WO2016006972A1 - Nitride semiconductor light emitting device comprising nano particle layer - Google Patents

Nitride semiconductor light emitting device comprising nano particle layer Download PDF

Info

Publication number
WO2016006972A1
WO2016006972A1 PCT/KR2015/007212 KR2015007212W WO2016006972A1 WO 2016006972 A1 WO2016006972 A1 WO 2016006972A1 KR 2015007212 W KR2015007212 W KR 2015007212W WO 2016006972 A1 WO2016006972 A1 WO 2016006972A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
layer
light emitting
emitting device
type epoxy
Prior art date
Application number
PCT/KR2015/007212
Other languages
French (fr)
Korean (ko)
Inventor
남기연
김동우
김현규
김승용
Original Assignee
일진엘이디(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 일진엘이디(주) filed Critical 일진엘이디(주)
Publication of WO2016006972A1 publication Critical patent/WO2016006972A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements

Definitions

  • the present invention relates to a nitride semiconductor light emitting device including a nanoparticle layer, and more particularly to a nitride semiconductor light emitting device in which a nanoparticle layer is interposed between a substrate and a fluorescent layer.
  • the nitride semiconductor light emitting device has a structure in which an active layer is formed between an n-type nitride layer doped with n-type impurities such as silicon and a p-type nitride layer doped with p-type impurities such as magnesium.
  • FIG. 1 schematically shows a conventional nitride semiconductor light emitting device.
  • the substrate 110 the undoped nitride layer 120, the first conductivity type nitride layer 130, the active layer 140, and the second conductivity type nitride layer ( 150).
  • the general nitride semiconductor light emitting device includes a first electrode 151 in contact with the first conductivity type nitride layer 130 and a second electrode 152 in contact with the second conductivity type nitride layer 150.
  • the light generated upon recombination of electrons and holes in the active layer 140 is emitted not only in the upper direction but also in the lower direction.
  • the reflective layer 180 is formed on the lower portion of the substrate to reflect the light emitted in the lower direction to improve the light extraction efficiency.
  • the reflective layer mainly uses a metallic reflective layer, but recently, in order to obtain higher reflection efficiency, dielectrics having different refractive indices (for example, TiO 2) are used. Alternatively, a dielectric reflective layer in which SiO 2 ) is alternately stacked is mainly used.
  • the present inventors have developed a light emitting device having improved light emitting efficiency by interposing a nanoparticle layer between a substrate and a fluorescent layer.
  • an object of the present invention is to provide a nitride semiconductor light emitting device having improved luminous efficiency, and more particularly, to provide a nitride semiconductor light emitting device having improved luminous and heat dissipation efficiency by interposing a nanoparticle layer between a substrate and a fluorescent layer.
  • the substrate A first conductive nitride layer, an active layer, and a second conductive nitride layer are stacked on a first surface of the substrate, and the active layer is disposed between the first conductive nitride layer and the second conductive nitride layer.
  • Interposed light emitting structure And a fluorescent layer laminated on the second surface of the substrate, wherein the nitride semiconductor light emitting device may be provided with a nanoparticle layer interposed between the substrate and the fluorescent layer.
  • the nanoparticles included in the nanoparticle layer interposed between the substrate and the fluorescent layer act as scattering points to improve luminous efficiency.
  • the heat dissipation efficiency of the light emitting device may also be improved through heat dissipation by the nanoparticles.
  • Figure 1 schematically shows a nitride semiconductor light emitting device according to the prior art.
  • FIG. 2 schematically shows a nitride semiconductor light emitting device including a nanoparticle layer according to an embodiment of the present invention.
  • Figure 3 shows the change in luminous efficiency with or without the nanoparticle layer.
  • Figure 4 shows the change in luminous efficiency according to the occupancy area ratio of the nanoparticles.
  • a nitride semiconductor light emitting device including a nanoparticle layer according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings.
  • embodiments of the present invention may be modified in many different forms, and the scope of the present invention is not limited as described below.
  • a substrate is stacked on a first surface of the substrate, and includes a first conductivity type nitride layer, an active layer, and a second conductivity type nitride layer, wherein the active layer is the first conductivity type nitride layer.
  • a light emitting structure interposed between the second conductivity type nitride layer and a fluorescent layer stacked on the second surface of the substrate, wherein the nanoparticle layer is interposed between the substrate and the fluorescent layer.
  • a semiconductor light emitting device can be provided.
  • the nitride semiconductor light emitting device includes a substrate 210, a first conductivity type nitride layer 230, an active layer 240, and a second conductivity type nitride layer 250 from below. .
  • the first conductivity type nitride layer 230 is formed of an n-type nitride semiconductor doped with n-type impurities such as silicon (Si), and the second conductivity-type nitride layer 250 is p such as magnesium (Mg). It is formed of a p-type nitride semiconductor doped with type impurities. Of course, the reverse is also to be understood as possible.
  • the active layer 240 may be formed by alternately stacking quantum barrier layers (GaN) and quantum well layers (InGaN) to form a multi-quantum well (MQW) structure.
  • GaN quantum barrier layers
  • InGaN quantum well layers
  • MQW multi-quantum well
  • the substrate 210 may be formed of sapphire, silicon, or the like, and has a first surface and a second surface opposite thereto.
  • the first conductivity type nitride layer 230, the active layer 240, and the second conductivity type nitride layer 250 are sequentially formed on the first surface of the substrate 210.
  • first electrode 251 is further formed to be electrically connected to the first conductivity type nitride layer 230
  • second electrode 252 is further formed to be electrically connected to the second conductivity type nitride layer 250. It may be.
  • an undoped nitride layer between the substrate 210 and the first conductivity type nitride layer 230 may be used to improve crystal quality. 120 may be further formed.
  • a buffer layer such as an AlN layer or a low temperature GaN may be further formed between the substrate 210 and the first conductivity type nitride layer 230 or between the substrate 210 and the undoped nitride layer 220. .
  • the nanoparticle layer 270 is interposed between the substrate 210 and the fluorescent layer 260 stacked on the second surface of the substrate 210.
  • the nanoparticle layer 270 serves to adhere the fluorescent layer 260 on the second surface of the substrate 210.
  • the nanoparticles included in the nanoparticle layer 270 serves to improve the amount of light finally emitted from the light emitting device by scattering the light emitted upward from the active layer 240 (see FIG. 3). .
  • the fluorescent layer 260 may be configured to have a plurality of fluorescent layers stacked.
  • the nanoparticle layer 270 may be formed by curing a composition including at least one nanoparticle selected from a metal, an oxide, and carbon nanotubes and a binder resin.
  • the nanoparticle layer 270 formed as the composition including the nanoparticles and the binder resin is cured may be present in a state in which the substrate 210 and the fluorescent layer 260 are bonded to each other.
  • the fluorescent layer 260 may be stacked on the second surface of the substrate 210 in the form of a film.
  • the nanoparticle layer 270 may include metal, oxide or carbon nanotubes, but may include any mixture of metal, oxide or carbon nanotubes.
  • the metal includes at least one selected from gold, silver, aluminum, palladium, platinum and copper.
  • the oxide is TiO 2 , SiO 2 , MgF 2 , CeO 2 , Al 2 O 3 , ZrO 2 , MgO, Ta 2 O 5 , SnO 2 , ZnO, B 2 O 3 , Li 2 O, SrO, HfO 2 At least one selected from SiON x and BaO.
  • the carbon nanotubes may be at least one selected from single-walled carbon nanotubes, double-walled carbon nanotubes and multi-walled carbon nanotubes.
  • the carbon nanotubes may be manufactured through various methods such as chemical vapor deposition, arc discharge, plasma torch and ion bombardment.
  • the carbon nanotubes manufactured by various methods may satisfy the following conditions. If present, it can be used regardless of its shape.
  • the nanoparticles may have at least one shape selected from sheets, wires, disks, rods, and foils, but is not necessarily limited thereto.
  • the type and shape of the nanoparticles can be selected within a range in which improvement of light emission and heat dissipation efficiency of the light emitting device, which is an object of the present invention, is achieved.
  • the nanoparticle layer 270 should be able to minimize the light emitted from the active layer 240 in the upper direction is reflected in the downward direction or the light absorbed by the nanoparticles themselves.
  • the average particle diameter of the nanoparticles included in the nanoparticle layer 270 is preferably 100 nm or less. More preferably, the average particle diameter of the nanoparticles is 5 nm or more and 75 nm or less, and when the average particle diameter of the nanoparticles is 5 nm or less, it is difficult to scatter light sufficiently due to insufficient network formation between nanoparticles, and the heat radiation efficiency is also lowered. Can be.
  • the average particle diameter of the nanoparticles exceeds 100 nm, the possibility that light emitted from the active layer 240 in the upper direction is reflected in the downward direction or absorbs the light by the nanoparticles themselves increases.
  • the light emission and heat radiation efficiency of the nanoparticle layer 270 is the content of the nanoparticles included in the nanoparticle layer 270 and the composition in the nanoparticle layer 270 formed by curing the composition containing the nanoparticles It is also related to the area fraction occupied by nanoparticles.
  • the composition may include 5 to 10 parts by weight of the nanoparticles per 100 parts by weight of the composition.
  • the content of the nanoparticles per 100 parts by weight of the composition is less than 5 parts by weight, it is difficult to scatter light sufficiently due to the insufficient formation of the network between the nanoparticles (see Fig. 5), the heat radiation efficiency may also be reduced.
  • the occupied area ratio of the nanoparticles in the nanoparticle layer 270 may be 30% or less, preferably 5 to 25%.
  • the area fraction occupied by the nanoparticles in the nanoparticle layer 270 is related to the content of the nanoparticles in the composition forming the nanoparticle layer 270 by curing, and thus the nanoparticles in the composition. As the content of the particles increases, the occupied area ratio of the nanoparticles in the nanoparticle layer 270 formed by curing increases.
  • the occupied area ratio of the nanoparticles in the nanoparticle layer 270 exceeds 30%, the light emitted upward in the active layer 240 is reflected downward, or the nanoparticles themselves By absorbing light it is possible to increase the possibility that the amount of light emitted in the upward direction is sharply reduced.
  • the occupied area ratio of the nanoparticles in the nanoparticle layer 270 is less than 5%, the formation of the network between the nanoparticles is insufficient and it is difficult to scatter the light sufficiently, and the heat radiation efficiency may also be reduced (FIG. 4).
  • the binder resin is a glycidyl ether type epoxy resin, cresyl glycidyl ether type epoxy resin, phenyl glycidyl ether type epoxy resin, nonylphenyl glycidyl ether type epoxy resin, butylphenyl glyc Cidyl ether epoxy resin, 2-ethylhexyl glycidyl ether epoxy resin, bisphenol F diglycidyl ether epoxy resin, bisphenol a diglycidyl ether epoxy resin, 1,6-hexanediol digly Cedyl ether type epoxy resin, 1,4-butanediol diglycidyl ether type epoxy resin, alicyclic diglycidyl ether type epoxy resin, naphthalene type epoxy resin, dicyclopentadiene epoxy resin, silicone modified epoxy Resin, phenol novolak-type epoxy resin, cresol novolak-type epoxy resin, bisphenol A modified phenol novolak-type
  • the light emitting device does not include the nanoparticle layer shown in FIG. And the luminous efficiency of the light emitting device including the nanoparticle layer shown in Figure 2 was compared.
  • nanoparticles included in the nanoparticle layer included in the light emitting device As the nanoparticles included in the nanoparticle layer included in the light emitting device according to the embodiment of the present invention, Ag powder having an average particle diameter of 50 nm and carbon nanotubes having an average particle diameter of 10 nm were used. Phenyl glycidyl ether type epoxy resin was used. The nanoparticle layer was formed by dotting and curing on a substrate.
  • the nanoparticles contained in the nanoparticle layer is a result of scattering the light emitted upward in the active layer.
  • the luminous efficiency was compared while changing the occupancy area ratio of the nanoparticles from 0% to 35%.
  • the occupancy area ratio was calculated as the ratio of the area occupied by the nanoparticles to the total area of the nanoparticle layer.
  • the light output value will decrease, as expected, rather than in the upper direction in the active layer. It can be expected that the amount of light emitted in the upper direction is rapidly decreased because the emitted light is reflected in the downward direction or the nanoparticles absorb the light by themselves.
  • the nanoparticles shown in FIG. 2 In order to confirm the change in luminous efficiency according to the content (weight ratio) of the nanoparticles in the nanoparticle layer interposed between the sapphire substrate and the fluorescent layer laminated on the second surface of the sapphire substrate, the nanoparticles shown in FIG. 2 In the light emitting device including the layer, light emission efficiency and heat radiation efficiency were compared while changing the content of nanoparticles from 0 wt% to 15 wt%.
  • the content of the nanoparticles in the nanoparticle layer is 15 wt%
  • the content of nanoparticles is 0%, that is, the Pout value is lower than that when the nanoparticle layer containing nanoparticles is not interposed. I could confirm that it came out.
  • the light output value will decrease rather than expected, which is emitted upward in the active layer. It can be expected that the amount of light emitted in the upper direction is drastically reduced because the light is reflected in the downward direction or the nanoparticles absorb the light by themselves.
  • the temperature of the light emitting device is about 45 ° C.
  • the nanoparticle layer with the nanoparticle content of 5 wt% and 10 wt% is interposed, it was confirmed that the temperature of the light emitting device is maintained at about 35 ° C or less.
  • the heat radiation efficiency of the light emitting device is improved by the nanoparticles included in the nanoparticle layer.
  • the heat dissipation efficiency increases as the content of the nanoparticles in the nanoparticle layer increases.
  • the content of the nanoparticles is excessively increased to increase the heat dissipation efficiency, the light emission efficiency decreases. It is important to keep the content of particles at a level of 5 wt% to 10 wt% based on the total weight.

Abstract

The present invention relates to a nitride semiconductor light emitting device comprising a nano particle layer and, more particularly, to a nitride semiconductor light emitting device in which the nano particle layer is interposed between a substrate and a fluorescent layer. According to one embodiment of the present invention, nano particles contained in the nano particle layer interposed between the substrate and the fluorescent layer function as a scattering point so as to increase the quantity of light emitted from a light emitting structure, thereby improving light emitting efficiency, and heat dissipation efficiency of the light emitting device can also be improved through heat dispersion by the nano particles.

Description

나노 입자 층을 포함하는 질화물 반도체 발광소자Nitride semiconductor light emitting device comprising a nanoparticle layer
본 발명은 나노 입자 층을 포함하는 질화물 반도체 발광소자에 관한 것이며, 보다 구체적으로 기판과 형광층 사이에 나노 입자 층이 개재된 질화물 반도체 발광소자에 관한 것이다.The present invention relates to a nitride semiconductor light emitting device including a nanoparticle layer, and more particularly to a nitride semiconductor light emitting device in which a nanoparticle layer is interposed between a substrate and a fluorescent layer.
질화물 반도체 발광소자는 실리콘과 같은 n형 불순물이 도핑된 n형 질화물층과 마그네슘과 같은 p형 불순물이 도핑된 p형 질화물층 사이에 활성층이 형성된 구조를 갖는다. The nitride semiconductor light emitting device has a structure in which an active layer is formed between an n-type nitride layer doped with n-type impurities such as silicon and a p-type nitride layer doped with p-type impurities such as magnesium.
이러한 질화물 반도체 발광소자의 경우, n형 질화물층으로부터 공급되는 전자와 p형 질화물층으로부터 공급되는 정공이 활성층에서 재결합하면서 광을 발생시킨다.In the case of such a nitride semiconductor light emitting device, electrons supplied from the n-type nitride layer and holes supplied from the p-type nitride layer recombine in the active layer to generate light.
도 1은 종래의 질화물 반도체 발광소자를 개략적으로 나타낸 것이다.1 schematically shows a conventional nitride semiconductor light emitting device.
도 1을 참조하면, 일반적인 질화물 반도체 발광소자는 하부로부터, 기판(110), 비도핑 질화물층(120), 제1 도전형 질화물층(130), 활성층(140) 및 제2 도전형 질화물층(150)을 포함한다. Referring to FIG. 1, in the general nitride semiconductor light emitting device, the substrate 110, the undoped nitride layer 120, the first conductivity type nitride layer 130, the active layer 140, and the second conductivity type nitride layer ( 150).
또한, 일반적인 질화물 반도체 발광소자는 제1 도전형 질화물층(130)에 접촉하는 제1 전극(151)과, 제2 도전형 질화물층(150)에 접촉하는 제2 전극(152)을 포함한다.In addition, the general nitride semiconductor light emitting device includes a first electrode 151 in contact with the first conductivity type nitride layer 130 and a second electrode 152 in contact with the second conductivity type nitride layer 150.
한편, 활성층(140)에서 전자와 정공의 재결합시 발생하는 광은 상부 방향뿐만 아니라, 하부 방향으로도 방사된다.On the other hand, the light generated upon recombination of electrons and holes in the active layer 140 is emitted not only in the upper direction but also in the lower direction.
이 때, 하부 방향으로 방사된 광을 상부 방향으로 반사시켜 광 추출 효율을 향상시킬 수 있도록, 기판의 하부에는 반사층(180)이 형성되어 있다. At this time, the reflective layer 180 is formed on the lower portion of the substrate to reflect the light emitted in the lower direction to improve the light extraction efficiency.
이러한 반사층은 종래에는 금속 재질의 반사층을 주로 이용하였으나, 최근에는 보다 높은 반사 효율을 얻기 위하여, 굴절률이 서로 다른 유전체들(예를 들어, TiO2 또는 SiO2)이 교대 반복 적층된 형태의 유전체 반사층이 주로 이용되고 있다.Conventionally, the reflective layer mainly uses a metallic reflective layer, but recently, in order to obtain higher reflection efficiency, dielectrics having different refractive indices (for example, TiO 2) are used. Alternatively, a dielectric reflective layer in which SiO 2 ) is alternately stacked is mainly used.
그런데, 유전체 반사층을 이용하는 경우에도 반사 효율 향상에는 한계가 있으며, 유전체 특성상 열 분산이 제대로 이루어지지 못하는 문제점이 있다.However, even in the case of using the dielectric reflective layer, there is a limit in improving the reflection efficiency, and there is a problem in that heat dissipation is not properly performed due to the dielectric characteristics.
본 발명에 관련된 배경기술로는 대한민국 공개특허공보 제10-2011-0021406호(2011년 03월 04일 공개)가 있으며, 상기 문헌에는 패턴된 분산브래그 반사층을 포함하는 발광소자 및 이의 제조방법이 개시되어 있다.Background art related to the present invention is the Republic of Korea Patent Publication No. 10-2011-0021406 (published on March 04, 2011), the document discloses a light emitting device comprising a patterned distributed Bragg reflection layer and a manufacturing method thereof It is.
발광 효율을 향상시킬 수 있는 질화물 반도체 발광소자의 개발을 위해 예의 노력한 결과, 본 발명자들은 기판과 형광층 사이에 나노 입자 층이 개재시킴으로써 발광 효율이 향상된 발광 소자를 개발하기에 이르렀다.As a result of intensive efforts to develop a nitride semiconductor light emitting device capable of improving light emitting efficiency, the present inventors have developed a light emitting device having improved light emitting efficiency by interposing a nanoparticle layer between a substrate and a fluorescent layer.
이에 따라 본 발명의 목적은 발광 효율이 개선된 질화물 반도체 발광소자를 제공하는 데 있으며, 보다 구체적으로 기판과 형광층 사이에 나노 입자 층이 개재됨으로써 발광 및 방열 효율이 향상된 질화물 반도체 발광소자를 제공하는 데 있다.Accordingly, an object of the present invention is to provide a nitride semiconductor light emitting device having improved luminous efficiency, and more particularly, to provide a nitride semiconductor light emitting device having improved luminous and heat dissipation efficiency by interposing a nanoparticle layer between a substrate and a fluorescent layer. There is.
상기의 기술적 과제를 해결하기 위해, In order to solve the above technical problem,
본 발명의 일 측면에 따르면, 기판; 상기 기판의 제1 면 상에 적층되며, 제1 도전형 질화물층, 활성층 및 제2 도전형 질화물층을 포함하며, 상기 활성층은 상기 제1 도전형 질화물층과 상기 제2 도전형 질화물층 사이에 개재된 발광 구조체; 및 상기 기판의 제2 면 상에 적층되는 형광층;을 포함하며, 상기 기판과 상기 형광층 사이에 나노 입자 층이 개재된 것을 특징으로 하는 질화물 반도체 발광소자가 제공될 수 있다.According to an aspect of the invention, the substrate; A first conductive nitride layer, an active layer, and a second conductive nitride layer are stacked on a first surface of the substrate, and the active layer is disposed between the first conductive nitride layer and the second conductive nitride layer. Interposed light emitting structure; And a fluorescent layer laminated on the second surface of the substrate, wherein the nitride semiconductor light emitting device may be provided with a nanoparticle layer interposed between the substrate and the fluorescent layer.
본 발명의 일 실시예에 따르면, 발광 구조체로부터 방출되는 광의 양을 증가시키기 위해 기판과 형광층 사이에 개재된 나노 입자 층에 포함된 나노 입자가 산란 포인트(scattering point)로서 작용하여 발광 효율을 향상시킬 수 있으며, 상기 나노 입자에 의한 열 분산을 통해 발광소자의 방열 효율 역시 향상시킬 수 있다.According to an embodiment of the present invention, in order to increase the amount of light emitted from the light emitting structure, the nanoparticles included in the nanoparticle layer interposed between the substrate and the fluorescent layer act as scattering points to improve luminous efficiency. The heat dissipation efficiency of the light emitting device may also be improved through heat dissipation by the nanoparticles.
도 1은 종래 기술에 따른 질화물 반도체 발광소자를 개략적으로 나타낸 것이다.Figure 1 schematically shows a nitride semiconductor light emitting device according to the prior art.
도 2는 본 발명의 일 실시예에 따른 나노 입자 층을 포함하는 질화물 반도체 발광소자를 개략적으로 나타낸 것이다.2 schematically shows a nitride semiconductor light emitting device including a nanoparticle layer according to an embodiment of the present invention.
도 3은 나노 입자 층의 유무에 따른 발광 효율의 변화를 나타낸 것이다.Figure 3 shows the change in luminous efficiency with or without the nanoparticle layer.
도 4는 나노 입자의 점유 면적률에 따른 발광 효율의 변화를 나타낸 것이다.Figure 4 shows the change in luminous efficiency according to the occupancy area ratio of the nanoparticles.
도 5는 나노 입자의 함량에 따른 발광 효율의 변화를 나타낸 것이다.5 shows a change in luminous efficiency according to the content of nanoparticles.
본 발명을 더 쉽게 이해하기 위해 편의상 특정 용어를 본원에 정의한다. 본원에서 달리 정의하지 않는 한, 본 발명에 사용된 과학 용어 및 기술 용어들은 해당 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 의미를 가질 것이다. 또한, 문맥상 특별히 지정하지 않는 한, 단수 형태의 용어는 그것의 복수 형태도 포함하는 것이며, 복수 형태의 용어는 그것의 단수 형태도 포함하는 것으로 이해되어야 한다. Certain terms are defined herein for convenience of understanding the invention. Unless defined otherwise herein, scientific and technical terms used herein have the meanings that are commonly understood by one of ordinary skill in the art. Also, unless specifically indicated in the context, the singular forms "a", "an", and "the" are intended to include their plural forms as well.
제1, 제2 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 해당 구성요소들은 이와 같은 용어들에 의해 한정되지는 않는다. 이 용어들은 하나의 구성요소들을 다른 구성요소로부터 구별하는 목적으로만 사용된다.Terms including ordinal numbers such as first and second may be used to describe various components, but the components are not limited by the terms. These terms are only used to distinguish one component from another.
이하, 첨부된 도면을 참조하여 본 발명의 일 실시예에 따른 나노 입자 층을 포함하는 질화물 반도체 발광소자에 대하여 상세히 설명한다. 다만, 본 발명의 실시예는 여러가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기에 설명하는 바에 따라 한정되는 것은 아니다.Hereinafter, a nitride semiconductor light emitting device including a nanoparticle layer according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings. However, embodiments of the present invention may be modified in many different forms, and the scope of the present invention is not limited as described below.
본 발명의 일 측면에 따르면, 기판, 상기 기판의 제1 면 상에 적층되며, 제1 도전형 질화물층, 활성층 및 제2 도전형 질화물층을 포함하며, 상기 활성층은 상기 제1 도전형 질화물층과 상기 제2 도전형 질화물층 사이에 개재된 발광 구조체 및 상기 기판의 제2 면 상에 적층되는 형광층을 포함하며, 상기 기판과 상기 형광층 사이에 나노 입자 층이 개재된 것을 특징으로 하는 질화물 반도체 발광소자가 제공될 수 있다.According to an aspect of the present invention, a substrate is stacked on a first surface of the substrate, and includes a first conductivity type nitride layer, an active layer, and a second conductivity type nitride layer, wherein the active layer is the first conductivity type nitride layer. And a light emitting structure interposed between the second conductivity type nitride layer and a fluorescent layer stacked on the second surface of the substrate, wherein the nanoparticle layer is interposed between the substrate and the fluorescent layer. A semiconductor light emitting device can be provided.
우선, 도 2를 참조하여 본 발명의 일 실시예에 따른 나노 입자 층을 포함하는 질화물 반도체 발광소자의 구조에 대하여 설명하기로 한다.First, a structure of a nitride semiconductor light emitting device including a nanoparticle layer according to an embodiment of the present invention will be described with reference to FIG. 2.
도 2를 참조하면, 본 발명에 따른 질화물 반도체 발광소자는 하부로부터, 기판(210), 제1 도전형 질화물층(230), 활성층(240) 및 제2 도전형 질화물층(250)을 포함한다.2, the nitride semiconductor light emitting device according to the present invention includes a substrate 210, a first conductivity type nitride layer 230, an active layer 240, and a second conductivity type nitride layer 250 from below. .
통상적으로, 제1 도전형 질화물층(230)은 실리콘(Si) 등의 n형 불순물이 도핑된 n형 질화물 반도체로 형성되고, 제2 도전형 질화물층(250)은 마그네슘(Mg) 등의 p형 불순물이 도핑된 p형 질화물 반도체로 형성된다. 물론, 그 반대의 경우도 가능한 것으로 이해되어야 한다. Typically, the first conductivity type nitride layer 230 is formed of an n-type nitride semiconductor doped with n-type impurities such as silicon (Si), and the second conductivity-type nitride layer 250 is p such as magnesium (Mg). It is formed of a p-type nitride semiconductor doped with type impurities. Of course, the reverse is also to be understood as possible.
또한, 활성층(240)은 양자장벽층(GaN)과 양자우물층(InGaN)이 교대 반복 적층되어, 다중양자우물(Multi-Quantum-Well; MQW) 구조로 형성될 수 있다.In addition, the active layer 240 may be formed by alternately stacking quantum barrier layers (GaN) and quantum well layers (InGaN) to form a multi-quantum well (MQW) structure.
기판(210)은 사파이어, 실리콘 등으로 형성될 수 있으며, 제1 면과, 이에 반대되는 제2 면을 가진다. 제1 도전형 질화물층(230), 활성층(240) 및 제2 도전형 질화물층(250)은 기판(210)의 제1면 상에 순차적으로 형성된다. The substrate 210 may be formed of sapphire, silicon, or the like, and has a first surface and a second surface opposite thereto. The first conductivity type nitride layer 230, the active layer 240, and the second conductivity type nitride layer 250 are sequentially formed on the first surface of the substrate 210.
또한, 제1 도전형 질화물층(230)에 전기적으로 연결되도록 제1 전극(251)이 더 형성되고, 제2 도전형 질화물층(250)에 전기적으로 연결되도록 제2 전극(252)이 더 형성되어 있을 수 있다.In addition, the first electrode 251 is further formed to be electrically connected to the first conductivity type nitride layer 230, and the second electrode 252 is further formed to be electrically connected to the second conductivity type nitride layer 250. It may be.
추가적으로, 기판(210)의 제1면 상에는 상기의 요소들(230, 240, 250) 이외에 결정 품질 향상 등을 위하여 기판(210)과 제1 도전형 질화물층(230) 사이에 비도핑 질화물층(120)이 더 형성될 수 있다. In addition, on the first surface of the substrate 210, in addition to the above elements 230, 240, 250, an undoped nitride layer between the substrate 210 and the first conductivity type nitride layer 230 may be used to improve crystal quality. 120 may be further formed.
다른 예에 있어서, 기판(210)과 제1 도전형 질화물층(230) 사이 혹은 기판(210)과 비도핑 질화물층(220) 사이에는 AlN 층 또는 저온 성장 GaN 등의 버퍼층이 더 형성될 수 있다.In another example, a buffer layer such as an AlN layer or a low temperature GaN may be further formed between the substrate 210 and the first conductivity type nitride layer 230 or between the substrate 210 and the undoped nitride layer 220. .
상기 나노 입자 층(270)은 상기 기판(210)과 상기 기판(210)의 제2 면 상에 적층되는 형광층(260) 사이에 개재된다. 여기서 상기 나노 입자 층(270)은 상기 기판(210)의 제2 면 상에 상기 형광층(260)을 접착시키는 역할을 한다.The nanoparticle layer 270 is interposed between the substrate 210 and the fluorescent layer 260 stacked on the second surface of the substrate 210. The nanoparticle layer 270 serves to adhere the fluorescent layer 260 on the second surface of the substrate 210.
또한, 상기 나노 입자 층(270)에 포함된 나노 입자는 상기 활성층(240)에서 상부 방향으로 방출된 광을 산란시킴으로써 최종적으로 발광소자로부터 방출되는 광의 양을 향상시키는 역할을 한다(도 3 참조).In addition, the nanoparticles included in the nanoparticle layer 270 serves to improve the amount of light finally emitted from the light emitting device by scattering the light emitted upward from the active layer 240 (see FIG. 3). .
여기서 상기 형광층(260)은 복수의 형광층이 적층된 형태로 구성될 수 있다.In this case, the fluorescent layer 260 may be configured to have a plurality of fluorescent layers stacked.
상기 나노 입자 층(270)은 금속, 산화물 및 탄소나노튜브로부터 선택되는 적어도 하나의 나노 입자 및 바인더 수지를 포함하는 조성물이 경화되어 형성될 수 있다.The nanoparticle layer 270 may be formed by curing a composition including at least one nanoparticle selected from a metal, an oxide, and carbon nanotubes and a binder resin.
즉, 나노 입자 및 바인더 수지를 포함하는 조성물이 경화됨에 따라 형성되는 상기 나노 입자 층(270)은 상기 기판(210)과 상기 형광층(260)이 접착된 상태로 존재하도록 한다.That is, the nanoparticle layer 270 formed as the composition including the nanoparticles and the binder resin is cured may be present in a state in which the substrate 210 and the fluorescent layer 260 are bonded to each other.
여기서 상기 형광층(260)은 필름 형태로 상기 기판(210)의 제2 면 상에 적층될 수 있다.The fluorescent layer 260 may be stacked on the second surface of the substrate 210 in the form of a film.
일 실시예에 있어서, 상기 나노 입자 층(270)은 금속, 산화물 또는 탄소나노튜브가 포함될 수 있으나, 금속, 산화물 또는 탄소나노튜브의 임의의 혼합물이 포함될 수 있다.In one embodiment, the nanoparticle layer 270 may include metal, oxide or carbon nanotubes, but may include any mixture of metal, oxide or carbon nanotubes.
여기서, 상기 금속은 금, 은, 알루미늄, 팔라듐, 백금 및 구리로부터 선택되는 적어도 하나를 포함한다. 또한, 상기 산화물은 TiO2, SiO2, MgF2, CeO2, Al2O3, ZrO2, MgO, Ta2O5, SnO2, ZnO, B2O3, Li2O, SrO, HfO2, SiONx 및 BaO로부터 선택되는 적어도 하나를 포함한다. Here, the metal includes at least one selected from gold, silver, aluminum, palladium, platinum and copper. In addition, the oxide is TiO 2 , SiO 2 , MgF 2 , CeO 2 , Al 2 O 3 , ZrO 2 , MgO, Ta 2 O 5 , SnO 2 , ZnO, B 2 O 3 , Li 2 O, SrO, HfO 2 At least one selected from SiON x and BaO.
여기서, 상기 탄소나노튜브는 단일벽 탄소나노튜브, 이중벽 탄소나노튜브 및 다중벽 탄소나노튜브로부터 선택되는 적어도 하나일 수 있다. Here, the carbon nanotubes may be at least one selected from single-walled carbon nanotubes, double-walled carbon nanotubes and multi-walled carbon nanotubes.
또한, 상기 탄소나노튜브는 화학증착법, 아크방전법, 플라즈마토치법 및 이온충격법 등과 같은 다양한 방법을 통해 제조될 수 있으며, 다양한 방법을 통해 제조된 상기 탄소나노튜브는 후술하는 조건을 만족시킬 수 있다면 그 형상과 관계없이 사용될 수 있다. In addition, the carbon nanotubes may be manufactured through various methods such as chemical vapor deposition, arc discharge, plasma torch and ion bombardment. The carbon nanotubes manufactured by various methods may satisfy the following conditions. If present, it can be used regardless of its shape.
추가적으로, 상기 나노 입자는 시트, 와이어, 디스크, 로드(rod) 및 포일(foil)로부터 선택되는 적어도 하나의 형상을 가질 수 있으나, 반드시 이에 제한되는 것은 아니다.Additionally, the nanoparticles may have at least one shape selected from sheets, wires, disks, rods, and foils, but is not necessarily limited thereto.
상기 나노 입자의 종류 및 형상은 본 발명의 목적인 발광소자의 발광 및 방열 효율의 향상이 달성되는 범위 내에서 선택될 수 있는 것으로 이해되어야 한다. It is to be understood that the type and shape of the nanoparticles can be selected within a range in which improvement of light emission and heat dissipation efficiency of the light emitting device, which is an object of the present invention, is achieved.
상기 나노 입자 층(270)은 상기 활성층(240)에서 상부 방향으로 방출된 광이 하부 방향으로 반사되거나 상기 나노 입자 스스로 광을 흡수하는 것을 최소화시킬 수 있어야 한다. The nanoparticle layer 270 should be able to minimize the light emitted from the active layer 240 in the upper direction is reflected in the downward direction or the light absorbed by the nanoparticles themselves.
따라서, 상기 나노 입자 층(270)에 포함되는 상기 나노 입자의 평균 입경은 100 nm 이하인 것이 바람직하다. 보다 바람직하게는 상기 나노 입자의 평균 입경은 5 nm 이상 75 nm 이하이며, 상기 나노 입자의 평균 입경이 5 nm 미만인 경우, 나노 입자간 네트워크 형성이 미흡하여 충분히 광을 산란시키기 어려우며, 방열 효율 역시 저하될 수 있다.Therefore, the average particle diameter of the nanoparticles included in the nanoparticle layer 270 is preferably 100 nm or less. More preferably, the average particle diameter of the nanoparticles is 5 nm or more and 75 nm or less, and when the average particle diameter of the nanoparticles is 5 nm or less, it is difficult to scatter light sufficiently due to insufficient network formation between nanoparticles, and the heat radiation efficiency is also lowered. Can be.
반면, 상기 나노 입자의 평균 입경이 100 nm를 초과할 경우, 오히려 상기 활성층(240)에서 상부 방향으로 방출된 광이 하부 방향으로 반사되거나 상기 나노 입자 스스로 광을 흡수할 가능성이 증가한다.On the other hand, when the average particle diameter of the nanoparticles exceeds 100 nm, the possibility that light emitted from the active layer 240 in the upper direction is reflected in the downward direction or absorbs the light by the nanoparticles themselves increases.
또한, 상기 나노 입자 층(270)의 발광 및 방열 효율은 상기 나노 입자 층(270)에 포함되는 나노 입자의 함량과 상기 나노 입자를 포함하는 조성물이 경화되어 형성된 상기 나노 입자 층(270) 내 상기 나노 입자가 점유하는 점유 면적률과도 관련이 있다.In addition, the light emission and heat radiation efficiency of the nanoparticle layer 270 is the content of the nanoparticles included in the nanoparticle layer 270 and the composition in the nanoparticle layer 270 formed by curing the composition containing the nanoparticles It is also related to the area fraction occupied by nanoparticles.
일 실시예에 있어서, 상기 조성물은 상기 조성물 100 중량부 당 5 ~ 10 중량부의 상기 나노 입자를 포함할 수 있다.In one embodiment, the composition may include 5 to 10 parts by weight of the nanoparticles per 100 parts by weight of the composition.
여기서, 상기 조성물 100 중량부 당 상기 나노 입자의 함량이 10 중량부를 초과할 경우, 상기 활성층(240)에서 상부 방향으로 방출된 광이 하부 방향으로 반사되거나 상기 나노 입자 스스로 광을 흡수할 가능성이 증가할 수 있다.Here, when the content of the nanoparticles per 100 parts by weight of the composition exceeds 10 parts by weight, the possibility that the light emitted from the active layer 240 in the upper direction is reflected in the downward direction or the light absorbs the light itself of the nanoparticles increases. can do.
반면, 상기 조성물 100 중량부 당 상기 나노 입자의 함량이 5 중량부 미만인 경우, 상기 나노 입자간 네트워크 형성이 미흡하여 충분히 광을 산란시키기 어려우며(도 5 참조), 방열 효율 역시 저하될 수 있다.On the other hand, if the content of the nanoparticles per 100 parts by weight of the composition is less than 5 parts by weight, it is difficult to scatter light sufficiently due to the insufficient formation of the network between the nanoparticles (see Fig. 5), the heat radiation efficiency may also be reduced.
또한, 일 실시예에 있어서, 상기 나노 입자 층(270) 내 상기 나노 입자가 점유하는 점유 면적률은 30% 이하, 바람직하게는 5 ~ 25%일 수 있다. In addition, in one embodiment, the occupied area ratio of the nanoparticles in the nanoparticle layer 270 may be 30% or less, preferably 5 to 25%.
상기 나노 입자 층(270) 내 상기 나노 입자가 점유하는 점유 면적률은 경화에 의해 상기 나노 입자 층(270)을 형성하는 상기 조성물 내 상기 나노 입자의 함량과도 관련이 있는 것으로서, 상기 조성물 내 나노 입자의 함량이 증가할수록 경화되어 형성된 상기 나노 입자 층(270) 내 상기 나노 입자가 점유하는 점유 면적률은 증가하게 된다. The area fraction occupied by the nanoparticles in the nanoparticle layer 270 is related to the content of the nanoparticles in the composition forming the nanoparticle layer 270 by curing, and thus the nanoparticles in the composition. As the content of the particles increases, the occupied area ratio of the nanoparticles in the nanoparticle layer 270 formed by curing increases.
여기서, 상기 나노 입자 층(270) 내 상기 나노 입자가 점유하는 점유 면적률은 30%를 초과할 경우, 상기 활성층(240)에서 상부 방향으로 방출된 광이 하부 방향으로 반사되거나 상기 나노 입자가 스스로 광을 흡수함으로써 상부 방향으로 방출되는 광의 양이 급격히 감소될 가능성이 증가할 수 있다.Here, when the occupied area ratio of the nanoparticles in the nanoparticle layer 270 exceeds 30%, the light emitted upward in the active layer 240 is reflected downward, or the nanoparticles themselves By absorbing light it is possible to increase the possibility that the amount of light emitted in the upward direction is sharply reduced.
반면, 상기 나노 입자 층(270) 내 상기 나노 입자가 점유하는 점유 면적률이 5% 미만인 경우, 상기 나노 입자간 네트워크 형성이 미흡하여 충분히 광을 산란시키기 어려우며, 방열 효율 역시 저하될 수 있다(도 4 참조).On the other hand, when the occupied area ratio of the nanoparticles in the nanoparticle layer 270 is less than 5%, the formation of the network between the nanoparticles is insufficient and it is difficult to scatter the light sufficiently, and the heat radiation efficiency may also be reduced (FIG. 4).
일 실시예에 있어서, 상기 바인더 수지는 글리시딜 에터형 에폭시 수지, 크레실 글리시딜 에터형 에폭시 수지, 페닐 글리시딜 에터형 에폭시 수지, 노닐페닐 글리시딜 에터형 에폭시 수지, 부틸페닐 글리시딜 에터형 에폭시 수지, 2-에틸헥실 글리시딜 에터형 에폭시 수지, 비스페놀 에프 다이글리시딜 에터형 에폭시 수지, 비스페놀 에이 다이글리시딜 에터형 에폭시 수지, 1,6-헥산다이올 다이글리시딜 에터형 에폭시 수지, 1,4-부탄다이올 다이글리시딜 에터형 에폭시 수지, 알리사이클릭 다이글리시딜 에터형 에폭시 수지, 나프탈렌형 에폭시 수지, 디시클로펜타디엔 에폭시 수지, 실리콘 변성 에폭시 수지, 페놀 노볼락형 에폭시 수지, 크레졸 노볼락형 에폭시 수지, 비스페놀 에이 변성형 페놀 노볼락형 에폭시 수지, 액상 비스말레이미드 부가형 에폭시 수지, 트라이메틸롤프로판 트라이글리시딜 에터형 에폭시 수지, 다가 시클로알리파틱 에폭시 수지, 트라이글리시딜 이소시아뉴레이트형 에폭시 수지, 아미노페놀 부가 다이글리시딜 에터형 에폭시 수지, N,N,N',N'-테트라글리시딜-4,4'-메틸렌비스벤젠아민 수지, 다가형 옥세탄 수지, 상기의 2종 이상의 조성이 교대로 구성된 수지, 트리스-(하이드록시페닐)에탄 글리시딜 에터형 에폭시 수지, 고체상 크레졸 노볼락형 에폭시 수지 및 비스말레이미드형 수지로부터 선택되는 적어도 하나를 포함한다.In one embodiment, the binder resin is a glycidyl ether type epoxy resin, cresyl glycidyl ether type epoxy resin, phenyl glycidyl ether type epoxy resin, nonylphenyl glycidyl ether type epoxy resin, butylphenyl glyc Cidyl ether epoxy resin, 2-ethylhexyl glycidyl ether epoxy resin, bisphenol F diglycidyl ether epoxy resin, bisphenol a diglycidyl ether epoxy resin, 1,6-hexanediol digly Cedyl ether type epoxy resin, 1,4-butanediol diglycidyl ether type epoxy resin, alicyclic diglycidyl ether type epoxy resin, naphthalene type epoxy resin, dicyclopentadiene epoxy resin, silicone modified epoxy Resin, phenol novolak-type epoxy resin, cresol novolak-type epoxy resin, bisphenol A modified phenol novolak-type epoxy resin, liquid bismaleimide addition epoxy Resin, trimethylolpropane triglycidyl ether type epoxy resin, polyvalent cycloaliphatic epoxy resin, triglycidyl isocyanurate type epoxy resin, aminophenol addition diglycidyl ether type epoxy resin, N, N, N ', N'-tetraglycidyl-4,4'-methylenebisbenzeneamine resin, polyvalent oxetane resin, resin in which two or more of the above compositions are alternately formed, and tris- (hydroxyphenyl) ethane glycy At least one selected from a dill ether type epoxy resin, a solid cresol novolak type epoxy resin, and a bismaleimide type resin.
이하에서는 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 다만, 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는다 할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. However, these Examples are only for illustrating the present invention, and the scope of the present invention will not be construed as being limited by these Examples.
나노 입자 층의 유무에 따른 발광 효율의 변화Changes in Luminous Efficiency with or Without Nanoparticle Layers
사파이어 기판과 상기 사파이어 기판의 제2 면 상에 적층되는 형광층 사이에 개재된 나노 입자 층에 의해 발광 효율이 증가하는지 여부를 확인하기 위해, 도 1에 도시된 나노 입자 층을 포함하지 않는 발광소자와 도 2에 도시된 나노 입자 층을 포함하는 발광 소자의 발광 효율을 비교하였다.In order to confirm whether the luminous efficiency is increased by the nanoparticle layer interposed between the sapphire substrate and the fluorescent layer stacked on the second surface of the sapphire substrate, the light emitting device does not include the nanoparticle layer shown in FIG. And the luminous efficiency of the light emitting device including the nanoparticle layer shown in Figure 2 was compared.
본 발명의 실시예에 따른 발광 소자에 포함된 나노 입자 층에 포함된 나노 입자로는 50 nm의 평균 입경을 가지는 Ag 파우더와 10 nm의 평균 입경을 가지는 탄소나노튜브가 사용되었으며, 바인더 수지로는 페닐 글리시딜 에터형 에폭시 수지가 사용되었다. 상기 나노 입자 층은 기판 상에 도팅(dotting)되어 경화됨으로써 형성되었다.As the nanoparticles included in the nanoparticle layer included in the light emitting device according to the embodiment of the present invention, Ag powder having an average particle diameter of 50 nm and carbon nanotubes having an average particle diameter of 10 nm were used. Phenyl glycidyl ether type epoxy resin was used. The nanoparticle layer was formed by dotting and curing on a substrate.
상기 실험 결과가 도시된 도 3을 참조하면, 나노 입자 층을 포함하지 않는 발광소자에 비해 Ag 파우더 또는 탄소나노튜브를 포함하는 나노 입자 층이 개재된 발광소자의 경우 모든 순방향 전류(Forward Current) 값에 대하여 향상된 광 출력(Pout) 값을 나타내었는 바, 기판과 상기 기판의 제2 면 상에 적층되는 형광층 사이에 개재된 나노 입자 층에 의해 발광 효율이 증가하는 것을 확인할 수 있었다.Referring to FIG. 3 in which the experimental results are shown, all forward current values in the case of a light emitting device in which a nanoparticle layer including Ag powder or carbon nanotubes is interposed compared to a light emitting device that does not include a nanoparticle layer. As the improved light output (Pout) value was shown, it was confirmed that the luminous efficiency was increased by the nanoparticle layer interposed between the substrate and the fluorescent layer laminated on the second surface of the substrate.
이는 상기 나노 입자 층에 포함된 나노 입자가 상기 활성층에서 상부 방향으로 방출된 광을 산란시킴으로써 나타나는 결과임을 알 수 있다.This can be seen that the nanoparticles contained in the nanoparticle layer is a result of scattering the light emitted upward in the active layer.
나노 입자의 점유 면적률에 따른 발광 효율의 변화Changes in Luminous Efficiency According to Occupancy Area Ratio of Nanoparticles
사파이어 기판과 상기 사파이어 기판의 제2 면 상에 적층되는 형광층 사이에 개재된 나노 입자 층 내 상기 나노 입자가 점유하는 점유하는 점유 면적률에 따른 발광 효율의 변화를 확인하기 위해, 도 2에 도시된 나노 입자 층을 포함하는 발광 소자에 있어서 나노 입자의 점유 면적률을 0%에서 35%까지 변화시키면서 발광 효율을 비교하였다. To confirm the change in luminous efficiency according to the occupied area ratio occupied by the nanoparticles in the nanoparticle layer interposed between the sapphire substrate and the fluorescent layer laminated on the second surface of the sapphire substrate, shown in FIG. 2. In the light emitting device including the nanoparticle layer, the luminous efficiency was compared while changing the occupancy area ratio of the nanoparticles from 0% to 35%.
상기 점유 면적률은 상기 나노 입자 층의 전체 면적에 대하여 상기 나노 입자가 점유하는 면적의 비율로 계산되었다.The occupancy area ratio was calculated as the ratio of the area occupied by the nanoparticles to the total area of the nanoparticle layer.
상기 실험 결과가 도시된 도 4를 참조하면, 상기 나노 입자 층 내 상기 나노 입자가 점유하는 점유 면적률이 0%에서 30%로 증가함에 따라 모든 순방향 전류(Forward Current) 값에 대하여 향상된 광 출력(Pout) 값을 나타낸 것을 확인할 수 있었다. 다만, 상기 점유 면적률이 35%인 경우, 나노 입자의 점유 면적률이 0%, 즉 나노 입자가 포함된 나노 입자 층이 개재되지 않은 경우보다 광 출력(Pout) 값이 낮게 나온 것을 확인할 수 있었다.Referring to FIG. 4, in which the experimental results are shown, as the occupied area ratio of the nanoparticles in the nanoparticle layer increases from 0% to 30%, improved light output for all forward current values ( Pout) value was confirmed. However, when the occupied area ratio is 35%, it was confirmed that the occupied area ratio of the nanoparticles was 0%, that is, the Pout value was lower than that when the nanoparticle layer containing the nanoparticles was not interposed. .
즉, 상기 나노 입자 층 내 상기 나노 입자가 점유하는 점유 면적률이 과도하게 높을 경우(예를 들어, 30% 초과), 기대했던 바와 달리 오히려 광 출력 값이 감소하게 되며, 이는 상기 활성층에서 상부 방향으로 방출된 광이 하부 방향으로 반사되거나 상기 나노 입자가 스스로 광을 흡수함으로써 상부 방향으로 방출되는 광의 양이 급격히 감소되기 때문이라고 예상할 수 있다.In other words, if the area area occupied by the nanoparticles in the nanoparticle layer is excessively high (e.g., greater than 30%), the light output value will decrease, as expected, rather than in the upper direction in the active layer. It can be expected that the amount of light emitted in the upper direction is rapidly decreased because the emitted light is reflected in the downward direction or the nanoparticles absorb the light by themselves.
나노 입자의 함량에 따른 발광 효율 및 방열 효율의 변화Changes in Luminous Efficiency and Radiation Efficiency According to Nanoparticle Content
사파이어 기판과 상기 사파이어 기판의 제2 면 상에 적층되는 형광층 사이에 개재된 나노 입자 층 내 상기 나노 입자의 함량(중량비) 에 따른 발광 효율의 변화를 확인하기 위해, 도 2에 도시된 나노 입자 층을 포함하는 발광 소자에 있어서 나노 입자의 함량을 0 wt%에서 15wt%까지 변화시키면서 발광 효율 및 방열 효율을 비교하였다.In order to confirm the change in luminous efficiency according to the content (weight ratio) of the nanoparticles in the nanoparticle layer interposed between the sapphire substrate and the fluorescent layer laminated on the second surface of the sapphire substrate, the nanoparticles shown in FIG. 2 In the light emitting device including the layer, light emission efficiency and heat radiation efficiency were compared while changing the content of nanoparticles from 0 wt% to 15 wt%.
발광 효율에 대한 실험 결과가 도시된 도 5를 참조하면, 상기 나노 입자 층 내 상기 나노 입자의 함량이 5 wt% 및 10 wt%인 경우, 0 wt%인 경우보다 모든 순방향 전류(Forward Current) 값에 대하여 향상된 광 출력(Pout) 값을 나타낸 것을 확인할 수 있었다. 특히 상기 나노 입자의 함량이 5 wt%인 경우 가장 높은 광 출력(Pout) 값을 나타내었다. Referring to FIG. 5, where the experimental results of the luminous efficiency are shown, when the content of the nanoparticles in the nanoparticle layer is 5 wt% and 10 wt%, all forward current values are greater than when 0 wt% is used. It can be seen that the improved light output (Pout) value for. In particular, when the content of the nanoparticles is 5 wt% showed the highest light output (Pout) value.
다만, 상기 나노 입자 층 내 상기 나노 입자의 함량이 15 wt%인 경우, 나노 입자의 함량이 0%, 즉 나노 입자가 포함된 나노 입자 층이 개재되지 않은 경우보다 광 출력(Pout) 값이 낮게 나온 것을 확인할 수 있었다.However, when the content of the nanoparticles in the nanoparticle layer is 15 wt%, the content of nanoparticles is 0%, that is, the Pout value is lower than that when the nanoparticle layer containing nanoparticles is not interposed. I could confirm that it came out.
즉, 상기 나노 입자 층 내 상기 나노 입자의 함량이 과도하게 높을 경우(예를 들어, 10 wt% 초과), 기대했던 바와 달리 오히려 광 출력 값이 감소하게 되며, 이는 상기 활성층에서 상부 방향으로 방출된 광이 하부 방향으로 반사되거나 상기 나노 입자가 스스로 광을 흡수함으로써 상부 방향으로 방출되는 광의 양이 급격히 감소되기 때문이라고 예상할 수 있다.In other words, if the content of the nanoparticles in the nanoparticle layer is excessively high (e.g., greater than 10 wt%), the light output value will decrease rather than expected, which is emitted upward in the active layer. It can be expected that the amount of light emitted in the upper direction is drastically reduced because the light is reflected in the downward direction or the nanoparticles absorb the light by themselves.
또한, 방열 효율과 관련하여, 사파이어 기판과 상기 사파이어 기판의 제2 면 상에 적층되는 형광층 사이에 개재된 나노 입자를 포함하는 나노 입자 층이 개재되지 않을 경우, 발광 소자의 온도가 약 45℃ 수준인 반면, 나노 입자의 함량이 5 wt% 및 10 wt%인 나노 입자 층이 개재될 경우, 발광 소자의 온도가 약 35℃ 이하로 유지되는 것을 확인하였다.In addition, with respect to heat dissipation efficiency, when the nanoparticle layer including nanoparticles interposed between the sapphire substrate and the fluorescent layer laminated on the second surface of the sapphire substrate is not interposed, the temperature of the light emitting device is about 45 ° C. On the other hand, when the nanoparticle layer with the nanoparticle content of 5 wt% and 10 wt% is interposed, it was confirmed that the temperature of the light emitting device is maintained at about 35 ° C or less.
즉, 나노 입자 층에 포함된 나노 입자에 의해 발광 소자의 방열 효율이 향상됨을 확인할 수 있다. 또한, 방열 효율은 나노 입자 층 내 나노 입자의 함량이 증가함에 따라 증가하는데, 이 때 방열 효율을 증가시키기 위해 나노 입자의 함량을 과도하게 증가시킬 경우 발광 효율이 감소하게 되므로, 나노 입자 층 내 나노 입자의 함량은 전체 중량 대비 5 wt% 내지 10 wt% 수준으로 유지하는 것이 중요하다. That is, it can be seen that the heat radiation efficiency of the light emitting device is improved by the nanoparticles included in the nanoparticle layer. In addition, the heat dissipation efficiency increases as the content of the nanoparticles in the nanoparticle layer increases. At this time, if the content of the nanoparticles is excessively increased to increase the heat dissipation efficiency, the light emission efficiency decreases. It is important to keep the content of particles at a level of 5 wt% to 10 wt% based on the total weight.
이상, 본 발명의 일 실시예에 대하여 설명하였으나, 해당 기술 분야에서 통상의 지식을 가진 자라면 특허청구범위에 기재된 본 발명의 사상으로부터 벗어나지 않는 범위 내에서, 구성 요소의 부가, 변경, 삭제 또는 추가 등에 의해 본 발명을 다양하게 수정 및 변경시킬 수 있을 것이며, 이 또한 본 발명의 권리범위 내에 포함된다고 할 것이다.As mentioned above, although an embodiment of the present invention has been described, those of ordinary skill in the art may add, change, delete or add components within the scope not departing from the spirit of the present invention described in the claims. The present invention may be modified and changed in various ways, etc., which will also be included within the scope of the present invention.

Claims (11)

  1. 기판;Board;
    상기 기판의 제1 면 상에 적층되며, 제1 도전형 질화물층, 활성층 및 제2 도전형 질화물층을 포함하며, 상기 활성층은 상기 제1 도전형 질화물층과 상기 제2 도전형 질화물층 사이에 개재된 발광 구조체; 및A first conductive nitride layer, an active layer, and a second conductive nitride layer are stacked on a first surface of the substrate, and the active layer is disposed between the first conductive nitride layer and the second conductive nitride layer. Interposed light emitting structure; And
    상기 기판의 제2 면 상에 적층되는 형광층;을 포함하며,And a fluorescent layer laminated on the second surface of the substrate,
    상기 기판과 상기 형광층 사이에 나노 입자 층이 개재된,The nanoparticle layer is interposed between the substrate and the fluorescent layer,
    나노 입자 층을 포함하는 질화물 반도체 발광소자.A nitride semiconductor light emitting device comprising a nanoparticle layer.
  2. 제1항에 있어서,The method of claim 1,
    상기 나노 입자 층은, The nanoparticle layer,
    금속, 산화물 및 탄소나노튜브로부터 선택되는 적어도 하나의 나노 입자; 및At least one nanoparticle selected from metals, oxides and carbon nanotubes; And
    바인더 수지;를 포함하는 조성물이 경화되어 형성된,Binder resin; is formed by curing the composition comprising,
    나노 입자 층을 포함하는 질화물 반도체 발광소자.A nitride semiconductor light emitting device comprising a nanoparticle layer.
  3. 제2항에 있어서,The method of claim 2,
    상기 금속은 금, 은, 알루미늄, 팔라듐, 백금 및 구리로부터 선택되는 적어도 하나인,The metal is at least one selected from gold, silver, aluminum, palladium, platinum and copper,
    나노 입자 층을 포함하는 질화물 반도체 발광소자.A nitride semiconductor light emitting device comprising a nanoparticle layer.
  4. 제2항에 있어서,The method of claim 2,
    상기 산화물은 TiO2, SiO2, MgF2, CeO2, Al2O3, ZrO2, MgO, Ta2O5, SnO2, ZnO, B2O3, Li2O, SrO, HfO2, SiONx 및 BaO로부터 선택되는 적어도 하나인,The oxide is TiO 2 , SiO 2 , MgF 2 , CeO 2 , Al 2 O 3 , ZrO 2 , MgO, Ta 2 O 5 , SnO 2 , ZnO, B 2 O 3 , Li 2 O, SrO, HfO 2 , SiON at least one selected from x and BaO,
    나노 입자 층을 포함하는 질화물 반도체 발광 소자.A nitride semiconductor light emitting device comprising a nanoparticle layer.
  5. 제2항에 있어서,The method of claim 2,
    상기 나노 입자의 평균 입경은 100 nm 이하인,The average particle diameter of the nanoparticles is 100 nm or less,
    나노 입자 층을 포함하는 질화물 반도체 발광 소자.A nitride semiconductor light emitting device comprising a nanoparticle layer.
  6. 제5항에 있어서,The method of claim 5,
    상기 나노 입자의 평균 입경은 5 nm 이상 75 nm 이하인,The average particle diameter of the nanoparticles is 5 nm or more and 75 nm or less,
    나노 입자 층을 포함하는 질화물 반도체 발광 소자.A nitride semiconductor light emitting device comprising a nanoparticle layer.
  7. 제2항에 있어서,The method of claim 2,
    상기 바인더 수지는 글리시딜 에터형 에폭시 수지, 크레실 글리시딜 에터형 에폭시 수지, 페닐 글리시딜 에터형 에폭시 수지, 노닐페닐 글리시딜 에터형 에폭시 수지, 부틸페닐 글리시딜 에터형 에폭시 수지, 2-에틸헥실 글리시딜 에터형 에폭시 수지, 비스페놀 에프 다이글리시딜 에터형 에폭시 수지, 비스페놀 에이 다이글리시딜 에터형 에폭시 수지, 1,6-헥산다이올 다이글리시딜 에터형 에폭시 수지, 1,4-부탄다이올 다이글리시딜 에터형 에폭시 수지, 알리사이클릭 다이글리시딜 에터형 에폭시 수지, 나프탈렌형 에폭시 수지, 디시클로펜타디엔 에폭시 수지, 실리콘 변성 에폭시 수지, 페놀 노볼락형 에폭시 수지, 크레졸 노볼락형 에폭시 수지, 비스페놀 에이 변성형 페놀 노볼락형 에폭시 수지, 액상 비스말레이미드 부가형 에폭시 수지, 트라이메틸롤프로판 트라이글리시딜 에터형 에폭시 수지, 다가 시클로알리파틱 에폭시 수지, 트라이글리시딜 이소시아뉴레이트형 에폭시 수지, 아미노페놀 부가 다이글리시딜 에터형 에폭시 수지, N,N,N',N'-테트라글리시딜-4,4'-메틸렌비스벤젠아민 수지, 다가형 옥세탄 수지, 상기의 2종 이상의 조성이 교대로 구성된 수지, 트리스-(하이드록시페닐)에탄 글리시딜 에터형 에폭시 수지, 고체상 크레졸 노볼락형 에폭시 수지 및 비스말레이미드형 수지로부터 선택되는 적어도 하나인,The binder resin is a glycidyl ether type epoxy resin, cresyl glycidyl ether type epoxy resin, phenyl glycidyl ether type epoxy resin, nonylphenyl glycidyl ether type epoxy resin, butylphenyl glycidyl ether type epoxy resin , 2-ethylhexyl glycidyl ether type epoxy resin, bisphenol F diglycidyl ether type epoxy resin, bisphenol a diglycidyl ether type epoxy resin, 1,6-hexanediol diglycidyl ether type epoxy resin , 1,4-butanediol diglycidyl ether type epoxy resin, alicyclic diglycidyl ether type epoxy resin, naphthalene type epoxy resin, dicyclopentadiene epoxy resin, silicone modified epoxy resin, phenol novolak type Epoxy Resin, Cresol Novolac Epoxy Resin, Bisphenol A Modified Phenol Novolac Epoxy Resin, Liquid Bismaleimide Additive Epoxy Resin, Trimethylol Ropan triglycidyl ether type epoxy resin, polyvalent cycloaliphatic epoxy resin, triglycidyl isocyanurate type epoxy resin, aminophenol addition diglycidyl ether type epoxy resin, N, N, N ', N' Tetraglycidyl-4,4'-methylenebisbenzeneamine resin, polyvalent oxetane resin, resin in which two or more of the above compositions are alternately composed, and tris- (hydroxyphenyl) ethane glycidyl ether type epoxy resin At least one selected from a solid cresol novolac epoxy resin and a bismaleimide resin,
    나노 입자 층을 포함하는 질화물 반도체 발광소자.A nitride semiconductor light emitting device comprising a nanoparticle layer.
  8. 제7항에 있어서,The method of claim 7, wherein
    상기 바인더 수지는 페닐 글리시딜 에터형 에폭시 수지인,The binder resin is a phenyl glycidyl ether type epoxy resin,
    나노 입자 층을 포함하는 질화물 반도체 발광 소자.A nitride semiconductor light emitting device comprising a nanoparticle layer.
  9. 제2항에 있어서,The method of claim 2,
    상기 조성물은 상기 조성물 100 중량부 당 5 ~ 10 중량부의 상기 나노 입자를 포함하는,The composition comprises 5 to 10 parts by weight of the nanoparticles per 100 parts by weight of the composition,
    나노 입자 층을 포함하는 질화물 반도체 발광 소자.A nitride semiconductor light emitting device comprising a nanoparticle layer.
  10. 제2항에 있어서,The method of claim 2,
    상기 나노 입자 층 내 상기 나노 입자가 점유하는 점유 면적률은 30% 이하인,Occupancy area ratio occupied by the nanoparticles in the nanoparticle layer is 30% or less,
    나노 입자 층을 포함하는 질화물 반도체 발광 소자.A nitride semiconductor light emitting device comprising a nanoparticle layer.
  11. 제1항에 있어서,The method of claim 1,
    상기 형광층은 복수의 형광층이 적층되어 구성된,The fluorescent layer is configured by stacking a plurality of fluorescent layers,
    나노 입자 층을 포함하는 질화물 반도체 발광 소자.A nitride semiconductor light emitting device comprising a nanoparticle layer.
PCT/KR2015/007212 2014-07-10 2015-07-10 Nitride semiconductor light emitting device comprising nano particle layer WO2016006972A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140086655A KR20160007916A (en) 2014-07-10 2014-07-10 Nitride based light emitting device comprising nano particle layer
KR10-2014-0086655 2014-07-10

Publications (1)

Publication Number Publication Date
WO2016006972A1 true WO2016006972A1 (en) 2016-01-14

Family

ID=55064522

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/007212 WO2016006972A1 (en) 2014-07-10 2015-07-10 Nitride semiconductor light emitting device comprising nano particle layer

Country Status (2)

Country Link
KR (1) KR20160007916A (en)
WO (1) WO2016006972A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007053289A (en) * 2005-08-19 2007-03-01 Kobe Steel Ltd Ultraviolet light-emitting element
US20080265263A1 (en) * 2004-03-19 2008-10-30 Philips Lumileds Lighting Company, Llc Polarized Semiconductor Light Emitting Device
KR20090032631A (en) * 2007-09-28 2009-04-01 삼성전기주식회사 Light emitting diode device
JP2013153105A (en) * 2012-01-26 2013-08-08 Sharp Corp Phosphor plate, light-emitting device using phosphor plate, and manufacturing method of phosphor plate
KR20130101297A (en) * 2012-03-05 2013-09-13 삼성전자주식회사 Semiconductor light emitting device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101650840B1 (en) 2009-08-26 2016-08-24 삼성전자주식회사 Light emitting device and method of manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080265263A1 (en) * 2004-03-19 2008-10-30 Philips Lumileds Lighting Company, Llc Polarized Semiconductor Light Emitting Device
JP2007053289A (en) * 2005-08-19 2007-03-01 Kobe Steel Ltd Ultraviolet light-emitting element
KR20090032631A (en) * 2007-09-28 2009-04-01 삼성전기주식회사 Light emitting diode device
JP2013153105A (en) * 2012-01-26 2013-08-08 Sharp Corp Phosphor plate, light-emitting device using phosphor plate, and manufacturing method of phosphor plate
KR20130101297A (en) * 2012-03-05 2013-09-13 삼성전자주식회사 Semiconductor light emitting device

Also Published As

Publication number Publication date
KR20160007916A (en) 2016-01-21

Similar Documents

Publication Publication Date Title
US7671468B2 (en) Light emitting apparatus
WO2017057978A1 (en) Light emitting device
JP5412676B2 (en) LED package and manufacturing method thereof
WO2009128354A1 (en) Light-emitting diode package
EP3696866B1 (en) Semiconductor device
US20100060142A1 (en) Plane emission device
WO2009123401A1 (en) Light-emitting device and manufacturing method thereof
KR101616871B1 (en) Process for producing a scattering layer for electromagnetic radiation and scattering layer for scattering electromagnetic radiation
WO2012047054A2 (en) Substrate for an organic electronic element and a production method therefor
TW201222885A (en) Light emitting device
CN106463640B (en) Opto-electronic device and the method for manufacturing opto-electronic device
WO2013084334A1 (en) Substrate for large-capacity module, and manufacturing method for said substrate
JP6306308B2 (en) Semiconductor light emitting device
WO2014129709A1 (en) Vertical light-emitting device provided with transparent electrode and method for manufacturing same
US9735367B2 (en) Light emitting diode
WO2017116048A1 (en) Light-emitting element and light-emitting element package comprising same
CN102122698A (en) Light emitting device package and lighting system
US10483495B2 (en) Organic light emitting diode and method of manufacturing the same
WO2014035205A2 (en) Semiconductor light-emitting element having excellent emission distribution
US7923925B2 (en) Light emitting device with a stopper layer structure
US9525137B2 (en) Light emitting diode
WO2009088260A2 (en) Light emitting element
WO2016006972A1 (en) Nitride semiconductor light emitting device comprising nano particle layer
JP2011230965A (en) Glass ceramic composition and element mounting substrate
US9564594B2 (en) Light emitting diode

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15818901

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15818901

Country of ref document: EP

Kind code of ref document: A1