WO2016006690A1 - Heat collection receiver - Google Patents

Heat collection receiver Download PDF

Info

Publication number
WO2016006690A1
WO2016006690A1 PCT/JP2015/069918 JP2015069918W WO2016006690A1 WO 2016006690 A1 WO2016006690 A1 WO 2016006690A1 JP 2015069918 W JP2015069918 W JP 2015069918W WO 2016006690 A1 WO2016006690 A1 WO 2016006690A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
air
receiver
fluid resistor
heat collecting
Prior art date
Application number
PCT/JP2015/069918
Other languages
French (fr)
Japanese (ja)
Inventor
伊藤 孝
Original Assignee
イビデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イビデン株式会社 filed Critical イビデン株式会社
Publication of WO2016006690A1 publication Critical patent/WO2016006690A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/70Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S70/00Details of absorbing elements
    • F24S70/10Details of absorbing elements characterised by the absorbing material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems

Definitions

  • the present invention relates to a heat collection receiver used in a solar thermal power generation apparatus.
  • Natural energy using solar heat, geothermal heat, etc. is expected to be an alternative energy source to nuclear and fossil fuels, without depleting natural resources and without problems such as air pollution, global warming and waste. .
  • solar power generation using sunlight is abundant in energy, and is not unevenly distributed like geothermal energy.
  • Solar thermal power generation includes tower-type solar thermal power generation that uses a mirror having a tracking function of the sun and focuses sunlight on a heat collecting receiver provided in the tower.
  • Tower-type solar power generation is characterized by high temperature and high energy efficiency because light from many mirrors is collected in one place.
  • the heat collecting receiver used for the tower type solar thermal power generation is devised in various ways such as material and structure (see Patent Document 1).
  • the heat collecting receiver described in Patent Document 1 supports a heat absorber composed of one or a plurality of honeycomb units in which a plurality of flow paths for allowing a heat medium to pass therethrough are arranged, and the heat absorber. And a support for circulating the heat medium.
  • the heat absorber is configured to include silicon carbide, and a surface to be irradiated with sunlight is subjected to either a polishing process or a coating process.
  • the solar thermal power generation apparatus described in Patent Document 1 uses a heat collecting receiver with high heat resistance, or generates a heat medium using gas instead of liquid such as oil.
  • piping is used to transport the heat medium.
  • the heat medium pipe is long for transporting the heat medium to a distant place, and metal pipes that are easily welded and threaded are used from the viewpoint of jointability and the like.
  • the effects of heat resistance and thermal distortion of the members used in the solar thermal power generation apparatus, such as heat medium piping come out. For this reason, it is necessary to consider the heat resistance of the piping in order to increase the temperature of solar thermal power generation.
  • an object of the present invention is to provide a heat collecting receiver that can prevent deterioration of piping of a solar thermal power generation apparatus.
  • a heat collection receiver for solving the above-mentioned problems is a heat collection receiver comprising a heat absorber having a through hole and a housing that houses the heat absorber and has a connection hole.
  • a fluid resistor is provided between the body and the connection hole.
  • the temperature of the heat absorber tends to be high at the center portion, and hot air is generated.
  • the heat absorber is provided between the heat absorber and the connection hole, the air is decelerated by the fluid resistor and diffused in a direction orthogonal to the air flow.
  • the hot air is mixed and temperature-equalized, deterioration of piping can be suppressed.
  • the fluid resistor is a continuous porous body. Since the fluid resistor is a continuous porous body, the air resistance can be appropriately controlled by changing the pore size and the porosity, and air can be mixed efficiently.
  • the fluid resistor is configured by fins arranged along a spiral surface having an axis intersecting with a cross section of the connection hole. Since the fluid resistor is a fin disposed along a spiral surface whose axis intersects the opening, a vortex can be generated along the fluid flow, and the agitation can be efficiently performed with less resistance.
  • the fluid resistor is made of ceramic. Since the fluid resistor is made of ceramic, it has heat resistance and can be suitably used.
  • the housing is made of ceramic. Since the housing is made of ceramic, it has heat resistance, corrosion resistance, and high strength. For this reason, it can be used even in a severe environment such as a high temperature environment or a corrosive environment.
  • the heated hot air is mixed and soaked by the fluid resistor provided between the heat absorber and the connection hole, the deterioration of the piping of the solar thermal power generation apparatus is prevented. be able to.
  • the heat collecting receiver of the present invention will be described.
  • the heat collection receiver of the present invention is a heat collection receiver including a heat absorber having a through hole and a housing that houses the heat absorber and has a connection hole. There is a fluid resistor between them.
  • the temperature of the heat absorber tends to be high at the center portion, and hot air is generated. If a metal heating medium pipe is attached to the connection hole, deterioration will be accelerated if the heated air directly contacts the pipe. For this reason, since the fluid resistor is provided between the heat absorber and the connection hole, the air is decelerated by the fluid resistor and diffused in a direction orthogonal to the air flow. Thereby, since the hot air is mixed and temperature-equalized, deterioration of piping can be suppressed.
  • the fluid resistor is a continuous porous body. Since the fluid resistor is a continuous porous body, air can be mixed efficiently.
  • a continuous porous body is a porous body having continuous pores.
  • the fluid resistor is configured by fins arranged along a spiral surface having an axis intersecting with a cross section of the connection hole. Since the fluid resistor is a fin disposed along a spiral surface in which the axis of the spiral surface intersects the opening, a vortex can be generated along the flow of the fluid, and efficient stirring can be achieved.
  • the fluid resistor is made of ceramic. Since the fluid resistor is made of ceramic, it has heat resistance, corrosion resistance, and high strength. For this reason, it can be used even in a severe environment such as a high temperature environment or a corrosive environment.
  • the housing is made of ceramic. Since the housing is made of ceramic, it has heat resistance and can be suitably used.
  • a heat collection receiver 10 of each embodiment described below can be used for a power generation apparatus 1 using sunlight.
  • the power generator 1 has a central tower 2 in the center.
  • a receiver array 3 in which a plurality of heat collecting receivers 10 to be described later are accommodated is disposed at the highest position of the central tower 2.
  • a steam generator 4 Below the receiver array 3, a steam generator 4, a heat accumulator 5, a steam turbine 6 and the like are sequentially arranged.
  • a number of heliostats 8 are arranged around the central tower 2. The heliostat 8 is set so that the reflection angle and the rotation direction around the vertical direction can be freely controlled. The heliostat 8 is automatically controlled so as to reflect the sunlight changing from moment to moment and collect it in the receiver array 3 of the central tower 2.
  • a plurality of heat collecting receivers 10 are arranged in a box in which the sunlight irradiation surface is opened, with the light receiving surfaces that receive sunlight irradiation aligned with the front. Yes.
  • the heat collection receiver 10 sucks high-temperature air heated by sunlight and is sent to the steam turbine 6 through the steam generator 4 and the heat accumulator 5 to drive the steam turbine 6. The air is then returned to the outside.
  • the heat collecting receiver 10 ⁇ / b> A of the first embodiment includes a heat absorber 20 that absorbs sunlight SB reflected from the heliostat 8 and a housing 30 that holds the heat absorber 20.
  • the housing 30 is made of ceramic, has heat resistance and corrosion resistance, and has high strength.
  • a pipe (pipe) 40 communicating with the steam generator 4 or the like is connected to the housing 30.
  • the pipe 40 is generally made of metal that is easy to mount.
  • the heat absorber 20 has a plurality of through holes 21 and has, for example, an overall rectangular shape (see FIG. 2).
  • the through-hole 21 opens to the front of the heat collecting receiver 10A and the inside of the housing 30, and communicates the inside of the housing 30 and the front of the heat collecting receiver 10A.
  • the housing 30 has a rectangular cross-section accommodating portion 31 that accommodates the heat absorber 20 with a rectangular opening, a tapered portion 32 that narrows the cross section of the accommodating portion 31, and a connection portion for connecting the housing 30 to the pipe 40. 33.
  • the connection portion 33 has a connection hole 34 inside.
  • the connecting portion 33 has a circular cross section in accordance with the circular cross section of the pipe 40.
  • the front part by the side of the accommodating part 31 is a rectangular cross section, and the connection part 33 of the circular cross section is provided in the pipe 40 side.
  • a disk-shaped flange 331 for attachment is provided at the end of the connection portion 33.
  • a disc-shaped flange 41 for attachment is also provided at the tip of the pipe 40. Therefore, the housing 30 and the pipe 40 are connected by fastening the flange 331 of the housing 30 and the flange 41 of the pipe 40 with, for example, bolts and nuts.
  • a fluid resistor 50 that provides resistance to the flow of air (fluid) is provided.
  • the term “between the heat absorber 20 and the connection hole 34” does not mean the boundary portion between the heat absorber 20 and the connection hole 34, but the inner side surface of the heat absorber 20 and the pipe side end surface of the connection portion 33. Means between.
  • the fluid resistor 50 is provided in the connection portion 33.
  • the fluid resistor 50 is provided over the entire cross section of the connection hole 34.
  • a continuous porous body 51 is provided inside the connection portion 33.
  • the continuous porous body 51 has a large number of tubular holes with a certain length along the direction of air flow, but the total cross-sectional area of the holes is smaller than the cross-sectional area of the connection hole 34. As it flows into 51, it decelerates and spreads and mixes in a direction intersecting the flow by a diffusion phenomenon. Furthermore, since the cross-sectional area of the hole of the continuous porous body 51 is small, resistance is generated between the hole and the air when the air passes through the hole, making it difficult to flow.
  • the air in front of the heat collecting receiver 10 ⁇ / b> A is absorbed from the through hole 21 of the heat absorber 20.
  • the air absorbed by the heat absorber 20 is heated when passing through the heat absorber 20 heated by the sunlight SB, and hot air is generated.
  • the air that has passed through the center of the heat absorber 20 becomes hot, and the air that has passed through the periphery of the heat absorber 20 does not get very hot. For this reason, an air flow having a hot temperature distribution in the central portion is formed.
  • An airflow having a temperature distribution composed of hot air that has passed through the center of the heat absorber 20 and less hot air that has passed through the periphery of the heat absorber 20 is housed in the housing 30 and is contained in the pipe 40. Sent.
  • the airflow having a temperature distribution composed of hot air and air that is not so hot is decelerated by passing through the hole of the continuous porous body 51 provided in the connection hole 34 inside the connection portion 33 of the housing 30. Diffuse air in the direction perpendicular to the flow. As a result, an airflow having a temperature distribution composed of hot air and air that is not so hot mixes and flows into the pipe 40 while being soaked.
  • the heat collection receiver 10 ⁇ / b> A of the first embodiment includes a heat absorber 20 having a through hole 21 and a housing 30 that houses the heat absorber 20 and has a connection hole 34.
  • a fluid resistor 50 is provided between the heat absorber 20 and the connection hole 34.
  • the heat absorber 20 tends to have a high temperature at the center, and hot air is generated.
  • a metal heat medium pipe 40 is attached to the connection hole 34. When the heated air directly contacts the pipe 40, the deterioration of the pipe 40 is accelerated.
  • the fluid resistor 50 provided between the heat absorber 20 and the connection hole 34 decelerates the flow of air and diffuses the air in a direction orthogonal to the flow. Thereby, since the airflow with the temperature distribution comprised by the air which the hot heated air is not so hot is mixed and soaked, deterioration of the pipe 40 can be suppressed.
  • the fluid resistor 50 is the continuous porous body 51, air can be mixed efficiently.
  • the housing 30 since the housing 30 is made of ceramic, it has heat resistance and corrosion resistance and is high in strength. For this reason, it can be used even in a severe environment such as a high temperature environment or a corrosive environment.
  • the heat collecting receiver of 2nd Embodiment is demonstrated, using a figure.
  • symbol is attached
  • the heat collecting receiver 10 ⁇ / b> B of the second embodiment is arranged along the spiral surface whose axis as the fluid resistor 50 intersects the cross section of the connection hole 34. Arranged fins 52 were provided.
  • the fin 52 has a left turning spiral portion (spiral surface) 521 that turns counterclockwise in the direction of air flow and a right turning spiral portion (spiral surface) 522 that turns clockwise.
  • the left turning spiral portion 521 can be formed by twisting a plate member having a width of the diameter of the connection hole 34 in the counterclockwise direction.
  • the right turning spiral portion 522 can be formed by twisting the plate member in the clockwise direction.
  • the order of the left turning spiral part 521 and the right turning spiral part 522 is arbitrary. The number is also arbitrary.
  • the air in front of the heat collecting receiver 10 ⁇ / b> B is absorbed from the through hole 21 of the heat absorber 20.
  • the air absorbed by the heat absorber 20 is heated when passing through the heat absorber 20 heated by the sunlight SB, and hot air is generated.
  • the center of the heat absorber 20 is hot, and the temperature distribution is composed of hot air A1 that has passed through the center of the heat absorber 20 and air A2 that has not passed through the periphery of the heat absorber 20 and is not very hot.
  • a certain airflow is accommodated in the housing 30 and sent to the pipe 40.
  • the hot air A1 and the air A2 which is not so hot flow spirally by the fins 52 provided in the connection holes 34 inside the connection portion 33 of the housing 30, and generate and mix with each other.
  • the hot air A1 and the air A2 that is not so hot are mixed and flow into the pipe 40 while being equalized.
  • the fluid resistor 50 is the fin 52 arranged along the spiral surface whose axis intersects the cross section of the connection hole 34, and thus the vortex along the fluid flow. Can be generated and can be efficiently stirred.
  • the fins 52 are made of ceramic, they have heat resistance and can be used suitably.
  • connection part 33 was illustrated along the connection part 33 as the fin 52 mentioned above, as shown in FIG. 7, it is also possible to use the blade
  • the heat collecting receiver of the present invention is not limited to the above-described embodiments, and appropriate modifications and improvements can be made.
  • the heat collection receiver of the present invention can be used as a heat collection receiver used in a solar thermal power generation apparatus.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

Provided is a heat collection receiver capable of preventing the deterioration of a pipe in a solar thermal generation device. A heat collection receiver (10A) comprising a heat-absorbing body (20) having through-holes (21), and a housing (30) for storing the heat-absorbing body (20) and having a connecting hole (34), the heat collection receiver (10A) also having a fluid resistor (50) positioned between the heat-absorbing body (20) and the connecting hole (34). As a result, hot heated air in the center section of the heat-absorbing body (20) decelerates due to the fluid resistor (50), and is dispersed in a direction perpendicular to the flow of air. Consequently, the hot heated air is mixed and the temperature thereof equalized; hence, it is possible to suppress deterioration of a metal pipe (40).

Description

集熱レシーバHeat collecting receiver
 本発明は、太陽熱発電装置に使用される集熱レシーバに関する。 The present invention relates to a heat collection receiver used in a solar thermal power generation apparatus.
 太陽熱、地熱などを利用した自然エネルギーは、天然資源を枯渇させることがない上に、大気汚染、地球温暖化、廃棄物などの問題がなく、核燃料、化石燃料に替わるエネルギー源として期待されている。中でも太陽光を利用した太陽熱発電は、エネルギーの量が豊富であり、地熱エネルギーのように偏在せず、どこでも得られるのでその利用が期待されている。
 太陽熱発電には、太陽の追尾機能を有するミラーを用い、太陽光をタワーに備えられた集熱レシーバに集光させるタワー型の太陽熱発電がある。タワー型の太陽熱発電では、多くのミラーからの光を1カ所に集めるので高い温度が得られ、エネルギー効率が高い特徴がある。
Natural energy using solar heat, geothermal heat, etc. is expected to be an alternative energy source to nuclear and fossil fuels, without depleting natural resources and without problems such as air pollution, global warming and waste. . Above all, solar power generation using sunlight is abundant in energy, and is not unevenly distributed like geothermal energy.
Solar thermal power generation includes tower-type solar thermal power generation that uses a mirror having a tracking function of the sun and focuses sunlight on a heat collecting receiver provided in the tower. Tower-type solar power generation is characterized by high temperature and high energy efficiency because light from many mirrors is collected in one place.
 タワー型の太陽熱発電に用いられる集熱レシーバは、高い温度を得るために、材質、構造など様々な工夫がされている(特許文献1参照)。
 特許文献1に記載の集熱レシーバは、熱媒体を通過させるための複数の流路が並設された1個又は複数個のハニカムユニットからなる熱吸収体と、該熱吸収体を支持するとともに、熱媒体を流通させる支持体とを有する。熱吸収体は、炭化ケイ素を含んで構成され、太陽光が照射される面には、研磨処理又はコーティング処理のいずれかの表面処理が施されている。
In order to obtain a high temperature, the heat collecting receiver used for the tower type solar thermal power generation is devised in various ways such as material and structure (see Patent Document 1).
The heat collecting receiver described in Patent Document 1 supports a heat absorber composed of one or a plurality of honeycomb units in which a plurality of flow paths for allowing a heat medium to pass therethrough are arranged, and the heat absorber. And a support for circulating the heat medium. The heat absorber is configured to include silicon carbide, and a surface to be irradiated with sunlight is subjected to either a polishing process or a coating process.
日本国特開2012-93003号公報Japanese Unexamined Patent Publication No. 2012-93003
 前述したような太陽熱発電においては、熱効率を高めるために、高温で動作させることが望まれる。このため、特許文献1に記載された太陽熱発電装置では耐熱性の高い集熱レシーバを用いたり、熱媒体をオイルなどの液体ではなくガスを用いて発電している。このような太陽熱発電装置においては、熱媒体を輸送するために配管が用いられる。熱媒体の配管は、熱媒体を遠方まで輸送するために長く、また接合性などの観点から、溶接、ねじ切りのし易い金属配管が用いられる。
 しかしながら、太陽熱発電における熱媒体の温度が高くなるにつれて、熱媒体の配管など、太陽熱発電装置に使用する部材の耐熱性、熱歪みの影響が出てくるようになる。このため、太陽熱発電の高温化には配管の耐熱化について配慮が必要となる。
In the solar thermal power generation as described above, it is desired to operate at a high temperature in order to increase the thermal efficiency. For this reason, the solar thermal power generation apparatus described in Patent Document 1 uses a heat collecting receiver with high heat resistance, or generates a heat medium using gas instead of liquid such as oil. In such a solar thermal power generation apparatus, piping is used to transport the heat medium. The heat medium pipe is long for transporting the heat medium to a distant place, and metal pipes that are easily welded and threaded are used from the viewpoint of jointability and the like.
However, as the temperature of the heat medium in solar thermal power generation increases, the effects of heat resistance and thermal distortion of the members used in the solar thermal power generation apparatus, such as heat medium piping, come out. For this reason, it is necessary to consider the heat resistance of the piping in order to increase the temperature of solar thermal power generation.
 本発明では、前記課題を鑑み、太陽熱発電装置の配管の劣化を防止することができる集熱レシーバを提供することを目的とする。 In view of the above problems, an object of the present invention is to provide a heat collecting receiver that can prevent deterioration of piping of a solar thermal power generation apparatus.
 前記課題を解決するための本発明の集熱レシーバは、貫通孔を有する熱吸収体と、前記熱吸収体を収容するとともに接続孔を有するハウジングとからなる集熱レシーバであって、前記熱吸収体と前記接続孔との間に、流体抵抗体を有する。 A heat collection receiver according to the present invention for solving the above-mentioned problems is a heat collection receiver comprising a heat absorber having a through hole and a housing that houses the heat absorber and has a connection hole. A fluid resistor is provided between the body and the connection hole.
 本発明の集熱レシーバによれば、熱吸収体は、中央部分の温度が高くなりやすく、熱く加熱された空気が発生する。接続孔に金属製の熱媒の配管が取り付けられている場合に、加熱された空気がそのまま配管に接触すると、劣化を速めることになる。このため、熱吸収体と接続孔との間に、流体抵抗体を設けたので、空気が流体抵抗体によって減速され、空気の流れと直交する方向に拡散される。
 これにより、熱く熱せられた空気が混合されて均熱化されるので、配管の劣化を抑制することができる。
According to the heat collecting receiver of the present invention, the temperature of the heat absorber tends to be high at the center portion, and hot air is generated. In the case where a metal heat medium pipe is attached to the connection hole, if the heated air directly contacts the pipe, the deterioration is accelerated. For this reason, since the fluid resistor is provided between the heat absorber and the connection hole, the air is decelerated by the fluid resistor and diffused in a direction orthogonal to the air flow.
Thereby, since the hot air is mixed and temperature-equalized, deterioration of piping can be suppressed.
 さらに、本発明の集熱レシーバは、以下の態様であることが望ましい。
(1)前記流体抵抗体は、連続多孔体である。
 流体抵抗体が、連続多孔体であるので、気孔の大きさ、気孔率を変えることで空気抵抗を適宜コントロールでき効率良く空気を混合させることができる。
Furthermore, it is desirable that the heat collecting receiver of the present invention has the following aspect.
(1) The fluid resistor is a continuous porous body.
Since the fluid resistor is a continuous porous body, the air resistance can be appropriately controlled by changing the pore size and the porosity, and air can be mixed efficiently.
(2)前記流体抵抗体は、前記接続孔の断面と交差する軸線を有する螺旋面に沿って配置されたフィンで構成される。
 流体抵抗体が、軸線が開口と交差する螺旋面に沿って配置されたフィンであるので、流体の流れに沿って渦流を生成させることができ、少ない抵抗で効率良く撹拌することができる。
(2) The fluid resistor is configured by fins arranged along a spiral surface having an axis intersecting with a cross section of the connection hole.
Since the fluid resistor is a fin disposed along a spiral surface whose axis intersects the opening, a vortex can be generated along the fluid flow, and the agitation can be efficiently performed with less resistance.
(3)前記流体抵抗体はセラミックよりなる。
 流体抵抗体がセラミックからなるので、耐熱性を有しており、好適に利用することができる。
(3) The fluid resistor is made of ceramic.
Since the fluid resistor is made of ceramic, it has heat resistance and can be suitably used.
(4)前記ハウジングはセラミックよりなる。
 ハウジングはセラミックからなるので、耐熱性、耐蝕性を備え、高強度である。このため、高温環境下あるいは腐食性環境下など過酷な環境下でも使用することができる。
(4) The housing is made of ceramic.
Since the housing is made of ceramic, it has heat resistance, corrosion resistance, and high strength. For this reason, it can be used even in a severe environment such as a high temperature environment or a corrosive environment.
 本発明によれば、熱吸収体と接続孔との間に設けられた流体抵抗体により、熱く熱せられた空気が混合されて均熱化されるので、太陽熱発電装置の配管の劣化を防止することができる。 According to the present invention, since the heated hot air is mixed and soaked by the fluid resistor provided between the heat absorber and the connection hole, the deterioration of the piping of the solar thermal power generation apparatus is prevented. be able to.
本発明に係る集熱レシーバを用いた発電装置の全体図である。It is a general view of the electric power generating apparatus using the heat collecting receiver which concerns on this invention. レシーバアレイの一部の正面図である。It is a front view of a part of receiver array. 本発明に係る第1実施形態の集熱レシーバの断面図である。It is sectional drawing of the heat collecting receiver of 1st Embodiment which concerns on this invention. 本発明に係る第2実施形態の集熱レシーバの断面図である。It is sectional drawing of the heat collecting receiver of 2nd Embodiment which concerns on this invention. 本発明に係る第2実施形態の集熱レシーバを一部透視した斜視図である。It is the perspective view which partially saw through the heat collecting receiver of 2nd Embodiment which concerns on this invention. 本発明に係る第2実施形態の集熱レシーバにおける空気の流れを示す説明図である。It is explanatory drawing which shows the flow of the air in the heat collecting receiver of 2nd Embodiment which concerns on this invention. 本発明に係る第2実施形態の集熱レシーバの変形例を示す断面図である。It is sectional drawing which shows the modification of the heat collecting receiver of 2nd Embodiment which concerns on this invention.
 本発明の集熱レシーバについて説明する。 The heat collecting receiver of the present invention will be described.
 本発明の集熱レシーバは、貫通孔を有する熱吸収体と、前記熱吸収体を収容するとともに接続孔を有するハウジングとからなる集熱レシーバであって、前記熱吸収体と前記接続孔との間に、流体抵抗体を有する。 The heat collection receiver of the present invention is a heat collection receiver including a heat absorber having a through hole and a housing that houses the heat absorber and has a connection hole. There is a fluid resistor between them.
 本発明の集熱レシーバによれば、熱吸収体は、中央部分の温度が高くなりやすく、熱く加熱された空気が発生する。接続孔に金属製の熱媒の配管が取り付けられていると、加熱された空気がそのまま配管に接触すると、劣化を速めることになる。このため、熱吸収体と接続孔との間に、流体抵抗体を設けたので、空気が流体抵抗体によって減速され、空気の流れと直交する方向に拡散される。
 これにより、熱く熱せられた空気が混合されて均熱化されるので、配管の劣化を抑制することができる。
According to the heat collecting receiver of the present invention, the temperature of the heat absorber tends to be high at the center portion, and hot air is generated. If a metal heating medium pipe is attached to the connection hole, deterioration will be accelerated if the heated air directly contacts the pipe. For this reason, since the fluid resistor is provided between the heat absorber and the connection hole, the air is decelerated by the fluid resistor and diffused in a direction orthogonal to the air flow.
Thereby, since the hot air is mixed and temperature-equalized, deterioration of piping can be suppressed.
 さらに、本発明の集熱レシーバは、以下の態様であることが望ましい。
(1)前記流体抵抗体は、連続多孔体である。
 流体抵抗体が、連続多孔体であるので、効率良く空気を混合させることができる。
 連続多孔体とは、気孔が連続した多孔体である。
Furthermore, it is desirable that the heat collecting receiver of the present invention has the following aspect.
(1) The fluid resistor is a continuous porous body.
Since the fluid resistor is a continuous porous body, air can be mixed efficiently.
A continuous porous body is a porous body having continuous pores.
(2)前記流体抵抗体は、前記接続孔の断面と交差する軸線を有する螺旋面に沿って配置されたフィンで構成される。
 流体抵抗体が、螺旋面の軸線が開口と交差する螺旋面に沿って配置されたフィンであるので、流体の流れに沿って渦流を生成させることができ、効率良く撹拌することができる。
(2) The fluid resistor is configured by fins arranged along a spiral surface having an axis intersecting with a cross section of the connection hole.
Since the fluid resistor is a fin disposed along a spiral surface in which the axis of the spiral surface intersects the opening, a vortex can be generated along the flow of the fluid, and efficient stirring can be achieved.
(3)前記流体抵抗体はセラミックよりなる。
 流体抵抗体がセラミックからなるので、耐熱性、耐蝕性を備え、高強度である。このため、高温環境下あるいは腐食性環境下など過酷な環境下でも使用することができる。
(3) The fluid resistor is made of ceramic.
Since the fluid resistor is made of ceramic, it has heat resistance, corrosion resistance, and high strength. For this reason, it can be used even in a severe environment such as a high temperature environment or a corrosive environment.
(4)前記ハウジングはセラミックよりなる。
 ハウジングはセラミックからなるので、耐熱性を有しており、好適に利用することができる。
(4) The housing is made of ceramic.
Since the housing is made of ceramic, it has heat resistance and can be suitably used.
 図1に示すように、以下に説明する各実施形態の集熱レシーバ10は、太陽光を用いた発電装置1に用いることができる。発電装置1は、中央に中央タワー2を有する。中央タワー2の最も高い位置には、後述する集熱レシーバ10が複数個収容されたレシーバアレイ3が配設されている。レシーバアレイ3の下には、順次、蒸気発生器4、蓄熱器5、蒸気タービン6などが配設されている。
 また、中央タワー2の周囲には、多数のヘリオスタット8が配置されている。ヘリオスタット8は、反射角度や鉛直方向を軸とした回転方向を自由に制御することが可能なように設定されている。ヘリオスタット8は、時事刻々と変化する太陽光を反射して、中央タワー2のレシーバアレイ3に集めるように自動的に制御されている。
As shown in FIG. 1, a heat collection receiver 10 of each embodiment described below can be used for a power generation apparatus 1 using sunlight. The power generator 1 has a central tower 2 in the center. A receiver array 3 in which a plurality of heat collecting receivers 10 to be described later are accommodated is disposed at the highest position of the central tower 2. Below the receiver array 3, a steam generator 4, a heat accumulator 5, a steam turbine 6 and the like are sequentially arranged.
A number of heliostats 8 are arranged around the central tower 2. The heliostat 8 is set so that the reflection angle and the rotation direction around the vertical direction can be freely controlled. The heliostat 8 is automatically controlled so as to reflect the sunlight changing from moment to moment and collect it in the receiver array 3 of the central tower 2.
 図2に示すように、レシーバアレイ3では、太陽光照射面が開放された箱に複数の集熱レシーバ10が、太陽光の照射を受ける受光面を正面に向けて整列した状態で配置されている。
 集熱レシーバ10は、太陽光により昇温した高温の空気を吸引し、蒸気発生器4、蓄熱器5を経て蒸気タービン6に送られて、蒸気タービン6を駆動する。空気は、その後、外部に返送される。
As shown in FIG. 2, in the receiver array 3, a plurality of heat collecting receivers 10 are arranged in a box in which the sunlight irradiation surface is opened, with the light receiving surfaces that receive sunlight irradiation aligned with the front. Yes.
The heat collection receiver 10 sucks high-temperature air heated by sunlight and is sent to the steam turbine 6 through the steam generator 4 and the heat accumulator 5 to drive the steam turbine 6. The air is then returned to the outside.
(第1実施形態)
 次に、第1実施形態の集熱レシーバについて、図を用いながら説明する。
 図3に示すように、第1実施形態の集熱レシーバ10Aは、ヘリオスタット8から反射してきた太陽光SBを吸収する熱吸収体20と、熱吸収体20を保持するハウジング30とを有する。
 ハウジング30はセラミックで形成されており、耐熱性、耐蝕性を備え、高強度である。ハウジング30には、蒸気発生器4などに連通するパイプ(配管)40が接続されている。パイプ40は、取付加工が容易な金属製を用いるのが一般的である。
(First embodiment)
Next, the heat collecting receiver of the first embodiment will be described with reference to the drawings.
As shown in FIG. 3, the heat collection receiver 10 </ b> A of the first embodiment includes a heat absorber 20 that absorbs sunlight SB reflected from the heliostat 8 and a housing 30 that holds the heat absorber 20.
The housing 30 is made of ceramic, has heat resistance and corrosion resistance, and has high strength. A pipe (pipe) 40 communicating with the steam generator 4 or the like is connected to the housing 30. The pipe 40 is generally made of metal that is easy to mount.
 熱吸収体20は、複数の貫通孔21を有しており、例えば全体矩形状を呈している(図2参照)。貫通孔21は、集熱レシーバ10Aの前方およびハウジング30の内部に開口しており、ハウジング30の内部と集熱レシーバ10Aの前方とを連通している。
 ハウジング30は、矩形の開口を有して熱吸収体20を収容する矩形断面の収容部31と、収容部31の断面を絞るテーパ部32と、ハウジング30をパイプ40に接続するための接続部33を有する。接続部33の内部は、接続孔34となっている。
The heat absorber 20 has a plurality of through holes 21 and has, for example, an overall rectangular shape (see FIG. 2). The through-hole 21 opens to the front of the heat collecting receiver 10A and the inside of the housing 30, and communicates the inside of the housing 30 and the front of the heat collecting receiver 10A.
The housing 30 has a rectangular cross-section accommodating portion 31 that accommodates the heat absorber 20 with a rectangular opening, a tapered portion 32 that narrows the cross section of the accommodating portion 31, and a connection portion for connecting the housing 30 to the pipe 40. 33. The connection portion 33 has a connection hole 34 inside.
 接続部33は、パイプ40の円形断面に合わせて円形断面となっている。このため、テーパ部32では、収容部31側の前面が矩形断面で、パイプ40側に円形断面の接続部33が設けられている。接続部33の端部には、取付用の例えば円板状のフランジ331が設けられている。
 また、パイプ40の先端にも取付用の例えば円板状のフランジ41が設けられている。従って、ハウジング30のフランジ331と、パイプ40のフランジ41とを、例えばボルト、ナットで締結することにより、ハウジング30とパイプ40を接続している。
The connecting portion 33 has a circular cross section in accordance with the circular cross section of the pipe 40. For this reason, in the taper part 32, the front part by the side of the accommodating part 31 is a rectangular cross section, and the connection part 33 of the circular cross section is provided in the pipe 40 side. For example, a disk-shaped flange 331 for attachment is provided at the end of the connection portion 33.
Further, for example, a disc-shaped flange 41 for attachment is also provided at the tip of the pipe 40. Therefore, the housing 30 and the pipe 40 are connected by fastening the flange 331 of the housing 30 and the flange 41 of the pipe 40 with, for example, bolts and nuts.
 熱吸収体20と接続孔34との間には、空気(流体)の流れに抵抗を付与する流体抵抗体50が設けられている。なお、熱吸収体20と接続孔34との間とは、熱吸収体20と接続孔34との境界部分を意味するものではなく、熱吸収体20の内側面と接続部33のパイプ側端面との間を意味する。ここでは、接続部33に流体抵抗体50が設けられている。 Between the heat absorber 20 and the connection hole 34, a fluid resistor 50 that provides resistance to the flow of air (fluid) is provided. The term “between the heat absorber 20 and the connection hole 34” does not mean the boundary portion between the heat absorber 20 and the connection hole 34, but the inner side surface of the heat absorber 20 and the pipe side end surface of the connection portion 33. Means between. Here, the fluid resistor 50 is provided in the connection portion 33.
 流体抵抗体50は、接続孔34の断面全体にわたって設けられている。ここでは、流体抵抗体50として、連続多孔体51が接続部33の内部に設けられている。連続多孔体51は、空気の流れの方向に沿ってある程度の長さの多数の管状の孔を有するが、孔の断面積の合計は、接続孔34の断面積よりも小さいので、連続多孔体51に流入する際に、減速して、流れと交差する方向へ拡散現象によって広がり、混合される。
 さらに、連続多孔体51の孔の断面積が小さいので、空気が孔の内部を通過する際に孔との間に抵抗が発生し、流れにくくなる。
The fluid resistor 50 is provided over the entire cross section of the connection hole 34. Here, as the fluid resistor 50, a continuous porous body 51 is provided inside the connection portion 33. The continuous porous body 51 has a large number of tubular holes with a certain length along the direction of air flow, but the total cross-sectional area of the holes is smaller than the cross-sectional area of the connection hole 34. As it flows into 51, it decelerates and spreads and mixes in a direction intersecting the flow by a diffusion phenomenon.
Furthermore, since the cross-sectional area of the hole of the continuous porous body 51 is small, resistance is generated between the hole and the air when the air passes through the hole, making it difficult to flow.
 次に、空気の流れについて説明する。
 集熱レシーバ10Aの前方の空気が、熱吸収体20の貫通孔21から吸収される。熱吸収体20に吸収された空気は、太陽光SBによって熱くなった熱吸収体20を通過する際に昇温されて、熱い空気が発生する。特に、熱吸収体20の中央部を通過した空気は熱くなり、熱吸収体20の周辺部を通過した空気は、あまり熱くならない。このため、中央部分が熱い温度分布のある気流が形成される。
 熱吸収体20の中央部を通過した熱い空気と、熱吸収体20の周辺部を通過したあまり熱くない空気で構成される温度分布のある気流は、ハウジング30内に収容されて、パイプ40に送られる。
Next, the air flow will be described.
The air in front of the heat collecting receiver 10 </ b> A is absorbed from the through hole 21 of the heat absorber 20. The air absorbed by the heat absorber 20 is heated when passing through the heat absorber 20 heated by the sunlight SB, and hot air is generated. In particular, the air that has passed through the center of the heat absorber 20 becomes hot, and the air that has passed through the periphery of the heat absorber 20 does not get very hot. For this reason, an air flow having a hot temperature distribution in the central portion is formed.
An airflow having a temperature distribution composed of hot air that has passed through the center of the heat absorber 20 and less hot air that has passed through the periphery of the heat absorber 20 is housed in the housing 30 and is contained in the pipe 40. Sent.
 このとき、熱い空気およびあまり熱くない空気で構成される温度分布のある気流は、ハウジング30の接続部33内部の接続孔34に設けられている連続多孔体51の孔を通過することにより減速し、流れと直交する方向に空気を拡散する。
 これにより、熱い空気およびあまり熱くない空気で構成される温度分布のある気流は混ざり合って均熱化しながらパイプ40に流入する。
At this time, the airflow having a temperature distribution composed of hot air and air that is not so hot is decelerated by passing through the hole of the continuous porous body 51 provided in the connection hole 34 inside the connection portion 33 of the housing 30. Diffuse air in the direction perpendicular to the flow.
As a result, an airflow having a temperature distribution composed of hot air and air that is not so hot mixes and flows into the pipe 40 while being soaked.
 次に、第1実施形態の集熱レシーバ10Aの作用、効果について説明する。
 第1実施形態の集熱レシーバ10Aは、貫通孔21を有する熱吸収体20と、熱吸収体20を収容するとともに接続孔34を有するハウジング30とからなる。そして、熱吸収体20と接続孔34との間に、流体抵抗体50を設けた。
 熱吸収体20は、中央部分の温度が高くなりやすく、熱く加熱された空気が発生する。接続孔34には金属製の熱媒のパイプ40が取り付けられるのが一般的であり、加熱された空気がそのままパイプ40に接触すると、パイプ40の劣化を速めることになる。ここで、熱吸収体20と接続孔34との間に設けた流体抵抗体50が、空気の流れを減速させ、流れと直交する方向に空気を拡散する。
 これにより、熱く熱せられた空気があまり熱くない空気で構成される温度分布のある気流は混合されて均熱化されるので、パイプ40の劣化を抑制することができる。
Next, the operation and effect of the heat collecting receiver 10A of the first embodiment will be described.
The heat collection receiver 10 </ b> A of the first embodiment includes a heat absorber 20 having a through hole 21 and a housing 30 that houses the heat absorber 20 and has a connection hole 34. A fluid resistor 50 is provided between the heat absorber 20 and the connection hole 34.
The heat absorber 20 tends to have a high temperature at the center, and hot air is generated. Generally, a metal heat medium pipe 40 is attached to the connection hole 34. When the heated air directly contacts the pipe 40, the deterioration of the pipe 40 is accelerated. Here, the fluid resistor 50 provided between the heat absorber 20 and the connection hole 34 decelerates the flow of air and diffuses the air in a direction orthogonal to the flow.
Thereby, since the airflow with the temperature distribution comprised by the air which the hot heated air is not so hot is mixed and soaked, deterioration of the pipe 40 can be suppressed.
 第1実施形態の集熱レシーバ10Aによれば、流体抵抗体50が、連続多孔体51であるので、効率良く空気を混合させることができる。 According to the heat collecting receiver 10A of the first embodiment, since the fluid resistor 50 is the continuous porous body 51, air can be mixed efficiently.
 第1実施形態の集熱レシーバ10Aによれば、ハウジング30はセラミックからなるので、耐熱性、耐蝕性を備え、高強度である。このため、高温環境下あるいは腐食性環境下など過酷な環境下でも使用することができる。 According to the heat collecting receiver 10A of the first embodiment, since the housing 30 is made of ceramic, it has heat resistance and corrosion resistance and is high in strength. For this reason, it can be used even in a severe environment such as a high temperature environment or a corrosive environment.
(第2実施形態)
 次に、第2実施形態の集熱レシーバについて、図を用いながら説明する。
 なお、前述した第1実施形態の集熱レシーバ10Aと共通する部位には同じ符号を付して、重複する説明を省略することとする。
 図4および図5に示すように、第2実施形態の集熱レシーバ10Bは、接続部33の接続孔34に、流体抵抗体50として軸線が接続孔34の断面と交差する螺旋面に沿って配置されたフィン52を設けた。
(Second Embodiment)
Next, the heat collecting receiver of 2nd Embodiment is demonstrated, using a figure.
In addition, suppose that the same code | symbol is attached | subjected to the site | part which is common in the heat collection receiver 10A of 1st Embodiment mentioned above, and the overlapping description is abbreviate | omitted.
As shown in FIGS. 4 and 5, the heat collecting receiver 10 </ b> B of the second embodiment is arranged along the spiral surface whose axis as the fluid resistor 50 intersects the cross section of the connection hole 34. Arranged fins 52 were provided.
 フィン52は、空気の流れる方向に向かって反時計回りに旋回する左旋回螺旋部(螺旋面)521と時計回りに旋回する右旋回螺旋部(螺旋面)522とを、連続して有する。左旋回螺旋部521は、接続孔34の直径の幅を有する板部材を反時計方向に捻ることにより形成できる。また、右旋回螺旋部522は、板部材を時計方向に捻ることにより形成できる。
 なお、左旋回螺旋部521と右旋回螺旋部522の順番は、任意である。また、個数も任意である。
The fin 52 has a left turning spiral portion (spiral surface) 521 that turns counterclockwise in the direction of air flow and a right turning spiral portion (spiral surface) 522 that turns clockwise. The left turning spiral portion 521 can be formed by twisting a plate member having a width of the diameter of the connection hole 34 in the counterclockwise direction. Further, the right turning spiral portion 522 can be formed by twisting the plate member in the clockwise direction.
In addition, the order of the left turning spiral part 521 and the right turning spiral part 522 is arbitrary. The number is also arbitrary.
 次に、空気の流れについて説明する。
 図6に示すように、集熱レシーバ10Bの前方の空気が、熱吸収体20の貫通孔21から吸収される。熱吸収体20に吸収された空気は、太陽光SBによって熱くなった熱吸収体20を通過する際に昇温されて、熱い空気が発生する。熱吸収体20は中央部が熱くなっており、熱吸収体20の中央部を通過した熱い空気A1と、熱吸収体20の周辺部を通過したあまり熱くない空気A2で構成される温度分布のある気流は、ハウジング30内に収容されて、パイプ40に送られる。
Next, the air flow will be described.
As shown in FIG. 6, the air in front of the heat collecting receiver 10 </ b> B is absorbed from the through hole 21 of the heat absorber 20. The air absorbed by the heat absorber 20 is heated when passing through the heat absorber 20 heated by the sunlight SB, and hot air is generated. The center of the heat absorber 20 is hot, and the temperature distribution is composed of hot air A1 that has passed through the center of the heat absorber 20 and air A2 that has not passed through the periphery of the heat absorber 20 and is not very hot. A certain airflow is accommodated in the housing 30 and sent to the pipe 40.
 このとき、熱い空気A1およびあまり熱くない空気A2は、ハウジング30の接続部33内部の接続孔34に設けられているフィン52によって螺旋状に流れ、渦流を生成して混ざり合う。
 これにより、熱い空気A1およびあまり熱くない空気A2は混ざり合って均熱化しながらパイプ40に流入する。
At this time, the hot air A1 and the air A2 which is not so hot flow spirally by the fins 52 provided in the connection holes 34 inside the connection portion 33 of the housing 30, and generate and mix with each other.
As a result, the hot air A1 and the air A2 that is not so hot are mixed and flow into the pipe 40 while being equalized.
 次に、第2実施形態の集熱レシーバ10Bの作用、効果について説明する。
 第2実施形態の集熱レシーバ10Bによれば、流体抵抗体50は、軸線が接続孔34の断面と交差する螺旋面に沿って配置されたフィン52であるので、流体の流れに沿って渦流を生成させることができ、効率良く撹拌することができる。
Next, functions and effects of the heat collecting receiver 10B of the second embodiment will be described.
According to the heat collection receiver 10 </ b> B of the second embodiment, the fluid resistor 50 is the fin 52 arranged along the spiral surface whose axis intersects the cross section of the connection hole 34, and thus the vortex along the fluid flow. Can be generated and can be efficiently stirred.
 第2実施形態の集熱レシーバ10Bによれば、フィン52がセラミックからなるので、耐熱性を有しており、好適に利用することができる。 According to the heat collection receiver 10B of the second embodiment, since the fins 52 are made of ceramic, they have heat resistance and can be used suitably.
 なお、上述したフィン52として、接続部33に沿って長い螺旋状のものを例示したが、図7に示すように、複数枚の送風機用の羽根523を用いることも可能である。 In addition, although the long spiral thing was illustrated along the connection part 33 as the fin 52 mentioned above, as shown in FIG. 7, it is also possible to use the blade | wing 523 for several air blowers.
 本発明の集熱レシーバは、前述した各実施形態に限定されるものでなく、適宜な変形、改良などが可能である。 The heat collecting receiver of the present invention is not limited to the above-described embodiments, and appropriate modifications and improvements can be made.
 本出願は、2014年7月10日出願の日本国特許出願(特願2014-142545)に基づくものであり、それらの内容はここに参照として取り込まれる。 This application is based on a Japanese patent application filed on July 10, 2014 (Japanese Patent Application No. 2014-142545), the contents of which are incorporated herein by reference.
 本発明の集熱レシーバは、太陽熱発電装置に使用される集熱レシーバとして用いることができる。 The heat collection receiver of the present invention can be used as a heat collection receiver used in a solar thermal power generation apparatus.
10A、10B 集熱レシーバ
20 熱吸収体
21 貫通孔
30 ハウジング
34 接続孔
50 流体抵抗体
51 連続多孔体
52 フィン
521 左旋回螺旋部(螺旋面)
522 右旋回螺旋部(螺旋面)
10A, 10B Heat collection receiver 20 Heat absorber 21 Through hole 30 Housing 34 Connection hole 50 Fluid resistance body 51 Continuous porous body 52 Fin 521 Left-handed spiral part (spiral surface)
522 Right turn spiral (spiral surface)

Claims (5)

  1.  貫通孔を有する熱吸収体と、前記熱吸収体を収容するとともに接続孔を有するハウジングとからなる集熱レシーバであって、
     前記熱吸収体と前記接続孔との間に、流体抵抗体を有することを特徴とする集熱レシーバ。
    A heat collecting receiver comprising a heat absorber having a through hole, and a housing containing the heat absorber and having a connection hole,
    A heat collecting receiver comprising a fluid resistor between the heat absorber and the connection hole.
  2.  前記流体抵抗体は、連続多孔体であることを特徴とする請求項1に記載の集熱レシーバ。 The heat collecting receiver according to claim 1, wherein the fluid resistor is a continuous porous body.
  3.  前記流体抵抗体は、前記接続孔の断面と交差する軸線を有する螺旋面に沿って配置されたフィンで構成されることを特徴とする請求項1に記載の集熱レシーバ。 The heat collecting receiver according to claim 1, wherein the fluid resistor is constituted by fins arranged along a spiral surface having an axis intersecting with a cross section of the connection hole.
  4.  前記流体抵抗体はセラミックよりなることを特徴とする請求項1~請求項3のうちのいずれか一項に記載の集熱レシーバ。 The heat collecting receiver according to any one of claims 1 to 3, wherein the fluid resistor is made of ceramic.
  5.  前記ハウジングはセラミックよりなることを特徴とする請求項1~請求項4のうちのいずれか一項に記載の集熱レシーバ。 The heat collecting receiver according to any one of claims 1 to 4, wherein the housing is made of ceramic.
PCT/JP2015/069918 2014-07-10 2015-07-10 Heat collection receiver WO2016006690A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-142545 2014-07-10
JP2014142545A JP2016017720A (en) 2014-07-10 2014-07-10 Heat collection receiver

Publications (1)

Publication Number Publication Date
WO2016006690A1 true WO2016006690A1 (en) 2016-01-14

Family

ID=55064318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/069918 WO2016006690A1 (en) 2014-07-10 2015-07-10 Heat collection receiver

Country Status (2)

Country Link
JP (1) JP2016017720A (en)
WO (1) WO2016006690A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004023048A1 (en) * 2002-09-06 2004-03-18 Kraftanlagen Munchen Gmbh Combined and simplified ceramic or metallic volumetric absorber modules
US20110290236A1 (en) * 2009-01-30 2011-12-01 Udo Hack Solar absorber module and solar absorber arrangement

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004023048A1 (en) * 2002-09-06 2004-03-18 Kraftanlagen Munchen Gmbh Combined and simplified ceramic or metallic volumetric absorber modules
US20110290236A1 (en) * 2009-01-30 2011-12-01 Udo Hack Solar absorber module and solar absorber arrangement

Also Published As

Publication number Publication date
JP2016017720A (en) 2016-02-01

Similar Documents

Publication Publication Date Title
US7836695B2 (en) Solar energy system
US4030477A (en) Solar collector with conical elements
Patel et al. Comparative Thermal Performance Evaluation of U Tube and Straight Tube Solar Water Heater
Mohamed et al. Design and study of portable solar dish concentrator
Chamsa-ard et al. Thermal performance testing of heat pipe evacuated tube with compound parabolic concentrating solar collector by ISO 9806-1
Jafar et al. Performance characteristics of parabolic solar collector water heater system fitted with nail twisted tapes absorber
Geete et al. Experimental analysis on fabricated parabolic solar collector with various flowing fluids and pipe materials
US11336224B2 (en) Solar receivers and methods for capturing solar energy
Dondapati et al. Effect of glazing materials on the performance of solar flat plate collectors for water heating applications
Dewangan et al. Review of component wise performance enhancement techniques for simple solar water heater
Bharti et al. Design of solar parabolic trough collector
WO2016006690A1 (en) Heat collection receiver
CN111287921A (en) High efficiency solar power generator for offshore applications
Zaboli et al. Recent progress on flat plate solar collectors equipped with nanofluid and turbulator: state of the art
US6710281B1 (en) Laser based heat exchanger
Geete Exergy analyses for parabolic solar collector at different conditions: PAPSC software
Nasir Design, construction and experimental study of the thermal performance of a parabolic cylindrical trough solar air heater
WO2016002823A1 (en) Heat-collecting receiver
UMYSHEV et al. Analysis of the possibility of using solar power plants on the basis of the Stirling engine in Kazakhstan
Wan et al. Experimental study on thermal performance of a water/steam cavity receiver with solar simulator
GB2456355A (en) Tubular Solar Heat Collector with Lenses in Sleeve Wall
Kalidasan et al. Absorber tube with internal pin-fins for solar parabolic trough collector
JP2013148332A (en) Solar concentration system, and solar power generation system
Kumar et al. Theoretical Investigation on Heat Transfer and Friction Factor Characteristics of Cylindrical Parabolic Concentrating Collector With Twisted Tapes
WO2016002824A1 (en) Heat-collecting receiver

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15818207

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15818207

Country of ref document: EP

Kind code of ref document: A1