WO2016006633A1 - Diagnosis device, diagnosis system, simulation method, and program - Google Patents

Diagnosis device, diagnosis system, simulation method, and program Download PDF

Info

Publication number
WO2016006633A1
WO2016006633A1 PCT/JP2015/069666 JP2015069666W WO2016006633A1 WO 2016006633 A1 WO2016006633 A1 WO 2016006633A1 JP 2015069666 W JP2015069666 W JP 2015069666W WO 2016006633 A1 WO2016006633 A1 WO 2016006633A1
Authority
WO
WIPO (PCT)
Prior art keywords
upper airway
model
fluid
dimensional shape
unit
Prior art date
Application number
PCT/JP2015/069666
Other languages
French (fr)
Japanese (ja)
Inventor
智憲 岩崎
Original Assignee
国立大学法人 鹿児島大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 鹿児島大学 filed Critical 国立大学法人 鹿児島大学
Priority to JP2016532957A priority Critical patent/JP6579472B2/en
Publication of WO2016006633A1 publication Critical patent/WO2016006633A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs

Definitions

  • the present invention relates to a diagnostic apparatus, a diagnostic system, a simulation method, and a program.
  • Obstructive Sleep Apnea Syndrome is a respiratory disease that causes various respiratory effects by obstructing the upper respiratory tract during sleep and causing respiratory problems.
  • Obstructive sleep apnea syndrome (hereinafter simply referred to as sleep apnea syndrome) is a cause of serious traffic accidents because it does not provide sufficient sleep at night and causes excessive sleepiness during the day. Attention has been paid.
  • Non-Patent Document 1 discloses a method for diagnosing sleep apnea syndrome by constructing a fluid model of an upper airway on a computer based on a three-dimensional CT image and performing fluid analysis using the fluid model.
  • This method based on the pressure distribution in the upper airway and the air velocity distribution, it is possible to narrow down the ventilation trouble site to some extent.
  • Non-Patent Document 1 is a few effective methods for narrowing down the cause site of sleep apnea syndrome, but due to the following disadvantages, effective treatment results are not always obtained. .
  • the simulation model of the upper airway is modeled as a rigid body that does not deform. For this reason, fluid analysis in consideration of elastic deformation of the upper airway is difficult. It is also difficult to reproduce the upper airway obstruction.
  • the main cause of sleep apnea syndrome is narrowing of the upper respiratory tract due to tongue depression due to gravity in the supine position.
  • the tongue which is a tissue around the upper airway, is not modeled. For this reason, the narrowing of the upper airway due to the drop of the tongue due to gravity cannot be reproduced by simulation. Therefore, with this technique, it becomes difficult to specify that the cause of sleep apnea syndrome is narrowing of the upper respiratory tract due to tongue depression due to gravity in the supine position.
  • the present invention has been made to solve the above-described problems, and is a diagnostic device, a diagnostic system, a simulation method, and a program that can obtain better treatment results with respect to respiratory diseases more reliably.
  • the purpose is to provide.
  • a diagnostic apparatus provides: Using a numerical analysis technique, based on the three-dimensional image data inside the subject's maxillofacial portion, a three-dimensional shape model of the upper airway and tissues around the upper airway, and air fluid in the upper airway A model generation unit for generating a model; A physical property value specific to the three-dimensional shape model and the fluid model generated by the model generation unit is given, and the upper airway, the surrounding tissue, and the air fluid in the upper airway accompanying the subject's breathing A simulation execution unit that calculates information on the ventilation state of the upper airway that fluctuates according to respiration by performing a simulation of structural coupling analysis; Is provided.
  • a model display unit that displays a three-dimensional shape model of the upper airway and the surrounding tissue generated by the model generation unit;
  • the simulation execution unit By performing a simulation of the fluid-structure interaction analysis using the three-dimensional model of the upper airway and the surrounding tissue whose three-dimensional shape has been changed by the changing unit, information on the ventilation state of the upper airway is obtained. calculate, It is good as well.
  • the three-dimensional model of the nasal cavity of the upper airway is a rigid body, and performs fluid analysis over one respiratory period to calculate information on the ventilation state of the nasal cavity, and at the boundary between the nasal cavity and the pharynx
  • a fluid analysis unit for calculating a cross-sectional average pressure The simulation execution unit Using the cross-sectional average pressure at the boundary between the nasal cavity and the pharynx over one respiratory cycle calculated by the fluid analysis unit as an initial condition, a model of the three-dimensional shape of the upper airway and the surrounding tissue excluding the nasal cavity is used. , By calculating a simulation of the fluid structure coupling analysis, to calculate information on the ventilation state of the upper airway, It is good as well.
  • the simulation execution unit In a state where the three-dimensional shape model of the surrounding tissue is deformed by gravity, the fluid-structure interaction analysis is performed, and information on the ventilation state of the upper airway is calculated. It is good as well.
  • the simulation execution unit As information on the ventilation state of the upper airway, Calculating information on the flow of air in the upper airway or information on deformation of the upper airway and a region around the upper airway; It is good as well.
  • simulation execution unit As information on the air flow in the upper airway, Calculating pressure distribution or flow velocity distribution in the upper airway, It is good as well.
  • the diagnostic system according to the second aspect of the present invention is: An imaging device for imaging three-dimensional image data inside the maxillofacial portion of the subject; A diagnostic apparatus according to the present invention using the three-dimensional image data imaged by the imaging apparatus; Is provided.
  • a simulation method provides: A computer uses a numerical analysis method to calculate a model of a three-dimensional shape of the upper airway and a tissue around the upper airway based on the three-dimensional image data inside the maxillofacial portion of the subject, A model generation process for generating a fluid model of the air; A computer gives specific physical property values to the three-dimensional shape model and the fluid model generated in the model generation step, and the upper airway, the surrounding tissue, and the upper airway associated with the subject's breathing A simulation execution step of calculating information on the ventilation state of the upper airway, which fluctuates according to breathing, by performing a simulation of fluid-structure interaction analysis of air; Is provided.
  • a program is: Computer Using a numerical analysis method, based on the three-dimensional image data inside the subject's maxillofacial region, a model of the three-dimensional shape of the upper airway and the tissue around the upper airway, and the air in the upper airway A model generation unit for generating a fluid model; A physical property value specific to the three-dimensional shape model and the fluid model generated by the model generation unit is given, and the upper airway, the surrounding tissue, and the air fluid in the upper airway accompanying the subject's breathing A simulation execution unit that calculates information on the ventilation state of the upper airway that fluctuates according to respiration by performing a simulation of structural coupling analysis; To function as.
  • simulation of fluid-structure interaction analysis is performed using a model of the three-dimensional shape of not only the upper airway but also the surrounding tissue.
  • this simulation it is possible to calculate not only the flow of air in the upper airway accompanying breathing but also the deformation of the upper airway and surrounding tissues. Since the state of the upper airway and the surrounding tissue during actual sleep can be reproduced by simulation, the cause of the respiratory system disease can be more accurately identified. As a result, good treatment results can be obtained for respiratory diseases more reliably.
  • FIG. 9A is a diagram showing an example of a cross section of the upper airway when not lying on the back
  • FIG. 9B is a diagram showing an example of a cross section of the upper airway when lying on the back.
  • An example of pressure distribution in the upper pharyngeal airway is shown by fluid-structure interaction analysis accompanying respiration.
  • An example of the displacement distribution of the upper pharyngeal airway by the fluid-structure interaction analysis accompanying respiration is shown.
  • It is a flowchart of a diagnostic process. It is a flowchart of a model production
  • Embodiment 1 FIG. First, a first embodiment of the present invention will be described.
  • the diagnostic system 100 is used to reproduce on the computer the ventilation state of the upper respiratory tract of the human body that is the subject in order to identify the cause of sleep apnea syndrome. It is done.
  • the diagnostic system 100 is based on the three-dimensional image data inside the subject's maxillofacial region acquired by an X-ray CT (Computer Tomography) device or the like in order to reproduce the ventilation state of the subject's upper airway.
  • a model of a three-dimensional shape of the upper airway in the maxillofacial portion and a tissue around the upper airway and a fluid model of air in the upper airway are generated.
  • the upper respiratory tract means from the nose to the nasal cavity, nasopharynx, pharynx, and larynx.
  • the diagnosis system 100 performs a simulation of fluid-structure interaction analysis using a three-dimensional shape model of the upper airway and the surrounding tissue of the upper airway and a fluid model of the air in the upper airway.
  • the upper airway, the three-dimensional shape model of the surrounding tissue, and the fluid model of the air in the upper airway are given unique physical properties, and the simulation of fluid-structure interaction analysis makes the upper airway fluctuating according to respiration, It is possible to clarify the interaction between the surrounding tissue deformation and the air flow due to breathing in the upper airway. In addition, it is possible to accurately reproduce both the air flow (pressure distribution, flow velocity distribution) in the upper airway and the deformation of the upper airway due to the deformation of surrounding tissue during breathing. By reproducing these, the cause site of sleep apnea syndrome can be identified more accurately.
  • the diagnostic system 100 includes an imaging device 1 and a computer 2.
  • the imaging device 1 and the computer 2 are connected via a communication network. Through this communication network, data can be transmitted and received between the imaging apparatus 1 and the computer 2.
  • the imaging apparatus 1 is an X-ray CT apparatus.
  • the imaging apparatus 1 captures a three-dimensional X-ray CT image of the subject's maxillofacial portion.
  • the imaging device 1 includes an X-ray tube and a detector. When the X-ray CT scan is executed, X-rays irradiated from the X-ray tube and transmitted through the subject are detected by the detector. The detection result of the detector is stored in the imaging device 1 as raw data.
  • the imaging apparatus 1 generates cross-sectional data (slice image data) of the maxillofacial portion of the subject by performing image reconstruction processing based on the stored raw data. Furthermore, the imaging device 1 generates three-dimensional image data inside the maxillofacial portion of the subject based on the slice image data. As described above, three-dimensional image data inside the maxillofacial portion of the subject is obtained. The obtained three-dimensional image data is transmitted to the computer 2 through the communication network as DICOM (Digital Imaging and Communications Communications in Medicine) data.
  • DICOM Digital Imaging and Communications Communications in Medicine
  • DICOM data refers to data generated based on the DICOM standard.
  • the DICOM standard is mainly used as a format for medical image data.
  • the DICOM data is composed of the three-dimensional image data and incidental information according to the DICOM standard.
  • the incidental information is attribute information of image data such as patient information, imaging condition information, image information, and display information, and is embedded as tag information in DICOM data.
  • the computer 2 generates a model of a three-dimensional shape of the upper airway in the maxillofacial portion of the subject and the tissue around the upper airway based on the three-dimensional X-ray CT image data included in the received DICOM data.
  • This model is generated based on the finite element method.
  • This model is generated by dividing an object into a finite number of elements bounded by nodes. That is, the generated upper airway and the tissue model around the upper airway are so-called mesh models configured by joining a plurality of elements in a mesh shape at nodes.
  • the element may be divided on the basis of voxel data constituting the medical image data.
  • the computer 2 gives unique physical property values to the mesh model of the three-dimensional shape of the tissue around the upper airway and its maxillofacial surface, and performs a fluid-structure interaction analysis simulation accompanying the breathing of the subject, Get information about the ventilation status of the upper airway.
  • FIG. 2 shows the hardware configuration of the computer 2 in FIG.
  • the computer 2 includes a control unit 31, a main storage unit 32, an external storage unit 33, an operation unit 34, a display unit 35, and a communication unit 36.
  • the main storage unit 32, the external storage unit 33, the operation unit 34, the display unit 35, and the communication unit 36 are all connected to the control unit 31 via the internal bus 30.
  • the control unit 31 includes a CPU (Central Processing Unit) and the like.
  • the CPU executes the program 39 stored in the external storage unit 33, thereby realizing each component of the computer 2 shown in FIG.
  • the main storage unit 32 is composed of RAM (Random-Access Memory) or the like.
  • the main storage unit 32 is loaded with a program 39 stored in the external storage unit 33.
  • the main storage unit 32 is used as a work area (temporary data storage area) of the control unit 31.
  • the external storage unit 33 includes a non-volatile memory such as a flash memory, a hard disk, a DVD-RAM (Digital Versatile Disc Random-Access Memory), a DVD-RW (Digital Versatile Disc ReWritable).
  • a program 39 to be executed by the control unit 31 is stored in advance. Further, the external storage unit 33 supplies data used when executing the program 39 to the control unit 31 in accordance with an instruction from the control unit 31, and stores the data supplied from the control unit 31.
  • the operation unit 34 includes a pointing device such as a keyboard and a mouse, and an interface device that connects the keyboard and the pointing device to the internal bus 30. Information regarding the content operated by the operator is input to the control unit 31 via the operation unit 34.
  • the display unit 35 includes a CRT (Cathode Ray Tube), an LCD (Liquid Crystal Display), an organic EL (ElectroLuminescence), or the like.
  • CTR Cathode Ray Tube
  • LCD Liquid Crystal Display
  • organic EL ElectroLuminescence
  • the communication unit 36 includes a serial interface or a parallel interface.
  • the communication unit 36 is connected to the imaging device 1 via the communication network and receives the 3D X-ray CT image data transmitted from the imaging device 1.
  • control unit 31 includes a control unit 31, a main storage unit 32, an external storage unit 33, an operation unit 34, a display unit 35, a communication unit 36, etc. as hardware resources. It demonstrates its function by being used as a.
  • the computer 2 having a hardware configuration as shown in FIG. 2 has a storage unit 10, a data acquisition unit 11, a model generation unit 12, a fluid analysis unit 13, A simulation execution unit 14 and an output unit 15 are provided.
  • the storage unit 10 corresponds to the external storage unit 33 in FIG. 2 in the hardware configuration shown in FIG.
  • the storage unit 10 stores various data.
  • One of the data stored by the storage unit 10 is DICOM data 21.
  • the data acquisition unit 11 corresponds to the control unit 31 and the communication unit 36 in the hardware configuration shown in FIG.
  • the data acquisition unit 11 receives the three-dimensional X-ray CT image data (DICOM data) of the maxillofacial portion transmitted from the imaging device 1.
  • the data acquisition unit 11 stores the received DICOM data 21 in the storage unit 10.
  • the model generation unit 12 corresponds to the control unit 31 in the hardware configuration illustrated in FIG.
  • the model generation unit 12 inputs DICOM data 21 stored in the storage unit 10, that is, three-dimensional image data inside the subject's maxillofacial portion. Based on the DICOM data 21, the model generation unit 12 generates a three-dimensional shape model of the upper airway and the tissue around the upper airway and a fluid model of air in the upper airway using the finite element method.
  • the three-dimensional shape model of the upper airway and the tissues around the upper airway is constructed based on the governing equations indicating the structure and shape deformation of each tissue.
  • Tissues around the upper respiratory tract include soft tissues such as bones, tongue, soft palate, and maxillofacial muscles.
  • the fluid model is constructed based on a fluid governing equation (for example, Bernoulli's equation, Naviestoke's equation, etc.) using information on the air flow such as the pressure and flow velocity of the fluid as variables.
  • a fluid governing equation for example, Bernoulli's equation, Naviestoke's equation, etc.
  • FIG. 3 shows an example of a three-dimensional image of the upper airway, tongue, and soft palate.
  • A1 is the upper airway
  • A2 is the soft palate
  • A3 is the tongue.
  • the tongue A3 and the soft palate A2 are tissues around the upper airway adjacent to the upper airway A1.
  • the tongue A3 is known as the main cause of sleep apnea syndrome. This is because the tongue A3 falls down and squeezes the upper airway when sleeping in the supine position.
  • FIG. 4 shows a three-dimensional image of bone in addition to the upper airway, soft palate, and tongue.
  • A4 is a bone.
  • the mandible and cervical vertebrae exist around the upper airway, tongue, and soft palate.
  • their three-dimensional shape models are generated as tissues around the upper airway.
  • FIG. 5 shows an example of a three-dimensional image of soft tissues such as muscles and fat around the jaw.
  • soft tissues such as muscles and fat around the jaw.
  • a three-dimensional shape model is generated as tissue around the upper airway. This is because enlargement of the soft tissue around the jaw greatly affects respiration.
  • FIG. 6 shows an example of a three-dimensional mesh model of soft tissue portions around the upper airway, tongue, soft palate, bone, and jaw.
  • nodes connecting elements are common on the boundary surface of each tissue.
  • the upper airway and its surrounding area are formed so as to be regarded as one three-dimensional shape model. In this way, it is possible to reproduce, by the three-dimensional shape model, how the adjacent tissues are deformed due to the deformation of each tissue.
  • the model generation unit 12 generates a three-dimensional model by dividing the upper airway into a nasal cavity portion and a portion below the pharynx.
  • the nasal cavity portion is generated as STL (Standard (Triangulated Language) data.
  • STL data is data representing three points of a triangular patch used to approximate a solid, and the object surface is represented as a polygon by triangular patches (facets).
  • FIG. 7 shows an example of a three-dimensional image of the upper airway.
  • the part above the line L is the nasal cavity part.
  • the portion above the line L is stored in the storage unit 10 as the nasal cavity portion STL data 22.
  • the model generation unit 12 generates a three-dimensional mesh model for the upper respiratory tract below the pharynx.
  • the generated three-dimensional mesh model of the upper airway below the pharynx and the three-dimensional mesh models of other tissues are stored in the storage unit 10 as the three-dimensional shape model data 23.
  • the fluid analysis unit 13 corresponds to the control unit 31 in the hardware configuration illustrated in FIG.
  • the fluid analysis unit 13 uses the nasal cavity portion STL data 22 to perform a fluid analysis over one respiratory cycle with the nasal cavity as a rigid body, and calculates information regarding the ventilation state of the nasal cavity. This is because the internal structure of the nasal cavity is complicated, there is almost no change in the shape of the airway, and fluid-structure interaction analysis is difficult. As information about the calculated ventilation state of the nasal cavity, for example, there is a pressure distribution in the nasal cavity.
  • the fluid analysis unit 13 calculates the cross-sectional average pressure P (t) at the boundary between the nasal cavity and the pharynx based on the pressure distribution in the nasal cavity.
  • FIG. 8 shows an example of the cross-sectional average pressure P (t) at the boundary between the nasal cavity and the pharynx over one respiratory cycle. As shown in FIG. 8, the cross-sectional average pressure P (t) repeats exhalation and inspiration with a period T. In expiration, air in the nasal cavity is positive with respect to the external pressure, and in inspiration, air in the nasal cavity is in negative pressure with respect to the external pressure.
  • the simulation execution unit 14 corresponds to the control unit 31 in the hardware configuration illustrated in FIG.
  • the simulation execution unit 14 gives specific physical property values to the three-dimensional shape model and the fluid model generated by the model generation unit 12, and the upper airway, surrounding tissues, and air fluid in the upper airway accompanying the subject's breathing
  • information on the ventilation state of the upper airway that varies with breathing is calculated.
  • the fluid structure coupled analysis simulation is a numerical analysis simulation for analyzing a phenomenon in which a solid structure is deformed by a force exerted by a fluid flow.
  • Sleep apnea syndrome is often the root cause of tissue surrounding the upper respiratory tract. For this reason, if the simulation of fluid-structure interaction analysis including the tissues around the upper airway is performed to reproduce the deformation of the tissues around the upper airway during sleep, the cause of sleep apnea syndrome Can be identified more accurately.
  • Specific physical property values of the three-dimensional shape model include Young's modulus, linear expansion coefficient, Poisson's ratio, shear elastic modulus, etc. of each tissue.
  • the viscosity coefficient of air, density, bulk modulus, Reynolds number, etc. is there.
  • the physical property values those stored in the storage unit 10 as the physical property value data 25 are used.
  • the physical property values those known as the physical property values of the tissue may be used, but those measured for each subject may be used.
  • the simulation execution unit 14 uses a calculated cross-sectional average pressure P (t) at the boundary between the nasal cavity and the pharynx over one respiratory cycle as an initial condition, and generates a three-dimensional mesh model of the upper airway excluding the nasal cavity and surrounding tissues. It is used to simulate the fluid-structure interaction analysis of the upper respiratory tract and surrounding tissues associated with the subject's breathing.
  • the simulation execution unit 14 performs a simulation of fluid-structure interaction analysis of the upper airway and the surrounding tissue that accompanies the subject's breathing in a state where the three-dimensional model of the surrounding tissue is deformed by gravity.
  • FIG. 9A shows an example of a cross section of the upper airway when not lying on the back
  • FIG. 9B shows an example of a cross section of the upper airway when lying on the back. ing.
  • the upper airway is narrower when lying on its back. This is because the tongue part is sunk by gravity and compresses the upper airway.
  • the simulation execution unit 14 performs the simulation of the fluid structure coupled analysis in consideration of the gravity. Therefore, the ventilation of the upper airway is accurately reproduced while the upper airway deforming according to the posture of the subject is accurately reproduced. The state can be calculated.
  • the simulation execution unit 14 calculates information regarding the air flow in the upper airway and the deformation state of the upper airway and the three-dimensional shape model of the tissue around the upper airway.
  • the simulation execution unit 14 calculates the pressure distribution in the upper airway, the flow velocity distribution, or the displacement distribution of the three-dimensional shape model of the tissue around the upper airway and the upper airway as information on the air flow in the upper airway. These pieces of information are stored in the storage unit 10 as simulation result data 26.
  • the output unit 15 corresponds to the control unit 31 and the display unit 35 in the hardware configuration of FIG.
  • the output unit 15 displays the pressure distribution in the upper airway, the flow velocity distribution, or the deformation state of the upper airway.
  • FIG. 10 shows an example of the pressure distribution in the pharyngeal airway part by the fluid structure coupled analysis accompanying respiration.
  • FIG. 11 shows an example of the displacement distribution of the upper pharyngeal airway portion by the fluid structure coupled analysis accompanying respiration.
  • the higher the pressure is the darker the color is displayed.
  • the larger the displacement is the darker the color is displayed.
  • the pressure on the upper airway is higher.
  • the output unit 15 can also display and output the upper airway deformed by the fluid-structure interaction analysis and the three-dimensional shape of the tissue around the upper airway.
  • step S1 an imaging process is performed in the imaging apparatus 1 (step S1).
  • step S1 three-dimensional image data inside the subject's maxillofacial portion is obtained.
  • the three-dimensional image data is sent to the computer 2 and stored in the storage unit 10 of the computer 2 as DICOM data 21 by the data acquisition unit 11.
  • the computer 2 performs a model generation process (step S2).
  • the model generation unit 12 performs the three-dimensional analysis of the upper airway and surrounding tissues based on the three-dimensional image data (DICOM data 21) inside the subject's maxillofacial portion.
  • a shape model and a fluid model in the upper airway are generated, and the data of the generated fluid model is stored in the storage unit 10 as the three-dimensional shape model data 23 (step S21).
  • the model generation unit 12 generates the three-dimensional model of the nasal cavity part and the three-dimensional model of the part other than the nasal cavity for the upper airway separately.
  • the model generation unit 12 generates STL data of the nasal cavity portion and stores it as the nasal cavity portion STL data 22 in the storage unit 10 (step S22).
  • the fluid analysis unit 13 performs a fluid analysis of the nasal cavity part based on the nasal cavity part STL data 22, calculates the pressure distribution in the nasal cavity, and stores it in the storage unit 10 as the intranasal pressure distribution data 24 (Ste S23).
  • the fluid analysis is performed on the assumption that the nasal cavity portion is rigid and does not deform.
  • the fluid analysis unit 13 calculates an average cross-sectional pressure P (t) between the nasal cavity and the pharynx based on the pressure distribution obtained by the fluid analysis, and also includes it in the intranasal pressure distribution data 24 to store it. 10 (step S24).
  • the computer 2 performs a simulation execution process (step S3).
  • the simulation execution unit 14 refers to the physical property value data 25 stored in the storage unit 10, and sets the physical property values of the upper airway and surrounding tissues to the respective three-dimensional shape models. (Step S31).
  • the physical property value of the tongue is set for the three-dimensional shape model of the tongue
  • the physical property value of the soft palate is set for the three-dimensional shape model of the soft palate
  • the physical property value of the bone is set for the three-dimensional shape model of the bone.
  • the physical property value of the soft tissue is set for the three-dimensional shape model of the soft tissue around the jaw.
  • the simulation execution unit 14 sets the direction of gravity (step S32). This setting is performed by an operation input from the operation unit 34. For example, when diagnosing the ventilation state of the upper airway in the supine position, the occipital side of the subject is set as the lower side.
  • the simulation executing unit 14 performs a fluid structure coupled analysis simulation (step S33).
  • the simulation is performed in a state where the three-dimensional shape model of the upper airway and surrounding tissue and the fluid model of the upper airway are integrated.
  • the average cross-sectional pressure P (t) between the nasal cavity and pharynx in the upper airway is used as an initial condition.
  • the fluid analysis that analyzes the air flow in the upper airway and the structural analysis that analyzes the deformation of the upper airway and the surrounding tissue take into account the mutual effects of the three-dimensional shape model and the fluid model.
  • the pressure distribution, flow velocity distribution, and upper airway displacement distribution in the upper airway in one breath are calculated.
  • FIG. 15 shows the flow of the simulation process of the fluid structure interaction analysis performed in step S33.
  • the simulation execution unit 14 performs a gravity calculation so that the three-dimensional shape model of the surrounding tissue is deformed (step S41).
  • the three-dimensional shape model including the upper airway and surrounding tissues is in the state shown in FIG.
  • FIG. 16 schematically shows the upper airway in the supine position and the tissue around the upper airway.
  • the upper airway A1 is vertically sandwiched between the tongue A3 and the lower bone A4. Furthermore, due to the drop of the tongue A3 due to the gravity G, the upper airway A1 is deformed and becomes narrower than the awake state.
  • the simulation execution unit 14 first performs a fluid analysis of the fluid model A5 in the upper airway A1 to obtain the pressure P in the upper airway (step S42).
  • the simulation execution part 14 calculates
  • the simulation execution unit 14 performs structural analysis of the upper airway A1 and surrounding tissue using the load condition as a boundary condition, and the displacement of the inner wall surface of the upper airway in a state where the gravity G and the pressure P are balanced (for example, , [Delta] x in FIG. 16 and the like are obtained (step S43).
  • the simulation execution unit 14 updates the three-dimensional shape of the model of the upper airway and the tissue around the upper airway based on the displacement of the inner wall surface obtained by the structural analysis.
  • the simulation execution unit 14 determines whether or not the termination condition is satisfied (step S44).
  • the end condition may be that the load condition and the displacement of the wall surface converge within an allowable range.
  • step S44 the simulation executing unit 14 performs a fluid analysis based on the inner wall surface displaced by the structural analysis (step S42). In this way, steps S41 ⁇ S42 are repeated. By repeating this, the load condition (pressure P) and the displacement ( ⁇ x) of the inner wall surface converge to constant values.
  • a negative pressure P is generated in the upper airway during breathing and in the inspiratory phase. This negative pressure P further narrows the upper airway and displaces the boundary surface.
  • the final load that converged within the allowable range of each boundary element was repeatedly performed by fluid analysis using the fluid model in the upper airway and structural analysis using the model of the upper airway and surrounding tissue.
  • a set of conditions (pressure P) and displacement ( ⁇ x) of the inner wall surface is obtained as pressure distribution and displacement distribution in the upper airway.
  • the simulation result data 26 stored in the storage unit 10 includes the pressure distribution in the upper airway, the displacement distribution of the upper airway, and the deformed three-dimensional shape of the tissue around the upper airway when the termination condition is satisfied. It is data.
  • the output unit 15 displays and outputs the simulation result (step S34).
  • the display unit 35 displays a pressure distribution and a flow velocity distribution in the upper airway, a deformed three-dimensional model of the tissue around the upper airway, and the like.
  • the simulation result displayed on the output unit 15 it is possible to know the pressure distribution during breathing in the upper airway of the subject, the deformation of the upper airway, the deformation of surrounding tissues, and the like. Based on these pieces of information, it is possible to detect which part of the upper airway is constricted. If the upper airway is narrowed, it is easy to identify the cause of sleep apnea syndrome.
  • the output unit 15 can display the deformation of the three-dimensional shape of the tissue model around the upper airway along with the pressure distribution in the upper airway or the displacement distribution of the upper airway. In this way, it becomes possible to more accurately identify which part of the surrounding tissue is causing the stenosis in the upper airway.
  • the nasal cavity is considered as a cause of sleep apnea syndrome.
  • sleep apnea syndrome Such as nasal congestion and nasal catarrh.
  • the site to be treated is the nose.
  • adenoid is considered as a cause of sleep apnea syndrome.
  • excision of adenoids is an appropriate treatment method.
  • the tonsils of the palate are considered as the cause of sleep apnea syndrome.
  • the site to be treated is the soft palate.
  • the jaw When the pressure is extremely high at B4, the jaw is considered to be a cause of sleep apnea syndrome.
  • the site to be treated is the lower jaw. Correction or weight loss of the upper teeth and lower teeth is the main treatment method.
  • the cause of sleep apnea syndrome is not always one.
  • a plurality of parts may be the cause part. If the simulation of the fluid-structure interaction analysis according to this embodiment is performed, it is easy to find out that a plurality of parts cause sleep apnea syndrome.
  • simulation of fluid-structure interaction analysis is performed using a model of a three-dimensional shape of not only the upper airway but also the surrounding tissue.
  • Embodiment 2 FIG. Next, a second embodiment of the present invention will be described.
  • the diagnostic system according to Embodiment 2 of the present invention is used for planning a treatment plan for sleep apnea syndrome, which is a respiratory disease.
  • the output unit 15 displays and outputs the three-dimensional shape model of the upper airway generated by the model generation unit 12 and the tissue around the upper airway.
  • the computer 2 is different from the first embodiment in that the changing unit 16 is provided.
  • the output unit 15 displays and outputs the upper airway and the tissue around the copper based on the nasal cavity portion STL data 22 and the three-dimensional shape model data 23 stored in the storage unit 10 in response to the operation input.
  • the user operates the operation unit 34 (for example, by operating the mouse) while looking at the 3D model of the upper airway displayed on the output unit 15 and the tissue around the upper airway (for example, by operating the mouse). Specify an area.
  • the operation input input from the operation unit 34 is input to the control unit 31, and the control unit 31 performs processing according to the operation input. This processing corresponds to the changing unit 16 in FIG.
  • an area D shown in FIG. 19 is designated as a specific area by an operation input from the operation unit 34.
  • the change unit 16 changes the three-dimensional shape mesh model of the upper airway and the tissue around the upper airway so as to cut out the designated region D according to the operation input of the operation unit 34.
  • the output unit 15 displays the three-dimensional shape mesh model of the changed upper airway and the tissue around the upper airway.
  • the changing unit 16 changes the three-dimensional mesh model of the upper airway and the tissue around the upper airway according to the operation input.
  • FIG. 20 shows the upper airway after excision of the designated region D and the tissue around the upper airway.
  • the changed three-dimensional model is stored in the storage unit 10 as the three-dimensional shape model data 23.
  • the STL data of the changed nasal cavity part is stored in the storage unit 10 as the nasal cavity part STL data 22.
  • the simulation executing unit 14 uses the three-dimensional shape mesh model of the upper airway and the tissue around the upper airway edited by the changing unit 16 and stored in the storage unit 10.
  • the fluid structure coupled analysis of the upper airway associated with breathing and the tissue surrounding the upper airway is simulated to calculate information on the air flow in the upper airway and information on the deformation of the upper airway.
  • the calculated simulation result is stored in the storage unit 10 as simulation result data 26 and is displayed and output by the output unit 15. With reference to this information, it is possible to check the ventilation state of the upper airway after the designated area D is deleted.
  • the fluid-structure interaction analysis is simulated using the model of the three-dimensional shape of the upper airway changed by the changing unit 16 and the surrounding tissue.
  • this simulation it is possible to predict information about the ventilation state of the upper airway after treatment. If it is possible to predict the upper respiratory tract and the surrounding tissue during sleep after surgery by simulation, the optimal amount of tissue resection can be obtained before surgery, and an appropriate treatment plan can be established. Can stand. As a result, good treatment results for respiratory diseases can be obtained more reliably.
  • the diagnosis system 100 is used to change the three-dimensional shape of each tissue suspected as a causal site and perform simulation to analyze how the ventilation state of the upper airway changes. By doing so, it is also possible to accurately specify a complex cause site.
  • the fluid-structure interaction analysis was performed using a weakly coupled method (time difference method).
  • the strongly coupled method integrated solution solves the governing equations of the fluid and the structure exactly at the same time.
  • fluid-structure interaction analysis may be performed.
  • the simulation method of the fluid-structure interaction analysis is not limited to the above-described method, and various methods can be applied.
  • the finite element method is used to generate the three-dimensional shape model of the upper airway and the tissue around the upper airway and the fluid model of the air in the upper airway. Absent.
  • a numerical analysis method such as a finite difference method, a boundary element method, a finite volume method, etc.
  • An air fluid model may be generated.
  • the imaging apparatus 1 and the X-ray CT apparatus are used, but the present invention is not limited to this.
  • An MRI (Magnetic Resonance Imaging) apparatus or an ultrasonic diagnostic apparatus may be used as the imaging apparatus 1.
  • one 3D image data is generated from a plurality of 3D image data obtained from an X-ray CT apparatus, an MRI apparatus, and an ultrasonic diagnostic apparatus, and a model of a 3D shape of each tissue is generated from the generated image data. You may make it produce
  • the present invention is not limited to this.
  • An evaluation system can be used for diagnosis and treatment as long as it is a respiratory disease and is related to the shape of the upper respiratory tract.
  • the present invention can also be used to identify the cause of symptoms such as hypertension.
  • the central part that performs processing of the computer 2 composed of the control unit 31, the main storage unit 32, the external storage unit 33, the operation unit 34, the display unit 35, the communication unit 36, the internal bus 30, and the like is a dedicated system Regardless, it can be realized using a normal computer system.
  • a computer program for executing the above operation is stored and distributed in a computer-readable recording medium (flexible disk, CD-ROM, DVD-ROM, etc.), and the computer program is installed in the computer.
  • the computer 2 that executes the above-described processing may be configured.
  • the computer 2 may be configured by storing the computer program in a storage device included in a server device on a communication network such as the Internet and downloading it by a normal computer system.
  • the functions of the computer 2 are realized by sharing an OS (operating system) and an application program or by cooperation between the OS and the application program, only the application program portion may be stored in a recording medium or a storage device. .
  • the computer program may be posted on a bulletin board (BBS, “Bulletin” Board System) on the communication network, and the computer program may be distributed via the network.
  • BBS bulletin board
  • the computer program may be started and executed in the same manner as other application programs under the control of the OS, so that the above-described processing may be executed.
  • 1 imaging device 2 computer, 10 storage unit, 11 data acquisition unit, 12 model generation unit, 13 fluid analysis unit, 14 simulation execution unit, 15 output unit, 16 change unit, 21 DICOM data, 22 nasal cavity part STL data, 23 3D shape model data, 24 nasal pressure distribution data, 25 physical property value data, 26 simulation result data, 30 internal bus, 31 control unit, 32 main storage unit, 33 external storage unit, 34 operation unit, 35 display unit, 36 Communication department, 39 program, 100 diagnostic system.

Abstract

According to the present invention, a model generation unit (12) uses a numerical analysis method to generate, on the basis of three-dimensional image data of the inside of a maxillofacial portion of a test subject, a three-dimensional shape model of the upper respiratory tract and tissues surrounding the upper respiratory tract, and a fluid model of air in the upper respiratory tract. A simulation execution unit (14) assigns unique physical property values to the three-dimensional shape model and fluid model generated by the model generation unit (12), and calculates information relating to the state of air passage in the upper respiratory tract, which varies in accordance with respiration, by carrying out a simulation of a fluid structure coupled analysis of the upper respiratory tract, surrounding tissues, and air inside the upper respiratory tract accompanying respiration of the test subject.

Description

[規則91に基づく訂正 28.08.2015] 顎顔面部の流体構造連成解析を用いた気道通気状態解析システム[Correction based on Rule 91 28.08.2015] Airway ventilation state analysis system using fluid-structure interaction analysis of maxillofacial area
 この発明は、診断装置、診断システム、シミュレーション方法及びプログラムに関する。 The present invention relates to a diagnostic apparatus, a diagnostic system, a simulation method, and a program.
 閉塞性睡眠時無呼吸症候群(OSAS;Obstructive Sleep Apnea Syndrome)は、睡眠中に上気道が閉塞して呼吸障害が生じ、全身に様々な悪影響を及ぼす呼吸器系の疾患である。閉塞性睡眠時無呼吸症候群(以下、単に、睡眠時無呼吸症候群という)は、夜間に十分な睡眠が得られず日中に過度の眠気を催すようになることから、重大交通事故の原因として注目されている。 Obstructive Sleep Apnea Syndrome (OSAS) is a respiratory disease that causes various respiratory effects by obstructing the upper respiratory tract during sleep and causing respiratory problems. Obstructive sleep apnea syndrome (hereinafter simply referred to as sleep apnea syndrome) is a cause of serious traffic accidents because it does not provide sufficient sleep at night and causes excessive sleepiness during the day. Attention has been paid.
 睡眠時無呼吸症候群の診断を行う方法が従来より提案されている。例えば、非特許文献1には、3次元CT画像に基づいて上気道の流体モデルをコンピュータ上に構築し、その流体モデルを用いた流体解析を行って、睡眠時無呼吸症候群の診断を行う方法が提案されている。この方法によれば、上気道内の圧力分布、空気の速度分布に基づいて、通気障害部位をある程度、絞り込むことができる。 A method for diagnosing sleep apnea syndrome has been proposed. For example, Non-Patent Document 1 discloses a method for diagnosing sleep apnea syndrome by constructing a fluid model of an upper airway on a computer based on a three-dimensional CT image and performing fluid analysis using the fluid model. Has been proposed. According to this method, based on the pressure distribution in the upper airway and the air velocity distribution, it is possible to narrow down the ventilation trouble site to some extent.
 睡眠時無呼吸症候群は、比較的高頻度でかかる疾患である。睡眠時無呼吸症候群の成人の発症頻度は4%、小児の場合は年齢を問わず幼児期から思春期まで2%と言われている。にもかかわらず、睡眠時無呼吸症候群では、原因部位の有効な特定方法がいまだ確立されておらず、十分な治療成績が得られていないのが実情である。上記非特許文献1で提案された方法は、睡眠時無呼吸症候群の原因部位を絞り込む数少ない有効な方法ではあるが、以下のような不都合のため、必ずしも有効な治療成績が得られるとは限らない。 Sleep apnea syndrome is a disease that occurs relatively frequently. It is said that the frequency of adults with sleep apnea syndrome is 4%, and that of children is 2% from childhood to puberty regardless of age. Nevertheless, in sleep apnea syndrome, an effective method for identifying the causative site has not yet been established, and sufficient treatment results have not been obtained. The method proposed in Non-Patent Document 1 is a few effective methods for narrowing down the cause site of sleep apnea syndrome, but due to the following disadvantages, effective treatment results are not always obtained. .
(1)上気道のシミュレーションモデルは、変形しない剛体としてモデル化されている。このため、上気道の弾性変形を考慮した流体解析が困難である。また、上気道の閉塞を再現することが困難である。 (1) The simulation model of the upper airway is modeled as a rigid body that does not deform. For this reason, fluid analysis in consideration of elastic deformation of the upper airway is difficult. It is also difficult to reproduce the upper airway obstruction.
(2)モデル化されているのは上気道のみであり、睡眠時無呼吸症候群の根本的な原因部位であることが多い上気道の周囲の組織についてはモデル化されていない。このため、上気道の周囲の組織の変形を再現することができない。このため、診断を行う者は、根本的な原因部位を流体の解析結果から間接的に推定するしかない。 (2) Only the upper airway is modeled, and the tissue around the upper airway, which is often the root cause of sleep apnea syndrome, is not modeled. For this reason, the deformation of the tissue around the upper airway cannot be reproduced. For this reason, a person who makes a diagnosis can only estimate the root cause part indirectly from the analysis result of the fluid.
 例えば、睡眠時無呼吸症候群の原因部位として最も主なものに、仰向位での重力による舌の落ち込みに伴う上気道の狭窄化がある。しかしながら、非特許文献1に開示された技術では、上気道の周囲の組織である舌についてはモデル化されていない。このため、重力による舌の落ち込みに伴う上気道の狭窄化をシミュレーションで再現することができない。したがって、この技術では、睡眠時無呼吸症候群の原因が、仰向位での重力による舌の落ち込みに伴う上気道の狭窄化であることを、特定するのが困難になる。 For example, the main cause of sleep apnea syndrome is narrowing of the upper respiratory tract due to tongue depression due to gravity in the supine position. However, in the technique disclosed in Non-Patent Document 1, the tongue, which is a tissue around the upper airway, is not modeled. For this reason, the narrowing of the upper airway due to the drop of the tongue due to gravity cannot be reproduced by simulation. Therefore, with this technique, it becomes difficult to specify that the cause of sleep apnea syndrome is narrowing of the upper respiratory tract due to tongue depression due to gravity in the supine position.
(3)シミュレーションモデルを用いた流体解析において想定される上気道中の空気の流れが一方向となっており、空気の流れが双方向となる実際の呼吸の様相(呼気吸気の周期的変化)とは異なっている。このため、実際の呼吸の様相に従った上気道内の流体の流れを再現できない。 (3) The actual breathing aspect (periodic change of exhaled breathing) in which the air flow in the upper airway assumed in the fluid analysis using the simulation model is unidirectional and the air flow is bidirectional. Is different. For this reason, the flow of the fluid in the upper airway according to the actual aspect of breathing cannot be reproduced.
 この発明は、上記のような問題点を解決するためになされたものであり、呼吸器系の疾患について、より確実に良好な治療成績を得ることができる診断装置、診断システム、シミュレーション方法及びプログラムを提供することを目的とする。 The present invention has been made to solve the above-described problems, and is a diagnostic device, a diagnostic system, a simulation method, and a program that can obtain better treatment results with respect to respiratory diseases more reliably. The purpose is to provide.
 上記目的を達成するため、この発明の第1の観点に係る診断装置は、
 数値解析手法を用いて、被検者の顎顔面部の内部の3次元画像データに基づいて、上気道及び該上気道の周囲の組織の3次元形状モデルと、前記上気道内の空気の流体モデルとを生成するモデル生成部と、
 前記モデル生成部で生成された前記3次元形状モデル及び前記流体モデルに固有の物性値を与え、前記被検者の呼吸に伴う前記上気道、前記周囲の組織及び前記上気道内の空気の流体構造連成解析のシミュレーションを行うことにより、呼吸に合わせて変動する前記上気道の通気状態に関する情報を算出するシミュレーション実行部と、
 を備える。
In order to achieve the above object, a diagnostic apparatus according to the first aspect of the present invention provides:
Using a numerical analysis technique, based on the three-dimensional image data inside the subject's maxillofacial portion, a three-dimensional shape model of the upper airway and tissues around the upper airway, and air fluid in the upper airway A model generation unit for generating a model;
A physical property value specific to the three-dimensional shape model and the fluid model generated by the model generation unit is given, and the upper airway, the surrounding tissue, and the air fluid in the upper airway accompanying the subject's breathing A simulation execution unit that calculates information on the ventilation state of the upper airway that fluctuates according to respiration by performing a simulation of structural coupling analysis;
Is provided.
 この場合、前記モデル生成部で生成された前記上気道及び前記周囲の組織の3次元形状モデルを表示するモデル表示部と、
 前記モデル表示部に表示された前記上気道及び前記周囲の組織の3次元形状モデルの3次元形状を変更する変更部と、
 をさらに備え、
 前記シミュレーション実行部は、
 前記変更部で3次元形状が変更された前記上気道及び前記周囲の組織の3次元形状のモデルを用いて前記流体構造連成解析のシミュレーションを行うことにより、前記上気道の通気状態に関する情報を算出する、
 こととしてもよい。
In this case, a model display unit that displays a three-dimensional shape model of the upper airway and the surrounding tissue generated by the model generation unit;
A change unit for changing the three-dimensional shape of the three-dimensional shape model of the upper airway and the surrounding tissue displayed on the model display unit;
Further comprising
The simulation execution unit
By performing a simulation of the fluid-structure interaction analysis using the three-dimensional model of the upper airway and the surrounding tissue whose three-dimensional shape has been changed by the changing unit, information on the ventilation state of the upper airway is obtained. calculate,
It is good as well.
 また、前記上気道のうち鼻腔の3次元形状のモデルについては剛体として、呼吸1周期に渡る流体解析を行って、前記鼻腔の通気状態に関する情報を算出するとともに、前記鼻腔と咽頭との境界における断面平均圧力を算出する流体解析部をさらに備え、
 前記シミュレーション実行部は、
 前記流体解析部で算出された呼吸1周期に渡る前記鼻腔と咽頭との境界における断面平均圧力を初期条件として、前記鼻腔を除く前記上気道及び前記周囲の組織の3次元形状のモデルを用いて、前記流体構造連成解析のシミュレーションを行うことにより、前記上気道の通気状態に関する情報を算出する、
 こととしてもよい。
The three-dimensional model of the nasal cavity of the upper airway is a rigid body, and performs fluid analysis over one respiratory period to calculate information on the ventilation state of the nasal cavity, and at the boundary between the nasal cavity and the pharynx A fluid analysis unit for calculating a cross-sectional average pressure;
The simulation execution unit
Using the cross-sectional average pressure at the boundary between the nasal cavity and the pharynx over one respiratory cycle calculated by the fluid analysis unit as an initial condition, a model of the three-dimensional shape of the upper airway and the surrounding tissue excluding the nasal cavity is used. , By calculating a simulation of the fluid structure coupling analysis, to calculate information on the ventilation state of the upper airway,
It is good as well.
 また、前記シミュレーション実行部は、
 重力により前記周囲の組織の3次元形状のモデルを変形させた状態で、前記流体構造連成解析を行い、前記上気道の通気状態に関する情報を算出する、
 こととしてもよい。
In addition, the simulation execution unit
In a state where the three-dimensional shape model of the surrounding tissue is deformed by gravity, the fluid-structure interaction analysis is performed, and information on the ventilation state of the upper airway is calculated.
It is good as well.
 また、前記シミュレーション実行部は、
 前記上気道の通気状態に関する情報として、
 前記上気道内における空気の流れに関する情報又は前記上気道及び前記上気道の周囲の領域の変形に関する情報を算出する、
 こととしてもよい。
In addition, the simulation execution unit
As information on the ventilation state of the upper airway,
Calculating information on the flow of air in the upper airway or information on deformation of the upper airway and a region around the upper airway;
It is good as well.
 また、前記シミュレーション実行部は、
 前記上気道内における空気の流れに関する情報として、
 前記上気道内における圧力分布又は流速分布を算出する、
 こととしてもよい。
In addition, the simulation execution unit
As information on the air flow in the upper airway,
Calculating pressure distribution or flow velocity distribution in the upper airway,
It is good as well.
 また、前記シミュレーション実行部で算出された前記上気道の通気状態に関する情報を表示する結果表示部を備える、
 こととしてもよい。
In addition, a result display unit that displays information on the ventilation state of the upper airway calculated by the simulation execution unit,
It is good as well.
 この発明の第2の観点に係る診断システムは、
 被検者の顎顔面部の内部の3次元画像データを撮像する撮像装置と、
 前記撮像装置で撮像された前記3次元画像データを用いるこの発明に係る診断装置と、
 を備える。
The diagnostic system according to the second aspect of the present invention is:
An imaging device for imaging three-dimensional image data inside the maxillofacial portion of the subject;
A diagnostic apparatus according to the present invention using the three-dimensional image data imaged by the imaging apparatus;
Is provided.
 この発明の第3の観点に係るシミュレーション方法は、
 コンピュータが、数値解析手法を用いて、被検者の顎顔面部の内部の3次元画像データに基づいて、上気道及び該上気道の周囲の組織の3次元形状のモデルと、前記上気道内の空気の流体モデルとを生成するモデル生成工程と、
 コンピュータが、前記モデル生成工程で生成された前記3次元形状モデル及び前記流体モデルに固有の物性値を与え、前記被検者の呼吸に伴う前記上気道、前記周囲の組織及び前記上気道内の空気の流体構造連成解析のシミュレーションを行うことにより、呼吸に合わせて変動する前記上気道の通気状態に関する情報を算出するシミュレーション実行工程と、
 を備える。
A simulation method according to the third aspect of the present invention provides:
A computer uses a numerical analysis method to calculate a model of a three-dimensional shape of the upper airway and a tissue around the upper airway based on the three-dimensional image data inside the maxillofacial portion of the subject, A model generation process for generating a fluid model of the air;
A computer gives specific physical property values to the three-dimensional shape model and the fluid model generated in the model generation step, and the upper airway, the surrounding tissue, and the upper airway associated with the subject's breathing A simulation execution step of calculating information on the ventilation state of the upper airway, which fluctuates according to breathing, by performing a simulation of fluid-structure interaction analysis of air;
Is provided.
 この発明の第4の観点に係るプログラムは、
 コンピュータを、
 数値解析手法を用いて、被検者の顎顔面部の内部の3次元画像データに基づいて、上気道及び該上気道の周囲の組織の3次元形状のモデルと、前記上気道内の空気の流体モデルとを生成するモデル生成部、
 前記モデル生成部で生成された前記3次元形状モデル及び前記流体モデルに固有の物性値を与え、前記被検者の呼吸に伴う前記上気道、前記周囲の組織及び前記上気道内の空気の流体構造連成解析のシミュレーションを行うことにより、呼吸に合わせて変動する前記上気道の通気状態に関する情報を算出するシミュレーション実行部、
 として機能させる。
A program according to the fourth aspect of the present invention is:
Computer
Using a numerical analysis method, based on the three-dimensional image data inside the subject's maxillofacial region, a model of the three-dimensional shape of the upper airway and the tissue around the upper airway, and the air in the upper airway A model generation unit for generating a fluid model;
A physical property value specific to the three-dimensional shape model and the fluid model generated by the model generation unit is given, and the upper airway, the surrounding tissue, and the air fluid in the upper airway accompanying the subject's breathing A simulation execution unit that calculates information on the ventilation state of the upper airway that fluctuates according to respiration by performing a simulation of structural coupling analysis;
To function as.
 この発明によれば、上気道のみならずその周囲の組織の3次元形状のモデルを用いて流体構造連成解析のシミュレーションを行う。このシミュレーションにより、呼吸に伴う上気道内の空気の流れのほか、上気道及びその周囲の組織の変形をも算出することができる。実際の睡眠時における上気道及びその周囲の組織の状態を、シミュレーションにより再現することができるので、呼吸器系の疾患の原因部位をより正確に特定することができる。この結果、より確実に呼吸器系の疾患について、良好な治療成績を得ることができる。 According to the present invention, simulation of fluid-structure interaction analysis is performed using a model of the three-dimensional shape of not only the upper airway but also the surrounding tissue. By this simulation, it is possible to calculate not only the flow of air in the upper airway accompanying breathing but also the deformation of the upper airway and surrounding tissues. Since the state of the upper airway and the surrounding tissue during actual sleep can be reproduced by simulation, the cause of the respiratory system disease can be more accurately identified. As a result, good treatment results can be obtained for respiratory diseases more reliably.
この発明の実施の形態1に係る診断システムの概略的な構成を示すブロック図である。It is a block diagram which shows the schematic structure of the diagnostic system which concerns on Embodiment 1 of this invention. コンピュータのハードウエア構成を示すブロック図である。It is a block diagram which shows the hardware constitutions of a computer. 上気道、舌、軟口蓋の3次元画像の一例を示す図である。It is a figure which shows an example of the three-dimensional image of an upper airway, a tongue, and a soft palate. 上気道、舌、軟口蓋及び骨の3次元画像の一例を示す図である。It is a figure which shows an example of the three-dimensional image of an upper airway, a tongue, a soft palate, and a bone. 顎周りの筋肉等の軟組織の3次元画像の一例を示す図である。It is a figure which shows an example of the three-dimensional image of soft tissues, such as the muscle around a jaw. 上気道及び上気道の周囲の組織の3次元形状のメッシュモデルの一例が示されている。An example of a mesh model having a three-dimensional shape of an upper airway and a tissue around the upper airway is shown. 上気道の3次元画像の一例を示す図である。It is a figure which shows an example of the three-dimensional image of an upper airway. 呼吸1周期に渡る鼻腔と咽頭との境界における断面平均圧力の一例を示す図である。It is a figure which shows an example of the cross-sectional average pressure in the boundary of the nasal cavity and pharynx over one respiration cycle. 図9(A)は、仰向けになっていないときの上気道の断面の一例を示す図であり、図9(B)は、仰向けになったときの上気道の断面の一例を示す図である。FIG. 9A is a diagram showing an example of a cross section of the upper airway when not lying on the back, and FIG. 9B is a diagram showing an example of a cross section of the upper airway when lying on the back. . 呼吸に伴う流体構造連成解析による咽頭上気道部分の圧力分布の一例が示されている。An example of pressure distribution in the upper pharyngeal airway is shown by fluid-structure interaction analysis accompanying respiration. 呼吸に伴う流体構造連成解析による咽頭上気道部分の変位分布の一例が示されている。An example of the displacement distribution of the upper pharyngeal airway by the fluid-structure interaction analysis accompanying respiration is shown. 診断処理のフローチャートである。It is a flowchart of a diagnostic process. モデル生成工程のフローチャートである。It is a flowchart of a model production | generation process. シミュレーション実行工程のフローチャートである。It is a flowchart of a simulation execution process. 流体構造連成解析のシミュレーションの処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the process of the simulation of fluid structure interaction analysis. 各要素が受ける力を模式的に示す図である。It is a figure which shows typically the force which each element receives. 治療対象となる部位を示す図である。It is a figure which shows the site | part used as treatment object. この発明の実施の形態2に係る診断システムの概略的な構成を示すブロック図である。It is a block diagram which shows the schematic structure of the diagnostic system which concerns on Embodiment 2 of this invention. 変更前の上気道及び上気道の周囲の組織を模式的に示す図である。It is a figure which shows typically the structure around the upper airway and the upper airway before a change. 変更後の上気道及び上気道の周囲の組織を模式的に示す図である。It is a figure which shows typically the structure | tissue of the upper airway after change, and the upper airway.
 以下、この発明の実施の形態について図面を参照して詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
実施の形態1.
 まず、この発明の実施の形態1について説明する。
Embodiment 1 FIG.
First, a first embodiment of the present invention will be described.
 図1に示すこの実施の形態1に係る診断システム100は、睡眠時無呼吸症候群の原因部位を特定すべく、被検者である人体の上気道の通気状態をコンピュータ上で再現するために用いられる。診断システム100は、被検者の上気道の通気状態を再現するために、X線CT(Computer Tomography)装置等により取得された被検者の顎顔面部の内部の3次元画像データに基づいて、顎顔面部における上気道及び上気道の周囲の組織の3次元形状のモデルと、上気道内の空気の流体モデルとを生成する。上気道とは、鼻から鼻腔、鼻咽腔、咽頭、喉頭までをいう。 The diagnostic system 100 according to the first embodiment shown in FIG. 1 is used to reproduce on the computer the ventilation state of the upper respiratory tract of the human body that is the subject in order to identify the cause of sleep apnea syndrome. It is done. The diagnostic system 100 is based on the three-dimensional image data inside the subject's maxillofacial region acquired by an X-ray CT (Computer Tomography) device or the like in order to reproduce the ventilation state of the subject's upper airway. A model of a three-dimensional shape of the upper airway in the maxillofacial portion and a tissue around the upper airway and a fluid model of air in the upper airway are generated. The upper respiratory tract means from the nose to the nasal cavity, nasopharynx, pharynx, and larynx.
 さらに、診断システム100は、上気道及び上気道の周囲の組織の3次元形状のモデルと、上気道内の空気の流体モデルとを用いて、流体構造連成解析のシミュレーションを行う。上気道、周囲の組織の3次元形状のモデル及び上気道内の空気の流体モデルにそれぞれ固有の物性値を与え、流体構造連成解析のシミュレーションを行えば、呼吸に合わせて変動する上気道、周囲の組織の変形と上気道内の呼吸による空気の流れとの相互作用を明らかにすることができる。また、上気道中の空気の流れ(圧力分布、流速分布)と、呼吸中の周囲の組織の変形による上気道の変形を両方正確に再現することができる。これらの再現により、睡眠時無呼吸症候群の原因部位をより正確に特定することができる。 Furthermore, the diagnosis system 100 performs a simulation of fluid-structure interaction analysis using a three-dimensional shape model of the upper airway and the surrounding tissue of the upper airway and a fluid model of the air in the upper airway. The upper airway, the three-dimensional shape model of the surrounding tissue, and the fluid model of the air in the upper airway are given unique physical properties, and the simulation of fluid-structure interaction analysis makes the upper airway fluctuating according to respiration, It is possible to clarify the interaction between the surrounding tissue deformation and the air flow due to breathing in the upper airway. In addition, it is possible to accurately reproduce both the air flow (pressure distribution, flow velocity distribution) in the upper airway and the deformation of the upper airway due to the deformation of surrounding tissue during breathing. By reproducing these, the cause site of sleep apnea syndrome can be identified more accurately.
 図1に示すように、診断システム100は、撮像装置1とコンピュータ2とを備える。撮像装置1とコンピュータ2との間は、通信ネットワークで接続されている。この通信ネットワークにより、撮像装置1とコンピュータ2との間でデータの送受信が可能となる。 As shown in FIG. 1, the diagnostic system 100 includes an imaging device 1 and a computer 2. The imaging device 1 and the computer 2 are connected via a communication network. Through this communication network, data can be transmitted and received between the imaging apparatus 1 and the computer 2.
 撮像装置1は、X線CT装置である。撮像装置1は、被検者の顎顔面部の3次元X線CT画像を撮像する。撮像装置1は、X線管と検出器とを備える。X線CTスキャンが実行されると、X線管から照射され、被検体を透過したX線が検出器により検出される。検出器の検出結果は、生データとして撮像装置1に保存される。 The imaging apparatus 1 is an X-ray CT apparatus. The imaging apparatus 1 captures a three-dimensional X-ray CT image of the subject's maxillofacial portion. The imaging device 1 includes an X-ray tube and a detector. When the X-ray CT scan is executed, X-rays irradiated from the X-ray tube and transmitted through the subject are detected by the detector. The detection result of the detector is stored in the imaging device 1 as raw data.
 さらに、撮像装置1において、保存された生データに基づいて画像再構成処理を施すことにより被検者の顎顔面部の横断面データ(スライス画像データ)が生成される。さらに、撮像装置1は、スライス画像データに基づいて、被検者の顎顔面部の内部の3次元画像データを生成する。以上のようにして、被検体の顎顔面部の内部の3次元画像データが得られる。得られた3次元画像データは、DICOM(Digital Imaging and Communications in Medicine)データとして、通信ネットワークを介してコンピュータ2に送信される。 Further, the imaging apparatus 1 generates cross-sectional data (slice image data) of the maxillofacial portion of the subject by performing image reconstruction processing based on the stored raw data. Furthermore, the imaging device 1 generates three-dimensional image data inside the maxillofacial portion of the subject based on the slice image data. As described above, three-dimensional image data inside the maxillofacial portion of the subject is obtained. The obtained three-dimensional image data is transmitted to the computer 2 through the communication network as DICOM (Digital Imaging and Communications Communications in Medicine) data.
 DICOMデータとは、DICOM規格に基づいて生成されたデータをいう。DICOM規格は、主に医療用画像データのフォーマットとして用いられている。DICOMデータは、上記3次元画像データとDICOM規格に準じた付帯情報とで構成される。付帯情報は、患者情報、撮影条件情報、画像情報及び表示情報等の画像データの属性情報であり、DICOMデータにタグ情報として埋め込まれる。 DICOM data refers to data generated based on the DICOM standard. The DICOM standard is mainly used as a format for medical image data. The DICOM data is composed of the three-dimensional image data and incidental information according to the DICOM standard. The incidental information is attribute information of image data such as patient information, imaging condition information, image information, and display information, and is embedded as tag information in DICOM data.
 コンピュータ2は、受信したDICOMデータに含まれる3次元X線CT画像データに基づいて、被検体の顎顔面部における上気道及び上気道の周囲の組織の3次元形状のモデルを生成する。このモデルは、有限要素法に基づいて生成される。このモデルは、節点を境界とする有限数の要素に物体を分割することにより生成される。すなわち、生成される上気道及び上気道の周囲の組織のモデルは、複数の要素が節点でメッシュ状に接合されて構成されたいわゆるメッシュモデルとなる。要素の分割は、医療用画像データを構成するボクセルデータを基準として行うようにすればよい。 The computer 2 generates a model of a three-dimensional shape of the upper airway in the maxillofacial portion of the subject and the tissue around the upper airway based on the three-dimensional X-ray CT image data included in the received DICOM data. This model is generated based on the finite element method. This model is generated by dividing an object into a finite number of elements bounded by nodes. That is, the generated upper airway and the tissue model around the upper airway are so-called mesh models configured by joining a plurality of elements in a mesh shape at nodes. The element may be divided on the basis of voxel data constituting the medical image data.
 さらに、コンピュータ2は、上気道及びその顎顔面の周囲の組織の3次元形状のメッシュモデルに、それぞれ固有の物性値を与え、被検者の呼吸に伴う流体構造連成解析シミュレーションを行って、上気道の通気状態に関する情報を取得する。 Furthermore, the computer 2 gives unique physical property values to the mesh model of the three-dimensional shape of the tissue around the upper airway and its maxillofacial surface, and performs a fluid-structure interaction analysis simulation accompanying the breathing of the subject, Get information about the ventilation status of the upper airway.
 図2は、図1のコンピュータ2のハードウエア構成を示す。図2に示すように、コンピュータ2は、制御部31、主記憶部32、外部記憶部33、操作部34、表示部35及び通信部36を備える。主記憶部32、外部記憶部33、操作部34、表示部35及び通信部36はいずれも内部バス30を介して制御部31に接続されている。 FIG. 2 shows the hardware configuration of the computer 2 in FIG. As shown in FIG. 2, the computer 2 includes a control unit 31, a main storage unit 32, an external storage unit 33, an operation unit 34, a display unit 35, and a communication unit 36. The main storage unit 32, the external storage unit 33, the operation unit 34, the display unit 35, and the communication unit 36 are all connected to the control unit 31 via the internal bus 30.
 制御部31は、CPU(Central Processing Unit)等から構成されている。このCPUが、外部記憶部33に記憶されているプログラム39を実行することにより、図1に示すコンピュータ2の各構成要素が実現される。 The control unit 31 includes a CPU (Central Processing Unit) and the like. The CPU executes the program 39 stored in the external storage unit 33, thereby realizing each component of the computer 2 shown in FIG.
 主記憶部32は、RAM(Random-Access Memory)等から構成されている。主記憶部32には、外部記憶部33に記憶されているプログラム39がロードされる。この他、主記憶部32は、制御部31の作業領域(データの一時記憶領域)として用いられる。 The main storage unit 32 is composed of RAM (Random-Access Memory) or the like. The main storage unit 32 is loaded with a program 39 stored in the external storage unit 33. In addition, the main storage unit 32 is used as a work area (temporary data storage area) of the control unit 31.
 外部記憶部33は、フラッシュメモリ、ハードディスク、DVD-RAM(Digital Versatile Disc Random-Access Memory)、DVD-RW(Digital Versatile Disc ReWritable)等の不揮発性メモリから構成される。外部記憶部33には、制御部31に実行させるためのプログラム39があらかじめ記憶されている。また、外部記憶部33は、制御部31の指示に従って、このプログラム39の実行の際に用いられるデータを制御部31に供給し、制御部31から供給されたデータを記憶する。 The external storage unit 33 includes a non-volatile memory such as a flash memory, a hard disk, a DVD-RAM (Digital Versatile Disc Random-Access Memory), a DVD-RW (Digital Versatile Disc ReWritable). In the external storage unit 33, a program 39 to be executed by the control unit 31 is stored in advance. Further, the external storage unit 33 supplies data used when executing the program 39 to the control unit 31 in accordance with an instruction from the control unit 31, and stores the data supplied from the control unit 31.
 操作部34は、キーボード及びマウスなどのポインティングデバイス等と、キーボード及びポインティングデバイス等を内部バス30に接続するインターフェイス装置から構成されている。操作部34を介して、操作者が操作した内容に関する情報が制御部31に入力される。 The operation unit 34 includes a pointing device such as a keyboard and a mouse, and an interface device that connects the keyboard and the pointing device to the internal bus 30. Information regarding the content operated by the operator is input to the control unit 31 via the operation unit 34.
 表示部35は、CRT(Cathode Ray Tube)、LCD(Liquid Crystal Display)又は有機EL(ElectroLuminescence)などから構成される。操作者が操作情報を入力する場合は、表示部35には、操作用の画面が表示される。また、表示部35には、後述のとおり、被検者の上気道の通気状態に関する情報などが表示される。 The display unit 35 includes a CRT (Cathode Ray Tube), an LCD (Liquid Crystal Display), an organic EL (ElectroLuminescence), or the like. When the operator inputs operation information, an operation screen is displayed on the display unit 35. Further, as will be described later, information related to the ventilation state of the upper airway of the subject is displayed on the display unit 35.
 通信部36は、シリアルインターフェイスまたはパラレルインターフェイスから構成されている。通信部36が、通信ネットワークを介して、撮像装置1と接続され、撮像装置1から送られた3次元X線CT画像データを受信する。 The communication unit 36 includes a serial interface or a parallel interface. The communication unit 36 is connected to the imaging device 1 via the communication network and receives the 3D X-ray CT image data transmitted from the imaging device 1.
 図1に示すコンピュータ2の各種構成要素は、図2に示すプログラム39が、制御部31、主記憶部32、外部記憶部33、操作部34、表示部35及び通信部36などをハードウエア資源として用いて実行されることによってその機能を発揮する。 1 includes a control unit 31, a main storage unit 32, an external storage unit 33, an operation unit 34, a display unit 35, a communication unit 36, etc. as hardware resources. It demonstrates its function by being used as a.
 図2に示すようなハードウエア構成を有するコンピュータ2は、その機能構成として、図1に示すように、記憶部10と、データ取得部11と、モデル生成部12と、流体解析部13と、シミュレーション実行部14と、出力部15と、を備える。 As shown in FIG. 1, the computer 2 having a hardware configuration as shown in FIG. 2 has a storage unit 10, a data acquisition unit 11, a model generation unit 12, a fluid analysis unit 13, A simulation execution unit 14 and an output unit 15 are provided.
 記憶部10は、図2に示すハードウエア構成のうち、図2の外部記憶部33に対応する。記憶部10は、各種データを記憶する。記憶部10によって記憶されるデータの1つにDICOMデータ21がある。 The storage unit 10 corresponds to the external storage unit 33 in FIG. 2 in the hardware configuration shown in FIG. The storage unit 10 stores various data. One of the data stored by the storage unit 10 is DICOM data 21.
 データ取得部11は、図2に示すハードウエア構成のうち、制御部31及び通信部36に対応する。データ取得部11は、撮像装置1から送信された顎顔面部の3次元X線CT画像データ(DICOMデータ)を受信する。データ取得部11は、受信したDICOMデータ21を記憶部10に記憶する。 The data acquisition unit 11 corresponds to the control unit 31 and the communication unit 36 in the hardware configuration shown in FIG. The data acquisition unit 11 receives the three-dimensional X-ray CT image data (DICOM data) of the maxillofacial portion transmitted from the imaging device 1. The data acquisition unit 11 stores the received DICOM data 21 in the storage unit 10.
 モデル生成部12は、図2に示すハードウエア構成のうち、制御部31に対応する。モデル生成部12は、記憶部10に記憶されたDICOMデータ21、すなわち被検者の顎顔面部の内部の3次元画像データを入力する。モデル生成部12は、DICOMデータ21に基づいて、有限要素法を用いて、上気道及び該上気道の周囲の組織の3次元形状モデルと、上気道内の空気の流体モデルとを生成する。 The model generation unit 12 corresponds to the control unit 31 in the hardware configuration illustrated in FIG. The model generation unit 12 inputs DICOM data 21 stored in the storage unit 10, that is, three-dimensional image data inside the subject's maxillofacial portion. Based on the DICOM data 21, the model generation unit 12 generates a three-dimensional shape model of the upper airway and the tissue around the upper airway and a fluid model of air in the upper airway using the finite element method.
 上気道及び上気道の周囲の組織の3次元形状モデルは、各組織の構造及び形状の変形を示す支配方程式に基づいて構築される。上気道の周囲の組織としては、骨、舌、軟口蓋、顎顔面の筋肉等の軟組織が含まれる。 The three-dimensional shape model of the upper airway and the tissues around the upper airway is constructed based on the governing equations indicating the structure and shape deformation of each tissue. Tissues around the upper respiratory tract include soft tissues such as bones, tongue, soft palate, and maxillofacial muscles.
 流体モデルは、流体の圧力及び流速等を空気の流れに関する情報を変数とする流体の支配方程式(例えば、ベルヌーイの方程式、ナビエストークスの方程式等)に基づいて構築される。 The fluid model is constructed based on a fluid governing equation (for example, Bernoulli's equation, Naviestoke's equation, etc.) using information on the air flow such as the pressure and flow velocity of the fluid as variables.
 図3には、上気道、舌、軟口蓋の3次元画像の一例が示されている。A1の部分が上気道であり、A2の部分が軟口蓋であり、A3の部分が舌である。図3に示すように、舌A3、軟口蓋A2は、上気道A1に隣接する上気道の周囲の組織である。舌A3は、睡眠時無呼吸症候群の主な原因部位として知られている。仰向位に寝たときに、舌A3が、落ち込んで、上気道を圧迫するためである。 FIG. 3 shows an example of a three-dimensional image of the upper airway, tongue, and soft palate. A1 is the upper airway, A2 is the soft palate, and A3 is the tongue. As shown in FIG. 3, the tongue A3 and the soft palate A2 are tissues around the upper airway adjacent to the upper airway A1. The tongue A3 is known as the main cause of sleep apnea syndrome. This is because the tongue A3 falls down and squeezes the upper airway when sleeping in the supine position.
 図4では、上気道、軟口蓋、舌に加え、骨の3次元画像が示されている。A4の部分が骨である。図4に示すように、上気道、舌、軟口蓋の周りには、下顎骨及び頸椎が存在する。下顎骨及び頸椎についても、上気道の周囲の組織として、それらの3次元形状モデルが生成される。 FIG. 4 shows a three-dimensional image of bone in addition to the upper airway, soft palate, and tongue. A4 is a bone. As shown in FIG. 4, the mandible and cervical vertebrae exist around the upper airway, tongue, and soft palate. For the mandible and cervical vertebra, their three-dimensional shape models are generated as tissues around the upper airway.
 図5には、顎周りの筋肉、脂肪等の軟組織の3次元画像の一例が示されている。このような顎周りの軟組織についても、上気道の周囲の組織として、3次元形状モデルが生成される。顎周りの軟組織の肥大化は、呼吸に多大な影響を与えるためである。 FIG. 5 shows an example of a three-dimensional image of soft tissues such as muscles and fat around the jaw. For such soft tissue around the jaw, a three-dimensional shape model is generated as tissue around the upper airway. This is because enlargement of the soft tissue around the jaw greatly affects respiration.
 図6には、上気道、舌、軟口蓋、骨、顎周りの軟組織の部分の3次元形状のメッシュモデルの一例が示されている。これらの3次元形状のモデルでは、各組織の境界面において、要素同士を結ぶ節点が共通となっている。このため、上気道及びその周囲の領域が、1つの3次元形状モデルとみなすことができるように形成されている。このようにすれば、各組織の変形により、隣接する組織も変形していく様子を3次元形状モデルにより、再現することが可能になる。 FIG. 6 shows an example of a three-dimensional mesh model of soft tissue portions around the upper airway, tongue, soft palate, bone, and jaw. In these three-dimensional shape models, nodes connecting elements are common on the boundary surface of each tissue. For this reason, the upper airway and its surrounding area are formed so as to be regarded as one three-dimensional shape model. In this way, it is possible to reproduce, by the three-dimensional shape model, how the adjacent tissues are deformed due to the deformation of each tissue.
 モデル生成部12は、上気道については、鼻腔の部分と、咽頭以下の部分とに分けて、3次元形状のモデルを生成する。鼻腔の部分についてはSTL(Standard Triangulated Language)データとして生成される。STLデータとは、立体を近似するために使用される三角パッチの3点を表わすデータであり、物体表面が三角形パッチ(ファセット)による多角形として表されている。 The model generation unit 12 generates a three-dimensional model by dividing the upper airway into a nasal cavity portion and a portion below the pharynx. The nasal cavity portion is generated as STL (Standard (Triangulated Language) data. The STL data is data representing three points of a triangular patch used to approximate a solid, and the object surface is represented as a polygon by triangular patches (facets).
 図7には、上気道の3次元画像の一例が示されている。図7では、線Lより上の部分が、鼻腔部分となっている。ここでは、線Lより上の部分が、鼻腔部分STLデータ22として記憶部10に記憶される。 FIG. 7 shows an example of a three-dimensional image of the upper airway. In FIG. 7, the part above the line L is the nasal cavity part. Here, the portion above the line L is stored in the storage unit 10 as the nasal cavity portion STL data 22.
 モデル生成部12は、咽頭以下の上気道については、3次元形状のメッシュモデルとして生成される。生成された咽頭以下の上気道の3次元形状のメッシュモデル及び他の組織の3次元形状メッシュモデルは、3次元形状モデルデータ23として、記憶部10に格納される。 The model generation unit 12 generates a three-dimensional mesh model for the upper respiratory tract below the pharynx. The generated three-dimensional mesh model of the upper airway below the pharynx and the three-dimensional mesh models of other tissues are stored in the storage unit 10 as the three-dimensional shape model data 23.
 流体解析部13は、図2に示すハードウエア構成のうち、制御部31に対応する。流体解析部13は、鼻腔部分STLデータ22を用いて、鼻腔については剛体として、呼吸1周期に渡る流体解析を行って、鼻腔の通気状態に関する情報を算出する。鼻腔については、その内部構造が複雑であり、気道の形状にほとんど変化がなく、流体構造連成解析が困難であるためである。算出される鼻腔の通気状態に関する情報としては、例えば、鼻腔内の圧力分布がある。 The fluid analysis unit 13 corresponds to the control unit 31 in the hardware configuration illustrated in FIG. The fluid analysis unit 13 uses the nasal cavity portion STL data 22 to perform a fluid analysis over one respiratory cycle with the nasal cavity as a rigid body, and calculates information regarding the ventilation state of the nasal cavity. This is because the internal structure of the nasal cavity is complicated, there is almost no change in the shape of the airway, and fluid-structure interaction analysis is difficult. As information about the calculated ventilation state of the nasal cavity, for example, there is a pressure distribution in the nasal cavity.
 流体解析部13は、鼻腔内の圧力分布に基づいて、鼻腔と咽頭との境界における断面平均圧力P(t)を算出する。図8には、呼吸1周期に渡る鼻腔と咽頭との境界における断面平均圧力P(t)の一例が示されている。図8に示すように、断面平均圧力P(t)は、周期Tで呼気と吸気とを繰り返す。呼気において鼻腔内の空気は外気圧に対して正圧となり、吸気において、鼻腔内の空気は外気圧に対して負圧となる。 The fluid analysis unit 13 calculates the cross-sectional average pressure P (t) at the boundary between the nasal cavity and the pharynx based on the pressure distribution in the nasal cavity. FIG. 8 shows an example of the cross-sectional average pressure P (t) at the boundary between the nasal cavity and the pharynx over one respiratory cycle. As shown in FIG. 8, the cross-sectional average pressure P (t) repeats exhalation and inspiration with a period T. In expiration, air in the nasal cavity is positive with respect to the external pressure, and in inspiration, air in the nasal cavity is in negative pressure with respect to the external pressure.
 シミュレーション実行部14は、図2に示すハードウエア構成のうち、制御部31に対応する。シミュレーション実行部14は、モデル生成部12で生成された3次元形状モデル及び流体モデルに固有の物性値を与え、被検者の呼吸に伴う上気道、周囲の組織及び上気道内の空気の流体構造連成解析のシミュレーションを行うことにより、呼吸に合わせて変動する上気道の通気状態に関する情報を算出する。 The simulation execution unit 14 corresponds to the control unit 31 in the hardware configuration illustrated in FIG. The simulation execution unit 14 gives specific physical property values to the three-dimensional shape model and the fluid model generated by the model generation unit 12, and the upper airway, surrounding tissues, and air fluid in the upper airway accompanying the subject's breathing By performing a simulation of the structural coupling analysis, information on the ventilation state of the upper airway that varies with breathing is calculated.
 流体構造連成解析のシミュレーションとは、流体の流れが及ぼす力によって固体構造物が変形する現象を解析する数値解析シミュレーションである。睡眠時無呼吸症候群は、上気道の周囲の組織が根本的な原因部位であることが多い。このため、上気道の周囲の組織を含めて流体構造連成解析のシミュレーションを行って、睡眠時の上気道の周囲の組織の変形を再現するようにすれば、睡眠時無呼吸症候群の原因部位をより正確に特定することができる。 The fluid structure coupled analysis simulation is a numerical analysis simulation for analyzing a phenomenon in which a solid structure is deformed by a force exerted by a fluid flow. Sleep apnea syndrome is often the root cause of tissue surrounding the upper respiratory tract. For this reason, if the simulation of fluid-structure interaction analysis including the tissues around the upper airway is performed to reproduce the deformation of the tissues around the upper airway during sleep, the cause of sleep apnea syndrome Can be identified more accurately.
 3次元形状モデルの固有の物性値には、各組織のヤング率、線膨張係数、ポアソン比、せん断弾性係数等があり、流体については空気の粘性係数、密度、体積弾性率、レイノルズ数などがある。これらの物性値としては、物性値データ25として記憶部10に記憶されたものが用いられる。物性値として、その組織の物性値として既知のものを用いてもよいが、被検者ごとに測定したものを用いてもよい。 Specific physical property values of the three-dimensional shape model include Young's modulus, linear expansion coefficient, Poisson's ratio, shear elastic modulus, etc. of each tissue. For fluid, the viscosity coefficient of air, density, bulk modulus, Reynolds number, etc. is there. As these physical property values, those stored in the storage unit 10 as the physical property value data 25 are used. As the physical property values, those known as the physical property values of the tissue may be used, but those measured for each subject may be used.
 シミュレーション実行部14は、算出された呼吸1周期に渡る鼻腔と咽頭との境界における断面平均圧力P(t)を初期条件として、鼻腔を除く上気道及び周囲の組織の3次元形状のメッシュモデルを用いて被検者の呼吸に伴う上気道及び周囲の組織の流体構造連成解析のシミュレーションを行う。 The simulation execution unit 14 uses a calculated cross-sectional average pressure P (t) at the boundary between the nasal cavity and the pharynx over one respiratory cycle as an initial condition, and generates a three-dimensional mesh model of the upper airway excluding the nasal cavity and surrounding tissues. It is used to simulate the fluid-structure interaction analysis of the upper respiratory tract and surrounding tissues associated with the subject's breathing.
 シミュレーション実行部14は、周囲の組織の3次元形状のモデルを重力により変形させた状態で、被検者の呼吸に伴う上気道及び周囲の組織の流体構造連成解析のシミュレーションを行う。 The simulation execution unit 14 performs a simulation of fluid-structure interaction analysis of the upper airway and the surrounding tissue that accompanies the subject's breathing in a state where the three-dimensional model of the surrounding tissue is deformed by gravity.
 図9(A)には、仰向けになっていないときの上気道の断面の一例が示されており、図9(B)には、仰向けになったときの上気道の断面の一例が示されている。図9(A)及び図9(B)を比較するとわかるように、仰向けになった場合の方が、上気道が狭くなっている。これは、舌の部分が重力により沈下し、上気道を圧迫しているためである。 FIG. 9A shows an example of a cross section of the upper airway when not lying on the back, and FIG. 9B shows an example of a cross section of the upper airway when lying on the back. ing. As can be seen by comparing FIG. 9A and FIG. 9B, the upper airway is narrower when lying on its back. This is because the tongue part is sunk by gravity and compresses the upper airway.
 このように、シミュレーション実行部14は、重力を考慮して流体構造連成解析のシミュレーションを行うので、被検者の姿勢に応じて変形する上気道を正確に再現した状態で、上気道の通気状態を算出することが可能となる。 As described above, the simulation execution unit 14 performs the simulation of the fluid structure coupled analysis in consideration of the gravity. Therefore, the ventilation of the upper airway is accurately reproduced while the upper airway deforming according to the posture of the subject is accurately reproduced. The state can be calculated.
 シミュレーション実行部14は、上気道における空気の流れに関する情報及び上気道及び上気道の周囲の組織の3次元形状モデルの変形状態を算出する。シミュレーション実行部14は、上気道における空気の流れに関する情報として、上気道における圧力分布、流速分布又は上気道及び上気道の周囲の組織の3次元形状モデルの変位分布を算出する。これらの情報は、シミュレーション結果データ26として記憶部10に記憶される。 The simulation execution unit 14 calculates information regarding the air flow in the upper airway and the deformation state of the upper airway and the three-dimensional shape model of the tissue around the upper airway. The simulation execution unit 14 calculates the pressure distribution in the upper airway, the flow velocity distribution, or the displacement distribution of the three-dimensional shape model of the tissue around the upper airway and the upper airway as information on the air flow in the upper airway. These pieces of information are stored in the storage unit 10 as simulation result data 26.
 出力部15は、図2のハードウエア構成における制御部31及び表示部35に対応する。出力部15は、上気道内の圧力分布、流速分布又は上気道等の変形状態を表示する。 The output unit 15 corresponds to the control unit 31 and the display unit 35 in the hardware configuration of FIG. The output unit 15 displays the pressure distribution in the upper airway, the flow velocity distribution, or the deformation state of the upper airway.
 図10には、呼吸に伴う流体構造連成解析による咽頭気道部分の圧力分布の一例が示されている。また、図11には、呼吸に伴う流体構造連成解析による咽頭上気道部分の変位分布の一例が示されている。図10では、圧力が高くなればなるほど色が濃くなるように表示されている。図11では、変位が大きくなればなるほど色が濃くなるように表示されている。図10に示す圧力分布では、上気道の上の方の圧力が高くなっている。また、図11に示す変位分布では、局所的に変位が大きくなっている場所はない。 FIG. 10 shows an example of the pressure distribution in the pharyngeal airway part by the fluid structure coupled analysis accompanying respiration. Further, FIG. 11 shows an example of the displacement distribution of the upper pharyngeal airway portion by the fluid structure coupled analysis accompanying respiration. In FIG. 10, the higher the pressure is, the darker the color is displayed. In FIG. 11, the larger the displacement is, the darker the color is displayed. In the pressure distribution shown in FIG. 10, the pressure on the upper airway is higher. Further, in the displacement distribution shown in FIG. 11, there is no place where the displacement is locally increased.
 出力部15は、流体構造連成解析のシミュレーションにより変形する上気道及び上気道の周囲の組織の3次元形状も合わせて表示出力することが可能である。 The output unit 15 can also display and output the upper airway deformed by the fluid-structure interaction analysis and the three-dimensional shape of the tissue around the upper airway.
 次に、この診断システム100による診断処理の流れについて説明する。図12に示すように、まず、撮像装置1において撮像工程を行う(ステップS1)。この撮像工程において、被検者の顎顔面部の内部の3次元画像データが得られる。この3次元画像データは、コンピュータ2に送られ、データ取得部11により、DICOMデータ21として、コンピュータ2の記憶部10に記憶される。 Next, the flow of diagnostic processing by the diagnostic system 100 will be described. As shown in FIG. 12, first, an imaging process is performed in the imaging apparatus 1 (step S1). In this imaging step, three-dimensional image data inside the subject's maxillofacial portion is obtained. The three-dimensional image data is sent to the computer 2 and stored in the storage unit 10 of the computer 2 as DICOM data 21 by the data acquisition unit 11.
 続いて、コンピュータ2は、モデル生成工程を行う(ステップS2)。モデル生成工程では、図13に示すように、モデル生成部12が、被検者の顎顔面部の内部の3次元画像データ(DICOMデータ21)に基づいて、上気道及び周囲の組織の3次元形状モデル及び上気道内の流体モデルを生成し、生成された流体モデルのデータを3次元形状モデルデータ23として、記憶部10に記憶する(ステップS21)。ここで、モデル生成部12は、上気道については、鼻腔部分の3次元形状のモデルと、鼻腔以外の部分の3次元形状のモデルとを分けて生成する。続いて、モデル生成部12は、鼻腔部分のSTLデータを生成し、鼻腔部分STLデータ22として記憶部10に記憶する(ステップS22)。 Subsequently, the computer 2 performs a model generation process (step S2). In the model generation step, as shown in FIG. 13, the model generation unit 12 performs the three-dimensional analysis of the upper airway and surrounding tissues based on the three-dimensional image data (DICOM data 21) inside the subject's maxillofacial portion. A shape model and a fluid model in the upper airway are generated, and the data of the generated fluid model is stored in the storage unit 10 as the three-dimensional shape model data 23 (step S21). Here, the model generation unit 12 generates the three-dimensional model of the nasal cavity part and the three-dimensional model of the part other than the nasal cavity for the upper airway separately. Subsequently, the model generation unit 12 generates STL data of the nasal cavity portion and stores it as the nasal cavity portion STL data 22 in the storage unit 10 (step S22).
 続いて、流体解析部13は、鼻腔部分STLデータ22に基づいて、鼻腔部分の流体解析を行い、鼻腔内の圧力分布を算出し、鼻腔内圧力分布データ24として、記憶部10に記憶する(ステップS23)。流体解析は、鼻腔部分が剛性であり変形しないものとして行われる。流体解析部13は、流体解析により得られた圧力分布に基づいて、鼻腔と咽頭との間の平均断面圧力P(t)を算出して、あわせて鼻腔内圧力分布データ24に含んで記憶部10に記憶する(ステップS24)。 Subsequently, the fluid analysis unit 13 performs a fluid analysis of the nasal cavity part based on the nasal cavity part STL data 22, calculates the pressure distribution in the nasal cavity, and stores it in the storage unit 10 as the intranasal pressure distribution data 24 ( Step S23). The fluid analysis is performed on the assumption that the nasal cavity portion is rigid and does not deform. The fluid analysis unit 13 calculates an average cross-sectional pressure P (t) between the nasal cavity and the pharynx based on the pressure distribution obtained by the fluid analysis, and also includes it in the intranasal pressure distribution data 24 to store it. 10 (step S24).
 図12に戻り、続いて、コンピュータ2は、シミュレーション実行工程を行う(ステップS3)。シミュレーション実行工程では、図14に示すように、シミュレーション実行部14は、記憶部10に記憶された物性値データ25を参照して、上気道及び周囲の組織の物性値をそれぞれの3次元形状モデルに設定する(ステップS31)。 Returning to FIG. 12, subsequently, the computer 2 performs a simulation execution process (step S3). In the simulation execution step, as shown in FIG. 14, the simulation execution unit 14 refers to the physical property value data 25 stored in the storage unit 10, and sets the physical property values of the upper airway and surrounding tissues to the respective three-dimensional shape models. (Step S31).
 例えば、咽頭以下の上気道の3次元形状モデルについては、各組織に固有のヤング率、ポアソン比などの物性値が3次元形状モデルに設定される。例えば、舌の3次元形状モデルについては、舌の物性値が設定され、軟口蓋の3次元形状モデルについては、軟口蓋の物性値が設定され、骨の3次元形状モデルについては、骨の物性値が設定され、顎周りの軟組織の3次元形状モデルについては、軟組織の物性値が設定される。 For example, for the three-dimensional shape model of the upper respiratory tract below the pharynx, physical properties such as Young's modulus and Poisson's ratio specific to each tissue are set in the three-dimensional shape model. For example, the physical property value of the tongue is set for the three-dimensional shape model of the tongue, the physical property value of the soft palate is set for the three-dimensional shape model of the soft palate, and the physical property value of the bone is set for the three-dimensional shape model of the bone. For the three-dimensional shape model of the soft tissue around the jaw, the physical property value of the soft tissue is set.
 続いて、シミュレーション実行部14は、重力方向を設定する(ステップS32)。この設定は操作部34の操作入力により行われる。例えば、仰向位での上気道の通気状態を診断する場合には、被検者の後頭部側が下側として設定される。 Subsequently, the simulation execution unit 14 sets the direction of gravity (step S32). This setting is performed by an operation input from the operation unit 34. For example, when diagnosing the ventilation state of the upper airway in the supine position, the occipital side of the subject is set as the lower side.
 続いて、シミュレーション実行部14は、流体構造連成解析のシミュレーションを行う(ステップS33)。上気道及び周囲の組織の3次元形状のモデルと上気道の流体モデルとは一体化された状態でシミュレーションが行われる。 Subsequently, the simulation executing unit 14 performs a fluid structure coupled analysis simulation (step S33). The simulation is performed in a state where the three-dimensional shape model of the upper airway and surrounding tissue and the fluid model of the upper airway are integrated.
 このシミュレーションでは、上気道における鼻腔と咽頭との間の平均断面圧力P(t)が、初期条件として用いられる。そして、上気道内の空気の流れを解析する流体解析と、上気道及び周囲の組織の変形を解析する構造解析とが、それらの3次元形状のモデルと流体モデルとの相互の影響を考慮して同時に行われ、一呼吸における上気道内の圧力分布、流速分布及び上気道の変位分布が算出される。 In this simulation, the average cross-sectional pressure P (t) between the nasal cavity and pharynx in the upper airway is used as an initial condition. Then, the fluid analysis that analyzes the air flow in the upper airway and the structural analysis that analyzes the deformation of the upper airway and the surrounding tissue take into account the mutual effects of the three-dimensional shape model and the fluid model. The pressure distribution, flow velocity distribution, and upper airway displacement distribution in the upper airway in one breath are calculated.
 図15には、ステップS33において行われる流体構造連成解析のシミュレーションの処理の流れが示されている。まず、シミュレーション実行部14は、重力計算を行って、周囲の組織の3次元形状のモデルを変形させた状態とする(ステップS41)。この状態で、上気道及び周囲の組織を含む3次元形状モデルは、図9(B)に示される状態となる。 FIG. 15 shows the flow of the simulation process of the fluid structure interaction analysis performed in step S33. First, the simulation execution unit 14 performs a gravity calculation so that the three-dimensional shape model of the surrounding tissue is deformed (step S41). In this state, the three-dimensional shape model including the upper airway and surrounding tissues is in the state shown in FIG.
 図16には、仰向位における上気道及び上気道の周辺の組織が模式的に示されている。図16に示すように、被検者が仰向けに寝ている場合、上気道A1は、舌A3と下側の骨A4との間に上下に挟まれるようになる。さらに、重力Gによる舌A3の落ち込みにより、上気道A1は、変形して、起きている状態よりも狭くなっている。 FIG. 16 schematically shows the upper airway in the supine position and the tissue around the upper airway. As shown in FIG. 16, when the subject is lying on his / her back, the upper airway A1 is vertically sandwiched between the tongue A3 and the lower bone A4. Furthermore, due to the drop of the tongue A3 due to the gravity G, the upper airway A1 is deformed and becomes narrower than the awake state.
 図15に戻り、シミュレーション実行部14は、まず、上気道A1内の流体モデルA5の流体解析を行い、上気道内の圧力Pを求める(ステップS42)。ここで、シミュレーション実行部14は、流体解析により求められた圧力P(図16参照)に基づいて、上気道A5の内壁面(境界面)への荷重条件を求める。 15, the simulation execution unit 14 first performs a fluid analysis of the fluid model A5 in the upper airway A1 to obtain the pressure P in the upper airway (step S42). Here, the simulation execution part 14 calculates | requires the load conditions to the inner wall surface (boundary surface) of upper airway A5 based on the pressure P (refer FIG. 16) calculated | required by the fluid analysis.
 続いて、シミュレーション実行部14は、荷重条件を境界条件として上気道A1及び周囲の組織の構造解析を行って、重力Gと圧力Pとが均衡する状態での上気道の内壁面の変位(例えば、図16のΔx)等を求める(ステップS43)。シミュレーション実行部14は、構造解析によって求められた内壁面の変位に基づいて、上気道及び上気道の周囲の組織のモデルの3次元形状を更新する。 Subsequently, the simulation execution unit 14 performs structural analysis of the upper airway A1 and surrounding tissue using the load condition as a boundary condition, and the displacement of the inner wall surface of the upper airway in a state where the gravity G and the pressure P are balanced (for example, , [Delta] x in FIG. 16 and the like are obtained (step S43). The simulation execution unit 14 updates the three-dimensional shape of the model of the upper airway and the tissue around the upper airway based on the displacement of the inner wall surface obtained by the structural analysis.
 続いて、シミュレーション実行部14は、終了条件を満たしているか否かを判定する(ステップS44)。終了条件は、荷重条件及び壁面の変位が許容範囲内に収束することとすることができる。 Subsequently, the simulation execution unit 14 determines whether or not the termination condition is satisfied (step S44). The end condition may be that the load condition and the displacement of the wall surface converge within an allowable range.
 終了条件を満たさない場合(ステップS44;No)、シミュレーション実行部14は、構造解析によって変位した内壁面に基づいて、流体解析を行う(ステップS42)。このように、ステップS41→S42が繰り返される。この繰り返しにより、荷重条件(圧力P)及び内壁面の変位(Δx)が、一定の値に収束していく。 If the termination condition is not satisfied (step S44; No), the simulation executing unit 14 performs a fluid analysis based on the inner wall surface displaced by the structural analysis (step S42). In this way, steps S41 → S42 are repeated. By repeating this, the load condition (pressure P) and the displacement (Δx) of the inner wall surface converge to constant values.
 図16に示すように、呼吸中、吸気段階において、上気道内には負圧Pが発生する。この負圧Pにより、上気道がさらに狭くなり、その境界面が変位する。このシミュレーションでは、上気道内の流体モデルを用いた流体解析と、上気道及び周囲の組織のモデルを用いた構造解析とが繰り返し行われ、各境界要素における許容範囲内に収束した最終的な荷重条件(圧力P)及び内壁面の変位(Δx)の集合が、上気道における圧力分布や変位分布として求められる。 As shown in FIG. 16, a negative pressure P is generated in the upper airway during breathing and in the inspiratory phase. This negative pressure P further narrows the upper airway and displaces the boundary surface. In this simulation, the final load that converged within the allowable range of each boundary element was repeatedly performed by fluid analysis using the fluid model in the upper airway and structural analysis using the model of the upper airway and surrounding tissue. A set of conditions (pressure P) and displacement (Δx) of the inner wall surface is obtained as pressure distribution and displacement distribution in the upper airway.
 上気道内の圧力Pと、重力Gとにより、均衡がとれた状態となり、終了条件が満たされると(ステップS44;Yes)、シミュレーション実行部14は、シミュレーションを終了して、シミュレーション結果を記憶部10に記憶する(ステップS45)。これにより、流体構造連成解析のシミュレーションが終了する。記憶部10に記憶されるシミュレーション結果データ26は、終了条件が満たされた時点での、上気道内の圧力分布、上気道の変位分布、上気道の周囲の組織の変形した3次元形状などのデータである。 When the pressure P in the upper airway and the gravity G are in a balanced state and the end condition is satisfied (step S44; Yes), the simulation executing unit 14 ends the simulation and stores the simulation result in the storage unit 10 (step S45). Thereby, the simulation of the fluid structure interaction analysis is completed. The simulation result data 26 stored in the storage unit 10 includes the pressure distribution in the upper airway, the displacement distribution of the upper airway, and the deformed three-dimensional shape of the tissue around the upper airway when the termination condition is satisfied. It is data.
 図14に戻り、続いて、出力部15は、シミュレーション結果を表示出力する(ステップS34)。これにより、表示部35に、上気道内の圧力分布及び流速分布、上気道の周囲の組織の変形した3次元形状のモデルなどが表示される。 14, the output unit 15 displays and outputs the simulation result (step S34). As a result, the display unit 35 displays a pressure distribution and a flow velocity distribution in the upper airway, a deformed three-dimensional model of the tissue around the upper airway, and the like.
 出力部15に表示されたシミュレーション結果を見れば、被検者の上気道における呼吸中の圧力分布及び上気道の変形、周囲の組織の変形等を知ることができる。これらの情報に基づいて、上気道のどの部分が狭窄しているかを検出することができる。上気道が狭窄している部分がわかれば、睡眠時無呼吸症候群の原因部位を特定するのは容易である。 Referring to the simulation result displayed on the output unit 15, it is possible to know the pressure distribution during breathing in the upper airway of the subject, the deformation of the upper airway, the deformation of surrounding tissues, and the like. Based on these pieces of information, it is possible to detect which part of the upper airway is constricted. If the upper airway is narrowed, it is easy to identify the cause of sleep apnea syndrome.
 このように、出力部15は、上気道内の圧力分布又は上気道の変位分布とともに、上気道の周囲の組織のモデルの3次元形状の変形を表示することができるようになっている。このようにすれば、上気道内の狭窄が、周囲の組織のどの部分によってもたらされているのかをより正確に特定することができるようになる。 As described above, the output unit 15 can display the deformation of the three-dimensional shape of the tissue model around the upper airway along with the pressure distribution in the upper airway or the displacement distribution of the upper airway. In this way, it becomes possible to more accurately identify which part of the surrounding tissue is causing the stenosis in the upper airway.
 例えば、図17に示すように、B1の部分で圧力が極端に高い場合には、鼻腔が睡眠時無呼吸症候群の原因として考えられる。鼻閉や鼻カタルなどである。この場合には、治療すべき部位は、鼻である。 For example, as shown in FIG. 17, when the pressure is extremely high at B1, the nasal cavity is considered as a cause of sleep apnea syndrome. Such as nasal congestion and nasal catarrh. In this case, the site to be treated is the nose.
 また、B2の部分で圧力が極端に高い場合には、アデノイドが睡眠時無呼吸症候群の原因として考えられる。この場合には、アデノイドの切除が適切な治療方法として挙げられる。 In addition, when the pressure is extremely high in B2, adenoid is considered as a cause of sleep apnea syndrome. In this case, excision of adenoids is an appropriate treatment method.
 また、B3の部分で圧力が極端に高い場合には、口蓋扁桃が睡眠時無呼吸症候群の原因として考えられる。この場合には、治療すべき部位は、軟口蓋である。 Also, when the pressure is extremely high at B3, the tonsils of the palate are considered as the cause of sleep apnea syndrome. In this case, the site to be treated is the soft palate.
 B4の部分で圧力が極端に高い場合には、顎の部分が、睡眠時無呼吸症候群の原因として考えられる。この場合には、治療すべき部位は、下顎となる。上歯と下歯との噛み合わせの矯正又は減量などが主な治療方法となる。 When the pressure is extremely high at B4, the jaw is considered to be a cause of sleep apnea syndrome. In this case, the site to be treated is the lower jaw. Correction or weight loss of the upper teeth and lower teeth is the main treatment method.
 また、睡眠時無呼吸症候群の原因部位は1つとは限らない。図17に示すB1~B4の部位のうち、複数の部位が原因部位となっていることもある。この実施の形態に係る流体構造連成解析のシミュレーションを行えば、複数の部位が睡眠時無呼吸症候群の原因となっていることも突き止め易くなる。 Also, the cause of sleep apnea syndrome is not always one. Of the parts B1 to B4 shown in FIG. 17, a plurality of parts may be the cause part. If the simulation of the fluid-structure interaction analysis according to this embodiment is performed, it is easy to find out that a plurality of parts cause sleep apnea syndrome.
 以上詳細に説明したように、この実施の形態によれば、上気道のみならずその周囲の組織の3次元形状のモデルを用いて流体構造連成解析のシミュレーションを行う。この解析により、呼吸に伴う上気道内の空気の流れのほか、上気道及びその周囲の組織の変形をも算出することができる。実際の睡眠時における上気道及びその周囲の組織の状態を、シミュレーションにより再現することができるので、呼吸器系の疾患の原因部位をより正確に特定することができる。この結果、より確実に呼吸器系疾患の良好な治療成績を得ることができる。 As described in detail above, according to this embodiment, simulation of fluid-structure interaction analysis is performed using a model of a three-dimensional shape of not only the upper airway but also the surrounding tissue. By this analysis, it is possible to calculate not only the flow of air in the upper airway accompanying breathing but also the deformation of the upper airway and surrounding tissues. Since the state of the upper airway and the surrounding tissue during actual sleep can be reproduced by simulation, the cause of the respiratory system disease can be more accurately identified. As a result, good treatment results for respiratory diseases can be obtained more reliably.
実施の形態2.
 次に、この発明の実施の形態2について説明する。
Embodiment 2. FIG.
Next, a second embodiment of the present invention will be described.
 この発明の実施の形態2に係る診断システムは、呼吸器系疾患である睡眠時無呼吸症候群の治療計画の立案に用いられる。 The diagnostic system according to Embodiment 2 of the present invention is used for planning a treatment plan for sleep apnea syndrome, which is a respiratory disease.
 図18に示すように、この実施の形態に係る診断システム100では、出力部15が、モデル生成部12で生成された上気道及び上気道の周囲の組織の3次元形状モデルを表示出力することができるうえ、コンピュータ2に変更部16が設けられている点が、上記実施の形態1と異なっている。 As shown in FIG. 18, in the diagnostic system 100 according to this embodiment, the output unit 15 displays and outputs the three-dimensional shape model of the upper airway generated by the model generation unit 12 and the tissue around the upper airway. In addition, the computer 2 is different from the first embodiment in that the changing unit 16 is provided.
 出力部15は、操作入力に応じて、記憶部10に記憶された鼻腔部分STLデータ22及び3次元形状モデルデータ23に基づいて、上気道及び上記銅の周囲の組織を表示出力する。 The output unit 15 displays and outputs the upper airway and the tissue around the copper based on the nasal cavity portion STL data 22 and the three-dimensional shape model data 23 stored in the storage unit 10 in response to the operation input.
 ユーザは、出力部15で表示出力された上気道及び上気道の周囲の組織の3次元モデルを見ながら、操作部34を操作して(例えばマウスの操作により)、3次元モデル内の特定の領域を指定する。操作部34から入力される操作入力は制御部31に入力され、制御部31はその操作入力に応じた処理を行う。この処理が、図18の変更部16に対応する。 The user operates the operation unit 34 (for example, by operating the mouse) while looking at the 3D model of the upper airway displayed on the output unit 15 and the tissue around the upper airway (for example, by operating the mouse). Specify an area. The operation input input from the operation unit 34 is input to the control unit 31, and the control unit 31 performs processing according to the operation input. This processing corresponds to the changing unit 16 in FIG.
 例えば、操作部34の操作入力により、特定の領域として図19に示す領域Dが指定されたとする。この場合、変更部16は、操作部34の操作入力に応じて、指定された領域Dを切除するように、上気道及び該上気道の周囲の組織の3次元形状メッシュモデルを変更する。出力部15では、変更後の上気道及び該上気道の周囲の組織の3次元形状メッシュモデルが表示される。このように、変更部16は、操作入力に従って、上気道及び該上気道の周囲の組織の3次元形状メッシュモデルを変更する。 For example, it is assumed that an area D shown in FIG. 19 is designated as a specific area by an operation input from the operation unit 34. In this case, the change unit 16 changes the three-dimensional shape mesh model of the upper airway and the tissue around the upper airway so as to cut out the designated region D according to the operation input of the operation unit 34. The output unit 15 displays the three-dimensional shape mesh model of the changed upper airway and the tissue around the upper airway. Thus, the changing unit 16 changes the three-dimensional mesh model of the upper airway and the tissue around the upper airway according to the operation input.
 図20には、指定された領域Dの切除後の上気道及び該上気道の周囲の組織が示されている。変更後の3次元モデルは、3次元形状モデルデータ23として記憶部10に記憶される。変更された領域Dが鼻腔部分である場合には、変更後の鼻腔部分のSTLデータが、鼻腔部分STLデータ22として記憶部10に記憶される。 FIG. 20 shows the upper airway after excision of the designated region D and the tissue around the upper airway. The changed three-dimensional model is stored in the storage unit 10 as the three-dimensional shape model data 23. When the changed region D is the nasal cavity part, the STL data of the changed nasal cavity part is stored in the storage unit 10 as the nasal cavity part STL data 22.
 変更部16による変更が完了した後、シミュレーション実行部14は、変更部16で編集され記憶部10に記憶された上気道及び上気道の周囲の組織の3次元形状メッシュモデルを用いて被検者の呼吸に伴う上気道及び上気道の周囲の組織の流体構造連成解析のシミュレーションを行って、上気道における空気の流れに関する情報及び上気道の変形に関する情報を算出する。算出されたシミュレーション結果は、シミュレーション結果データ26として記憶部10に記憶され、出力部15により、表示出力される。この情報を参照すれば、指定領域Dを削除した後の、上気道の通気状態を確認することが可能となる。 After the change by the changing unit 16 is completed, the simulation executing unit 14 uses the three-dimensional shape mesh model of the upper airway and the tissue around the upper airway edited by the changing unit 16 and stored in the storage unit 10. The fluid structure coupled analysis of the upper airway associated with breathing and the tissue surrounding the upper airway is simulated to calculate information on the air flow in the upper airway and information on the deformation of the upper airway. The calculated simulation result is stored in the storage unit 10 as simulation result data 26 and is displayed and output by the output unit 15. With reference to this information, it is possible to check the ventilation state of the upper airway after the designated area D is deleted.
 以上詳細に説明したように、この実施の形態によれば、変更部16により変更された上気道及びその周囲の組織の3次元形状のモデルを用いて、流体構造連成解析のシミュレーションを行う。このシミュレーションにより、治療後の上気道の通気状態に関する情報を予測することができる。術後の睡眠時における上気道及びその周囲の組織の状態を、シミュレーションにより予測することができるようになれば、最適な組織の切除量などを術前に求めることができ、適切な治療計画を立てることができる。この結果、より確実に呼吸器系疾患の良好な治療成績を得ることができる。 As described above in detail, according to this embodiment, the fluid-structure interaction analysis is simulated using the model of the three-dimensional shape of the upper airway changed by the changing unit 16 and the surrounding tissue. By this simulation, it is possible to predict information about the ventilation state of the upper airway after treatment. If it is possible to predict the upper respiratory tract and the surrounding tissue during sleep after surgery by simulation, the optimal amount of tissue resection can be obtained before surgery, and an appropriate treatment plan can be established. Can stand. As a result, good treatment results for respiratory diseases can be obtained more reliably.
 前述のように、睡眠時無呼吸症候群の原因部位は1カ所でない場合もある。この場合、この実施の形態に係る診断システム100を用いて、原因部位として疑われるそれぞれの組織の3次元形状を変更し、シミュレーションを行って上気道の通気状態がどのように変化するかを解析することにより、複合的な原因部位を的確に特定することも可能である。 As mentioned above, the cause of sleep apnea syndrome may not be one. In this case, the diagnosis system 100 according to this embodiment is used to change the three-dimensional shape of each tissue suspected as a causal site and perform simulation to analyze how the ventilation state of the upper airway changes. By doing so, it is also possible to accurately specify a complex cause site.
 上記各実施の形態に係る被検者については、特に制限はない。子供であっても成人であっても、睡眠時無呼吸症候群の診断及び治療を行うことが可能である。小児の睡眠時無呼吸症候群は、発育に深刻な影響を及ぼす。睡眠時無呼吸症候群は、ダウン症の小児では、発症率が50%を超えるとも言われている。このため、睡眠時無呼吸症候群の正確な原因部位の特定は、社会にとって多大な利益をもたらす。睡眠時無呼吸症候群の原因部位を正確に特定することができれば、医療費を大幅に削減することができるうえ、重大事故を未然に防止することができるので、経済損失を低減し、より安全な社会を実現することができる。 There are no particular restrictions on the subject according to each of the above embodiments. Both children and adults can diagnose and treat sleep apnea syndrome. Childhood sleep apnea syndrome has a profound effect on growth. Sleep apnea syndrome is also said to have an incidence of over 50% in children with Down syndrome. For this reason, identification of the exact cause site of sleep apnea syndrome has great benefits for society. If the cause of sleep apnea syndrome can be accurately identified, medical costs can be greatly reduced, and serious accidents can be prevented in advance, reducing economic loss and making it safer. A society can be realized.
 上記各実施の形態では、弱連成の手法(時差解法)で、流体構造連成解析を行ったが、流体と構造の支配方程式を厳密に同時に満たすように解く強連成(一体型解法)等で、流体構造連成解析を行うようにしてもよい。このように流体構造連成解析のシミュレーションの手法は、上述したものに限らず、様々な方法を適用可能である。 In each of the above embodiments, the fluid-structure interaction analysis was performed using a weakly coupled method (time difference method). However, the strongly coupled method (integrated solution) solves the governing equations of the fluid and the structure exactly at the same time. For example, fluid-structure interaction analysis may be performed. As described above, the simulation method of the fluid-structure interaction analysis is not limited to the above-described method, and various methods can be applied.
 上記各実施の形態では、有限要素法を用いて上気道及び該上気道の周囲の組織の3次元形状モデルと、前記上気道内の空気の流体モデルとを生成したが、これには限られない。例えば、有限要素法の他、有限差分法、境界要素法、有限体積法等の数値解析手法を用いて、上気道及び該上気道の周囲の組織の3次元形状モデルと、前記上気道内の空気の流体モデルとを生成するようにしてもよい。 In each of the embodiments described above, the finite element method is used to generate the three-dimensional shape model of the upper airway and the tissue around the upper airway and the fluid model of the air in the upper airway. Absent. For example, in addition to the finite element method, using a numerical analysis method such as a finite difference method, a boundary element method, a finite volume method, etc., a three-dimensional shape model of the upper airway and the tissue around the upper airway, An air fluid model may be generated.
 上記各実施の形態では、撮像装置1とX線CT装置としたが、この発明はこれには限られない。MRI(Magnetic Resonance Imaging)装置又は超音波診断装置を撮像装置1としてもよい。さらに、X線CT装置、MRI装置、超音波診断装置から得られる複数の3次元画像データから1つの3次元画像データを生成し、生成された画像データから、各組織の3次元形状のモデルを生成するようにしてもよい。 In each of the above embodiments, the imaging apparatus 1 and the X-ray CT apparatus are used, but the present invention is not limited to this. An MRI (Magnetic Resonance Imaging) apparatus or an ultrasonic diagnostic apparatus may be used as the imaging apparatus 1. Furthermore, one 3D image data is generated from a plurality of 3D image data obtained from an X-ray CT apparatus, an MRI apparatus, and an ultrasonic diagnostic apparatus, and a model of a 3D shape of each tissue is generated from the generated image data. You may make it produce | generate.
 上記各実施の形態では、睡眠時無呼吸症候群の診断及び治療を行う場合について説明したが、この発明はこれには限られない。呼吸器系の疾患であって上気道の形状に係る疾患であれば、診断及び治療に評価システムを用いることができる。また、高血圧等の症状の原因の特定にもこの発明を用いることができる。 In each of the above embodiments, the case where the sleep apnea syndrome is diagnosed and treated has been described, but the present invention is not limited to this. An evaluation system can be used for diagnosis and treatment as long as it is a respiratory disease and is related to the shape of the upper respiratory tract. The present invention can also be used to identify the cause of symptoms such as hypertension.
 その他、コンピュータ2のハードウエア構成やソフトウエア構成は一例であり、任意に変更および修正が可能である。 In addition, the hardware configuration and software configuration of the computer 2 are merely examples, and can be arbitrarily changed and modified.
 制御部31、主記憶部32、外部記憶部33、操作部34、表示部35及び通信部36、内部バス30などから構成されるコンピュータ2の処理を行う中心となる部分は、専用のシステムによらず、通常のコンピュータシステムを用いて実現可能である。例えば、前記の動作を実行するためのコンピュータプログラムを、コンピュータが読み取り可能な記録媒体(フレキシブルディスク、CD-ROM、DVD-ROM等)に格納して配布し、当該コンピュータプログラムをコンピュータにインストールすることにより、前記の処理を実行するコンピュータ2を構成してもよい。また、インターネット等の通信ネットワーク上のサーバ装置が有する記憶装置に当該コンピュータプログラムを格納しておき、通常のコンピュータシステムがダウンロード等することでコンピュータ2を構成してもよい。 The central part that performs processing of the computer 2 composed of the control unit 31, the main storage unit 32, the external storage unit 33, the operation unit 34, the display unit 35, the communication unit 36, the internal bus 30, and the like is a dedicated system Regardless, it can be realized using a normal computer system. For example, a computer program for executing the above operation is stored and distributed in a computer-readable recording medium (flexible disk, CD-ROM, DVD-ROM, etc.), and the computer program is installed in the computer. Thus, the computer 2 that executes the above-described processing may be configured. Further, the computer 2 may be configured by storing the computer program in a storage device included in a server device on a communication network such as the Internet and downloading it by a normal computer system.
 コンピュータ2の機能を、OS(オペレーティングシステム)とアプリケーションプログラムの分担、またはOSとアプリケーションプログラムとの協働により実現する場合などには、アプリケーションプログラム部分のみを記録媒体や記憶装置に格納してもよい。 When the functions of the computer 2 are realized by sharing an OS (operating system) and an application program or by cooperation between the OS and the application program, only the application program portion may be stored in a recording medium or a storage device. .
 搬送波にコンピュータプログラムを重畳し、通信ネットワークを介して配信することも可能である。たとえば、通信ネットワーク上の掲示板(BBS, Bulletin Board System)にコンピュータプログラムを掲示し、ネットワークを介してコンピュータプログラムを配信してもよい。そして、このコンピュータプログラムを起動し、OSの制御下で、他のアプリケーションプログラムと同様に実行することにより、前記の処理を実行できるように構成してもよい。 It is also possible to superimpose a computer program on a carrier wave and distribute it via a communication network. For example, the computer program may be posted on a bulletin board (BBS, “Bulletin” Board System) on the communication network, and the computer program may be distributed via the network. The computer program may be started and executed in the same manner as other application programs under the control of the OS, so that the above-described processing may be executed.
 この発明は、この発明の広義の精神と範囲を逸脱することなく、様々な実施の形態及び変形が可能とされるものである。また、上述した実施の形態は、この発明を説明するためのものであり、この発明の範囲を限定するものではない。すなわち、この発明の範囲は、実施の形態ではなく、特許請求の範囲によって示される。そして、特許請求の範囲内及びそれと同等の発明の意義の範囲内で施される様々な変形が、この発明の範囲内とみなされる。 The present invention is capable of various embodiments and modifications without departing from the broad spirit and scope of the present invention. The above-described embodiments are for explaining the present invention and do not limit the scope of the present invention. In other words, the scope of the present invention is shown not by the embodiments but by the claims. Various modifications within the scope of the claims and within the scope of the equivalent invention are considered to be within the scope of the present invention.
 なお、本願については、2014年7月10日に出願された日本国特許出願2014-142076号を基礎とする優先権を主張し、本明細書中に日本国特許出願2014-142076号の明細書、特許請求の範囲、図面全体を参照として取り込むものとする。 The present application claims priority based on Japanese Patent Application No. 2014-142076 filed on July 10, 2014, and the specification of Japanese Patent Application No. 2014-142076 is included in this specification. The claims and the entire drawing are incorporated by reference.
 1 撮像装置、2 コンピュータ、10 記憶部、11 データ取得部、12 モデル生成部、13 流体解析部、14 シミュレーション実行部、15 出力部、16 変更部、21 DICOMデータ、22 鼻腔部分STLデータ、23 3次元形状モデルデータ、24 鼻腔内圧力分布データ、25 物性値データ、26 シミュレーション結果データ、30 内部バス、31 制御部、32 主記憶部、33 外部記憶部、34 操作部、35 表示部、36 通信部、39 プログラム、100 診断システム。 1 imaging device, 2 computer, 10 storage unit, 11 data acquisition unit, 12 model generation unit, 13 fluid analysis unit, 14 simulation execution unit, 15 output unit, 16 change unit, 21 DICOM data, 22 nasal cavity part STL data, 23 3D shape model data, 24 nasal pressure distribution data, 25 physical property value data, 26 simulation result data, 30 internal bus, 31 control unit, 32 main storage unit, 33 external storage unit, 34 operation unit, 35 display unit, 36 Communication department, 39 program, 100 diagnostic system.

Claims (10)

  1.  数値解析手法を用いて、被検者の顎顔面部の内部の3次元画像データに基づいて、上気道及び該上気道の周囲の組織の3次元形状モデルと、前記上気道内の空気の流体モデルとを生成するモデル生成部と、
     前記モデル生成部で生成された前記3次元形状モデル及び前記流体モデルに固有の物性値を与え、前記被検者の呼吸に伴う前記上気道、前記周囲の組織及び前記上気道内の空気の流体構造連成解析のシミュレーションを行うことにより、呼吸に合わせて変動する前記上気道の通気状態に関する情報を算出するシミュレーション実行部と、
     を備える診断装置。
    Using a numerical analysis technique, based on the three-dimensional image data inside the subject's maxillofacial portion, a three-dimensional shape model of the upper airway and tissues around the upper airway, and air fluid in the upper airway A model generation unit for generating a model;
    A physical property value specific to the three-dimensional shape model and the fluid model generated by the model generation unit is given, and the upper airway, the surrounding tissue, and the air fluid in the upper airway accompanying the subject's breathing A simulation execution unit that calculates information on the ventilation state of the upper airway that fluctuates according to respiration by performing a simulation of structural coupling analysis;
    A diagnostic device comprising:
  2.  前記モデル生成部で生成された前記上気道及び前記周囲の組織の3次元形状モデルを表示するモデル表示部と、
     前記モデル表示部に表示された前記上気道及び前記周囲の組織の3次元形状モデルの3次元形状を変更する変更部と、
     をさらに備え、
     前記シミュレーション実行部は、
     前記変更部で3次元形状が変更された前記上気道及び前記周囲の組織の3次元形状のモデルを用いて前記流体構造連成解析のシミュレーションを行うことにより、前記上気道の通気状態に関する情報を算出する、
     請求項1に記載の診断装置。
    A model display unit for displaying a three-dimensional shape model of the upper airway and the surrounding tissue generated by the model generation unit;
    A change unit for changing the three-dimensional shape of the three-dimensional shape model of the upper airway and the surrounding tissue displayed on the model display unit;
    Further comprising
    The simulation execution unit
    By performing a simulation of the fluid-structure interaction analysis using the three-dimensional model of the upper airway and the surrounding tissue whose three-dimensional shape has been changed by the changing unit, information on the ventilation state of the upper airway is obtained. calculate,
    The diagnostic device according to claim 1.
  3.  前記上気道のうち鼻腔の3次元形状のモデルについては剛体として、呼吸1周期に渡る流体解析を行って、前記鼻腔の通気状態に関する情報を算出するとともに、前記鼻腔と咽頭との境界における断面平均圧力を算出する流体解析部をさらに備え、
     前記シミュレーション実行部は、
     前記流体解析部で算出された呼吸1周期に渡る前記鼻腔と咽頭との境界における断面平均圧力を初期条件として、前記鼻腔を除く前記上気道及び前記周囲の組織の3次元形状のモデルを用いて、前記流体構造連成解析のシミュレーションを行うことにより、前記上気道の通気状態に関する情報を算出する、
     請求項1又は2に記載の診断装置。
    The model of the three-dimensional shape of the nasal cavity of the upper airway is a rigid body, and fluid analysis over one respiratory cycle is performed to calculate information on the ventilation state of the nasal cavity, and the cross-sectional average at the boundary between the nasal cavity and the pharynx A fluid analysis unit for calculating pressure;
    The simulation execution unit
    Using the cross-sectional average pressure at the boundary between the nasal cavity and the pharynx over one respiratory cycle calculated by the fluid analysis unit as an initial condition, a model of the three-dimensional shape of the upper airway and the surrounding tissue excluding the nasal cavity is used. , By calculating a simulation of the fluid structure coupling analysis, to calculate information on the ventilation state of the upper airway,
    The diagnostic device according to claim 1 or 2.
  4.  前記シミュレーション実行部は、
     重力により前記周囲の組織の3次元形状のモデルを変形させた状態で、前記流体構造連成解析を行い、前記上気道の通気状態に関する情報を算出する、
     請求項1から3のいずれか一項に記載の診断装置。
    The simulation execution unit
    In a state where the three-dimensional shape model of the surrounding tissue is deformed by gravity, the fluid-structure interaction analysis is performed, and information on the ventilation state of the upper airway is calculated.
    The diagnostic device according to any one of claims 1 to 3.
  5.  前記シミュレーション実行部は、
     前記上気道の通気状態に関する情報として、
     前記上気道内における空気の流れに関する情報又は前記上気道及び前記上気道の周囲の領域の変形に関する情報を算出する、
     請求項1から4のいずれか一項に記載の診断装置。
    The simulation execution unit
    As information on the ventilation state of the upper airway,
    Calculating information on the flow of air in the upper airway or information on deformation of the upper airway and a region around the upper airway;
    The diagnostic device according to any one of claims 1 to 4.
  6.  前記シミュレーション実行部は、
     前記上気道内における空気の流れに関する情報として、
     前記上気道内における圧力分布又は流速分布を算出する、
     請求項5に記載の診断装置。
    The simulation execution unit
    As information on the air flow in the upper airway,
    Calculating pressure distribution or flow velocity distribution in the upper airway,
    The diagnostic device according to claim 5.
  7.  前記シミュレーション実行部で算出された前記上気道の通気状態に関する情報を表示する結果表示部を備える、
     請求項1から6のいずれか一項に記載の診断装置。
    A result display unit for displaying information on the ventilation state of the upper airway calculated by the simulation execution unit;
    The diagnostic device according to any one of claims 1 to 6.
  8.  被検者の顎顔面部の内部の3次元画像データを撮像する撮像装置と、
     前記撮像装置で撮像された前記3次元画像データを用いる請求項1から7のいずれか一項に記載の診断装置と、
     を備える診断システム。
    An imaging device for imaging three-dimensional image data inside the maxillofacial portion of the subject;
    The diagnostic apparatus according to any one of claims 1 to 7, wherein the three-dimensional image data captured by the imaging apparatus is used.
    A diagnostic system comprising:
  9.  コンピュータが、数値解析手法を用いて、被検者の顎顔面部の内部の3次元画像データに基づいて、上気道及び該上気道の周囲の組織の3次元形状のモデルと、前記上気道内の空気の流体モデルとを生成するモデル生成工程と、
     コンピュータが、前記モデル生成工程で生成された前記3次元形状モデル及び前記流体モデルに固有の物性値を与え、前記被検者の呼吸に伴う前記上気道、前記周囲の組織及び前記上気道内の空気の流体構造連成解析のシミュレーションを行うことにより、呼吸に合わせて変動する前記上気道の通気状態に関する情報を算出するシミュレーション実行工程と、
     を備えるシミュレーション方法。
    A computer uses a numerical analysis method to calculate a model of a three-dimensional shape of the upper airway and a tissue around the upper airway based on the three-dimensional image data inside the maxillofacial portion of the subject, A model generation process for generating a fluid model of the air;
    A computer gives specific physical property values to the three-dimensional shape model and the fluid model generated in the model generation step, and the upper airway, the surrounding tissue, and the upper airway associated with the subject's breathing A simulation execution step of calculating information on the ventilation state of the upper airway, which fluctuates according to breathing, by performing a simulation of fluid-structure interaction analysis of air;
    A simulation method comprising:
  10.  コンピュータを、
     数値解析手法を用いて、被検者の顎顔面部の内部の3次元画像データに基づいて、上気道及び該上気道の周囲の組織の3次元形状のモデルと、前記上気道内の空気の流体モデルとを生成するモデル生成部、
     前記モデル生成部で生成された前記3次元形状モデル及び前記流体モデルに固有の物性値を与え、前記被検者の呼吸に伴う前記上気道、前記周囲の組織及び前記上気道内の空気の流体構造連成解析のシミュレーションを行うことにより、呼吸に合わせて変動する前記上気道の通気状態に関する情報を算出するシミュレーション実行部、
     として機能させるプログラム。
    Computer
    Using a numerical analysis method, based on the three-dimensional image data inside the subject's maxillofacial region, a model of the three-dimensional shape of the upper airway and the tissue around the upper airway, and the air in the upper airway A model generation unit for generating a fluid model;
    A physical property value specific to the three-dimensional shape model and the fluid model generated by the model generation unit is given, and the upper airway, the surrounding tissue, and the air fluid in the upper airway accompanying the subject's breathing A simulation execution unit that calculates information on the ventilation state of the upper airway that fluctuates according to respiration by performing a simulation of structural coupling analysis;
    Program to function as.
PCT/JP2015/069666 2014-07-10 2015-07-08 Diagnosis device, diagnosis system, simulation method, and program WO2016006633A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016532957A JP6579472B2 (en) 2014-07-10 2015-07-08 Airway ventilation analysis system using fluid structure coupled analysis of maxillofacial area

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-142076 2014-07-10
JP2014142076 2014-07-10

Publications (1)

Publication Number Publication Date
WO2016006633A1 true WO2016006633A1 (en) 2016-01-14

Family

ID=55064262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/069666 WO2016006633A1 (en) 2014-07-10 2015-07-08 Diagnosis device, diagnosis system, simulation method, and program

Country Status (2)

Country Link
JP (1) JP6579472B2 (en)
WO (1) WO2016006633A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018159759A1 (en) * 2017-03-01 2018-09-07 国立大学法人 鹿児島大学 Airway ventilation state calibration system and system for predicting airway deformation during sleep
WO2018193955A1 (en) * 2017-04-18 2018-10-25 国立大学法人 鹿児島大学 Deglutition function testing system using 3d camera
JP6456461B1 (en) * 2017-11-17 2019-01-23 株式会社アルム Nasal stenosis diagnostic device and nasal stenosis diagnostic system
CN110916667A (en) * 2019-11-20 2020-03-27 四川大学华西医院 Intelligent evaluation bed for supine posture of hemiplegic patient
WO2020232502A1 (en) * 2019-05-20 2020-11-26 Commonwealth Scientific And Industrial Research Organisation Prediction and intervention of obstructive sleep apnoea

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005537068A (en) * 2002-08-30 2005-12-08 ユニバーシティー オブ フロリダ Method and apparatus for predicting respiratory work
JP2014104361A (en) * 2012-11-27 2014-06-09 Ge Medical Systems Global Technology Co Llc Method and system for automatically determining localizer in scout image

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005537068A (en) * 2002-08-30 2005-12-08 ユニバーシティー オブ フロリダ Method and apparatus for predicting respiratory work
JP2014104361A (en) * 2012-11-27 2014-06-09 Ge Medical Systems Global Technology Co Llc Method and system for automatically determining localizer in scout image

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TOMONORI IWASAKI ET AL.: "Clinical Application of Upper Airway Ventilation Simulation Using Fluid-Structure-Coupled Analysis in Children with Obstructive Sleep Apnea Syndrome", JOURNAL OF THE JAPANESE ASSOCIATION FOR DENTAL SCIENCE, vol. 33, March 2014 (2014-03-01), pages 39 - 43 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018159759A1 (en) * 2017-03-01 2018-09-07 国立大学法人 鹿児島大学 Airway ventilation state calibration system and system for predicting airway deformation during sleep
JPWO2018159759A1 (en) * 2017-03-01 2019-12-26 国立大学法人 鹿児島大学 Airway ventilation state calibration system and airway deformation prediction system during sleep
JP7075131B2 (en) 2017-03-01 2022-05-25 国立大学法人 鹿児島大学 Airway ventilation calibration system and airway deformation prediction system during sleep
US11432742B2 (en) 2017-03-01 2022-09-06 Kagoshima University Airway ventilation state calibration system and system for predicting airway deformation during sleep
WO2018193955A1 (en) * 2017-04-18 2018-10-25 国立大学法人 鹿児島大学 Deglutition function testing system using 3d camera
JPWO2018193955A1 (en) * 2017-04-18 2020-02-27 国立大学法人 鹿児島大学 Ingestion and swallowing function inspection system using 3D camera
JP6456461B1 (en) * 2017-11-17 2019-01-23 株式会社アルム Nasal stenosis diagnostic device and nasal stenosis diagnostic system
WO2020232502A1 (en) * 2019-05-20 2020-11-26 Commonwealth Scientific And Industrial Research Organisation Prediction and intervention of obstructive sleep apnoea
CN110916667A (en) * 2019-11-20 2020-03-27 四川大学华西医院 Intelligent evaluation bed for supine posture of hemiplegic patient
CN110916667B (en) * 2019-11-20 2022-08-19 四川大学华西医院 Intelligent evaluation bed for supine posture of hemiplegic patient

Also Published As

Publication number Publication date
JPWO2016006633A1 (en) 2017-05-25
JP6579472B2 (en) 2019-09-25

Similar Documents

Publication Publication Date Title
Bates et al. Assessing the relationship between movement and airflow in the upper airway using computational fluid dynamics with motion determined from magnetic resonance imaging
JP6579472B2 (en) Airway ventilation analysis system using fluid structure coupled analysis of maxillofacial area
De Backer et al. Functional imaging using computational fluid dynamics to predict treatment success of mandibular advancement devices in sleep-disordered breathing
Haskell et al. Effects of mandibular advancement device (MAD) on airway dimensions assessed with cone-beam computed tomography
JP7075131B2 (en) Airway ventilation calibration system and airway deformation prediction system during sleep
Stratemann et al. Three-dimensional analysis of the airway with cone-beam computed tomography
JP2016526466A (en) Determination of respiratory parameters
Lucey et al. Measurement, reconstruction, and flow-field computation of the human pharynx with application to sleep apnea
Zheng et al. Computational fluid dynamics simulation of the upper airway response to large incisor retraction in adult class I bimaxillary protrusion patients
De Backer et al. Novel imaging techniques using computer methods for the evaluation of the upper airway in patients with sleep-disordered breathing: a comprehensive review
TWI413511B (en) The method of forming the visualization map of the pressure distribution of the flow field of the sleep apnea and the computer
Chen et al. Analyses of aerodynamic characteristics of the oropharynx applying CBCT: obstructive sleep apnea patients versus control subjects
Oz et al. Association between pterygoid hamulus length and apnea hypopnea index in patients with obstructive sleep apnea: a combined three-dimensional cone beam computed tomography and polysomnographic study
Moreddu et al. Computational fluid dynamics in the assessment of nasal obstruction in children
US20210196217A1 (en) Dynamic 3-d anatomical mapping and visualization
Van Gaver et al. Functional imaging improves patient selection for mandibular advancement device treatment outcome in sleep-disordered breathing: a prospective study
Fletcher et al. The effect of geniglossal advancement on airway flow using a computational flow dynamics model
Farazi et al. A 3D dynamic biomechanical swallowing model for training and diagnosis of dysphagia
Jordal et al. Patient specific numerical simulation of flow in the human upper airways for assessing the effect of nasal surgery
Patel et al. Modeling congenital nasal pyriform aperture stenosis using computational fluid dynamics
Sittitavornwong et al. Imaging the upper airway in patients with sleep disordered breathing
JP6762556B2 (en) Airway deformation prediction system during sleep
Sittitavornwong et al. Evaluation of obstructive sleep apnea syndrome by computational fluid dynamics
Chen et al. Comparison of anatomic and aerodynamic characteristics of the upper airway among edentulous mild, moderate, and severe obstructive sleep apnea in older adults
WO2021222905A1 (en) System and method for generating patient-specific ventilation settings based on lung modeling

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15818462

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016532957

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15818462

Country of ref document: EP

Kind code of ref document: A1