WO2016008071A1 - Face verification method and system - Google Patents

Face verification method and system Download PDF

Info

Publication number
WO2016008071A1
WO2016008071A1 PCT/CN2014/082149 CN2014082149W WO2016008071A1 WO 2016008071 A1 WO2016008071 A1 WO 2016008071A1 CN 2014082149 W CN2014082149 W CN 2014082149W WO 2016008071 A1 WO2016008071 A1 WO 2016008071A1
Authority
WO
WIPO (PCT)
Prior art keywords
boltzmann machine
data
discriminant
order
face
Prior art date
Application number
PCT/CN2014/082149
Other languages
French (fr)
Chinese (zh)
Inventor
王亮
谭铁牛
王威
黄岩
Original Assignee
中国科学院自动化研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院自动化研究所 filed Critical 中国科学院自动化研究所
Priority to CN201480000558.8A priority Critical patent/CN104363981B/en
Priority to PCT/CN2014/082149 priority patent/WO2016008071A1/en
Publication of WO2016008071A1 publication Critical patent/WO2016008071A1/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/20Image preprocessing

Definitions

  • the present invention relates to a face verification method and system, and more particularly to a face verification method and system based on a discriminant high-order Boltzmann machine. Background technique
  • Face verification technology has been a hot research topic in the field of pattern recognition due to its wide application, for example, as an identity authentication application in customs and banking.
  • the goal of face verification is to determine whether the two face images represent the same person.
  • the previous work was mainly to study face verification in a constrained environment, that is, the face images in the experiment were collected under controlled environmental factors, including fixed illumination, gestures and expressions. However, in practical applications, these factors are uncontrollable. For example, a face image in video surveillance may contain any illumination. Therefore, many researchers have recently turned to the face verification problem in unconstrained environments. Face images under unconstrained environmental factors have very large intra-class variances and can be challenging to handle.
  • the existing face verification problem consists of two steps: data feature representation and data relationship metric.
  • data feature representation people usually use some artificially set feature descriptors to represent face data, such as LBP, S I FT and Gabor. After the paired face data representation is obtained, the cosine distance is usually used to measure the similarity of each pair of images, and then it can be judged whether the pair of images represents the same person. Summary of the invention
  • the object of the present invention is to provide a face verification method and system, aiming at the defects of the prior art. To achieve face verification that is more suitable for accuracy requirements.
  • the present invention provides a face verification method, the method comprising: Step 1: using principal component analysis and linear discriminant analysis to separately preprocess high-dimensional facial feature data, including setting principal component analysis to reduce Dimensional data dimension;
  • Step 2 Establish a discriminative high-order Boltzmann machine, and set the number of nodes of the hidden layer;
  • Step 3 Using a tensor diagonalization strategy to reduce the model parameters of the discriminative high-order Boltzmann machine;
  • Step 4 Input the paired face data into the discriminant high-order Boltzmann machine, and use the stochastic gradient descent algorithm to maximize the conditional probability of the relationship class, thereby iteratively optimizing the weight of the Boltzmann machine. Thereby obtaining the final discriminant high-order Boltzmann machine;
  • Step 5 Input the paired face data to be verified to the discriminative high-order Boltzmann machine model, and obtain corresponding verification result data.
  • the present invention also provides a face verification system, the system comprising: a network establishment module, a network weight optimization module, and a data verification module, wherein:
  • the network establishing module is configured to establish a discriminative high-order Boltzmann machine, and set a number of nodes of a network hidden layer;
  • the network weight optimization module uses a stochastic gradient descent algorithm to minimize the objective function of the Boltzmann machine to obtain an optimized Boltzmann machine weight, thereby obtaining a final discriminant high-order Boltzmann machine model. ;
  • the data verification module is configured to input paired face data to be verified to the discriminative high-order Boltzmann machine, obtain two node values of the category layer, and compare the relative sizes of the two values to obtain a person Face verification result data.
  • DRAWINGS 1 is a flow chart of a method for verifying a face of the present invention
  • FIG. 2 is a schematic view showing the structure of a discriminative high-order Boltzmann machine used in the present invention
  • FIG. 3 is a schematic diagram of a tensor diagonalization method
  • FIG. 4 is a schematic diagram of a face verification system of the present invention.
  • Figure 5 shows the experimental effect changes for different input data dimensions and different number of hidden nodes.
  • the inventive face verification method and system mainly propose a more effective data relationship measurement method, which can improve the accuracy of face verification to a large extent.
  • FIG. 1 is a flowchart of a method for verifying a face of the present invention. As shown in the figure, the present invention specifically includes the following steps:
  • Step 101 Preprocessing the high-dimensional facial feature data by using principal component analysis and linear discriminant analysis, wherein the data dimension of the principal component analysis after dimension reduction is set;
  • PGA Principal Component Analysis
  • LDA Linear Discriminant Analysis
  • Step 102 Establish a discriminative high-order Boltzmann machine, and set a number of nodes of the hidden layer.
  • the discriminant high-order Boltzmann machine is a multi-layer network structure, including two data input layers and one hidden layer. Contains layers and a category output layer.
  • the two input layers of the discriminative high-order Boltzmann machine are paired face training data, such as a feature representation of a face image.
  • all face data is required to maintain the same size, for example, a vector of the same length;
  • the class output layer is used to represent the verification result of the paired face training data, since the result of the face verification has only two types, That is, matching or not matching, where the output layer only contains two nodes, corresponding to the two categories;
  • the discriminant high-order Boltzmann machine has a network weight, which is used to obtain the next layer node value according to the current layer node value. .
  • the number of nodes of the input layer and the output layer of the discriminative high-order Boltzmann machine is fixed, but the number of nodes of the hidden layer needs to be manually adjusted to optimize the effect of the model.
  • Fig. 2 is a block diagram showing the structure of a discriminating high-order Boltzmann machine used in an embodiment of the present invention. As shown in Figure 2, this is a four-layer network with circular points in each layer representing network nodes.
  • the leftmost bottom face layers representing two data input layer, the input layer I are dimensional column vector x, each dimension yeR Ixl, the vector is represented by a node, which values are normalized to 0
  • the mean and the variance is 1.
  • the highest layer is the category output layer, and the face verification category is represented as a 2-dimensional vector zeM 2xl , and the vector value is [1, 0] or [0, 1].
  • the two cases correspond to or do not match.
  • the hidden layer in the middle is a K-dimensional vector heffi Kxl , and each dimension of the vector takes a value of 0 or 1.
  • the values of h and z can all be calculated from the vector values of their previous layers, where h is interconnected with the X and y layers: yt
  • Step 103 Using a tensor diagonalization strategy to reduce the model parameters of the discriminative high-order Boltzmann machine; the discriminant high-order Boltzmann machine contains a large number of model parameters that need to be learned, when the input data dimension For a few hundred hours, the three-dimensional weight tensor W may contain millions of weight parameters. Thus, in the case where the amount of training data is not very large, it is easy to cause overfitting. Therefore, the tensor diagonalization method is used here to reduce the parameters, as shown in Figure 3. On the h-axis, each h k corresponds to a weight matrix slice:
  • each weight ⁇ 3 ⁇ 4 in the matrix corresponds to the connection relationship of nodes Xi and yj .
  • Implied assumption Any node in x is related to the node in y.
  • Such assumptions are not appropriate for face data. Specifically, we usually use local descriptors to extract features of facial key attachments, such as extracting LBP features from faces, noses, and mouths, and then concatenating these features to obtain the final features. So each node in X and y only represents a local area of the face, as shown by R1 - R5 in Figure 3.
  • people When performing face verification, people usually care about whether the same position in the two face images, such as whether the eyes are matched, does not care whether one's eyes match the nose of another person.
  • Step 104 Input the paired face data into the discriminant high-order Boltzmann machine, and use a stochastic gradient descent algorithm to maximize the conditional probability of the relationship class, thereby iteratively optimizing the weight of the Boltzmann machine.
  • the final discriminant high-order Boltzmann machine is obtained; taking the network in Fig. 2 as an example, the two input layer data, the middle hidden layer and the class output layer represent a discriminative high-order Boltz Man machine, whose energy function E(x, y, h, z) is defined as:
  • Step 1105 Input the paired face data to be verified, such as X and y, to the trained discriminative high-order Boltzmann machine model to obtain an output layer node value z, by comparing the relative values of the two values. The size can be used to judge the result of face verification. If > then does not match, otherwise it matches.
  • FIG. 4 is a schematic diagram of a face verification system according to the present invention. As shown in the figure, the present invention specifically includes: a network establishment module 1, a network weight optimization module 2, and a data verification module 3, wherein:
  • the network establishing module 1 is configured to establish a discriminative high-order Boltzmann machine and set the number of nodes of the network hidden layer;
  • the discriminative high-order Boltzmann machine is a multi-layer network structure, including two input data. Layer, an implicit layer and a category output layer.
  • the input layer is training paired face data
  • the output layer represents the verification result of training paired face data;
  • the discriminant discriminant high-order Boltzmann machine has network weight, which is used to obtain the next according to the current layer node value. Layer node value.
  • the network weight optimization module 2 uses the stochastic gradient descent algorithm to minimize the objective function of the Boltzmann machine to obtain the optimized Boltzmann machine weight, and obtain the final discriminant high-order Boltzmann machine model.
  • the data verification module 3 is used to input the paired face data to be verified to the discriminant high-order Boltzmann machine, obtain two node values of the class layer, and compare the relative sizes of the two values to obtain the face verification result.
  • the LFW data set contains 1 3233 face images from 5,749 individuals.
  • One of the 1,680 people has one image, while the rest have more than two images.
  • the WDRef data set includes 99,773 face images on the network, where WDRef does not overlap with the face data in the LFW. All face images are collected directly from the Internet, with very large changes in lighting, posture, and more.
  • Step S1 for all data, the principal high-dimensional face LBP feature is reduced to 2000 dimension by principal component analysis, and then processed by linear discriminant analysis.
  • Step S2 using a four-layer discriminative high-order Boltzmann machine model, the two input layers, the hidden layer and the output layer respectively contain 2000, 2000, 1000 and 2 nodes.
  • step S3 the tensor diagonalization strategy is used to eliminate the network weights outside the diagonal line, and the weight quantity is reduced to 2 ).
  • Step S4 using the gradient descent algorithm to optimize the objective function ⁇ l s of the network, wherein the gradient can be accurately calculated rather than approximated. Optimization is done in an iterative manner, where setting the maximum number of iterations to 30 guarantees convergence.
  • step S6 the paired face data of the test is input into the trained model, and the verified result is output on the output layer.
  • the result of the output is a two-dimensional vector. Comparing the relative sizes of the two values determines the match or does not match.
  • the horizontal axis represents the number of hidden nodes (number of hi dden un i ts), and the vertical axis represents the accuracy of face recognition (accuracy).
  • Each curve in the graph represents a data dimension in different implied The face verification accuracy changes at the node.
  • the input data dimension has changed from 200 to 1000 dimensions, and the number of hidden nodes has changed from 200 to 1200.
  • the number of hidden nodes is fixed, and as the dimension of the input data is increased, the accuracy is increased. For any dimension of input data, when the number of hidden nodes is greater than 400, the accuracy remains stable and no longer rises.
  • RAM random access memory
  • ROM read only memory
  • electrically programmable ROM electrically erasable programmable ROM
  • registers hard disk, removable disk, GD-ROM, or any other form of storage known in the art In the middle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Image Analysis (AREA)

Abstract

The present invention relates to a face verification method and system, the method comprising: preprocessing high-dimensional facial feature data through principal component analysis and linear discriminant analysis, the preprocessing comprising setting a data dimension after dimension reduction through principal component analysis; establishing a discriminant high-order Boltzmann machine and setting the number of nodes for a hidden layer; reducing model parameters of the discriminant high-order Boltzmann machine by employing a strategy of tensor diagonalization; inputting pairs of facial data into the discriminant high-order Boltzmann machine, using a random gradient descent algorithm to maximize the conditional probability of relationship categories, so as to iteratively optimize a weight of the Boltzmann machine and obtain an ultimate discriminant high-order Boltzmann machine; inputting pairs of facial data to be verified into the discriminant high-order Boltzmann machine model and obtaining corresponding verification result data. The present invention introduces data relationship category information into an unsupervised Boltzmann machine model, enhancing discrimination ability and being more suitable for face verification having precision requirements.

Description

人脸佥证方法和系统 技术领域  Face test method and system
本发明涉及一种人脸验证方法和系统, 尤其涉及一种基于判别式高阶玻 尔兹曼机的人脸验证方法和系统。 背景技术  The present invention relates to a face verification method and system, and more particularly to a face verification method and system based on a discriminant high-order Boltzmann machine. Background technique
人脸验证技术由于其广泛的应用一直是模式识别领域的热点研究问题, 例如作为身份认证应用在海关和银行等。  Face verification technology has been a hot research topic in the field of pattern recognition due to its wide application, for example, as an identity authentication application in customs and banking.
给定一对人脸图像, 人脸验证的目标是是判断这两张人脸图像是否表示 同一个人。 之前的工作主要是研究约束环境下的人脸验证, 即实验中的人脸 图像都是在受控的环境因素下采集的, 包括固定的光照、 姿态和表情。 然而 在实际应用中, 这些因素都是不可控的, 例如视频监控中的人脸图像可能包 含任意的光照。 所以, 最近许多研究人员开始转而研究非约束环境下的人脸 验证问题。 非约束环境因素下的人脸图像有非常大的类内方差, 处理起来将 具有挑战性。  Given a pair of face images, the goal of face verification is to determine whether the two face images represent the same person. The previous work was mainly to study face verification in a constrained environment, that is, the face images in the experiment were collected under controlled environmental factors, including fixed illumination, gestures and expressions. However, in practical applications, these factors are uncontrollable. For example, a face image in video surveillance may contain any illumination. Therefore, many researchers have recently turned to the face verification problem in unconstrained environments. Face images under unconstrained environmental factors have very large intra-class variances and can be challenging to handle.
现有的人脸验证问题包含两个步骤: 数据特征表示和数据关系度量。 对 于数据特征表示, 人们通常使用一些人工设定的特征描述子来表示人脸数据, 例如 LBP、 S I FT和 Gabor 等。 在得到成对的人脸数据表示后, 通常利用余弦 距离来度量每对图像的相似度大小, 进而可以判断这对图像是否表示同一个 人。 发明内容  The existing face verification problem consists of two steps: data feature representation and data relationship metric. For data feature representation, people usually use some artificially set feature descriptors to represent face data, such as LBP, S I FT and Gabor. After the paired face data representation is obtained, the cosine distance is usually used to measure the similarity of each pair of images, and then it can be judged whether the pair of images represents the same person. Summary of the invention
本发明的目的是针对现有技术的缺陷, 提供一种人脸验证方法和系统, 以实现更适于具有精度要求的人脸验证。 The object of the present invention is to provide a face verification method and system, aiming at the defects of the prior art. To achieve face verification that is more suitable for accuracy requirements.
为实现上述目的, 本发明提供了一种人脸验证方法, 所述方法包括: 步骤 1、利用主成分分析和线性判别分析对高維人脸特征数据分别进行预 处理, 其中包括设置主成分分析降維后的数据維度;  To achieve the above object, the present invention provides a face verification method, the method comprising: Step 1: using principal component analysis and linear discriminant analysis to separately preprocess high-dimensional facial feature data, including setting principal component analysis to reduce Dimensional data dimension;
步骤 2、 建立判别式高阶玻尔兹曼机, 设置隐含层的节点数;  Step 2: Establish a discriminative high-order Boltzmann machine, and set the number of nodes of the hidden layer;
步骤 3、利用张量对角化的策略来减少该判别式高阶玻尔兹曼机的模型参 数;  Step 3. Using a tensor diagonalization strategy to reduce the model parameters of the discriminative high-order Boltzmann machine;
步骤 4、把成对的人脸数据输入到判别式高阶玻尔兹曼机中, 利用随机梯 度下降算法来最大化关系类别的条件概率, 从而迭代地优化该玻尔兹曼机的 权重, 从而得到最终的判别式高阶玻尔兹曼机;  Step 4: Input the paired face data into the discriminant high-order Boltzmann machine, and use the stochastic gradient descent algorithm to maximize the conditional probability of the relationship class, thereby iteratively optimizing the weight of the Boltzmann machine. Thereby obtaining the final discriminant high-order Boltzmann machine;
步骤 5、 向所述判别式高阶玻尔兹曼机模型输入待验证的成对人脸数据, 得到对应的验证结果数据。  Step 5: Input the paired face data to be verified to the discriminative high-order Boltzmann machine model, and obtain corresponding verification result data.
本发明还提供了一种人脸验证系统, 所述系统包括: 网络建立模块、 网 络权重优化模块和数据验证模块, 其中:  The present invention also provides a face verification system, the system comprising: a network establishment module, a network weight optimization module, and a data verification module, wherein:
所述网络建立模块, 用于建立判别式高阶玻尔兹曼机, 并设置网络隐含 层的节点数;  The network establishing module is configured to establish a discriminative high-order Boltzmann machine, and set a number of nodes of a network hidden layer;
所述网络权重优化模块, 利用随机梯度下降算法来最小化该玻尔兹曼机 的目标函数来获得优化后的玻尔兹曼机权重, 从而得到最终的判别式高阶玻 尔兹曼机模型;  The network weight optimization module uses a stochastic gradient descent algorithm to minimize the objective function of the Boltzmann machine to obtain an optimized Boltzmann machine weight, thereby obtaining a final discriminant high-order Boltzmann machine model. ;
所述数据验证模块, 用于向所述判别式高阶玻尔兹曼机输入待验证的成 对人脸数据, 得到类别层两个节点值, 比较两个数值的相对大小即可得出人 脸验证结果数据。  The data verification module is configured to input paired face data to be verified to the discriminative high-order Boltzmann machine, obtain two node values of the category layer, and compare the relative sizes of the two values to obtain a person Face verification result data.
本发明人脸验证方法和系统, 通过在无监督玻尔兹曼机模型中引入数据 关系类别信息, 使模型判别力增强, 更适于具有精度要求的人脸验证。 附图说明 图 1 为本发明人脸验证方法的流程图; The face verification method and system of the present invention, by introducing data relationship category information into the unsupervised Boltzmann machine model, enhances the discriminative power of the model, and is more suitable for face verification with accuracy requirements. DRAWINGS 1 is a flow chart of a method for verifying a face of the present invention;
图 2示出了本发明所使用的判别式高阶玻尔兹曼机结构示意图; 图 3是张量对角化方法的示意图;  2 is a schematic view showing the structure of a discriminative high-order Boltzmann machine used in the present invention; FIG. 3 is a schematic diagram of a tensor diagonalization method;
图 4为本发明人脸验证系统的示意图;  4 is a schematic diagram of a face verification system of the present invention;
图 5为不同的输入数据維度和不同的隐含结点数量时的实验效果变化图。 具体实施方式  Figure 5 shows the experimental effect changes for different input data dimensions and different number of hidden nodes. detailed description
下面通过附图和实施例, 对本发明的技术方案做进一步的详细描述。 发明人脸验证方法和系统主要是提出了一个更有效的数据关系度量方 法, 可以在较大程度上提升人脸验证的精度。  The technical solution of the present invention will be further described in detail below through the accompanying drawings and embodiments. The inventive face verification method and system mainly propose a more effective data relationship measurement method, which can improve the accuracy of face verification to a large extent.
图 1 为本发明人脸验证方法的流程图, 如图所示, 本发明具体包括如下 步骤:  FIG. 1 is a flowchart of a method for verifying a face of the present invention. As shown in the figure, the present invention specifically includes the following steps:
步骤 101、利用主成分分析和线性判别分析对高維人脸特征数据分别进行 预处理, 其中需要设置主成分分析降維后的数据維度;  Step 101: Preprocessing the high-dimensional facial feature data by using principal component analysis and linear discriminant analysis, wherein the data dimension of the principal component analysis after dimension reduction is set;
其中, 主成分分析 (Principal Component Analysis, PGA) 是一种常用 的数据降維方法, 这种方法需要设定降維后的数据維度, 通常从几百到几千 不等。 线性判别分析 (Linear Discriminant Analysis, LDA) 是一种常用的 有监督的子空间学习方法, 处理后可以使得数据的判别性增强。  Among them, Principal Component Analysis (PGA) is a commonly used data dimension reduction method. This method needs to set the dimensional dimension after dimensionality reduction, usually from several hundred to several thousand. Linear Discriminant Analysis (LDA) is a commonly used supervised subspace learning method that can make the discriminability of data enhanced.
步骤 102、 建立判别式高阶玻尔兹曼机, 设置隐含层的节点数; 其中, 所述判别式高阶玻尔兹曼机为多层网络结构, 包括两个数据输入 层、 一个隐含层和一个类别输出层。 所述判别式高阶玻尔兹曼机的两个输入 层为成对的人脸训练数据, 比如人脸图像的特征表示。 在本发明一实施例中, 要求所有人脸数据保持相同的大小, 例如同样长度的向量; 类别输出层用于 表示成对人脸训练数据的验证结果, 由于人脸验证的结果只有两类, 即匹配 或者不匹配, 这里输出层只包含两个结点, 分别对应这两种类别; 该判别式 高阶玻尔兹曼机具有网络权重, 用于根据当前层节点值获得下一层节点值。 所述判别式高阶玻尔兹曼机的输入层和输出层的节点数是固定的, 但是其隐 含层的节点数需要手工调节以使得该模型的效果最优。 Step 102: Establish a discriminative high-order Boltzmann machine, and set a number of nodes of the hidden layer. The discriminant high-order Boltzmann machine is a multi-layer network structure, including two data input layers and one hidden layer. Contains layers and a category output layer. The two input layers of the discriminative high-order Boltzmann machine are paired face training data, such as a feature representation of a face image. In an embodiment of the invention, all face data is required to maintain the same size, for example, a vector of the same length; the class output layer is used to represent the verification result of the paired face training data, since the result of the face verification has only two types, That is, matching or not matching, where the output layer only contains two nodes, corresponding to the two categories; the discriminant high-order Boltzmann machine has a network weight, which is used to obtain the next layer node value according to the current layer node value. . The number of nodes of the input layer and the output layer of the discriminative high-order Boltzmann machine is fixed, but the number of nodes of the hidden layer needs to be manually adjusted to optimize the effect of the model.
图 2示出了本发明一实施例中所使用的判别式高阶玻尔兹曼机结构示意 图。 如图 2所示, 这是一个四层的网络, 每层中的圆形点表示网络节点。 底 部最左边两层分别代表两个人脸数据输入层,输入层输入的是都是 I維的列向 量 x,yeRIxl, 向量的每一維度用一个节点表示, 其取值都归一化为 0均值且方 差为 1。 最高层为类别输出层, 将人脸验证的类别表示为一个 2 維的向量 zeM2xl, 向量的取值为 [1,0]或 [0, 1], 两种情况对应匹配或者不匹配。 中间的 隐含层是一个 K維的向量 heffiKxl, 向量的每一維取值为 0或者 1。 h和 z的值都 可以由它们前面层的向量值计算得到, 其中 h与 X和 y层互相连接: y t Fig. 2 is a block diagram showing the structure of a discriminating high-order Boltzmann machine used in an embodiment of the present invention. As shown in Figure 2, this is a four-layer network with circular points in each layer representing network nodes. The leftmost bottom face layers representing two data input layer, the input layer I are dimensional column vector x, each dimension yeR Ixl, the vector is represented by a node, which values are normalized to 0 The mean and the variance is 1. The highest layer is the category output layer, and the face verification category is represented as a 2-dimensional vector zeM 2xl , and the vector value is [1, 0] or [0, 1]. The two cases correspond to or do not match. The hidden layer in the middle is a K-dimensional vector heffi Kxl , and each dimension of the vector takes a value of 0 or 1. The values of h and z can all be calculated from the vector values of their previous layers, where h is interconnected with the X and y layers: yt
dt+∑Ukthk d t +∑U kt h k
e k e k
=∑ ''+∑ k=∑ '' +∑ k ,
其中, σ(χ) = 1 / (1 + 、 x = (Xl L , y = (yj 、 h = )keK、 z = ( )te(i2)。 c = (ck )keK 和 d = (dt) 分别为隐含层和类别层的偏置参数。 W = (、 ) 是两个输入 层和隐含层之间的连接权重, 而 11 = (111{1)1^^12)是隐含层和类别层之间的连接 权重。 Where σ (χ) = 1 / (1 + , x = ( Xl L , y = ( yj , h = ) keK , z = ( ) te(i2 ). c = (c k ) keK and d = (d t ) are the offset parameters of the hidden layer and the class layer respectively. W = (, ) is the connection weight between the two input layers and the hidden layer, and 11 = (11 1{1 ) 1 ^^ 12) is The weight of the connection between the hidden layer and the category layer.
步骤 103、利用张量对角化的策略来减少该判别式高阶玻尔兹曼机的模型 参数; 判别式高阶玻尔兹曼机含有大量的模型参数需要进行学习, 当输入的 数据維度为几百时, 三維的权重张量 W就可能会含有上百万的权重参数。 这 样, 在训练数据量不是非常多的情况下, 很容易导致过拟合。 因此这里采用 张量对角化的方法来减少参数, 如图 3所示。 在 h轴上, 每个 hk对应着一个权 重矩阵切片: Step 103: Using a tensor diagonalization strategy to reduce the model parameters of the discriminative high-order Boltzmann machine; the discriminant high-order Boltzmann machine contains a large number of model parameters that need to be learned, when the input data dimension For a few hundred hours, the three-dimensional weight tensor W may contain millions of weight parameters. Thus, in the case where the amount of training data is not very large, it is easy to cause overfitting. Therefore, the tensor diagonalization method is used here to reduce the parameters, as shown in Figure 3. On the h-axis, each h k corresponds to a weight matrix slice:
wk =(w ) 其中矩阵中的每个权重 \¾都对应着结点 Xiyj的连接关系。 隐含的假设 是 x中的任意一个结点都与 y中所以结点存在相关关系。 这样的假设对人脸数 据来说并不合适。 具体来说, 我们通常利用局部描述子来提取人脸关键点附 件的特征, 例如, 在人脸眼睛、 鼻子和嘴等部位提取 LBP 特征, 然后将这些 特征串联得到最终的特征。 所以 X和 y中每个结点仅仅表征了人脸的局部区 域, 如图 3 中的 R1 -R5所示。 当进行人脸验证时, 人们通常关心的是两幅人 脸图像中的相同位置例如眼睛是否是匹配的, 而不关心一个人的眼睛与另外 一个人的鼻子是否匹配。所以, 只有位置上临近的 Xi结点和 yj结点表示的人脸 区域一样时, 他们才存在较强的相关性, 如图 3 中的块对角化矩阵, 其中黑 色代表有相关性, 白色为没有相关性。 因此对于任意结点 Xi, 我们定义与其相 关的 -邻域的结点为 {yj,j G [i-s,i + 4, 然后将每个权重矩阵切片 w.k减少到 只保留其 2s + l个对角线上的权重: wk =(wijk) 这样整个权重张量 W中的参数量级即从 0(n3)减少为 0(n2)。 步骤 104、把成对的人脸数据输入到判别式高阶玻尔兹曼机中, 利用随机 梯度下降算法来最大化关系类别的条件概率, 从而迭代地优化该玻尔兹曼机 的权重, 从而得到最终的判别式高阶玻尔兹曼机; 以图 2 中的网络为例进行说明, 把两个输入层数据, 中间的隐含层和类 别输出层表示一个判别式高阶玻尔兹曼机, 其能量函数 E(x,y,h,z)定义为: w k = (w ) where each weight \3⁄4 in the matrix corresponds to the connection relationship of nodes Xi and yj . Implied assumption Any node in x is related to the node in y. Such assumptions are not appropriate for face data. Specifically, we usually use local descriptors to extract features of facial key attachments, such as extracting LBP features from faces, noses, and mouths, and then concatenating these features to obtain the final features. So each node in X and y only represents a local area of the face, as shown by R1 - R5 in Figure 3. When performing face verification, people usually care about whether the same position in the two face images, such as whether the eyes are matched, does not care whether one's eyes match the nose of another person. Therefore, only when the neighboring Xi nodes are the same as the face regions represented by the yj nodes, they have a strong correlation, as shown in the block diagonalization matrix in Figure 3, where black represents correlation, white For no relevance. So for any node Xi , we define the node associated with its - neighborhood as { yj , j G [is, i + 4, and then reduce each weight matrix slice w. k to only retain 2s + l Weights on the diagonal: w k = (w ijk ) Thus the magnitude of the parameter in the entire weight tensor W is reduced from 0(n 3 ) to 0(n 2 ). Step 104: Input the paired face data into the discriminant high-order Boltzmann machine, and use a stochastic gradient descent algorithm to maximize the conditional probability of the relationship class, thereby iteratively optimizing the weight of the Boltzmann machine. Thus, the final discriminant high-order Boltzmann machine is obtained; taking the network in Fig. 2 as an example, the two input layer data, the middle hidden layer and the class output layer represent a discriminative high-order Boltz Man machine, whose energy function E(x, y, h, z) is defined as:
E (x, y,h,z) (x )2 E (x, y,h,z) (x ) 2
Figure imgf000007_0001
Figure imgf000007_0001
- ∑( y厂 bj )2 -∑CA -∑dtzt - ∑( y factory bj ) 2 -∑ C A -∑d t z t
j k t  j k t
其中, a = 和 b = (b)^分别表示两个输入层的偏置项参数。 在能量函数的基础上可以得到输入层数据 x、 y和其关系类别 z的概率分 布 P (x, y,z):
Figure imgf000008_0001
Where a = and b = (b)^ represent the bias term parameters of the two input layers, respectively. The probability distribution P (x, y, z) of the input layer data x, y and its relational category z can be obtained on the basis of the energy function:
Figure imgf000008_0001
为了学习模型参数, 通常的做法是利用随机梯度下降算法来最小化目标 函数, 即最小化负对数的极大似然函数 Lgra : In order to learn the model parameters, it is common practice to minimize the objective function by using a stochastic gradient descent algorithm, that is, to minimize the negative logarithm of the maximum logarithm function L gra :
Lgen=- log∑p(x",y",z") 其中 表示训练数据的索引。 目标函数!^关于参数 W的梯度可以如下进 行计算:
Figure imgf000008_0002
L gen =- lo g∑p( x ",y", z ") where the index of the training data is represented. The objective function !^ The gradient of the parameter W can be calculated as follows:
Figure imgf000008_0002
其中 <.>q表示关于变量 q的期望。 但是, 计算上式中的第二项非常困难, 因为计算过程需要遍历变量 x、 y、 h和 z的所有取值状态。 使用!^作为目标 函数时的模型学习过程如图 6 所示。 另外, 为了简便计算过程, 我们还尝试 了一个判别式的目标函数, 即负对数下的关系类别的条件概率: Where <. >q represents the expectation about the variable q. However, calculating the second term in the above equation is very difficult because the calculation process needs to traverse all the values of the variables x, y, h, and z. use! ^ The model learning process as the objective function is shown in Figure 6. In addition, in order to simplify the calculation process, we also tried a discriminant objective function, that is, the conditional probability of the relationship category under the negative logarithm:
Ldls =-log∑P(z«lx«,y«) 其中关于 z的条件分布 P(zlx,y)可以表示为:
Figure imgf000008_0003
L dls =-log∑P(z«lx«, y«) where the conditional distribution P(zlx, y) for z can be expressed as:
Figure imgf000008_0003
不同于目标函数 Lg , 在这种情况下目标函数!^关于参数 W的梯度可以 精确的计算出来:Unlike the objective function L g , the target function in this case! ^ The gradient of the parameter W can be accurately calculated:
δΜ  ΜΜ
∑σ(ΜΛ) 2 (Mt,k)P(zt, lx,y ∑σ(Μ Λ ) 2 (M t , k )P(z t , lx,y
Mtk=ckkxiyj +uto M tk =c k +3⁄4 k x i y j +u to
ij  Ij
在得到梯度之后, 我们以迭代的方式参数对进行调整: dW  After getting the gradient, we adjust the parameter pairs in an iterative way: dW
其中, f表示一个常数学习率。 步骤 1 05、向所述训练好的判别式高阶玻尔兹曼机模型输入待验证的成对 人脸数据, 比如 X和 y, 得到输出层节点值 z, 通过比较其中两个数值的相对 大小即可判断人脸验证的结果。 如果 > 则不匹配, 反之则匹配。 Where f represents a constant learning rate. Step 1105: Input the paired face data to be verified, such as X and y, to the trained discriminative high-order Boltzmann machine model to obtain an output layer node value z, by comparing the relative values of the two values. The size can be used to judge the result of face verification. If > then does not match, otherwise it matches.
图 4 为本发明人脸验证系统的示意图, 如图所示, 本发明具体包括: 网 络建立模块 1、 网络权重优化模块 2和数据验证模块 3, 其中:  4 is a schematic diagram of a face verification system according to the present invention. As shown in the figure, the present invention specifically includes: a network establishment module 1, a network weight optimization module 2, and a data verification module 3, wherein:
具体的, 网络建立模块 1 用于建立判别式高阶玻尔兹曼机, 并设置网络 隐含层的节点数; 判别式高阶玻尔兹曼机为多层网络结构, 包括两个输入数 据层, 一个隐含层和一个类别输出层。 输入层为训练成对的人脸数据, 输出 层表示训练成对人脸数据的验证结果; 判别式的判别式高阶玻尔兹曼机具有 网络权重, 用于根据当前层节点值获得下一层节点值。  Specifically, the network establishing module 1 is configured to establish a discriminative high-order Boltzmann machine and set the number of nodes of the network hidden layer; the discriminative high-order Boltzmann machine is a multi-layer network structure, including two input data. Layer, an implicit layer and a category output layer. The input layer is training paired face data, the output layer represents the verification result of training paired face data; the discriminant discriminant high-order Boltzmann machine has network weight, which is used to obtain the next according to the current layer node value. Layer node value.
网络权重优化模块 2 利用随机梯度下降算法来最小化该玻尔兹曼机的目 标函数来获得优化后的玻尔兹曼机权重, 从而得到最终的判别式高阶玻尔兹 曼机模型。  The network weight optimization module 2 uses the stochastic gradient descent algorithm to minimize the objective function of the Boltzmann machine to obtain the optimized Boltzmann machine weight, and obtain the final discriminant high-order Boltzmann machine model.
数据验证模块 3 用于向判别式高阶玻尔兹曼机输入待验证的成对人脸数 据, 得到类别层两个节点值, 比较两个数值的相对大小即可得出人脸验证结 果。  The data verification module 3 is used to input the paired face data to be verified to the discriminant high-order Boltzmann machine, obtain two node values of the class layer, and compare the relative sizes of the two values to obtain the face verification result.
为了详细说明本发明的具体实施方式, 这里以两个图像数据集 (LFW 和 WDRef ) 为例说明。 LFW数据集包含 1 3233张来自于 5749个人的人脸图像。 其 中 1 680个人拥有 1 张图像, 而其余人的都有两张以上的图像。 WDRef 数据集 包括 99773张网络上的人脸图像, 其中 WDRef 与 LFW中的人脸数据没有重叠。 所有人脸图像都是直接从 I nternet上收集的, 在光照、 姿势等方面有非常大 的变化。  In order to explain in detail the specific embodiment of the present invention, two image data sets (LFW and WDRef) are illustrated here as an example. The LFW data set contains 1 3233 face images from 5,749 individuals. One of the 1,680 people has one image, while the rest have more than two images. The WDRef data set includes 99,773 face images on the network, where WDRef does not overlap with the face data in the LFW. All face images are collected directly from the Internet, with very large changes in lighting, posture, and more.
我们在两种设置下进行人脸验证实验:  We performed face verification experiments in two settings:
1 ) 原始数据下的有监督学习, 即将 LFW的数据分成 1 0份, 取其中 9分 进行训练, 剩余 1份进行测试, 如此重复 1 0次。  1) Under the original data, there is supervised learning. The data of LFW is divided into 10 copies, 9 of which are trained, and the remaining 1 is tested, and this is repeated 10 times.
2) 外在数据下的有监督学习。 利用 WDRef 数据进行训练, 在 LFW数据库 上进行测试。 2) Supervised learning under external data. Training with WDRef data, in the LFW database Test on it.
具体步骤如下:  Specific steps are as follows:
步骤 S1, 对于所有数据, 利用主成分分析将原始高維人脸 LBP特征降到 2000維度, 再利用线性判别分析进行处理。  Step S1, for all data, the principal high-dimensional face LBP feature is reduced to 2000 dimension by principal component analysis, and then processed by linear discriminant analysis.
步骤 S2, 使用一个四层的判别式高阶玻尔兹曼机模型, 其两个输入层、 隐含层和输出层分别包含 2000、 2000、 1000和 2个结点。  Step S2, using a four-layer discriminative high-order Boltzmann machine model, the two input layers, the hidden layer and the output layer respectively contain 2000, 2000, 1000 and 2 nodes.
步骤 S3, 利用张量对角化的策略消去除对角线之外的网络权重, 将权重 数量减少到 2)。 In step S3, the tensor diagonalization strategy is used to eliminate the network weights outside the diagonal line, and the weight quantity is reduced to 2 ).
步骤 S4, 利用梯度下降算法优化网络的目标函数^ l s, 其中梯度可以进 行精确计算而非近似。 优化是以迭代的方式进行, 这里设置最大迭代次数为 30可以保证收敛。  Step S4, using the gradient descent algorithm to optimize the objective function ^ l s of the network, wherein the gradient can be accurately calculated rather than approximated. Optimization is done in an iterative manner, where setting the maximum number of iterations to 30 guarantees convergence.
步骤 S6, 把测试的成对人脸数据输入到训练好的模型中, 并在输出层输 出验证后的结果。 输出的结果是一个两維的向量, 比较两个值的相对大小即 可判断匹配或者不匹配。  In step S6, the paired face data of the test is input into the trained model, and the verified result is output on the output layer. The result of the output is a two-dimensional vector. Comparing the relative sizes of the two values determines the match or does not match.
我们对比了现今一些人脸验证精度最高的一些方法。 通过 R0G 曲线的对 比可以发现在两种实验设置下, 我们的方法均取得了最好的实验结果。 此外, 我们测试了使用不同的输入数据維度和不同的隐含结点数量时, 本发明的实 验效果变化情况。 如图 5所示, 横轴表示隐含结点的数量 (number of h i dden un i ts) , 纵轴表示人脸识别精度(accuracy), 图中每一条曲线代表一种数据 維度在不同隐含结点时的人脸验证精度变化情况。 输入数据維度从 200 維变 化到 1000維, 隐含结点数量从 200个变化到 1200个。 从图中可以看出, 固 定隐含结点的数量, 随着使用输入数据的維度增大, 精度是上升的。 对于任 一输入数据的維度, 当隐含结点大于 400个时, 精度即保持稳定不再上升。  We compared some of the most accurate methods for face verification today. By comparing the R0G curves, we found that our method achieved the best experimental results under both experimental settings. In addition, we tested the experimental results of the present invention using different input data dimensions and different numbers of hidden nodes. As shown in Figure 5, the horizontal axis represents the number of hidden nodes (number of hi dden un i ts), and the vertical axis represents the accuracy of face recognition (accuracy). Each curve in the graph represents a data dimension in different implied The face verification accuracy changes at the node. The input data dimension has changed from 200 to 1000 dimensions, and the number of hidden nodes has changed from 200 to 1200. As can be seen from the figure, the number of hidden nodes is fixed, and as the dimension of the input data is increased, the accuracy is increased. For any dimension of input data, when the number of hidden nodes is greater than 400, the accuracy remains stable and no longer rises.
专业人员应该还可以进一步意识到, 结合本文中所公开的实施例描述的 各示例的单元及算法步骤, 能够以电子硬件、 计算机软件或者二者的结合来 实现, 为了清楚地说明硬件和软件的可互换性, 在上述说明中已经按照功能 一般性地描述了各示例的组成及步骤。 这些功能究竟以硬件还是软件方式来 执行, 取决于技术方案的特定应用和设计约束条件。 专业技术人员可以对每 个特定的应用来使用不同方法来实现所描述的功能, 但是这种实现不应认为 超出本发明的范围。 A person skilled in the art should further appreciate that the elements and algorithm steps of the various examples described in connection with the embodiments disclosed herein can be implemented in electronic hardware, computer software, or a combination of both, in order to clearly illustrate hardware and software. Interchangeability, according to the above description The composition and steps of the various examples are generally described. Whether these functions are performed in hardware or software depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods to implement the described functions for each particular application, but such implementation should not be considered to be beyond the scope of the present invention.
结合本文中所公开的实施例描述的方法或算法的步骤可以用硬件、 处理 器执行的软件模块, 或者二者的结合来实施。 软件模块可以置于随机存储器 The steps of a method or algorithm described in connection with the embodiments disclosed herein can be implemented in hardware, a software module executed by a processor, or a combination of both. Software modules can be placed in random access memory
(RAM) 、 内存、 只读存储器 (ROM) 、 电可编程 R0M、 电可擦除可编程 R0M、 寄存器、 硬盘、 可移动磁盘、 GD-R0M、 或技术领域内所公知的任意其它形式 的存储介^中。 (RAM), memory, read only memory (ROM), electrically programmable ROM, electrically erasable programmable ROM, registers, hard disk, removable disk, GD-ROM, or any other form of storage known in the art In the middle.
以上所述的具体实施方式, 对本发明的目的、 技术方案和有益效果进行 了进一步详细说明, 所应理解的是, 以上所述仅为本发明的具体实施方式而 已, 并不用于限定本发明的保护范围, 凡在本发明的精神和原则之内, 所做 的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。  The above described embodiments of the present invention are further described in detail, and the embodiments of the present invention are intended to be illustrative only. The scope of the protection, any modifications, equivalents, improvements, etc., made within the spirit and scope of the invention are intended to be included within the scope of the invention.

Claims

权 利 要 求 书 Claim
1、 一种人脸验证方法, 其特征在于, 所述方法包括:  A method for verifying a face, the method comprising:
步骤 1、利用主成分分析和线性判别分析对高維人脸特征数据分别进行预 处理, 其中包括设置主成分分析降維后的数据維度;  Step 1. Pre-processing the high-dimensional facial feature data by principal component analysis and linear discriminant analysis, including setting the data dimension of the principal component analysis after dimension reduction;
步骤 2、 建立判别式高阶玻尔兹曼机, 设置隐含层的节点数;  Step 2: Establish a discriminative high-order Boltzmann machine, and set the number of nodes of the hidden layer;
步骤 3、利用张量对角化的策略来减少该判别式高阶玻尔兹曼机的模型参 数;  Step 3. Using a tensor diagonalization strategy to reduce the model parameters of the discriminative high-order Boltzmann machine;
步骤 4、把成对的人脸数据输入到判别式高阶玻尔兹曼机中, 利用随机梯 度下降算法来最大化关系类别的条件概率, 从而迭代地优化该玻尔兹曼机的 权重, 从而得到最终的判别式高阶玻尔兹曼机;  Step 4: Input the paired face data into the discriminant high-order Boltzmann machine, and use the stochastic gradient descent algorithm to maximize the conditional probability of the relationship class, thereby iteratively optimizing the weight of the Boltzmann machine. Thereby obtaining the final discriminant high-order Boltzmann machine;
步骤 5、 向所述判别式高阶玻尔兹曼机模型输入待验证的成对人脸数据, 得到对应的验证结果数据。  Step 5: Input the paired face data to be verified to the discriminative high-order Boltzmann machine model, and obtain corresponding verification result data.
2、 根据权利要求 1所述的方法, 其特征在于, 所述步骤 2中的所述判别 式高阶玻尔兹曼机的模型是包括两个数据输入层, 一个隐含层和一个类别输 出层的四层网络结构。  2. The method according to claim 1, wherein the model of the discriminative high-order Boltzmann machine in step 2 comprises two data input layers, one hidden layer and one category output. Layer four network structure.
3、 根据权利要求 2所述的方法, 其特征在于, 所述两个数据输入层为成 对的训练人脸数据, 所述类别输出层表示人脸验证结果; 并且所述判别式高 阶玻尔兹曼机具有网络权重, 以根据当前层节点值获得下一层节点值。  3. The method according to claim 2, wherein the two data input layers are paired training face data, the class output layer represents a face verification result; and the discriminant high order glass The Erzmann machine has a network weight to obtain the next layer of node values based on the current layer node value.
4、 根据权利要求 3所述的方法, 其特征在于, 所述步骤 3中的张量对角 化的策略是将所述两个数据输入层和隐含层之间的三維权重立方体处理为多 个二維的权重矩阵。  4. The method according to claim 3, wherein the tensor diagonalization strategy in step 3 is to process the three-dimensional weight cube between the two data input layers and the hidden layer into multiple A two-dimensional weight matrix.
5、 根据权利要求 1 所述的方法, 其特征在于, 所述判别式高阶玻尔兹曼 机的目标函数是负对数的关系类别的条件概率。  5. The method according to claim 1, wherein the objective function of the discriminant high-order Boltzmann machine is a conditional probability of a relationship class of a negative logarithm.
6、 一种人脸验证系统, 其特征在于, 所述系统包括: 网络建立模块、 网 络权重优化模块和数据验证模块, 其中:  6. A face verification system, the system comprising: a network establishment module, a network weight optimization module, and a data verification module, wherein:
所述网络建立模块, 用于建立判别式高阶玻尔兹曼机, 并设置网络隐含 层的节点数; The network establishing module is configured to establish a discriminative high-order Boltzmann machine, and set a network implied The number of nodes in the layer;
所述网络权重优化模块, 利用随机梯度下降算法来最小化该玻尔兹曼机 的目标函数来获得优化后的玻尔兹曼机权重, 从而得到最终的判别式高阶玻 尔兹曼机模型;  The network weight optimization module uses a stochastic gradient descent algorithm to minimize the objective function of the Boltzmann machine to obtain an optimized Boltzmann machine weight, thereby obtaining a final discriminant high-order Boltzmann machine model. ;
所述数据验证模块, 用于向所述判别式高阶玻尔兹曼机输入待验证的成 对人脸数据, 得到类别层两个节点值, 比较两个数值的相对大小即可得出人 脸验证结果数据。  The data verification module is configured to input paired face data to be verified to the discriminative high-order Boltzmann machine, obtain two node values of the category layer, and compare the relative sizes of the two values to obtain a person Face verification result data.
PCT/CN2014/082149 2014-07-14 2014-07-14 Face verification method and system WO2016008071A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480000558.8A CN104363981B (en) 2014-07-14 2014-07-14 Face verification method and system
PCT/CN2014/082149 WO2016008071A1 (en) 2014-07-14 2014-07-14 Face verification method and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/082149 WO2016008071A1 (en) 2014-07-14 2014-07-14 Face verification method and system

Publications (1)

Publication Number Publication Date
WO2016008071A1 true WO2016008071A1 (en) 2016-01-21

Family

ID=52530957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/082149 WO2016008071A1 (en) 2014-07-14 2014-07-14 Face verification method and system

Country Status (2)

Country Link
CN (1) CN104363981B (en)
WO (1) WO2016008071A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109978164A (en) * 2019-03-18 2019-07-05 西安电子科技大学 The method of High Range Resolution based on depth confidence Network Recognition variant aircraft

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101021900A (en) * 2007-03-15 2007-08-22 上海交通大学 Method for making human face posture estimation utilizing dimension reduction method
US20100228694A1 (en) * 2009-03-09 2010-09-09 Microsoft Corporation Data Processing Using Restricted Boltzmann Machines
CN103605972A (en) * 2013-12-10 2014-02-26 康江科技(北京)有限责任公司 Non-restricted environment face verification method based on block depth neural network
CN103793718A (en) * 2013-12-11 2014-05-14 台州学院 Deep study-based facial expression recognition method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101021900A (en) * 2007-03-15 2007-08-22 上海交通大学 Method for making human face posture estimation utilizing dimension reduction method
US20100228694A1 (en) * 2009-03-09 2010-09-09 Microsoft Corporation Data Processing Using Restricted Boltzmann Machines
CN103605972A (en) * 2013-12-10 2014-02-26 康江科技(北京)有限责任公司 Non-restricted environment face verification method based on block depth neural network
CN103793718A (en) * 2013-12-11 2014-05-14 台州学院 Deep study-based facial expression recognition method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109978164A (en) * 2019-03-18 2019-07-05 西安电子科技大学 The method of High Range Resolution based on depth confidence Network Recognition variant aircraft
CN109978164B (en) * 2019-03-18 2022-12-06 西安电子科技大学 Method for identifying high-resolution range profile of morphing aircraft based on deep confidence network

Also Published As

Publication number Publication date
CN104363981B (en) 2018-06-05
CN104363981A (en) 2015-02-18

Similar Documents

Publication Publication Date Title
CN106372581B (en) Method for constructing and training face recognition feature extraction network
US10282530B2 (en) Verifying identity based on facial dynamics
Wang et al. Expression of Concern: Facial feature discovery for ethnicity recognition
Navaz et al. Face recognition using principal component analysis and neural networks
Ren et al. Band-reweighed Gabor kernel embedding for face image representation and recognition
CN110414550B (en) Training method, device and system of face recognition model and computer readable medium
Chen et al. A novel discriminant criterion based on feature fusion strategy for face recognition
CN111783748A (en) Face recognition method and device, electronic equipment and storage medium
CN112101087A (en) Facial image identity de-identification method and device and electronic equipment
KR101676101B1 (en) A Hybrid Method based on Dynamic Compensatory Fuzzy Neural Network Algorithm for Face Recognition
Jadhav et al. HDL-PI: hybrid DeepLearning technique for person identification using multimodal finger print, iris and face biometric features
CN110287973B (en) Image feature extraction method based on low-rank robust linear discriminant analysis
Kekre et al. Face and gender recognition using principal component analysis
Li et al. Feature extraction based on deep‐convolutional neural network for face recognition
Li Face recognition method based on fuzzy 2DPCA
Zhang et al. Research On Face Image Clustering Based On Integrating Som And Spectral Clustering Algorithm
WO2016008071A1 (en) Face verification method and system
Deng et al. View-invariant gait recognition based on deterministic learning and knowledge fusion
Pryor et al. Deepfake Detection Analyzing Hybrid Dataset Utilizing CNN and SVM
Hasan Abdulameer et al. Face Identification Approach Using Legendre Moment and Singular Value Decomposition
Priya et al. Multimodal biometric authentication using back propagation artificial neural network
Alford et al. Genetic and evolutionary methods for biometric feature reduction
Chun-Rong Research on face recognition technology based on deep learning
KR101763259B1 (en) Electronic apparatus for categorizing data and method thereof
Li et al. Multifeature anisotropic orthogonal gaussian process for automatic age estimation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14897596

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14897596

Country of ref document: EP

Kind code of ref document: A1