior art date
Application number
PCT/CN2015/081541
Other languages
French (fr)
Inventor
Hin Chiu Michael Lo
Original Assignee
Beato Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beato Limited filed Critical Beato Limited
Publication of WO2016008346A1 publication Critical patent/WO2016008346A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0354Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of 2D relative movements between the device, or an operating part thereof, and a plane or surface, e.g. 2D mice, trackballs, pens or pucks
    • G06F3/03547Touch pads, in which fingers can move on a surface
    • GPHYSICS
    • G04HOROLOGY
    • G04GELECTRONIC TIME-PIECES
    • G04G17/00Structural details; Housings
    • GPHYSICS
    • G04HOROLOGY
    • G04GELECTRONIC TIME-PIECES
    • G04G21/00Input or output devices integrated in time-pieces
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/163Wearable computers, e.g. on a belt
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/033Indexing scheme relating to G06F3/033
    • G06F2203/0339Touch strips, e.g. orthogonal touch strips to control cursor movement or scrolling; single touch strip to adjust parameter or to implement a row of soft keys

Definitions

  • the present invention relates to a control interface for an electronic device and more particularly, but not exclusively, to a bezel arranged to be coupled with a smart watch for controlling the operation of the smart watch.
  • Wearable electronic devices are devices with computing functions arranged to be worn or carried by a user.
  • Examples of wearable electronic devices includes smart watches, smart glasses, smart lenses, smart textiles, fabrics, jewellery, etc., all of which incorporate miniaturized computing device for interacting with a user and performing computing functions.
  • wearable electronic devices can generally interact more closely with the user.
  • smart watches are one of the most popular categories. In terms of outlook appearance, smart watches are not very different from other ordinary mechanical or electronic watches, as they all include a watch body with a screen for displaying time and a watch strap coupled with the watch body for securing the watch body onto a user’s wrist. However, in terms of internal structure and operation, smart watches are more complicated electrically with more advanced functions compared with ordinary mechanical or electronic watches.
  • a control interface for an electronic device comprising: an annular frame arranged to be coupled to the electronic device; wherein when the annular frame is manipulated by a user, the annular frame is arranged to generate a sound signal to be detected by the electronic device so as to control an operation of the electronic device.
  • the manipulation of the annular frame by the user generates a vibration that is detectable by the electronic device so as to control an operation of the electronic device.
  • the annular frame is operable to rotate in a clockwise direction and/or in an anticlockwise direction with respect to the electronic device.
  • the sound signal generated during clockwise rotation of the annular frame is different from the sound signal generated during anti-clockwise rotation of the annular frame, and the electronic device is operable to determine whether the annular frame is rotating in the clockwise direction or in the anticlockwise direction based on the sound signal.
  • the electronic device is operable to determine a spatial origin of the generation of the sound signal and/or the vibration generated by the manipulation of the annular frame for controlling the electronic device.
  • the electronic device is operable to determine a number of times of generation of the sound signals generated by the manipulation of the annular frame for controlling the electronic device.
  • the electronic device comprises a G-sensor and/or a sound sensor arranged to detect the manipulation of the annular frame by the user and to generate a control signal in response to the detection of the sound signal or the vibration.
  • the annular frame comprises a cylindrical body mounted with a rotatable cylindrical dial; and the rotatable cylindrical dial is arranged to be manipulated by the user to generate the sound signal or the vibration to be detected by the electronic device.
  • the cylindrical dial is rotatable in a clockwise direction and/or an anti-clockwise direction relative to the cylindrical body.
  • an inner circumference of the cylindrical dial is connected with a swinging member; whereupon rotation of the cylindrical dial by the user, the swinging member is arranged to impinge on the cylindrical body so as to generate the sound signal and/or the vibration.
  • the swinging member comprises a fixed end having a flexible element mounted to the inner circumference of the cylindrical dial, and a free end with an impinging element connected with the flexible element.
  • the flexible element is a spring.
  • the cylindrical body comprises a continuous ring of gear teeth with a recess defined between each pair of gear teeth.
  • the impinging element of the swinging member extends at least partly into the recess so as to impinge on a surface of the gear teeth in the recess for generation of the sound signal during rotation of the cylindrical dial.
  • the impinging element comprises two lateral ends each arranged to impinge on the surface of the gear teeth, the two lateral ends are made of different materials for generating difference sound signals for clockwise rotation and anticlockwise rotation of the cylindrical dial.
  • a marker is provided on the cylindrical dial to indicate a position of the swinging member.
  • the cylindrical body of the annular frame is arranged to be fixedly coupled with the smart watch.
  • the annular frame is arranged to surround an outer periphery of the electronic device.
  • the electronic device is a smart watch.
  • control interface is the form of a bezel.
  • a method for controlling an electronic device comprising the steps of: coupling a control interface with the electronic device; and manipulating the control interface so as to generate a sound signal and/or a vibration to be detected by the electronic device for controlling the electronic device; wherein the electronic device is operable to determine a spatial position of the generation of the sound signal and/or the vibration generated by the manipulation of the control interface.
  • the electronic device comprises a G-sensor and/or a sound sensor for detecting the sound signal and/or the vibration generated by the manipulation of the control interface.
  • the electronic device is a smart watch.
  • control interface is the control interface in accordance with the first aspect of the present invention.
  • a smart watch mounted with the control interface in accordance with the first aspect of the present invention.
  • bezel for a smart watch comprising: a cylindrical body fixedly mounted with the smart watch, and a cylindrical dial rotatably mounted on the cylindrical body for manipulation by the user; wherein the cylindrical dial is operable to be manipulated by the user to rotate in a clockwise and an anticlockwise direction; whereupon the cylindrical dial is manipulated by a user, the cylindrical dial is arranged to generate a sound signal or a vibration that is detected by the smart watch for controlling the smart watch; wherein the sound signal generated by the clockwise rotation of the cylindrical dial is different from the sound signal generated by the anti-clockwise rotation of the cylindrical dial, and wherein the smart watch is operable to determine a spatial origin of the sound signal or the vibration to affect different control of the smart watch.
  • a control interface for an electronic device comprising: a frame arranged to be coupled with the electronic device; a rotatable dial rotatably coupled with the frame, the rotatable dial having a conductive contact arranged to be in contact with an interface of the electronic device; wherein when the control interface is coupled with the electronic device and the rotatable dial is manipulated by a user, the manipulation is arranged to be detected by the electronic device as a control signal for controlling the electronic device.
  • the frame in one embodiment of the fifth aspect is preferably made of plastic. However, other materials such as metal or glass may also be used.
  • the manipulation of the rotatable dial by the user comprises a contact, with or without rotation, of the rotatable dial by the user.
  • the manipulation of the rotatable dial by the user activates the conductive contact for creating the control signal. More particularly, the contact, with or without rotation, of the rotatable dial by the user activates the conductive contact for creating the control signal.
  • control signal is associated with a position of a point of contact between the conductive contact of the rotatable dial and the interface of the electronic device.
  • the interface of the electronic device may display graphics, word or numbers. The position of the point of contact may thus be related to a user selection of a particular graphics, word or number displayed on the interface of the electronic device.
  • the interface of the electronic device comprises a touch sensitive display screen operable to display information.
  • the information may be static or dynamic graphics, words, numbers, etc., in 2D or 3D format.
  • the frame is annular. Yet in another embodiment, the frame may be of other shape.
  • the rotatable dial comprises a conductive plate formed with the conductive contact and a bezel ring operably connected with the conductive plate.
  • the conductive contact will be activated.
  • a protective layer e.g. thin film
  • a protective layer may be arranged between the conductive plate and the interface of electronic device such that the conductive contact of the conductive plate is in indirect contact with the interface of the electronic device. It is also possible for another protective layer which protects the screen of the electronic device to be arranged above the conductive plate.
  • the conductive plate includes an annular loop portion and a segment portion, the conductive contact being formed on the segment portion.
  • segment is preferably referring to a circular segment in mathematical sense that relates to a cut off of a circle by a chord.
  • segment may refer to a segment of any kind of shape.
  • the segment portion is substantially transparent. In another embodiment of the fifth aspect, the segment portion may have colour or may be opaque, as long as it does not block the user’s view of the interface of the electronic device.
  • control interface further comprising a ring member arranged to be coupled with the annular loop portion of the conductive plate.
  • the ring member is a metallic (e.g., aluminium) ring member adhered to or coupled with the conductive plate using mechanical (e.g., mechanical fitting) or chemical fixation (e.g., glue) means.
  • the annular frame, the annular loop portion of the conductive plate, and the ring member are arranged co-axially, and they are at least partially overlapping one another.
  • the frame includes a body with at least one opening for accommodating an actuator of the electronic device.
  • the actuator may be a knob, a rotary switch or a toggle switch, or any other actuators, operable to be manipulated by the user to interact with the electronic device.
  • the electronic device is a smart watch having a capacitive or resistive touch-sensitive display screen.
  • the screen may also be touch-sensitive by utilizing other technologies involving acoustic, electromagnetic (e.g. IR) and optical waves, pulses or signals.
  • a smart watch mounted with the control interface in accordance with the fifth aspect of the present invention.
  • Figure 1 is a control interface for an electronic device in accordance with one embodiment of the present invention
  • Figure 2 is an exploded view of the control interface of Figure 1;
  • Figure 3 shows the key operation structure for the control interface of Figure 1;
  • Figures 4A-4C show a detailed sound generation and operation mechanism of the key operation structure of Figure 3;
  • Figure 5 shows an alternative key operation structure for the control interface of Figure 1;
  • Figure 6 shows a close-up view on a section of the key operation structure in Figure 5;
  • FIG. 7 shows an electronic device coupled with the control interface in accordance with one embodiment of the present invention
  • FIGS 8-10 illustrate the control of the electronic device using the control interface in accordance with one embodiment of the present invention.
  • Figure 11 shows a watch with a control interface for an electronic device in accordance with one embodiment of the present invention
  • Figure 12 is a perspective view of the control interface of Figure 11;
  • Figure 13 shows an exploded view of the control interface of Figure 12.
  • a control interface for an electronic device comprising: an annular frame arranged to be coupled to the electronic device; wherein when the annular frame is manipulated by a user, the annular frame is arranged to generate a sound signal and/or a vibration to be detected by the electronic device so as to control an operation of the electronic device.
  • FIG. 1 shows a control interface 100 arranged to be coupled with an electronic device in accordance with an embodiment of the present invention.
  • the control interface 100 resembles a bezel that is arranged to be coupled with a watch piece (not shown) .
  • the watch piece is a watch body of a smart watch.
  • the smart watch may include one or more of, for example, input means with buttons/knobs/touch sensitive screens for receiving user input, a processor for processing the user input and coordination operations of various modules of the smart watch, a memory module (e.g. ROM, RAM) for data/information storage, output means with an interactive display (e.g. coloured 2D/3D graphics) , sensors for detecting bio-signals (e.g.
  • the watch also comprises other suitable hardware and software components necessary to receive, store and execute appropriate computer instructions, codes, software, routines, etc. Operations of various modules of smart watches are known to a person skilled in the art and thus will be not described in further detail.
  • the control interface 100 comprises an annular frame 102 which defines a chamber 104 for housing the smart watch body.
  • the annular frame 102 is provided with two opposite recesses 106 at a lower portion for mounting a watch strap 108 so that the smart watch body coupled with the bezel 100 can be worn by the user.
  • the bezel 100 is arranged to be detachable and retrofitted to the smart watch body.
  • the bezel 100 may be integrally formed with the smart watch body.
  • FIG 2 shows an exploded view of the control device of Figure 1.
  • the annular frame 102 comprises an upper cylindrical dial 102A, a middle cylindrical body 102B rotatably coupled with the cylindrical dial 102A and a lower cylindrical end ring 102C arranged to be connected fixedly with the middle cylindrical body 102B.
  • the upper cylindrical dial 102A is operable for manipulation by the user to rotate about the cylindrical body 102B so as to generate sound and/or to generate vibration that can be used to control the operation of the smart watch that has at least a gravity G-sensor and/or a sound sensor for detecting or differentiating the sound and/or vibration signals generated, and a processing for processing the detected sound and or vibration signals.
  • the cylindrical dial 102A is operable to be rotated by the user in both a clockwise and an anticlockwise direction relative to the cylindrical body 102B and the watch piece.
  • the cylindrical dial 102A may only be rotatable in one direction.
  • a marker 110 is provided on the cylindrical dial 102A to indicate a reference position for the rotation of the cylindrical dial 102A.
  • the middle cylindrical body 102B as shown in Figure 2 is preferably fixed mounted with the watch body.
  • the cylindrical body 102B includes two recesses 106 in its lower portion.
  • screw threads 112 are provided around the outer periphery in the lower portion of the cylindrical body 102B.
  • the cylindrical end ring 102C is provided in its inner periphery with corresponding screw threads 114 for engagement with the screw threads of the middle cylindrical body 102B so that the end ring 102C is screw connected and securely mounted to the cylindrical body 102B and at the same time clamping onto at least part of the watch strap.
  • FIG. 3 shows the key operation structure of the control interface 100 in accordance with one embodiment of the present invention.
  • the control interface 100 comprises an outer ring member, which may be part of the cylindrical dial 102A, as well as an inner ring member, which may be part of the cylindrical body 102B.
  • the outer ring member 102A is operable to be rotated clockwise or anti-clockwise with respect to the inner ring member 102B.
  • the outer ring member or the cylindrical dial 102A includes a swinging member 120 arranged to generate sound and/or vibration signals when manipulated by the user.
  • a vibration will be generated and detected by the smart watch.
  • the smart watch When the user rotates the cylindrical dial 102A, one or more sounds will be generated and detected by the smart watch.
  • the smart watch is operable to determine the spatial origin of the sound and/or vibration signals.
  • the inner ring member or cylindrical body 102B is fixed during rotation of the cylindrical dial 102A.
  • the outer periphery of the cylindrical body 102B comprises a continuous ring of gear teeth 122, with a recess 124 defined between each pair of gear teeth 122.
  • FIGs 4A-4C illustrate the sound generation mechanism by the control interface 100.
  • the outer ring member or the cylindrical dial 102A includes a swinging member 120.
  • the swinging member 120 is fixed at one end to the inner periphery of the cylindrical dial 102A.
  • the position on the inner periphery of the cylindrical dial 102A of which the swinging member 120 is mounted includes a recess 126.
  • the swinging member 120 includes a fixed end and a free end. At the fixed end, a flexible element 120A which may be in the form of a spring is provided.
  • a hammer element 120B which acts as an impinging element is connected at the free end, and the hammer element 120B preferably partly extends into the recess 124 defined by the gear teeth 122.
  • the flexible element 120A and the impinging element 120B are coupled with each other.
  • the impinging element 120B includes two lateral ends made of different materials, each of which is arranged to impinge on the gear teeth 122 in the cylindrical body 102B. This arrangement with two lateral ends made of different materials enables the sound generated by clockwise rotation of the cylindrical dial 102A to be different to anticlockwise rotation of the cylindrical dial 102A, which can be differentiated by the smart watch for control.
  • Figure 4B shows the anticlockwise rotation of the cylindrical dial 102A relative to the cylindrical body 102B.
  • the cylindrical dial 102A rotates anticlockwise, one lateral end of the impinging member 120B made of a first material hits onto the gear teeth 122 in the recess region 124. This generates a first type of sound.
  • that end of the impinging element 120B may hit onto other gear teeth 122 and thus generating a number of sound signals that sound the same as the first type of sound.
  • These sound signals can be detected by the smart watch for determining that the cylindrical dial 102A is rotating in an anticlockwise manner, as well as the precise position of the impinging member 120B based on the originating point of the sound or, more preferably, by counting the number of sound signals generated and thus directing a cursor or icon/item selection to move by a number of circular segments.
  • Figure 4C shows the clockwise rotation of the cylindrical dial 102A relative to the cylindrical body 102B.
  • the other end of the impinging member 120B made of a second material hits onto the gear teeth 122 in the recess region 124. This generates a second type of sound different from the first type of sound generated during anticlockwise rotation of the dial 102A.
  • the other end of the impinging element 120B may hit onto other gear teeth 122 and thus generating a number of sound signals that sound the same as the second type of sound.
  • These sound signals can be detected by the smart watch for determining that the cylindrical dial 102A is rotating in a clockwise manner, as well as the precise position of the impinging member 120B, based on the originating point of the sound or, more preferably, by counting the number of sound signals generated and thus directing a cursor or icon/item selection to move by a number of circular segments.
  • the position of the marker 110 on the cylindrical dial 102A as shown in Figure 1 or 2 indicates the position of the swinging member or the impinging member 120B.
  • Figures 5 and 6 show an alternative key operation structure of the control interface 100’ in accordance with one embodiment of the present invention.
  • the operation structure in Figures 5 and 6 are similar to that of Figure 3 and so will not be repeated (the outer ring member is the cylindrical dial 102A; and the inner ring member is the cylindrical body 102B) .
  • the swinging member 120’ is not connected to the inner ring member or the dial 102A through a spring, but through a resilient portion formed on the swinging member 120’ .
  • the two lateral ends of the swinging member 120’ may be made of the same material such that the smart watch does not distinguish between clockwise and anti-clockwise rotation of the dial 102A, but relies on the detection of the origin of the sound signal for control.
  • Figure 7 shows a smart watch 200 coupled with a control interface (bezel) 100 in accordance with one embodiment of the present invention.
  • the bezel 100 as shown in Figure 7 is substantially the same as that shown in Figure 1, only that the bezel further defines an opening for allowing the adjustment knob 202 of the smart watch to protrude therethrough.
  • FIGs 7-10 illustrate an exemplary operation of the control interface of the present invention for controlling a smart watch 200.
  • the user is attempting to access an email function of the smart watch 200.
  • the smart watch 200 displays a general watch display.
  • the user wants to access email function of the watch 200 he/she first manipulates the cylindrical dial 102A by actuating or touching onto the marker 110 of the dial 102A. This generates a vibration that can be detected by the G-sensor of the smart watch 200 and thus the smart watch 200 enters a selection screen (changes from the watch display of Figure 7 to a menu display showing the “BROWSER” of Figure 8) .
  • the user continues to rotate the dial 102A in a clockwise manner by touching onto the marker 110 as shown in Figure 9.
  • the dial 102A rotates, it generates sound signal that is detectable by the sound sensors of the smart watch.
  • the display of the smart watch 200 changes from the word “BROWSER” to the word “CLOCK” .
  • the user continues to rotate the dial 102A in a clockwise manner as shown in Figure 10, until the marker 110 reaches the email logo on the watch screen.
  • the smart watch 200 based on the counts of sound generated, the type of sound generated, and or the origination position of the sound, will recognize that the marker 110 has reached the email logo.
  • the user then releases the finger. This again generates a vibration that is detected by the smart watch 200.
  • the smart watch 200 determines that the user is trying to select the email function, and thus enters an email mode for operation by the user.
  • control interface 100, 100’ of the present embodiment is also arranged to facilitate other functions, such as typing text with the aid of a virtual keyboard on the watch.
  • the present invention is not limited to the above described structure and arrangement in this embodiment-a rotatable cylindrical dial with a swinging member for impinging on a cylindrical body.
  • the present invention is capable of other variations for generating control sound signals which are arrange to control an electronic device, for example, by using an electronic circuit or other mechanical means that are operable to generate sound.
  • FIG 11 there is shown a watch 1100 fitted with a control interface 200 in accordance with another embodiment of the present invention.
  • the control interface 200 in the present embodiment also resembles a bezel that is arranged to be coupled with the watch 1100.
  • the bezel 200 in the present embodiment operates and interacts with the watch 1100 in a different manner.
  • the watch 1100 in this embodiment is a smart watch.
  • the smart watch 1100 may include input means with one or more buttons, knobs, and touch-sensitive screen for receiving user input.
  • the watch 1100 includes a capacitive or resistive type touch-sensitive screen to provide an interface for interacting with the user.
  • other touch sensing technologies utilizing optical, electromagnetic or acoustic technologies may also be employed in the touch-sensitive screen.
  • the watch 1100 may further include a processor for processing the user input and coordination operations of various modules of the smart watch, a memory module (e.g. ROM, RAM) for data and information storage, output means with an interactive display (e.g.
  • a power source such as a rechargeable battery is preferably arranged in the watch 1100.
  • the watch 1100 also comprises other suitable hardware and software components, applications and programs, necessary to receive, store and execute appropriate computer instructions, codes, software, routines, etc. Operations of various modules of smart watches are known to a person skilled in the art and thus will be not described in further detail.
  • the bezel 200 includes a substantially annular frame 202 fixedly mounted to the watch body 1100, and a dial assembly 204 rotatably coupled with the frame 202.
  • the annular frame 202 defines a through-opening for accommodating the watch body 1100, exposing the touch-sensitive display screen of the watch body 1100.
  • the annular frame 202 preferably conforms to the outer contour of the watch body 1100, and is detachably fitted with the other periphery of the watch body 1100 through mechanical fittings such as snap fit or screw fit.
  • the frame 202 may include an openable ring arrangement, which may be manipulated or opened to facilitate mounting with the watch body 1100.
  • the bezel 200 in the present embodiment is detachable and is retrofitted to the smart watch body 1100.
  • the bezel 200 may be integrally formed with the smart watch body 1100.
  • Figures 12 and 13 show the detailed construction of the bezel 200 in the embodiment of Figure 11.
  • a control interface for an electronic device comprising: a frame arranged to be coupled with the electronic device; a rotatable dial rotatably coupled with the frame, the rotatable dial having a conductive contact arranged to be in contact with an interface of the electronic device; wherein when the control interface is coupled with the electronic device and the rotatable dial is manipulated by a user, the manipulation is arranged to be detected by the electronic device as a control signal for controlling the electronic device.
  • bezel 200 includes a substantially annular frame 202 adapted to be fitted to a watch body 1100.
  • the annular frame 202 includes an annular body formed with a first opening 206 for receiving a watch knob 1102, and a second opening 208 arranged opposite to the first opening 206 to accommodate another watch knob or button or actuator.
  • the annular frame 202 and hence the whole bezel may be snap fitted to the watch body 1100. Once fitted in place, the knobs 1102 on the watch 1100 may be accommodated in or may extend through the first and second openings 206, 208 on the annular frame 202, securing the mounting the annular frame 202 and hence the bezel 200 to the watch body 1100.
  • the annular frame 202 may further include two slots 210 in the remaining two quadrants of the frame 202. These slots 210 preferably facilitate the mounting the watch strap (not shown) to the watch body 1100.
  • the upper rim 212 of the annular frame 202 includes an annular fitting channel 214 for rotatably mounting the dial assembly 204.
  • the dial assembly 204 includes a corresponding annular rim for engaging with the annular fitting channel 214 so as to rotatably mount the dial assembly 204 to the annular frame 202.
  • the annular frame 202 in the present embodiment is made with plastic, although in other embodiments the frame 202 may also be made with other materials such as glass, metal, etc.
  • the dial assembly 204 in the present embodiment of the bezel 200 includes a rotatable dial formed of a bezel ring 216 and a conductive plate 218.
  • the bezel ring 216 and the conductive plate 218 in the present embodiment are separate pieces coupled with each other using mechanical or chemical means. However, in other embodiments, they may be integrally formed as a single piece.
  • the bezel ring 216 and the conductive plate 218 are operably coupled with each other, in an electrical or mechanical sense.
  • the bezel ring 216 is adapted to be rotatably fitted to the upper rim 212 of the annular frame 202.
  • a number of continuously interleaving teeth 220 are arranged on the outer circumference of the bezel ring 216 to facilitate the user’s manipulation (gripping, rotation, etc. ) of the bezel ring 216.
  • an annular rib may be formed on the inner circumference of the bezel ring 216 for rotatably engaging with the annular fitting channel 214 in the upper rim 212 of the annular frame 202.
  • the bezel ring 216 may be adapted to rotate clockwise, anti-clockwise, or both about the annular frame 202 that is fixedly attached to the watch body 1100.
  • a teeth-like protrusion 222 may be formed on the inner circumference of the bezel ring 216 for facilitating engagement or mounting of the conductive plate 218.
  • the conductive plate 218 in the present embodiment is formed with an annular loop portion 218A and a segment portion 218B.
  • the conductive plate 218 in the present embodiment is mounted fixedly to the bezel ring 216 using mechanical (e.g., fitting) and/or chemical means (e.g., adhesive) .
  • a cut-out 224 for engaging with the teeth-like protrusion 222 formed on the inner circumference of the bezel ring 216 is provided on the annular loop portion 218A of the conductive plate 218, in a position opposite to the segment portion 218B, for mounting the conductive plate 218 to the bezel ring 216.
  • one or more conductive contacts 218C may be arranged in the segment portion 218B of the conductive plate 218.
  • these contacts 218C are in contact with the capacitive or resistive touch-sensitive screen of the watch body 1100 when the bezel 200 is fitted to the watch body 1100.
  • Other contacting arrangements are possible in other embodiments.
  • the whole segment portion 218B (not only the contacts 218C) may be in contact with the screen of the watch body 1100 when the bezel 200 is fitted to the watch body 1100.
  • the conductive plate 218 is at least partly in contact with the screen of the watch body 1100 when the bezel 200 is fitted to the watch body 1100.
  • the conductive plate 218, especially the segment portion 218B, in the present embodiment is preferably transparent or opaque such that it does not cover the screen of the watch body 1100 when the bezel 200 is mounted to the watch 1100.
  • the conductive plate 218 in the present embodiment is preferably made of glass or plastic that is coated with an additional conductive paint coating (preferably transparent) on both sides and at least the side in close contact with the screen of the watch body.
  • a protective layer such as a thin film layer may be arranged between the conductive plate 218 and the screen of the watch body 1100 for provide scratch protection to the screen of the watch body 1100.
  • Another thin film protective layer may also be arranged on the conductive plate 218, opposite to face between the conductive plate 218 and the screen of the watch body 1100.
  • a metallic (e.g. aluminium) ring member 226 may optionally be attached or affixed to the conductive plate 218 through the use of glue or adhesives 228.
  • the ring member 226 (and hence the glue or adhesive 228 for attaching the ring member 226 to the conductive plate 218) includes a cut-out 230 that corresponds to the cut-out 224 formed on the bezel ring 216. Cut-out 230 also preferably corresponds to the teeth-like protrusion 222 formed on the inner circumference of the bezel ring 216.
  • the ring member 226 need not be metallic, but may be made with any other solid materials.
  • the ring member 226 may be attached to the conductive plate 218 through other mechanical or chemical means, instead of using glue or adhesives 228.
  • the dial assembly 204 is formed by the bezel ring 216, the conductive plate 218, and the metallic ring 226 that are fixedly coupled with each other, and they are adapted to be rotated about an axis perpendicular to the screen of the watch 1100 in synchronization about the annular frame 202.
  • the bezel ring 216, the annular loop portion 218A of the conductive plate 218, and the metallic ring 226 are preferably arranged in a co-axial manner, each of them at least partially overlapping each other without substantially blocking the user’s view of the screen of the watch 1100 when the bezel 200 is mounted to the watch 1100.
  • the construction of the bezel 200 in the embodiment of Figures 11-13 is merely exemplary.
  • the actual design of the bezel 200 may vary depending on the shape and size of the watch body 1100, without deviating from the spirit of the invention.
  • the annular frame 202 of the bezel 200 may include less or more openings for accommodating the knobs of the watch 1100.
  • the openings or slots of the frame 202 may be arranged in a different orientation or position depending on the construction of the watch body 1100.
  • the frame 202 need not be annular but may resume any other shape and structure that conforms to the shape and structure of the watch body 1100.
  • the conductive plate 218 may have other shapes. A person skilled in the art would appreciate that many other variations are possible.
  • a user To operate the bezel 200 in the present invention as a control interface for the watch 1100, a user first attaches the bezel 200 to the watch body 1100, for example, through snap-fit or other mechanical attachment means as described above. Once mounted in place, the annular frame 202 of the bezel 200 is fixedly attached to the watch body 1100, with the dial assembly 204 being rotatable about the annular frame 202.
  • the conductive contacts e.g., the nibs 218C on the segment portion 218B of the conductive plate 218) is preferably in direct contact with the screen of the watch 1100 or in indirect contact with the screen of the watch 1100 through a thin film protective layer arranged on the screen.
  • the user can manipulate the bezel ring 216, for example, by placing his fingers on the teeth 220 of the other periphery of the bezel ring 216.
  • the user may contact or touch, with or without rotating, the bezel ring 216 for such manipulation.
  • the bezel ring 126 and hence the attached conductive plate 218 and optionally the metallic ring member 226 attached to the plate 218 will be rotated together by the user.
  • the conductive contacts 218C formed on the segment portion 218B of the conductive plate 218 may sweep across the capacitive or resistive based touch sensitive screen of the watch 1100, for example, in a circular trajectory.
  • a capacitive or resistive disturbance or signal for controlling the watch may be created or formed on the screen of the watch 1100 in a position at which the conductive contacts 218C resides.
  • This capacitive or resistive disturbance or signal is only generated when the user is touching or is in physical contact with the bezel ring 216 that is operably coupled with the contacts 218C.
  • this capacitive or resistive disturbance or signal acts as a control signal to the watch 1100 for controlling the watch 1100.
  • the control signal is associated with a position of a point of contact between the conductive contact 218C and the touch sensitive screen. The watch 1100, upon detecting this control signal, determines a proper response to be executed, for example, by altering the information displayed on the screen of the watch.
  • bezel 200 of the present embodiment There are many possible applications for the bezel 200 of the present embodiment.
  • One of these examples relates to the user using a keyboard function of the smart watch 1100.
  • the watch 1100 may prompt the user to select or input alphabets, numerals, symbols, etc., by displaying a virtual keyboard with these alphabets, numerals, symbols, etc., disposed along a periphery (e.g., circumference) of the screen.
  • a periphery e.g., circumference
  • the user will need to select the alphabets, numerals or symbols to be inputted to the watch 1100 by touching the screen directly with his finger on a particular position on the screen that corresponds to the position of which the alphabet, numeral or symbols is displayed.
  • This touching may cause a resistive or capacitive disturbance or signal to be created on the touch sensitive screen, and this resistive or capacitive disturbance or signal is in turn detected and processed by the watch 1100.
  • the watch 1100 may determine or confirm the user’s selection by monitoring a time period (e.g. a few seconds) of which the user continuously touches or contacts the same particular position on the screen. With a sufficient contact time by the user on the screen, the watch 1100 will determine the user’s selection to be inputted to the watch 1100 as the alphabet, number or symbol that corresponds to that position and is displayed on the screen of the watch.
  • the user does not have to (but still could if he wishes to) interact with or touch the screen of the watch 1100 directly. Rather, the user can touch or contact, with or without rotating, the bezel ring 216 to make a selection on the screen. More particularly, the user may rotate the bezel ring 216 to a position such that the conductive contact 218C locates on a position of the screen that corresponds to the position of which the desired alphabet, numeral or symbol to be inputted is displayed.
  • the conductive contact 218C will be activated and a capacitive or resistive disturbance or signal will be generated on the screen on the part of which the conductive contact 218C locates, resulting in the same effect as if the user is touching the screen with his fingers directly.
  • the watch 1100 may determine or confirm the alphabet, numeral or symbol of which the user wishes to input, and subsequently respond or process such selection.
  • the bezel 200 when the bezel 200 is coupled with the watch 1100, the user can still interact directly with the screen of the watch 1100 if he/she desires.
  • the user By coupling the bezel 200 with the watch 1100, the user can choose to input to or interact with the watch 1100 either indirectly using the bezel 200 or directly using the screen of the watch.
  • the user may perform the selection on the screen with his view of the screen content substantially unaffected, as opposed to the use of a bare hand or finger to perform the selection.
  • the user’s finger does not need be in direct contact with the screen to perform selection, which may otherwise cover a substantial part of the screen, blocking necessary information displayed on the screen.
  • the size of the finger of a user is often relatively large compared with the screen size of the device, and this may lead to a rather inaccurate selection if a bare hand or finger is used to perform the selection or user input.
  • the user may have accidentally selected more than one alphabets, numerals, or symbols, or alternatively, he/she may have selected the adjacent alphabet, number or symbol that is not what he intends to select.
  • the above application or operation of the bezel 200 in the present embodiment is merely exemplary.
  • the bezel 200 of the present embodiment is capable of other functions or for use in other applications for controlling the smart watch 1100 or other electronic device.
  • the selection performed by the bezel arrangement need not be limited to the peripheral of the watch screen.
  • control interface is in the form of a bezel for coupling with a watch
  • application of the control interface in the present invention is not restricted to watches, but can also be applied to any other electronic devices.
  • these devices Preferably, these devices have substantially circular body.
  • the embodiments described with reference to the Figures can be implemented as an application programming interface (API) or as a series of libraries for use by a developer or can be included within another software application, such as a terminal or personal computer operating system or a portable computing device operating system.
  • API application programming interface
  • program modules include routines, programs, objects, components and data files assisting in the performance of particular functions, the skilled person will understand that the functionality of the software application may be distributed across a number of routines, objects or components to achieve the same functionality desired herein.
  • any appropriate computing system architecture may be utilised. This will include stand alone computers, network computers and dedicated hardware devices.
  • computing system and “computing device” are used, these terms are intended to cover any appropriate arrangement of computer hardware capable of implementing the function described.

Abstract

A control interface for an electronic device, comprising: an annular frame arranged to be coupled to the electronic device; wherein when the annular frame is manipulated by a user, the annular frame is arranged to generate a sound signal to be detected by the electronic device so as to control an operation of the electronic device.

Description

CONTROL INTERFACE FOR AN ELECTRONIC DEVICE TECHNICAL FIELD
The present invention relates to a control interface for an electronic device and more particularly, but not exclusively, to a bezel arranged to be coupled with a smart watch for controlling the operation of the smart watch.
BACKGROUND
Wearable electronic devices are devices with computing functions arranged to be worn or carried by a user. Examples of wearable electronic devices includes smart watches, smart glasses, smart lenses, smart textiles, fabrics, jewellery, etc., all of which incorporate miniaturized computing device for interacting with a user and performing computing functions. Compared with traditional hand held electronic devices such as laptops computers and smart phones, wearable electronic devices can generally interact more closely with the user.
Among various types of wearable electronic devices in the market, smart watches are one of the most popular categories. In terms of outlook appearance, smart watches are not very different from other ordinary mechanical or electronic watches, as they all include a watch body with a screen for displaying time and a watch strap coupled with the watch body for securing the watch body onto a user’s wrist. However, in terms of internal structure and operation, smart watches are more complicated electrically with more advanced functions compared with ordinary mechanical or electronic watches.
It is desirable that the user can control and interact with the smart watch in a reliable, seamless and effective manner.
SUMMARY OF THE INVENTION
In accordance with a first aspect of the present invention, there is provided a control interface for an electronic device, comprising: an annular frame arranged to be coupled to the electronic device; wherein when the annular frame is manipulated by a user, the annular frame is arranged to generate a sound signal to be detected by the electronic device so as to control an operation of the electronic device.
In one embodiment of the first aspect, the manipulation of the annular frame by the user generates a vibration that is detectable by the electronic device so as to control an operation of the electronic device.
In one embodiment of the first aspect, the annular frame is operable to rotate in a clockwise direction and/or in an anticlockwise direction with respect to the electronic device.
In one embodiment of the first aspect, the sound signal generated during clockwise rotation of the annular frame is different from the sound signal generated during anti-clockwise rotation of the annular frame, and the electronic device is operable to determine whether the annular frame is rotating in the clockwise direction or in the anticlockwise direction based on the sound signal.
In one embodiment of the first aspect, the electronic device is operable to determine a spatial origin of the generation of the sound signal and/or the vibration generated by the manipulation of the annular frame for controlling the electronic device.
In one embodiment of the first aspect, the electronic device is operable to determine a number of times of generation of the sound signals generated by the manipulation of the annular frame for controlling the electronic device.
In one embodiment of the first aspect, the electronic device comprises a G-sensor and/or a sound sensor arranged to detect the manipulation of the annular frame by the user and to generate a control signal in response to the detection of the sound signal or the vibration.
In one embodiment of the first aspect, the annular frame comprises a cylindrical body mounted with a rotatable cylindrical dial; and the rotatable cylindrical dial is arranged to be manipulated by the user to generate the sound signal or the vibration to be detected by the electronic device.
In one embodiment of the first aspect, the cylindrical dial is rotatable in a clockwise direction and/or an anti-clockwise direction relative to the cylindrical body.
In one embodiment of the first aspect, an inner circumference of the cylindrical dial is connected with a swinging member; whereupon rotation of the cylindrical dial by the user, the swinging member is arranged to impinge on the cylindrical body so as to generate the sound signal and/or the vibration.
In one embodiment of the first aspect, the swinging member comprises a fixed end having a flexible element mounted to the inner circumference of the cylindrical dial, and a free end with an impinging element connected with the flexible element.
In one embodiment of the first aspect, the flexible element is a spring.
In one embodiment of the first aspect, the cylindrical body comprises a continuous ring of gear teeth with a recess defined between each pair of gear teeth.
In one embodiment of the first aspect, the impinging element of the swinging member extends at least partly into the recess so as to impinge on a surface of the gear teeth in the recess for generation of the sound signal during rotation of the cylindrical dial.
In one embodiment of the first aspect, the impinging element comprises two lateral ends each arranged to impinge on the surface of the gear teeth, the two lateral ends are made of different materials for generating difference sound signals for clockwise rotation and anticlockwise rotation of the cylindrical dial.
In one embodiment of the first aspect, a marker is provided on the cylindrical dial to indicate a position of the swinging member.
In one embodiment of the first aspect, the cylindrical body of the annular frame is arranged to be fixedly coupled with the smart watch.
In one embodiment of the first aspect, the annular frame is arranged to surround an outer periphery of the electronic device.
In one embodiment of the first aspect, the electronic device is a smart watch.
In one embodiment of the first aspect, the control interface is the form of a bezel.
In accordance with a second aspect of the present invention, there is provided a method for controlling an electronic device, comprising the steps of: coupling a control interface with the electronic device; and manipulating the control interface so as to generate a sound signal and/or a vibration to be detected by the electronic device for controlling the electronic device; wherein the electronic device is operable to determine a spatial position of the generation of the sound signal and/or the vibration generated by the manipulation of the control interface.
In one embodiment of the second aspect, the electronic device comprises a G-sensor and/or a sound sensor for detecting the sound signal and/or the vibration generated by the manipulation of the control interface.
In one embodiment of the second aspect, the electronic device is a smart watch.
In one embodiment of the second aspect, the control interface is the control interface in accordance with the first aspect of the present invention.
In accordance with a third aspect of the present invention, there is provided a smart watch mounted with the control interface in accordance with the first aspect of the present invention.
In accordance with a fourth aspect of the present invention, there is provided bezel for a smart watch, comprising: a cylindrical body fixedly mounted with the smart watch, and a cylindrical dial rotatably mounted on the cylindrical body for manipulation by the user; wherein the cylindrical dial is operable to be manipulated by the user to rotate in a clockwise and an anticlockwise direction; whereupon the cylindrical dial is manipulated by a user, the cylindrical dial is arranged to generate a sound signal or a vibration that is detected by the smart watch for controlling the smart watch; wherein the sound signal generated by the clockwise rotation of the cylindrical dial is different from the sound signal generated by the anti-clockwise rotation of the cylindrical dial, and wherein the smart watch is operable to determine a spatial origin of the sound signal or the vibration to affect different control of the smart watch.
In accordance with a fifth aspect of the present invention, there is provided a control interface for an electronic device, comprising: a frame arranged to be coupled with the electronic device; a rotatable dial rotatably coupled with the frame, the rotatable dial having a conductive contact arranged to be in contact with an interface of the electronic device; wherein when the control interface is coupled with the electronic device and the rotatable dial is manipulated by a user, the manipulation is arranged to be detected by the electronic device as a control signal for controlling the electronic device.
The frame in one embodiment of the fifth aspect is preferably made of plastic. However, other materials such as metal or glass may also be used.
In one embodiment of the fifth aspect, the manipulation of the rotatable dial by the user comprises a contact, with or without rotation, of the rotatable dial by the user.
In one embodiment of the fifth aspect, the manipulation of the rotatable dial by the user activates the conductive contact for creating the control signal. More particularly, the contact, with or without rotation, of the rotatable dial by the user activates the conductive contact for creating the control signal.
In one embodiment of the fifth aspect, the control signal is associated with a position of a point of contact between the conductive contact of the rotatable dial and the interface of the electronic device. The interface of the electronic device may display graphics, word or numbers. The position of the point of contact may thus be related to a user selection of a particular graphics, word or number displayed on the interface of the electronic device.
In one embodiment of the fifth aspect, the interface of the electronic device comprises a touch sensitive display screen operable to display information. The information may be static or dynamic graphics, words, numbers, etc., in 2D or 3D format.
In a preferred embodiment of the fifth aspect, the frame is annular. Yet in another embodiment, the frame may be of other shape.
In one embodiment of the fifth aspect, the rotatable dial comprises a conductive plate formed with the conductive contact and a bezel ring operably connected with the conductive plate. Preferably, when the user contacts the bezel ring or other structured attached thereto to manipulate the bezel ring and hence the control interface, the conductive contact will be activated.
Optionally, a protective layer (e.g. thin film) may be arranged between the conductive plate and the interface of electronic device such that the conductive contact of the conductive plate is in indirect contact with the interface of the electronic device. It is also possible for another protective layer which protects the screen of the electronic device to be arranged above the conductive plate.
In one embodiment of the fifth aspect, the conductive plate includes an annular loop portion and a segment portion, the conductive contact being formed on the segment portion. The term “segment” is preferably referring to a circular segment in mathematical sense that relates to a cut off of a circle by a chord. Alternatively, the term “segment” may refer to a segment of any kind of shape.
In one embodiment of the fifth aspect, the segment portion is substantially transparent. In another embodiment of the fifth aspect, the segment portion may have colour or may be opaque, as long as it does not block the user’s view of the interface of the electronic device.
In one embodiment of the fifth aspect, the control interface further comprising a ring member arranged to be coupled with the annular loop portion of the conductive plate. Preferably, the ring member is a metallic (e.g., aluminium) ring member adhered to or coupled with the conductive plate using mechanical (e.g., mechanical fitting) or chemical fixation (e.g., glue) means.
In one embodiment of the fifth aspect, the annular frame, the annular loop portion of the conductive plate, and the ring member are arranged co-axially, and they are at least partially overlapping one another.
In one embodiment of the fifth aspect, the frame includes a body with at least one opening for accommodating an actuator of the electronic device. The actuator may be a knob, a rotary switch or a toggle switch, or any other actuators, operable to be manipulated by the user to interact with the electronic device.
In one embodiment of the fifth aspect, the electronic device is a smart watch having a capacitive or resistive touch-sensitive display screen. However, the screen may also be touch-sensitive by utilizing other technologies involving acoustic, electromagnetic (e.g. IR) and optical waves, pulses or signals.
In accordance with a sixth aspect of the present invention, there is provided a smart watch mounted with the control interface in accordance with the fifth aspect of the present invention.
BRIEF DESCRIPTION OF THE DRAWINGS
Embodiments of the present invention will now be described, by way of example, with reference to the accompanying drawings in which:
Figure 1 is a control interface for an electronic device in accordance with one embodiment of the present invention;
Figure 2 is an exploded view of the control interface of Figure 1;
Figure 3 shows the key operation structure for the control interface of Figure 1;
Figures 4A-4C show a detailed sound generation and operation mechanism of the key operation structure of Figure 3;
Figure 5 shows an alternative key operation structure for the control interface of Figure 1;
Figure 6 shows a close-up view on a section of the key operation structure in Figure 5;
Figure 7 shows an electronic device coupled with the control interface in accordance with one embodiment of the present invention;
Figures 8-10 illustrate the control of the electronic device using the control interface in accordance with one embodiment of the present invention; and
Figure 11 shows a watch with a control interface for an electronic device in accordance with one embodiment of the present invention;
Figure 12 is a perspective view of the control interface of Figure 11; and
Figure 13 shows an exploded view of the control interface of Figure 12.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
Referring to Figure 1, there is provided a control interface for an electronic device, comprising: an annular frame arranged to be coupled to the electronic device; wherein when the annular frame is manipulated by a user, the annular frame is arranged to generate a sound signal and/or a vibration to be detected by the electronic device so as to control an operation of the electronic device.
Figure 1 shows a control interface 100 arranged to be coupled with an electronic device in accordance with an embodiment of the present invention. In this embodiment, the control interface 100 resembles a bezel that is arranged to be coupled with a watch piece (not shown) . In a preferred embodiment, the watch piece is a watch body of a smart watch. The smart watch may include one or  more of, for example, input means with buttons/knobs/touch sensitive screens for receiving user input, a processor for processing the user input and coordination operations of various modules of the smart watch, a memory module (e.g. ROM, RAM) for data/information storage, output means with an interactive display (e.g. coloured 2D/3D graphics) , sensors for detecting bio-signals (e.g. pulse rate, body temperature) or other signals related to the environment (e.g. environmental temperature, pressure, humidity, sound) , a music playing module and audio processing means for playing music or audio files, a laser control modules, communication bus for enabling communication among different modules of the smart watch, and wireless communication modules arranged to communicate with other external electronic devices or to access the internet to retrieve data and information. Preferably, the watch also comprises other suitable hardware and software components necessary to receive, store and execute appropriate computer instructions, codes, software, routines, etc. Operations of various modules of smart watches are known to a person skilled in the art and thus will be not described in further detail.
As shown in Figure 1, the control interface 100 comprises an annular frame 102 which defines a chamber 104 for housing the smart watch body. In the present embodiment, the annular frame 102 is provided with two opposite recesses 106 at a lower portion for mounting a watch strap 108 so that the smart watch body coupled with the bezel 100 can be worn by the user. Preferably, the bezel 100 is arranged to be detachable and retrofitted to the smart watch body. However, in some embodiments, the bezel 100 may be integrally formed with the smart watch body.
Figure 2 shows an exploded view of the control device of Figure 1. As shown in Figure 2, the annular frame 102 comprises an upper cylindrical dial 102A, a middle cylindrical body 102B rotatably coupled with the cylindrical dial 102A and a lower cylindrical end ring 102C arranged to be connected fixedly with the middle cylindrical body 102B.
In this embodiment, the upper cylindrical dial 102A is operable for manipulation by the user to rotate about the cylindrical body 102B so as to generate sound and/or to generate vibration that can be used to control the operation of the smart watch that has at least a gravity G-sensor and/or a sound sensor for detecting or differentiating the sound and/or vibration signals generated, and a processing for processing the detected sound and or vibration signals. Preferably, the cylindrical dial 102A is operable to be rotated by the user in both a clockwise and an anticlockwise direction relative to the cylindrical body 102B and the watch piece. In an alternative embodiment, the cylindrical dial 102A may only be rotatable in one direction. Preferably, a marker 110 is provided on the cylindrical dial 102A to indicate a reference position for the rotation of the cylindrical dial 102A.
The middle cylindrical body 102B as shown in Figure 2 is preferably fixed mounted with the watch body. The cylindrical body 102B includes two recesses 106 in its lower portion. Also, screw threads 112 are provided around the outer periphery in the lower portion of the cylindrical body 102B. The cylindrical end ring 102C is provided in its inner periphery with corresponding screw threads 114 for engagement with the screw threads of the middle cylindrical body 102B so that the end ring 102C  is screw connected and securely mounted to the cylindrical body 102B and at the same time clamping onto at least part of the watch strap.
Figure 3 shows the key operation structure of the control interface 100 in accordance with one embodiment of the present invention. As shown in Figure 3, the control interface 100 comprises an outer ring member, which may be part of the cylindrical dial 102A, as well as an inner ring member, which may be part of the cylindrical body 102B. In this embodiment, the outer ring member 102A is operable to be rotated clockwise or anti-clockwise with respect to the inner ring member 102B. Preferably, the outer ring member or the cylindrical dial 102A includes a swinging member 120 arranged to generate sound and/or vibration signals when manipulated by the user. Preferably, when the user touches the cylindrical dial 102A, a vibration will be generated and detected by the smart watch. When the user rotates the cylindrical dial 102A, one or more sounds will be generated and detected by the smart watch. Preferably, the smart watch is operable to determine the spatial origin of the sound and/or vibration signals. The inner ring member or cylindrical body 102B is fixed during rotation of the cylindrical dial 102A. As shown in Figure 3, the outer periphery of the cylindrical body 102B comprises a continuous ring of gear teeth 122, with a recess 124 defined between each pair of gear teeth 122.
Figures 4A-4C illustrate the sound generation mechanism by the control interface 100. As shown in Figure 4A, the outer ring member or the cylindrical dial 102A includes a swinging member 120. The swinging member 120 is fixed at one end to the inner periphery of the cylindrical dial 102A. Preferably, the position on the inner periphery of the cylindrical dial 102A of which the swinging member 120 is mounted includes a recess 126. The swinging member 120 includes a fixed end and a free end. At the fixed end, a flexible element 120A which may be in the form of a spring is provided. A hammer element 120B which acts as an impinging element is connected at the free end, and the hammer element 120B preferably partly extends into the recess 124 defined by the gear teeth 122. In one embodiment, the flexible element 120A and the impinging element 120B are coupled with each other. The impinging element 120B includes two lateral ends made of different materials, each of which is arranged to impinge on the gear teeth 122 in the cylindrical body 102B. This arrangement with two lateral ends made of different materials enables the sound generated by clockwise rotation of the cylindrical dial 102A to be different to anticlockwise rotation of the cylindrical dial 102A, which can be differentiated by the smart watch for control.
Figure 4B shows the anticlockwise rotation of the cylindrical dial 102A relative to the cylindrical body 102B. As the cylindrical dial 102A rotates anticlockwise, one lateral end of the impinging member 120B made of a first material hits onto the gear teeth 122 in the recess region 124. This generates a first type of sound. As the cylindrical dial 102A continues to rotate in an anticlockwise manner, that end of the impinging element 120B may hit onto other gear teeth 122 and thus generating a number of sound signals that sound the same as the first type of sound. These sound signals can be detected by the smart watch for determining that the cylindrical dial 102A is rotating in an anticlockwise manner, as well as the precise position of the impinging member 120B based on the  originating point of the sound or, more preferably, by counting the number of sound signals generated and thus directing a cursor or icon/item selection to move by a number of circular segments.
Figure 4C shows the clockwise rotation of the cylindrical dial 102A relative to the cylindrical body 102B. As the cylindrical dial 102A rotates clockwise, the other end of the impinging member 120B made of a second material hits onto the gear teeth 122 in the recess region 124. This generates a second type of sound different from the first type of sound generated during anticlockwise rotation of the dial 102A. As the cylindrical dial 102A continues to rotate in a clockwise manner, the other end of the impinging element 120B may hit onto other gear teeth 122 and thus generating a number of sound signals that sound the same as the second type of sound. These sound signals can be detected by the smart watch for determining that the cylindrical dial 102A is rotating in a clockwise manner, as well as the precise position of the impinging member 120B, based on the originating point of the sound or, more preferably, by counting the number of sound signals generated and thus directing a cursor or icon/item selection to move by a number of circular segments.
Preferably, the position of the marker 110 on the cylindrical dial 102A as shown in Figure 1 or 2 indicates the position of the swinging member or the impinging member 120B.
Figures 5 and 6 show an alternative key operation structure of the control interface 100’ in accordance with one embodiment of the present invention. The operation structure in Figures 5 and 6 are similar to that of Figure 3 and so will not be repeated (the outer ring member is the cylindrical dial 102A; and the inner ring member is the cylindrical body 102B) . The only difference is that the swinging member 120’ is not connected to the inner ring member or the dial 102A through a spring, but through a resilient portion formed on the swinging member 120’ . Also, in this embodiment, the two lateral ends of the swinging member 120’ may be made of the same material such that the smart watch does not distinguish between clockwise and anti-clockwise rotation of the dial 102A, but relies on the detection of the origin of the sound signal for control.
Figure 7 shows a smart watch 200 coupled with a control interface (bezel) 100 in accordance with one embodiment of the present invention. The bezel 100 as shown in Figure 7 is substantially the same as that shown in Figure 1, only that the bezel further defines an opening for allowing the adjustment knob 202 of the smart watch to protrude therethrough.
Figures 7-10 illustrate an exemplary operation of the control interface of the present invention for controlling a smart watch 200. In this exemplary operation, the user is attempting to access an email function of the smart watch 200. With reference to Figure 7, without user intervention or manipulation of the dial 102A, the smart watch 200 displays a general watch display. When the user wants to access email function of the watch 200, he/she first manipulates the cylindrical dial 102A by actuating or touching onto the marker 110 of the dial 102A. This generates a vibration that can be detected by the G-sensor of the smart watch 200 and thus the smart watch 200 enters a selection screen (changes from the watch display of Figure 7 to a menu display showing the “BROWSER” of Figure 8) . Then the user continues to rotate the dial 102A in a clockwise manner by touching onto the marker  110 as shown in Figure 9. As the dial 102A rotates, it generates sound signal that is detectable by the sound sensors of the smart watch. As the marker 110 aligns with the clock selection logo on the watch screen, the display of the smart watch 200 changes from the word “BROWSER” to the word “CLOCK” . To access the email function, the user continues to rotate the dial 102A in a clockwise manner as shown in Figure 10, until the marker 110 reaches the email logo on the watch screen. The smart watch 200, based on the counts of sound generated, the type of sound generated, and or the origination position of the sound, will recognize that the marker 110 has reached the email logo. The user then releases the finger. This again generates a vibration that is detected by the smart watch 200. The smart watch 200 then determines that the user is trying to select the email function, and thus enters an email mode for operation by the user.
A person skilled in the art would readily appreciate that various other operation steps in this embodiment can be employed without deviating from the scope of the present invention. The control interface 100, 100’ of the present embodiment is also arranged to facilitate other functions, such as typing text with the aid of a virtual keyboard on the watch.
Also, it should be noted that the present invention is not limited to the above described structure and arrangement in this embodiment-a rotatable cylindrical dial with a swinging member for impinging on a cylindrical body. The present invention is capable of other variations for generating control sound signals which are arrange to control an electronic device, for example, by using an electronic circuit or other mechanical means that are operable to generate sound.
Referring to Figure 11, there is shown a watch 1100 fitted with a control interface 200 in accordance with another embodiment of the present invention. The control interface 200 in the present embodiment also resembles a bezel that is arranged to be coupled with the watch 1100. Unlike the bezel embodiment of Figures 1-10, the bezel 200 in the present embodiment operates and interacts with the watch 1100 in a different manner.
Preferably, the watch 1100 in this embodiment is a smart watch. The smart watch 1100 may include input means with one or more buttons, knobs, and touch-sensitive screen for receiving user input. In a preferred embodiment, the watch 1100 includes a capacitive or resistive type touch-sensitive screen to provide an interface for interacting with the user. In some other embodiments, other touch sensing technologies utilizing optical, electromagnetic or acoustic technologies may also be employed in the touch-sensitive screen. The watch 1100 may further include a processor for processing the user input and coordination operations of various modules of the smart watch, a memory module (e.g. ROM, RAM) for data and information storage, output means with an interactive display (e.g. black-and-white or coloured 2D/3D graphics) , sensors for detecting bio-signals (e.g. pulse rate, body temperature) or other signals related to the environment (e.g. environmental temperature, pressure, humidity, sound) , a music playing module and audio processing means for playing music or audio files, a laser control modules, communication bus for enabling communication among different modules of the smart watch, and wired or wireless communication modules arranged to communicate with other external electronic devices or to access the internet to retrieve data and  information. A power source such as a rechargeable battery is preferably arranged in the watch 1100. Preferably, the watch 1100 also comprises other suitable hardware and software components, applications and programs, necessary to receive, store and execute appropriate computer instructions, codes, software, routines, etc. Operations of various modules of smart watches are known to a person skilled in the art and thus will be not described in further detail.
In the present embodiment as shown in Figure 11, the bezel 200 includes a substantially annular frame 202 fixedly mounted to the watch body 1100, and a dial assembly 204 rotatably coupled with the frame 202. The annular frame 202 defines a through-opening for accommodating the watch body 1100, exposing the touch-sensitive display screen of the watch body 1100. The annular frame 202 preferably conforms to the outer contour of the watch body 1100, and is detachably fitted with the other periphery of the watch body 1100 through mechanical fittings such as snap fit or screw fit. In another embodiment, the frame 202 may include an openable ring arrangement, which may be manipulated or opened to facilitate mounting with the watch body 1100. Preferably, the bezel 200 in the present embodiment is detachable and is retrofitted to the smart watch body 1100. Yet, in other embodiments, the bezel 200 may be integrally formed with the smart watch body 1100.
Figures 12 and 13 show the detailed construction of the bezel 200 in the embodiment of Figure 11. As shown in Figures 12 and 13, there is provided a control interface for an electronic device, comprising: a frame arranged to be coupled with the electronic device; a rotatable dial rotatably coupled with the frame, the rotatable dial having a conductive contact arranged to be in contact with an interface of the electronic device; wherein when the control interface is coupled with the electronic device and the rotatable dial is manipulated by a user, the manipulation is arranged to be detected by the electronic device as a control signal for controlling the electronic device.
As shown in Figures 12 and 13, bezel 200 includes a substantially annular frame 202 adapted to be fitted to a watch body 1100. In the present embodiment, the annular frame 202 includes an annular body formed with a first opening 206 for receiving a watch knob 1102, and a second opening 208 arranged opposite to the first opening 206 to accommodate another watch knob or button or actuator. In one embodiment, the annular frame 202 and hence the whole bezel may be snap fitted to the watch body 1100. Once fitted in place, the knobs 1102 on the watch 1100 may be accommodated in or may extend through the first and  second openings  206, 208 on the annular frame 202, securing the mounting the annular frame 202 and hence the bezel 200 to the watch body 1100. The annular frame 202 may further include two slots 210 in the remaining two quadrants of the frame 202. These slots 210 preferably facilitate the mounting the watch strap (not shown) to the watch body 1100. As shown in Figure 13, the upper rim 212 of the annular frame 202 includes an annular fitting channel 214 for rotatably mounting the dial assembly 204. In this embodiment, the dial assembly 204 includes a corresponding annular rim for engaging with the annular fitting channel 214 so as to rotatably mount the dial assembly 204 to the annular frame 202. It is preferable that the annular frame 202 in the present embodiment is made with plastic, although in other embodiments the frame 202 may also be made with other materials such as glass, metal, etc.
With continuous reference to Figures 12 and 13, the dial assembly 204 in the present embodiment of the bezel 200 includes a rotatable dial formed of a bezel ring 216 and a conductive plate 218. The bezel ring 216 and the conductive plate 218 in the present embodiment are separate pieces coupled with each other using mechanical or chemical means. However, in other embodiments, they may be integrally formed as a single piece. Preferably, the bezel ring 216 and the conductive plate 218 are operably coupled with each other, in an electrical or mechanical sense.
As shown in Figure 13, the bezel ring 216 is adapted to be rotatably fitted to the upper rim 212 of the annular frame 202. Optionally, a number of continuously interleaving teeth 220 are arranged on the outer circumference of the bezel ring 216 to facilitate the user’s manipulation (gripping, rotation, etc. ) of the bezel ring 216. In the present embodiment, an annular rib may be formed on the inner circumference of the bezel ring 216 for rotatably engaging with the annular fitting channel 214 in the upper rim 212 of the annular frame 202. In one embodiment, the bezel ring 216 may be adapted to rotate clockwise, anti-clockwise, or both about the annular frame 202 that is fixedly attached to the watch body 1100. A teeth-like protrusion 222 may be formed on the inner circumference of the bezel ring 216 for facilitating engagement or mounting of the conductive plate 218.
As best illustrated in Figure 13, the conductive plate 218 in the present embodiment is formed with an annular loop portion 218A and a segment portion 218B. Preferably, the conductive plate 218 in the present embodiment is mounted fixedly to the bezel ring 216 using mechanical (e.g., fitting) and/or chemical means (e.g., adhesive) . A cut-out 224 for engaging with the teeth-like protrusion 222 formed on the inner circumference of the bezel ring 216 is provided on the annular loop portion 218A of the conductive plate 218, in a position opposite to the segment portion 218B, for mounting the conductive plate 218 to the bezel ring 216. In the present embodiment, one or more conductive contacts 218C (e.g., in the form of a nib) may be arranged in the segment portion 218B of the conductive plate 218. Preferably, these contacts 218C are in contact with the capacitive or resistive touch-sensitive screen of the watch body 1100 when the bezel 200 is fitted to the watch body 1100. Other contacting arrangements are possible in other embodiments. For example, the whole segment portion 218B (not only the contacts 218C) may be in contact with the screen of the watch body 1100 when the bezel 200 is fitted to the watch body 1100. In any case, it is preferable that the conductive plate 218 is at least partly in contact with the screen of the watch body 1100 when the bezel 200 is fitted to the watch body 1100.
The conductive plate 218, especially the segment portion 218B, in the present embodiment is preferably transparent or opaque such that it does not cover the screen of the watch body 1100 when the bezel 200 is mounted to the watch 1100. The conductive plate 218 in the present embodiment is preferably made of glass or plastic that is coated with an additional conductive paint coating (preferably transparent) on both sides and at least the side in close contact with the screen of the watch body. Optionally, a protective layer such as a thin film layer may be arranged between the conductive plate 218 and the screen of the watch body 1100 for provide scratch protection to the screen of the watch body 1100. Another thin film protective layer may also be arranged on the conductive plate 218, opposite to face between the conductive plate 218 and the screen of the watch body 1100.
In one embodiment, a metallic (e.g. aluminium) ring member 226 may optionally be attached or affixed to the conductive plate 218 through the use of glue or adhesives 228. Preferably, the ring member 226 (and hence the glue or adhesive 228 for attaching the ring member 226 to the conductive plate 218) includes a cut-out 230 that corresponds to the cut-out 224 formed on the bezel ring 216. Cut-out 230 also preferably corresponds to the teeth-like protrusion 222 formed on the inner circumference of the bezel ring 216. It should be noted that in other embodiments, the ring member 226 need not be metallic, but may be made with any other solid materials. Also, the ring member 226 may be attached to the conductive plate 218 through other mechanical or chemical means, instead of using glue or adhesives 228.
In the present embodiment, the dial assembly 204 is formed by the bezel ring 216, the conductive plate 218, and the metallic ring 226 that are fixedly coupled with each other, and they are adapted to be rotated about an axis perpendicular to the screen of the watch 1100 in synchronization about the annular frame 202. The bezel ring 216, the annular loop portion 218A of the conductive plate 218, and the metallic ring 226 are preferably arranged in a co-axial manner, each of them at least partially overlapping each other without substantially blocking the user’s view of the screen of the watch 1100 when the bezel 200 is mounted to the watch 1100.
It would be appreciated that the construction of the bezel 200 in the embodiment of Figures 11-13 is merely exemplary. The actual design of the bezel 200 may vary depending on the shape and size of the watch body 1100, without deviating from the spirit of the invention. For example, the annular frame 202 of the bezel 200 may include less or more openings for accommodating the knobs of the watch 1100. The openings or slots of the frame 202 may be arranged in a different orientation or position depending on the construction of the watch body 1100. The frame 202 need not be annular but may resume any other shape and structure that conforms to the shape and structure of the watch body 1100. In other embodiments, the conductive plate 218 may have other shapes. A person skilled in the art would appreciate that many other variations are possible.
To operate the bezel 200 in the present invention as a control interface for the watch 1100, a user first attaches the bezel 200 to the watch body 1100, for example, through snap-fit or other mechanical attachment means as described above. Once mounted in place, the annular frame 202 of the bezel 200 is fixedly attached to the watch body 1100, with the dial assembly 204 being rotatable about the annular frame 202. The conductive contacts (e.g., the nibs 218C on the segment portion 218B of the conductive plate 218) is preferably in direct contact with the screen of the watch 1100 or in indirect contact with the screen of the watch 1100 through a thin film protective layer arranged on the screen.
To control the watch 1100 using the attached bezel 200, the user can manipulate the bezel ring 216, for example, by placing his fingers on the teeth 220 of the other periphery of the bezel ring 216. The user may contact or touch, with or without rotating, the bezel ring 216 for such manipulation. In the case of rotation, the bezel ring 126 and hence the attached conductive plate 218 and optionally the  metallic ring member 226 attached to the plate 218 will be rotated together by the user. As the bezel ring 216 rotates, the conductive contacts 218C formed on the segment portion 218B of the conductive plate 218 may sweep across the capacitive or resistive based touch sensitive screen of the watch 1100, for example, in a circular trajectory. With the bezel ring 216 being touched (with or without rotation) by the user, a capacitive or resistive disturbance or signal for controlling the watch may be created or formed on the screen of the watch 1100 in a position at which the conductive contacts 218C resides. This capacitive or resistive disturbance or signal is only generated when the user is touching or is in physical contact with the bezel ring 216 that is operably coupled with the contacts 218C. Preferably, this capacitive or resistive disturbance or signal acts as a control signal to the watch 1100 for controlling the watch 1100. Preferably, the control signal is associated with a position of a point of contact between the conductive contact 218C and the touch sensitive screen. The watch 1100, upon detecting this control signal, determines a proper response to be executed, for example, by altering the information displayed on the screen of the watch.
There are many possible applications for the bezel 200 of the present embodiment. One of these examples relates to the user using a keyboard function of the smart watch 1100.
When the user uses a keyboard function of the smart watch 1100 (e.g., to input a message into the email module displayed on the watch screen or to input a code to unlock the watch) in the present invention, the watch 1100 may prompt the user to select or input alphabets, numerals, symbols, etc., by displaying a virtual keyboard with these alphabets, numerals, symbols, etc., disposed along a periphery (e.g., circumference) of the screen. In a case when the bezel 200 of the present embodiment is not used, the user will need to select the alphabets, numerals or symbols to be inputted to the watch 1100 by touching the screen directly with his finger on a particular position on the screen that corresponds to the position of which the alphabet, numeral or symbols is displayed. This touching may cause a resistive or capacitive disturbance or signal to be created on the touch sensitive screen, and this resistive or capacitive disturbance or signal is in turn detected and processed by the watch 1100. The watch 1100 may determine or confirm the user’s selection by monitoring a time period (e.g. a few seconds) of which the user continuously touches or contacts the same particular position on the screen. With a sufficient contact time by the user on the screen, the watch 1100 will determine the user’s selection to be inputted to the watch 1100 as the alphabet, number or symbol that corresponds to that position and is displayed on the screen of the watch.
If the bezel 200 of the present embodiment is utilized in the above application, the user does not have to (but still could if he wishes to) interact with or touch the screen of the watch 1100 directly. Rather, the user can touch or contact, with or without rotating, the bezel ring 216 to make a selection on the screen. More particularly, the user may rotate the bezel ring 216 to a position such that the conductive contact 218C locates on a position of the screen that corresponds to the position of which the desired alphabet, numeral or symbol to be inputted is displayed. By creating or maintaining physical contact between the user’s hand or finger with the bezel ring 216 that is operably coupled with the conductive contact 218C, the conductive contact 218C will be activated and a capacitive or resistive disturbance or signal will be generated on the screen on the part of which the conductive  contact 218C locates, resulting in the same effect as if the user is touching the screen with his fingers directly. Based on the time of which the conductive contact is maintained on the same position of the screen while the user’s finger and the bezel ring 216 maintain in physical contact, the watch 1100 may determine or confirm the alphabet, numeral or symbol of which the user wishes to input, and subsequently respond or process such selection.
It should be noted in the above application when the bezel 200 is coupled with the watch 1100, the user can still interact directly with the screen of the watch 1100 if he/she desires. By coupling the bezel 200 with the watch 1100, the user can choose to input to or interact with the watch 1100 either indirectly using the bezel 200 or directly using the screen of the watch.
In the above exemplary application, by using the bezel 200 in the present embodiment, the user may perform the selection on the screen with his view of the screen content substantially unaffected, as opposed to the use of a bare hand or finger to perform the selection. This is because the user’s finger does not need be in direct contact with the screen to perform selection, which may otherwise cover a substantial part of the screen, blocking necessary information displayed on the screen. In addition, the size of the finger of a user is often relatively large compared with the screen size of the device, and this may lead to a rather inaccurate selection if a bare hand or finger is used to perform the selection or user input. For example, if a bare hand or the finger is used to perform the selection, the user may have accidentally selected more than one alphabets, numerals, or symbols, or alternatively, he/she may have selected the adjacent alphabet, number or symbol that is not what he intends to select.
It should be appreciated that by using the bezel 200 and the conductive contact 218C arrangement in the present embodiment, not only that the screen will not be blocked during user’s selection, but the selection precision and accuracy may also be drastically improved as the conductive contact 218C is able to provide a much finer contact point on the watch screen compared with a bare hand or finger.
A person skilled in the art would appreciate that the above application or operation of the bezel 200 in the present embodiment is merely exemplary. The bezel 200 of the present embodiment is capable of other functions or for use in other applications for controlling the smart watch 1100 or other electronic device. For example, the selection performed by the bezel arrangement need not be limited to the peripheral of the watch screen. By properly designing the conductive plate and the conductive contacts arranged on the conductive plate, any part on the screen may be selectable by the user.
Other advantages of the embodiments of the present invention in terms of structure, function, effectiveness, efficiency, ease of manufacture, cost, etc., will become apparent to those skilled in the art in view of the description.
Although in the above embodiments the control interface is in the form of a bezel for coupling with a watch, a person skilled in the art would readily appreciate that the application of the control  interface in the present invention is not restricted to watches, but can also be applied to any other electronic devices. Preferably, these devices have substantially circular body.
Although not required, the embodiments described with reference to the Figures can be implemented as an application programming interface (API) or as a series of libraries for use by a developer or can be included within another software application, such as a terminal or personal computer operating system or a portable computing device operating system. Generally, as program modules include routines, programs, objects, components and data files assisting in the performance of particular functions, the skilled person will understand that the functionality of the software application may be distributed across a number of routines, objects or components to achieve the same functionality desired herein.
It will also be appreciated that where the methods and systems of the present invention are either wholly implemented by computing system or partly implemented by computing systems then any appropriate computing system architecture may be utilised. This will include stand alone computers, network computers and dedicated hardware devices. Where the terms “computing system” and “computing device” are used, these terms are intended to cover any appropriate arrangement of computer hardware capable of implementing the function described.
It will be appreciated by persons skilled in the art that numerous variations and/or modifications may be made to the invention as shown in the specific embodiments without departing from the spirit or scope of the invention as broadly described. The present embodiments are, therefore, to be considered in all respects as illustrative and not restrictive.
Any reference to prior art contained herein is not to be taken as an admission that the information is common general knowledge, unless otherwise indicated.

Claims (38)

  1. A control interface for an electronic device, comprising: an annular frame arranged to be coupled to the electronic device; wherein when the annular frame is manipulated by a user, the annular frame is arranged to generate a sound signal to be detected by the electronic device so as to control an operation of the electronic device.
  2. The control interface in accordance with claim 1, wherein the manipulation of the annular frame by the user generates a vibration that is detectable by the electronic device so as to control an operation of the electronic device.
  3. The control interface in accordance with claim 2, wherein the annular frame is operable to rotate in a clockwise direction and/or in an anticlockwise direction with respect to the electronic device.
  4. The control interface in accordance with claim 3, wherein the sound signal generated during clockwise rotation of the annular frame is different from the sound signal generated during anti-clockwise rotation of the annular frame, and the electronic device is operable to determine whether the annular frame is rotating in the clockwise direction or in the anticlockwise direction based on the sound signal.
  5. The control interface in accordance with any one of claims 1-4, wherein the electronic device is operable to determine a spatial origin of the generation of the sound signal and/or the vibration generated by the manipulation of the annular frame for controlling the electronic device.
  6. The control interface in accordance with claim 5, wherein the electronic device comprises a G-sensor and/or a sound sensor arranged to detect the manipulation of the annular frame by the user and to generate a control signal in response to the detection of the sound signal or the vibration.
  7. The control interface in accordance with claim 5, wherein the annular frame comprises a cylindrical body mounted with a rotatable cylindrical dial; and the rotatable cylindrical dial is arranged to be manipulated by the user to generate the sound signal or the vibration to be detected by the electronic device.
  8. The control interface in accordance with claim 7, wherein the cylindrical dial is rotatable in a clockwise direction and/or an anti-clockwise direction relative to the cylindrical body.
  9. The control interface in accordance with claim 8, wherein an inner circumference of the cylindrical dial is connected with a swinging member; whereupon rotation of the cylindrical dial by the user, the swinging member is arranged to impinge on the cylindrical body so as to generate the sound signal and/or the vibration.
  10. The control interface in accordance with claim 9, wherein the swinging member comprises a fixed end having a flexible element mounted to the inner circumference of the cylindrical dial, and a free end with an impinging element connected with the flexible element.
  11. The control interface in accordance with claim 10, wherein the flexible element is a spring.
  12. The control interface in accordance with claim 10, wherein the cylindrical body comprises a continuous ring of gear teeth with a recess defined between each pair of gear teeth.
  13. The control interface in accordance with claim 12, wherein the impinging element of the swinging member extends at least partly into the recess so as to impinge on a surface of the gear teeth in the recess for generation of the sound signal during rotation of the cylindrical dial.
  14. The control interface in accordance with claim 13, wherein the impinging element comprises two lateral ends each arranged to impinge on the surface of the gear teeth, the two lateral ends are made of different materials for generating difference sound signals for clockwise rotation and anticlockwise rotation of the cylindrical dial.
  15. The control interface in accordance with and one of claims 9-14, wherein a marker is provided on the cylindrical dial to indicate a position of the swinging member.
  16. The control interface in accordance with claim 7, wherein the cylindrical body of the annular frame is arranged to be fixedly coupled with the smart watch.
  17. The control interface in accordance with claim 1, wherein the annular frame is arranged to surround an outer periphery of the electronic device.
  18. The control interface in accordance with any one of claims 1-17, wherein the electronic device is a smart watch.
  19. The control interface in accordance with claim 18, wherein the control interface is the form of a bezel.
  20. A method for controlling an electronic device, comprising the steps of:
    coupling a control interface with the electronic device; and
    manipulating the control interface so as to generate a sound signal and/or a vibration to be detected by the electronic device for controlling the electronic device;
    wherein the electronic device is operable to determine a spatial position of the generation of the sound signal and/or the vibration generated by the manipulation of the control interface.
  21. The method for controlling an electronic device in accordance with claim 20, wherein the electronic device comprises a G-sensor and/or a sound sensor for detecting the sound signal and/or the vibration generated by the manipulation of the control interface.
  22. The method for controlling an electronic device in accordance with claim 21, wherein the electronic device is a smart watch.
  23. The method for controlling an electronic device in accordance with any one of claims 20-22, wherein the control interface is the control interface in accordance with any one of claims 1-19.
  24. A smart watch mounted with the control interface in accordance with any one of claims 1-19.
  25. A bezel for a smart watch, comprising:
    a cylindrical body fixedly mounted with the smart watch, and
    a cylindrical dial rotatably mounted on the cylindrical body for manipulation by the user;
    wherein the cylindrical dial is operable to be manipulated by the user to rotate in a clockwise and an anticlockwise direction;
    whereupon the cylindrical dial is manipulated by a user, the cylindrical dial includes a resilient hammer adapted to strike an adjacent surface when the cylindrical dial is manipulated to generate a sound signal or a vibration that is detected by the smart watch for controlling the smart watch;
    wherein the hammer has a dual head arrangement each having a different material characteristic such that when the head strikes the adjacent surface, sound signal generated by the clockwise rotation of the cylindrical dial is different from the sound signal generated by the anti-clockwise rotation of the cylindrical dial, and
    wherein the smart watch is operable to determine a spatial origin of the sound signal or the vibration to affect different control of the smart watch.
  26. A control interface for an electronic device, comprising:
    a frame arranged to be coupled with the electronic device;
    a rotatable dial rotatably coupled with the frame, the rotatable dial having a conductive contact arranged to be in contact with an interface of the electronic device; wherein when the control interface is coupled with the electronic device and the rotatable dial is manipulated by a user, the manipulation is arranged to be detected by the electronic device as a control signal for controlling the electronic device.
  27. The control interface of claim 26, wherein the manipulation of the rotatable dial by the user comprises a contact or rotation of the rotatable dial by the user.
  28. The control interface of claim 26 or 27, wherein the manipulation of the rotatable dial by the user activates the conductive contact for creating the control signal.
  29. The control interface of any one of claims 26-28, wherein the control signal is associated with a position of a point of contact between the conductive contact of the rotatable dial and the interface of the electronic device.
  30. The control interface of any one of claims 26-29, wherein the interface of the electronic device comprises a touch sensitive display screen operable to display information.
  31. The control interface of any one of claims 26-30, wherein the frame is annular.
  32. The control interface of any one of claims 26-31, wherein the rotatable dial comprises a conductive plate formed with the conductive contact and a bezel ring operably connected with the conductive plate.
  33. The control interface of any one of claims 26-32, wherein the conductive plate includes an annular loop portion and a segment portion, the conductive contact being formed on the segment portion.
  34. The control interface of claim 33, wherein the segment portion is substantially transparent.
  35. The control interface of claim 33 or 34, further comprising a ring member arranged to be coupled with the annular loop portion of the conductive plate.
  36. The control interface of claim 35, wherein the frame, the annular loop portion of the conductive plate, and the ring member are arranged co-axially, and are at least partially overlapping one another.
  37. The control interface of any one of claims 26-36, wherein the frame includes body with at least one opening for accommodating an actuator of the electronic device.
  38. The control interface of any one of claims 26-37, wherein the electronic device is a smart watch having a capacitive or resistive touch-sensitive display screen.
PCT/CN2015/081541 2014-07-16 2015-06-16 Control interface for an electronic device WO2016008346A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
HK14107281 2014-07-16
HK14107281.7 2014-07-16
HK15100648.9 2015-01-20
HK15100648.9A HK1209966A2 (en) 2014-07-16 2015-01-20 Control interface for an electronic device

Publications (1)

Publication Number Publication Date
WO2016008346A1 true WO2016008346A1 (en) 2016-01-21

Family

ID=55077897

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/081541 WO2016008346A1 (en) 2014-07-16 2015-06-16 Control interface for an electronic device

Country Status (2)

Country Link
HK (1) HK1209966A2 (en)
WO (1) WO2016008346A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107025050A (en) * 2016-02-02 2017-08-08 三星电子株式会社 Method for user interface and the electronic installation for performing this method
EP3871063A4 (en) * 2018-12-12 2021-12-08 Samsung Electronics Co., Ltd. A wearable device with a bezel to sense a touch input
CN114488764A (en) * 2022-03-11 2022-05-13 广东乐心医疗电子股份有限公司 Watch control method and watch

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102063051A (en) * 2010-11-12 2011-05-18 鸿富锦精密工业(深圳)有限公司 Wrist strap type device
CN102999279A (en) * 2012-11-29 2013-03-27 四川长虹电器股份有限公司 Method for controlling intelligent device through knocks
WO2013159144A1 (en) * 2012-04-23 2013-10-31 Joshua Michael Young Methods and devices and systems for positioning input devices and creating control signals
CN103760758A (en) * 2014-01-02 2014-04-30 林炮勤 Intelligent watch and intelligent display method thereof
CN103780749A (en) * 2012-10-25 2014-05-07 英属维京群岛速位互动股份有限公司 Mobile device and method for controlling application program of mobile device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102063051A (en) * 2010-11-12 2011-05-18 鸿富锦精密工业(深圳)有限公司 Wrist strap type device
WO2013159144A1 (en) * 2012-04-23 2013-10-31 Joshua Michael Young Methods and devices and systems for positioning input devices and creating control signals
CN103780749A (en) * 2012-10-25 2014-05-07 英属维京群岛速位互动股份有限公司 Mobile device and method for controlling application program of mobile device
CN102999279A (en) * 2012-11-29 2013-03-27 四川长虹电器股份有限公司 Method for controlling intelligent device through knocks
CN103760758A (en) * 2014-01-02 2014-04-30 林炮勤 Intelligent watch and intelligent display method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107025050A (en) * 2016-02-02 2017-08-08 三星电子株式会社 Method for user interface and the electronic installation for performing this method
EP3203352A1 (en) * 2016-02-02 2017-08-09 Samsung Electronics Co., Ltd User interfacing method and electronic device for performing the same
US10627926B2 (en) 2016-02-02 2020-04-21 Samsung Electronics Co., Ltd. User interfacing method and electronic device for performing the same
CN107025050B (en) * 2016-02-02 2022-01-21 三星电子株式会社 User interface method and electronic device for performing the same
EP3871063A4 (en) * 2018-12-12 2021-12-08 Samsung Electronics Co., Ltd. A wearable device with a bezel to sense a touch input
US11487250B2 (en) 2018-12-12 2022-11-01 Samsung Electronics Co., Ltd. Wearable device with a bezel to sense a touch input
CN114488764A (en) * 2022-03-11 2022-05-13 广东乐心医疗电子股份有限公司 Watch control method and watch

Also Published As

Publication number Publication date
HK1209966A2 (en) 2016-04-08

Similar Documents

Publication Publication Date Title
JP7289856B2 (en) Rotary input mechanism for electronic equipment
US11531306B2 (en) Rotary input mechanism for an electronic device
TWI582679B (en) Digital analog display with rotating bezel
JP6224202B2 (en) Watch keyboard
KR20240032171A (en) Optical sensor subsystem adjacent a cover of an electronic device housing
US20180181733A1 (en) Smart watch and method for controlling same
ES2851648T3 (en) Electronic device with rotatably mounted bezel for interaction, and method of actuation of such electronic device
US20070222765A1 (en) Slider input lid on touchscreen
TWI475426B (en) External keyboard and protecting cover of electronic device
US11422642B2 (en) Gyratory sensing system to enhance wearable device user experience via HMI extension
WO2016008346A1 (en) Control interface for an electronic device
US20150220178A1 (en) Multitouch tools for use with a capacitive touch sensor
CN110928431A (en) Stylus with glass component
JP2018205150A (en) Electronic apparatus and wearable apparatus
CN107544624B (en) Intelligent wearable product
KR102419425B1 (en) Vibration Pattern Creating Method And Device Thereof
TWI515595B (en) Handheld electronic device and method for entering password thereof
JP2017079038A (en) Wearable terminal device and control method of wearable terminal device
TWI616777B (en) Smart wearable device and the unlock method thereof
TWI573059B (en) Ring-type touch-sensitive display device
EP2541383B1 (en) Communication device and method
WO2016099501A1 (en) Wearable computing device
JP2022128784A (en) Wrist device
Wilson Evaluating the effectiveness of using touch sensor capacitors as an input device for a wrist watch computer
TW202018442A (en) Wristwatch device and operating method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15821278

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 30.05.2017)

122 Ep: pct application non-entry in european phase

Ref document number: 15821278

Country of ref document: EP

Kind code of ref document: A1