WO2016006685A1 - Displacement machine - Google Patents

Displacement machine Download PDF

Info

Publication number
WO2016006685A1
WO2016006685A1 PCT/JP2015/069907 JP2015069907W WO2016006685A1 WO 2016006685 A1 WO2016006685 A1 WO 2016006685A1 JP 2015069907 W JP2015069907 W JP 2015069907W WO 2016006685 A1 WO2016006685 A1 WO 2016006685A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive displacement
displacement machine
arm
axis
arm portion
Prior art date
Application number
PCT/JP2015/069907
Other languages
French (fr)
Japanese (ja)
Inventor
直毅 鹿園
早瀬 功
Original Assignee
国立大学法人東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京大学 filed Critical 国立大学法人東京大学
Priority to EP15819137.9A priority Critical patent/EP3168473B1/en
Publication of WO2016006685A1 publication Critical patent/WO2016006685A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/02Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders arranged oppositely relative to main shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03CPOSITIVE-DISPLACEMENT ENGINES DRIVEN BY LIQUIDS
    • F03C1/00Reciprocating-piston liquid engines
    • F03C1/02Reciprocating-piston liquid engines with multiple-cylinders, characterised by the number or arrangement of cylinders
    • F03C1/04Reciprocating-piston liquid engines with multiple-cylinders, characterised by the number or arrangement of cylinders with cylinders in star or fan arrangement
    • F03C1/0403Details, component parts specially adapted of such engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/005Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders with two cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/01Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being mechanical

Definitions

  • the present invention relates to a positive displacement machine, and more particularly to a low vibration positive displacement machine in which a piston reciprocates and swings.
  • this type of positive displacement machine includes two pistons guided by a guide cylindrical member and a pair of second pistons arranged symmetrically from the center of the two pistons in a direction perpendicular to the central axis of the guide cylindrical member.
  • a reciprocating member having one arm portion, a pair of shaft members disposed symmetrically so as to be orthogonal to the central axis of the guide cylindrical member, and the shaft member at a position displaced from the rotation axis of each shaft member.
  • a pair of second arm portions that are attached to hold each first arm portion and a pair of working chambers that change in volume by the reciprocating motion of the two pistons, and the reciprocating member reciprocates with a swinging motion.
  • FIG. 19 is a configuration diagram showing an outline of the configuration of a conventional positive displacement machine 920.
  • FIG. 20 shows a part of the reciprocating member 940 and the shaft portions 950a and 950b that are swinging upward in FIG.
  • FIG. 21 is an explanatory view of a part of the reciprocating member 940 and the shaft portions 950a and 950b that are swinging as viewed from the right side in FIG.
  • the positive displacement type machine 920 has a support structure for the first arm portions 944a and 944b by the second arm portions 954a and 954b for comparison with the positive displacement type machine 20 as an embodiment of the present invention described later. Except for this, the configuration was the same as that of the positive displacement machine 20 of the example.
  • the conventional positive displacement machine 920 includes a cylindrical guide cylinder member 930 having a central axis in the vertical direction (Y-axis direction) in the figure, and a pair of pistons 942a, 942b is guided to reciprocate in the vertical direction (Y-axis direction) in the figure, and to reciprocate around the central axis of the guide cylindrical member 930 (around the Y-axis), and at the center of the guide cylindrical member 930
  • a pair of shaft members 950a and 950b having rotational axes arranged on a straight line (on the Z axis) orthogonal to the central axis, a pair of working chambers 962a and 962b whose volume is changed by the reciprocating motion of the pistons 942a and 942b, and operation
  • a pair of high-pressure chambers 966a and 966b connected to the chambers 962a and 962b via discharge valves 967a and 967b, and shaft members 950a and 950b, respectively.
  • Tagged pair of electric motors 970a comprises a 970b, a.
  • a pair of first arm members 944 a and 944 b are attached to the center of the reciprocating member 940 so as to be orthogonal to the central axis of the guide cylindrical member 930 and to be symmetric with respect to the central axis.
  • a pair of second arm portions 954a and 954b that support the first arm portions 944a and 944b at positions displaced from the rotation shafts are provided at one end portions (end portions on the reciprocating member 940 side) of the shaft members 950a and 950b.
  • a pair of main weight balances 958a and 958b are attached so that the direction of centrifugal force is the opposite direction.
  • a pair of shaft members 950a and 950b is connected to the other end (the end opposite to the reciprocating member 940) so that the centrifugal force is in the direction opposite to the main weight balance 958a and 958b.
  • Sub-weight balances 959a and 959b are attached.
  • outer peripheral spherical surface portions 945a and 945b are attached to the first arm members 944a and 944b so as to be movable in the arm axis direction.
  • the second arm portions 954a and 954b are formed in a substantially cylindrical shape with an inner peripheral spherical surface, and the outer peripheral spherical surface portions 945a and 945b of the first arms 944a and 944b are held by spherical pairs even with the inner peripheral spherical surface.
  • the first arm portions 944a and 944a are The outer peripheral spherical surface portions 945a and 945b of the 944b perform an accurate circular motion with the relative movement of the arm portion in the axial direction, and cause the reciprocating member 940 to perform a swinging motion and a reciprocating motion.
  • the fluid passages 963a and 963b for supplying the working fluid to the working chambers 962a and 962b are formed in the pistons 942a and 942b, and the working fluid space 960 between the pistons 942a and 942b is formed in the fluid passages 963a and 963b.
  • Suction valves 964a and 964b are attached which open when the pressure in the working chambers 962a and 962b becomes lower than the pressure in the chamber.
  • Discharge valves that open when the pressure in the working chambers 962a and 962b is higher than the pressure in the high-pressure chambers 966a and 966b are provided in the partition walls 965a and 965b between the working chambers 962a and 962b and the high-pressure chambers 966a and 966b. 967a and 967b are attached, and outflow pipes 968a and 968b are attached to the high-pressure chambers 966a and 966b. Furthermore, an inflow pipe (not shown) that communicates with the working fluid space 960 is attached to the case 922.
  • the working fluid flows into the working fluid space 960 from the inflow pipe, and is supplied to the working chambers 962a and 962b via the fluid flow paths 963a and 963b and the suction valves 964a and 964b by the reciprocating motion of the pistons 942a and 942b. It flows into the high pressure chambers 966a and 966b through the valves 967a and 967b, and flows out from the outflow pipes 968a and 968b.
  • the inertial force Fpy in the central axis direction (Y-axis direction) is generated as the reciprocating member 940 reciprocates.
  • This inertial force Fpy is caused by the Y-axis direction component Fsy of the total centrifugal force Fs by the second arm portions 954a and 954b attached to the shaft members 950a and 95b, the main balance weights 958a and 958b, and the auxiliary weight balances 959a and 959b. It can be completely erased.
  • the bending moment of the base portion of the first arm portions 944a and 944b can be reduced, or the main weight balances 958a and 958b can be reduced.
  • the couple of centrifugal force due to the X-axis direction component can be reduced to reduce the size of the auxiliary weight balances 959a and 959b, on the other hand, the maximum swing angle (oscillation piece amplitude angle) of the reciprocating member 940 can be achieved. ) Becomes larger.
  • the diameter of the pistons 942a and 942b (the bore diameter of the cylinder) is reduced to reduce the bearing load and reduce the mechanical friction loss, or the gap volume (the working chamber 962a.
  • the volume efficiency can be increased by reducing the volume of the working fluid that remains and re-expands by reducing the volume at the top dead center of 962b, but on the other hand, in the reciprocating motion of the reciprocating member 940, Since the stroke becomes longer, the maximum swing angle (swing piece amplitude angle) of the reciprocating member 940 is increased. As the maximum swing angle (swing piece amplitude angle) increases, the torque around the Y axis, which is difficult to completely erase, increases and the surroundings are vibrated.
  • the main purpose of the positive displacement machine of the present invention is to propose a lower displacement vibration displacement machine.
  • the positive displacement machine of the present invention employs the following means in order to achieve the main object described above.
  • the positive displacement machine of the present invention is A cylindrical guide cylindrical member; A piston portion that is guided by the inner peripheral surface of the guide cylindrical member and reciprocates in the direction of the central axis of the guide cylindrical member and swings around the central axis, and is orthogonal to the central axis of the guide cylindrical member and the central axis
  • a reciprocating member having a pair of first arm parts attached to the piston part so as to be symmetrical with respect to A pair of shaft members disposed so as to be orthogonal to the central axis of the guide cylindrical member and symmetrical with respect to the central axis; A pair of second arm portions attached to the pair of shaft members so as to support the pair of first arm portions at positions displaced from the rotation axes of the pair of shaft members, A working chamber in which a volume change occurs as the piston part reciprocates;
  • a positive displacement machine comprising: The second arm portion supports the specific point predetermined in the first arm portion so as to be movably restrained on an axis parallel to the rotation axis of the shaft member.
  • the first arm portion is connected to the second arm so that a predetermined specific point in the first arm portion is movably restrained on an axis parallel to the rotation axis of the shaft member. By supporting at the portion, the vibration can be further reduced.
  • “restrained to be movable on the axis” means that only movement on the axis is possible.
  • the positive displacement machine of the present invention includes a machine (such as an engine) that causes a reciprocating motion and a rocking motion to be generated in a reciprocating member by supplying a pressure fluid to a working chamber to generate a rotational driving force on a pair of shaft members.
  • the piston part has two pistons symmetrically across the pair of first arm parts, and two working chambers are formed so as to correspond to each of the two pistons. You can also.
  • the first arm portion has an outer peripheral spherical surface portion having a spherical center as the specific point, and the second arm portion is an axis parallel to the rotation axis of the shaft member. It is also possible to have an inner peripheral cylindrical portion that is arranged on a line and that slidably holds the outer peripheral spherical portion.
  • the first arm portion has an outer peripheral spherical surface portion having a spherical center as the specific point, and the second arm portion holds the outer peripheral spherical surface portion and the shaft member. It is also possible to have an inner circumferential spherical surface portion that moves on an axis parallel to the rotation axis. In this way, since the outer peripheral spherical surface portion is held by the inner peripheral spherical surface portion, the force exchange between the first arm portion and the second arm portion can be performed by surface contact.
  • the inner peripheral spherical portion is formed in a cylindrical shape on the outer periphery, and the second arm portion is configured such that the inner peripheral spherical portion is positioned with respect to the rotation axis of the shaft member. It is also possible to have an inner circumferential cylindrical portion that is held so as to be movable on parallel axes. In this way, the movement of the outer peripheral spherical surface portion along the axis parallel to the rotation axis of the shaft member accompanying the reciprocating motion and the swinging motion of the reciprocating member can be smoothly performed, and the mechanical friction loss is reduced. be able to.
  • the inner peripheral spherical portion is configured such that the inner peripheral side around the rotation axis of the shaft member is greater than the outer peripheral side. It is formed so that it may leave
  • the reciprocating member when the reciprocating member reaches the maximum swing angle (swing piece amplitude angle), the first arm portion and the inner peripheral side of the inner peripheral spherical surface of the second arm portion around the rotation axis of the shaft are The contact and interference can be suppressed, and the maximum swing angle (swing piece amplitude) of the reciprocating member can be further increased.
  • the outer peripheral spherical portion is supported so as to be rotatable about the central axis of the first arm portion and immovable in the central axis direction. It can also be. In this way, the rotation of the outer peripheral spherical surface portion around the central axis of the reciprocating member and the swinging motion of the reciprocating member can be performed smoothly, and the mechanical friction loss can be reduced.
  • the first arm portion has an inner peripheral spherical surface portion having a spherical center as the specific point, and the second arm portion is held by the inner peripheral spherical surface portion,
  • An outer peripheral spherical surface portion that can move on an axis parallel to the rotation axis of the shaft member may be provided.
  • the inner circumferential spherical surface portion may be supported so as to be rotatable around the central axis of the first arm portion and immovable in the central axis direction.
  • the second arm portion is formed as an inner peripheral cylindrical surface
  • the first arm portion has two planes perpendicular to the reciprocating direction of the reciprocating member.
  • a sliding portion integrated with the hinge portion by a pin.
  • FIG. 1 It is a block diagram which shows the outline of a structure of the positive displacement machine 20 as one Example of this invention. It is explanatory drawing which shows the state of the reciprocating member 40 which reciprocates with a rocking
  • FIG. 8 is a cross-sectional view showing the AA cross section of FIG. 7. It is a block diagram which shows the outline of a structure of the positive displacement machine 920 of a prior art example. It is explanatory drawing which shows the mode of the support of 1st arm member 944a, 944b by 2nd arm part 954a, 954b. It is explanatory drawing which looked at a part of reciprocating member 940 and shaft part 950a, 950b which are rocking
  • FIG. 1 is a configuration diagram showing an outline of the configuration of a positive displacement machine 20 as an embodiment of the present invention.
  • the positive displacement machine 20 of the embodiment is configured as a compressor that pressurizes a gas that is a working fluid, and as illustrated, a cylindrical guide cylindrical member having a central axis in the vertical direction (Y-axis direction) in the drawing.
  • 30 and a pair of pistons 42a, 42b are guided by the guide cylindrical member 30 and reciprocate in the vertical direction (Y-axis direction) in the figure, and swing around the central axis of the guide cylindrical member 30 (around the Y-axis).
  • a pair of working chambers 62a and 62b whose volume changes due to the above, a pair of high pressure chambers 66a and 66b adjacent to the working chambers 62a and 62b via partition walls 65a and 65b, and a pair of shaft members 50a and 50b.
  • a pair of electric motor 70a which Re is attached respectively, comprises a 70b, a case 22 for housing them, a.
  • the reciprocating member 40 has a pair of first arm members 44a and 44b at the center thereof so as to be orthogonal to the central axis (Y axis) of the guide cylindrical member 30 and to be symmetric with respect to the central axis. Is attached. Outer spherical surfaces 45a and 45b having spherical centers P1a and P1b on the arm axis are formed or attached to the ends of the first arm members 44a and 44b.
  • the fluid passages 63a and 63b for supplying the working fluid to the working chambers 62a and 62b are formed in the pistons 42a and 42b.
  • the working fluid space 60 between the pistons 42a and 42b is formed in the fluid passages 63a and 63b.
  • Suction valves 64a and 64b are attached which open when the pressure in the working chambers 62a and 62b becomes lower than the pressure in the first chamber.
  • the partition walls 65a and 65b between the working chambers 62a and 62b and the high pressure chambers 66a and 66b are discharged when the pressure in the working chambers 62a and 62b becomes higher than the pressure in the high pressure chambers 66a and 66b.
  • Valves 67a and 67b are attached, and outflow pipes 68a and 68b are attached to the high-pressure chambers 66a and 66b.
  • an inflow pipe (not shown) communicating with the working fluid space 60 is attached to the case 22. Therefore, the working fluid flows into the working fluid space 60 from the inflow pipe, and is supplied to the working chambers 62a and 62b via the fluid flow paths 63a and 63b and the suction valves 64a and 64b by the reciprocating motion of the pistons 42a and 42b. It flows into the high pressure chambers 66a and 66b through the valves 67a and 67b, and flows out from the outflow pipes 68a and 68b.
  • the shaft members 50a, 50b are rotatably supported by ball bearings 51a, 51b, 52a, 52b, and are reciprocated at positions deviated from the rotation axis of one end thereof (end on the reciprocating member 40 side).
  • a pair of second arm portions 54a and 54b that support the first arm portions 44a and 44b of the member 40 are attached.
  • the second arm portions 54a and 54b are formed as inner peripheral cylindrical members having an axis parallel to the rotation axis of the shaft members 50a and 50b as a central axis, and the first arm members 4a and 4b are formed in the inner peripheral cylinder.
  • the outer peripheral spherical surface portions 45a and 45b of 44b are slidably accommodated.
  • FIG. 2 is an explanatory view showing a state of the reciprocating member 40 that reciprocates with a swinging motion.
  • FIG. 3 shows the reciprocating member 40 that reciprocates with a swinging motion as viewed from above in FIG. FIG. FIGS.
  • FIGS. 3A and 3E show states each time the shaft members 50a and 50b rotate 90 degrees from the state where the reciprocating member 40 is located at the center in the reciprocating motion.
  • the reciprocating member 40 performs a reciprocating motion with an amplitude 2 ⁇ , which is a top dead center in FIG. 2B and a bottom dead center in FIG. 2D, and FIGS. 3A and 3E.
  • the front outer peripheral spherical surface portion 45a revolves counterclockwise
  • the rear outer peripheral spherical surface portion 45b revolves clockwise. Accordingly, the shaft member 50a rotates counterclockwise.
  • the shaft member 50b rotates clockwise.
  • FIG. 4 is an explanatory diagram for enlarging and explaining the first arm portion 44a and the second arm portion 54a of the reciprocating member 40 that reciprocates with a swinging motion.
  • 4A shows the state of top dead center (rocking angle 0 degree) as seen from the same direction as FIG. 1, and
  • FIG. 4B shows the maximum rocking angle (rocking piece amplitude angle ⁇ max).
  • the state at the time is seen from above in FIG.
  • the outer peripheral spherical surface portion 45a attached to the first arm portion 44a slides with respect to the inner peripheral cylindrical surface of the second arm portion 55a by the swinging motion and moves in the axial direction of the second arm portion 54a. Move by ⁇ L.
  • the spherical center P1a of the outer peripheral spherical surface portion 45a is restrained on the axis of the second arm portion 54a.
  • the ball centers P1a and P1b are also referred to as “specific points P1a and P1b” in this embodiment.
  • a pair of main weight balances 58a, 58b is attached to one end of the shaft members 50a, 50b so that the direction of centrifugal force is opposite to the second arm members 54a, 54b.
  • a pair of sub-weight balances 59a are attached at the other end of 50a, 50b (the end opposite to the reciprocating member 40).
  • the inertial force in the three-axis (X axis, Y axis, Z axis) directions of the rectangular coordinate system is the same as the conventional positive displacement machine 920 illustrated in FIG.
  • the generation of an excitation force other than the torque around the Y axis can be made zero.
  • the torque around the Y axis of the positive displacement machine 20 of the embodiment will be described using a comparison with the positive displacement machine 920 of the conventional example.
  • FIG. 5 is an explanatory view of a part of the reciprocating member 40 and the shaft portions 50a and 50b that are swinging as viewed from above in FIG. 1, and FIG. 6 is a reciprocating member 40 that is swinging.
  • FIG. 5 is an explanatory view of a part of the shaft portions 50a and 50b as viewed from the right side in FIG.
  • the torque Np1 around the Y axis due to the inertial force in the swing motion around the Y axis of the reciprocating member 40 of the positive displacement machine 20 is expressed as Ip1 as the moment of inertia around the Y axis of the reciprocating member 40, and the angular acceleration due to the swing motion.
  • ⁇ p1 it is expressed by the following equation (1).
  • the distance from the central axis of the reciprocating member 40 to the spherical centers P1a and P1b (specific points P1a and P1b) of the outer peripheral spherical surface portions 45a and 45b of the first arm portions 44a and 44b is 11 (see FIG. 5), and the shaft member 50a. , 50b and the center axis La, Lb on the inner peripheral cylindrical surface of the second arm portions 54a, 54b is r1 (see FIG. 6), and the rotation angle ⁇ of the shaft members 50a, 50b is used.
  • the X coordinate x1 of the central axis La is expressed by the following equation (2).
  • x1 of this formula (2) is also the X coordinate of the specific point P1a.
  • the swing angle ⁇ p1 is expressed as equation (3) from FIG.
  • the swing piece amplitude angle ⁇ max1 in the swing motion of the reciprocating member 40 is expressed as Formula (4) from Formula (3), and is substituted into Formula (3) to obtain Formula (5).
  • the component Fsx in the X-axis direction of the total centrifugal force Fs of the shaft members 50a and 50b is canceled out by the shaft members 50a and 50b that rotate in reverse as the inertial force. And remains as torque around the Y axis.
  • Main weight balances 58a and 58b are attached to the shaft members 50a and 50b so that the direction of the centrifugal force is opposite to the second arm portions 54a and 54b, and the direction of the centrifugal force is the first direction.
  • the sub-weight balances 59a and 59b are attached so as to be in the same direction as the two-arm portions 54a and 54b, but the main weight balances 58a and 58b are dominant in the centrifugal force generated by each part.
  • the centrifugal force Fs is in the direction of the centrifugal force of the main weight balances 58a and 58b.
  • the rotational angular velocity of the shaft members 50a and 50b is ⁇
  • the X-axis direction component Fsx of the centrifugal force Fs is expressed by the following equation (6), where mr is a constant. Since this acts on the positions of the Z-axis coordinates lmr, ⁇ lmr, the torque around the Y-axis is expressed by the equation (7).
  • the two constants lmr and mr can be adjusted to arbitrary values independently of each other by adjusting two variables of the sizes of the main weight balances 58a and 58b and the sub weight balances 59a and 59b.
  • is also a constant.
  • the torque Ns becomes a cosine function of the rotation angle ⁇ of the shaft members 50a and 50b, and has only a rotation primary component.
  • the torque Np1 around the Y axis due to the inertial force generated by the swinging motion of the reciprocating member 40 is the shaft member 50a corresponding to the first term. , 50b, the primary rotation component is dominant, but they are eliminated by adjusting lmr and mr in equations (6) and (7) to cancel with the torque around the Y axis due to the centrifugal force of the shaft member. be able to. Therefore, the component that vibrates the surroundings is a higher-order term after the second term on the right side of Equation (10) and Equation (11).
  • the torque Np2 around the Y axis due to the inertial force in the swinging motion around the Y axis is the moment of inertia around the Y axis of the reciprocating member 940.
  • the swinging piece amplitude angle ⁇ max2 in the swinging motion of the reciprocating member 940 is expressed as Formula (17) from Formula (14), and this is substituted into Formula (14) to obtain Formula (18).
  • Formula (17) is 15 degrees (0.263 rad) and 25 degrees (0.436 rad)
  • Expression (18) is substituted into Expression (16) and normalized by dividing by Ip ⁇ ⁇ 2.
  • the oscillation torque Np2 * is further expanded by Fourier series, Expressions (19) and (20) are obtained.
  • the coefficient becomes small so that it can be disregarded after the fourth term on the right side of Expression (19) and Expression (20) the description is omitted.
  • the torque Np2 around the Y axis due to the inertial force generated by the swinging motion of the reciprocating member 940 is:
  • the primary rotation components of the shaft members 950a and 950b corresponding to the first term are dominant, but they are adjusted by adjusting lmr and mr in the equations (6) and (7) to obtain the Y axis by the centrifugal force of the shaft member. It can be erased by canceling with the surrounding torque. Therefore, the component that vibrates the surroundings is a higher-order term after the second term on the right side of Equation (19) and Equation (20).
  • the expression (10) and the second term on the right side of the expression (11) are compared with the second expression on the right side of the expression (20) in the conventional displacement type machine 920. Then, since the coefficient of the positive displacement machine 20 of the embodiment is smaller regardless of the swing piece amplitude angle ⁇ max, the positive displacement machine 20 of the embodiment is compared with the positive displacement volume machine 920 of the conventional example. Thus, the excitation torque for exciting the surroundings becomes small.
  • FIG. 7 and 8 show the rotation angle ⁇ of the shaft members 50a and 50b and the dimensionless swing torque and excitation torque when the swing piece amplitude angle of the positive displacement machine 20 of the embodiment is 15 degrees and 25 degrees.
  • 9 and 10 are diagrams showing the relationship between the rotation angle ⁇ of the shaft members 950a and 950b when the swing piece amplitude angle of the positive displacement type machine 920 is 15 degrees and 25 degrees, and It is explanatory drawing which shows the relationship between the dimensioned swing torque and excitation torque.
  • the broken line in the non-dimensional swing torque in each figure shows the cosine curve of the primary rotation component. Therefore, the dimensionless excitation torque in each figure is the difference between the oscillation torque and the rotation primary component.
  • the positive displacement machine 20 of the embodiment has a smaller excitation torque than the positive displacement machine 920. I understand.
  • the second arm portions 54a and 54b formed as inner circumferential cylindrical surfaces having an axis parallel to the rotation axis of the shaft members 50a and 50b as a central axis,
  • the first arm portions 44a and 44b are supported so that the spherical centers P1a and P1b of the outer peripheral spherical surface portions 45a and 45b attached to the first arm portions 44a and 44b are constrained on the central axis of the second arm portions 54a and 54b.
  • the excitation torque for exciting the surroundings can be reduced as compared with the positive displacement machine 920 of the conventional example.
  • the swing piece amplitude angle (maximum swing angle) is increased, and by reducing the diameter (bore diameter) of the pistons 42a and 42b, the piston Even if the stroke increases and the swing piece amplitude angle (maximum swing angle) increases, the excitation torque can be reduced as compared with the positive displacement machine 920 of the conventional example. Miniaturization and efficiency can be achieved. As a result, a smaller, more efficient and lower vibration positive displacement machine can be obtained.
  • the outer peripheral spherical surface portions 45a and 45b are formed or attached and fixed to the first arm portions 44a and 44b.
  • the outer peripheral spherical surface portion 145a may be rotatably held around the arm axis by the portion 144a.
  • FIG. 11A shows the state of top dead center (rocking angle 0 degree) from the same direction as FIG. 1, and FIG. 11B shows the maximum rocking angle (rocking piece amplitude angle ⁇ max). The state at the time is seen from above in FIG.
  • the portion to which the outer peripheral spherical portion 145a of the first arm portion 144a is attached is formed in a cylindrical shape with the arm axis as the central axis, and the inner peripheral surface of the outer peripheral spherical portion 145a is formed in a cylindrical shape.
  • a roller 146a is interposed between the outer peripheral spherical surface portion 145a and the first arm portion 144a so that the outer peripheral spherical surface portion 145a is rotatable around the arm axis, while a thrust washer 147a is provided on both end surfaces of the outer peripheral spherical surface portion 145a in the arm axis direction.
  • 148a may be attached to restrict movement of the outer peripheral spherical surface portion 145a in the arm axis direction. If it carries out like this, durability can be improved by rolling between the outer peripheral spherical surface part 145a which is a line contact part, and the internal peripheral surface of the 2nd arm part 54a, and a mechanical friction loss can be made small.
  • the outer peripheral spherical surface portions 45a and 45b of the first arm portions 44a and 44b are slidably held by the second arm portions 54a and 54b formed as inner peripheral cylindrical surfaces.
  • the outer peripheral spherical surface 45a of the first arm portion 44a may be supported by the second arm portion 154a via the inner peripheral spherical surface portion 155a.
  • 12A shows the state of the top dead center (rocking angle 0 degree) from the same direction as FIG. 1, and FIG. 12B shows the maximum rocking angle (rocking piece amplitude angle ⁇ max). The state at the time is seen from above in FIG.
  • the outer peripheral cylindrical surface of the inner peripheral spherical surface portion 155a is slidably held in the circumferential direction and the arm axial direction by the inner peripheral cylindrical surface of the second arm portion 154a, and the first arm portion is supported by the inner peripheral spherical surface portion 155a.
  • the outer peripheral spherical surface portion 45a of 44a may be held by a spherical pair. In this way, since the outer peripheral spherical surface portion 45a is held by the inner peripheral spherical surface portion 155a, the force transfer between the first arm portion 44a and the second arm portion 154a can be performed by surface contact, and the durability in the support structure can be improved. Can be improved.
  • FIG. 13A shows the state of top dead center (swing angle 0 degree) from the same direction as FIG. 1, and FIG. 13B shows the maximum swing angle (swing piece amplitude angle ⁇ max).
  • the state at the time is seen from above in FIG.
  • the end surfaces of the inner peripheral spherical surface portion 155a on the first arm portions 44a and 144a side are parallel to a plane orthogonal to the rotation axis of the shaft shaft 50a.
  • the end surface of the inner peripheral spherical surface portion 255a is arranged so that the inner peripheral side around the rotation axis of the shaft member 50a is separated from the first arm portion 144a from the outer peripheral side. It is good also as what forms by the slanting slope with respect to a rotating shaft.
  • FIG. 14A shows the state of top dead center (rocking angle 0 degree) from the same direction as FIG. 1, and FIG.
  • the inner circumferential spherical portion 255a can move in the axial direction with respect to the inner circumferential cylindrical surface of the second arm portion 254a, but the inner circumferential spherical portion 255a cannot be rotated around its central axis. It is attached to the circumferential cylindrical surface. This attachment can be performed, for example, by spline fitting that allows the inner circumferential cylindrical surface and the inner circumferential spherical surface portion 255a to slide in the axial direction.
  • the end surface of the inner peripheral spherical surface portion 255a is formed by a slope, but only the portion of the end surface of the inner peripheral spherical surface portion 255a that abuts and interferes with the first arm portion 44a. It is good also as what forms so that it may leave
  • the end surface of the inner peripheral cylindrical surface of the second arm portion 254a on the first arm portion 144a side is formed by a slope like the inner peripheral spherical surface portion 255a, but the rotation of the shaft 50a It may be formed so as to be parallel to a plane orthogonal to the axis.
  • FIG. 15A shows the state of the top dead center (swing angle 0 degree) from the same direction as FIG. 1, and FIG. 15B shows the maximum swing angle (swing piece amplitude angle ⁇ max). The state at the time is seen from above in FIG.
  • the second arm portion 354a is formed as the outer peripheral cylindrical surface, and the outer peripheral spherical surface portion 355a of the inner peripheral cylindrical surface is slidably held in the arm axis direction of the second arm portion 354a on the second arm portion 354a.
  • the inner spherical surface portion 346a that rotatably holds the spherical surface portion 355a may be attached by an attachment member 345a so as not to move in the arm axis direction of the first arm portion 344a.
  • the ball center P1a (specific point P1a) is movably restrained on an axis parallel to the rotation axis of the shaft member 50a, that is, on the central axis of the second arm portion 354a.
  • the outer periphery of the inner peripheral spherical surface portion 446a in the first arm portion 444a is formed to be a cylindrical surface, and the outer peripheral surface of the inner peripheral spherical surface portion 446a and the mounting member A roller 447a may be interposed between the inner peripheral surface of 445a and the first spherical arm portion 444a may be freely rotatable around the arm axis.
  • 16A shows the state of top dead center (rocking angle 0 degree) viewed from the same direction as FIG. 1, and FIG. 16B shows the maximum rocking angle (oscillation piece amplitude angle). The state at the time of ⁇ max) is viewed from above in FIG.
  • the outer peripheral spherical surface portions 45a and 45b are formed or attached and fixed to the first arm portions 44a and 44b, and the outer peripheral spherical surface portions 45a and 45b are formed by the inner peripheral cylindrical surfaces of the second arm portions 54a and 54b.
  • the outer peripheral spherical surface portion may not be used as illustrated in the seventh modification of FIG.
  • FIG. 17A shows the state of the top dead center (rocking angle 0 degree) from the same direction as FIG. 1, and
  • FIG. 17B shows the maximum rocking angle (rocking piece amplitude angle ⁇ max). The state at the time is seen from above in FIG. FIG.
  • the second arm portion 554a is formed to be an inner peripheral cylindrical surface.
  • the first arm portion 544a is formed or fixed by a substantially barrel-shaped hinge portion 545a having two planes perpendicular to the reciprocating direction of the reciprocating member 40 (the vertical direction in FIG. 1 and the vertical direction in FIG. 17A).
  • the cylindrical annular cylindrical member 548a is slidably disposed on the inner peripheral cylindrical surface of the second arm portion 554a, and slidably contacts two planes of the hinge portion 545a and is integrated with the cylindrical member 548a. And a pair of sliding members 546a.
  • the pair of sliding members 546a can swing around the pin 547a penetrating the central axis with respect to the hinge portion 545a, but the cylindrical member 548a cannot move in the central axis direction.
  • the both ends are supported by a pair of retaining rings 549a.
  • the hinge portion 545a formed or attached and fixed to the first arm portion 544a can swing with respect to the cylindrical member 548a using the pin 547a as a swing shaft, and the cylindrical member Since 485a is slidable around the arm axis with respect to the inner peripheral cylindrical surface of the second arm portion 554a, the hinge portion 545a has a specific point P1a at the center (the center of the pin 547a) at the rotation of the shaft member 50a. Although it is constrained to be movable on an axis parallel to the axis (on the central axis of the second arm portion 554a), it can freely rotate and swing with respect to the second arm portion 554a. Similarly to 20, the reciprocating motion accompanying the reciprocating motion of the reciprocating member 40 can perform the revolving motion while being held by the second arm portion 554a. Therefore, the seventh modified example can achieve the same effects as the positive displacement machine 20 of the embodiment.
  • the support structure of the first arm portion by the second arm portion is constrained so that the specific point specified in advance of the first arm portion can move on an axis parallel to the rotation axis of the shaft member.
  • Any support structure may be used as long as it is suitable.
  • the shaft members 50a and 50b are reciprocatingly driven by the pair of electric motors 70a and 70b attached to the pair of shaft members 50a and 50b.
  • 40 is a machine (compressor) that causes reciprocating motion and swinging motion to cause volume changes of the working chambers 62a and 62b.
  • the reciprocating member 40 is supplied by supplying pressure fluid to the working chambers 62a and 62b. It is good also as a machine (engine) which produces a rotational drive force in a pair of shaft members 50a and 50b by producing a reciprocating motion and a rocking motion.
  • the pair of pistons 42a and 42b and the pair of working chambers 62a and 62b are provided. However, it is assumed that a single piston and a single working chamber are provided. There is no problem.
  • the present invention can be used in the manufacturing industry of positive displacement machines.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Compressor (AREA)

Abstract

Second arm sections (54a, 54b) formed as inner peripheral cylindrical surfaces that have, as the central axis, an axis line that is parallel to the axis of rotation of shaft member (50a, 50b), support first arm sections (44a, 44b) such that the spherical centers (P1a, P1b) of outer peripheral spherical sections (45a, 45b) that are attached to the first arm sections (44a, 44b) are bound to the central axis line of the second arm sections (54a, 54b).

Description

容積型機械Positive displacement machine
   本発明は、容積型機械に関し、詳しくは、ピストンが往復運動すると共に揺動運動する低振動型の容積型機械に関する。 The present invention relates to a positive displacement machine, and more particularly to a low vibration positive displacement machine in which a piston reciprocates and swings.
   従来、この種の容積型機械としては、案内円筒部材に案内される2つのピストンとこの2つのピストンの中央から案内円筒部材の中心軸に対して直交する方向に対称に配置された一対の第1アーム部とを有する往復動部材と、案内円筒部材の中心軸に対して直交するように対称に配置された一対のシャフト部材と、各シャフト部材の回転軸から偏位した位置でシャフト部材に取り付けられて各第1アーム部を保持する一対の第2アーム部と、2つのピストンの往復運動により容積変化を生じる一対の作動室と、を備え、往復動部材が揺動運動を伴って往復運動するものが提案されている(例えば、特許文献1参照)。図19は、従来例の容積型機械920の構成の概略を示す構成図であり、図20は、揺動運動している往復動部材940とシャフト部950a,950bの一部を図19中上方から見た説明図であり、図21は、揺動運動している往復動部材940とシャフト部950a,950bの一部を図19中右側から見た説明図である。なお、従来例の容積型機械920は、後述する本発明の一実施例としての容積型機械20との比較のため、第2アーム部954a,954bによる第1アーム部944a,944bの支持構造を除いて実施例の容積型機械20と同一の構成とした。 Conventionally, this type of positive displacement machine includes two pistons guided by a guide cylindrical member and a pair of second pistons arranged symmetrically from the center of the two pistons in a direction perpendicular to the central axis of the guide cylindrical member. A reciprocating member having one arm portion, a pair of shaft members disposed symmetrically so as to be orthogonal to the central axis of the guide cylindrical member, and the shaft member at a position displaced from the rotation axis of each shaft member. A pair of second arm portions that are attached to hold each first arm portion and a pair of working chambers that change in volume by the reciprocating motion of the two pistons, and the reciprocating member reciprocates with a swinging motion. A thing which moves is proposed (for example, refer to patent documents 1). FIG. 19 is a configuration diagram showing an outline of the configuration of a conventional positive displacement machine 920. FIG. 20 shows a part of the reciprocating member 940 and the shaft portions 950a and 950b that are swinging upward in FIG. FIG. 21 is an explanatory view of a part of the reciprocating member 940 and the shaft portions 950a and 950b that are swinging as viewed from the right side in FIG. In addition, the positive displacement type machine 920 has a support structure for the first arm portions 944a and 944b by the second arm portions 954a and 954b for comparison with the positive displacement type machine 20 as an embodiment of the present invention described later. Except for this, the configuration was the same as that of the positive displacement machine 20 of the example.
   従来例の容積型機械920は、図19に示すように、図中上下方向(Y軸方向)の中心軸を有する円筒形状の案内円筒部材930と、この案内円筒部材930に一対のピストン942a,942bが案内されて図中上下方向(Y軸方向)に往復運動すると共に案内円筒部材930の中心軸回り(Y軸周り)に揺動運動する往復動部材940と、案内円筒部材930の中央でその中心軸と直交する直線上(Z軸上)に回転軸が配置された一対のシャフト部材950a,950bと、ピストン942a,942bの往復運動により容積変化する一対の作動室962a,962bと、作動室962a,962bに吐出弁967a,967bを介して接続された一対の高圧室966a,966bと、シャフト部材950a,950bにそれぞれ取り付けられた一対の電動機970a,970bと、を備える。往復動部材940には、その中央に、案内円筒部材930の中心軸に直交するように、且つ、この中心軸に対して対称となるように一対の第1アーム部材944a,944bが取り付けられている。シャフト部材950a,950bの一端部(往復動部材940側の端部)には、その回転軸から偏位した位置に第1アーム部944a,944bを支持する一対の第2アーム部954a,954bが取り付けられていると共に、遠心力の方向が逆側の方向となるように一対の主ウエイトバランス958a,958bが取り付けられている。また、シャフト部材950a,950bの他端部(往復動部材940側とは反対側の端部)には、遠心力の方向が主ウエイトバランス958a,958bと反対側の方向となるように一対の副ウエイトバランス959a,959bが取り付けられている。 As shown in FIG. 19, the conventional positive displacement machine 920 includes a cylindrical guide cylinder member 930 having a central axis in the vertical direction (Y-axis direction) in the figure, and a pair of pistons 942a, 942b is guided to reciprocate in the vertical direction (Y-axis direction) in the figure, and to reciprocate around the central axis of the guide cylindrical member 930 (around the Y-axis), and at the center of the guide cylindrical member 930 A pair of shaft members 950a and 950b having rotational axes arranged on a straight line (on the Z axis) orthogonal to the central axis, a pair of working chambers 962a and 962b whose volume is changed by the reciprocating motion of the pistons 942a and 942b, and operation A pair of high- pressure chambers 966a and 966b connected to the chambers 962a and 962b via discharge valves 967a and 967b, and shaft members 950a and 950b, respectively. Tagged pair of electric motors 970a, comprises a 970b, a. A pair of first arm members 944 a and 944 b are attached to the center of the reciprocating member 940 so as to be orthogonal to the central axis of the guide cylindrical member 930 and to be symmetric with respect to the central axis. Yes. A pair of second arm portions 954a and 954b that support the first arm portions 944a and 944b at positions displaced from the rotation shafts are provided at one end portions (end portions on the reciprocating member 940 side) of the shaft members 950a and 950b. A pair of main weight balances 958a and 958b are attached so that the direction of centrifugal force is the opposite direction. In addition, a pair of shaft members 950a and 950b is connected to the other end (the end opposite to the reciprocating member 940) so that the centrifugal force is in the direction opposite to the main weight balance 958a and 958b. Sub-weight balances 959a and 959b are attached.
   第1アーム部材944a,944bには、図20に示すように、アーム軸方向に移動可能に外周球面部945a,945bが取り付けられている。第2アーム部954a,954bは、内周球面の略円筒形状に形成されており、内周球面で第1アーム944a,944bの外周球面部945a,945bを球面対偶で保持している。こうした支持構成により、シャフト部材950a,950bを相対的に逆回転となるように回転駆動すると、第2アーム部954a,954bも相対的に逆回転するから、これに伴って第1アーム部944a,944bの外周球面部945a,945bはアーム部との軸方向の相対運動を伴いながら、それ自身は正確な円運動を行ない、往復動部材940に揺動運動と往復運動とを行なわせる。 As shown in FIG. 20, outer peripheral spherical surface portions 945a and 945b are attached to the first arm members 944a and 944b so as to be movable in the arm axis direction. The second arm portions 954a and 954b are formed in a substantially cylindrical shape with an inner peripheral spherical surface, and the outer peripheral spherical surface portions 945a and 945b of the first arms 944a and 944b are held by spherical pairs even with the inner peripheral spherical surface. With such a support structure, when the shaft members 950a and 950b are rotationally driven so as to be relatively reversely rotated, the second arm portions 954a and 954b are also relatively reversely rotated. Accordingly, the first arm portions 944a and 944a are The outer peripheral spherical surface portions 945a and 945b of the 944b perform an accurate circular motion with the relative movement of the arm portion in the axial direction, and cause the reciprocating member 940 to perform a swinging motion and a reciprocating motion.
   ピストン942a,942bには、作動室962a,962bに作動流体を供給する流体流路963a,963bが形成されており、流体流路963a,963bには、ピストン942a,942bの間の作動流体空間960の圧力よりも作動室962a,962bの圧力が低くなったときに開弁する吸入弁964a,964bが取り付けられている。また、作動室962a,962bと高圧室966a,966bとの間の隔壁965a,965bには、作動室962a,962bの圧力が高圧室966a,966bの圧力より高くなったときに開弁する吐出弁967a,967bが取り付けられており、高圧室966a,966bには、流出管968a,968bが取り付けられている。さらに、ケース922には、作動流体空間960に連通する図示しない流入管が取り付けられている。したがって、作動流体は、流入管から作動流体空間960に流入し、ピストン942a,942bの往復運動により流体流路963a,963bおよび吸入弁964a,964bを介して作動室962a,962bに供給され、吐出弁967a,967bを介して高圧室966a,966bに流入し、流出管968a,968bから流出する。 The fluid passages 963a and 963b for supplying the working fluid to the working chambers 962a and 962b are formed in the pistons 942a and 942b, and the working fluid space 960 between the pistons 942a and 942b is formed in the fluid passages 963a and 963b. Suction valves 964a and 964b are attached which open when the pressure in the working chambers 962a and 962b becomes lower than the pressure in the chamber. Discharge valves that open when the pressure in the working chambers 962a and 962b is higher than the pressure in the high- pressure chambers 966a and 966b are provided in the partition walls 965a and 965b between the working chambers 962a and 962b and the high- pressure chambers 966a and 966b. 967a and 967b are attached, and outflow pipes 968a and 968b are attached to the high- pressure chambers 966a and 966b. Furthermore, an inflow pipe (not shown) that communicates with the working fluid space 960 is attached to the case 922. Therefore, the working fluid flows into the working fluid space 960 from the inflow pipe, and is supplied to the working chambers 962a and 962b via the fluid flow paths 963a and 963b and the suction valves 964a and 964b by the reciprocating motion of the pistons 942a and 942b. It flows into the high pressure chambers 966a and 966b through the valves 967a and 967b, and flows out from the outflow pipes 968a and 968b.
   この従来例の容積型機械920では、往復動部材940の往復運動に伴って、その中心軸方向(Y軸方向)の慣性力Fpyを発生する。この慣性力Fpyは、シャフト部材950a,95bに取り付けられた第2アーム部954a,954bと主バランスウェイト958a,958bと副ウエイトバランス959a,959bとによる全体の遠心力FsのY軸方向成分Fsyにより完全に消去することができる。シャフト部材950a,950bが逆転すると、その遠心力の往復運動方向と直角方向(X軸方向)の成分Fsxは符号が逆になるので、それらは互いに逆転するシャフト部材950a,950bの間で相殺されて完全に消去される。また、従来例の容積型機械920では、上述したように、往復動部材940の中心軸に関して、各構成部材の運動と各構成部材間に作用する力に対称性を持たせているから、各可動部材の運動によるシャフト部材950a,950bの回転軸方向(Z軸方向)の慣性力や、慣性力によるそのZ軸周りのトルク、慣性力によるX軸周りのトルクについては発生しない。このため、従来例の容積型機械920では、直角座標系の3軸(X軸、Y軸、Z軸)方向の慣性力と慣性力によるその3軸周りのトルクの中で、Y軸周りのトルク以外の加振力の発生をゼロにすることができる。一方、Y軸周りのトルクについては、主バランスウェイト958a,958bの大きさや副ウエイトバランス959a,959bの大きさを調整することにより、その大半を消去することができる。この結果、従来例の容積型機械920は、周囲への加振が極めて小さいものとなっている。 In the conventional positive displacement machine 920, the inertial force Fpy in the central axis direction (Y-axis direction) is generated as the reciprocating member 940 reciprocates. This inertial force Fpy is caused by the Y-axis direction component Fsy of the total centrifugal force Fs by the second arm portions 954a and 954b attached to the shaft members 950a and 95b, the main balance weights 958a and 958b, and the auxiliary weight balances 959a and 959b. It can be completely erased. When the shaft members 950a and 950b are reversed, the components Fsx in the direction perpendicular to the reciprocating direction of the centrifugal force (X-axis direction) are reversed in sign, so that they are canceled out between the shaft members 950a and 950b reversed. Will be completely erased. Moreover, in the positive displacement type machine 920, as described above, the movement of each component member and the force acting between the component members are symmetrical with respect to the central axis of the reciprocating member 940. The inertia force in the rotation axis direction (Z-axis direction) of the shaft members 950a and 950b due to the movement of the movable member, the torque around the Z axis due to the inertia force, and the torque around the X axis due to the inertia force are not generated. Therefore, in the positive displacement type machine 920, the inertial force in the three axes (X axis, Y axis, Z axis) direction of the rectangular coordinate system and the torque around the three axes due to the inertial force, Generation of excitation force other than torque can be made zero. On the other hand, most of the torque around the Y axis can be eliminated by adjusting the size of the main balance weights 958a and 958b and the size of the auxiliary weight balances 959a and 959b. As a result, the positive displacement type machine 920 has very little vibration to the surroundings.
特開平9-92275号公報(図7~図11)Japanese Patent Laid-Open No. 9-92275 (FIGS. 7 to 11)
   従来例の容積型機械920では、第1アーム部944a,944bのアーム長を短くすることにより、第1アーム部944a,944bの付け根部分の曲げモーメントを小さくしたり、主ウエイトバランス958a,958bの遠心力のX軸方向成分による偶力を小さくして副ウエイトバランス959a,959bの小型化を図ったりすることができるが、その反面、往復動部材940の最大揺動角(揺動片振幅角)が大きくなる。また、従来例の容積型機械920では、ピストン942a,942bの径(シリンダのボア径)を小さくすることにより、軸受け荷重を小さくして機械摩擦損失を小さくしたり、間隙容積(作動室962a,962bの上死点での容積)を小さくして残留して再膨張する作動流体量を少なくすることにより体積効率を高くしたりすることができるが、その反面、往復動部材940の往復運動におけるストロークが長くなるため、往復動部材940の最大揺動角(揺動片振幅角)が大きくなる。最大揺動角(揺動片振幅角)が大きくなると、完全に消去することが困難なY軸周りのトルクが大きくなり、周囲を加振してしまう。 In the conventional positive displacement type machine 920, by shortening the arm length of the first arm portions 944a and 944b, the bending moment of the base portion of the first arm portions 944a and 944b can be reduced, or the main weight balances 958a and 958b can be reduced. Although the couple of centrifugal force due to the X-axis direction component can be reduced to reduce the size of the auxiliary weight balances 959a and 959b, on the other hand, the maximum swing angle (oscillation piece amplitude angle) of the reciprocating member 940 can be achieved. ) Becomes larger. In the positive displacement type machine 920, the diameter of the pistons 942a and 942b (the bore diameter of the cylinder) is reduced to reduce the bearing load and reduce the mechanical friction loss, or the gap volume (the working chamber 962a, The volume efficiency can be increased by reducing the volume of the working fluid that remains and re-expands by reducing the volume at the top dead center of 962b, but on the other hand, in the reciprocating motion of the reciprocating member 940, Since the stroke becomes longer, the maximum swing angle (swing piece amplitude angle) of the reciprocating member 940 is increased. As the maximum swing angle (swing piece amplitude angle) increases, the torque around the Y axis, which is difficult to completely erase, increases and the surroundings are vibrated.
   本発明の容積型機械は、より低振動な容積型機械を提案することを主目的とする。 The main purpose of the positive displacement machine of the present invention is to propose a lower displacement vibration displacement machine.
   本発明の容積型機械は、上述の主目的を達成するために以下の手段を採った。 容積 The positive displacement machine of the present invention employs the following means in order to achieve the main object described above.
   本発明の容積型機械は、
   円筒状の案内円筒部材と、
   前記案内円筒部材の内周面に案内されて該案内円筒部材の中心軸方向に往復運動すると共に該中心軸回りに搖動運動するピストン部と前記案内円筒部材の中心軸に直交すると共に該中心軸に対して対称となるよう前記ピストン部に取り付けられた一対の第1アーム部とを有する往復動部材と、
   前記案内円筒部材の中心軸に直交すると共に前記中心軸に対して対称となるよう配置された一対のシャフト部材と、
   前記一対のシャフト部材の回転軸から偏位した位置で前記一対の第1アーム部を各々支持するよう該一対のシャフト部材に取り付けられた一対の第2アーム部と、
   前記ピストン部の往復運動に伴って容積変化が生じる作動室と、
   を備える容積型機械において、
   前記第2アーム部は、前記第1アーム部において予め定められた特定点が前記シャフト部材の回転軸に対して平行な軸線上に移動可能に拘束されるよう支持する、
   ことを特徴とする。
The positive displacement machine of the present invention is
A cylindrical guide cylindrical member;
A piston portion that is guided by the inner peripheral surface of the guide cylindrical member and reciprocates in the direction of the central axis of the guide cylindrical member and swings around the central axis, and is orthogonal to the central axis of the guide cylindrical member and the central axis A reciprocating member having a pair of first arm parts attached to the piston part so as to be symmetrical with respect to
A pair of shaft members disposed so as to be orthogonal to the central axis of the guide cylindrical member and symmetrical with respect to the central axis;
A pair of second arm portions attached to the pair of shaft members so as to support the pair of first arm portions at positions displaced from the rotation axes of the pair of shaft members,
A working chamber in which a volume change occurs as the piston part reciprocates;
A positive displacement machine comprising:
The second arm portion supports the specific point predetermined in the first arm portion so as to be movably restrained on an axis parallel to the rotation axis of the shaft member.
It is characterized by that.
   この本発明の容積型機械では、第1アーム部において予め定められた特定点がシャフト部材の回転軸に対して平行な軸線上に移動可能に拘束されるように第1アーム部を第2アーム部で支持することにより、より低振動なものとすることができる。ここで、「軸線上に移動可能に拘束される」とは、軸線上の移動のみが可能である意である。この本発明の容積型機械は、作動室に圧力流体を供給することにより往復動部材に往復運動及び揺動運動を生じさせて一対のシャフト部材に回転駆動力を生じさせる機械(エンジンなど)とすることもできるし、一対のシャフト部材に回転駆動力を供給することにより往復動部材に往復運動及び揺動運動を生じさせて作動室の容積変化を生じさせる機械(圧縮機など)とすることもできる。これらの場合、ピストン部は、一対の第1アーム部を挟んで対称に2つのピストンを有し、作動室は、2つのピストンの各々に対応するよう2つ形成されている、ものとすることもできる。 In the positive displacement machine according to the present invention, the first arm portion is connected to the second arm so that a predetermined specific point in the first arm portion is movably restrained on an axis parallel to the rotation axis of the shaft member. By supporting at the portion, the vibration can be further reduced. Here, “restrained to be movable on the axis” means that only movement on the axis is possible. The positive displacement machine of the present invention includes a machine (such as an engine) that causes a reciprocating motion and a rocking motion to be generated in a reciprocating member by supplying a pressure fluid to a working chamber to generate a rotational driving force on a pair of shaft members. Or a machine (such as a compressor) that causes a reciprocating motion and a swinging motion of the reciprocating member by supplying a rotational driving force to the pair of shaft members, thereby causing a change in the volume of the working chamber. You can also. In these cases, the piston part has two pistons symmetrically across the pair of first arm parts, and two working chambers are formed so as to correspond to each of the two pistons. You can also.
   こうした本発明の容積型機械において、前記第1アーム部は、球心を前記特定点とする外周球面部を有し、前記第2アーム部は、前記シャフト部材の回転軸に対して平行な軸線上に配置され前記外周球面部を摺動自在に保持する内周円筒部を有する、ものとすることもできる。 In such a positive displacement machine of the present invention, the first arm portion has an outer peripheral spherical surface portion having a spherical center as the specific point, and the second arm portion is an axis parallel to the rotation axis of the shaft member. It is also possible to have an inner peripheral cylindrical portion that is arranged on a line and that slidably holds the outer peripheral spherical portion.
   また、本発明の容積型機械において、前記第1アーム部は、球心を前記特定点とする外周球面部を有し、前記第2アーム部は、前記外周球面部を保持すると共に前記シャフト部材の回転軸に対して平行な軸線上に移動する内周球面部を有する、ものとすることもできる。こうすれば、外周球面部を内周球面部で保持するから、第1アーム部と第2アーム部との力の授受を面接触によって行なうことができる。この態様の本発明の容積型機械において、前記内周球面部は、外周が円筒状に形成されており、前記第2アーム部は、前記内周球面部を前記シャフト部材の回転軸に対して平行な軸線上に移動可能に保持する内周円筒部を有する、ものとすることもできる。こうすれば、往復動部材の往復運動と揺動運動とに伴う外周球面部のシャフト部材の回転軸に対して平行な軸線上の移動をスムーズに行なわせることができ、機械摩擦損失を小さくすることができる。 In the positive displacement machine of the present invention, the first arm portion has an outer peripheral spherical surface portion having a spherical center as the specific point, and the second arm portion holds the outer peripheral spherical surface portion and the shaft member. It is also possible to have an inner circumferential spherical surface portion that moves on an axis parallel to the rotation axis. In this way, since the outer peripheral spherical surface portion is held by the inner peripheral spherical surface portion, the force exchange between the first arm portion and the second arm portion can be performed by surface contact. In the positive displacement machine according to this aspect of the present invention, the inner peripheral spherical portion is formed in a cylindrical shape on the outer periphery, and the second arm portion is configured such that the inner peripheral spherical portion is positioned with respect to the rotation axis of the shaft member. It is also possible to have an inner circumferential cylindrical portion that is held so as to be movable on parallel axes. In this way, the movement of the outer peripheral spherical surface portion along the axis parallel to the rotation axis of the shaft member accompanying the reciprocating motion and the swinging motion of the reciprocating member can be smoothly performed, and the mechanical friction loss is reduced. be able to.
   第2アーム部の内周円筒部で内周球面部を保持する態様の本発明の容積型機械において、前記内周球面部は、前記シャフト部材の回転軸回りの内周側が外周側より前記第1アーム部から離れるように形成されており、前記内周円筒部は、前記内周球面部を前記シャフト部材の回転軸に対して平行な軸回りに回転不能に保持する、ものとすることもできる。こうすれば、往復動部材が最大揺動角(揺動片振幅角)に至ったときに第1アーム部と第2アーム部の内周球面部のシャフトの回転軸回りの内周側とが当接して干渉するのを抑制することができ、往復動部材の最大揺動角(揺動片振幅)をより大きくすることができる。この場合、内周球面部の端面をシャフト部材の回転軸に対して斜面となるように形成してもよい。 In the positive displacement machine of the present invention in which the inner peripheral spherical portion is held by the inner peripheral cylindrical portion of the second arm portion, the inner peripheral spherical portion is configured such that the inner peripheral side around the rotation axis of the shaft member is greater than the outer peripheral side. It is formed so that it may leave | separate from 1 arm part, and the said inner peripheral cylindrical part shall hold | maintain the said inner peripheral spherical surface part non-rotatably around the axis | shaft parallel to the rotating shaft of the said shaft member. it can. In this way, when the reciprocating member reaches the maximum swing angle (swing piece amplitude angle), the first arm portion and the inner peripheral side of the inner peripheral spherical surface of the second arm portion around the rotation axis of the shaft are The contact and interference can be suppressed, and the maximum swing angle (swing piece amplitude) of the reciprocating member can be further increased. In this case, you may form so that the end surface of an inner peripheral spherical surface part may become a slope with respect to the rotating shaft of a shaft member.
   第1アーム部が外周球面部を有する態様の本発明の容積型機械において、前記外周球面部は、前記第1アーム部の中心軸回りに回転自在に且つ該中心軸方向には移動不能に支持されている、ものとすることもできる。こうすれば、往復動部材の往復運動と揺動運動とに伴う外周球面部の第1アーム部の中心軸回りの回転をスムーズに行なわせることができ、機械摩擦損失を小さくすることができる。 In the positive displacement machine of the present invention in which the first arm portion has an outer peripheral spherical portion, the outer peripheral spherical portion is supported so as to be rotatable about the central axis of the first arm portion and immovable in the central axis direction. It can also be. In this way, the rotation of the outer peripheral spherical surface portion around the central axis of the reciprocating member and the swinging motion of the reciprocating member can be performed smoothly, and the mechanical friction loss can be reduced.
   また、本発明の容積型機械において、前記第1アーム部は、球心を前記特定点とする内周球面部を有し、前記第2アーム部は、前記内周球面部に保持され、前記シャフト部材の回転軸に対して平行な軸線上に移動可能な外周球面部を有する、ものとすることもできる。この場合、前記内周球面部は、前記第1アーム部の中心軸回りに回転自在に且つ該中心軸方向には移動不能に支持されている、ものとすることもできる。こうすれば、往復動部材の往復運動と揺動運動とに伴う内周球面部の第1アーム部の中心軸回りの回転をスムーズに行なわせることができ、機械摩擦損失を小さくすることができる。 Further, in the positive displacement machine of the present invention, the first arm portion has an inner peripheral spherical surface portion having a spherical center as the specific point, and the second arm portion is held by the inner peripheral spherical surface portion, An outer peripheral spherical surface portion that can move on an axis parallel to the rotation axis of the shaft member may be provided. In this case, the inner circumferential spherical surface portion may be supported so as to be rotatable around the central axis of the first arm portion and immovable in the central axis direction. In this case, the rotation of the inner peripheral spherical surface portion around the center axis of the first spherical surface portion accompanying the reciprocating motion and the swinging motion of the reciprocating member can be smoothly performed, and the mechanical friction loss can be reduced. .
   さらに、本発明の容積型機械において、前記第2アーム部は、内周円筒面として形成されており、前記第1アーム部は、往復動部材の往復運動方向に対して垂直な2平面を有する略樽型のヒンジ部と、前記ヒンジ部の2平面に摺動可能に接触すると共に前記第2アーム部の内周円筒面に摺動可能に接触し且つ前記ヒンジ部の中心軸に配設されたピンにより前記ヒンジ部と一体とされる摺動部と、を有するものとすることもできる。 Further, in the positive displacement machine according to the present invention, the second arm portion is formed as an inner peripheral cylindrical surface, and the first arm portion has two planes perpendicular to the reciprocating direction of the reciprocating member. A substantially barrel-shaped hinge portion and slidably contact with the two planes of the hinge portion, and slidably contact with the inner peripheral cylindrical surface of the second arm portion, and disposed on the central axis of the hinge portion. And a sliding portion integrated with the hinge portion by a pin.
本発明の一実施例としての容積型機械20の構成の概略を示す構成図である。It is a block diagram which shows the outline of a structure of the positive displacement machine 20 as one Example of this invention. 揺動運動を伴って往復運動する往復動部材40の状態を示す説明図である。It is explanatory drawing which shows the state of the reciprocating member 40 which reciprocates with a rocking | fluctuating motion. 揺動運動を伴って往復運動する往復動部材40を図1中上方から見た説明図である。It is explanatory drawing which looked at the reciprocating member 40 which reciprocates with rocking | fluctuation movement from the upper direction in FIG. 揺動運動を伴って往復運動する往復動部材40の第1アーム部44aおよび第2アーム部54aを拡大して説明する説明図である。It is explanatory drawing which expands and demonstrates the 1st arm part 44a and the 2nd arm part 54a of the reciprocating member 40 which reciprocates with rocking | fluctuation motion. 揺動運動を伴って往復運動する往復動部材40とシャフト部50a,50bの一部を図1中上方から見た説明図である。It is explanatory drawing which looked at a part of reciprocating member 40 and shaft parts 50a and 50b which reciprocate with a rocking | fluctuating movement from the upper direction in FIG. 揺動運動している往復動部材40とシャフト部50a,50bの一部を図1中右側から見た説明図である。It is explanatory drawing which looked at a part of reciprocating member 40 and shaft parts 50a, 50b which are rocking | fluctuated from the right side in FIG. 実施例の容積型機械20の揺動片振幅角が15度のときにおけるシャフト部材50a,50bの回転角θと無次元化した揺動トルクおよび加振トルクとの関係を示す説明図である。It is explanatory drawing which shows the relationship between the rotation angle (theta) of the shaft members 50a and 50b, the dimensionless swing torque, and the excitation torque when the swing piece amplitude angle of the positive displacement machine 20 is 15 degrees. 実施例の容積型機械20の揺動片振幅角が25度のときにおけるシャフト部材50a,50bの回転角θと無次元化した揺動トルクおよび加振トルクとの関係を示す説明図である。It is explanatory drawing which shows the relationship between the rotation angle (theta) of the shaft members 50a and 50b, the dimensionless swing torque, and excitation torque when the swing piece amplitude angle of the positive displacement machine 20 of an Example is 25 degree | times. 従来例の容積型機械920の揺動片振幅角が15度のときにおけるシャフト部材950a,950bの回転角θと無次元化した揺動トルクおよび加振トルクとの関係を示す説明図である。It is explanatory drawing which shows the relationship between rotation angle (theta) of shaft members 950a and 950b, and non-dimensionalized swing torque and excitation torque when the swing piece amplitude angle of the positive displacement type machine 920 is 15 degrees. 従来例の容積型機械920の揺動片振幅角が25度のときにおけるシャフト部材950a,950bの回転角θと無次元化した揺動トルクおよび加振トルクとの関係を示す説明図である。It is explanatory drawing which shows the relationship between rotation angle (theta) of shaft members 950a and 950b, and non-dimensionalized swing torque and excitation torque when the swing piece amplitude angle of the positive displacement type machine 920 is 25 degrees. 第1変形例の容積型機械における第2アーム部54aによる第1アーム部144aの支持構造を拡大して示す説明図である。It is explanatory drawing which expands and shows the support structure of the 1st arm part 144a by the 2nd arm part 54a in the positive displacement type machine of a 1st modification. 第2変形例の容積型機械における第2アーム部154aによる第1アーム部44aの支持構造を拡大して示す説明図である。It is explanatory drawing which expands and shows the support structure of the 1st arm part 44a by the 2nd arm part 154a in the positive displacement type machine of a 2nd modification. 第3変形例の容積型機械における第2アーム部154aによる第1アーム部144aの支持構造を拡大して示す説明図である。It is explanatory drawing which expands and shows the support structure of the 1st arm part 144a by the 2nd arm part 154a in the positive displacement machine of a 3rd modification. 第4変形例の容積型機械における第2アーム部254aによる第1アーム部144aの支持構造を拡大して示す説明図である。It is explanatory drawing which expands and shows the support structure of the 1st arm part 144a by the 2nd arm part 254a in the positive displacement type machine of a 4th modification. 第5変形例の容積型機械における第2アーム部354aによる第1アーム部344aの支持構造を拡大して示す説明図である。It is explanatory drawing which expands and shows the support structure of the 1st arm part 344a by the 2nd arm part 354a in the positive displacement machine of a 5th modification. 第6変形例の容積型機械における第2アーム部354aによる第1アーム部444aの支持構造を拡大して示す説明図である。It is explanatory drawing which expands and shows the support structure of the 1st arm part 444a by the 2nd arm part 354a in the positive displacement machine of a 6th modification. 第7変形例の容積型機械における第2アーム部554aによる第1アーム部544aの支持構造を拡大して示す説明図である。It is explanatory drawing which expands and shows the support structure of the 1st arm part 544a by the 2nd arm part 554a in the positive displacement type machine of a 7th modification. 図7のA-A断面を示す断面図である。FIG. 8 is a cross-sectional view showing the AA cross section of FIG. 7. 従来例の容積型機械920の構成の概略を示す構成図である。It is a block diagram which shows the outline of a structure of the positive displacement machine 920 of a prior art example. 第2アーム部954a,954bによる第1アーム部材944a,944bの支持の様子を示す説明図である。It is explanatory drawing which shows the mode of the support of 1st arm member 944a, 944b by 2nd arm part 954a, 954b. 揺動運動している往復動部材940とシャフト部950a,950bの一部を図19中右側から見た説明図である。It is explanatory drawing which looked at a part of reciprocating member 940 and shaft part 950a, 950b which are rocking | fluctuated from the right side in FIG.
   次に、本発明を実施するための形態を実施例を用いて説明する。 Next, modes for carrying out the present invention will be described using examples.
   図1は、本発明の一実施例としての容積型機械20の構成の概略を示す構成図である。実施例の容積型機械20は、作動流体である気体を昇圧する圧縮機として構成されており、図示するように、図中上下方向(Y軸方向)の中心軸を有する円筒形状の案内円筒部材30と、この案内円筒部材30に一対のピストン42a,42bが案内されて図中上下方向(Y軸方向)に往復運動すると共に案内円筒部材30の中心軸回り(Y軸周り)に揺動運動する往復動部材40と、案内円筒部材30の中央でその中心軸と直交する直線(Z軸)を回転軸とするよう配置された一対のシャフト部材50a,50bと、ピストン42a,42bの往復運動により容積変化する一対の作動室62a,62bと、作動室62a,62bに隔壁65a,65bを介して隣接する一対の高圧室66a、66bと、一対のシャフト部材50a,50bにそれぞれ取り付けられた一対の電動機70a,70bと、これらを収納するケース22と、を備える。 FIG. 1 is a configuration diagram showing an outline of the configuration of a positive displacement machine 20 as an embodiment of the present invention. The positive displacement machine 20 of the embodiment is configured as a compressor that pressurizes a gas that is a working fluid, and as illustrated, a cylindrical guide cylindrical member having a central axis in the vertical direction (Y-axis direction) in the drawing. 30 and a pair of pistons 42a, 42b are guided by the guide cylindrical member 30 and reciprocate in the vertical direction (Y-axis direction) in the figure, and swing around the central axis of the guide cylindrical member 30 (around the Y-axis). Reciprocating motion of the reciprocating member 40, a pair of shaft members 50a, 50b arranged at the center of the guide cylindrical member 30 and having a straight line (Z-axis) orthogonal to the central axis as a rotation axis, and pistons 42a, 42b. A pair of working chambers 62a and 62b whose volume changes due to the above, a pair of high pressure chambers 66a and 66b adjacent to the working chambers 62a and 62b via partition walls 65a and 65b, and a pair of shaft members 50a and 50b. A pair of electric motor 70a which Re is attached respectively, comprises a 70b, a case 22 for housing them, a.
   往復動部材40には、その中央に、案内円筒部材30の中心軸(Y軸)に直交するように、且つ、この中心軸に対して対称となるように一対の第1アーム部材44a,44bが取り付けられている。第1アーム部材44a,44bの端部には、アーム軸線上に球心P1a,P1bを有する外周球面部45a,45bが形成または取り付け固定されている。 The reciprocating member 40 has a pair of first arm members 44a and 44b at the center thereof so as to be orthogonal to the central axis (Y axis) of the guide cylindrical member 30 and to be symmetric with respect to the central axis. Is attached. Outer spherical surfaces 45a and 45b having spherical centers P1a and P1b on the arm axis are formed or attached to the ends of the first arm members 44a and 44b.
   ピストン42a,42bには、作動室62a,62bに作動流体を供給する流体流路63a,63bが形成されており、流体流路63a,63bには、ピストン42a,42bの間の作動流体空間60の圧力よりも作動室62a,62bの圧力が低くなったときに開弁する吸入弁64a,64bが取り付けられている。また、作動室62a,62bと高圧室66a,66bとの間の隔壁65a,65bには、作動室62a,62bの圧力が高圧室66a,66bの圧力よりも高くなったときに開弁する吐出弁67a,67bが取り付けられており、高圧室66a,66bには、流出管68a,68bが取り付けられている。さらに、ケース22には、作動流体空間60に連通する図示しない流入管が取り付けられている。したがって、作動流体は、流入管から作動流体空間60に流入し、ピストン42a,42bの往復運動により流体流路63a,63bおよび吸入弁64a,64bを介して作動室62a,62bに供給され、吐出弁67a,67bを介して高圧室66a,66bに流入し、流出管68a,68bから流出する。 The fluid passages 63a and 63b for supplying the working fluid to the working chambers 62a and 62b are formed in the pistons 42a and 42b. The working fluid space 60 between the pistons 42a and 42b is formed in the fluid passages 63a and 63b. Suction valves 64a and 64b are attached which open when the pressure in the working chambers 62a and 62b becomes lower than the pressure in the first chamber. Further, the partition walls 65a and 65b between the working chambers 62a and 62b and the high pressure chambers 66a and 66b are discharged when the pressure in the working chambers 62a and 62b becomes higher than the pressure in the high pressure chambers 66a and 66b. Valves 67a and 67b are attached, and outflow pipes 68a and 68b are attached to the high- pressure chambers 66a and 66b. Further, an inflow pipe (not shown) communicating with the working fluid space 60 is attached to the case 22. Therefore, the working fluid flows into the working fluid space 60 from the inflow pipe, and is supplied to the working chambers 62a and 62b via the fluid flow paths 63a and 63b and the suction valves 64a and 64b by the reciprocating motion of the pistons 42a and 42b. It flows into the high pressure chambers 66a and 66b through the valves 67a and 67b, and flows out from the outflow pipes 68a and 68b.
   シャフト部材50a,50bは、ボールベアリング51a,51b,52a,52bにより回転自在に支持されており、その一端部(往復動部材40側の端部)の回転軸から偏位した位置には往復動部材40の第1アーム部44a,44bを支持する一対の第2アーム部54a,54bが取り付けられている。この第2アーム部54a,54bは、シャフト部材50a,50bの回転軸に対して平行な軸線を中心軸とする内周円筒部材として形成されており、内周円筒内に第1アーム部材4a,44bの外周球面部45a,45bを摺動可能に収納する。ここで、シャフト部材50a,50bを相対的に逆回転となるように回転駆動すると、第2アーム部54a,54bも相対的に逆回転するから、これに伴って第1アーム部44a,44bの外周球面部45a,45bは若干のシャフト部材50a,50bの軸方向への往復運動を伴って公転運動し、往復動部材40は揺動運動を伴う往復運動を行なう。図2は、揺動運動を伴って往復運動する往復動部材40の状態を示す説明図であり、図3は、揺動運動を伴って往復運動する往復動部材40を図1中上方から見た説明図である。図2,図3の(a)~(e)は、往復動部材40が往復運動における中央に位置する状態からシャフト部材50a,50bが90度回転するごとの状態である。往復動部材40は、図示するように、図2(b)で上死点、図2(d)で下死点となる振幅2εの往復運動を行なうと共に、図3(a),(e)で反時計回りの揺動片振幅角θmax、図3(c)で時計回りの揺動片振幅角θmaxの揺動運動を行なう。図2では、前側の外周球面部45aは反時計回りに公転運動を行ない、後ろ側の外周球面部45bは時計回りの公転運動を行なうから、これに伴ってシャフト部材50aは反時計回りに回転すると共にシャフト部材50bは時計回りに回転するのが解る。 The shaft members 50a, 50b are rotatably supported by ball bearings 51a, 51b, 52a, 52b, and are reciprocated at positions deviated from the rotation axis of one end thereof (end on the reciprocating member 40 side). A pair of second arm portions 54a and 54b that support the first arm portions 44a and 44b of the member 40 are attached. The second arm portions 54a and 54b are formed as inner peripheral cylindrical members having an axis parallel to the rotation axis of the shaft members 50a and 50b as a central axis, and the first arm members 4a and 4b are formed in the inner peripheral cylinder. The outer peripheral spherical surface portions 45a and 45b of 44b are slidably accommodated. Here, when the shaft members 50a and 50b are rotationally driven so as to be relatively reversely rotated, the second arm portions 54a and 54b are also relatively reversely rotated, and accordingly, the first arm portions 44a and 44b are rotated. The outer peripheral spherical surface portions 45a and 45b revolve with some reciprocating motion of the shaft members 50a and 50b in the axial direction, and the reciprocating member 40 performs reciprocating motion with rocking motion. 2 is an explanatory view showing a state of the reciprocating member 40 that reciprocates with a swinging motion. FIG. 3 shows the reciprocating member 40 that reciprocates with a swinging motion as viewed from above in FIG. FIG. FIGS. 2 and 3 (a) to 3 (e) show states each time the shaft members 50a and 50b rotate 90 degrees from the state where the reciprocating member 40 is located at the center in the reciprocating motion. As shown in the figure, the reciprocating member 40 performs a reciprocating motion with an amplitude 2ε, which is a top dead center in FIG. 2B and a bottom dead center in FIG. 2D, and FIGS. 3A and 3E. Oscillates with a counterclockwise oscillating piece amplitude angle θmax and with a oscillating piece amplitude angle θmax clockwise in FIG. In FIG. 2, the front outer peripheral spherical surface portion 45a revolves counterclockwise, and the rear outer peripheral spherical surface portion 45b revolves clockwise. Accordingly, the shaft member 50a rotates counterclockwise. In addition, it can be seen that the shaft member 50b rotates clockwise.
   図4は、揺動運動を伴って往復運動する往復動部材40の第1アーム部44aおよび第2アーム部54aを拡大して説明する説明図である。図4(a)は上死点(揺動角0度)の状態を図1と同様の方向から見たものであり、図4(b)は最大揺動角(揺動片振幅角θmax)のときの状態を図1の上方から見たものである。図示するように、第1アーム部44aに取り付けられた外周球面部45aは、揺動運動により第2アーム部55aの内周円筒面に対して摺動して第2アーム部54aの軸方向にΔLだけ移動する。このとき外周球面部45aの球心P1aは、第2アーム部54aの軸線上に拘束される。この球心P1a,P1bを本実施例では「特定点P1a,P1b」とも称する。 FIG. 4 is an explanatory diagram for enlarging and explaining the first arm portion 44a and the second arm portion 54a of the reciprocating member 40 that reciprocates with a swinging motion. 4A shows the state of top dead center (rocking angle 0 degree) as seen from the same direction as FIG. 1, and FIG. 4B shows the maximum rocking angle (rocking piece amplitude angle θmax). The state at the time is seen from above in FIG. As shown in the drawing, the outer peripheral spherical surface portion 45a attached to the first arm portion 44a slides with respect to the inner peripheral cylindrical surface of the second arm portion 55a by the swinging motion and moves in the axial direction of the second arm portion 54a. Move by ΔL. At this time, the spherical center P1a of the outer peripheral spherical surface portion 45a is restrained on the axis of the second arm portion 54a. The ball centers P1a and P1b are also referred to as “specific points P1a and P1b” in this embodiment.
   シャフト部材50a,50bの一端部には、その遠心力の方向が第2アーム部材54a,54bとは反対側の方向となるように一対の主ウエイトバランス58a,58bが取り付けられており、シャフト部材50a,50bの他端部(往復動部材40とは反対側の端部)には、その遠心力の方向が主ウエイトバランス58a,58bと反対側の方向となるように一対の副ウエイトバランス59a,59bが取り付けられている。 A pair of main weight balances 58a, 58b is attached to one end of the shaft members 50a, 50b so that the direction of centrifugal force is opposite to the second arm members 54a, 54b. At the other end of 50a, 50b (the end opposite to the reciprocating member 40), a pair of sub-weight balances 59a so that the direction of the centrifugal force is in the direction opposite to the main weight balances 58a, 58b. , 59b are attached.
   こうして構成された実施例の容積型機械20でも上述した図19に例示した従来例の容積型機械920と同様に、直角座標系の3軸(X軸、Y軸、Z軸)方向の慣性力と慣性力によるその3軸周りのトルクの中で、Y軸周りのトルク以外の加振力の発生をゼロにすることができる。以下に、実施例の容積型機械20のY軸周りのトルクについて、従来例の容積型機械920との比較を用いて説明する。 In the positive displacement machine 20 of the embodiment configured in this way, the inertial force in the three-axis (X axis, Y axis, Z axis) directions of the rectangular coordinate system is the same as the conventional positive displacement machine 920 illustrated in FIG. Among the torques around the three axes due to the inertial force, the generation of an excitation force other than the torque around the Y axis can be made zero. Hereinafter, the torque around the Y axis of the positive displacement machine 20 of the embodiment will be described using a comparison with the positive displacement machine 920 of the conventional example.
   図5は、揺動運動している往復動部材40とシャフト部50a,50bの一部を図1中上方から見た説明図であり、図6は、揺動運動している往復動部材40とシャフト部50a,50bの一部を図1中右側から見た説明図である。容積型機械20の往復動部材40のY軸周りの揺動運動における慣性力によるY軸周りのトルクNp1は、往復動部材40のY軸周りの慣性モーメントをIp1、揺動運動による角加速度をαp1とすると、次式(1)により表わされる。 FIG. 5 is an explanatory view of a part of the reciprocating member 40 and the shaft portions 50a and 50b that are swinging as viewed from above in FIG. 1, and FIG. 6 is a reciprocating member 40 that is swinging. FIG. 5 is an explanatory view of a part of the shaft portions 50a and 50b as viewed from the right side in FIG. The torque Np1 around the Y axis due to the inertial force in the swing motion around the Y axis of the reciprocating member 40 of the positive displacement machine 20 is expressed as Ip1 as the moment of inertia around the Y axis of the reciprocating member 40, and the angular acceleration due to the swing motion. When αp1, it is expressed by the following equation (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
   往復動部材40の中心軸から第1アーム部44a,44bの外周球面部45a,45bの球心P1a,P1b(特定点P1a,P1b)までの距離をl1(図5参照)とし、シャフト部材50a,50bの回転軸と第2アーム部54a,54bの内周円筒面における中心軸La,Lbとの偏位量をr1(図6参照)とし、シャフト部材50a,50bの回転角θを用いると、中心軸LaのX座標x1は次式(2)により表わされる。なお、この式(2)のx1は、特定点P1aのX座標でもある。揺動角θp1は、図5より式(3)として表わされる。往復動部材40の揺動運動における揺動片振幅角θmax1は、式(3)より式(4)として表わされ、これを式(3)に代入して式(5)を得る。 The distance from the central axis of the reciprocating member 40 to the spherical centers P1a and P1b (specific points P1a and P1b) of the outer peripheral spherical surface portions 45a and 45b of the first arm portions 44a and 44b is 11 (see FIG. 5), and the shaft member 50a. , 50b and the center axis La, Lb on the inner peripheral cylindrical surface of the second arm portions 54a, 54b is r1 (see FIG. 6), and the rotation angle θ of the shaft members 50a, 50b is used. The X coordinate x1 of the central axis La is expressed by the following equation (2). In addition, x1 of this formula (2) is also the X coordinate of the specific point P1a. The swing angle θp1 is expressed as equation (3) from FIG. The swing piece amplitude angle θmax1 in the swing motion of the reciprocating member 40 is expressed as Formula (4) from Formula (3), and is substituted into Formula (3) to obtain Formula (5).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
   シャフト部材50a,50bの全体の遠心力FsのX軸方向の成分Fsxは、慣性力としては逆回転するシャフト部材50a,50bにより相殺されるが、Z軸方向の作用位置が異なるために偶力となり、Y軸周りのトルクとして残る。シャフト部材50a,50bには、その遠心力の方向が第2アーム部54a,54bと反対側の方向となるように主ウエイトバランス58a,58bが取り付けられていると共に、その遠心力の方向が第2アーム部54a,54bと同一側の方向となるように副ウエイトバランス59a,59bが取り付けられているが、各部が発生する遠心力の中では主ウエイトバランス58a,58bによるものが支配的であるため、遠心力Fsは、主ウエイトバランス58a,58bの遠心力の方向となる。シャフト部材50a,50bの回転角速度をωとすると、遠心力FsのX軸方向成分Fsxは、mrを定数として次式(6)により表わされる。これがZ軸座標lmr,-lmrの位置に作用するから、Y軸周りのトルクは式(7)により表わされる。ここで、lmrとmrの2つの定数は、主ウエイトバランス58a,58bおよび副ウエイトバランス59a,59bの大きさという2つの変数を調整することによって互いに独立して任意の値に調整することができる。なお、シャフト部材50a,50bが等速回転しているときには、ωも定数となる。このとき、トルクNsはシャフト部材50a,50bの回転角θの余弦関数となり、回転1次成分のみを持つことになる。 The component Fsx in the X-axis direction of the total centrifugal force Fs of the shaft members 50a and 50b is canceled out by the shaft members 50a and 50b that rotate in reverse as the inertial force. And remains as torque around the Y axis. Main weight balances 58a and 58b are attached to the shaft members 50a and 50b so that the direction of the centrifugal force is opposite to the second arm portions 54a and 54b, and the direction of the centrifugal force is the first direction. The sub-weight balances 59a and 59b are attached so as to be in the same direction as the two- arm portions 54a and 54b, but the main weight balances 58a and 58b are dominant in the centrifugal force generated by each part. Therefore, the centrifugal force Fs is in the direction of the centrifugal force of the main weight balances 58a and 58b. When the rotational angular velocity of the shaft members 50a and 50b is ω, the X-axis direction component Fsx of the centrifugal force Fs is expressed by the following equation (6), where mr is a constant. Since this acts on the positions of the Z-axis coordinates lmr, −lmr, the torque around the Y-axis is expressed by the equation (7). Here, the two constants lmr and mr can be adjusted to arbitrary values independently of each other by adjusting two variables of the sizes of the main weight balances 58a and 58b and the sub weight balances 59a and 59b. . When the shaft members 50a and 50b are rotating at a constant speed, ω is also a constant. At this time, the torque Ns becomes a cosine function of the rotation angle θ of the shaft members 50a and 50b, and has only a rotation primary component.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
   揺動運動による角加速度αp1は、揺動角θp1を時間tで2回微分して得られるから、θ=ωtを用いると、次式(8)として表わすことができる。これを式(1)に代入すると、式(9)を得る。揺動片振幅角θmax1が15度(0.263rad)と25度(0.436rad)の場合について、式(5)を式(9)に代入し、Ip1・ω2で割って正規化した無次元揺動トルクNp1*を、更にフーリエ級数展開すると式(10)および式(11)を得る。なお、式(10)および式(11)の右辺第4項以降は係数が無視できるほど小さくなるため、その表記は省略した。 Since the angular acceleration αp1 due to the rocking motion is obtained by differentiating the rocking angle θp1 twice with respect to time t, it can be expressed as the following equation (8) using θ = ωt. Substituting this into equation (1) yields equation (9). For the case where the swing piece amplitude angle θmax1 is 15 degrees (0.263 rad) and 25 degrees (0.436 rad), Expression (5) is substituted into Expression (9) and normalized by dividing by Ip1 · ω2. When the oscillation torque Np1 * is further expanded by Fourier series, Expressions (10) and (11) are obtained. In addition, since the coefficient becomes small so that it can be disregarded after the fourth term on the right side of Expression (10) and Expression (11), the description is omitted.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
   式(10)と式(11)の右辺各項の係数をみると、往復動部材40の揺動運動で発生する慣性力によるY軸周りのトルクNp1は、第1項に対応するシャフト部材50a,50bの回転1次成分が支配的であるが、それらは式(6)および式(7)におけるlmrやmrを調整して軸部材の遠心力によるY軸周りのトルクで相殺させて消去することができる。したがって、周囲を加振する成分としては、式(10)および式(11)の右辺第2項以降の高次の項となる。 Looking at the coefficients of the respective terms on the right side of the equations (10) and (11), the torque Np1 around the Y axis due to the inertial force generated by the swinging motion of the reciprocating member 40 is the shaft member 50a corresponding to the first term. , 50b, the primary rotation component is dominant, but they are eliminated by adjusting lmr and mr in equations (6) and (7) to cancel with the torque around the Y axis due to the centrifugal force of the shaft member. be able to. Therefore, the component that vibrates the surroundings is a higher-order term after the second term on the right side of Equation (10) and Equation (11).
   従来例の容積型機械920(図19、図20、図21参照)では、Y軸周りの揺動運動における慣性力によるY軸周りのトルクNp2は、往復動部材940のY軸周りの慣性モーメントをIp2、揺動運動による角加速度をαp2とすると、次式(12)により表わされる。 In the conventional positive displacement machine 920 (see FIGS. 19, 20, and 21), the torque Np2 around the Y axis due to the inertial force in the swinging motion around the Y axis is the moment of inertia around the Y axis of the reciprocating member 940. Is represented by the following formula (12), where Ip2 is the angular acceleration due to the swing motion.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
   第2アーム部954aにより球面対偶で支持された外周球面部945aの球心P2aのシャフト部材950aの回転軸からの偏位量をr2とすると(図21参照)、球心P2aのX軸座標x2は、式(13)により表わされ、球心P2aのZ軸座標をl2とすると(図20参照)、揺動角θp2は式(14)により表わされる。 If the amount of deviation of the spherical center P2a of the outer peripheral spherical surface portion 945a supported by the second arm portion 954a from the spherical pair from the rotation axis of the shaft member 950a is r2 (see FIG. 21), the X-axis coordinate x2 of the spherical center P2a Is expressed by equation (13), and if the Z-axis coordinate of the ball center P2a is 12 (see FIG. 20), the swing angle θp2 is expressed by equation (14).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
   揺動運動による角加速度αp2は、揺動角θp2を時間tで2回微分して得られるから、θ=ωtを用いると、次式(15)として表わすことができる。これを式(12)に代入すると、式(16)を得る。 Since the angular acceleration αp2 due to the rocking motion is obtained by differentiating the rocking angle θp2 twice with respect to time t, it can be expressed as the following equation (15) using θ = ωt. Substituting this into equation (12) yields equation (16).
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
   往復動部材940の揺動運動における揺動片振幅角θmax2は、式(14)より式(17)として表わされ、これを式(14)に代入して式(18)を得る。揺動片振幅角θmax2が15度(0.263rad)と25度(0.436rad)の場合について、式(18)を式(16)に代入し、Ip・ω2で割って正規化した無次元揺動トルクNp2*を、更にフーリエ級数展開すると式(19)および式(20)を得る。なお、式(19)および式(20)の右辺第4項以降は係数が無視できるほど小さくなるため、その表記は省略した。 The swinging piece amplitude angle θmax2 in the swinging motion of the reciprocating member 940 is expressed as Formula (17) from Formula (14), and this is substituted into Formula (14) to obtain Formula (18). For the case where the swing piece amplitude angle θmax2 is 15 degrees (0.263 rad) and 25 degrees (0.436 rad), Expression (18) is substituted into Expression (16) and normalized by dividing by Ip · ω2. When the oscillation torque Np2 * is further expanded by Fourier series, Expressions (19) and (20) are obtained. In addition, since the coefficient becomes small so that it can be disregarded after the fourth term on the right side of Expression (19) and Expression (20), the description is omitted.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
   従来例の容積型機械920でも、式(19)と式(20)の右辺各項の係数をみると、往復動部材940の揺動運動で発生する慣性力によるY軸周りのトルクNp2は、第1項に対応するシャフト部材950a,950bの回転1次成分が支配的であるが、それらは式(6)および式(7)におけるlmrやmrを調整して軸部材の遠心力によるY軸周りのトルクで相殺させて消去することができる。したがって、周囲を加振する成分としては、式(19)および式(20)の右辺第2項以降の高次の項となる。 Also in the positive displacement type machine 920, when looking at the coefficients of the terms on the right side of the equations (19) and (20), the torque Np2 around the Y axis due to the inertial force generated by the swinging motion of the reciprocating member 940 is: The primary rotation components of the shaft members 950a and 950b corresponding to the first term are dominant, but they are adjusted by adjusting lmr and mr in the equations (6) and (7) to obtain the Y axis by the centrifugal force of the shaft member. It can be erased by canceling with the surrounding torque. Therefore, the component that vibrates the surroundings is a higher-order term after the second term on the right side of Equation (19) and Equation (20).
   実施例の容積型機械20における式(10)と式(11)の右辺第2項以降と従来例の容積型機械920における式(19)と式(20)の右辺第2項以降とを比較すると、実施例の容積型機械20の方が、揺動片振幅角θmaxに拘わらずに、その係数が小さいから、実施例の容積型機械20の方が、従来例の容積型機械920に比して、周囲を加振する加振トルクが小さくなる。 In the positive displacement machine 20 of the embodiment, the expression (10) and the second term on the right side of the expression (11) are compared with the second expression on the right side of the expression (20) in the conventional displacement type machine 920. Then, since the coefficient of the positive displacement machine 20 of the embodiment is smaller regardless of the swing piece amplitude angle θmax, the positive displacement machine 20 of the embodiment is compared with the positive displacement volume machine 920 of the conventional example. Thus, the excitation torque for exciting the surroundings becomes small.
   図7および図8は、実施例の容積型機械20の揺動片振幅角が15度および25度のときにおけるシャフト部材50a,50bの回転角θと無次元化した揺動トルクおよび加振トルクとの関係を示す説明図であり、図9および図10は、従来例の容積型機械920の揺動片振幅角が15度および25度のときにおけるシャフト部材950a,950bの回転角θと無次元化した揺動トルクおよび加振トルクとの関係を示す説明図である。各図の無次元化した揺動トルクにおける破線は、回転1次成分の余弦曲線を示す。したがって、各図の無次元化した加振トルクは、揺動トルクと回転1次成分との差分である。図7と図9との比較においても、図8と図10との比較においても、実施例の容積型機械20の方が、従来例の容積型機械920に比して、加振トルクが小さいのが解る。 7 and 8 show the rotation angle θ of the shaft members 50a and 50b and the dimensionless swing torque and excitation torque when the swing piece amplitude angle of the positive displacement machine 20 of the embodiment is 15 degrees and 25 degrees. 9 and 10 are diagrams showing the relationship between the rotation angle θ of the shaft members 950a and 950b when the swing piece amplitude angle of the positive displacement type machine 920 is 15 degrees and 25 degrees, and It is explanatory drawing which shows the relationship between the dimensioned swing torque and excitation torque. The broken line in the non-dimensional swing torque in each figure shows the cosine curve of the primary rotation component. Therefore, the dimensionless excitation torque in each figure is the difference between the oscillation torque and the rotation primary component. In comparison between FIG. 7 and FIG. 9 as well as in comparison between FIG. 8 and FIG. 10, the positive displacement machine 20 of the embodiment has a smaller excitation torque than the positive displacement machine 920. I understand.
   以上説明した実施例の容積型機械20によれば、シャフト部材50a,50bの回転軸に対して平行な軸線を中心軸とする内周円筒面として形成された第2アーム部54a,54bにより、第1アーム部44a,44bに取り付けられた外周球面部45a,45bの球心P1a,P1bが第2アーム部54a,54bの中心軸線上に拘束されるように第1アーム部44a,44bを支持することにより、従来例の容積型機械920に比して周囲を加振する加振トルクを小さくすることができる。この結果、第1アーム部44a,44bのアーム長を短くすることにより揺動片振幅角(最大揺動角)が大きくなったり、ピストン42a,42bの径(ボア径)を小さくすることによりピストンストロークが大きくなって揺動片振幅角(最大揺動角)が大きくなっても、従来例の容積型機械920に比して、加振トルクを小さくすることができるから、容積型機械20の小型化と効率化を図ることができる。これらの結果、より小型でより効率的でより低振動の容積型機械とすることができる。 According to the positive displacement machine 20 of the embodiment described above, the second arm portions 54a and 54b formed as inner circumferential cylindrical surfaces having an axis parallel to the rotation axis of the shaft members 50a and 50b as a central axis, The first arm portions 44a and 44b are supported so that the spherical centers P1a and P1b of the outer peripheral spherical surface portions 45a and 45b attached to the first arm portions 44a and 44b are constrained on the central axis of the second arm portions 54a and 54b. As a result, the excitation torque for exciting the surroundings can be reduced as compared with the positive displacement machine 920 of the conventional example. As a result, by shortening the arm length of the first arm portions 44a and 44b, the swing piece amplitude angle (maximum swing angle) is increased, and by reducing the diameter (bore diameter) of the pistons 42a and 42b, the piston Even if the stroke increases and the swing piece amplitude angle (maximum swing angle) increases, the excitation torque can be reduced as compared with the positive displacement machine 920 of the conventional example. Miniaturization and efficiency can be achieved. As a result, a smaller, more efficient and lower vibration positive displacement machine can be obtained.
   実施例の容積型機械20では、第1アーム部44a,44bに外周球面部45a,45bを形成または取り付け固定するものとしたが、図11の第1変形例に例示するように、第1アーム部144aにより外周球面部145aをアーム軸周りに回転自在に保持するものとしてもよい。図11(a)は上死点(揺動角0度)の状態を図1と同様の方向からみたものであり、図11(b)は最大揺動角(揺動片振幅角θmax)のときの状態を図1の上方から見たものである。この場合、図示するように、第1アーム部144aの外周球面部145aを取り付ける部分をアーム軸を中心軸とする円筒形状に形成すると共に、外周球面部145aの内周面を円筒形状に形成し、外周球面部145aと第1アーム部144aの間にコロ146aを介在させて外周球面部145aをアーム軸周りに回転自在とする一方、外周球面部145aのアーム軸方向の両端面にスラストワッシャ147a,148aを取り付けて外周球面部145aのアーム軸方向への移動を規制するものとすればよい。こうすれば、線接触部である外周球面部145aと第2アーム部54aの内周面との間を転がり対偶として耐久性を向上させ、機械摩擦損失を小さくすることができる。 In the positive displacement machine 20 of the embodiment, the outer peripheral spherical surface portions 45a and 45b are formed or attached and fixed to the first arm portions 44a and 44b. However, as illustrated in the first modified example of FIG. The outer peripheral spherical surface portion 145a may be rotatably held around the arm axis by the portion 144a. FIG. 11A shows the state of top dead center (rocking angle 0 degree) from the same direction as FIG. 1, and FIG. 11B shows the maximum rocking angle (rocking piece amplitude angle θmax). The state at the time is seen from above in FIG. In this case, as shown in the figure, the portion to which the outer peripheral spherical portion 145a of the first arm portion 144a is attached is formed in a cylindrical shape with the arm axis as the central axis, and the inner peripheral surface of the outer peripheral spherical portion 145a is formed in a cylindrical shape. A roller 146a is interposed between the outer peripheral spherical surface portion 145a and the first arm portion 144a so that the outer peripheral spherical surface portion 145a is rotatable around the arm axis, while a thrust washer 147a is provided on both end surfaces of the outer peripheral spherical surface portion 145a in the arm axis direction. , 148a may be attached to restrict movement of the outer peripheral spherical surface portion 145a in the arm axis direction. If it carries out like this, durability can be improved by rolling between the outer peripheral spherical surface part 145a which is a line contact part, and the internal peripheral surface of the 2nd arm part 54a, and a mechanical friction loss can be made small.
   実施例の容積型機械20では、第1アーム部44a,44bの外周球面部45a,45bを内周円筒面として形成された第2アーム部54a,54bにより摺動自在に保持するものとしたが、図12の第2変形例に例示するように、第1アーム部44aの外周球面部45aを内周球面部155aを介して第2アーム部154aで支持するものとしてもよい。図12(a)は上死点(揺動角0度)の状態を図1と同様の方向から見たものであり、図12(b)は最大揺動角(揺動片振幅角θmax)のときの状態を図1の上方から見たものである。この場合、第2アーム部154aの内周円筒面で内周球面部155aの外周円筒面を円周方向とアーム軸方向に摺動自在に保持すると共に、内周球面部155aにより第1アーム部44aの外周球面部45aを球面対偶で保持すればよい。こうすれば、外周球面部45aを内周球面部155aで保持するから、第1アーム部44aと第2アーム部154aとの力の授受を面接触によって行なうことができ、支持構造における耐久性を向上させることができる。第2変形例に前述した第1変形例の内容を組み合わせると、図13に示す第3変形例となる。図13(a)は上死点(揺動角0度)の状態を図1と同様の方向からみたものであり、図13(b)は最大揺動角(揺動片振幅角θmax)のときの状態を図1の上方からみたものである。このように、第1変形例と第2変形例とを組み合わせて第3変形例とすれば、機械摩擦損失が小さく、支持構造の耐久性が一層優れたものとすることができる。 In the positive displacement machine 20 of the embodiment, the outer peripheral spherical surface portions 45a and 45b of the first arm portions 44a and 44b are slidably held by the second arm portions 54a and 54b formed as inner peripheral cylindrical surfaces. As exemplified in the second modification of FIG. 12, the outer peripheral spherical surface 45a of the first arm portion 44a may be supported by the second arm portion 154a via the inner peripheral spherical surface portion 155a. 12A shows the state of the top dead center (rocking angle 0 degree) from the same direction as FIG. 1, and FIG. 12B shows the maximum rocking angle (rocking piece amplitude angle θmax). The state at the time is seen from above in FIG. In this case, the outer peripheral cylindrical surface of the inner peripheral spherical surface portion 155a is slidably held in the circumferential direction and the arm axial direction by the inner peripheral cylindrical surface of the second arm portion 154a, and the first arm portion is supported by the inner peripheral spherical surface portion 155a. The outer peripheral spherical surface portion 45a of 44a may be held by a spherical pair. In this way, since the outer peripheral spherical surface portion 45a is held by the inner peripheral spherical surface portion 155a, the force transfer between the first arm portion 44a and the second arm portion 154a can be performed by surface contact, and the durability in the support structure can be improved. Can be improved. Combining the contents of the first modification described above with the second modification results in the third modification shown in FIG. FIG. 13A shows the state of top dead center (swing angle 0 degree) from the same direction as FIG. 1, and FIG. 13B shows the maximum swing angle (swing piece amplitude angle θmax). The state at the time is seen from above in FIG. Thus, when the first modification and the second modification are combined to form the third modification, the mechanical friction loss is small, and the durability of the support structure can be further improved.
   図12の第2変形例や図13の第3変形例では、内周球面部155aの第1アーム部44a,144a側の端面をシャフト軸50aの回転軸に直交する平面と平行となるように形成したが、図14の第4変形例に例示するように、内周球面部255aの端面を、シャフト部材50aの回転軸回りの内周側が外周側より第1アーム部144aから離れるようにその回転軸に対して斜めの斜面により形成するものとしてもよい。図14(a)は上死点(揺動角0度)の状態を図1と同様の方向からみたものであり、図14(b)は最大揺動角(揺動片振幅角θmax)のときの状態を図1の上方からみたものである。第4変形例では、内周球面部255aは、第2アーム部254aの内周円筒面に対してその軸方向への移動は可能であるが、その中心軸周りの回転は不能なように内周円筒面に取り付けられている。この取り付けは、例えば内周円筒面と内周球面部255aとを軸方向に摺動可能なスプライン嵌合などにより行なうことができる。このように、内周球面部255aの端面を斜面により形成することにより、最大揺動角(揺動片振幅角のとき)に至ったときに第1アーム部144aと内周球面部255aのシャフトの回転軸回りの内周側とが当接して干渉するのを抑制することができ、往復動部材40の最大揺動角をより大きくすることができる。ここで、第4変形例では、内周球面部255aの端面を斜面により形成するものとしたが、内周球面部255aの端面のうち揺動により当接して干渉する部分だけ第1アーム部44aから離れるように形成するものとしてもよい。なお、第4変形例では、第2アーム部254aの内周円筒面の第1アーム部144a側の端面を内周球面部255aと同様に斜面により形成するものとしたが、シャフト軸50aの回転軸に直交する平面と平行となるように形成するものとしても差し支えない。 In the second modified example of FIG. 12 and the third modified example of FIG. 13, the end surfaces of the inner peripheral spherical surface portion 155a on the first arm portions 44a and 144a side are parallel to a plane orthogonal to the rotation axis of the shaft shaft 50a. As shown in the fourth modification of FIG. 14, the end surface of the inner peripheral spherical surface portion 255a is arranged so that the inner peripheral side around the rotation axis of the shaft member 50a is separated from the first arm portion 144a from the outer peripheral side. It is good also as what forms by the slanting slope with respect to a rotating shaft. FIG. 14A shows the state of top dead center (rocking angle 0 degree) from the same direction as FIG. 1, and FIG. 14B shows the maximum rocking angle (rocking piece amplitude angle θmax). The state at the time is seen from above in FIG. In the fourth modification, the inner circumferential spherical portion 255a can move in the axial direction with respect to the inner circumferential cylindrical surface of the second arm portion 254a, but the inner circumferential spherical portion 255a cannot be rotated around its central axis. It is attached to the circumferential cylindrical surface. This attachment can be performed, for example, by spline fitting that allows the inner circumferential cylindrical surface and the inner circumferential spherical surface portion 255a to slide in the axial direction. Thus, by forming the end surface of the inner peripheral spherical surface portion 255a with a slope, the shaft of the first arm portion 144a and the inner peripheral spherical surface portion 255a when the maximum swing angle (at the swing piece amplitude angle) is reached. It is possible to suppress contact and interference with the inner peripheral side around the rotation axis, and the maximum swing angle of the reciprocating member 40 can be further increased. Here, in the fourth modification, the end surface of the inner peripheral spherical surface portion 255a is formed by a slope, but only the portion of the end surface of the inner peripheral spherical surface portion 255a that abuts and interferes with the first arm portion 44a. It is good also as what forms so that it may leave | separate. In the fourth modification, the end surface of the inner peripheral cylindrical surface of the second arm portion 254a on the first arm portion 144a side is formed by a slope like the inner peripheral spherical surface portion 255a, but the rotation of the shaft 50a It may be formed so as to be parallel to a plane orthogonal to the axis.
   実施例の容積型機械20では、第1アーム部44a,44bに外周球面部45a,45bを形成または取り付け固定するものとしたが、図15の第5変形例に例示するように、第2アーム部354aに外周球面部355a取り付けるものとしてもよい。図15(a)は上死点(揺動角0度)の状態を図1と同様の方向から見たものであり、図15(b)は最大揺動角(揺動片振幅角θmax)のときの状態を図1の上方から見たものである。この場合、外周円筒面として第2アーム部354aを形成すると共に第2アーム部354aに内周円筒面の外周球面部355aを第2アーム部354aのアーム軸方向に摺動自在に保持し、外周球面部355aを回転自在に保持する内面球面部346aを取付部材345aにより第1アーム部344aのアーム軸方向に移動不能に取り付けたものとしてもよい。この第5変形例でも球心P1a(特定点P1a)は、シャフト部材50aの回転軸と平行な軸線上、即ち、第2アーム部354aの中心軸線上に移動可能に拘束されているから、実施例の容積型機械20と同様の効果を奏する。この場合、図16の第6変形例に例示するように、第1アーム部444aにおける内周球面部446aの外周を円筒面となるように形成し、内周球面部446aの外周面と取付部材445aの内周面との間にコロ447aを介在させて内周球面部446aの第1アーム部444aのアーム軸周りの回転を自在なものとしてもよい。なお、図16(a)は上死点(揺動角0度)の状態を図1と同様の方向から見たものであり、図16(b)は最大揺動角(揺動片振幅角θmax)のときの状態を図1の上方から見たものである。 In the positive displacement machine 20 of the embodiment, the outer peripheral spherical surface portions 45a and 45b are formed or fixed to the first arm portions 44a and 44b. However, as illustrated in the fifth modification example of FIG. The outer peripheral spherical surface portion 355a may be attached to the portion 354a. FIG. 15A shows the state of the top dead center (swing angle 0 degree) from the same direction as FIG. 1, and FIG. 15B shows the maximum swing angle (swing piece amplitude angle θmax). The state at the time is seen from above in FIG. In this case, the second arm portion 354a is formed as the outer peripheral cylindrical surface, and the outer peripheral spherical surface portion 355a of the inner peripheral cylindrical surface is slidably held in the arm axis direction of the second arm portion 354a on the second arm portion 354a. The inner spherical surface portion 346a that rotatably holds the spherical surface portion 355a may be attached by an attachment member 345a so as not to move in the arm axis direction of the first arm portion 344a. Even in the fifth modification, the ball center P1a (specific point P1a) is movably restrained on an axis parallel to the rotation axis of the shaft member 50a, that is, on the central axis of the second arm portion 354a. An effect similar to that of the positive displacement machine 20 of the example is achieved. In this case, as exemplified in the sixth modification of FIG. 16, the outer periphery of the inner peripheral spherical surface portion 446a in the first arm portion 444a is formed to be a cylindrical surface, and the outer peripheral surface of the inner peripheral spherical surface portion 446a and the mounting member A roller 447a may be interposed between the inner peripheral surface of 445a and the first spherical arm portion 444a may be freely rotatable around the arm axis. 16A shows the state of top dead center (rocking angle 0 degree) viewed from the same direction as FIG. 1, and FIG. 16B shows the maximum rocking angle (oscillation piece amplitude angle). The state at the time of θmax) is viewed from above in FIG.
   実施例の容積型機械20では、第1アーム部44a,44bに外周球面部45a,45bを形成または取り付け固定し、第2アーム部54a,54bの内周円筒面で外周球面部45a,45bを摺動自在に保持するものとしたが、図17の第7変形例に例示するように、外周球面部を用いないものとしてもよい。図17(a)は上死点(揺動角0度)の状態を図1と同様の方向から見たものであり、図17(b)は最大揺動角(揺動片振幅角θmax)のときの状態を図1の上方から見たものである。図18は、図17(a)のA-A断面を示す断面図である。第7変形例では、第2アーム部554aは、内周円筒面となるよう形成されている。第1アーム部544aは、往復動部材40の往復運動方向(図1の上下方向、図17(a)の上下方向)に垂直な2平面を有する略樽型のヒンジ部545aが形成または取り付け固定されており、第2アーム部554aの内周円筒面に摺動可能に配置された円筒環状の円筒部材548aと、ヒンジ部545aの2平面に摺動可能に接触すると共に円筒部材548aと一体化された一対の摺動部材546aとを有する。一対の摺動部材546aは、ヒンジ部545aに対してその中心軸を貫通するピン547a周りに揺動できるが、円筒部材548aに対しては円筒部材548aの中心軸方向への移動ができないようにその両端で一対の止め輪549aにより支持されている。こうした第7変形例の支持構造では、第1アーム部544aに形成または取り付け固定されたヒンジ部545aは円筒部材548aに対してピン547aを揺動軸として揺動可能であり、、且つ、円筒部材485aは第2アーム部554aの内周円筒面に対してアーム軸周りに摺動可能であることから、ヒンジ部545aは、その中央(ピン547aの中央)の特定点P1aがシャフト部材50aの回転軸と平行な軸線上(第2アーム部554aの中心軸線上)に移動可能に拘束されるが、第2アーム部554aに対して回転と揺動が自在となるため、実施例の容積型機械20と同様に、往復動部材40の揺動運動を伴う往復運動によって第2アーム部554aに保持されながら公転運動を行なうことができる。したがって、こうした第7変形例でも実施例の容積型機械20と同様の効果を奏することができる。 In the positive displacement machine 20 of the embodiment, the outer peripheral spherical surface portions 45a and 45b are formed or attached and fixed to the first arm portions 44a and 44b, and the outer peripheral spherical surface portions 45a and 45b are formed by the inner peripheral cylindrical surfaces of the second arm portions 54a and 54b. Although it is assumed to be slidably held, the outer peripheral spherical surface portion may not be used as illustrated in the seventh modification of FIG. FIG. 17A shows the state of the top dead center (rocking angle 0 degree) from the same direction as FIG. 1, and FIG. 17B shows the maximum rocking angle (rocking piece amplitude angle θmax). The state at the time is seen from above in FIG. FIG. 18 is a cross-sectional view showing the AA cross section of FIG. In the seventh modification, the second arm portion 554a is formed to be an inner peripheral cylindrical surface. The first arm portion 544a is formed or fixed by a substantially barrel-shaped hinge portion 545a having two planes perpendicular to the reciprocating direction of the reciprocating member 40 (the vertical direction in FIG. 1 and the vertical direction in FIG. 17A). The cylindrical annular cylindrical member 548a is slidably disposed on the inner peripheral cylindrical surface of the second arm portion 554a, and slidably contacts two planes of the hinge portion 545a and is integrated with the cylindrical member 548a. And a pair of sliding members 546a. The pair of sliding members 546a can swing around the pin 547a penetrating the central axis with respect to the hinge portion 545a, but the cylindrical member 548a cannot move in the central axis direction. The both ends are supported by a pair of retaining rings 549a. In the support structure of the seventh modified example, the hinge portion 545a formed or attached and fixed to the first arm portion 544a can swing with respect to the cylindrical member 548a using the pin 547a as a swing shaft, and the cylindrical member Since 485a is slidable around the arm axis with respect to the inner peripheral cylindrical surface of the second arm portion 554a, the hinge portion 545a has a specific point P1a at the center (the center of the pin 547a) at the rotation of the shaft member 50a. Although it is constrained to be movable on an axis parallel to the axis (on the central axis of the second arm portion 554a), it can freely rotate and swing with respect to the second arm portion 554a. Similarly to 20, the reciprocating motion accompanying the reciprocating motion of the reciprocating member 40 can perform the revolving motion while being held by the second arm portion 554a. Therefore, the seventh modified example can achieve the same effects as the positive displacement machine 20 of the embodiment.
   こうした各変形例のように、第2アーム部による第1アーム部の支持構造は、第1アーム部の予め特定された特定点がシャフト部材の回転軸と平行な軸線上に移動可能に拘束されるものであれば、如何なる支持構造としてもよいのである。 As in each of these modifications, the support structure of the first arm portion by the second arm portion is constrained so that the specific point specified in advance of the first arm portion can move on an axis parallel to the rotation axis of the shaft member. Any support structure may be used as long as it is suitable.
   実施例の容積型機械20やその変形例では、いずれも、一対のシャフト部材50a,50bに取り付けられた一対の電動機70a,70bによりシャフト部材50a,50bを逆回転駆動することにより、往復動部材40に往復運動と揺動運動を生じさせて作動室62a,62bの容積変化を生じさせる機械(圧縮機)としたが、作動室62a,62bに圧力流体を供給することにより、往復動部材40に往復運動と揺動運動を生じさせて一対のシャフト部材50a,50bに回転駆動力を生じさせる機械(エンジン)としてもよい。 In the positive displacement machine 20 of the embodiment and its modifications, the shaft members 50a and 50b are reciprocatingly driven by the pair of electric motors 70a and 70b attached to the pair of shaft members 50a and 50b. 40 is a machine (compressor) that causes reciprocating motion and swinging motion to cause volume changes of the working chambers 62a and 62b. However, the reciprocating member 40 is supplied by supplying pressure fluid to the working chambers 62a and 62b. It is good also as a machine (engine) which produces a rotational drive force in a pair of shaft members 50a and 50b by producing a reciprocating motion and a rocking motion.
   実施例の容積型機械20やその変形例では、一対のピストン42a,42bと一対の作動室62a,62bとを備えるものとしたが、単一のピストンと単一の作動室とを備えるものとしても差し支えない。 In the positive displacement machine 20 of the embodiment and the modification thereof, the pair of pistons 42a and 42b and the pair of working chambers 62a and 62b are provided. However, it is assumed that a single piston and a single working chamber are provided. There is no problem.
   以上、本発明を実施するための形態について実施例を用いて説明したが、本発明はこうした実施例に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。 As mentioned above, although the form for implementing this invention was demonstrated using the Example, this invention is not limited at all to such an Example, In the range which does not deviate from the summary of this invention, it is with various forms. Of course, it can be implemented.
   本発明は、容積型機械の製造産業などに利用可能である。

 
The present invention can be used in the manufacturing industry of positive displacement machines.

Claims (10)

  1.    円筒状の案内円筒部材と、
       前記案内円筒部材の内周面に案内されて該案内円筒部材の中心軸方向に往復運動すると共に該中心軸回りに搖動運動するピストン部と前記案内円筒部材の中心軸に直交すると共に該中心軸に対して対称となるよう前記ピストン部に取り付けられた一対の第1アーム部とを有する往復動部材と、
       前記案内円筒部材の中心軸に直交すると共に前記中心軸に対して対称となるよう配置された一対のシャフト部材と、
       前記一対のシャフト部材の回転軸から偏位した位置で前記一対の第1アーム部を各々支持するよう該一対のシャフト部材に取り付けられた一対の第2アーム部と、
       前記ピストン部の往復運動に伴って容積変化が生じる作動室と、
       を備える容積型機械において、
       前記第2アーム部は、前記第1アーム部において予め定められた特定点が前記シャフト部材の回転軸に対して平行な軸線上に移動可能に拘束されるよう支持する、
       ことを特徴とする容積型機械。
    A cylindrical guide cylindrical member;
    A piston portion that is guided by the inner peripheral surface of the guide cylindrical member and reciprocates in the direction of the central axis of the guide cylindrical member and swings around the central axis, and is orthogonal to the central axis of the guide cylindrical member and the central axis A reciprocating member having a pair of first arm parts attached to the piston part so as to be symmetrical with respect to
    A pair of shaft members disposed so as to be orthogonal to the central axis of the guide cylindrical member and symmetrical with respect to the central axis;
    A pair of second arm portions attached to the pair of shaft members so as to support the pair of first arm portions at positions displaced from the rotation axes of the pair of shaft members,
    A working chamber in which a volume change occurs as the piston part reciprocates;
    A positive displacement machine comprising:
    The second arm portion supports the specific point predetermined in the first arm portion so as to be movably restrained on an axis parallel to the rotation axis of the shaft member.
    A positive displacement machine characterized by that.
  2.    請求項1記載の容積型機械であって、
       前記第1アーム部は、球心を前記特定点とする外周球面部を有し、
       前記第2アーム部は、前記シャフト部材の回転軸に対して平行な軸線上に配置され前記外周球面部を摺動自在に保持する内周円筒部を有する、
       容積型機械。
    The positive displacement machine according to claim 1, wherein
    The first arm portion has an outer peripheral spherical surface portion having a spherical center as the specific point,
    The second arm portion has an inner cylindrical portion that is disposed on an axis parallel to the rotation axis of the shaft member and holds the outer peripheral spherical portion slidably.
    Positive displacement machine.
  3.    請求項1記載の容積型機械であって、
       前記第1アーム部は、球心を前記特定点とする外周球面部を有し、
       前記第2アーム部は、前記外周球面部を保持すると共に前記シャフト部材の回転軸に対して平行な軸線上に移動する内周球面部を有する、
       容積型機械。
    The positive displacement machine according to claim 1, wherein
    The first arm portion has an outer peripheral spherical surface portion having a spherical center as the specific point,
    The second arm portion includes an inner peripheral spherical surface portion that holds the outer peripheral spherical surface portion and moves on an axis parallel to the rotation axis of the shaft member.
    Positive displacement machine.
  4.    請求項3記載の容積型機械であって、
       前記内周球面部は、外周が円筒状に形成されており、
       前記第2アーム部は、前記内周球面部を前記シャフト部材の回転軸に対して平行な軸線上に移動可能に保持する内周円筒部を有する、
       容積型機械。
    The positive displacement machine according to claim 3, wherein
    The inner peripheral spherical portion has an outer periphery formed in a cylindrical shape,
    The second arm portion includes an inner circumferential cylindrical portion that holds the inner circumferential spherical portion movably on an axis parallel to the rotation axis of the shaft member.
    Positive displacement machine.
  5.    請求項4記載の容積型機械であって、
       前記内周球面部は、前記シャフト部材の回転軸回りの内周側が外周側より前記第1アーム部から離れるように形成されており、
       前記内周円筒部は、前記内周球面部を前記シャフト部材の回転軸に対して平行な軸回りに回転不能に保持する、
       容積型機械。
    The positive displacement machine according to claim 4, wherein
    The inner circumferential spherical portion is formed such that the inner circumferential side around the rotation axis of the shaft member is separated from the first arm portion from the outer circumferential side,
    The inner circumferential cylindrical portion holds the inner circumferential spherical portion in a non-rotatable manner around an axis parallel to the rotation axis of the shaft member.
    Positive displacement machine.
  6.    請求項2ないし5のうちのいずれか1つの請求項に記載の容積型機械であって、
       前記外周球面部は、前記第1アーム部の中心軸回りに回転自在に且つ該中心軸方向には移動不能に支持されている、
       容積型機械。
    A positive displacement machine according to any one of claims 2 to 5,
    The outer peripheral spherical surface portion is supported so as to be rotatable about the central axis of the first arm portion and immovable in the central axis direction.
    Positive displacement machine.
  7.    請求項1記載の容積型機械であって、
       前記第1アーム部は、球心を前記特定点とする内周球面部を有し、
       前記第2アーム部は、前記内周球面部に保持され、前記シャフト部材の回転軸に対して
     平行な軸線上に移動可能な外周球面部を有する、
       容積型機械。
    The positive displacement machine according to claim 1, wherein
    The first arm portion has an inner circumferential spherical surface portion having a spherical center as the specific point,
    The second arm portion has an outer peripheral spherical surface portion that is held on the inner peripheral spherical surface portion and is movable on an axis parallel to the rotation axis of the shaft member.
    Positive displacement machine.
  8.    請求項7記載の容積型機械であって、
       前記内周球面部は、前記第1アーム部の中心軸回りに回転自在に且つ該中心軸方向には移動不能に支持されている、
       容積型機械。
    The positive displacement machine according to claim 7, wherein
    The inner peripheral spherical surface portion is supported so as to be rotatable around the central axis of the first arm portion and immovable in the central axis direction.
    Positive displacement machine.
  9.    請求項1記載の容積型機械であって
       前記第2アーム部は、内周円筒面として形成されており、
       前記第1アーム部は、往復動部材の往復運動方向に対して垂直な2平面を有する略樽型のヒンジ部と、前記ヒンジ部の2平面に摺動可能に接触すると共に前記第2アーム部の内周円筒面に摺動可能に接触し且つ前記ヒンジ部の中心軸に配設されたピンにより前記ヒンジ部と一体とされる摺動部と、を有する
       容積型機械。
    The positive displacement machine according to claim 1, wherein the second arm portion is formed as an inner peripheral cylindrical surface,
    The first arm portion has a substantially barrel-shaped hinge portion having two planes perpendicular to the reciprocating direction of the reciprocating member, and is slidably in contact with the two planes of the hinge portion and the second arm portion. And a sliding portion that is slidably in contact with the inner peripheral cylindrical surface of the first hinge portion and that is integrated with the hinge portion by a pin disposed on a central axis of the hinge portion.
  10.    請求項1ないし9のうちのいずれか1つの請求項に記載の容積型機械であって、
       前記ピストン部は、前記一対の第1アーム部を挟んで対称に2つのピストンを有し、
       前記作動室は、前記2つのピストンの各々に対応するよう2つ形成されている、
       容積型機械。

     
    A positive displacement machine according to any one of claims 1 to 9,
    The piston part has two pistons symmetrically across the pair of first arm parts,
    Two working chambers are formed to correspond to each of the two pistons,
    Positive displacement machine.

PCT/JP2015/069907 2014-07-11 2015-07-10 Displacement machine WO2016006685A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP15819137.9A EP3168473B1 (en) 2014-07-11 2015-07-10 Displacement machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-142974 2014-07-11
JP2014142974A JP6449576B2 (en) 2014-07-11 2014-07-11 Positive displacement machine

Publications (1)

Publication Number Publication Date
WO2016006685A1 true WO2016006685A1 (en) 2016-01-14

Family

ID=55064313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/069907 WO2016006685A1 (en) 2014-07-11 2015-07-10 Displacement machine

Country Status (3)

Country Link
EP (1) EP3168473B1 (en)
JP (1) JP6449576B2 (en)
WO (1) WO2016006685A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017102324A1 (en) * 2017-02-07 2018-08-09 Nidec Gpm Gmbh Oil-free vacuum pump with prismatic piston and corresponding compressor
JP6948709B2 (en) 2018-01-31 2021-10-13 国立大学法人 東京大学 Positive displacement machine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0335888Y2 (en) * 1986-03-04 1991-07-30
JPH0972275A (en) * 1995-09-07 1997-03-18 Hitachi Ltd Low vibration displacement type machine
US20080276737A1 (en) * 2003-12-17 2008-11-13 Nicola Campo Crank Gear for a Reciprocating Compressor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5163818A (en) * 1990-02-05 1992-11-17 Ametek, Inc. Automatic constant air flow rate pump unit for sampling air
JPH08284807A (en) * 1995-04-19 1996-10-29 Hitachi Ltd Reciprocating type displacement machine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0335888Y2 (en) * 1986-03-04 1991-07-30
JPH0972275A (en) * 1995-09-07 1997-03-18 Hitachi Ltd Low vibration displacement type machine
US20080276737A1 (en) * 2003-12-17 2008-11-13 Nicola Campo Crank Gear for a Reciprocating Compressor

Also Published As

Publication number Publication date
JP6449576B2 (en) 2019-01-09
EP3168473B1 (en) 2020-08-19
JP2016017513A (en) 2016-02-01
EP3168473A1 (en) 2017-05-17
EP3168473A4 (en) 2018-03-07

Similar Documents

Publication Publication Date Title
AU2008287615B2 (en) An axial piston machine with rotation restraint mechanism
JP6449576B2 (en) Positive displacement machine
JP2015101959A (en) Engine
JP4947793B2 (en) Crank device
JP2008202726A (en) Balancer mechanism for reciprocating engine
JP2010275981A (en) Hermetic compressor
Demeulenaere et al. Input torque balancing using a cam-based centrifugal pendulum: design procedure and example
WO2014091641A1 (en) Scroll compressor
JP2006207505A (en) Variable compression ratio internal combustion engine
JP6376634B1 (en) Drive device with oscillating linear motion mechanism
CN103032325A (en) Screw compressor
JP2018080647A (en) Balance device of internal combustion engine
JP6948709B2 (en) Positive displacement machine
JP2006038126A (en) Vibration reducer of reciprocating internal combustion engine
JP5579144B2 (en) Variable capacity compressor
RU2351765C2 (en) Axial machine spatial conversion mechanism
JP2018091430A (en) Balance device of internal combustion engine
JPH0758071B2 (en) Electromagnetic drive type scroll device
JP2017008918A (en) Volumetric capacity type machine
JP4817201B2 (en) Inertial sensor
JP2005105819A (en) Scotch yoke type engine
JP6491223B2 (en) Mechanical torque generator and associated motion mechanism
JP2011157944A (en) Vibration reducer of reciprocating internal combustion engine
JPH0552183A (en) Variable capacity type compressor
JP2016118152A (en) Reciprocating fluid machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15819137

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015819137

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015819137

Country of ref document: EP