WO2016006525A1 - Display device and display method - Google Patents

Display device and display method Download PDF

Info

Publication number
WO2016006525A1
WO2016006525A1 PCT/JP2015/069121 JP2015069121W WO2016006525A1 WO 2016006525 A1 WO2016006525 A1 WO 2016006525A1 JP 2015069121 W JP2015069121 W JP 2015069121W WO 2016006525 A1 WO2016006525 A1 WO 2016006525A1
Authority
WO
WIPO (PCT)
Prior art keywords
display panel
display
light
light source
viewpoint
Prior art date
Application number
PCT/JP2015/069121
Other languages
French (fr)
Japanese (ja)
Inventor
上片野 充
佐々木 秀樹
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014143167A external-priority patent/JP5701434B1/en
Priority claimed from JP2015059543A external-priority patent/JP2016180776A/en
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Publication of WO2016006525A1 publication Critical patent/WO2016006525A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F13/00Illuminated signs; Luminous advertising
    • G09F13/16Signs formed of or incorporating reflecting elements or surfaces, e.g. warning signs having triangular or other geometrical shape
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F13/00Illuminated signs; Luminous advertising
    • G09F13/18Edge-illuminated signs
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F19/00Advertising or display means not otherwise provided for
    • G09F19/12Advertising or display means not otherwise provided for using special optical effects
    • G09F19/14Advertising or display means not otherwise provided for using special optical effects displaying different signs depending upon the view-point of the observer

Definitions

  • the present invention relates to a display device and a display method.
  • LEDs light emitting diodes
  • the LED is a point light source having directivity and is limited to use as a spot illumination alone. For this reason, it is often used as a linear or planar light source in combination with a light guide plate such as a transparent resin plate. Examples of this include a liquid crystal backlight, an advertising light panel, and the like.
  • LED light incident from the side of the light guide plate is made by placing a dot-like notch (hereinafter also simply referred to as a dot) on the surface of a transparent light guide plate such as acrylic or polycarbonate.
  • a display device in which a pattern is reflected on the surface by reflecting the dots with dots. This display device displays a pattern formed by LED light reflected by dots on a transparent light guide plate and is used for a display or the like because it is transparent and excellent in design.
  • a method using parallax such as a parallax barrier method or a lenticular lens method can be used (for example, Patent Document 1).
  • a parallax barrier method a mask called a parallax barrier in which light shielding portions and openings are alternately arranged at a predetermined repetition pitch is used.
  • the lenticular lens system uses a lens array in which minute lenses are arranged at a predetermined repetition pitch.
  • parallax barrier method When employing the parallax barrier method or the lenticular lens method, it is necessary to dispose an optical element (parallax barrier or lens array) for providing parallax over the entire surface of the display device. As a result, the thickness of the display device is increased, and the installation location is limited. Further, since an optical element is required for the display device, the cost is high.
  • an optical element parallax barrier or lens array
  • the present invention has been made with the above circumstances as a background, and provides a display device and a display method for performing stereoscopic viewing or morphing display without providing an optical element for giving parallax toward a viewpoint.
  • 1st aspect of this invention is a display apparatus, Comprising: The element group which displays a specific display pattern as a whole by making a display panel and the dot-shaped reflective element provided in the surface or the inside of the said display panel into a component
  • the element group is provided for each of a plurality of preset viewpoints, and the element group provided for each viewpoint is provided from a light source without an optical element for providing parallax toward the viewpoint.
  • the display pattern that reflects light and is displayed by the element group by the reflected light is visually recognized at the set viewpoint, and is not visually recognized at an unset viewpoint.
  • the display device of the first aspect may further include the light source.
  • the display panel may be made of a transparent material.
  • the display panel is a light guide plate
  • the reflective element is a dot-like depression provided on the surface of the light guide plate
  • the light source is disposed on an end surface of the light guide plate.
  • the connected light sources may be point light sources or parallel light sources.
  • the light source in the display device according to the third aspect, may be disposed on a front surface side of the display panel, and light from the light source may be incident from the front surface of the display panel.
  • the light source may be disposed on a rear surface side of the display panel, and light from the light source may be incident from the rear surface of the display panel.
  • a plurality of the display panels may be provided and these may be stacked on each other.
  • the display panel in the display device according to the second aspect, may be made of a non-transparent material. According to a ninth aspect of the present invention, in the display device according to the second aspect, the display panel may be made of a transparent material having a non-transparent coating on the surface.
  • the light source is disposed on a front surface side of the display panel, and light from the light source is incident from the front surface of the display panel. good.
  • An eleventh aspect of the present invention is the display device according to any one of the second to tenth aspects, wherein the light source is a point light source, and a cylindrical lens or a parabolic mirror is disposed between the light source and the light guide plate.
  • the point light source is a point light source
  • a cylindrical lens or a parabolic mirror is disposed between the light source and the light guide plate.
  • the light source is in the display panel from a direction perpendicular to a direction in which the plurality of set viewpoints are arranged with respect to the display panel.
  • the light may be incident on.
  • a spread angle of light incident on the reflective element is 1 ° or more in a direction perpendicular to the thickness direction of the display panel. It may be 10 ° or less.
  • the reflective element has a height h along the thickness direction of the display panel and is orthogonal to the thickness direction.
  • the reflection surface has a width of w and h / w of 0.2 or less.
  • the reflecting surface of the dot-shaped reflecting element may be a flat surface or a cylindrical surface.
  • a display method comprising: a display panel made of a transparent material; and a dot-like reflective element provided on or inside the display panel as a constituent element, and a specific display pattern as a whole.
  • the element group is provided for each of a plurality of preset viewpoints using a display device including an element group to be displayed, and the element group provided for each viewpoint gives a parallax toward the viewpoint Therefore, the display pattern displayed by the element group by reflecting the light from the light source without passing through the optical element is viewed from the set viewpoint, and is not viewed from the viewpoint that is not set.
  • a display method comprising a display panel made of a non-transparent material and a dot-like reflective element provided on or inside the display panel as a constituent element, and a specific display pattern as a whole.
  • the element group is provided for each of a plurality of preset viewpoints, and the element group provided for each viewpoint has a parallax toward the viewpoint.
  • the display pattern displayed by the element group by reflecting the light from the light source without passing through the optical element for providing and being displayed by the reflected light is viewed from the set viewpoint, and is not viewed from the viewpoint that is not set.
  • a display method comprising: a display panel made of a transparent material having a non-transparent coating on the surface; and a dot-like reflective element provided on or inside the display panel.
  • the element group is provided for each of a plurality of preset viewpoints, and the element group provided for each viewpoint is A viewpoint that reflects light from a light source without passing through an optical element for giving parallax toward the viewpoint, and the display pattern displayed by the element group by the reflected light is viewed at the set viewpoint and is not set. Is not visible.
  • the reflected light is emitted in a plurality of directions by changing the direction of the light reflected by the reflecting element for each element group, and different images are recognized by different viewpoints of the observer.
  • a display pattern reflecting parallax is viewed on the right and left eyes of the observer, stereoscopic vision can be realized.
  • the viewer can visually recognize different display patterns as the relative positional relationship between the observer and the display panel changes. it can. Accordingly, it is possible to provide a display device and a display method for performing stereoscopic viewing or morphing display without providing an optical element for giving parallax toward the viewpoint.
  • the display apparatus of 1st Embodiment it is a conceptual diagram explaining the structure of a display pattern.
  • the display apparatus of 1st Embodiment it is a conceptual diagram explaining the structure of a display pattern.
  • the display apparatus of 1st Embodiment it is a conceptual diagram explaining the structure of a display pattern.
  • the display apparatus of 1st Embodiment it is a conceptual diagram explaining the structure of a display pattern.
  • FIG. 4A It is a cross-sectional schematic diagram which shows the display apparatus of 1st Embodiment. It is a figure which expands and shows the reflective element shown to FIG. 4A with the path
  • FIG. 1 is a conceptual diagram of a display device 1 according to the first embodiment.
  • 2A to 6 are diagrams for explaining a more specific configuration of the display device 1 according to the first embodiment.
  • a schematic configuration and a specific configuration of the display device 1 will be described with reference to FIGS.
  • the display device 1 includes a display panel 3 made of a transparent material and a point light source (light source) 4 that receives light from an end surface 3 c of the display panel 3.
  • the display device 1 reflects light incident from the light source 4 in a specific direction on the front surface 3a side of the display panel 3, and is different for both eyes of an observer (for example, an observer O) who observes from the front surface 3a side of the display panel 3.
  • an observer O for example, an observer O
  • the thickness direction of the display panel 3 is the ⁇ Z direction, and the observer O observes from the + Z direction.
  • the observer O stands upright facing the display panel 3, and for the observer O, the horizontal direction (the direction in which the viewpoints are arranged) is the ⁇ X direction, and the vertical direction (that is, a straight line connecting the two viewpoints). It is assumed that (the orthogonal direction) is the ⁇ Y direction.
  • the display device 1 has a light source 4 that is a point light source.
  • This point light source is disposed on the end surface 3c of the display panel 3 formed in a square shape.
  • an LED (issuing diode) or the like can be employed.
  • the color of the light source 4 is not particularly limited.
  • the display panel 3 is a light guide plate made of a transparent material such as acrylic resin, polycarbonate resin, or other glass.
  • the thickness of the display panel 3 is not particularly limited, but is preferably a thickness that includes the size of the light source 4. By setting the thickness of the display panel 3 in this way, it is possible to suppress leaked light that is not incident on the end face 3c or escapes from the surface after being incident.
  • the thickness of the display panel 3 is preferably about 2 mm to 5 mm.
  • the display panel 3 has a front surface 3a and a rear surface 3b which are two opposing surfaces, and is formed in a square shape.
  • the light source 4 is disposed on the end surface 3c on the short side of the display panel 3 disposed along the X axis.
  • the light L from the light source 4 enters the display panel 3 through the end face 3c.
  • the shape of the display panel 3 is not limited to a rectangular plate shape, and may be an arbitrary shape. Further, the display panel 3 has a typical shape of a flat plate, but is not limited thereto, and may be, for example, a curved shape.
  • the display panel 3 has four display patterns (first display pattern 10A, second display pattern 10B, third display pattern 10C, and fourth display pattern 10D) represented as drawing “A”.
  • first to fourth display patterns 10A to 10D a first reflective element 2A, a second reflective element 2B, a third reflective element 2C, and a fourth reflective element 2D that reflect the light L from the light source 4 are assembled.
  • Each display pattern is drawn as a set of reflecting elements 2A, 2B, 2C, and 2D.
  • the first to fourth viewpoints E1 to E4 shown in FIGS. 1 to 2D are viewpoints that become the right or left eye of the observer located on the front surface 3a side of the display panel 3.
  • An observer who observes the display panel 3 with any two viewpoints of the first to fourth viewpoints E1 to E4 as the right eye and the left eye recognizes the stereoscopic display pattern (display object) 10V set on the display panel 3.
  • the stereoscopic display pattern 10 ⁇ / b> V is a virtual display pattern set on the display panel 3, and is assumed to be drawn floating at a height H from the display panel 3.
  • the first display pattern 10A is configured to be a projection drawing in which a virtual stereoscopic display pattern 10V is projected on the display panel 3 from the first viewpoint E1.
  • the second to fourth display patterns 10B to 10D are projection drawings obtained by projecting the stereoscopic display pattern 10V onto the display panel 3 from the second to fourth viewpoints E2 to E4. It is comprised so that it may become.
  • Each of the display patterns 10A to 10D reflects the light L in a specific viewpoint direction by the reflection elements 2A to 2D having a reflection surface with a specific angle. As a result, each of the display patterns 10A to 10D reflects light only in the directions of the set viewpoints E1 to E4.
  • the observer O recognizes the stereoscopic display pattern 10V.
  • the stereoscopic display pattern 10V can be recognized by the observer using parallax.
  • the same effect can be obtained by using a parallel light source that propagates in parallel instead of a point light source that spreads radially when the display panel 3 is viewed in plan as the light source 4.
  • the projected state is not accurately displayed with priority given to the easy-to-understand representation of the drawing formed by each display pattern.
  • FIG. 3A is a plan view of the display device 1.
  • the light L emitted from the light source 4 enters the display panel 3 from the end face 3c.
  • the light L passes through the inside of the display panel 3 and reaches the first to fourth display patterns 10A to 10D.
  • the first to fourth display patterns 10A to 10D are formed at a distance D with respect to the end surface 3c on which the light source 4 is disposed.
  • FIG. 3B shows an enlarged partial area AR1 in FIG. 3A.
  • the partial area AR1 includes an area where the second and third display patterns 10B and 10C are formed.
  • a large number of second reflective elements 2B are arranged in the second display pattern 10B.
  • a large number of third reflective elements 2C are arranged in the third display pattern 10C.
  • the second reflective element 2B and the third reflective element 2C are formed independently of each other.
  • each display pattern is configured as a set (element group) of reflective elements.
  • the second reflective element 2B and the third reflective element 2C are respectively set at predetermined angles (second angles ⁇ B and ⁇ C described later) with respect to an axis in the thickness direction of the display panel 3 (axis parallel to the Z axis). ).
  • the first reflecting element 2A and the fourth reflecting element 2D are also arranged obliquely at a predetermined angle.
  • Each display pattern needs to be recognized from a set viewpoint, and is not recognized from a viewpoint that is not set. Recognizing from a viewpoint that is not set is not desirable because different display patterns are recognized simultaneously from one viewpoint. In addition, the fact that the display pattern is not recognized from a viewpoint slightly deviated from the set viewpoint is also undesirable because the field of view range in which the display pattern can be recognized is limited. Therefore, it is desirable that the angle distribution of components (X-axis component and Y-axis component) of the light L incident on one reflection element perpendicular to the thickness direction (Z-axis direction) of the display panel 3 is in a certain range. . More specifically, it is preferable that the spread angle of the light L incident on one reflecting element is 1 ° or more and 10 ° or less in a direction orthogonal to the thickness direction of the display panel.
  • FIG. 4A is a schematic cross-sectional view of the display panel 3.
  • the first to fourth reflective elements 2A to 2D are notches (dents) formed in the rear surface 3b that is a surface facing the front surface 3a of the display panel 3.
  • a plurality of first to fourth reflective elements 2A to 2D are formed on the rear surface 3b of the display panel 3.
  • the first to fourth reflecting elements 2A to 2D are arranged so that the reflecting surfaces 2Aa to 2Da face the light source 4.
  • the light L emitted from the light source 4 enters the display panel 3 from the end face 3c and passes through the inside of the display panel. Further, the light L is reflected by the reflecting surfaces 2Aa to 2Da of the first to fourth reflecting elements 2A to 2D, emitted as reflected light LA to LD on the front surface 3a side of the display panel 3, and recognized by the observer. .
  • the shape of each reflection element may be formed by cutting, or a convex shape corresponding to the shape of each reflection element may be formed by heating transfer or UV effect transfer. Moreover, you may form simultaneously with the shaping
  • the display panel 3 is not limited to the case where the reflective elements 2A to 2D are directly formed on the rear surface 3b.
  • the display panel 3 in which the reflective elements 2A to 2D are provided on the rear surface 3b may be configured by attaching a transparent film in which the reflective elements 2A to 2D are formed in advance to one surface of the light guide plate.
  • FIG. 4B shows an enlarged view of the first reflective element 2A shown in FIG.
  • the light L passing through the inside of the display panel 3 repeats total reflection on the front surface 3a and the rear surface 3b and reaches the reflection surface 2Aa. This is because an LED is assumed here as a representative point light source, and the LED light usually has a certain spread angle.
  • the traveling direction of the light L reaching the reflecting surface 2Aa has a component in the Z-axis direction and has a spread angle in the thickness direction of the display panel 3. Since the light L has a spread angle in the thickness direction of the display panel 3, the reflected light LA reflected by the reflecting surface 2Aa has a spread angle of the component in the Y-axis direction. Further, when the distance D (FIG. 4A) until the light L incident on the display panel 3 enters the reflecting surface 2Aa of the reflecting element 2A is sufficiently long, the display panel 3 is substantially thin. It can be regarded as light having a continuous distribution in the thickness direction.
  • the reflected light LA is emitted to the front surface 3a side of the display panel 3 with a certain spread angle. Therefore, even if the observer located at the viewpoint E shown in FIG. 4A moves in a predetermined range in the Y-axis direction, the reflected light LA can be recognized.
  • the point light source 4 is arranged in the left-right direction (+ X direction or -X direction) of the display panel and light is incident from the left and right, the light reflected by the reflecting element Will spread in the horizontal direction. Therefore, the light reflected from one reflective element is observed from a plurality of viewpoints, which is not desirable.
  • the light reflected from one reflecting element is not observed from a plurality of viewpoints.
  • the specific reflected light LA can be recognized. Therefore, when the observer O observes the stereoscopic display pattern 10V facing the display panel 3, the light incident direction from the light source 4 to the display panel 3 is the downward direction ( ⁇ Y axis direction) or the upward direction (+ Y axis direction). ) Is preferably incident.
  • FIG. 5A is a perspective view of the second reflective element 2B.
  • the second reflective element 2B will be mainly described.
  • the reflective elements 2A to 2D have the same configuration, and the description of the second reflective element 2B is representative of the reflective elements 2A to 2D.
  • the second reflective element 2B has a reflective surface 2Ba that reflects the light L emitted from the light source 4 to the front surface 3a side of the display panel 3.
  • the reflection surface 2Ba faces the light source 4 and is formed substantially flat.
  • the shape of the cross section along the incident direction of the light from the light source 4 of the second reflective element 2B is a triangle having the reflective surface 2Ba as a hypotenuse.
  • the ratio h / w of the width w of the reflection surface 2Ba to the height h of the reflection surface 2Ba is preferably 0.2 or less. Due to processing restrictions, it is difficult for the reflecting surface 2Ba to form the edge portion 2Bc accurately. At the time of processing, the reflecting surface 2Ba has an R on the edge portion 2Bc or a rough surface near the edge portion 2Bc, so that the light hitting the edge portion 2Bc reflects and scatters light in directions other than the designed direction. become. By making the width w sufficiently large (more than 5 times) with respect to the height h, the ratio of the edge portion 2Bc to the reflective surface 2Ba can be made relatively small, and the amount of light reflected in an unintended direction. Can be relatively reduced.
  • the reflective surface 2Ba compared rear surface 3b of the display panel 3 is inclined at the first angle alpha B.
  • the reflective element 2B has a second angle with respect to the X axis as if rotated about the axis in the thickness direction of the display panel 3 (axis parallel to the Z axis). Inclined at ⁇ B.
  • first angle ⁇ B and the second angle ⁇ B By adjusting the first angle ⁇ B and the second angle ⁇ B , incident light can be reflected in an arbitrary direction on the front side of the display panel (in a range not exceeding the total reflection critical angle). Since the light incident on the reflecting surface of the reflecting element has an angular distribution in the thickness direction as described above, the combination of the first angle ⁇ B and the second angle ⁇ B that reflects the incident light in a specific direction is Not one type. It is desirable that the first angle ⁇ B can be constant and the second angle ⁇ B can be adjusted so that the first angle ⁇ B can be emitted in a predetermined direction. Alternatively, it may be determined in consideration of the intensity of incident light on the reflecting surface.
  • FIG. 5B is a perspective view of the third reflective element 2C.
  • the third reflecting element 2C has a reflecting surface 2Ca, and the reflecting surface 2Ca is inclined at a first angle ⁇ C with respect to the rear surface 3b. Further, the third reflective element 2C is arranged to be inclined at the second angle ⁇ C with respect to the X axis, as rotated about the axis in the thickness direction of the display panel 3 (axis parallel to the Z axis). Yes.
  • the second angle ⁇ C of the third reflective element 2C shown in FIG. 5B is an angle opposite to the second angle ⁇ B of the second reflective element 2B shown in FIG. 5A.
  • the reflected light LC from the third reflective element 2C and the second reflective element 2B is emitted in the opposite direction to the X-axis direction.
  • the second and third reflective elements 2B and 2C have been described above.
  • the other reflective elements, the first reflective element 2A and the fourth reflective element 2D have the same configuration as the second and third reflective elements 2B and 2C.
  • the first to fourth reflecting elements 2A to 2D have different configurations of the second corners in the respective arrangements and emit reflected light in different directions.
  • the direction (second angle) in which the first to fourth reflecting elements 2A to 2D are arranged is determined according to the direction in which the reflected light is emitted.
  • the reflective elements 2A to 2D of the display patterns (element groups) 10A to 10D reflect the light L incident on the display panel 3 and emit the reflected light LA to LD from the front surface 3a side.
  • the emission directions of the reflected lights LA to LD are set to be different for each display pattern.
  • the first reflective element 2A of the first display pattern (first element group) 10A reflects the light L incident on the display panel 3 on the front surface 3a side (+ Z direction) and in the direction inclined toward the + X axis side. Reflect as. The reflected light LA is emitted toward the first viewpoint E1, which is a specific viewpoint.
  • the second reflective element 2B of the second display pattern (second element group) 10B has the light L incident on the display panel 3 on the front surface 3a side (+ Z direction) and in a direction inclined toward the + X axis side. Reflected as reflected light LB.
  • the reflected light LB is emitted toward the second viewpoint E2, which is a specific viewpoint.
  • the reflected light LB is less inclined toward the + X-axis side than the reflected light LA of the first display pattern 10A.
  • the third reflective element 2C of the third display pattern (third element group) 10C reflects the light L incident on the display panel 3 in the direction inclined toward the -X axis side on the front surface 3a side (+ Z direction). Reflect as LC. The reflected light LC is emitted toward the third viewpoint E3 that is a specific viewpoint.
  • the fourth reflective element 2D of the fourth display pattern (fourth element group) 10D is a direction in which the light L incident on the display panel 3 is inclined to the front 3a side (+ Z direction) and to the ⁇ X axis side. Is reflected as reflected light LD. The reflected light LD is emitted toward the fourth viewpoint E4 that is a specific viewpoint. The reflected light LD is less inclined to the ⁇ X axis side than the reflected light LC of the third display pattern 10C.
  • First to fourth viewpoints E1 to E4 shown in FIG. 1 are viewpoints that become the right eye or the left eye of an observer located on the front surface 3a side of the display panel 3.
  • the first viewpoint E1 is a viewpoint located on the rightmost side (+ X axis direction) toward the front of the display panel 3, and the second viewpoint E2 and the third viewpoint in the ⁇ X direction from the first viewpoint E1.
  • a viewpoint E3 and a fourth viewpoint E4 are arranged in this order.
  • the first viewpoint E1 is a viewpoint where only the reflected light LA reflected from the first display pattern 10A is visually recognized.
  • the second viewpoint E2 is a reflected light LB
  • the third viewpoint E3 is a reflected light LC
  • the fourth viewpoint E4 is a viewpoint where only the reflected light LD is visually recognized.
  • the observer observes the display panel 3 so that two viewpoints selected from the first to fourth viewpoints E1 to E4 are the right eye and the left eye, respectively.
  • an observer O who observes the display panel 3 from the front surface 3a side of the display panel 3 with the second viewpoint E2 as the left eye and the third viewpoint E3 as the right eye is assumed (see FIG. 1).
  • the observer O recognizes the second display pattern 10B at the second viewpoint E2 (left eye) and recognizes the third display pattern 10C at the third viewpoint E3 (right eye).
  • the intersection C between the reflected light LB reaching the left eye (second viewpoint E2) from the second display pattern 10B and the reflected light LC reaching the right eye (third viewpoint E3) from the third display pattern 10C is separated from the display panel 3.
  • Height H is set.
  • the observer recognizes the stereoscopic display pattern 10 ⁇ / b> V that rises to the height H from the display panel 3 due to the parallax between both eyes.
  • FIG. 6 is a schematic diagram showing the principle when the display panel 3 is viewed from the light source 4 side.
  • FIG. 6 only the reflective elements related to the second display pattern 10B and the third display pattern 10C are shown.
  • the plurality of reflective elements 2B of the second display pattern 10B four second reflective elements 2B1, 2B2, 2B3, 2B4 are shown, and as the plurality of reflective elements of the third display pattern 10C, four third reflective elements 2C1, 2C2 are shown. 2C3 and 2C4 are shown.
  • more reflective elements are formed, but here, description will be made assuming that there are four elements included in each of the display patterns 10B and 10C. Further, the reflection elements 2A and 2D of the first and fourth display patterns 10A and 10D are omitted.
  • the four second reflective elements 2B1, 2B2, 2B3, 2B4 of the second display pattern 10B correspond to the four third reflective elements 2C1, 2C2, 2C3, 2C4 of the third display pattern, respectively.
  • the second reflective element 2B1 is a dot that is positioned closest to the + X axis in the second display pattern 10B
  • the third reflective element 2C1 that corresponds to the second reflective element 2B1 is positioned closest to the + X axis in the third display pattern 10C. It is a dot.
  • the second and third display patterns 10B and 10C will be described as having one-to-one corresponding reflective elements, but each reflective element is necessarily provided with a corresponding reflective element. There is no. That is, as long as the entire element group (display pattern) is projected and drawn with the stereoscopic display pattern 10V as shown in FIGS. 2A to 2D, the arrangement of the reflective elements is not limited.
  • the second reflecting elements 2B1 to 2B4 reflect the light from the light source 4 and emit the reflected lights LB1, LB2, LB3, and LB4 to the front surface 3a side of the display panel 3, respectively.
  • the reflection surfaces 2Ba of the second reflection elements 2B1 to 2B4 are arranged so that the respective reflected lights LB1 to LB4 are emitted to the second viewpoint E2 that is the left eye of the observer O (the second angle ⁇ in FIG. 5A). B ) is set.
  • the third reflecting elements 2C1 to 2C4 emit the reflected lights LC1, LC2, LC3, and LC4 to the front surface 3a side of the display panel 3.
  • the reflecting surfaces 2Ca of the third reflecting elements 2C1 to 2C4 have their angles (the second angle ⁇ in FIG. 5B) so that the respective reflected lights LC1 to LC4 are emitted to the third viewpoint E3 that is the right eye of the observer O. C ) is set.
  • the corresponding reflective element 2B2 and reflective element 2C2, reflective element 2B3 and reflective element 2C3, reflective element 2B4 and reflective element 2C4 connect intersections C2, C3, and C4 at height H, respectively.
  • Each of the intersections C1, C2, C3, and C4 is arranged on a plane having a height H from the display panel 3.
  • the reflected lights LB1 to LB4 from the reflecting elements 2B1 to 2B4 of the second display pattern 10B are emitted toward the second viewpoint E2 and are viewed with the left eye of the observer O, but are not viewed with the right eye.
  • the reflected lights LC1 to LC4 from the reflecting elements 2C1 to 2C4 of the third display pattern 10C are emitted toward the third viewpoint E3 and viewed with the right eye of the observer O, but not with the left eye.
  • the observer O recognizes that the reflected lights LB1 and LC1 emitted from the corresponding reflecting elements 2B1 and 2C1 are emitted from the intersection C1 in space. Similarly, the observer recognizes that the corresponding reflected light LB2 and reflected light LC2, the reflected light LB3 and reflected light LC3, and the reflected light LB4 and reflected light LC4 are emitted from the intersections C2, C3, and C4, respectively. .
  • the observer O will feel as if there is a light emitting source at the intersections C1 to C4 in the space, and will recognize the stereoscopic display pattern 10V displayed stereoscopically.
  • the display device 1 can realize stereoscopic viewing in this way.
  • the display device 1 is capable of stereoscopic viewing even when an observer who assumes any two viewpoints among the first to fourth viewpoints E1 to E4 shown in FIG. 1 as the right eye and the left eye is assumed.
  • stereoscopic viewing is also possible from an observer who uses the first viewpoint E1 and the second viewpoint E2 as the left eye and the right eye. That is, stereoscopic viewing is possible from an observer at various angles on the right and left with respect to the display panel 3.
  • stereoscopic viewing is also possible from an observer who uses the first viewpoint E1 and the fourth viewpoint E4 as the left eye and the right eye.
  • an observer who is closer to the display panel 3 than the observer O in FIG. 1 is assumed. That is, stereoscopic viewing is possible even when the observer approaches the display panel 3 or moves away.
  • FIG. 6 is a diagram for explaining the principle, and the second display pattern 10B and the third display pattern 10C each have a one-to-one reflection element. However, it is not always necessary to have reflective elements corresponding one-to-one. If the display pattern as a collection of reflective elements is configured as a projected drawing of the stereoscopic display pattern 10V, the stereoscopic display pattern 10V can be viewed by an observer using parallax.
  • the spread angle ⁇ in the traveling direction of the light L incident on the reflecting surfaces 2Aa to 2Da of the reflecting elements 2A to 2D will be described with reference to FIGS. 5A and 5B.
  • the light L has a spread angle ⁇ in the XY plane.
  • the X-axis component (spread angle in the XZ plane) of the reflected light LB reflected by the reflecting surface 2Ba increases. If the X-axis component of the reflected light LB becomes too large, the recognizable range of the reflected light LB reflected from the second reflective element 2B becomes wide.
  • the reflected light LB is recognized from both eyes, and stereoscopic display using parallax cannot be performed. If the spread angle ⁇ is too small, the emission range of the reflected light LB becomes narrow. As a result, the region where the reflected light LB can be recognized becomes too narrow, and the image cannot be observed depending on the position of the observer. Therefore, the spread angle ⁇ of the light L incident on the reflecting surface 2Ba in the XY plane is preferably 1 ° or more and 10 ° or less, and more preferably 1 ° or more and 6 ° or less.
  • the distance De between the eyes of the observer O is about 60 mm. Further, it is assumed that the distance Do between the viewpoints E2 and E3 of the observer O and the display panel 3 is 600 mm or less. Under such conditions, the reflected light LA to LD is the X-axis component and the divergence angle in the XZ plane is 6 ° or less, so that the reflected light LA to LD is only on one eye of the observer. It can be configured to be recognized.
  • the spread angle ⁇ in the XY plane of the light incident on the reflecting surfaces 2Aa to 2Da of the reflecting elements 2A to 2D shown in FIG. is preferably 6 ° or less.
  • the distance Do between the viewpoints E2 and E3 of the observer O and the display panel 3 is assumed to be 350 mm or less, it is an X-axis component of the reflected light LA to LD and is in the XZ plane.
  • the divergence angle is 10 ° or less, the reflected light LA to LD can be recognized only by one eye of the observer.
  • the spread angle of the reflected lights LA to LD in the XZ plane to 10 ° or less
  • the spread angle ⁇ is preferably 10 ° or less.
  • the spread angle ⁇ in the XY plane of the light L described above relates to the light incident on the reflection surface of each individual reflection element. Therefore, for example, even if the reflection elements are included in the same display pattern (element group), light incident on different reflection elements may have different angular distributions. However, when attention is paid to light incident on a specific reflecting element, the spread angle ⁇ of the light in the XY plane is 1 ° or more and 10 ° or less, or 1 ° or more and 6 ° or less.
  • the reflected lights LB1 to LB4 and the corresponding reflected lights LC1 to LC4 connect the intersections C1 to C4 on the front surface 3a side of the display panel 3 to form a three-dimensional display pattern 10V that floats on the front surface 3a side.
  • the reflected lights LB1 to LB4 and the corresponding reflected lights LC1 to LC4 may not intersect directly, and their extension lines may intersect on the rear surface 3b side of the display panel 3. In this case, it is visually recognized by the observer O as if the stereoscopic display pattern 10V was sunk with respect to the display panel 3.
  • the reflective elements 2A to 2D are physically formed in a transparent material as a hollow shape, and reflect light to the front surface 3a side of the display panel 3 using total reflection.
  • an angle direction in which reflected light becomes weak may be formed due to the critical angle relationship. Therefore, for the purpose of widening the angle region where reflection is possible, the mirror surface treatment by silver deposition may be performed on the reflection surfaces 2Aa to 2Da of the reflection elements 2A to 2D.
  • the reflection elements 2A to 2D may have a structure having reflection surfaces 2Aa to 2Da for reflecting light from the light source 4 to the front surface 3a side of the display panel 3, and may have other shapes.
  • 7A to 7E show reflective elements 21, 22, 23, 24, and 25 as examples applicable to the first embodiment.
  • the reflective element 21 shown in FIG. 7A has a triangular pyramid shape with one surface as the reflective surface 21a.
  • the reflecting element 22 shown in FIG. 7B has a shape obtained by obliquely cutting a cylinder, and the cut surface is configured as a reflecting surface 22a.
  • the reflective element 25 shown in FIG. 7E has a shape similar to a triangular pyramid, and one surface that is a reflective surface has a curved surface shape.
  • the reflection surfaces 23a, 24a, and 25a of these reflection elements 23, 24, and 25 are formed as cylindrical outer peripheral surfaces.
  • the reflective surfaces 21a and 22a are preferably formed in a plane.
  • the surfaces parallel to the reflecting surfaces 23a, 24a, 25a and the display panel 3 that is, It is preferable that the lines intersecting the plane (XY plane parallel to the XY plane) are straight lines and the straight lines are parallel to each other. Even if a surface of any height is assumed as a surface parallel to the display panel 3, the reflected light can be reflected in the X-axis direction as long as they are straight lines and are parallel to each other. Does not spread to. Specifically, a shape in which the cylindrical surface is laid as shown in FIG. 7C to FIG. 7E can be mentioned. When such a curved surface is used as a reflecting surface, options for each method for forming the reflecting elements 21 and 22 can be expanded.
  • the ratio h / w of the width w to the height h of the reflecting surfaces 21a to 25a is preferably 0.2 or less.
  • the display device 1 of the first embodiment uses a point light source typified by an LED as the light source 4.
  • the angular distribution that is, the spread angle ⁇
  • the light incident on the reflecting surface of the single reflecting element is narrowed.
  • a region where light does not reach near both end portions in the vicinity of the light incident portion is generated, and thus a display pattern cannot be arranged in such a region.
  • light in which components in the XY plane are made close to parallel in advance specifically, light having a spread angle in the XY plane of 1 ° to 10 °, preferably 6 ° or less
  • FIG. Such an example will be described with reference to FIGS. 8 and 9 as a first modification and a second modification of the first embodiment.
  • FIG. 8 shows a display device 41 of a first modification.
  • a plate-shaped cylindrical lens 42 having a thickness substantially the same as that of the display panel 3 is disposed between the light source 4 and the display panel 3.
  • the cylindrical lens 42 is formed in a fan shape.
  • a lens surface 42 a that is a fan-shaped curved portion of the cylindrical lens 42 is disposed so as to face the end surface 3 c of the display panel 3.
  • the cylindrical lens 42 is a surface opposite to the lens surface 42a, and a flat surface 42b is formed on the focal side of the lens surface 42a.
  • the light source 4 is disposed at a position facing the flat surface 42b so as to coincide with the focal point of the lens surface 42a.
  • the light L emitted from the light source 4 enters the cylindrical lens 42 from the flat surface 42b of the cylindrical lens 42. Since the light source 4 radiates light radially, the light L spreads radially inside the cylindrical lens 42. The light L that has reached the lens surface 42 a of the cylindrical lens 42 is refracted into parallel light and is emitted toward the display panel 3. Further, the light L is incident on the display panel 3 from the end face 3c of the display panel 3 while maintaining parallelism.
  • the component orthogonal to the thickness direction of the light incident on the display panel 3 can be made parallel in advance. Therefore, it is not necessary to increase the distance D from the end surface 3c of the display panel 3 to each of the display patterns 10A to 10D, and the display device 41 applicable to various uses can be provided.
  • the light L emitted from the light source 4 can be distributed and incident on the entire end surface 3 c of the display panel 3 by the cylindrical lens 42. Therefore, the light L can be reliably incident on the display elements of the display pattern formed in the vicinity of both ends of the display panel 3.
  • the cylindrical lens 42 is configured separately from the display panel 3, but these are partially connected as long as the light L does not interfere with the parallel light. May be. Further, in the display device 41, the cylindrical lens 42 is not limited to a single lens, and a plurality of cylindrical lenses 42 may be arranged.
  • FIG. 9 shows a display device 44 of a second modification.
  • the display device 44 includes a reflector 45 that reflects the light L emitted from the light source 5, which is a point light source, into parallel light.
  • the reflector 45 is made of a transparent material.
  • the reflector 45 is a plate-like member having a parabolic shape formed on its outer shape.
  • the thickness of the reflector 45 is substantially the same as that of the display panel 3.
  • the reflector 45 has a parabolic reflection curved surface 45a and a flat surface 45b which is a surface opposite to the reflection curved surface 45a.
  • a mirror surface is formed on the reflection curved surface 45a so that light incident from the inside of the reflector 45 is reflected.
  • the reflector 45 is arranged so that the flat surface 45b and the end surface 3c of the display panel 3 face each other in parallel. Further, the light source 5 is disposed at a portion corresponding to the focal point of the parabola of the reflector 45.
  • the light source 5 is provided with a shielding portion 5a on the flat surface 45b side. The light emitted from the light source 5 is not directly incident on the flat surface 45b side by the shielding portion 5a.
  • the reflection curved surface 45a When the light L emitted from the light source 5 reaches the reflection curved surface 45a, it is reflected to the display panel 3 side. Since the reflection curved surface 45a is formed in a parabolic shape, and the light source 5 is disposed at the focal point of the parabola, the reflected light L becomes parallel light having no X-axis component. The light L is incident on the display panel 3 through the flat surface 45b and the end surface 3c.
  • the same effect as that of the display device 41 of the first modified example described above can be obtained. That is, there is no need to increase the distance D from the end face 3c of the display panel 3 to each of the display patterns 10A to 10D, and the display device 44 applicable to various uses can be provided. Further, the light L emitted from the light source 4 is distributed and made incident on the entire area of the end surface 3c of the display panel 3 by the reflector 45, so that the display element of the display pattern formed near both ends of the display panel 3 Also, the light L can be reliably incident.
  • the display patterns 10A to 10D can be irradiated with light having the same luminous intensity.
  • the display patterns 10A to 10D can make the stereoscopic display pattern 10V visible more clearly with the light intensity being constant.
  • the reflector 45 is configured separately from the display panel 3, but the reflector 45 is a part of the display panel 3, and a reflection curved surface 45 a is formed on a part of the display panel 3. May be formed.
  • the number of the reflectors 45 is not limited to one, and a plurality of reflectors 45 may be arranged.
  • the light source 4 is disposed on the end surface 3c side of the display panel 3, and the light L emitted from the point light source is incident on the display panel 3 from the end surface 3c.
  • the light source 4 may be disposed on the front or rear side of the display panel, and the light L from the light source 4 may be incident on the display panel from the front or rear surface.
  • FIG. 10 is a schematic cross-sectional view of a display device 71 according to a third modification of the first embodiment.
  • the display device 71 includes a display panel 73 and a light source 4 arranged on the front surface 73a side.
  • a plurality of reflective elements 72 are formed on the front, rear, or inside of the display panel 73, and these reflective elements 72 constitute a plurality of display patterns.
  • a reflective surface 72 a is formed on the reflective element 72.
  • the reflective surface 72 a is formed on the surface of the reflective element 72 that faces the light source 4.
  • the reflective element 72 is formed with a mirror surface so as to reflect light toward the front surface 73 a of the display panel 73.
  • the light L emitted from the light source 4 enters the display panel 73 from the front surface 73 a and reaches the reflection surface 72 a of the reflection element 72.
  • the light L is reflected by the reflecting surface 72 a and is emitted to the front surface 73 a side of the display panel 73. Further, the light L is visually recognized by the viewpoint E on the front surface 73 a side of the display panel 73.
  • the reflection surface 72a of each reflection element 72 may have a different inclination angle (first angle ⁇ ) along the direction (Y-axis direction) from the light source 4 to the display panel 73.
  • the reflecting surface 72a of each reflecting element 72 has a first angle ⁇ (not shown) and a second angle ⁇ (not shown, ⁇ B in FIG.
  • the reflecting surface 72a of the reflecting element 72 always deviates from the total reflection critical angle, and therefore the reflecting surface 72a of the reflecting element 72 needs to be subjected to a mirror surface treatment.
  • the light source 4 can be arranged on the front surface 73 a side of the display panel 73. Therefore, it is not necessary to arrange any device on the periphery of the display panel 73, and the display device 71 with high design can be provided.
  • the display panel 73 may be mirror-finished not only on the reflective surface 72a but also on the entire rear surface 73b. That is, the display panel 73 may be restricted from transmitting light (transmitting visible light) from the front surface 73a side to the rear surface 73b side.
  • FIG. 11 is a schematic cross-sectional view of a display device 81 according to a fourth modified example of the first embodiment.
  • the display device 81 includes a display panel 83 and a light source 4 disposed on the rear surface 83b side.
  • a plurality of reflective elements 82 are formed on the front, rear, or inside of the display panel 83, and these reflective elements 82 constitute a plurality of display patterns.
  • a reflective surface 82 a is formed on the reflective element 82.
  • the reflection surface 82 a is formed on the surface of the reflection element 82 that faces the light source 4.
  • the reflecting element 82 is formed with a mirror surface so as to reflect light toward the front surface 83 a of the display panel 83.
  • the light L emitted from the light source 4 enters the display panel 83 from the rear surface 83b and reaches the reflection surface 82a of the reflection element 82.
  • the light L is reflected by the reflecting surface 82 a and is emitted to the front surface 83 a side of the display panel 83. Further, the light L is visually recognized from the viewpoint E on the front surface 83 a side of the display panel 83.
  • the reflection surface 82 a of each reflection element 82 may have a different inclination angle (first angle ⁇ ) along the direction (Y-axis direction) from the light source 4 to the display panel 83.
  • each reflecting element 82 has a first angle ⁇ (not shown) and a second angle ⁇ (not shown, ⁇ B in FIG. 3B) so as to reflect the light incident from the light source 4 toward the viewpoint E. , Corresponding to ⁇ C ).
  • the reflective element is a depression formed on the rear surface of the display panel 83, the reflective surface 82a of the reflective element 82 is always within the total reflection critical angle, and therefore it is not necessary to mirror the reflective surface 82a.
  • the intersection of the corresponding reflective elements is configured at a certain height H from the front surface 3 a of the display panel 3. Therefore, although the stereoscopic display pattern 10V appears to float from the front surface 3a of the display panel 3, the lifted stereoscopic display pattern 10V itself is visually recognized in a plane. On the other hand, you may arrange
  • a display device 31 that enables such stereoscopic viewing will be described as a second embodiment with reference to FIG.
  • FIG. 12 is a conceptual diagram of the display device 31 of the second embodiment. Constituent elements that are the same as those in the first embodiment described above are given the same reference numerals, and descriptions thereof are omitted.
  • the display device 31 is schematically configured by a display panel 33 made of a transparent material, and a point light source (light source) 4 that receives light from an end surface 33 c of the display panel 33.
  • the display device 31 reflects the light incident from the light source 4 to the front surface 33a side of the display panel 33 and observes the left eye (first viewpoint E1) and right eye (second viewpoint E2) of the viewer from the front surface 33a side of the display panel 33. )
  • the observer O to stereoscopically recognize the sphere (stereoscopic display pattern, display object) 30V.
  • the display panel 33 has two display patterns (a first display pattern 30A and a second display pattern 30B) corresponding to the first viewpoint E1 and the second viewpoint E2 in order to make the observer recognize the sphere 30V.
  • the first display pattern 30 ⁇ / b> A is a projection drawing drawn on the surface of the display panel 33 from the first viewpoint E ⁇ b> 1 with respect to the virtual sphere 30 ⁇ / b> V floating from the display panel 33.
  • the second display pattern 30B is a projected drawing drawn on the surface of the display panel 33 from the second viewpoint E2 with respect to the sphere 30V.
  • the first display pattern (first element group) 30A is configured by assembling first reflective elements 32A.
  • the plurality of first reflecting elements 32A reflect the light L from the light source 4 and make it incident on the first viewpoint E1.
  • the second display pattern (second element group) 30B includes a plurality of second reflective elements 32B that reflect the light L and enter the second viewpoint E2.
  • the first reflective element 32A and the second reflective element 32B are formed on the rear surface 33b of the display panel 33 and have the same shape as in the first embodiment.
  • any one of the plurality of first reflective elements 32A included in the first display pattern 30A is defined as a reflective element 32A1.
  • the reflective element of the second display pattern 30B corresponding to the reflective element 32A1 is referred to as a reflective element 32B1.
  • the reflective element 32A1 of the first display pattern 30A emits the reflected light LA1 toward the first viewpoint E1.
  • the reflective element 32B1 of the second display pattern 30B emits the reflected light LB1 toward the second viewpoint E2.
  • These reflected lights LA1 and LB1 are not recognized from the other viewpoint. Accordingly, the observer O recognizes as if there is a light emitting point at the intersection C1 between the reflected light LA1 and the reflected light LB1. This intersection C1 is configured at a height H1 on the front surface 33a side of the display panel 33.
  • the first reflective elements 32A of the first display pattern 30A a reflective element 32A2 different from the previous reflective element 32A1 and the reflective element 32B2 of the second display pattern 30B corresponding to the reflective element 32A2 will be described.
  • the reflected lights LA2 and LB2 reflected from the reflecting element 32A2 and the reflecting element 32B2 respectively constitute the intersection C2 at the height H2 on the front surface 33a side of the display panel 33. Therefore, the observer O recognizes as if there is a light emitting point at the position of the height H2.
  • intersection C1 and the intersection C2 are recognized as different heights H1 and H2, respectively.
  • the sphere 30V can be recognized in a three-dimensional manner by setting the reflection directions of the reflective elements 32A and 32B of the display patterns 30A and 30B so as to constitute the surface of the sphere 30V.
  • first display pattern 30A and the second display pattern 30B do not necessarily have to have reflective elements corresponding to each other one to one. If the display pattern as a collection of reflective elements is configured as a projected drawing of a virtual sphere 30V, the sphere 30V can be viewed three-dimensionally by an observer using parallax.
  • FIG. 13 is a conceptual diagram of the display device 51 of the third embodiment. Constituent elements that are the same as those in the first embodiment described above are given the same reference numerals, and descriptions thereof are omitted.
  • the display device 51 includes a first display panel 53, a second display panel 54 stacked on the rear surface 53b of the first display panel 53, a light source 4A provided on an end surface 53c of the first display panel 53, and a second display panel 53. And a light source 4B provided on an end surface 54c of the display panel 54.
  • the light source 4A irradiates the inside of the display panel 35 with the light L1 from the end surface 53c
  • the light source 4B irradiates the inside of the display panel 54 with the light L2 from 54c.
  • the first display panel 53 and the second display panel 54 are stacked without being in close contact with each other.
  • light may enter from one panel to the other panel, which may hinder stereoscopic visibility.
  • a first display pattern 55A and a second display pattern 55B are formed on the rear surface 53b of the first display panel 53.
  • the first display pattern 55A is configured as an aggregate (element group) of a plurality of first reflective elements 57A
  • the second display pattern 55B is configured as an aggregate (element group) of a plurality of second reflective elements 57B. Yes.
  • the first display pattern 55A and the second display pattern 55B together form a drawing “A”.
  • the light L1 irradiated to the first display panel 53 is reflected by the reflective elements 57A and 57B of the first and second display patterns 55A and 55B, and reflected on the front surface 53a side of the first display panel 53 as reflected light LA1 and LB2, respectively. It is injected.
  • the reflected light LA1 and the reflected light LB2 intersect in the space on the front surface 53a side of the first display panel 53, and head toward the first viewpoint E1 and the second viewpoint E2, respectively.
  • the reflected light LA toward the first viewpoint E1 is not visually recognized from the second viewpoint E2, and the reflected light LB toward the second viewpoint E2 is not visually recognized from the first viewpoint E1.
  • a first display pattern 56A and a second display pattern 56B are formed on the rear surface 54b of the second display panel 54.
  • the first display pattern 56A is configured as an aggregate (element group) of a plurality of first reflective elements 58A
  • the second display pattern 56B is configured as an aggregate (element group) of a plurality of second reflective elements 58B. Yes.
  • the first display pattern 56A and the second display pattern 56B together form a drawing “B”.
  • the light L2 applied to the second display panel 54 is reflected by the reflective elements 58A and 58B of the first and second display patterns 56A and 56B, and is reflected on the front surface 53a side of the first display panel 53 as reflected light LA2 and LB2, respectively. It is injected.
  • the reflected light LA2 and the reflected light LB2 travel to the first viewpoint E1 and the second viewpoint E2, respectively, after intersecting.
  • the drawing “B” is recognized as the pattern (display object) 55V.
  • the display device 51 of the third embodiment can cause the observer to simultaneously recognize the drawing “A” and the drawing “B” that are three-dimensionally raised by simultaneously turning on the light source 4A and the light source 4B.
  • the light source 4A and the light source 4B are alternately turned on, a three-dimensional drawing “A” and a drawing “B” that are switched at a predetermined timing can be displayed. In this way, animation can be displayed by a method of switching display.
  • one display panel displays only one type of color
  • multi-color expression can be achieved by stacking the display panels.
  • the light source A and the light source B as light sources that emit different colors of light
  • two-color three-dimensional representation is possible.
  • the color of the light source irradiated to each may be red, green, and blue which are the three primary colors of light.
  • drawing “A” is formed on the first, second, and third display panels, and the three-dimensional drawing that develops various colors can be displayed by switching the light source. .
  • the display device 51 of the third embodiment has a structure in which the display panels 53 and 54 are stacked, so that the focus of the observer's eyes is less likely to concentrate on the front surface of the display panel. Therefore, according to this display device 51, it becomes easy for the observer to make a three-dimensional visual recognition.
  • FIG. 14 is a conceptual diagram of a display device 61 according to the fourth embodiment. Constituent elements that are the same as those in the first embodiment described above are given the same reference numerals, and descriptions thereof are omitted.
  • the display device 61 is generally configured by a display panel 63 made of a transparent material and a point light source (light source) 4 that receives light from an end face 63 c of the display panel 63.
  • the display device 61 reflects light incident from the light source 4 to the front surface 63a side of the display panel 63, and transmits the light to the first observer O1 and the second observer O2 positioned in different directions on the front surface 63a side of the display panel 63.
  • this is a device for visually recognizing different display patterns (drawing “A” and drawing “B”, respectively).
  • the display panel 63 has two display patterns (a first display pattern 60A and a second display pattern 60B) corresponding to the first viewpoint E1 and the second viewpoint E2.
  • the first display pattern 60A displays the drawing “A” as an aggregate (element group) of the first reflective elements 62A.
  • the first reflecting element 62A reflects the light L from the light source 4 and makes it incident on the first viewpoint E1.
  • the second display pattern 60B displays the drawing “B” as an aggregate (element group) of the second reflective elements 62B.
  • the second reflecting element 62B reflects the light L from the light source 4 and makes it incident on the second viewpoint E2.
  • the first and second reflecting elements 62A and 62B are notches (dents) formed in the rear surface 63b of the display panel 63, and have the same shape as the reflecting elements 2A to 2D of the first embodiment.
  • the 1st reflective element 62A and the 2nd reflective element 62B are formed in the rear surface 63b of the display panel 63 similarly to 1st Embodiment, and have the same shape.
  • FIG. 15 is a schematic diagram when the display panel 63 is viewed from the light source 4 side.
  • the reflection surfaces 62Aa of the plurality of first reflection elements 62A included in the first display pattern 60A and the reflection surfaces 62Ba of the plurality of second reflection elements 62B included in the second display pattern 60B are different from each other (first The reflected lights LA and LB are emitted in a direction toward the observer O1 and a direction toward the second observer O2.
  • the first reflective element 62A of the first display pattern 60A reflects the light from the light source 4 and emits the reflected light LA toward the first observer O1.
  • the reflection surfaces 62Aa of the plurality of first reflection elements 62A are visually recognized from the right eye E1R and the left eye E1L of the first observer O1. Further, since the diffusion of the reflected light LA is within a certain range, the reflected light LA is not visually recognized by the second observer O2. Similarly, the reflective element of the second display pattern 60B is visually recognized by the second observer O2 using the light from the light source 4 as reflected light LB. Further, the reflected light LB is not visually recognized by the first observer O1.
  • the first observer O1 can visually recognize the drawing “A” of the first display pattern 60A and visually recognize the drawing “B” of the second display pattern 60B. Can not.
  • the drawing “B” of the second display pattern 60B can be visually recognized from the second observer O2, and the drawing “A” of the first display pattern 60A cannot be visually recognized. That is, the display device 61 can change the drawing pattern from different viewpoints. For example, when the first observer O1 moves to the position of the second observer O2, morphing in which the visually recognized display pattern is gradually switched from the drawing “A” to the drawing “B” can be realized.
  • the drawing corresponding to the first and second display patterns 60A and 60B correspond to the movement of the person, it is also possible to perform animation expression that operates by changing the viewpoint of the observer.
  • the display panel 63 itself may be moved or rotated to change the relative positional relationship between the observer and the display panel, thereby switching the drawing to be recognized by the observer.
  • FIG. 16 is a schematic cross-sectional view of a display device 91 according to the fifth embodiment. Constituent elements that are the same as those in the first embodiment described above are given the same reference numerals, and descriptions thereof are omitted.
  • the display device 91 includes a display panel 93 and the light source 4 disposed on the front surface 93a side.
  • the display device 91 of the present embodiment is similar to the display device 71 of the third modification example of the first embodiment in that the light source 4 is disposed on the front surface 93a side of the display panel 93.
  • the surface 93d of the display panel 93 includes a front surface 93a and a rear surface 93b.
  • the display panel 93 of the present embodiment is made of, for example, a metal material such as stainless steel or an aluminum alloy, or a non-transparent resin material. That is, the display panel 93 of the present embodiment is made of a non-transparent material and does not transmit the light L incident on the front surface 93a to the rear surface 93b side.
  • the display panel 93 may be translucent as long as the background cannot be seen through.
  • a plurality of reflective elements 92 are formed on the front surface 93 a of the display panel 93.
  • the reflective element 92 is a notch (dent) formed in the front surface 93 a of the display panel 93.
  • the reflective element 92 has a reflective surface 92 a that faces the light source 4.
  • the reflecting surface 92a is preferably subjected to a mirror surface treatment. Thereby, even if the incident angle of the light L irradiated from the light source 4 and incident on the reflecting surface 92a deviates from the total reflection critical angle, the light L can be reliably reflected to the front surface 93a side.
  • the reflective element 92 can be formed by machining the front surface 93a of the display panel 93.
  • the reflective element 92 can be formed by cutting the front surface 93a of the display panel 93 using a diamond tool. In this case, the reflecting surface 92a having excellent surface properties can be formed.
  • the reflective element 92 may be formed by pressing the processing tool against the front surface 93a of the display panel 93 and deforming the front surface 93a.
  • the reflective element 92 may be formed by heat transfer or UV effect transfer of a convex shape corresponding to the shape of the reflective element 92.
  • the reflective element 92 may be formed at the same time as the display panel 93 is molded.
  • the reflective element 92 constitutes a plurality of display patterns (corresponding to the display patterns 10A to 10D of the first embodiment) in the same manner as the reflective elements 2A to 2D of the first embodiment (see FIG. 1). Similarly to the first embodiment, each display pattern reflects the light L in a specific viewpoint direction by the reflective element 92 having the reflective surface 92a at a specific angle, and displays the stereoscopic display pattern to the viewer on the front surface 93a side. Recognize
  • the light L emitted from the light source 4 enters the reflection surface 92a of the reflection element 92 provided on the front surface 93a of the display panel 93.
  • the light L is reflected to the front surface 93a side by the reflecting surface 92a and is visually recognized at the viewpoint E on the front surface 93a side of the display panel 93.
  • the reflection surface 92 a of each reflection element 92 may have a different inclination angle (first angle ⁇ ) along the direction (Y-axis direction) from the light source 4 to the display panel 93.
  • the reflecting surface 92a of each reflecting element 92 has a first angle ⁇ (not shown) and a second angle ⁇ (not shown, ⁇ in FIG. 3B) so as to reflect the light L incident from the light source 4 toward the viewpoint E. B , corresponding to ⁇ C ) are adjusted.
  • the light source 4 does not necessarily have to be arranged on the front side.
  • the light source 4 may be disposed on the rear surface 93b side, and light may be applied to the display panel 93 from the front surface 93a side through a reflector such as a mirror.
  • a point light source may be used as the light source 4, and the cylindrical lens 42 (see FIG. 8) or the reflector 45 (see FIG. 9) may be disposed in the optical path from the light source 4 to the display panel 93. Thereby, the light which made the component orthogonal to the thickness direction of the display panel 93 near parallel can be entered.
  • FIG. 17 is a schematic cross-sectional view of a display device 91A of the first modification. Constituent elements in the same mode as the above-described fifth embodiment are denoted by the same reference numerals, and description thereof is omitted. As shown in FIG. 17, it has the display panel 93A and the light source 4 arrange
  • the display device 91A has a configuration substantially similar to that of the display device 91 of the fifth embodiment, but the configuration of the display panel 93A is different.
  • the display panel 93A of the display device 91A is made of a transparent material 95 having a non-transparent coating 96 on the front surface 93Aa side. Therefore, in the display panel 93A, transmission of visible light (transmission) from the front surface 93Aa side to the rear surface 93Ab side (or from the rear surface 93Ab side to the front surface 93Aa side) is limited. Therefore, the display panel 93A has a configuration in which the background from the front surface 93Aa side to the rear surface 93Ab side (or from the rear surface 93Ab side to the front surface 93Aa side) cannot be seen through.
  • the display panel 93A is exemplified by the non-transparent coating 96 on the front surface 93Aa side, but the display panel 93A may be provided with the non-transparent coating 96 on the rear surface 93Ab side.
  • the display panel 93A may be a transparent material that is partially coated with a non-transparent coating.
  • the non-transparent coating 96 is a mirror surface coating (mirror surface treatment).
  • a reflective element 92 is formed on the front surface 93Aa of the display panel 93A, as with the display device 91 of the fifth embodiment.
  • the reflective element 92 has a reflective surface 92 a that faces the light source 4.
  • the non-transparent coating (mirror coating) 96 covers the reflective surface 92a on the front surface 93Aa of the display panel 93A. That is, the reflective surface 92a is mirror-coated.
  • the display device 91A of the present modification stereoscopic display or morphing display can be performed using the display panel 93A made of the transparent material 95 provided with the non-transparent coating 96, as in the above-described embodiments.
  • the display panel 93A may constitute a display panel 93A provided with the reflective element 92 by pasting a non-transparent film in which the reflective element 92 is previously formed on the front surface of the plate material. .
  • FIG. 18 is a schematic cross-sectional view of a display device 91B according to a second modification. Constituent elements in the same mode as the above-described fifth embodiment are denoted by the same reference numerals, and description thereof is omitted. As shown in FIG. 18, it has the display panel 93B which consists of a non-transparent resin material (non-transparent material), and the light source 4 arrange
  • the display device 91B has substantially the same configuration as the display device 91 of the fifth embodiment, but the configuration of the reflective element 92B is different.
  • a plurality of reflective elements 92B are formed on the front surface 93Ba of the display panel 93B.
  • the reflective element 92B is a convex portion protruding from the front surface 93Ba of the display panel 93B.
  • the reflective element 92B can be formed at the same time when the display panel 93B made of a resin material is injection-molded.
  • the reflective element 92 ⁇ / b> B has a reflective surface 92 ⁇ / b> Ba that faces the light source 4.
  • the reflecting surface 92Ba is preferably subjected to a mirror surface treatment. Similar to the embodiment described above, the reflective element 92B constitutes a plurality of display patterns.
  • Each display pattern reflects the light L in a specific viewpoint direction by a reflection element 92B having a reflection surface 92Ba of a specific angle, and allows the observer on the front surface 93Ba side to recognize the stereoscopic display pattern.
  • the same effects as those of the fifth embodiment described above can be achieved.

Abstract

Provided is a display device equipped with a display panel and element groups which jointly display a specific display pattern, and have reflective elements in a dot shape provided on the surface of the display panel or in the interior thereof as constituent elements, wherein: the element groups are provided for a plurality of pre-set perspectives; the element group provided for each perspective reflects light from a light source without going through an optical element for imparting parallax toward each perspective; and the display pattern to be displayed by the element groups using the reflected light is visually recognized at a set perspective, and not visually recognized at a perspective which has not been set.

Description

表示装置及び表示方法Display device and display method
 本発明は、表示装置及び表示方法に関する。 The present invention relates to a display device and a display method.
 近年、LED(発光ダイオード)は、高効率、長寿命の光源として、様々な用途に使われている。LEDは指向性を持つ点状光源であり、単独ではスポット照明等としての使用に制限される。このため、透明な樹脂板等の導光板と組み合わせて線状又は面状の光源として使用される場合も多い。この例としては、液晶バックライト、広告用ライトパネル等が挙げられる。 In recent years, LEDs (light emitting diodes) have been used in various applications as light sources with high efficiency and long life. The LED is a point light source having directivity and is limited to use as a spot illumination alone. For this reason, it is often used as a linear or planar light source in combination with a light guide plate such as a transparent resin plate. Examples of this include a liquid crystal backlight, an advertising light panel, and the like.
 また、LEDを利用した表示装置として、透明なアクリル、ポリカーボネート等の導光板の表面にドット状の切り欠き(以下、単に、ドットともいう)を入れて、導光板の側面から入射されたLED光をドットで反射させて表面に模様を描く表示装置が知られている。この表示装置は、ドットで反射されたLED光がなす模様を透明な導光板上に表示させるものであり、透明性があり意匠性に優れるため、ディスプレイ等に用いられている。 In addition, as a display device using LEDs, LED light incident from the side of the light guide plate is made by placing a dot-like notch (hereinafter also simply referred to as a dot) on the surface of a transparent light guide plate such as acrylic or polycarbonate. There is known a display device in which a pattern is reflected on the surface by reflecting the dots with dots. This display device displays a pattern formed by LED light reflected by dots on a transparent light guide plate and is used for a display or the like because it is transparent and excellent in design.
 このような表示装置に立体視の効果を与えるために、パララックスバリア方式、レンチキュラーレンズ方式等の視差を利用した方式を用いることができる(例えば特許文献1)。
 パララックスバリア方式では、パララックスバリアと呼ばれる遮光部と開口部が交互かつ所定の繰り返しピッチで並んだマスクを利用する。レンチキュラーレンズ方式では、微小なレンズが所定の繰り返しピッチで並んだレンズアレイを利用する。
In order to give a stereoscopic effect to such a display device, a method using parallax such as a parallax barrier method or a lenticular lens method can be used (for example, Patent Document 1).
In the parallax barrier method, a mask called a parallax barrier in which light shielding portions and openings are alternately arranged at a predetermined repetition pitch is used. The lenticular lens system uses a lens array in which minute lenses are arranged at a predetermined repetition pitch.
日本国特許第5205511号公報Japanese Patent No. 5205511
 パララックスバリア方式又はレンチキュラーレンズ方式を採用する場合には、視差を与えるための光学素子(パララックスバリヤ又はレンズアレイ)を表示装置の全面に配置する必要がある。これにより、表示装置の厚みが増し、設置場所に制限が生じていた。また、表示装置に光学素子を必要とするためにコスト高となっていた。 When employing the parallax barrier method or the lenticular lens method, it is necessary to dispose an optical element (parallax barrier or lens array) for providing parallax over the entire surface of the display device. As a result, the thickness of the display device is increased, and the installation location is limited. Further, since an optical element is required for the display device, the cost is high.
 本発明は以上の事情を背景としてなされたもので、視点に向けて視差を与えるための光学素子を設けることなく立体視又はモーフィングの表示を行う表示装置及び表示方法を提供する。 The present invention has been made with the above circumstances as a background, and provides a display device and a display method for performing stereoscopic viewing or morphing display without providing an optical element for giving parallax toward a viewpoint.
 本発明の第1態様は、表示装置であって、表示パネルと、前記表示パネルの表面又は内部に設けられたドット状の反射要素を構成要素とし、全体として特定の表示パターンを表示する要素群とを備え、前記要素群を、予め設定された複数の視点毎にそれぞれ設け、各視点について設けた前記要素群は、その視点に向けて視差を与えるための光学素子を介さずに光源からの光を反射し、その反射光によって前記要素群が表示する前記表示パターンは前記設定された視点で視認され、設定されない視点では視認されない。 1st aspect of this invention is a display apparatus, Comprising: The element group which displays a specific display pattern as a whole by making a display panel and the dot-shaped reflective element provided in the surface or the inside of the said display panel into a component The element group is provided for each of a plurality of preset viewpoints, and the element group provided for each viewpoint is provided from a light source without an optical element for providing parallax toward the viewpoint. The display pattern that reflects light and is displayed by the element group by the reflected light is visually recognized at the set viewpoint, and is not visually recognized at an unset viewpoint.
 本発明の第2態様は、上記第1態様の表示装置において、前記光源をさらに備えていても良い。
 本発明の第3態様は、上記第2態様の表示装置において、前記表示パネルが透明材料からなっていても良い。
According to a second aspect of the present invention, the display device of the first aspect may further include the light source.
According to a third aspect of the present invention, in the display device according to the second aspect, the display panel may be made of a transparent material.
 本発明の第4態様は、上記第3態様の表示装置において、前記表示パネルが導光板であり、前記反射要素は導光板表面に設けられたドット状の窪みであり、導光板端面に前記光源が接続され、接続された前記光源は点状光源又は平行光源であっても良い。
 本発明の第5態様は、上記第3態様の表示装置において、前記光源が、前記表示パネルの前面側に配置され、前記光源からの光が前記表示パネルの前面から入射しても良い。
According to a fourth aspect of the present invention, in the display device according to the third aspect, the display panel is a light guide plate, the reflective element is a dot-like depression provided on the surface of the light guide plate, and the light source is disposed on an end surface of the light guide plate. The connected light sources may be point light sources or parallel light sources.
According to a fifth aspect of the present invention, in the display device according to the third aspect, the light source may be disposed on a front surface side of the display panel, and light from the light source may be incident from the front surface of the display panel.
 本発明の第6態様は、上記第3態様の表示装置において、前記光源が、前記表示パネルの後面側に配置され、前記光源からの光が前記表示パネルの後面から入射しても良い。
 本発明の第7態様は、上記第3から第6態様のいずれかの表示装置において、前記表示パネルを複数備え、これらが互いに積層されていても良い。
According to a sixth aspect of the present invention, in the display device according to the third aspect, the light source may be disposed on a rear surface side of the display panel, and light from the light source may be incident from the rear surface of the display panel.
According to a seventh aspect of the present invention, in the display device according to any one of the third to sixth aspects, a plurality of the display panels may be provided and these may be stacked on each other.
 本発明の第8態様は、上記第2態様の表示装置において、前記表示パネルが非透明材料からなっていても良い。
 本発明の第9態様は、上記第2態様の表示装置において、前記表示パネルが表面に非透明コーティングを施した透明材料からなっていても良い。
According to an eighth aspect of the present invention, in the display device according to the second aspect, the display panel may be made of a non-transparent material.
According to a ninth aspect of the present invention, in the display device according to the second aspect, the display panel may be made of a transparent material having a non-transparent coating on the surface.
 本発明の第10態様は、上記第8又は第9態様の表示装置において、前記光源が、前記表示パネルの前面側に配置され、前記光源からの光が前記表示パネルの前面から入射しても良い。 According to a tenth aspect of the present invention, in the display device according to the eighth or ninth aspect, the light source is disposed on a front surface side of the display panel, and light from the light source is incident from the front surface of the display panel. good.
 本発明の第11態様は、上記第2から第10態様のいずれかの表示装置において、前記光源が点状光源であり、前記光源と導光板の間にシリンドリカルレンズ又は放物面鏡を配し、レンズ又は放物面鏡の焦点に前記点状光源が設置されることにより、前記点状光源から照射された光の前記表示パネルの厚さ方向と直交する成分を平行としても良い。
 本発明の第12態様は、上記第1から第11態様のいずれかの表示装置において、各視点について設けた前記要素群は、その視点から立体視される仮想的な特定の表示物を投影した前記表示パネル上の投影パターンを、前記表示パターンとして表示しても良い。
An eleventh aspect of the present invention is the display device according to any one of the second to tenth aspects, wherein the light source is a point light source, and a cylindrical lens or a parabolic mirror is disposed between the light source and the light guide plate. By installing the point light source at the focal point of a lens or a parabolic mirror, a component orthogonal to the thickness direction of the display panel of light emitted from the point light source may be made parallel.
In a twelfth aspect of the present invention, in the display device according to any one of the first to eleventh aspects, the element group provided for each viewpoint projects a virtual specific display object stereoscopically viewed from the viewpoint. A projection pattern on the display panel may be displayed as the display pattern.
 本発明の第13態様は、上記第1から第12態様のいずれかの表示装置において、前記光源が前記表示パネルに対し、前記設定された複数の視点が並ぶ方向に直交する方向から前記表示パネルに光を入射させても良い。
 本発明の第14態様は、上記第1から第13態様のいずれかの表示装置において、前記反射要素に入射する光の広がり角が、前記表示パネルの厚さ方向と直交する方向に1°以上10°以下であっても良い。
According to a thirteenth aspect of the present invention, in the display device according to any one of the first to twelfth aspects, the light source is in the display panel from a direction perpendicular to a direction in which the plurality of set viewpoints are arranged with respect to the display panel. The light may be incident on.
According to a fourteenth aspect of the present invention, in the display device according to any one of the first to thirteenth aspects, a spread angle of light incident on the reflective element is 1 ° or more in a direction perpendicular to the thickness direction of the display panel. It may be 10 ° or less.
 本発明の第15態様は、上記第1から第14態様のいずれかの表示装置において、前記反射要素が、前記表示パネルの厚さ方向に沿った高さがhであり、厚さ方向に直交する幅がwであり、h/wが0.2以下である反射面を有する。
 本発明の第16態様は、上記第1から第15態様のいずれかの表示装置において、前記ドット状の反射要素の反射面が、平面又は円筒面であっても良い。
According to a fifteenth aspect of the present invention, in the display device according to any one of the first to fourteenth aspects, the reflective element has a height h along the thickness direction of the display panel and is orthogonal to the thickness direction. The reflection surface has a width of w and h / w of 0.2 or less.
In a sixteenth aspect of the present invention, in the display device according to any one of the first to fifteenth aspects, the reflecting surface of the dot-shaped reflecting element may be a flat surface or a cylindrical surface.
 本発明の第17態様は、表示方法であって、透明材料からなる表示パネルと、前記表示パネルの表面又は内部に設けられたドット状の反射要素を構成要素とし、全体として特定の表示パターンを表示する要素群と、を備えた表示装置を用いて、前記要素群を、予め設定された複数の視点毎にそれぞれ設け、各視点について設けた前記要素群は、その視点に向けて視差を与えるための光学素子を介さずに光源からの光を反射し、その反射光によって前記要素群が表示する前記表示パターンは前記設定された視点で視認され、設定されない視点では視認されない。 According to a seventeenth aspect of the present invention, there is provided a display method comprising: a display panel made of a transparent material; and a dot-like reflective element provided on or inside the display panel as a constituent element, and a specific display pattern as a whole. The element group is provided for each of a plurality of preset viewpoints using a display device including an element group to be displayed, and the element group provided for each viewpoint gives a parallax toward the viewpoint Therefore, the display pattern displayed by the element group by reflecting the light from the light source without passing through the optical element is viewed from the set viewpoint, and is not viewed from the viewpoint that is not set.
 本発明の第18態様は、表示方法であって、非透明材料からなる表示パネルと、前記表示パネルの表面又は内部に設けられたドット状の反射要素を構成要素とし、全体として特定の表示パターンを表示する要素群と、を備えた表示装置を用いて、前記要素群を、予め設定された複数の視点毎にそれぞれ設け、各視点について設けた前記要素群は、その視点に向けて視差を与えるための光学素子を介さずに光源からの光を反射し、その反射光によって前記要素群が表示する前記表示パターンは前記設定された視点で視認され、設定されない視点では視認されない。 According to an eighteenth aspect of the present invention, there is provided a display method comprising a display panel made of a non-transparent material and a dot-like reflective element provided on or inside the display panel as a constituent element, and a specific display pattern as a whole. The element group is provided for each of a plurality of preset viewpoints, and the element group provided for each viewpoint has a parallax toward the viewpoint. The display pattern displayed by the element group by reflecting the light from the light source without passing through the optical element for providing and being displayed by the reflected light is viewed from the set viewpoint, and is not viewed from the viewpoint that is not set.
 本発明の第19態様は、表示方法であって、表面に非透明コーティングを施した透明材料からなる表示パネルと、前記表示パネルの表面又は内部に設けられたドット状の反射要素を構成要素とし、全体として特定の表示パターンを表示する要素群と、を備えた表示装置を用いて、前記要素群を、予め設定された複数の視点毎にそれぞれ設け、各視点について設けた前記要素群は、その視点に向けて視差を与えるための光学素子を介さずに光源からの光を反射し、その反射光によって前記要素群が表示する前記表示パターンは前記設定された視点で視認され、設定されない視点では視認されない。 According to a nineteenth aspect of the present invention, there is provided a display method comprising: a display panel made of a transparent material having a non-transparent coating on the surface; and a dot-like reflective element provided on or inside the display panel. In addition, using a display device including an element group that displays a specific display pattern as a whole, the element group is provided for each of a plurality of preset viewpoints, and the element group provided for each viewpoint is A viewpoint that reflects light from a light source without passing through an optical element for giving parallax toward the viewpoint, and the display pattern displayed by the element group by the reflected light is viewed at the set viewpoint and is not set. Is not visible.
 上記本発明に係る態様によれば、反射要素により反射される光の方向を要素群ごとに変えることで複数の方向に反射光を射出し、観察者の異なる視点にそれぞれ異なる像を認識させることができる。
 観察者の右目と左目に対して視差を反映させた表示パターンを視認させた場合には、立体視を実現できる。また、要素群ごとに異なる方向に、異なる表示パターンの光を照射させる場合には、観察者と表示パネルとの相対的な位置関係が変わるにしたがって、異なる表示パターンを観察者に視認させることができる。
 これにより、視点に向けて視差を与えるための光学素子を設けることなく、立体視又はモーフィングの表示を行う表示装置及び表示方法を提供できる。
According to the above aspect of the present invention, the reflected light is emitted in a plurality of directions by changing the direction of the light reflected by the reflecting element for each element group, and different images are recognized by different viewpoints of the observer. Can do.
When a display pattern reflecting parallax is viewed on the right and left eyes of the observer, stereoscopic vision can be realized. In addition, when irradiating light of different display patterns in different directions for each element group, the viewer can visually recognize different display patterns as the relative positional relationship between the observer and the display panel changes. it can.
Accordingly, it is possible to provide a display device and a display method for performing stereoscopic viewing or morphing display without providing an optical element for giving parallax toward the viewpoint.
第1実施形態の表示装置を示す概念図である。It is a conceptual diagram which shows the display apparatus of 1st Embodiment. 第1実施形態の表示装置において、表示パターンの構成を説明する概念図である。In the display apparatus of 1st Embodiment, it is a conceptual diagram explaining the structure of a display pattern. 第1実施形態の表示装置において、表示パターンの構成を説明する概念図である。In the display apparatus of 1st Embodiment, it is a conceptual diagram explaining the structure of a display pattern. 第1実施形態の表示装置において、表示パターンの構成を説明する概念図である。In the display apparatus of 1st Embodiment, it is a conceptual diagram explaining the structure of a display pattern. 第1実施形態の表示装置において、表示パターンの構成を説明する概念図である。In the display apparatus of 1st Embodiment, it is a conceptual diagram explaining the structure of a display pattern. 第1実施形態の表示装置を示す平面図である。It is a top view which shows the display apparatus of 1st Embodiment. 図3Aの平面図における一部領域の拡大図である。It is an enlarged view of a partial region in the plan view of FIG. 3A. 第1実施形態の表示装置を示す断面模式図である。It is a cross-sectional schematic diagram which shows the display apparatus of 1st Embodiment. 図4Aに示す反射要素を光の経路と共に拡大して示す図である。It is a figure which expands and shows the reflective element shown to FIG. 4A with the path | route of light. 第1実施形態の表示装置の反射要素のうち、第2反射要素を示す斜視図である。It is a perspective view which shows a 2nd reflective element among the reflective elements of the display apparatus of 1st Embodiment. 第1実施形態の表示装置の反射要素のうち、第3反射要素を示す斜視図である。It is a perspective view which shows a 3rd reflective element among the reflective elements of the display apparatus of 1st Embodiment. 第1実施形態の表示装置の表示パネルを光の光源側から見た模式図である。It is the schematic diagram which looked at the display panel of the display device of a 1st embodiment from the light source side of light. 第1実施形態の表示装置に適用可能な反射要素の斜視図である。It is a perspective view of the reflective element applicable to the display apparatus of 1st Embodiment. 第1実施形態の表示装置に適用可能な反射要素の斜視図である。It is a perspective view of the reflective element applicable to the display apparatus of 1st Embodiment. 第1実施形態の表示装置に適用可能な反射要素の斜視図である。It is a perspective view of the reflective element applicable to the display apparatus of 1st Embodiment. 第1実施形態の表示装置に適用可能な反射要素の斜視図である。It is a perspective view of the reflective element applicable to the display apparatus of 1st Embodiment. 第1実施形態の表示装置に適用可能な反射要素の斜視図である。It is a perspective view of the reflective element applicable to the display apparatus of 1st Embodiment. 第1実施形態の表示装置の第1変形例の平面図である。It is a top view of the 1st modification of the display apparatus of 1st Embodiment. 第1実施形態の表示装置の第2変形例の平面図である。It is a top view of the 2nd modification of the display apparatus of 1st Embodiment. 第1実施形態の表示装置の第3変形例の断面模式図である。It is a cross-sectional schematic diagram of the 3rd modification of the display apparatus of 1st Embodiment. 第1実施形態の表示装置の第4変形例の断面模式図である。It is a cross-sectional schematic diagram of the 4th modification of the display apparatus of 1st Embodiment. 第2実施形態の表示装置を示す概念図である。It is a conceptual diagram which shows the display apparatus of 2nd Embodiment. 第3実施形態の表示装置を示す概念図である。It is a conceptual diagram which shows the display apparatus of 3rd Embodiment. 第4実施形態の表示装置を示す概念図である。It is a conceptual diagram which shows the display apparatus of 4th Embodiment. 第4実施形態の表示装置の表示パネルを光の光源側から見た模式図である。It is the schematic diagram which looked at the display panel of the display device of a 4th embodiment from the light source side of light. 第5実施形態の表示装置の断面模式図である。It is a cross-sectional schematic diagram of the display apparatus of 5th Embodiment. 第5実施形態の表示装置の第1変形例の断面模式図である。It is a cross-sectional schematic diagram of the 1st modification of the display apparatus of 5th Embodiment. 第5実施形態の表示装置の第2変形例の断面模式図である。It is a cross-sectional schematic diagram of the 2nd modification of the display apparatus of 5th Embodiment.
 以下に、本発明の実施形態について各図を基に説明を行う。各図には、必要に応じてX-Y-Z座標系を記載している。本明細書においては、これらの座標系に沿って各方向を定め、説明を行う。なお、以下の説明で用いる図面は、各構成要素をわかりやすくするために、便宜上拡大して示している部分があり、各構成要素の寸法比率等が実際と同じであるとは限らない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In each figure, an XYZ coordinate system is described as necessary. In this specification, each direction is defined along these coordinate systems, and explanation is given. Note that the drawings used in the following description include portions that are enlarged for the sake of convenience in order to make each component easy to understand, and the dimensional ratios and the like of each component are not necessarily the same as actual.
 <第1実施形態>
 図1は、第1実施形態の表示装置1の概念図である。また、図2A~図6は、第1実施形態の表示装置1のより具体的な構成について説明する図である。以下に、図1~図6を基に表示装置1の概略構成、及び具体的な構成について説明を行う。
<First Embodiment>
FIG. 1 is a conceptual diagram of a display device 1 according to the first embodiment. 2A to 6 are diagrams for explaining a more specific configuration of the display device 1 according to the first embodiment. Hereinafter, a schematic configuration and a specific configuration of the display device 1 will be described with reference to FIGS.
 図1に示すように、表示装置1は、透明材料からなる表示パネル3と、この表示パネル3の端面3cから光を入射する点光源(光源)4とから概略構成されている。
 この表示装置1は、光源4から入射した光を、表示パネル3の前面3a側の特定方向に反射させ、表示パネル3の前面3a側から観察する観察者(例えば観察者O)の両目に異なる画像を認識させることにより、特定の表示パターンの立体視を実現する装置である。
 本実施形態において、表示パネル3の厚み方向を±Z方向とし、+Z方向から観察者Oが観察するものとする。また、観察者Oは、表示パネル3と対向して直立し、観察者Oにとって左右方向(各視点が並ぶ方向)が±X方向であるとし、上下方向(即ち、両視点同士を結ぶ直線と直交する方向)が±Y方向であるとする。
As shown in FIG. 1, the display device 1 includes a display panel 3 made of a transparent material and a point light source (light source) 4 that receives light from an end surface 3 c of the display panel 3.
The display device 1 reflects light incident from the light source 4 in a specific direction on the front surface 3a side of the display panel 3, and is different for both eyes of an observer (for example, an observer O) who observes from the front surface 3a side of the display panel 3. By recognizing an image, it is a device that realizes a stereoscopic view of a specific display pattern.
In the present embodiment, the thickness direction of the display panel 3 is the ± Z direction, and the observer O observes from the + Z direction. In addition, the observer O stands upright facing the display panel 3, and for the observer O, the horizontal direction (the direction in which the viewpoints are arranged) is the ± X direction, and the vertical direction (that is, a straight line connecting the two viewpoints). It is assumed that (the orthogonal direction) is the ± Y direction.
 図1、図3A、及び図3Bに示すように、表示装置1は、点光源である光源4を有している。この点光源は、方形状に形成された表示パネル3の端面3cに配置されている。光源4としては、LED(発行ダイオード)等を採用することができる。光源4の色は特に限定されるものではない。 As shown in FIGS. 1, 3A, and 3B, the display device 1 has a light source 4 that is a point light source. This point light source is disposed on the end surface 3c of the display panel 3 formed in a square shape. As the light source 4, an LED (issuing diode) or the like can be employed. The color of the light source 4 is not particularly limited.
 表示パネル3は、アクリル樹脂、ポリカーボネート樹脂、その他ガラス等の透明材料からなる導光板である。
 表示パネル3の厚さは、特に限定されるものではないが、光源4の大きさを包含する厚さとすることが好ましい。表示パネル3の厚さをこのように設定することで、端面3cに入射されない又は入射後に表面から抜け出る漏れ光を抑制できる。点光源として直径1mm~2mmのLEDを用いる場合には、表示パネル3の厚さは2mm~5mm程度とすることが好ましい。
The display panel 3 is a light guide plate made of a transparent material such as acrylic resin, polycarbonate resin, or other glass.
The thickness of the display panel 3 is not particularly limited, but is preferably a thickness that includes the size of the light source 4. By setting the thickness of the display panel 3 in this way, it is possible to suppress leaked light that is not incident on the end face 3c or escapes from the surface after being incident. When an LED having a diameter of 1 mm to 2 mm is used as the point light source, the thickness of the display panel 3 is preferably about 2 mm to 5 mm.
 表示パネル3は、対向する2つの表面である前面3aと後面3bを有し、方形状に形成されている。本実施形態においてX軸に沿って配置される表示パネル3の短辺の端面3cには、光源4が配置されている。表示パネル3には、この光源4からの光Lが端面3cを介し入射される。なお、表示パネル3の形状は、矩形板形状に限定されず、任意の形状としてもよい。また、表示パネル3は、平板が代表的な形状であるが、それに限定されるわけではなく、例えば曲面形状であってもよい。 The display panel 3 has a front surface 3a and a rear surface 3b which are two opposing surfaces, and is formed in a square shape. In the present embodiment, the light source 4 is disposed on the end surface 3c on the short side of the display panel 3 disposed along the X axis. The light L from the light source 4 enters the display panel 3 through the end face 3c. The shape of the display panel 3 is not limited to a rectangular plate shape, and may be an arbitrary shape. Further, the display panel 3 has a typical shape of a flat plate, but is not limited thereto, and may be, for example, a curved shape.
 表示パネル3は、描画「A」として表される4つの表示パターン(第1表示パターン10A、第2表示パターン10B、第3表示パターン10C、第4表示パターン10D)を有している。これら第1~第4表示パターン10A~10Dは、光源4からの光Lを反射する第1反射要素2A、第2反射要素2B、第3反射要素2C、第4反射要素2Dがそれぞれ集合して構成される要素群であり、各反射要素2A、2B、2C、2Dの集合として各表示パターンが描かれている。 The display panel 3 has four display patterns (first display pattern 10A, second display pattern 10B, third display pattern 10C, and fourth display pattern 10D) represented as drawing “A”. In these first to fourth display patterns 10A to 10D, a first reflective element 2A, a second reflective element 2B, a third reflective element 2C, and a fourth reflective element 2D that reflect the light L from the light source 4 are assembled. Each display pattern is drawn as a set of reflecting elements 2A, 2B, 2C, and 2D.
 図1~図2Dに示す第1~第4視点E1~E4は、表示パネル3の前面3a側に位置する観察者の右目又は左目となる視点である。第1~第4視点E1~E4のうち、任意の2つの視点を右目、左目として表示パネル3を観察する観察者は、表示パネル3に設定された立体表示パターン(表示物)10Vを認識する。立体表示パターン10Vは、表示パネル3に設定された仮想的な表示パターンであり、表示パネル3から高さHの位置に浮き上がって描かれたものが想定される。 The first to fourth viewpoints E1 to E4 shown in FIGS. 1 to 2D are viewpoints that become the right or left eye of the observer located on the front surface 3a side of the display panel 3. An observer who observes the display panel 3 with any two viewpoints of the first to fourth viewpoints E1 to E4 as the right eye and the left eye recognizes the stereoscopic display pattern (display object) 10V set on the display panel 3. . The stereoscopic display pattern 10 </ b> V is a virtual display pattern set on the display panel 3, and is assumed to be drawn floating at a height H from the display panel 3.
 図2Aに示すように、第1表示パターン10Aは、第1視点E1から仮想的な立体表示パターン10Vを表示パネル3に投影させた投影描画となるように構成されている。同様に、図2B~図2Cに示すように、第2~第4表示パターン10B~10Dは、第2~第4視点E2~E4から立体表示パターン10Vを表示パネル3に投影させた投影描画となるように構成されている。
 各表示パターン10A~10Dは、特定の角度の反射面を持った反射要素2A~2Dにより、光Lを特定の視点方向に反射する。これにより、各々の表示パターン10A~10Dは、それぞれ設定された視点E1~E4の方向にのみ光を反射する。これによって、観察者Oは、立体表示パターン10Vを認識する。
 このように、第1~第4表示パターン10A~10Dを構成することで、視差を利用して立体表示パターン10Vを観察者に認識させることができる。
 光源4として、表示パネル3を平面視した際に放射状に広がる点状光源ではなく、平行に伝播する平行光源を使用しても同様の効果が得られる。
 なお、図1、図3A、及び図3B以降においては、各表示パターンが形成する描画をわかりやすく示すことを優先させて投影させた状態を正確に表示したものではない。
As shown in FIG. 2A, the first display pattern 10A is configured to be a projection drawing in which a virtual stereoscopic display pattern 10V is projected on the display panel 3 from the first viewpoint E1. Similarly, as shown in FIGS. 2B to 2C, the second to fourth display patterns 10B to 10D are projection drawings obtained by projecting the stereoscopic display pattern 10V onto the display panel 3 from the second to fourth viewpoints E2 to E4. It is comprised so that it may become.
Each of the display patterns 10A to 10D reflects the light L in a specific viewpoint direction by the reflection elements 2A to 2D having a reflection surface with a specific angle. As a result, each of the display patterns 10A to 10D reflects light only in the directions of the set viewpoints E1 to E4. Thereby, the observer O recognizes the stereoscopic display pattern 10V.
Thus, by configuring the first to fourth display patterns 10A to 10D, the stereoscopic display pattern 10V can be recognized by the observer using parallax.
The same effect can be obtained by using a parallel light source that propagates in parallel instead of a point light source that spreads radially when the display panel 3 is viewed in plan as the light source 4.
In FIG. 1, FIG. 3A, and FIG. 3B and subsequent figures, the projected state is not accurately displayed with priority given to the easy-to-understand representation of the drawing formed by each display pattern.
 図3Aは、表示装置1の平面図である。
 光源4から照射された光Lは、端面3cから表示パネル3に入射する。この光Lは、表示パネル3の内部を通過して第1~第4表示パターン10A~10Dに達する。
 第1~第4表示パターン10A~10Dは、光源4が配される端面3cに対して距離Dに形成されている。
FIG. 3A is a plan view of the display device 1.
The light L emitted from the light source 4 enters the display panel 3 from the end face 3c. The light L passes through the inside of the display panel 3 and reaches the first to fourth display patterns 10A to 10D.
The first to fourth display patterns 10A to 10D are formed at a distance D with respect to the end surface 3c on which the light source 4 is disposed.
 図3Bは、図3A中の一部領域AR1を拡大して示す。一部領域AR1には、第2、第3表示パターン10B、10Cが形成された領域を含んでいる。
 図3Bに示すように、第2表示パターン10Bには、多数の第2反射要素2Bが配置されている。同様に第3表示パターン10Cには、多数の第3反射要素2Cが配置されている。第2表示パターン10Bと第3表示パターン10Cとが重なりあう重複部10BCでは、第2反射要素2Bと第3反射要素2Cとが、互いに独立して形成されている。
 このように、各表示パターンは、反射要素の集合(要素群)として構成されている。
FIG. 3B shows an enlarged partial area AR1 in FIG. 3A. The partial area AR1 includes an area where the second and third display patterns 10B and 10C are formed.
As shown in FIG. 3B, a large number of second reflective elements 2B are arranged in the second display pattern 10B. Similarly, a large number of third reflective elements 2C are arranged in the third display pattern 10C. In the overlapping portion 10BC where the second display pattern 10B and the third display pattern 10C overlap, the second reflective element 2B and the third reflective element 2C are formed independently of each other.
Thus, each display pattern is configured as a set (element group) of reflective elements.
 第2反射要素2Bと第3反射要素2Cは、表示パネル3の厚さ方向の軸(Z軸と平行な軸)を中心にそれぞれ所定の角度(後段で説明する第2角β、β)で斜めに配置されている。また、図示を略すが、第1反射要素2A、第4反射要素2Dも所定の角度で斜めに配置されている。光源4と各反射要素の反射面と視点との位置関係から、反射面の角度を各々調整することにより、各反射要素から特定の視点の方向に反射光が射出されるように設定できる。 The second reflective element 2B and the third reflective element 2C are respectively set at predetermined angles (second angles β B and β C described later) with respect to an axis in the thickness direction of the display panel 3 (axis parallel to the Z axis). ). Although not shown, the first reflecting element 2A and the fourth reflecting element 2D are also arranged obliquely at a predetermined angle. By adjusting the angle of the reflection surface from the positional relationship between the light source 4 and the reflection surface of each reflection element and the viewpoint, the reflection light can be set to be emitted from each reflection element in the direction of a specific viewpoint.
 各々の表示パターンは、設定された視点から認識される必要があると共に、設定されない視点から認識されない。
 設定されない視点から認識されると、異なる表示パターンが一つの視点で同時に認識されてしまうため望ましくない。
 また、設定された視点からわずかにずれた視点から表示パターンが認識されないことも、表示パターンを認識できる視野範囲が限定されるので望ましくない。
 従って一つの反射要素に入射する光Lの表示パネル3の厚さ方向(Z軸方向)と直交する成分(X軸成分、Y軸成分)は、その角度分布を一定の範囲にすることが望ましい。
 より具体的には、一つの反射要素に入射する光Lの広がり角は、表示パネルの厚さ方向と直交する方向に1°以上10°以下となるようにすることが好ましい。
Each display pattern needs to be recognized from a set viewpoint, and is not recognized from a viewpoint that is not set.
Recognizing from a viewpoint that is not set is not desirable because different display patterns are recognized simultaneously from one viewpoint.
In addition, the fact that the display pattern is not recognized from a viewpoint slightly deviated from the set viewpoint is also undesirable because the field of view range in which the display pattern can be recognized is limited.
Therefore, it is desirable that the angle distribution of components (X-axis component and Y-axis component) of the light L incident on one reflection element perpendicular to the thickness direction (Z-axis direction) of the display panel 3 is in a certain range. .
More specifically, it is preferable that the spread angle of the light L incident on one reflecting element is 1 ° or more and 10 ° or less in a direction orthogonal to the thickness direction of the display panel.
 図4Aは、表示パネル3の断面模式図である。
 図4Aに示すように、第1~第4反射要素2A~2Dは、表示パネル3の前面3aと対向する面である後面3bに形成された切欠(窪み)である。表示パネル3の後面3bには、第1~第4反射要素2A~2Dが複数形成されている。
FIG. 4A is a schematic cross-sectional view of the display panel 3.
As shown in FIG. 4A, the first to fourth reflective elements 2A to 2D are notches (dents) formed in the rear surface 3b that is a surface facing the front surface 3a of the display panel 3. A plurality of first to fourth reflective elements 2A to 2D are formed on the rear surface 3b of the display panel 3.
 図4Aに示すように、第1~第4反射要素2A~2Dは、その反射面2Aa~2Daが光源4と向き合うように配置されている。光源4から照射された光Lは、端面3cから表示パネル3に入射して表示パネルの内部を通過する。さらに、この光Lは、第1~第4反射要素2A~2Dの反射面2Aa~2Daで反射され、表示パネル3の前面3a側に反射光LA~LDとして射出され、観察者によって認識される。 As shown in FIG. 4A, the first to fourth reflecting elements 2A to 2D are arranged so that the reflecting surfaces 2Aa to 2Da face the light source 4. The light L emitted from the light source 4 enters the display panel 3 from the end face 3c and passes through the inside of the display panel. Further, the light L is reflected by the reflecting surfaces 2Aa to 2Da of the first to fourth reflecting elements 2A to 2D, emitted as reflected light LA to LD on the front surface 3a side of the display panel 3, and recognized by the observer. .
 反射要素2A~2Dの形成方法は、各反射要素の形状を切削によって形成しても良く、また各反射要素の形状に対応する凸型を加熱転写やUV効果転写により形成しても良い。また、各反射要素に対応する微細な凸部が形成された金型を用いて、表示パネル3の成型時に同時に形成しても良い。 In the formation method of the reflection elements 2A to 2D, the shape of each reflection element may be formed by cutting, or a convex shape corresponding to the shape of each reflection element may be formed by heating transfer or UV effect transfer. Moreover, you may form simultaneously with the shaping | molding of the display panel 3, using the metal mold | die in which the fine convex part corresponding to each reflective element was formed.
 なお、表示パネル3は、その後面3bに反射要素2A~2Dが直接的に形成する場合に限定されない。例えば、反射要素2A~2Dを予め形成した透明フィルムを、導光板の一方の面に貼り付けることで、後面3bに反射要素2A~2Dを設けた表示パネル3を構成しても良い。 The display panel 3 is not limited to the case where the reflective elements 2A to 2D are directly formed on the rear surface 3b. For example, the display panel 3 in which the reflective elements 2A to 2D are provided on the rear surface 3b may be configured by attaching a transparent film in which the reflective elements 2A to 2D are formed in advance to one surface of the light guide plate.
 図4Bに、図4Aに示す第1反射要素2Aの拡大図を、光Lの経路と共に示す。
 表示パネル3の内部を通過する光Lは、前面3a、後面3bにおいて全反射を繰り返して反射面2Aaに達する。これは、ここでは代表的な点光源としてLEDを仮定しており、LED光は通常、一定の広がり角を有するためである。
FIG. 4B shows an enlarged view of the first reflective element 2A shown in FIG.
The light L passing through the inside of the display panel 3 repeats total reflection on the front surface 3a and the rear surface 3b and reaches the reflection surface 2Aa. This is because an LED is assumed here as a representative point light source, and the LED light usually has a certain spread angle.
 このような光路を経るため、反射面2Aaに達する光Lの進行方向は、Z軸方向の成分を有し、表示パネル3の厚さ方向に広がり角を有する。光Lが、表示パネル3の厚さ方向に広がり角を有する為に、反射面2Aaによって反射された反射光LAは、Y軸方向の成分の広がり角を有する。また、表示パネル3に入射した光Lが、反射要素2Aの反射面2Aaに入射するまでの距離D(図4A)が十分に長く表示パネル3の厚さが十分に薄い場合には、実質的に厚み方向に連続的な分布を有する光と見なすことができる。
 このように、反射光LAは、一定の広がり角を持って表示パネル3の前面3a側に射出される。したがって、図4Aに示す視点Eに位置する観察者が、Y軸方向に所定の範囲で移動した場合であっても反射光LAを認識できることになる。
 これに対し、例えば図1において、点光源4が表示パネルの左右方向(+X方向又は-X方向)に配置され、左右方から光が入射される構成の場合は、反射要素で反射された光は左右方向に広がりを持つことになる。したがって、一つの反射要素から反射された光が複数の視点で観察されることになり、望ましくない。
 観察者Oの視点の並ぶ方向と直交する方向から表示パネル3に光を入射させることで、一つの反射要素から反射された光が複数の視点で観察されることがない。加えて、観察者Oが上下方向(±Y軸方向)に所定の範囲で移動した場合であっても、特定の反射光LAを認識できる。したがって、観察者Oが表示パネル3に正対して立体表示パターン10Vを観察する場合、光源4から表示パネル3への入光方向は、下方向(-Y軸方向)又は上方向(+Y軸方向)から入射することが望ましい。
Since the light L passes through such an optical path, the traveling direction of the light L reaching the reflecting surface 2Aa has a component in the Z-axis direction and has a spread angle in the thickness direction of the display panel 3. Since the light L has a spread angle in the thickness direction of the display panel 3, the reflected light LA reflected by the reflecting surface 2Aa has a spread angle of the component in the Y-axis direction. Further, when the distance D (FIG. 4A) until the light L incident on the display panel 3 enters the reflecting surface 2Aa of the reflecting element 2A is sufficiently long, the display panel 3 is substantially thin. It can be regarded as light having a continuous distribution in the thickness direction.
Thus, the reflected light LA is emitted to the front surface 3a side of the display panel 3 with a certain spread angle. Therefore, even if the observer located at the viewpoint E shown in FIG. 4A moves in a predetermined range in the Y-axis direction, the reflected light LA can be recognized.
On the other hand, for example, in FIG. 1, when the point light source 4 is arranged in the left-right direction (+ X direction or -X direction) of the display panel and light is incident from the left and right, the light reflected by the reflecting element Will spread in the horizontal direction. Therefore, the light reflected from one reflective element is observed from a plurality of viewpoints, which is not desirable.
By making light incident on the display panel 3 from a direction orthogonal to the direction in which the viewpoints of the observer O are arranged, the light reflected from one reflecting element is not observed from a plurality of viewpoints. In addition, even when the observer O moves in a predetermined range in the vertical direction (± Y-axis direction), the specific reflected light LA can be recognized. Therefore, when the observer O observes the stereoscopic display pattern 10V facing the display panel 3, the light incident direction from the light source 4 to the display panel 3 is the downward direction (−Y axis direction) or the upward direction (+ Y axis direction). ) Is preferably incident.
 次に図5Aを基に、反射要素の具体的な形状について説明する。
 図5Aは、第2反射要素2Bの斜視図であり、以下主に第2反射要素2Bについて説明を行う。なお、なお、各反射要素2A~2Dは同様の構成を有しており、第2反射要素2Bの説明は、各反射要素2A~2Dを代表するものである。
Next, a specific shape of the reflecting element will be described with reference to FIG. 5A.
FIG. 5A is a perspective view of the second reflective element 2B. Hereinafter, the second reflective element 2B will be mainly described. The reflective elements 2A to 2D have the same configuration, and the description of the second reflective element 2B is representative of the reflective elements 2A to 2D.
 第2反射要素2Bは、光源4から照射された光Lを表示パネル3の前面3a側に反射する反射面2Baを有する。この反射面2Baは光源4に対向しており、略平坦に形成されている。また、第2反射要素2Bの光源4からの光の入射方向に沿った断面の形状は、反射面2Baを斜辺とする三角形である。 The second reflective element 2B has a reflective surface 2Ba that reflects the light L emitted from the light source 4 to the front surface 3a side of the display panel 3. The reflection surface 2Ba faces the light source 4 and is formed substantially flat. Moreover, the shape of the cross section along the incident direction of the light from the light source 4 of the second reflective element 2B is a triangle having the reflective surface 2Ba as a hypotenuse.
 反射面2Baの高さhに対する反射面2Baの幅wの比h/wは、0.2以下とすることが好ましい。加工上の制約により、反射面2Baは、エッヂ部2Bcを正確に形成することが難しい。加工時に反射面2Baは、エッヂ部2BcにRがついたり、エッヂ部2Bc近傍の表面が粗くなったりするため、エッヂ部2Bcに当たった光は、設計された方向以外に光を反射散乱することになる。高さhに対して幅wを十分に大きく(5倍以上に)することで、反射面2Baに対するエッヂ部2Bcの割合を相対的に小さくすることができ、意図しない方向に反射する光の光量を相対的に少なくできる。 The ratio h / w of the width w of the reflection surface 2Ba to the height h of the reflection surface 2Ba is preferably 0.2 or less. Due to processing restrictions, it is difficult for the reflecting surface 2Ba to form the edge portion 2Bc accurately. At the time of processing, the reflecting surface 2Ba has an R on the edge portion 2Bc or a rough surface near the edge portion 2Bc, so that the light hitting the edge portion 2Bc reflects and scatters light in directions other than the designed direction. become. By making the width w sufficiently large (more than 5 times) with respect to the height h, the ratio of the edge portion 2Bc to the reflective surface 2Ba can be made relatively small, and the amount of light reflected in an unintended direction. Can be relatively reduced.
 図4B、図5Aに示すように、反射面2Baは、表示パネル3の後面3bに対し第1角αで傾斜している。また、図3B、図5Aに示すように、反射要素2Bは、表示パネル3の厚み方向の軸(Z軸と平行な軸)を中心に回転させたように、X軸に対して第2角βで傾いて配置されている。 Figure 4B, as shown in FIG. 5A, the reflective surface 2Ba, compared rear surface 3b of the display panel 3 is inclined at the first angle alpha B. Further, as shown in FIGS. 3B and 5A, the reflective element 2B has a second angle with respect to the X axis as if rotated about the axis in the thickness direction of the display panel 3 (axis parallel to the Z axis). Inclined at β B.
 第1角αと第2角βを調整することで、入射光を、表示パネル前面側の任意の方向に(全反射臨界角を超えない範囲で)反射させることができる。
 なお、反射要素の反射面に入射する光は、厚み方向に前述のようにある角度分布を持つので、入射光を特定の方向に反射する第1角αと第2角βの組み合わせは1種類ではない。第1角αを一定として第2角βのみを調整することで所定の方向へ射出することができれば簡便であるので望ましい。あるいは反射面への入射光の強度等を勘案して決定してもよい。
By adjusting the first angle α B and the second angle β B , incident light can be reflected in an arbitrary direction on the front side of the display panel (in a range not exceeding the total reflection critical angle).
Since the light incident on the reflecting surface of the reflecting element has an angular distribution in the thickness direction as described above, the combination of the first angle α B and the second angle β B that reflects the incident light in a specific direction is Not one type. It is desirable that the first angle α B can be constant and the second angle β B can be adjusted so that the first angle α B can be emitted in a predetermined direction. Alternatively, it may be determined in consideration of the intensity of incident light on the reflecting surface.
 また、図5Bは、第3反射要素2Cの斜視図である。
 第3反射要素2Cは、反射面2Caを有し、この反射面2Caが後面3bに対し第1角αで傾斜している。また、第3反射要素2Cは、表示パネル3の厚み方向の軸(Z軸と平行な軸)を中心に回転させたように、X軸に対して第2角βで傾いて配置されている。
 図5Bに示す第3反射要素2Cの第2角βは、図5Aに示す第2反射要素2Bの第2角βと逆向きの角度である。第2、第3反射要素2B、2Cが、このようそれぞれ逆向きの第2角β、βを有する場合に、第3反射要素2Cからの反射光LCと、第2反射要素2Bからの反射光LBは、X軸方向に反対向きに射出される。
FIG. 5B is a perspective view of the third reflective element 2C.
The third reflecting element 2C has a reflecting surface 2Ca, and the reflecting surface 2Ca is inclined at a first angle α C with respect to the rear surface 3b. Further, the third reflective element 2C is arranged to be inclined at the second angle β C with respect to the X axis, as rotated about the axis in the thickness direction of the display panel 3 (axis parallel to the Z axis). Yes.
The second angle β C of the third reflective element 2C shown in FIG. 5B is an angle opposite to the second angle β B of the second reflective element 2B shown in FIG. 5A. When the second and third reflective elements 2B and 2C have second angles β B and β C in opposite directions, respectively, the reflected light LC from the third reflective element 2C and the second reflective element 2B The reflected light LB is emitted in the opposite direction to the X-axis direction.
 以上に、第2、第3反射要素2B、2Cについて説明した。その他の反射要素である第1反射要素2A、第4反射要素2Dは、これら第2、第3反射要素2B、2Cと同様の構成を有する。しかしながら、第1~第4反射要素2A~2Dは、それぞれの配置における第2角の構成が異なり、それぞれ異なった方向に反射光を射出する。第1~第4反射要素2A~2Dは、反射光を射出する方向に応じて、配置される向き(第2角)が決定されている。 The second and third reflective elements 2B and 2C have been described above. The other reflective elements, the first reflective element 2A and the fourth reflective element 2D, have the same configuration as the second and third reflective elements 2B and 2C. However, the first to fourth reflecting elements 2A to 2D have different configurations of the second corners in the respective arrangements and emit reflected light in different directions. The direction (second angle) in which the first to fourth reflecting elements 2A to 2D are arranged is determined according to the direction in which the reflected light is emitted.
 図1に示すように、各表示パターン(要素群)10A~10Dの反射要素2A~2Dは、表示パネル3に入射した光Lを反射させ、反射光LA~LDとして前面3a側から射出する。各反射光LA~LDの射出方向は、表示パターンごとに異なった方向となるように設定されている。 As shown in FIG. 1, the reflective elements 2A to 2D of the display patterns (element groups) 10A to 10D reflect the light L incident on the display panel 3 and emit the reflected light LA to LD from the front surface 3a side. The emission directions of the reflected lights LA to LD are set to be different for each display pattern.
 第1表示パターン(第1要素群)10Aの第1反射要素2Aは、表示パネル3に入射した光Lを前面3a側(+Z方向)であって、+X軸側に傾いた方向に反射光LAとして反射させる。反射光LAは、特定の視点である第1視点E1に向かって射出される。
 同様に、第2表示パターン(第2要素群)10Bの第2反射要素2Bは、表示パネル3に入射した光Lを前面3a側(+Z方向)であって、+X軸側に傾いた方向に反射光LBとして反射させる。反射光LBは、特定の視点である第2視点E2に向かって射出される。この反射光LBは、第1表示パターン10Aの反射光LAと比較して、+X軸側への傾きが少ない。
The first reflective element 2A of the first display pattern (first element group) 10A reflects the light L incident on the display panel 3 on the front surface 3a side (+ Z direction) and in the direction inclined toward the + X axis side. Reflect as. The reflected light LA is emitted toward the first viewpoint E1, which is a specific viewpoint.
Similarly, the second reflective element 2B of the second display pattern (second element group) 10B has the light L incident on the display panel 3 on the front surface 3a side (+ Z direction) and in a direction inclined toward the + X axis side. Reflected as reflected light LB. The reflected light LB is emitted toward the second viewpoint E2, which is a specific viewpoint. The reflected light LB is less inclined toward the + X-axis side than the reflected light LA of the first display pattern 10A.
 第3表示パターン(第3要素群)10Cの第3反射要素2Cは、表示パネル3に入射した光Lを前面3a側(+Z方向)であって、-X軸側に傾いた方向に反射光LCとして反射させる。反射光LCは、特定の視点である第3視点E3に向かって射出される。
 同様に、第4表示パターン(第4要素群)10Dの第4反射要素2Dは、表示パネル3に入射した光Lを前面3a側(+Z方向)であって、-X軸側に傾いた方向に反射光LDとして反射させる。反射光LDは、特定の視点である第4視点E4に向かって射出される。この反射光LDは、第3表示パターン10Cの反射光LCと比較して、-X軸側への傾きが少ない。
The third reflective element 2C of the third display pattern (third element group) 10C reflects the light L incident on the display panel 3 in the direction inclined toward the -X axis side on the front surface 3a side (+ Z direction). Reflect as LC. The reflected light LC is emitted toward the third viewpoint E3 that is a specific viewpoint.
Similarly, the fourth reflective element 2D of the fourth display pattern (fourth element group) 10D is a direction in which the light L incident on the display panel 3 is inclined to the front 3a side (+ Z direction) and to the −X axis side. Is reflected as reflected light LD. The reflected light LD is emitted toward the fourth viewpoint E4 that is a specific viewpoint. The reflected light LD is less inclined to the −X axis side than the reflected light LC of the third display pattern 10C.
 第1~第4表示パターン10A~10Dの反射要素2A~2Dから射出された反射光LA~LDは、表示パネル3の前面3aから+Z方向に高さhの交差点Cで交差する。
 図1に示す第1~第4視点E1~E4は、表示パネル3の前面3a側に位置する観察者の右目又は左目となる視点である。本実施形態において、第1視点E1は、表示パネル3の正面に向かって最も右側(+X軸方向)に位置する視点であり、この第1視点E1から―X方向に第2視点E2、第3視点E3、第4視点E4が順に配置されている。
The reflected lights LA to LD emitted from the reflective elements 2A to 2D of the first to fourth display patterns 10A to 10D intersect from the front surface 3a of the display panel 3 at the intersection C having a height h in the + Z direction.
First to fourth viewpoints E1 to E4 shown in FIG. 1 are viewpoints that become the right eye or the left eye of an observer located on the front surface 3a side of the display panel 3. In the present embodiment, the first viewpoint E1 is a viewpoint located on the rightmost side (+ X axis direction) toward the front of the display panel 3, and the second viewpoint E2 and the third viewpoint in the −X direction from the first viewpoint E1. A viewpoint E3 and a fourth viewpoint E4 are arranged in this order.
 第1視点E1は、第1表示パターン10Aから反射される反射光LAのみが視認される視点である。同様に、第2視点E2は反射光LB、第3視点E3は反射光LC、第4視点E4は反射光LDのみが視認される視点である。 The first viewpoint E1 is a viewpoint where only the reflected light LA reflected from the first display pattern 10A is visually recognized. Similarly, the second viewpoint E2 is a reflected light LB, the third viewpoint E3 is a reflected light LC, and the fourth viewpoint E4 is a viewpoint where only the reflected light LD is visually recognized.
 観察者は、第1~第4視点E1~E4の中から選ばれる2つの視点をそれぞれ右目、左目となるように表示パネル3を観察する。
 例えば、第2視点E2を左目、第3視点E3を右目として、表示パネル3の前面3a側から表示パネル3を観察する観察者Oを想定する(図1参照)。観察者Oは第2視点E2(左目)で第2表示パターン10Bを認識し、第3視点E3(右目)で第3表示パターン10Cを認識する。第2表示パターン10Bから左目(第2視点E2)に達する反射光LBと、第3表示パターン10Cから右目(第3視点E3)に達する反射光LCとの交差点Cは、表示パネル3から離れた高さHに設定されている。これによって、観察者は、両目の視差により、表示パネル3から高さHに浮き上がる立体表示パターン10Vを認識する。
The observer observes the display panel 3 so that two viewpoints selected from the first to fourth viewpoints E1 to E4 are the right eye and the left eye, respectively.
For example, an observer O who observes the display panel 3 from the front surface 3a side of the display panel 3 with the second viewpoint E2 as the left eye and the third viewpoint E3 as the right eye is assumed (see FIG. 1). The observer O recognizes the second display pattern 10B at the second viewpoint E2 (left eye) and recognizes the third display pattern 10C at the third viewpoint E3 (right eye). The intersection C between the reflected light LB reaching the left eye (second viewpoint E2) from the second display pattern 10B and the reflected light LC reaching the right eye (third viewpoint E3) from the third display pattern 10C is separated from the display panel 3. Height H is set. As a result, the observer recognizes the stereoscopic display pattern 10 </ b> V that rises to the height H from the display panel 3 due to the parallax between both eyes.
 図1に示す観察者Oが、立体表示パターン10Vを認識する原理について、図6を基に説明する。
 図6は、表示パネル3を光源4側から見たときの原理的な模式図である。また、図6においては、第2表示パターン10Bと第3表示パターン10Cに係る反射要素のみを図示する。第2表示パターン10Bの複数の反射要素2Bとして、4つの第2反射要素2B1、2B2、2B3、2B4を示し、第3表示パターン10Cの複数の反射要素として、4つの第3反射要素2C1、2C2、2C3、2C4を示す。本実施形態において、反射要素はこれより多く形成されているが、ここでは各表示パターン10B、10Cに含まれる要素を4つであるとして説明する。また、第1、第4表示パターン10A、10Dの反射要素2A、2Dについては省略する。
The principle by which the observer O shown in FIG. 1 recognizes the stereoscopic display pattern 10V will be described with reference to FIG.
FIG. 6 is a schematic diagram showing the principle when the display panel 3 is viewed from the light source 4 side. In FIG. 6, only the reflective elements related to the second display pattern 10B and the third display pattern 10C are shown. As the plurality of reflective elements 2B of the second display pattern 10B, four second reflective elements 2B1, 2B2, 2B3, 2B4 are shown, and as the plurality of reflective elements of the third display pattern 10C, four third reflective elements 2C1, 2C2 are shown. 2C3 and 2C4 are shown. In the present embodiment, more reflective elements are formed, but here, description will be made assuming that there are four elements included in each of the display patterns 10B and 10C. Further, the reflection elements 2A and 2D of the first and fourth display patterns 10A and 10D are omitted.
 第2表示パターン10Bの4つの第2反射要素2B1、2B2、2B3、2B4は、それぞれ、第3表示パターンの4つの第3反射要素2C1、2C2、2C3、2C4に対応している。例えば、第2反射要素2B1は、第2表示パターン10Bにおいて最も+X軸側に位置するドットであり、これと対応する第3反射要素2C1は、第3表示パターン10Cにおいて最も+X軸側に位置するドットである。ここでは説明のために、第2、第3表示パターン10B、10Cは、一対一に対応する反射要素を有しているとして説明するが、各反射要素は必ずしも対応する反射要素を備えている必要はない。即ち、要素群(表示パターン)全体として、図2A~図2Dに示すように立体表示パターン10Vの投影描画が形成されていればよく、各反射要素の配置は限定されない。 The four second reflective elements 2B1, 2B2, 2B3, 2B4 of the second display pattern 10B correspond to the four third reflective elements 2C1, 2C2, 2C3, 2C4 of the third display pattern, respectively. For example, the second reflective element 2B1 is a dot that is positioned closest to the + X axis in the second display pattern 10B, and the third reflective element 2C1 that corresponds to the second reflective element 2B1 is positioned closest to the + X axis in the third display pattern 10C. It is a dot. Here, for the sake of explanation, the second and third display patterns 10B and 10C will be described as having one-to-one corresponding reflective elements, but each reflective element is necessarily provided with a corresponding reflective element. There is no. That is, as long as the entire element group (display pattern) is projected and drawn with the stereoscopic display pattern 10V as shown in FIGS. 2A to 2D, the arrangement of the reflective elements is not limited.
 第2反射要素2B1~2B4は、光源4からの光を反射してそれぞれ反射光LB1、LB2、LB3、LB4を表示パネル3の前面3a側に射出する。第2反射要素2B1~2B4の反射面2Baは、それぞれの反射光LB1~LB4が、観察者Oの左目である第2視点E2に射出されるように、その角度(図5Aの第2角β)が設定されている。
 同様に、第3反射要素2C1~2C4は、反射光LC1、LC2、LC3、LC4を表示パネル3の前面3a側に射出する。第3反射要素2C1~2C4の反射面2Caは、それぞれの反射光LC1~LC4が、観察者Oの右目である第3視点E3に射出されるように、その角度(図5Bの第2角β)が設定されている。
The second reflecting elements 2B1 to 2B4 reflect the light from the light source 4 and emit the reflected lights LB1, LB2, LB3, and LB4 to the front surface 3a side of the display panel 3, respectively. The reflection surfaces 2Ba of the second reflection elements 2B1 to 2B4 are arranged so that the respective reflected lights LB1 to LB4 are emitted to the second viewpoint E2 that is the left eye of the observer O (the second angle β in FIG. 5A). B ) is set.
Similarly, the third reflecting elements 2C1 to 2C4 emit the reflected lights LC1, LC2, LC3, and LC4 to the front surface 3a side of the display panel 3. The reflecting surfaces 2Ca of the third reflecting elements 2C1 to 2C4 have their angles (the second angle β in FIG. 5B) so that the respective reflected lights LC1 to LC4 are emitted to the third viewpoint E3 that is the right eye of the observer O. C ) is set.
 対応する反射要素である第2反射要素2B1と第3反射要素2C1とは、表示パネル3から+Z方向の高さHで交差点C1を結ぶ。同様に対応する反射要素2B2と反射要素2C2、反射要素2B3と反射要素2C3、反射要素2B4と反射要素2C4は、それぞれ高さHで交差点C2、C3、C4を結ぶ。
 各交差点C1、C2、C3、C4は、表示パネル3から高さHの平面上に配置されている。
The second reflecting element 2B1 and the third reflecting element 2C1, which are corresponding reflecting elements, connect the intersection C1 at a height H in the + Z direction from the display panel 3. Similarly, the corresponding reflective element 2B2 and reflective element 2C2, reflective element 2B3 and reflective element 2C3, reflective element 2B4 and reflective element 2C4 connect intersections C2, C3, and C4 at height H, respectively.
Each of the intersections C1, C2, C3, and C4 is arranged on a plane having a height H from the display panel 3.
 第2表示パターン10Bの各反射要素2B1~2B4からの反射光LB1~LB4は、第2視点E2に向かって射出され観察者Oの左目で視認され右目では視認されない。また、第3表示パターン10Cの各反射要素2C1~2C4からの反射光LC1~LC4は、第3視点E3に向かって射出され観察者Oの右目で視認され左目では視認されない。 The reflected lights LB1 to LB4 from the reflecting elements 2B1 to 2B4 of the second display pattern 10B are emitted toward the second viewpoint E2 and are viewed with the left eye of the observer O, but are not viewed with the right eye. In addition, the reflected lights LC1 to LC4 from the reflecting elements 2C1 to 2C4 of the third display pattern 10C are emitted toward the third viewpoint E3 and viewed with the right eye of the observer O, but not with the left eye.
 したがって観察者Oは、対応する反射要素2B1、2C1から発せられた反射光LB1、LC1を空間上の交差点C1から発せられたものであると認識する。同様に観察者は、それぞれ対応する反射光LB2と反射光LC2、反射光LB3と反射光LC3、反射光LB4と反射光LC4をそれぞれ交差点C2、C3、C4から発せられたものであると認識する。観察者Oは空間上の交差点C1~C4に、あたかも発光源があるかの如く感じることになり、立体表示された立体表示パターン10Vを認識することとなる。
 表示装置1は、このようにして立体視を実現できる。
Therefore, the observer O recognizes that the reflected lights LB1 and LC1 emitted from the corresponding reflecting elements 2B1 and 2C1 are emitted from the intersection C1 in space. Similarly, the observer recognizes that the corresponding reflected light LB2 and reflected light LC2, the reflected light LB3 and reflected light LC3, and the reflected light LB4 and reflected light LC4 are emitted from the intersections C2, C3, and C4, respectively. . The observer O will feel as if there is a light emitting source at the intersections C1 to C4 in the space, and will recognize the stereoscopic display pattern 10V displayed stereoscopically.
The display device 1 can realize stereoscopic viewing in this way.
 以上に、第2視点E2を左目、第3視点E3を右目とする観察者Oを想定した場合の立体視について説明した。しかしながら表示装置1は、図1に示す第1~第4視点E1~E4のうち、何れの2視点を右目、左目とする観察者を想定した場合であっても立体視が可能である。
 例えば、第1視点E1と第2視点E2を左目、右目とする観察者からも立体視が可能である。即ち、表示パネル3に対して右方、左方の様々な角度にいる観察者から立体視が可能である。
 また、第1視点E1と第4視点E4を左目、右目とする観察者からも立体視が可能である。この場合は、図1の観察者Oよりも表示パネル3に近づいた位置にいる観察者を想定することになる。即ち、観察者が表示パネル3に対して近づいた場合、離れた場合等にも立体視が可能である。
In the above, the stereoscopic view in the case of assuming the observer O who has the second viewpoint E2 as the left eye and the third viewpoint E3 as the right eye has been described. However, the display device 1 is capable of stereoscopic viewing even when an observer who assumes any two viewpoints among the first to fourth viewpoints E1 to E4 shown in FIG. 1 as the right eye and the left eye is assumed.
For example, stereoscopic viewing is also possible from an observer who uses the first viewpoint E1 and the second viewpoint E2 as the left eye and the right eye. That is, stereoscopic viewing is possible from an observer at various angles on the right and left with respect to the display panel 3.
In addition, stereoscopic viewing is also possible from an observer who uses the first viewpoint E1 and the fourth viewpoint E4 as the left eye and the right eye. In this case, an observer who is closer to the display panel 3 than the observer O in FIG. 1 is assumed. That is, stereoscopic viewing is possible even when the observer approaches the display panel 3 or moves away.
 なお、図6は原理的な説明を行うための図であり、第2表示パターン10Bと第3表示パターン10Cとが、それぞれ一対一に対応する反射要素を有している。しかしながら、必ずしも一対一に対応する反射要素を互いに有している必要はない。反射要素の集合体としての表示パターンが、立体表示パターン10Vの投射描画として構成されていれば、視差を利用して立体表示パターン10Vを観察者に視認させることができる。 FIG. 6 is a diagram for explaining the principle, and the second display pattern 10B and the third display pattern 10C each have a one-to-one reflection element. However, it is not always necessary to have reflective elements corresponding one-to-one. If the display pattern as a collection of reflective elements is configured as a projected drawing of the stereoscopic display pattern 10V, the stereoscopic display pattern 10V can be viewed by an observer using parallax.
 次に、各反射要素2A~2Dの反射面2Aa~2Daに入射する光Lの進行方向の広がり角γについて図5A及び図5Bを基に説明する。
 図5A及び図5Bに示すように、光LはXY平面内での広がり角γを有している。広がり角γが大きいと、反射面2Baによって反射された反射光LBのX軸成分(X-Z平面内での広がり角)が大きくなる。反射光LBのX軸成分が大きくなりすぎると、第2反射要素2Bから反射された反射光LBの認識可能範囲が広くなる。これにより、反射光LBが両目から認識されることになり、視差を利用した立体表示を行うことができない。また、広がり角γが小さすぎると、反射光LBの射出範囲が狭くなる。これによって、反射光LBを認識できる領域が狭くなりすぎて、観察者の位置によって画像を観察できなくなってしまう。したがって、反射面2Baに入射する光LのXY平面内での広がり角γは、1°以上10°以下とすることが好ましく、1°以上6°以下とすることがより好ましい。
Next, the spread angle γ in the traveling direction of the light L incident on the reflecting surfaces 2Aa to 2Da of the reflecting elements 2A to 2D will be described with reference to FIGS. 5A and 5B.
As shown in FIGS. 5A and 5B, the light L has a spread angle γ in the XY plane. When the spread angle γ is large, the X-axis component (spread angle in the XZ plane) of the reflected light LB reflected by the reflecting surface 2Ba increases. If the X-axis component of the reflected light LB becomes too large, the recognizable range of the reflected light LB reflected from the second reflective element 2B becomes wide. As a result, the reflected light LB is recognized from both eyes, and stereoscopic display using parallax cannot be performed. If the spread angle γ is too small, the emission range of the reflected light LB becomes narrow. As a result, the region where the reflected light LB can be recognized becomes too narrow, and the image cannot be observed depending on the position of the observer. Therefore, the spread angle γ of the light L incident on the reflecting surface 2Ba in the XY plane is preferably 1 ° or more and 10 ° or less, and more preferably 1 ° or more and 6 ° or less.
 図6に示す観察者Oが一般的な身体的特徴を持つ人である場合に、観察者Oの両目間距離Deは、60mm程度である。また、観察者Oの視点E2、E3と表示パネル3との距離Doは、600mm以下として使用することが想定される。
 このような条件では、反射光LA~LDのX軸成分でありX-Z平面内での広がり角は、6°以下とすることで、観察者の一方の目のみに反射光LA~LDが認識されるように構成することができる。反射光LA~LDの広がり角を6°以下とするために、図5Aに示す、反射要素2A~2Dの反射面2Aa~2Daに入射する光のXY平面内での広がり角γ(図5A及び図5B参照)は、6°以下とすることが好ましい。
When the observer O shown in FIG. 6 is a person having general physical characteristics, the distance De between the eyes of the observer O is about 60 mm. Further, it is assumed that the distance Do between the viewpoints E2 and E3 of the observer O and the display panel 3 is 600 mm or less.
Under such conditions, the reflected light LA to LD is the X-axis component and the divergence angle in the XZ plane is 6 ° or less, so that the reflected light LA to LD is only on one eye of the observer. It can be configured to be recognized. In order to set the spread angle of the reflected lights LA to LD to 6 ° or less, the spread angle γ in the XY plane of the light incident on the reflecting surfaces 2Aa to 2Da of the reflecting elements 2A to 2D shown in FIG. (See FIG. 5B) is preferably 6 ° or less.
 また、観察者Oの視点E2、E3と表示パネル3との距離Doが、350mm以下として使用することが想定される場合には、反射光LA~LDのX軸成分でありX-Z平面内での広がり角は、10°以下とすることで、観察者の一方の目のみに反射光LA~LDが認識されるように構成することができる。反射光LA~LDのX-Z平面内での広がり角を10°以下とするために、図5Aに示す、反射要素2A~2Dの反射面2Aa~2Daに入射するXY平面内での光の広がり角γ(図5A及び図5B参照)は、10°以下とすることが好ましい。 When the distance Do between the viewpoints E2 and E3 of the observer O and the display panel 3 is assumed to be 350 mm or less, it is an X-axis component of the reflected light LA to LD and is in the XZ plane. By setting the divergence angle at 10 ° or less, the reflected light LA to LD can be recognized only by one eye of the observer. In order to set the spread angle of the reflected lights LA to LD in the XZ plane to 10 ° or less, the light in the XY plane incident on the reflecting surfaces 2Aa to 2Da of the reflecting elements 2A to 2D shown in FIG. 5A is shown. The spread angle γ (see FIGS. 5A and 5B) is preferably 10 ° or less.
 なお、上述した光LはXY平面内での広がり角γは、あくまで個別の反射要素の反射面に入射する光に関するものである。したがって、例えば同一の表示パターン(要素群)に含まれる反射要素であっても、異なる反射要素に入射する光は、それぞれ異なった角度分布を有していても良い。しかしながら、特定の反射要素に入射する光に着目した場合に、その光のXY平面内での広がり角γが1°以上10°以下又は、1°以上6°以下となっている。 Note that the spread angle γ in the XY plane of the light L described above relates to the light incident on the reflection surface of each individual reflection element. Therefore, for example, even if the reflection elements are included in the same display pattern (element group), light incident on different reflection elements may have different angular distributions. However, when attention is paid to light incident on a specific reflecting element, the spread angle γ of the light in the XY plane is 1 ° or more and 10 ° or less, or 1 ° or more and 6 ° or less.
 本実施形態において、反射光LB1~LB4とこれらに対応する反射光LC1~LC4は、表示パネル3の前面3a側において交差点C1~C4を結び、前面3a側に浮き上がる立体表示パターン10Vを形成する。しかしながら、反射光LB1~LB4とこれらに対応する反射光LC1~LC4は、直接交差せず、その延長線が表示パネル3の後面3b側で交差しても良い。この場合は、観察者Oにとって立体表示パターン10Vが表示パネル3に対して沈んだように視認される。 In this embodiment, the reflected lights LB1 to LB4 and the corresponding reflected lights LC1 to LC4 connect the intersections C1 to C4 on the front surface 3a side of the display panel 3 to form a three-dimensional display pattern 10V that floats on the front surface 3a side. However, the reflected lights LB1 to LB4 and the corresponding reflected lights LC1 to LC4 may not intersect directly, and their extension lines may intersect on the rear surface 3b side of the display panel 3. In this case, it is visually recognized by the observer O as if the stereoscopic display pattern 10V was sunk with respect to the display panel 3.
 反射要素2A~2Dは、窪み形状として透明材料に物理的に形成し、全反射を利用して光を表示パネル3の前面3a側に反射する。しかしながら全反射を利用する場合は、臨界角の関係から反射光が弱くなる角度方向ができることがある。そこで、より反射可能な角度領域を広げる目的で、反射要素2A~Dの反射面2Aa~2Daに銀蒸着による鏡面処理を行っても良い。 The reflective elements 2A to 2D are physically formed in a transparent material as a hollow shape, and reflect light to the front surface 3a side of the display panel 3 using total reflection. However, when using total reflection, an angle direction in which reflected light becomes weak may be formed due to the critical angle relationship. Therefore, for the purpose of widening the angle region where reflection is possible, the mirror surface treatment by silver deposition may be performed on the reflection surfaces 2Aa to 2Da of the reflection elements 2A to 2D.
 反射要素2A~2Dは、光源4からの光を表示パネル3の前面3a側に反射する反射面2Aa~2Daを有する構造であればよく、他の形状であっても良い。
 図7A~図7Eに、第1実施形態に適用可能な例として、反射要素21、22、23、24、25、を示す。
The reflection elements 2A to 2D may have a structure having reflection surfaces 2Aa to 2Da for reflecting light from the light source 4 to the front surface 3a side of the display panel 3, and may have other shapes.
7A to 7E show reflective elements 21, 22, 23, 24, and 25 as examples applicable to the first embodiment.
 図7Aに示す反射要素21は、一つの面を反射面21aとする三角錐の形状を有する。図7Bに示す反射要素22は、円柱を斜めに切断したような形状を有しており、その切断面が反射面22aとして構成されている。 The reflective element 21 shown in FIG. 7A has a triangular pyramid shape with one surface as the reflective surface 21a. The reflecting element 22 shown in FIG. 7B has a shape obtained by obliquely cutting a cylinder, and the cut surface is configured as a reflecting surface 22a.
 図7C及び図7Dに示す反射要素23、24は、円柱を倒したような形状を有している。また、図7Eに示す反射要素25は、三角錐に類似の形状であって、反射面である一面が曲面形状を有している。これらの反射要素23、24、25の反射面23a、24a、25aは、円柱外周面として形成されている。 The reflective elements 23 and 24 shown in FIG. 7C and FIG. The reflective element 25 shown in FIG. 7E has a shape similar to a triangular pyramid, and one surface that is a reflective surface has a curved surface shape. The reflection surfaces 23a, 24a, and 25a of these reflection elements 23, 24, and 25 are formed as cylindrical outer peripheral surfaces.
 図7A及び図7Bの反射要素21、22のように、反射面21a、22aは、平面に形成することが好ましい。また、図7C~図7Eの反射要素23、24、25のように反射面23a、24a、25aを曲面とした場合は、反射面23a、24a、25aと表示パネル3と平行な面(即ち、X-Y平面と平行な面)とが交わる線が直線であり、かつそれらの直線が互いに平行であることが好ましい。表示パネル3と平行な面として、いかなる高さの面を想定した場合であっても、直線であり、かつそれらが互いに平行となるように形成されていれば、反射された光がX軸方向へ広がることがない。具体的には図7C~図7Eのように円筒面を寝かせた形状が挙げられる。
 このような曲面を反射面と使用した場合には、反射要素21、22を形成するための各方法の選択肢を広げることができる。
As in the reflective elements 21 and 22 in FIGS. 7A and 7B, the reflective surfaces 21a and 22a are preferably formed in a plane. In addition, when the reflecting surfaces 23a, 24a, 25a are curved like the reflecting elements 23, 24, 25 of FIGS. 7C to 7E, the surfaces parallel to the reflecting surfaces 23a, 24a, 25a and the display panel 3 (that is, It is preferable that the lines intersecting the plane (XY plane parallel to the XY plane) are straight lines and the straight lines are parallel to each other. Even if a surface of any height is assumed as a surface parallel to the display panel 3, the reflected light can be reflected in the X-axis direction as long as they are straight lines and are parallel to each other. Does not spread to. Specifically, a shape in which the cylindrical surface is laid as shown in FIG. 7C to FIG. 7E can be mentioned.
When such a curved surface is used as a reflecting surface, options for each method for forming the reflecting elements 21 and 22 can be expanded.
 なお、図7A~図7Eに示す反射要素21~25においても、反射面21a~25aの高さhに対する幅wの比h/wは、0.2以下とすることが好ましい。高さhに対して幅wを十分に大きく(5倍以上)にすることで、反射面21a~25aの周縁に形成されるエッヂ部2Bcの割合を相対的に小さくすることができ、意図しない方向に反射する光の光量を相対的に少なくできる。 In the reflecting elements 21 to 25 shown in FIGS. 7A to 7E, the ratio h / w of the width w to the height h of the reflecting surfaces 21a to 25a is preferably 0.2 or less. By making the width w sufficiently large (more than 5 times) with respect to the height h, the ratio of the edge portions 2Bc formed at the peripheral edges of the reflecting surfaces 21a to 25a can be made relatively small, which is not intended. The amount of light reflected in the direction can be relatively reduced.
 <第1変形例>
 第1実施形態の表示装置1は、光源4として、LEDに代表される点光源を使用する。これにより、単一の反射要素の反射面に入射する光の角度分布(即ち広がり角γ)を狭めている。このような場合には、入光部近傍の両端部付近に光が届かない領域が発生するので、そのような領域には表示パターンを配置することができない。
 これに対して、XY平面内での成分を予め平行に近づけた光(具体的には、XY平面内での広がり角を1°以上10°以下、好ましくは6°以下の光)を、表示パネル3の端面3cの全域に入射させても良い。このような例について、第1実施形態の第1変形例、第2変形例として図8及び図9を基に説明する。
<First Modification>
The display device 1 of the first embodiment uses a point light source typified by an LED as the light source 4. As a result, the angular distribution (that is, the spread angle γ) of the light incident on the reflecting surface of the single reflecting element is narrowed. In such a case, a region where light does not reach near both end portions in the vicinity of the light incident portion is generated, and thus a display pattern cannot be arranged in such a region.
On the other hand, light in which components in the XY plane are made close to parallel in advance (specifically, light having a spread angle in the XY plane of 1 ° to 10 °, preferably 6 ° or less) is displayed. You may make it inject into the whole region of the end surface 3c of the panel 3. FIG. Such an example will be described with reference to FIGS. 8 and 9 as a first modification and a second modification of the first embodiment.
 図8は、第1変形例の表示装置41である。この表示装置41は、光源4と表示パネル3の間に表示パネル3と略同じ厚さを有する板状のシリンドリカルレンズ42が配置されている。
 シリンドリカルレンズ42は、扇形状に形成されている。シリンドリカルレンズ42の扇形曲線部であるレンズ面42aは、表示パネル3の端面3cと対向するように配置されている。また、シリンドリカルレンズ42は、レンズ面42aと反対側の面でありレンズ面42aの焦点側に平坦面42bが形成されている。光源4は、平坦面42bに対向する位置であって、レンズ面42aの焦点と一致するように配置されている。
FIG. 8 shows a display device 41 of a first modification. In the display device 41, a plate-shaped cylindrical lens 42 having a thickness substantially the same as that of the display panel 3 is disposed between the light source 4 and the display panel 3.
The cylindrical lens 42 is formed in a fan shape. A lens surface 42 a that is a fan-shaped curved portion of the cylindrical lens 42 is disposed so as to face the end surface 3 c of the display panel 3. The cylindrical lens 42 is a surface opposite to the lens surface 42a, and a flat surface 42b is formed on the focal side of the lens surface 42a. The light source 4 is disposed at a position facing the flat surface 42b so as to coincide with the focal point of the lens surface 42a.
 光源4から照射された光Lは、シリンドリカルレンズ42の平坦面42bからシリンドリカルレンズ42に入射する。光源4は光を放射状に照射するため、光Lは、シリンドリカルレンズ42の内部において放射状に広がる。シリンドリカルレンズ42のレンズ面42aに達した光Lは、屈折して平行光となり、表示パネル3に向かって射出される。さらに、光Lは、平行を保った状態で表示パネル3の端面3cから表示パネル3に入射する。 The light L emitted from the light source 4 enters the cylindrical lens 42 from the flat surface 42b of the cylindrical lens 42. Since the light source 4 radiates light radially, the light L spreads radially inside the cylindrical lens 42. The light L that has reached the lens surface 42 a of the cylindrical lens 42 is refracted into parallel light and is emitted toward the display panel 3. Further, the light L is incident on the display panel 3 from the end face 3c of the display panel 3 while maintaining parallelism.
 第1変形例の表示装置41によれば、表示パネル3に入射する光の厚み方向と直交する成分を予め平行とすることができる。したがって、表示パネル3の端面3cから各表示パターン10A~10Dまでの距離Dを大きくとる必要がなく、様々な用途に適用可能な表示装置41を提供できる。
 加えて、光源4から照射された光Lをシリンドリカルレンズ42によって、表示パネル3の端面3cの全域に分布させて入射させることができる。したがって、表示パネル3の両端部近傍に形成された表示パターンの表示要素にも確実に光Lを入射させることができる。
 なお、図8に示す表示装置41は、シリンドリカルレンズ42が表示パネル3と別体として構成されているが、光Lを平行光とすることに支障のない範囲で、これらは部分的に連結されていても良い。
 また、表示装置41において、シリンドリカルレンズ42は、単数に限らず複数を並べる構成であっても良い。
According to the display device 41 of the first modification, the component orthogonal to the thickness direction of the light incident on the display panel 3 can be made parallel in advance. Therefore, it is not necessary to increase the distance D from the end surface 3c of the display panel 3 to each of the display patterns 10A to 10D, and the display device 41 applicable to various uses can be provided.
In addition, the light L emitted from the light source 4 can be distributed and incident on the entire end surface 3 c of the display panel 3 by the cylindrical lens 42. Therefore, the light L can be reliably incident on the display elements of the display pattern formed in the vicinity of both ends of the display panel 3.
In the display device 41 shown in FIG. 8, the cylindrical lens 42 is configured separately from the display panel 3, but these are partially connected as long as the light L does not interfere with the parallel light. May be.
Further, in the display device 41, the cylindrical lens 42 is not limited to a single lens, and a plurality of cylindrical lenses 42 may be arranged.
 <第2変形例>
 図9は、第2変形例の表示装置44である。この表示装置44は、点光源である光源5から照射された光Lを反射させて平行光とする反射体45を有している。
 反射体45は、透明材料からなる。また、反射体45は、その外形に放物線形状が形成された板状部材である。反射体45の厚さは、表示パネル3と略同じ厚さである。反射体45は、放物線状の反射曲面45aと、この反射曲面45aの反対側の面である平坦面45bを有している。反射曲面45aには、反射体45の内側から入射する光が反射するように鏡面が形成されている。
<Second Modification>
FIG. 9 shows a display device 44 of a second modification. The display device 44 includes a reflector 45 that reflects the light L emitted from the light source 5, which is a point light source, into parallel light.
The reflector 45 is made of a transparent material. The reflector 45 is a plate-like member having a parabolic shape formed on its outer shape. The thickness of the reflector 45 is substantially the same as that of the display panel 3. The reflector 45 has a parabolic reflection curved surface 45a and a flat surface 45b which is a surface opposite to the reflection curved surface 45a. A mirror surface is formed on the reflection curved surface 45a so that light incident from the inside of the reflector 45 is reflected.
 反射体45は、その平坦面45bと表示パネル3の端面3cとが平行に向かい合うように配置されている。また、反射体45の放物線の焦点にあたる部分には、光源5が配置されている。この光源5には、前記平坦面45b側に遮蔽部5aが設けられている。この遮蔽部5aによって、光源5から照射された光は、直接平坦面45b側に入射することがない。 The reflector 45 is arranged so that the flat surface 45b and the end surface 3c of the display panel 3 face each other in parallel. Further, the light source 5 is disposed at a portion corresponding to the focal point of the parabola of the reflector 45. The light source 5 is provided with a shielding portion 5a on the flat surface 45b side. The light emitted from the light source 5 is not directly incident on the flat surface 45b side by the shielding portion 5a.
 光源5から照射された光Lは、反射曲面45aに達すると、表示パネル3側に反射される。反射曲面45aは、放物線状に形成されており、この放物線の焦点に光源5が配置されているため、反射された光LはX軸成分を持たない平行光となる。光Lは、平坦面45b、端面3cを介し表示パネル3に入射する。 When the light L emitted from the light source 5 reaches the reflection curved surface 45a, it is reflected to the display panel 3 side. Since the reflection curved surface 45a is formed in a parabolic shape, and the light source 5 is disposed at the focal point of the parabola, the reflected light L becomes parallel light having no X-axis component. The light L is incident on the display panel 3 through the flat surface 45b and the end surface 3c.
 第2変形例の表示装置44によれば、上述した第1変形例の表示装置41と同様の効果を得ることができる。即ち、表示パネル3の端面3cから各表示パターン10A~10Dまでの距離Dを大きくとる必要がなく、様々な用途に適用可能な表示装置44を提供できる。さらに、光源4から照射された光Lを反射体45によって、表示パネル3の端面3cの全域に分布させて入射させることで、表示パネル3の両端部近傍に形成された表示パターンの表示要素にも確実に光Lを入射させることができる。
 加えて、反射体45の平坦面45bから射出された光Lは、表示パネル3の端面3cのいかなる位置においても、同じ距離の隙間を通過して表示パネル3に入射する。したがって、光Lは光度分布を持ちにくい。即ち、各表示パターン10A~10Dに同等の光度の光を照射することができる。これにより、各表示パターン10A~10Dによって、光の光度を一定にして、より鮮明に立体表示パターン10Vを視認させることが可能になる。
 なお、図9に示す表示装置44は、反射体45が表示パネル3と別体として構成されているが、反射体45を表示パネル3の一部とし、表示パネル3の一部に反射曲面45aを形成しても良い。
 また、表示装置44において、反射体45は、単数に限らず複数を並べる構成であっても良い。
According to the display device 44 of the second modified example, the same effect as that of the display device 41 of the first modified example described above can be obtained. That is, there is no need to increase the distance D from the end face 3c of the display panel 3 to each of the display patterns 10A to 10D, and the display device 44 applicable to various uses can be provided. Further, the light L emitted from the light source 4 is distributed and made incident on the entire area of the end surface 3c of the display panel 3 by the reflector 45, so that the display element of the display pattern formed near both ends of the display panel 3 Also, the light L can be reliably incident.
In addition, the light L emitted from the flat surface 45 b of the reflector 45 enters the display panel 3 through a gap of the same distance at any position on the end surface 3 c of the display panel 3. Therefore, the light L is unlikely to have a light intensity distribution. That is, the display patterns 10A to 10D can be irradiated with light having the same luminous intensity. As a result, the display patterns 10A to 10D can make the stereoscopic display pattern 10V visible more clearly with the light intensity being constant.
In the display device 44 shown in FIG. 9, the reflector 45 is configured separately from the display panel 3, but the reflector 45 is a part of the display panel 3, and a reflection curved surface 45 a is formed on a part of the display panel 3. May be formed.
In the display device 44, the number of the reflectors 45 is not limited to one, and a plurality of reflectors 45 may be arranged.
 <第3変形例>
 第1実施形態の表示装置1は、光源4を表示パネル3の端面3c側に配置して、点光源から照射した光Lを端面3cから表示パネル3に入射させている。
 これに対して、光源4を表示パネルの前面又は後面側に配置し、光源4からの光Lを前面又は後面から表示パネルに入射させても良い。このような例について第3、第4変形例として図10及び図11を基に説明する。
<Third Modification>
In the display device 1 of the first embodiment, the light source 4 is disposed on the end surface 3c side of the display panel 3, and the light L emitted from the point light source is incident on the display panel 3 from the end surface 3c.
On the other hand, the light source 4 may be disposed on the front or rear side of the display panel, and the light L from the light source 4 may be incident on the display panel from the front or rear surface. Such an example will be described with reference to FIGS. 10 and 11 as third and fourth modifications.
 図10は、第1実施形態の第3変形例の表示装置71の断面模式図である。この表示装置71は、表示パネル73とその前面73a側に配置された光源4とを有している。表示パネル73の前面、後面、又は内部には、複数の反射要素72が形成されており、これらの反射要素72が複数の表示パターンを構成している。
 反射要素72には、反射面72aが形成されている。反射面72aは、反射要素72の光源4に対向する面に形成されている。この反射要素72は、光を表示パネル73の前面73a側に反射するように鏡面が形成されている。
 光源4から照射された光Lは、前面73aから表示パネル73に入射して、反射要素72の反射面72aに到達する。この光Lは、反射面72aによって反射されて、表示パネル73の前面73a側に射出される。さらに光Lは、表示パネル73の前面73a側の視点Eによって視認される。
 各反射要素72の反射面72aは、光源4から表示パネル73に入射する方向(Y軸方向)に沿って、各々傾斜角(第1角α)が変えられていてもよい。各反射要素72の反射面72aは、光源4から入射した光を視点Eに向かって反射するように、第1角α(図示あり)と第2角β(図示を省略、図3Bのβ、βに相当)が各々調整される。
 このような場合、反射要素72の反射面72aは常に全反射臨界角を外れるので、反射要素72の反射面72aには鏡面処理を施す必要がある。
FIG. 10 is a schematic cross-sectional view of a display device 71 according to a third modification of the first embodiment. The display device 71 includes a display panel 73 and a light source 4 arranged on the front surface 73a side. A plurality of reflective elements 72 are formed on the front, rear, or inside of the display panel 73, and these reflective elements 72 constitute a plurality of display patterns.
A reflective surface 72 a is formed on the reflective element 72. The reflective surface 72 a is formed on the surface of the reflective element 72 that faces the light source 4. The reflective element 72 is formed with a mirror surface so as to reflect light toward the front surface 73 a of the display panel 73.
The light L emitted from the light source 4 enters the display panel 73 from the front surface 73 a and reaches the reflection surface 72 a of the reflection element 72. The light L is reflected by the reflecting surface 72 a and is emitted to the front surface 73 a side of the display panel 73. Further, the light L is visually recognized by the viewpoint E on the front surface 73 a side of the display panel 73.
The reflection surface 72a of each reflection element 72 may have a different inclination angle (first angle α) along the direction (Y-axis direction) from the light source 4 to the display panel 73. The reflecting surface 72a of each reflecting element 72 has a first angle α (not shown) and a second angle β (not shown, β B in FIG. 3B) so as to reflect the light incident from the light source 4 toward the viewpoint E. , Corresponding to β C ).
In such a case, the reflecting surface 72a of the reflecting element 72 always deviates from the total reflection critical angle, and therefore the reflecting surface 72a of the reflecting element 72 needs to be subjected to a mirror surface treatment.
 この表示装置71によれば、光源4の配置を表示パネル73の前面73a側とすることができる。したがって、表示パネル73の周縁にいかなる装置も配する必要がなく意匠性の高い表示装置71を提供できる。
 なお、表示パネル73は、反射面72aのみならず後面73b全体に鏡面処理が施されていても良い。すなわち、表示パネル73は、前面73a側から後面73b側への透光(可視光の透過)が制限されていてもよい。
According to the display device 71, the light source 4 can be arranged on the front surface 73 a side of the display panel 73. Therefore, it is not necessary to arrange any device on the periphery of the display panel 73, and the display device 71 with high design can be provided.
In addition, the display panel 73 may be mirror-finished not only on the reflective surface 72a but also on the entire rear surface 73b. That is, the display panel 73 may be restricted from transmitting light (transmitting visible light) from the front surface 73a side to the rear surface 73b side.
 <第4変形例>
 図11は、第1実施形態の第4変形例の表示装置81の断面模式図である。この表示装置81は、表示パネル83とその後面83b側に配置された光源4とを有している。表示パネル83の前面、後面、又は内部には、複数の反射要素82が形成されており、これらの反射要素82が複数の表示パターンを構成している。
 反射要素82には、反射面82aが形成されている。反射面82aは、反射要素82の光源4に対向する面に形成されている。この反射要素82は、光を表示パネル83の前面83a側に反射するように鏡面が形成されている。
 光源4から照射された光Lは、後面83bから表示パネル83に入射して、反射要素82の反射面82aに到達する。この光Lは、反射面82aによって反射されて、表示パネル83の前面83a側に射出される。さらに光Lは、表示パネル83の前面83a側の視点Eによって視認される。
 各反射要素82の反射面82aは、光源4から表示パネル83に入射する方向(Y軸方向)に沿って、各々傾斜角(第1角α)が変えられていてもよい。各反射要素82の反射面82aは、光源4から入射した光を視点Eに向かって反射するように、第1角α(図示あり)と第2角β(図示を省略、図3Bのβ、βに相当)が各々調整される。
 反射要素が、表示パネル83の後面に形成された窪みである場合には、反射要素82の反射面82aは常に全反射臨界角内であるので、反射面82aを鏡面処理する必要はない。
<Fourth Modification>
FIG. 11 is a schematic cross-sectional view of a display device 81 according to a fourth modified example of the first embodiment. The display device 81 includes a display panel 83 and a light source 4 disposed on the rear surface 83b side. A plurality of reflective elements 82 are formed on the front, rear, or inside of the display panel 83, and these reflective elements 82 constitute a plurality of display patterns.
A reflective surface 82 a is formed on the reflective element 82. The reflection surface 82 a is formed on the surface of the reflection element 82 that faces the light source 4. The reflecting element 82 is formed with a mirror surface so as to reflect light toward the front surface 83 a of the display panel 83.
The light L emitted from the light source 4 enters the display panel 83 from the rear surface 83b and reaches the reflection surface 82a of the reflection element 82. The light L is reflected by the reflecting surface 82 a and is emitted to the front surface 83 a side of the display panel 83. Further, the light L is visually recognized from the viewpoint E on the front surface 83 a side of the display panel 83.
The reflection surface 82 a of each reflection element 82 may have a different inclination angle (first angle α) along the direction (Y-axis direction) from the light source 4 to the display panel 83. The reflecting surface 82a of each reflecting element 82 has a first angle α (not shown) and a second angle β (not shown, β B in FIG. 3B) so as to reflect the light incident from the light source 4 toward the viewpoint E. , Corresponding to β C ).
When the reflective element is a depression formed on the rear surface of the display panel 83, the reflective surface 82a of the reflective element 82 is always within the total reflection critical angle, and therefore it is not necessary to mirror the reflective surface 82a.
 <第2実施形態>
 次に第2実施形態について説明する。
 上述の第1実施形態においては、対応する反射要素同士の交差点は、表示パネル3の前面3aから一定の高さHに構成される。したがって、立体表示パターン10Vは、表示パネル3の前面3aから浮き上がって見えるものの、浮き上がった立体表示パターン10Vそのものは、平面的に視認される。
 これに対し、対応する反射要素からの反射光の交差点を高さ方向にずらして配置してもよい。この場合には、立体表示パターンは、浮き上がって見えるのみならず、パターン自体が立体的に表現される。このような立体視を可能とする表示装置31について、第2実施形態として図12を基に説明する。
Second Embodiment
Next, a second embodiment will be described.
In the first embodiment described above, the intersection of the corresponding reflective elements is configured at a certain height H from the front surface 3 a of the display panel 3. Therefore, although the stereoscopic display pattern 10V appears to float from the front surface 3a of the display panel 3, the lifted stereoscopic display pattern 10V itself is visually recognized in a plane.
On the other hand, you may arrange | position the intersection of the reflected light from a corresponding reflective element shifting in the height direction. In this case, the stereoscopic display pattern not only appears to float, but also the pattern itself is expressed in three dimensions. A display device 31 that enables such stereoscopic viewing will be described as a second embodiment with reference to FIG.
 図12は、第2実施形態の表示装置31の概念図である。上述の第1実施形態と同一態様の構成要素については、同一符号を付し、その説明を省略する。
 図12に示すように、表示装置31は、透明材料からなる表示パネル33と、この表示パネル33の端面33cから光を入射する点光源(光源)4とから概略構成されている。
 この表示装置31は、光源4から入射した光を表示パネル33の前面33a側に反射させ表示パネル33の前面33a側から観察する観察者の左目(第1視点E1)、右目(第2視点E2)にそれぞれ入射させて、観察者Oに対して球(立体表示パターン、表示物)30Vを立体的に認識させる装置である。
FIG. 12 is a conceptual diagram of the display device 31 of the second embodiment. Constituent elements that are the same as those in the first embodiment described above are given the same reference numerals, and descriptions thereof are omitted.
As shown in FIG. 12, the display device 31 is schematically configured by a display panel 33 made of a transparent material, and a point light source (light source) 4 that receives light from an end surface 33 c of the display panel 33.
The display device 31 reflects the light incident from the light source 4 to the front surface 33a side of the display panel 33 and observes the left eye (first viewpoint E1) and right eye (second viewpoint E2) of the viewer from the front surface 33a side of the display panel 33. ) To cause the observer O to stereoscopically recognize the sphere (stereoscopic display pattern, display object) 30V.
 表示パネル33は、球30Vを観察者に認識させるために第1視点E1と第2視点E2に対応する2つの表示パターン(第1表示パターン30A、第2表示パターン30B)を有している。
 第1表示パターン30Aは、表示パネル33から浮き上がった仮想的な球30Vに対して第1視点E1から表示パネル33の面上に描画された投影描画である。同様に第2表示パターン30Bは、球30Vに対して第2視点E2から表示パネル33の面上に描画された投影描画である。第1視点E1と第2視点E2をそれぞれ観察者の左目(第1視点E1)、右目(第2視点E2)から認識させることで、視差を利用して球30Vを認識させることができる。
 第1表示パターン(第1要素群)30Aは、第1反射要素32Aが集合して構成されている。複数の第1反射要素32Aは、それぞれ光源4からの光Lを反射して、第1視点E1に入射させる。
 同様に、第2表示パターン(第2要素群)30Bは、光Lを反射して第2視点E2に入射させる複数の第2反射要素32Bが集合して構成されている。
 なお、第1反射要素32A及び第2反射要素32Bは、第1実施形態と同様に、表示パネル33の後面33bに形成されており、同様の形状を有している。
The display panel 33 has two display patterns (a first display pattern 30A and a second display pattern 30B) corresponding to the first viewpoint E1 and the second viewpoint E2 in order to make the observer recognize the sphere 30V.
The first display pattern 30 </ b> A is a projection drawing drawn on the surface of the display panel 33 from the first viewpoint E <b> 1 with respect to the virtual sphere 30 </ b> V floating from the display panel 33. Similarly, the second display pattern 30B is a projected drawing drawn on the surface of the display panel 33 from the second viewpoint E2 with respect to the sphere 30V. By recognizing the first viewpoint E1 and the second viewpoint E2 from the left eye (first viewpoint E1) and right eye (second viewpoint E2) of the observer, the sphere 30V can be recognized using parallax.
The first display pattern (first element group) 30A is configured by assembling first reflective elements 32A. The plurality of first reflecting elements 32A reflect the light L from the light source 4 and make it incident on the first viewpoint E1.
Similarly, the second display pattern (second element group) 30B includes a plurality of second reflective elements 32B that reflect the light L and enter the second viewpoint E2.
The first reflective element 32A and the second reflective element 32B are formed on the rear surface 33b of the display panel 33 and have the same shape as in the first embodiment.
 第1表示パターン30Aに含まれる複数の第1反射要素32Aのうち、任意のひとつを反射要素32A1とする。また、この反射要素32A1に対応する第2表示パターン30Bの反射要素を反射要素32B1とする。
 第1表示パターン30Aの反射要素32A1は、第1視点E1に向かって反射光LA1を射出する。第2表示パターン30Bの反射要素32B1は、第2視点E2に向かって反射光LB1を射出する。これら反射光LA1、LB1は、それぞれ他方の視点からは認識されない。したがって、観察者Oは、反射光LA1と反射光LB1との交差点C1に発光点があるかのように認識する。この交差点C1は、表示パネル33の前面33a側であって高さH1の位置に構成される。
Any one of the plurality of first reflective elements 32A included in the first display pattern 30A is defined as a reflective element 32A1. The reflective element of the second display pattern 30B corresponding to the reflective element 32A1 is referred to as a reflective element 32B1.
The reflective element 32A1 of the first display pattern 30A emits the reflected light LA1 toward the first viewpoint E1. The reflective element 32B1 of the second display pattern 30B emits the reflected light LB1 toward the second viewpoint E2. These reflected lights LA1 and LB1 are not recognized from the other viewpoint. Accordingly, the observer O recognizes as if there is a light emitting point at the intersection C1 between the reflected light LA1 and the reflected light LB1. This intersection C1 is configured at a height H1 on the front surface 33a side of the display panel 33.
 また、第1表示パターン30Aの第1反射要素32Aのうち、先の反射要素32A1とは異なる反射要素32A2と、この反射要素32A2に対応する第2表示パターン30Bの反射要素32B2について説明する。
 反射要素32A2と反射要素32B2とからそれぞれ反射される反射光LA2、LB2は、表示パネル33の前面33a側であって、高さH2の位置で交差点C2を構成する。したがって、観察者Oは、高さH2の位置に発光点があるかのように認識する。
In addition, among the first reflective elements 32A of the first display pattern 30A, a reflective element 32A2 different from the previous reflective element 32A1 and the reflective element 32B2 of the second display pattern 30B corresponding to the reflective element 32A2 will be described.
The reflected lights LA2 and LB2 reflected from the reflecting element 32A2 and the reflecting element 32B2 respectively constitute the intersection C2 at the height H2 on the front surface 33a side of the display panel 33. Therefore, the observer O recognizes as if there is a light emitting point at the position of the height H2.
 交差点C1と交差点C2とは、それぞれ異なる高さH1、H2に認識される。このように、球30Vの表面を構成するように、各表示パターン30A、30Bの反射要素、32A、32Bのそれぞれの反射方向を設定することで、球30Vを立体的に認識させることができる。 The intersection C1 and the intersection C2 are recognized as different heights H1 and H2, respectively. In this way, the sphere 30V can be recognized in a three-dimensional manner by setting the reflection directions of the reflective elements 32A and 32B of the display patterns 30A and 30B so as to constitute the surface of the sphere 30V.
 なお、第1表示パターン30Aと第2表示パターン30Bとは、必ずしも一対一に対応する反射要素を互いに有している必要はない。反射要素の集合体としての表示パターンが、仮想的な球30Vの投射描画として構成されていれば、視差を利用して球30Vを観察者に立体的に視認させることができる。 Note that the first display pattern 30A and the second display pattern 30B do not necessarily have to have reflective elements corresponding to each other one to one. If the display pattern as a collection of reflective elements is configured as a projected drawing of a virtual sphere 30V, the sphere 30V can be viewed three-dimensionally by an observer using parallax.
 <第3実施形態>
 次に、2枚の表示パネルを有する第3実施形態の表示装置51について説明する。
 図13は、第3実施形態の表示装置51の概念図である。上述の第1実施形態と同一態様の構成要素については、同一符号を付し、その説明を省略する。
<Third Embodiment>
Next, a display device 51 according to a third embodiment having two display panels will be described.
FIG. 13 is a conceptual diagram of the display device 51 of the third embodiment. Constituent elements that are the same as those in the first embodiment described above are given the same reference numerals, and descriptions thereof are omitted.
 表示装置51は、第1表示パネル53と、この第1表示パネル53の後面53bに積層された第2表示パネル54と、第1表示パネル53の端面53cに設けられた光源4Aと、第2表示パネル54の端面54cに設けられた光源4Bと、を有している。光源4Aは、端面53cから表示パネル35の内部に光L1を照射し、光源4Bは、54cから表示パネル54の内部に光L2を照射する。 The display device 51 includes a first display panel 53, a second display panel 54 stacked on the rear surface 53b of the first display panel 53, a light source 4A provided on an end surface 53c of the first display panel 53, and a second display panel 53. And a light source 4B provided on an end surface 54c of the display panel 54. The light source 4A irradiates the inside of the display panel 35 with the light L1 from the end surface 53c, and the light source 4B irradiates the inside of the display panel 54 with the light L2 from 54c.
 第1表示パネル53と第2表示パネル54とは、密着することなく積層されている。第1表示パネル53と第2表示パネル54とを密着させると、一方のパネルから他方のパネルに光が浸入し、立体的な視認性を阻害する虞がある。 The first display panel 53 and the second display panel 54 are stacked without being in close contact with each other. When the first display panel 53 and the second display panel 54 are brought into close contact with each other, light may enter from one panel to the other panel, which may hinder stereoscopic visibility.
 第1表示パネル53の後面53bには、第1表示パターン55A、及び第2表示パターン55Bが形成されている。第1表示パターン55Aは、複数の第1反射要素57Aの集合体(要素群)として構成され、第2表示パターン55Bは、複数の第2反射要素57Bの集合体(要素群)として構成されている。第1表示パターン55A、及び第2表示パターン55Bは、共に描画「A」を形成する。 A first display pattern 55A and a second display pattern 55B are formed on the rear surface 53b of the first display panel 53. The first display pattern 55A is configured as an aggregate (element group) of a plurality of first reflective elements 57A, and the second display pattern 55B is configured as an aggregate (element group) of a plurality of second reflective elements 57B. Yes. The first display pattern 55A and the second display pattern 55B together form a drawing “A”.
 第1表示パネル53に照射された光L1は、第1、第2表示パターン55A、55Bの反射要素57A、57Bによって反射され、それぞれ反射光LA1、LB2として第1表示パネル53の前面53a側に射出される。反射光LA1と、反射光LB2は、第1表示パネル53の前面53a側の空間で交差して、それぞれ第1視点E1、第2視点E2に向かう。第1視点E1に向かう反射光LAは、第2視点E2からは視認されず、第2視点E2に向かう反射光LBは、第1視点E1からは視認されない。第1、第2視点E1、E2をそれぞれ左目、右目として、第1表示パネル53の前面53a側から第1、第2表示パネル53、54を観察する観察者は、表示パネル53から浮き上がる立体表示パターン(表示物)55Vとして描画「A」を認識する。 The light L1 irradiated to the first display panel 53 is reflected by the reflective elements 57A and 57B of the first and second display patterns 55A and 55B, and reflected on the front surface 53a side of the first display panel 53 as reflected light LA1 and LB2, respectively. It is injected. The reflected light LA1 and the reflected light LB2 intersect in the space on the front surface 53a side of the first display panel 53, and head toward the first viewpoint E1 and the second viewpoint E2, respectively. The reflected light LA toward the first viewpoint E1 is not visually recognized from the second viewpoint E2, and the reflected light LB toward the second viewpoint E2 is not visually recognized from the first viewpoint E1. An observer who observes the first and second display panels 53 and 54 from the front surface 53a side of the first display panel 53, with the first and second viewpoints E1 and E2 as the left eye and the right eye, respectively, The drawing “A” is recognized as the pattern (display object) 55V.
 第2表示パネル54の後面54bには、第1表示パターン56A、及び第2表示パターン56Bが形成されている。第1表示パターン56Aは、複数の第1反射要素58Aの集合体(要素群)として構成され、第2表示パターン56Bは、複数の第2反射要素58Bの集合体(要素群)として構成されている。第1表示パターン56A、及び第2表示パターン56Bは、共に描画「B」を形成する。 A first display pattern 56A and a second display pattern 56B are formed on the rear surface 54b of the second display panel 54. The first display pattern 56A is configured as an aggregate (element group) of a plurality of first reflective elements 58A, and the second display pattern 56B is configured as an aggregate (element group) of a plurality of second reflective elements 58B. Yes. The first display pattern 56A and the second display pattern 56B together form a drawing “B”.
 第2表示パネル54に照射された光L2は、第1、第2表示パターン56A、56Bの反射要素58A、58Bによって反射され、それぞれ反射光LA2、LB2として第1表示パネル53の前面53a側に射出される。反射光LA2と、反射光LB2は、交差した後にそれぞれ第1視点E1、第2視点E2に向かう。第1、第2視点E1、E2をそれぞれ左目、右目として、第1表示パネル53の前面53a側から第1、第2表示パネル53、54を観察する観察者は、表示パネル53から浮き上がる立体表示パターン(表示物)55Vとして描画「B」を認識する。 The light L2 applied to the second display panel 54 is reflected by the reflective elements 58A and 58B of the first and second display patterns 56A and 56B, and is reflected on the front surface 53a side of the first display panel 53 as reflected light LA2 and LB2, respectively. It is injected. The reflected light LA2 and the reflected light LB2 travel to the first viewpoint E1 and the second viewpoint E2, respectively, after intersecting. An observer who observes the first and second display panels 53 and 54 from the front surface 53a side of the first display panel 53, with the first and second viewpoints E1 and E2 as the left eye and the right eye, respectively, The drawing “B” is recognized as the pattern (display object) 55V.
 第3実施形態の表示装置51は、光源4Aと光源4Bとを同時に点灯させることで、観察者に立体的に浮き上がる描画「A」と描画「B」を同時に認識させることができる。
 光源4Aと光源4Bとを交互に点灯させた場合には、所定のタイミングで切り替わる立体的な描画「A」と描画「B」とを表示することができる。このように、表示を切り替える手法によってアニメーションを表示させることもできる。
The display device 51 of the third embodiment can cause the observer to simultaneously recognize the drawing “A” and the drawing “B” that are three-dimensionally raised by simultaneously turning on the light source 4A and the light source 4B.
When the light source 4A and the light source 4B are alternately turned on, a three-dimensional drawing “A” and a drawing “B” that are switched at a predetermined timing can be displayed. In this way, animation can be displayed by a method of switching display.
 また、1枚の表示パネルは、1種類の色のみを表示するため、表示パネルを積層することにより、多色の表現が可能となる。
 本実施形態においては、光源Aと光源Bとを異なる色の光を発する光源とすることで、2色の立体表現が可能となる。
 さらに、第1、第2の表示パネル53、54に加え第3の表示パネルを用いて、それぞれに照射する光源の色を光の三原色である赤、緑、青としても良い。この場合は、第1、第2、第3の表示パネルで同じ描画(例えば描画「A」)を形成して、光源を切り替えることで、様々な色に発色する立体描画を表示させることができる。
Further, since one display panel displays only one type of color, multi-color expression can be achieved by stacking the display panels.
In the present embodiment, by using the light source A and the light source B as light sources that emit different colors of light, two-color three-dimensional representation is possible.
Further, by using a third display panel in addition to the first and second display panels 53 and 54, the color of the light source irradiated to each may be red, green, and blue which are the three primary colors of light. In this case, the same drawing (for example, drawing “A”) is formed on the first, second, and third display panels, and the three-dimensional drawing that develops various colors can be displayed by switching the light source. .
 加えて、第3実施形態の表示装置51は、表示パネル53、54を積層した構造を有することで、観察者の目の焦点が表示パネルの前面に集中しにくくなる。したがって、この表示装置51によれば、観察者にとって立体的な視認がしやすくなる。 In addition, the display device 51 of the third embodiment has a structure in which the display panels 53 and 54 are stacked, so that the focus of the observer's eyes is less likely to concentrate on the front surface of the display panel. Therefore, according to this display device 51, it becomes easy for the observer to make a three-dimensional visual recognition.
 <第4実施形態>
 次に第4実施形態について説明する。
 図14は、第4実施形態の表示装置61の概念図である。上述の第1実施形態と同一態様の構成要素については、同一符号を付し、その説明を省略する。
 図14に示すように、表示装置61は、透明材料からなる表示パネル63と、この表示パネル63の端面63cから光を入射する点光源(光源)4とから概略構成されている。
 この表示装置61は、光源4から入射した光を表示パネル63の前面63a側に反射させ表示パネル63の前面63a側の互いに異なる方向に位置する第1観察者O1と第2観察者O2とに対して異なる表示パターン(それぞれ描画「A」、描画「B」)を視認させる装置である。
<Fourth embodiment>
Next, a fourth embodiment will be described.
FIG. 14 is a conceptual diagram of a display device 61 according to the fourth embodiment. Constituent elements that are the same as those in the first embodiment described above are given the same reference numerals, and descriptions thereof are omitted.
As shown in FIG. 14, the display device 61 is generally configured by a display panel 63 made of a transparent material and a point light source (light source) 4 that receives light from an end face 63 c of the display panel 63.
The display device 61 reflects light incident from the light source 4 to the front surface 63a side of the display panel 63, and transmits the light to the first observer O1 and the second observer O2 positioned in different directions on the front surface 63a side of the display panel 63. On the other hand, this is a device for visually recognizing different display patterns (drawing “A” and drawing “B”, respectively).
 表示パネル63は、第1視点E1と第2視点E2に対応する2つの表示パターン(第1表示パターン60A、第2表示パターン60B)を有している。
 第1表示パターン60Aは、第1反射要素62Aの集合体(要素群)として、描画「A」を表示する。第1反射要素62Aは、光源4からの光Lを反射して、第1視点E1に入射させる。
 第2表示パターン60Bは、第2反射要素62Bの集合体(要素群)として描画「B」を表示する。第2反射要素62Bは、光源4からの光Lを反射して、第2視点E2に入射させる。
 第1、第2反射要素62A、62Bは、表示パネル63の後面63bに形成された切欠(窪み)であり、第1実施形態の各反射要素2A~2Dと同様の形状を有する。
 なお、第1反射要素62A及び第2反射要素62Bは、第1実施形態と同様に、表示パネル63の後面63bに形成されており、同様の形状を有している。
The display panel 63 has two display patterns (a first display pattern 60A and a second display pattern 60B) corresponding to the first viewpoint E1 and the second viewpoint E2.
The first display pattern 60A displays the drawing “A” as an aggregate (element group) of the first reflective elements 62A. The first reflecting element 62A reflects the light L from the light source 4 and makes it incident on the first viewpoint E1.
The second display pattern 60B displays the drawing “B” as an aggregate (element group) of the second reflective elements 62B. The second reflecting element 62B reflects the light L from the light source 4 and makes it incident on the second viewpoint E2.
The first and second reflecting elements 62A and 62B are notches (dents) formed in the rear surface 63b of the display panel 63, and have the same shape as the reflecting elements 2A to 2D of the first embodiment.
In addition, the 1st reflective element 62A and the 2nd reflective element 62B are formed in the rear surface 63b of the display panel 63 similarly to 1st Embodiment, and have the same shape.
 図15は、表示パネル63を光源4側から見たときの模式図である。
 第1表示パターン60Aに含まれる複数の第1反射要素62Aの反射面62Aaと、第2表示パターン60Bに含まれる複数の第2反射要素62Bの反射面62Baとは、互いに異なった方向(第1観察者O1に向かう方向と、第2観察者O2に向かう方向)に反射光LA、LBを射出するように構成されている。
 第1表示パターン60Aの第1反射要素62Aは、光源4からの光を反射し反射光LAを第1観察者O1に向けて射出する。複数の第1反射要素62Aの反射面62Aaは、第1観察者O1の右目E1R及び左目E1Lからそれぞれ視認される。また、この反射光LAの拡散は一定の範囲に収まっているため、反射光LAは第2観察者O2からは視認されない。
 同様に、第2表示パターン60Bの反射要素は、光源4からの光を反射光LBとして第2観察者O2に視認される。また、この反射光LBは、第1観察者O1からは視認されない。
FIG. 15 is a schematic diagram when the display panel 63 is viewed from the light source 4 side.
The reflection surfaces 62Aa of the plurality of first reflection elements 62A included in the first display pattern 60A and the reflection surfaces 62Ba of the plurality of second reflection elements 62B included in the second display pattern 60B are different from each other (first The reflected lights LA and LB are emitted in a direction toward the observer O1 and a direction toward the second observer O2.
The first reflective element 62A of the first display pattern 60A reflects the light from the light source 4 and emits the reflected light LA toward the first observer O1. The reflection surfaces 62Aa of the plurality of first reflection elements 62A are visually recognized from the right eye E1R and the left eye E1L of the first observer O1. Further, since the diffusion of the reflected light LA is within a certain range, the reflected light LA is not visually recognized by the second observer O2.
Similarly, the reflective element of the second display pattern 60B is visually recognized by the second observer O2 using the light from the light source 4 as reflected light LB. Further, the reflected light LB is not visually recognized by the first observer O1.
 このように構成された表示装置61によれば、第1観察者O1からは、第1表示パターン60Aの描画「A」を視認することができ、第2表示パターン60Bの描画「B」を視認できない。同様に、第2観察者O2からは、第2表示パターン60Bの描画「B」を視認することができ、第1表示パターン60Aの描画「A」を視認できない。即ち、この表示装置61は、異なる視点で描画パターンを変えることができる。例えば第1観察者O1が、第2観察者O2の位置に移動することで、視認される表示パターンが描画「A」から描画「B」に徐々に切り替わるモーフィングを実現できる。第1、第2表示パターン60A、60Bに対応する描画を人物の動作に対応させることで、観察者の視点を変えることで動作するアニメーション表現を行うこともできる。また、表示パネル63自体を移動させたり回転させたりして、観察者と表示パネルとの相対的な位置関係を変えることで、観察者に認識させる描画を切り替えても良い。 According to the display device 61 configured in this manner, the first observer O1 can visually recognize the drawing “A” of the first display pattern 60A and visually recognize the drawing “B” of the second display pattern 60B. Can not. Similarly, the drawing “B” of the second display pattern 60B can be visually recognized from the second observer O2, and the drawing “A” of the first display pattern 60A cannot be visually recognized. That is, the display device 61 can change the drawing pattern from different viewpoints. For example, when the first observer O1 moves to the position of the second observer O2, morphing in which the visually recognized display pattern is gradually switched from the drawing “A” to the drawing “B” can be realized. By making the drawing corresponding to the first and second display patterns 60A and 60B correspond to the movement of the person, it is also possible to perform animation expression that operates by changing the viewpoint of the observer. Moreover, the display panel 63 itself may be moved or rotated to change the relative positional relationship between the observer and the display panel, thereby switching the drawing to be recognized by the observer.
 <第5実施形態>
 次に第5実施形態について説明する。
 図16は、第5実施形態の表示装置91の断面模式図である。上述の第1実施形態と同一態様の構成要素については、同一符号を付し、その説明を省略する。
 図16に示すように、表示装置91は、表示パネル93とその前面93a側に配置された光源4とを有している。本実施形態の表示装置91は、表示パネル93の前面93a側に光源4が配置されている点で、第1実施形態の第3変形例の表示装置71と類似する。
<Fifth Embodiment>
Next, a fifth embodiment will be described.
FIG. 16 is a schematic cross-sectional view of a display device 91 according to the fifth embodiment. Constituent elements that are the same as those in the first embodiment described above are given the same reference numerals, and descriptions thereof are omitted.
As shown in FIG. 16, the display device 91 includes a display panel 93 and the light source 4 disposed on the front surface 93a side. The display device 91 of the present embodiment is similar to the display device 71 of the third modification example of the first embodiment in that the light source 4 is disposed on the front surface 93a side of the display panel 93.
 表示パネル93の表面93dは、前面93a及び後面93bを含む。本実施形態の表示パネル93は、例えば、ステンレス鋼またはアルミニウム合金等の金属材料、もしくは非透明の樹脂材料からなる。すなわち本実施形態の表示パネル93は、非透明材料からなり、前面93aに入射した光Lを後面93b側に透過させない。
 なお、表示パネル93は、背景を透かし見ることができないものであれば半透明であってもよい。
The surface 93d of the display panel 93 includes a front surface 93a and a rear surface 93b. The display panel 93 of the present embodiment is made of, for example, a metal material such as stainless steel or an aluminum alloy, or a non-transparent resin material. That is, the display panel 93 of the present embodiment is made of a non-transparent material and does not transmit the light L incident on the front surface 93a to the rear surface 93b side.
The display panel 93 may be translucent as long as the background cannot be seen through.
 表示パネル93の前面93aには、複数の反射要素92が形成されている。反射要素92は、表示パネル93の前面93aに形成された切欠(窪み)である。反射要素92は、光源4に対向する反射面92aを有する。反射面92aには、鏡面処理が施されていることが好ましい。これにより、光源4から照射され反射面92aに入射する光Lの入射角が、全反射臨界角を外れた場合であっても、光Lを前面93a側に確実に反射することができる。 A plurality of reflective elements 92 are formed on the front surface 93 a of the display panel 93. The reflective element 92 is a notch (dent) formed in the front surface 93 a of the display panel 93. The reflective element 92 has a reflective surface 92 a that faces the light source 4. The reflecting surface 92a is preferably subjected to a mirror surface treatment. Thereby, even if the incident angle of the light L irradiated from the light source 4 and incident on the reflecting surface 92a deviates from the total reflection critical angle, the light L can be reliably reflected to the front surface 93a side.
 反射要素92は、表示パネル93の前面93aに対し機械加工を施すことで形成できる。一例として、反射要素92は、表示パネル93の前面93aに対しダイヤモンドバイトを用いた切削加工により形成できる。この場合、表面性状の優れた反射面92aを形成することができる。また、反射要素92は、加工工具を表示パネル93の前面93aに押し当てて、前面93aを変形させることで形成してもよい。さらに、表示パネル93が樹脂材料からなる場合には、反射要素92の形状に対応する凸型を加熱転写やUV効果転写することで、反射要素92を形成してもよい。表示パネル93が樹脂材料からなる場合には、表示パネル93の成型時に反射要素92を同時に形成してもよい。 The reflective element 92 can be formed by machining the front surface 93a of the display panel 93. As an example, the reflective element 92 can be formed by cutting the front surface 93a of the display panel 93 using a diamond tool. In this case, the reflecting surface 92a having excellent surface properties can be formed. The reflective element 92 may be formed by pressing the processing tool against the front surface 93a of the display panel 93 and deforming the front surface 93a. Furthermore, when the display panel 93 is made of a resin material, the reflective element 92 may be formed by heat transfer or UV effect transfer of a convex shape corresponding to the shape of the reflective element 92. When the display panel 93 is made of a resin material, the reflective element 92 may be formed at the same time as the display panel 93 is molded.
 反射要素92は、第1実施形態の反射要素2A~2Dと同様に複数の表示パターン(第1実施形態の表示パターン10A~10Dに対応)を構成する(図1参照)。また第1実施形態と同様に、各表示パターンは、特定の角度の反射面92aを持った反射要素92により、光Lを特定の視点方向に反射し、前面93a側の観察者に立体表示パターンを認識させる。 The reflective element 92 constitutes a plurality of display patterns (corresponding to the display patterns 10A to 10D of the first embodiment) in the same manner as the reflective elements 2A to 2D of the first embodiment (see FIG. 1). Similarly to the first embodiment, each display pattern reflects the light L in a specific viewpoint direction by the reflective element 92 having the reflective surface 92a at a specific angle, and displays the stereoscopic display pattern to the viewer on the front surface 93a side. Recognize
 光源4から照射された光Lは、表示パネル93の前面93aに設けられた反射要素92の反射面92aに入射する。光Lは、反射面92aによって前面93a側に反射され、表示パネル93の前面93a側の視点Eにおいて視認される。
 各反射要素92の反射面92aは、光源4から表示パネル93に入射する方向(Y軸方向)に沿って、各々傾斜角(第1角α)が変えられていてもよい。各反射要素92の反射面92aは、光源4から入射した光Lを視点Eに向かって反射するように、第1角α(図示あり)と第2角β(図示を省略、図3Bのβ、βに相当)が各々調整される。
The light L emitted from the light source 4 enters the reflection surface 92a of the reflection element 92 provided on the front surface 93a of the display panel 93. The light L is reflected to the front surface 93a side by the reflecting surface 92a and is visually recognized at the viewpoint E on the front surface 93a side of the display panel 93.
The reflection surface 92 a of each reflection element 92 may have a different inclination angle (first angle α) along the direction (Y-axis direction) from the light source 4 to the display panel 93. The reflecting surface 92a of each reflecting element 92 has a first angle α (not shown) and a second angle β (not shown, β in FIG. 3B) so as to reflect the light L incident from the light source 4 toward the viewpoint E. B , corresponding to β C ) are adjusted.
 本実施形態の表示装置91によれば、非透明材料からなる表示パネル93を用いて、上述した各実施形態と同様に立体視又はモーフィングの表示を行うことができる。
 なお、本実施形態の表示装置91において、光源4は、必ずしも前面側に配置されていなくても良い。例えば、光源4を後面93b側に配置し、ミラー等の反射体を介して前面93a側から表示パネル93に光を照射してもよい。
 また、本実施形態において、光源4として点状光源を用い、光源4から表示パネル93の光路中にシリンドリカルレンズ42(図8参照)又は反射体45(図9参照)を配置してもよい。これにより、表示パネル93の厚さ方向と直交する成分を平行に近づけた光を入射させることができる。
According to the display device 91 of this embodiment, stereoscopic display or morphing display can be performed using the display panel 93 made of a non-transparent material as in the above-described embodiments.
In the display device 91 of this embodiment, the light source 4 does not necessarily have to be arranged on the front side. For example, the light source 4 may be disposed on the rear surface 93b side, and light may be applied to the display panel 93 from the front surface 93a side through a reflector such as a mirror.
In the present embodiment, a point light source may be used as the light source 4, and the cylindrical lens 42 (see FIG. 8) or the reflector 45 (see FIG. 9) may be disposed in the optical path from the light source 4 to the display panel 93. Thereby, the light which made the component orthogonal to the thickness direction of the display panel 93 near parallel can be entered.
 <第5実施形態の第1変形例>
 次に第5実施形態の第1変形例について説明する。
 図17は、第1変形例の表示装置91Aの断面模式図である。上述の第5実施形態と同一態様の構成要素については、同一符号を付し、その説明を省略する。
 図17に示すように、表示パネル93Aとその前面93Aa側に配置された光源4とを有している。表示装置91Aは、第5実施形態の表示装置91と概略同様の構成を有するが、表示パネル93Aの構成が異なる。
<First Modification of Fifth Embodiment>
Next, a first modification of the fifth embodiment will be described.
FIG. 17 is a schematic cross-sectional view of a display device 91A of the first modification. Constituent elements in the same mode as the above-described fifth embodiment are denoted by the same reference numerals, and description thereof is omitted.
As shown in FIG. 17, it has the display panel 93A and the light source 4 arrange | positioned at the front surface 93Aa side. The display device 91A has a configuration substantially similar to that of the display device 91 of the fifth embodiment, but the configuration of the display panel 93A is different.
 表示装置91Aの表示パネル93Aは、前面93Aa側に非透明コーティング96を施した透明材料95からなる。したがって、表示パネル93Aは、すなわち前面93Aa側から後面93Ab側へ(又は後面93Ab側から前面93Aa側へ)の可視光の透過(透光)が制限されている。したがって、表示パネル93Aは、前面93Aa側から後面93Ab側(又は後面93Ab側から前面93Aa側)の背景を透かし見ることができない構成を有する。
 なお、本変形例では、表示パネル93Aとして前面93Aa側に非透明コーティング96を施したものを例示するが、後面93Ab側に非透明コーティング96を施したものであってもよい。加えて、表示パネル93Aは、面内に部分的に非透明コーティングが施された透明材料であってもよい。
The display panel 93A of the display device 91A is made of a transparent material 95 having a non-transparent coating 96 on the front surface 93Aa side. Therefore, in the display panel 93A, transmission of visible light (transmission) from the front surface 93Aa side to the rear surface 93Ab side (or from the rear surface 93Ab side to the front surface 93Aa side) is limited. Therefore, the display panel 93A has a configuration in which the background from the front surface 93Aa side to the rear surface 93Ab side (or from the rear surface 93Ab side to the front surface 93Aa side) cannot be seen through.
In this modification, the display panel 93A is exemplified by the non-transparent coating 96 on the front surface 93Aa side, but the display panel 93A may be provided with the non-transparent coating 96 on the rear surface 93Ab side. In addition, the display panel 93A may be a transparent material that is partially coated with a non-transparent coating.
 本変形例において、非透明コーティング96は、鏡面コーティング(鏡面処理)である。本変形例の表示装置91Aは、第5実施形態の表示装置91と同様に、表示パネル93Aの前面93Aaに反射要素92が形成されている。反射要素92は、光源4に対向する反射面92aを有する。非透明コーティング(鏡面コーティング)96は、表示パネル93Aの前面93Aaにおいて、反射面92aを覆っている。すなわち、反射面92aには、鏡面コーティングが施されている。これにより、光源4から照射され反射面92aに入射する光Lの入射角が、全反射臨界角を外れた場合であっても、光Lを前面93Aa側に確実に反射することができる。 In this modification, the non-transparent coating 96 is a mirror surface coating (mirror surface treatment). In the display device 91A of the present modification, a reflective element 92 is formed on the front surface 93Aa of the display panel 93A, as with the display device 91 of the fifth embodiment. The reflective element 92 has a reflective surface 92 a that faces the light source 4. The non-transparent coating (mirror coating) 96 covers the reflective surface 92a on the front surface 93Aa of the display panel 93A. That is, the reflective surface 92a is mirror-coated. Thereby, even if the incident angle of the light L irradiated from the light source 4 and incident on the reflecting surface 92a deviates from the total reflection critical angle, the light L can be reliably reflected toward the front surface 93Aa.
 本変形例の表示装置91Aによれば、非透明コーティング96を施した透明材料95からなる表示パネル93Aを用いて、上述した各実施形態と同様に立体視又はモーフィングの表示を行うことができる。
 なお、本変形例の表示装置91Aにおいて、表示パネル93Aは、反射要素92を予め形成した非透明フィルムを板材料の前面に貼り付けて反射要素92を設けた表示パネル93Aを構成しても良い。
According to the display device 91A of the present modification, stereoscopic display or morphing display can be performed using the display panel 93A made of the transparent material 95 provided with the non-transparent coating 96, as in the above-described embodiments.
In the display device 91A of this modification, the display panel 93A may constitute a display panel 93A provided with the reflective element 92 by pasting a non-transparent film in which the reflective element 92 is previously formed on the front surface of the plate material. .
 <第5実施形態の第2変形例>
 次に第5実施形態の第2変形例について説明する。
 図18は、第2変形例の表示装置91Bの断面模式図である。上述の第5実施形態と同一態様の構成要素については、同一符号を付し、その説明を省略する。
 図18に示すように、非透明の樹脂材料(非透明材料)からなる表示パネル93Bとその前面93Ba側に配置された光源4とを有している。表示装置91Bは、第5実施形態の表示装置91と概略同様の構成を有するが、反射要素92Bの構成が異なる。
<Second Modification of Fifth Embodiment>
Next, a second modification of the fifth embodiment will be described.
FIG. 18 is a schematic cross-sectional view of a display device 91B according to a second modification. Constituent elements in the same mode as the above-described fifth embodiment are denoted by the same reference numerals, and description thereof is omitted.
As shown in FIG. 18, it has the display panel 93B which consists of a non-transparent resin material (non-transparent material), and the light source 4 arrange | positioned at the front surface 93Ba side. The display device 91B has substantially the same configuration as the display device 91 of the fifth embodiment, but the configuration of the reflective element 92B is different.
 表示パネル93Bの前面93Baには、複数の反射要素92Bが形成されている。反射要素92Bは、表示パネル93Bの前面93Baから突出する凸部である。反射要素92Bは、樹脂材料からなる表示パネル93Bを射出成型する際に同時に形成することができる。反射要素92Bは、光源4に対向する反射面92Baを有する。反射面92Baには、鏡面処理が施されていることが好ましい。上述した実施形態と同様に反射要素92Bは、複数の表示パターンを構成する。各表示パターンは、特定の角度の反射面92Baを持った反射要素92Bにより、光Lを特定の視点方向に反射し、前面93Ba側の観察者に立体表示パターンを認識させる。
 本変形例の表示装置91Bによれば、上述の第5実施形態と同様の効果を奏することができる。
A plurality of reflective elements 92B are formed on the front surface 93Ba of the display panel 93B. The reflective element 92B is a convex portion protruding from the front surface 93Ba of the display panel 93B. The reflective element 92B can be formed at the same time when the display panel 93B made of a resin material is injection-molded. The reflective element 92 </ b> B has a reflective surface 92 </ b> Ba that faces the light source 4. The reflecting surface 92Ba is preferably subjected to a mirror surface treatment. Similar to the embodiment described above, the reflective element 92B constitutes a plurality of display patterns. Each display pattern reflects the light L in a specific viewpoint direction by a reflection element 92B having a reflection surface 92Ba of a specific angle, and allows the observer on the front surface 93Ba side to recognize the stereoscopic display pattern.
According to the display device 91B of the present modification, the same effects as those of the fifth embodiment described above can be achieved.
 以上に、様々な実施形態を説明したが、各実施形態における各構成及びそれらの組み合わせ等は一例であり、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換、及びその他の変更が可能である。また、本発明は実施形態によって限定されることはない。 Although various embodiments have been described above, the configurations and combinations of the configurations in the embodiments are examples, and addition, omission, replacement, and other configurations of the configurations are possible without departing from the spirit of the invention. It can be changed. Further, the present invention is not limited by the embodiment.
 1、31、41、44、51、61、71、81、91、91A、91B 表示装置
 2A、2B、2B1、2B2、2B3、2B4 反射要素
 2Aa、2Ba、2Ca、21a、22a、23a 反射面
 3、33、53、54、63、73、83 表示パネル
 3a、33a、53a、54a、63a、73a、83a 前面(表面)
 3b、33b、53b、54b、63b、73b、83b 後面(表面)
 3c、33c、53c、54c、63c 端面
 4、5 光源
 5a 遮蔽部
 10A、30A、55A、56A、60A 第1表示パターン(要素群)
 10B、30B、55B、56B、60B 第2表示パターン(要素群)
 10C 第3表示パターン(要素群)
 10D 第4表示パターン(要素群)
 10V、55V、56V 立体表示パターン(表示物)
 30V 球(立体表示パターン、表示物)
 42 シリンドリカルレンズ
 44 表示装置
 45 反射体
 45a 反射曲面
 45b 平坦面
 C、C1、C2、C3、C4 交差点
1, 31, 41, 44, 51, 61, 71, 81, 91, 91A, 91B Display device 2A, 2B, 2B1, 2B2, 2B3, 2B4 Reflective element 2Aa, 2Ba, 2Ca, 21a, 22a, 23a Reflecting surface 3 33, 53, 54, 63, 73, 83 Display panel 3a, 33a, 53a, 54a, 63a, 73a, 83a Front (front surface)
3b, 33b, 53b, 54b, 63b, 73b, 83b Rear surface (front surface)
3c, 33c, 53c, 54c, 63c End face 4, 5 Light source 5a Shielding part 10A, 30A, 55A, 56A, 60A First display pattern (element group)
10B, 30B, 55B, 56B, 60B Second display pattern (element group)
10C Third display pattern (element group)
10D 4th display pattern (element group)
10V, 55V, 56V 3D display pattern (display object)
30V sphere (3D display pattern, display object)
42 Cylindrical lens 44 Display device 45 Reflector 45a Reflective curved surface 45b Flat surface C, C1, C2, C3, C4 Intersection

Claims (19)

  1.  表示パネルと、
     前記表示パネルの表面又は内部に設けられたドット状の反射要素を構成要素とし、全体として特定の表示パターンを表示する要素群とを備え、
     前記要素群を、予め設定された複数の視点毎にそれぞれ設け、各視点について設けた前記要素群は、その視点に向けて視差を与えるための光学素子を介さずに光源からの光を反射し、その反射光によって前記要素群が表示する前記表示パターンは前記設定された視点で視認され、設定されない視点では視認されない表示装置。
    A display panel;
    A dot-shaped reflective element provided on the surface or inside of the display panel as a constituent element, and an element group that displays a specific display pattern as a whole,
    The element group is provided for each of a plurality of preset viewpoints, and the element group provided for each viewpoint reflects light from a light source without using an optical element for giving parallax toward the viewpoint. The display pattern displayed by the element group by the reflected light is visually recognized from the set viewpoint, and is not visible from an unset viewpoint.
  2.  前記光源をさらに備える請求項1に記載の表示装置。 The display device according to claim 1, further comprising the light source.
  3.  前記表示パネルが透明材料からなる、請求項2に記載の表示装置。 The display device according to claim 2, wherein the display panel is made of a transparent material.
  4.  前記表示パネルが導光板であり、前記反射要素は導光板表面に設けられたドット状の窪みであり、導光板端面に前記光源が接続され、接続された前記光源は点状光源又は平行光源である、請求項3に記載の表示装置。 The display panel is a light guide plate, the reflection element is a dot-like depression provided on the surface of the light guide plate, the light source is connected to an end surface of the light guide plate, and the connected light source is a point light source or a parallel light source. The display device according to claim 3.
  5.  前記光源が、前記表示パネルの前面側に配置され、前記光源からの光が前記表示パネルの前面から入射する請求項3に記載の表示装置。 The display device according to claim 3, wherein the light source is disposed on a front side of the display panel, and light from the light source is incident from a front side of the display panel.
  6.  前記光源が、前記表示パネルの後面側に配置され、前記光源からの光が前記表示パネルの後面から入射する請求項3に記載の表示装置。 The display device according to claim 3, wherein the light source is disposed on a rear surface side of the display panel, and light from the light source is incident from a rear surface of the display panel.
  7.  前記表示パネルを複数備え、これらが互いに積層されている請求項3から6の何れか一項に記載の表示装置。 The display device according to any one of claims 3 to 6, wherein a plurality of the display panels are provided, and the display panels are stacked on each other.
  8.  前記表示パネルが非透明材料からなる、請求項2に記載の表示装置。 The display device according to claim 2, wherein the display panel is made of a non-transparent material.
  9.  前記表示パネルが表面に非透明コーティングを施した透明材料からなる、請求項2に記載の表示装置。 The display device according to claim 2, wherein the display panel is made of a transparent material having a non-transparent coating on the surface.
  10.  前記光源が、前記表示パネルの前面側に配置され、前記光源からの光が前記表示パネルの前面から入射する請求項8又は9に記載の表示装置。 The display device according to claim 8 or 9, wherein the light source is disposed on a front surface side of the display panel, and light from the light source is incident from a front surface of the display panel.
  11.  前記光源が点状光源であり、前記光源と導光板の間にシリンドリカルレンズ又は放物面鏡を配し、レンズ又は放物面鏡の焦点に前記点状光源が設置されることにより、前記点状光源から照射された光の前記表示パネルの厚さ方向と直交する成分を平行とする請求項2から6の何れか一項に記載の表示装置。 The point light source is a point light source, a cylindrical lens or a parabolic mirror is disposed between the light source and a light guide plate, and the point light source is installed at a focal point of the lens or the parabolic mirror, The display device according to any one of claims 2 to 6, wherein a component perpendicular to a thickness direction of the display panel of light emitted from a light source is made parallel.
  12.  各視点について設けた前記要素群は、その視点から立体視される仮想的な特定の表示物を投影した前記表示パネル上の投影パターンを、前記表示パターンとして表示する請求項1から6の何れか一項に記載の表示装置。 The element group provided for each viewpoint displays, as the display pattern, a projection pattern on the display panel on which a virtual specific display object stereoscopically viewed from the viewpoint is projected. The display device according to one item.
  13.  前記光源が前記表示パネルに対し、前記設定された複数の視点が並ぶ方向に直交する方向から前記表示パネルに光を入射させる請求項1から6の何れか一項に記載の表示装置。 The display device according to any one of claims 1 to 6, wherein the light source causes the light to be incident on the display panel from a direction orthogonal to a direction in which the plurality of set viewpoints are arranged.
  14.  前記反射要素に入射する光の広がり角が、前記表示パネルの厚さ方向と直交する方向に1°以上10°以下である請求項1から6の何れか一項に記載の表示装置。 The display device according to any one of claims 1 to 6, wherein a spread angle of light incident on the reflection element is 1 ° or more and 10 ° or less in a direction orthogonal to a thickness direction of the display panel.
  15.  前記反射要素が、前記表示パネルの厚さ方向に沿った高さがhであり、厚さ方向に直交する幅がwであり、h/wが0.2以下である反射面を有する請求項1から6の何れか一項に記載の表示装置。 The reflective element has a reflective surface in which the height along the thickness direction of the display panel is h, the width orthogonal to the thickness direction is w, and h / w is 0.2 or less. The display device according to any one of 1 to 6.
  16.  前記ドット状の反射要素の反射面が、平面又は円筒面である請求項1から6の何れか一項に記載の表示装置。 The display device according to any one of claims 1 to 6, wherein a reflective surface of the dot-shaped reflective element is a flat surface or a cylindrical surface.
  17.  透明材料からなる表示パネルと、
     前記表示パネルの表面又は内部に設けられたドット状の反射要素を構成要素とし、全体として特定の表示パターンを表示する要素群と、を備えた表示装置を用いて、
     前記要素群を、予め設定された複数の視点毎にそれぞれ設け、各視点について設けた前記要素群は、その視点に向けて視差を与えるための光学素子を介さずに光源からの光を反射し、その反射光によって前記要素群が表示する前記表示パターンは前記設定された視点で視認され、設定されない視点では視認されない、表示方法。
    A display panel made of a transparent material;
    Using a display device comprising a dot-like reflective element provided on the surface or inside of the display panel as a constituent element and an element group that displays a specific display pattern as a whole,
    The element group is provided for each of a plurality of preset viewpoints, and the element group provided for each viewpoint reflects light from a light source without using an optical element for giving parallax toward the viewpoint. The display method in which the element group is displayed by the reflected light is visually recognized from the set viewpoint and is not visually recognized from an unset viewpoint.
  18.  非透明材料からなる表示パネルと、
     前記表示パネルの表面又は内部に設けられたドット状の反射要素を構成要素とし、全体として特定の表示パターンを表示する要素群と、を備えた表示装置を用いて、
     前記要素群を、予め設定された複数の視点毎にそれぞれ設け、各視点について設けた前記要素群は、その視点に向けて視差を与えるための光学素子を介さずに光源からの光を反射し、その反射光によって前記要素群が表示する前記表示パターンは前記設定された視点で視認され、設定されない視点では視認されない、表示方法。
    A display panel made of a non-transparent material;
    Using a display device comprising a dot-like reflective element provided on the surface or inside of the display panel as a constituent element and an element group that displays a specific display pattern as a whole,
    The element group is provided for each of a plurality of preset viewpoints, and the element group provided for each viewpoint reflects light from a light source without using an optical element for giving parallax toward the viewpoint. The display method in which the element group is displayed by the reflected light is visually recognized from the set viewpoint and is not visually recognized from an unset viewpoint.
  19.  表面に非透明コーティングを施した透明材料からなる表示パネルと、
     前記表示パネルの表面又は内部に設けられたドット状の反射要素を構成要素とし、全体として特定の表示パターンを表示する要素群と、を備えた表示装置を用いて、
     前記要素群を、予め設定された複数の視点毎にそれぞれ設け、各視点について設けた前記要素群は、その視点に向けて視差を与えるための光学素子を介さずに光源からの光を反射し、その反射光によって前記要素群が表示する前記表示パターンは前記設定された視点で視認され、設定されない視点では視認されない、表示方法。
    A display panel made of a transparent material with a non-transparent coating on the surface;
    Using a display device comprising a dot-like reflective element provided on the surface or inside of the display panel as a constituent element and an element group that displays a specific display pattern as a whole,
    The element group is provided for each of a plurality of preset viewpoints, and the element group provided for each viewpoint reflects light from a light source without using an optical element for giving parallax toward the viewpoint. The display method in which the element group is displayed by the reflected light is visually recognized from the set viewpoint and is not visually recognized from an unset viewpoint.
PCT/JP2015/069121 2014-07-11 2015-07-02 Display device and display method WO2016006525A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014143167A JP5701434B1 (en) 2014-07-11 2014-07-11 Display device and display method
JP2014-143167 2014-07-11
JP2015059543A JP2016180776A (en) 2015-03-23 2015-03-23 Display and display method
JP2015-059543 2015-03-23

Publications (1)

Publication Number Publication Date
WO2016006525A1 true WO2016006525A1 (en) 2016-01-14

Family

ID=55064161

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/069121 WO2016006525A1 (en) 2014-07-11 2015-07-02 Display device and display method

Country Status (1)

Country Link
WO (1) WO2016006525A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018004944A (en) * 2016-07-01 2018-01-11 凸版印刷株式会社 Display body
JP6409942B1 (en) * 2017-11-07 2018-10-24 オムロン株式会社 Display device and display device
CN109581731A (en) * 2019-01-23 2019-04-05 京东方科技集团股份有限公司 A kind of display panel, its viewpoint calibration method and readable storage medium
CN109804299A (en) * 2017-03-14 2019-05-24 欧姆龙株式会社 Display device
WO2019159574A1 (en) * 2018-02-15 2019-08-22 オムロン株式会社 Light guide plate, luminescent device, display device, and game machine
WO2019176460A1 (en) * 2018-03-14 2019-09-19 オムロン株式会社 Operation display device
CN110364094A (en) * 2018-04-10 2019-10-22 欧姆龙株式会社 Operating device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10221642A (en) * 1997-02-05 1998-08-21 Hitachi Ltd Image display device
JP2007127871A (en) * 2005-11-04 2007-05-24 Alps Electric Co Ltd Three-dimensional display device
JP2012118378A (en) * 2010-12-02 2012-06-21 Stanley Electric Co Ltd Image display device
JP5205511B2 (en) * 2009-04-22 2013-06-05 株式会社フジクラ Display device and daylighting window
US20150092441A1 (en) * 2013-09-27 2015-04-02 Omron Corporation Light guide body and light-emitting device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10221642A (en) * 1997-02-05 1998-08-21 Hitachi Ltd Image display device
JP2007127871A (en) * 2005-11-04 2007-05-24 Alps Electric Co Ltd Three-dimensional display device
JP5205511B2 (en) * 2009-04-22 2013-06-05 株式会社フジクラ Display device and daylighting window
JP2012118378A (en) * 2010-12-02 2012-06-21 Stanley Electric Co Ltd Image display device
US20150092441A1 (en) * 2013-09-27 2015-04-02 Omron Corporation Light guide body and light-emitting device

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018004944A (en) * 2016-07-01 2018-01-11 凸版印刷株式会社 Display body
CN109804299B (en) * 2017-03-14 2021-10-22 欧姆龙株式会社 Display device
US11125928B2 (en) 2017-03-14 2021-09-21 Omron Corporation Display device
CN109804299A (en) * 2017-03-14 2019-05-24 欧姆龙株式会社 Display device
WO2019092902A1 (en) * 2017-11-07 2019-05-16 オムロン株式会社 Display device and exhibition device
US11314009B2 (en) 2017-11-07 2022-04-26 Omron Corporation Display device and exhibition apparatus
CN110024018A (en) * 2017-11-07 2019-07-16 欧姆龙株式会社 Display device and displaying device
CN110024018B (en) * 2017-11-07 2021-10-26 欧姆龙株式会社 Display device and display device
JP6409942B1 (en) * 2017-11-07 2018-10-24 オムロン株式会社 Display device and display device
JP2019086653A (en) * 2017-11-07 2019-06-06 オムロン株式会社 Display and displaying unit
WO2019159574A1 (en) * 2018-02-15 2019-08-22 オムロン株式会社 Light guide plate, luminescent device, display device, and game machine
JP2019139176A (en) * 2018-02-15 2019-08-22 オムロン株式会社 Light guide plate, light-emitting device, display, and game machine
US11806606B2 (en) 2018-02-15 2023-11-07 Omron Corporation Light guide plate, light emitting device, display device and game machine
WO2019176460A1 (en) * 2018-03-14 2019-09-19 オムロン株式会社 Operation display device
CN110364094A (en) * 2018-04-10 2019-10-22 欧姆龙株式会社 Operating device
CN109581731A (en) * 2019-01-23 2019-04-05 京东方科技集团股份有限公司 A kind of display panel, its viewpoint calibration method and readable storage medium
CN109581731B (en) * 2019-01-23 2022-04-12 京东方科技集团股份有限公司 Display panel, method for viewing point mark thereof and readable storage medium

Similar Documents

Publication Publication Date Title
JP5701434B1 (en) Display device and display method
WO2016006525A1 (en) Display device and display method
JP2016180776A (en) Display and display method
TWI577922B (en) Optical device
JP7320294B2 (en) A system for imaging in air
JP5649936B2 (en) Image display device
US11906125B2 (en) Lit image projection lamp and assemblies and methods to use the same to generate three-dimensional images
US10895759B2 (en) Optical device and method of three-dimensional display
JP4922935B2 (en) Method for cutting or forming a cavity in a substrate for use in the fabrication of optical films, components or waveguides
TW201736874A (en) Multibeam diffraction grating-based near-eye display
JP6318560B2 (en) Light guide, light emitting device and game machine
JP2014029356A (en) Light source device, display device, and electronic apparatus
CN112823296B (en) Body part comprising a lenticular wall for forming a three-dimensional image
US11747542B2 (en) Display method
US20160202409A1 (en) Double-sided optical film with lenslets and clusters of prisms
AU2014216006B2 (en) Light Guide Body and Light-Emitting Device
JPWO2017138441A1 (en) Marker
JP6372739B2 (en) Panel material
US10859824B2 (en) Display device
JPWO2017099007A1 (en) Marker
JP2015084005A (en) Image display device
WO2017146097A1 (en) Marker
JPWO2017212853A1 (en) Marker
JP6319655B2 (en) Display with solar panel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15819442

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15819442

Country of ref document: EP

Kind code of ref document: A1