WO2016006359A1 - Sealed secondary battery deterioration diagnosis method and deterioration diagnosis system - Google Patents

Sealed secondary battery deterioration diagnosis method and deterioration diagnosis system Download PDF

Info

Publication number
WO2016006359A1
WO2016006359A1 PCT/JP2015/065539 JP2015065539W WO2016006359A1 WO 2016006359 A1 WO2016006359 A1 WO 2016006359A1 JP 2015065539 W JP2015065539 W JP 2015065539W WO 2016006359 A1 WO2016006359 A1 WO 2016006359A1
Authority
WO
WIPO (PCT)
Prior art keywords
charge
secondary battery
discharge capacity
curve
capacity
Prior art date
Application number
PCT/JP2015/065539
Other languages
French (fr)
Japanese (ja)
Inventor
福田 武司
南方 伸之
Original Assignee
東洋ゴム工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015036892A external-priority patent/JP6186385B2/en
Application filed by 東洋ゴム工業株式会社 filed Critical 東洋ゴム工業株式会社
Priority to US15/312,897 priority Critical patent/US20180038917A1/en
Priority to EP15819037.1A priority patent/EP3168632B1/en
Priority to CN201580030206.1A priority patent/CN106471385A/en
Priority to KR1020167036374A priority patent/KR20170009995A/en
Publication of WO2016006359A1 publication Critical patent/WO2016006359A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method and system for diagnosing deterioration of a sealed secondary battery.
  • secondary batteries represented by lithium ion secondary batteries (hereinafter sometimes referred to simply as “secondary batteries”) are not only mobile devices such as mobile phones and laptop computers, but also electric vehicles and hybrids. It is also used as a power source for electric vehicles such as cars.
  • the secondary battery deteriorates by repeating charge and discharge, and it becomes difficult to accurately grasp the remaining capacity as the deterioration progresses.
  • Patent Document 1 a change in battery voltage per predetermined time is sequentially measured while performing constant current charging or constant current discharging of a secondary battery, and based on the time when the change in the battery voltage is equal to or less than a predetermined value, A method for calculating the deterioration rate of the secondary battery is described.
  • the battery voltage per predetermined time changes depending on the charge / discharge history up to the time of measurement, it is used in an environment where the battery is installed in an electric vehicle that is used repeatedly while charging / discharging, for example, charging / discharging frequently. Not suitable for use in
  • Patent Document 2 describes a method for calculating a charge capacity by fully charging a battery once it is completely discharged and integrating the amount of current for charging at that time. However, since it is rare that a battery is completely discharged in actual use, it is suitable for use in applications where charging and discharging are repeated, for example, in an environment mounted on an electric vehicle that frequently charges and discharges. Absent.
  • Patent Document 3 the voltage and internal pressure of the secondary battery are detected, the relational data between the voltage and the internal pressure of the secondary battery that is not deteriorated, and the relational data between the internal pressure of the secondary battery and the battery capacity. Describes a method of calculating deterioration of a secondary battery using However, since the deterioration mechanism may differ depending on the environment and conditions in which the secondary battery is used, it is necessary to prepare various patterns of relational data and it is difficult to determine which pattern is applicable.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method and system capable of easily and accurately diagnosing deterioration of a sealed secondary battery even in applications where charging and discharging are repeated. It is to provide.
  • the degradation diagnosis method for a sealed secondary battery detects deformation of the sealed secondary battery, discharge capacity from a fully charged state or a charged capacity up to a fully charged state, and the detected sealed secondary battery.
  • a step of obtaining a first curve representing a relationship with the deformation amount of the secondary battery a step of obtaining a second curve representing the relationship between the charge / discharge capacity and the slope of the first curve, and an extreme value in the second curve.
  • the extreme value appearing in the second curve is due to the stage change of the electrode, and when the active material is deactivated, the amount of active material contributing to charge / discharge is reduced, so the charge / discharge between the stage change points The capacity Qc is reduced. Therefore, by using the ratio Qc / Qs between the charge / discharge capacity Qs and the charge / discharge capacity Qc in the reference state as an index, the extent to which the active material contributing to charge / discharge is maintained, that is, the maintenance ratio of the active material is determined. It can be calculated.
  • the first curve which is the origin of the second curve, is the relationship between the discharge capacity from the fully charged state or the charge capacity until the fully charged state and the deformation amount of the secondary battery.
  • the step of correcting the second curve using the maintenance rate so that the charge / discharge capacity Qc is the same as the charge / discharge capacity Qs, and the corrected second curve It is preferable to include a step of calculating a capacity balance deviation amount due to a side reaction based on a charge / discharge capacity difference between the stage change point at and a stage change point corresponding to the predetermined reference state.
  • the charge / discharge capacity difference seen between the corrected second curve and the reference state is a result of a deviation in the capacity balance between positive and negative and the negative electrode. This is caused by the difference between the reaction amount and the side reaction amount at the negative electrode. Therefore, based on this charge / discharge capacity difference, the capacity balance deviation amount due to the side reaction can be calculated, and deterioration of the sealed secondary battery can be diagnosed with higher accuracy. Further, the amount of capacity balance deviation due to this side reaction can be used for predicting the remaining capacity of the sealed secondary battery together with the maintenance rate of the active material.
  • the charge / discharge capacity calculated based on the peak width appearing in the second curve is more than the charge / discharge capacity calculated based on the corresponding peak width in a predetermined reference state.
  • it may include a step of determining a degradation mode due to expansion of the reaction distribution. Thereby, expansion of the reaction distribution can be easily detected.
  • a polymer matrix layer is attached to the sealed secondary battery, and the polymer matrix layer is exposed to an external field according to deformation of the polymer matrix layer. It is preferable that a change-providing filler is contained in a dispersed manner, and that the deformation of the sealed secondary battery is detected by detecting the change in the external field according to the deformation of the polymer matrix layer. Thereby, deformation of the sealed secondary battery can be detected with high sensitivity, and deterioration of the sealed secondary battery can be diagnosed with high accuracy.
  • the polymer matrix layer contains a magnetic filler as the filler, and the deformation of the sealed secondary battery is detected by detecting a change in the magnetic field as the external field.
  • the change of the magnetic field accompanying the deformation of the polymer matrix layer can be detected without wiring.
  • a Hall element having a wide sensitivity region can be used, highly sensitive detection can be performed over a wider range.
  • the sealed secondary battery deterioration diagnosis system includes a detection sensor for detecting deformation of the sealed secondary battery, a discharge capacity from a fully charged state or a charged capacity up to a fully charged state, A first curve representing the relationship between the deformation amount of the sealed secondary battery detected by the detection sensor and a second curve representing the relationship between the charge / discharge capacity and the slope of the first curve are obtained, and the second curve
  • the charge / discharge capacity Qc between the stage change points appearing as extreme values in the curve is calculated, and based on the ratio Qc / Qs of the charge / discharge capacity Qc to the charge / discharge capacity Qs between the stage change points in a predetermined reference state, And a control device for calculating a maintenance rate.
  • the extreme value appearing in the second curve is due to the stage change of the electrode, and when the active material is deactivated, the amount of active material contributing to charge / discharge is reduced, so the charge / discharge between the stage change points The capacity Qc is reduced. Therefore, by using the ratio Qc / Qs between the charge / discharge capacity Qs and the charge / discharge capacity Qc in the reference state as an index, the extent to which the active material contributing to charge / discharge is maintained, that is, the maintenance ratio of the active material is determined. It can be calculated.
  • the first curve which is the origin of the second curve, is the relationship between the discharge capacity from the fully charged state or the charge capacity until the fully charged state and the deformation amount of the secondary battery. There are many occasions when the battery is fully charged even in a repetitive environment. Therefore, this system can easily and accurately diagnose the deterioration of the sealed secondary battery even in applications where charging and discharging are repeated.
  • the control device corrects the second curve using the maintenance rate so that the charge / discharge capacity Qc is the same as the charge / discharge capacity Qs, and after the correction, It is preferable to calculate the capacity balance deviation amount due to the side reaction based on the charge / discharge capacity difference between the stage change point in the second curve and the corresponding stage change point in a predetermined reference state.
  • the charge / discharge capacity difference seen between the corrected second curve and the reference state is a result of a deviation in the capacity balance between positive and negative and the negative electrode. This is caused by the difference between the reaction amount and the side reaction amount at the negative electrode. Therefore, based on this charge / discharge capacity difference, the capacity balance deviation amount due to the side reaction can be calculated, and deterioration of the sealed secondary battery can be diagnosed with higher accuracy. Further, the amount of capacity balance deviation due to this side reaction can be used for predicting the remaining capacity of the sealed secondary battery together with the maintenance rate of the active material.
  • the charge / discharge capacity calculated based on the peak width appearing in the second curve is more than the charge / discharge capacity calculated based on the corresponding peak width in a predetermined reference state.
  • it may be determined as a deterioration mode due to expansion of the reaction distribution. Thereby, expansion of the reaction distribution can be easily detected.
  • a battery that performs constant current charging within a range not exceeding twice the value obtained by adding the remaining capacity at the start of charging to the charging capacity at the rising edge of the peak appearing in the second curve. preferable. As a result, inconveniences such as precipitation of lithium metal can be avoided, and it is not necessary to completely discharge the battery.
  • the detection sensor includes a polymer matrix layer attached to the sealed secondary battery, and a detection unit, and the polymer matrix layer includes It is preferable that a filler that changes the external field according to the deformation of the polymer matrix layer is dispersed and contained, and the detection unit detects the change of the external field.
  • the polymer matrix layer contains a magnetic filler as the filler, and the detection unit detects a change in the magnetic field as the external field.
  • the change of the magnetic field accompanying the deformation of the polymer matrix layer can be detected without wiring.
  • a Hall element having a wide sensitivity region can be used as the detection unit, highly sensitive detection can be performed over a wider range.
  • the block diagram which shows an example of the system for performing the deterioration diagnostic method which concerns on this invention
  • A perspective view and
  • Graph showing the relationship between the discharge capacity from the fully charged state and the amount of deformation of the detected secondary battery
  • A perspective view and
  • Graph showing the relationship between the discharge capacity from the fully charged state and the amount of deformation of the detected secondary battery
  • Graph showing the relationship between the discharge capacity from the fully charged state and the slope of the first curve
  • a graph showing the relationship between the discharge capacity from the fully charged state and the slope of the first curve
  • a graph showing the relationship between the charge capacity up to the fully charged state and the slope of the first curve
  • a graph showing the relationship between the charge capacity up to the fully charged state and the slope of the first curve
  • FIG. 1 shows a system mounted on an electric vehicle such as an electric vehicle or a hybrid vehicle.
  • This system includes a battery module 1 in which an assembled battery composed of a plurality of sealed secondary batteries 2 is housed in a casing.
  • four secondary batteries 2 are connected in two parallel two series, but the number of batteries and the connection form are not limited to this.
  • the battery pack 1 actually includes a plurality of battery modules 1.
  • a plurality of battery modules 1 are connected in series, and they are housed in a casing together with various devices such as a controller.
  • the casing of the battery pack is formed in a shape suitable for in-vehicle use, for example, a shape that matches the underfloor shape of the vehicle.
  • the secondary battery 2 shown in FIG. 2 is configured as a cell (single cell) in which an electrode group 22 is accommodated in a sealed outer casing 21.
  • the electrode group 22 has a structure in which a positive electrode 23 and a negative electrode 24 are laminated or wound through a separator 25 therebetween, and the separator 25 holds an electrolytic solution.
  • the secondary battery 2 of the present embodiment is a laminated battery using a laminated film such as an aluminum laminated foil as the outer package 21, and is specifically a laminated lithium ion secondary battery having a capacity of 1.44 Ah.
  • the secondary battery 2 is formed in a thin rectangular parallelepiped shape as a whole, and the X, Y, and Z directions correspond to the length direction, the width direction, and the thickness direction of the secondary battery 2, respectively.
  • the Z direction is also the thickness direction of the positive electrode 23 and the negative electrode 24.
  • the secondary battery 2 is provided with a detection sensor 5 that detects deformation of the secondary battery 2.
  • the detection sensor 5 includes a polymer matrix layer 3 attached to the secondary battery 2 and a detection unit 4.
  • the polymer matrix layer 3 contains a filler that disperses the external field according to deformation of the polymer matrix layer 3 in a dispersed manner.
  • the polymer matrix layer 3 of the present embodiment is formed in a sheet shape from an elastomer material that can be flexibly deformed.
  • the detector 4 detects a change in the external field. When the secondary battery 2 swells and deforms, the polymer matrix layer 3 is deformed accordingly, and a change in the external field accompanying the deformation of the polymer matrix layer 3 is detected by the detection unit 4. In this way, deformation of the secondary battery 1 can be detected with high sensitivity.
  • the polymer matrix layer 3 since the polymer matrix layer 3 is attached to the outer package 21 of the secondary battery 2, the polymer matrix layer 3 can be deformed according to deformation (mainly swelling) of the outer package 21. it can.
  • the polymer matrix layer 3 may be attached to the electrode group 22 of the secondary battery 2, and according to such a configuration, the polymer is changed according to deformation (mainly swelling) of the electrode group 22.
  • the matrix layer 3 can be deformed.
  • the deformation of the secondary battery 1 to be detected may be any deformation of the outer package 21 and the electrode group 22.
  • the signal detected by the detection sensor 5 is transmitted to the control device 6, whereby information relating to the deformation of the secondary battery 2 is supplied to the control device 6.
  • the control device 6 performs deterioration diagnosis of the secondary battery 2 using the information, specifically based on processing including the following steps 1 to 4 and more preferably including steps 5 and 6.
  • processing including the following steps 1 to 4 and more preferably including steps 5 and 6.
  • the deformation of the secondary battery 2 is detected, and a first curve representing the relationship between the discharge capacity from the fully charged state and the detected deformation amount of the secondary battery 2 is obtained (step 1).
  • the graph of FIG. 4 shows the first curve L1 obtained in the secondary battery 2 after 500 cycles of the charge / discharge process.
  • the secondary battery 2 is placed in a constant temperature bath at 25 ° C., left still for 120 minutes, charged at a constant current of 4.3 V with a charging current of 1.44 A, reaches 4.3 V, and then reaches 0.00 V.
  • the horizontal axis is the discharge capacity Q with the origin at the fully charged state
  • the vertical axis is the detected deformation amount T of the secondary battery 2.
  • the deformation amount T of the secondary battery 2 decreases. This is because, in the charged secondary battery 2, the electrode group 22 swells (hereinafter sometimes referred to as “electrode swell”) due to the volume change of the active material, and the electrode group 22 swells along with the discharge. This is because becomes smaller.
  • a curve Ls1 represents the relationship between the discharge capacity from the fully charged state and the deformation amount of the secondary battery 2 in the secondary battery 2 in the reference state. The curve Ls1 is obtained in the same manner as the first curve L1, for example, for the secondary battery 2 at the time of manufacture or before shipment, with the secondary battery 2 in an initial stage that has not deteriorated as a reference state.
  • the electrolyte may swell as the internal pressure increases due to the decomposed gas (hereinafter sometimes referred to as “gas swell”).
  • the detection sensor 5 also detects the deformation of the secondary battery 2 due to this gas expansion, but this is only reflected as the overall size of the deformation amount T and does not appear as a change accompanying an increase in the discharge capacity Q. . Therefore, in FIG. 4, the deformation amount T decreases as the discharge capacity Q increases due to the effect of electrode swelling, and even with the same discharge capacity Q, the first curve L1 has a larger deformation amount than the curve Ls1. T is the effect of gas swell.
  • the first curve L1 has a shape including some irregularities as shown in FIG. 4 due to the stage change of the electrode.
  • graphite graphite
  • the crystalline state of the graphite sequentially changes in stages as it is discharged from the fully charged state. This is because the crystalline state of graphite changes stepwise with the amount of lithium ions inserted, and the average distance between graphene layers expands stepwise to expand the active material of the negative electrode.
  • the volume of the active material changes stepwise due to the stage change, which is reflected in the first curve L1 and the curve Ls1.
  • the detection sensor 5 that detects the deformation of the secondary battery 2 with high sensitivity is suitable.
  • a second curve representing the relationship between the charge / discharge capacity (a general term for discharge capacity and charge capacity, which is the discharge capacity from the fully charged state in this embodiment) and the slope of the first curve is obtained ( Step 2).
  • the graph of FIG. 5 shows the second curve L2 obtained from the first curve L1.
  • the slope dT / dQ of the first curve L1 is obtained as a differential value when the deformation amount T is differentiated by the discharge capacity Q.
  • the second curve L2 has two stage change points P1 and P2 that appear as extreme values, which are caused by the stage change described above.
  • a curve Ls2 represents the relationship between the charge / discharge capacity (discharge capacity in the present embodiment) and the slope of the first curve in the secondary battery 2 in the reference state.
  • the curve Ls2 is obtained from the curve Ls1 in the same manner as obtaining the second curve L2 from the first curve L1.
  • the curve Ls2 also has two stage change points Ps1 and Ps2.
  • the active material used for the negative electrode of the lithium ion secondary battery a material capable of electrochemically inserting and extracting lithium ions is used, and the second material having a plurality of stage change points as described above. In obtaining the curve, a negative electrode containing graphite is preferably used.
  • the active material used for the positive electrode include LiCoO 2 , LiMn 2 O 4 , LiNiO 2 , Li (MnAl) 2 O 4 , Li (NiCoAl) O 2 , LiFePO 4 , and Li (NiMnCo) O 2. be able to.
  • the charge / discharge capacity Qc between the stage change points appearing as extreme values on the second curve is calculated (step 3).
  • the extreme value is a collective term of the local minimum value and the local maximum value, and the stage change point appears as a local minimum value during discharging and as a local maximum value during charging.
  • the stage change points P1 and P2 appear as minimum values.
  • FIG. 5 shows the charge / discharge capacity Qc between the stage change points P1, P2 and the charge / discharge capacity Qs between the stage change points Ps1, Ps2.
  • the stage changes when one or more lithium ions are inserted for 24 carbons and when one or more lithium ions are inserted for 12 carbons. Occurs when inserted. Therefore, the decrease in the charge / discharge capacity Qc suggests a decrease in the amount of carbon capable of inserting and desorbing lithium ions, and thus the deactivation of the active material can be inferred.
  • the active material maintenance ratio is calculated (step 4). For example, when the charge / discharge capacity Qc is 411 mAh and the charge / discharge capacity Qs is 514 mAh, the active material maintenance ratio R is 0.8 ( ⁇ 411 / 514) based on the ratio Qc / Qs. It can be calculated. This is because in the secondary battery 2 after 500 cycles of the charge / discharge process, about 80% of the active material contributing to charge / discharge is maintained, in other words, the active material contributing to charge / discharge is reduced to 80%. In this way, the deterioration of the secondary battery 2 can be diagnosed.
  • the charge / discharge capacity Qc is obtained from the second curve L2, and the first curve L1 serving as the source of the second curve L2 is the discharge capacity Q from the fully charged state and the deformation amount T of the secondary battery 2.
  • the first curve L1 serving as the source of the second curve L2 is the discharge capacity Q from the fully charged state and the deformation amount T of the secondary battery 2.
  • the curve Ls1 is acquired in advance for the secondary battery 2 at the time of manufacture or before shipment, for example, with the secondary battery 2 in the initial stage that has not deteriorated as a reference state. Therefore, the curve Ls2, the stage change points Ps1 and Ps2, and the charge / discharge capacity Qs can also be obtained in advance. These data can be stored in a storage unit (not shown) included in the control device 6, but at least the charge / discharge capacity Qs is sufficient for the above-described deterioration diagnosis.
  • the amount of capacity balance shift due to the side reaction can be calculated, and the deterioration of the secondary battery 2 can be diagnosed more accurately.
  • the amount of capacity balance deviation due to the side reaction together with the maintenance rate of the active material, it can be used to predict the remaining capacity of the secondary battery 2.
  • the second curve is corrected using the retention rate of the active material so that the charge / discharge capacity Qc is the same as the charge / discharge capacity Qs (step 5). Specifically, the discharge capacity value of the second curve is divided by the retention rate of the active material. This step may be after the calculation of the charge / discharge capacity Qc, and may be before the maintenance rate is calculated.
  • the graph of FIG. 6 shows a second curve L2 'obtained by correcting the second curve L2.
  • the value of the discharge capacity Q of the second curve L2 may be divided by 0.8 as the maintenance ratio R.
  • the corrected charge / discharge capacity Qc ′ of the second curve L2 ′ is 514 mAh, which is the same as the charge / discharge capacity Qs.
  • the corrected second curve L2 ′ indicates the discharge capacity Q from the fully charged state and the slope dT / dQ of the first curve L1 when it is assumed that there is no deactivation of the active material ascertained by the maintenance ratio R. It is calculated
  • the second curve L2 ′ does not coincide with the curve Ls2, and there is a space between the stage change point P1 ′ (or P2 ′) and the corresponding stage change point Ps1 (or Ps2).
  • a discharge capacity difference Qd is observed.
  • This charge / discharge capacity difference Qd is a result of a shift in the capacity balance between the positive electrode 23 and the negative electrode 24, and this shift is due to the difference between the side reaction amount at the positive electrode 23 and the side reaction amount at the negative electrode 24.
  • the side reaction is determined based on the charge / discharge capacity difference between the stage change point in the corrected second curve and the corresponding stage change point in a predetermined reference state.
  • the amount of capacity balance deviation due to is calculated (step 6). For example, when the charge / discharge capacity difference Qd is 116 mAh, it can be determined that an excessive side reaction has occurred in the negative electrode 24, and the capacity balance deviation due to the side reaction is calculated to be 116 mAh.
  • the second curve L2 ′ is directed in the positive direction of the discharge capacity Q (right direction of the graph). This is considered because it is necessary to shift by 116 mAh.
  • the deterioration of the secondary battery 2 can be diagnosed with higher accuracy.
  • the end point of the first curve L1 can be estimated by considering the capacity balance deviation amount due to this side reaction together with the maintenance ratio of the active material, and thereby the remaining capacity of the secondary battery 2 can be predicted. For example, after charging and discharging a secondary battery having a capacity of 1440 mAh before deterioration for 500 cycles, the active material retention rate R is 0.8, and the capacity balance deviation due to side reaction is 116 mAh min.
  • the value (mAh) of the discharge capacity Q at the end point of the first curve L1 is estimated from 1440 ⁇ 0.8 + 116, and the remaining capacity is calculated by subtracting the discharge capacity at the time of diagnosis from there. Predictable.
  • the deterioration diagnosis method and the deterioration diagnosis system of the present embodiment can grasp what capacity deterioration is occurring in the secondary battery, not simply detecting the capacity decrease of the secondary battery, Specifically, how much active material is maintained (in other words, how much active material is deactivated), and how much side reaction (electrochemistry that does not contribute to charge / discharge) It is possible to obtain detailed degradation information indicating whether or not (reaction) has occurred. Furthermore, the remaining capacity can be predicted by estimating the end point of the discharge capacity for the deteriorated secondary battery. Such deterioration diagnosis is executed by the control device 6 including prediction of the remaining capacity.
  • step 1 a first curve representing the relationship between the charged capacity up to the fully charged state and the detected deformation amount of the secondary battery is obtained.
  • the horizontal axis of the graph of FIG. 4 is reversed, and the amount of deformation of the secondary battery increases as the charging capacity up to the fully charged state increases (that is, as it approaches the fully charged state).
  • Step 2 a second curve representing the relationship between the charge / discharge capacity (charge capacity up to the fully charged state) and the slope of the first curve is obtained.
  • a second curve having an upward peak is obtained, and a stage change point appears as a maximum value in the second curve (for example, FIG. 7).
  • This determination of the deterioration mode can be used in combination with the above-described calculation of the active material maintenance rate. In this case, either the calculation of the maintenance ratio of the active material or the determination of the deterioration mode may be performed first, or these may be performed simultaneously.
  • FIG. 7 is a graph showing the relationship between the charge / discharge capacity (charge capacity until fully charged) and the slope of the first curve.
  • the second curve L3 is obtained by steps 1 and 2 as described above. The illustration of the first curve serving as the source of the second curve L3 is omitted.
  • the second curve L3 has two stage change points P3 and P4 that appear as extreme values (as maximum values during charging). In addition, two upward peaks having the stage change points P3 and P4 appear in the second curve L3, which are caused by the stage change described above.
  • the two peaks appearing in the second curve L3 indicate the amount of each active material that completes the stage change in its capacity (charge capacity in FIG. 7).
  • Capacitances Qp31 and Qp41 at the peak start point are the capacity at which the reaction proceeds most quickly among the large number of active materials in the electrode, that is, the capacity at which the stage change starts at the earliest.
  • Capacitances Qp32 and Qp42 at the end points of the peaks are capacitances at which the stage change of all the active materials in the electrodes is completed.
  • the base line BL is defined by a straight line connecting inflection points before and after each peak.
  • the charge / discharge capacity Qw3 is calculated based on the base width from the start point to the end point of the peak, and is specifically obtained by subtracting the capacity Qp31 from the capacity Qp32.
  • the charge / discharge capacity Qw4 is the same as this.
  • the charge / discharge capacities Qw3 and Qw4 indicate the reaction rate distributions of the individual active materials in the electrodes. Therefore, the reaction distribution of the active material in the electrode can be grasped by comparing the peak width such as the base width before and after the deterioration of the secondary battery 2.
  • the expansion of the reaction distribution is caused by an increase in ionic resistance or electrical resistance in the electrode.
  • the charge capacity until the lithium metal is deposited during charging is reduced, and the lithium metal is easily deposited.
  • the deposited lithium metal grows in a dendrite shape, which may cause inconveniences such as causing a short circuit between the positive electrode and the negative electrode.
  • the reaction distribution is expanded, so that overdischarge occurs in the active material in which the reaction is most likely to proceed, and the deterioration of the battery is promoted.
  • the graph of FIG. 8 shows a curve Ls3 representing the relationship between the charge / discharge capacity (charge capacity in the present embodiment) and the slope of the first curve in the secondary battery 2 in the reference state.
  • the first curve that is the origin of the curve Ls3 is the same as the curve Ls1 in FIG. 4, with the secondary battery 2 in the initial stage that is not deteriorated as a reference state, for example, the secondary battery 2 before manufacture or before shipment. , Can be acquired in advance. Accordingly, not only the curve Ls3 but also the stage change points Ps3 and Ps4, the baseline BLs, the capacities Qps31, Qps32, Qps41, and Qps42, and the charge / discharge capacities Qws3 and Qws4 can be obtained in advance.
  • the charge / discharge capacity Qws3 is calculated on the basis of the peak base width, and is specifically obtained by subtracting the capacity Qps31 from the capacity Qps32.
  • the charge / discharge capacity Qws4 is the same as this
  • the width of each peak reflects the reaction rate distribution of the active material in the electrode
  • the width of the peak appearing in the second curve L3 corresponds to the peak in a predetermined reference state corresponding thereto. If it is larger than the width of, it can be determined that the degradation mode is due to expansion of the reaction distribution.
  • the reaction distribution is expanded compared to before deterioration. That is, it is determined that the deterioration mode is caused by expansion of the reaction distribution. The same applies to the comparison between the charge / discharge capacity Qw4 and the charge / discharge capacity Qws4. When determining the deterioration mode, either peak may be compared.
  • the expansion of the reaction distribution can be easily detected by comparing the charge / discharge capacity Qw3 and the charge / discharge capacity Qws3 or by comparing the charge / discharge capacity Qw4 and the charge / discharge capacity Qws4.
  • the charge / discharge capacities to be compared for determination are calculated based on the base width of the peak, but are not limited to this, and may be calculated based on another width of the peak.
  • the charge / discharge capacity may be calculated based on the half width of the peak (the width at the half position of the peak height), and the deterioration mode may be determined by comparison. Even with this method, it is possible to determine the expansion of the reaction distribution before and after deterioration.
  • the remaining capacity depending on the current battery discharge rate and temperature can be predicted by referring to the result.
  • stage changes of stages 2 and 3 are observed during charging and discharging.
  • This embodiment is an example in which graphite is used for the negative electrode.
  • the change to the stage 3 is observed as the left peak, and the change to the stage 2 is observed as the right peak.
  • the change to stage 2 is a state in which one lithium ion is inserted into 12 carbons (carbon atoms).
  • Lithium metal deposition which causes various inconveniences, is a state where two or more lithium ions are inserted into 12 carbon atoms (ie, one or more lithium ions are inserted into 6 carbon atoms). It happens in the state of trying to insert). Therefore, the lithium metal is deposited by intercalating a charge capacity more than twice the charge capacity from the fully discharged state to the stage 2.
  • the charge capacity at the rising edge of the peak (the charge capacity at the start point) is the capacity at which the reaction proceeds most quickly among the many active materials in the electrode, that is, the capacity at which the stage change is started the fastest in the battery. Show. Therefore, at the peak indicating the change to the stage 2, it is possible to predict the capacity at which the lithium metal is deposited based on the value twice the charge capacity at the rising edge of the peak. From this, in this embodiment, it can be judged that a value twice as large as the charge capacity Qp41 is a capacity for depositing lithium metal.
  • the set upper limit voltage is reached and the constant current charge is switched to the constant voltage charge before reaching the double capacity of the charge capacity at the rising edge of the peak, so that lithium metal does not precipitate.
  • the reaction distribution expands, and the charge capacity at the peak rises to the low capacity side. shift. In that case, in the control method of switching to constant voltage charging after reaching the set upper limit voltage, lithium metal deposition is unavoidable.
  • the constant current is within a range not exceeding twice the value obtained by adding the remaining capacity at the start of charging to the charging capacity Qp41 at the rising edge of the peak appearing in the second curve L3. It preferably includes a step of charging. In such a method, even if deterioration due to expansion of the reaction distribution occurs, the change in the active material having the fastest charging speed to the stage 2 is detected and the constant current charging is terminated, so that lithium metal is not deposited. As a result, safety can be improved and the progress of deterioration can be suppressed. After the constant current charging is finished, the charging may be finished or switched to constant voltage charging.
  • the charge capacity up to the charge capacity Qp41 changes according to the remaining capacity at the start of charging.
  • the capacity for depositing lithium metal is a charge capacity that is twice or more the value obtained by adding the remaining capacity at the start of charging (substantially zero if fully discharged) to the charging capacity Qp41. Therefore, in the above step, constant current charging is performed within a range not exceeding twice the value obtained by adding the remaining capacity at the start of charging to the charging capacity Qp41. For this reason, it is not necessary to set it in a completely discharged state in order to diagnose deterioration and to select suitable charging conditions.
  • the polymer matrix layer is formed on the wall portion 28 a of the exterior body 21 that faces the electrode group 22 in the thickness direction of the positive electrode 23 and the negative electrode 24, that is, the Z direction (vertical direction in FIG. 2B). 3 is pasted.
  • the outer surface of the wall portion 28 a corresponds to the upper surface of the exterior body 21.
  • the polymer matrix layer 3 is opposed to the electrode group 22 with the wall portion 28 a interposed therebetween, and is disposed in parallel with the upper surface of the electrode group 22. Since the electrode swelling is caused by the change in the thickness of the electrode group 22 accompanying the change in the volume of the active material, the action in the Z direction is large. Therefore, in the present embodiment in which the polymer matrix layer 3 is attached to the wall portion 28a, it is possible to detect the swollen electrode with high sensitivity, and thus to accurately perform the deterioration diagnosis.
  • the polymer matrix layer 3 is attached to the electrode group 22 from the thickness direction of the positive electrode 23 and the negative electrode 24, that is, the Z direction (vertical direction in FIG. 3B).
  • the detection unit 4 is disposed at a location where a change in the external field can be detected, and is preferably affixed to a relatively rigid location that is not easily affected by the swelling of the secondary battery 2.
  • the detection unit 4 is attached to the inner surface of the casing 11 of the battery module facing the wall 28a.
  • the casing 11 of the battery module is formed of, for example, metal or plastic, and a laminate film may be used.
  • the detection unit 4 is disposed close to the polymer matrix layer 3, but may be disposed away from the polymer matrix layer 3.
  • the polymer matrix layer 3 contains a magnetic filler as the filler, and the detection unit 4 detects a change in the magnetic field as the external field.
  • the polymer matrix layer 3 is preferably a magnetic elastomer layer in which a magnetic filler is dispersed in a matrix made of an elastomer component.
  • the magnetic filler examples include rare earths, irons, cobalts, nickels, oxides, etc., but rare earths capable of obtaining higher magnetic force are preferable.
  • the shape of the magnetic filler is not particularly limited, and may be spherical, flat, needle-like, columnar, or indefinite.
  • the average particle size of the magnetic filler is preferably 0.02 to 500 ⁇ m, more preferably 0.1 to 400 ⁇ m, and still more preferably 0.5 to 300 ⁇ m. When the average particle size is smaller than 0.02 ⁇ m, the magnetic properties of the magnetic filler tend to be lowered, and when the average particle size exceeds 500 ⁇ m, the mechanical properties of the magnetic elastomer layer tend to be lowered and become brittle.
  • the magnetic filler may be introduced into the elastomer after magnetization, but is preferably magnetized after being introduced into the elastomer. Magnetization after introduction into the elastomer facilitates control of the polarity of the magnet and facilitates detection of the magnetic field.
  • thermoplastic elastomer a thermoplastic elastomer, a thermosetting elastomer, or a mixture thereof can be used.
  • thermoplastic elastomer examples include styrene-based thermoplastic elastomer, polyolefin-based thermoplastic elastomer, polyurethane-based thermoplastic elastomer, polyester-based thermoplastic elastomer, polyamide-based thermoplastic elastomer, polybutadiene-based thermoplastic elastomer, polyisoprene-based thermoplastic elastomer, A fluororubber-based thermoplastic elastomer can be used.
  • thermosetting elastomer examples include polyisoprene rubber, polybutadiene rubber, styrene-butadiene rubber, polychloroprene rubber, nitrile rubber, diene synthetic rubber such as ethylene-propylene rubber, ethylene-propylene rubber, butyl rubber, acrylic rubber, Non-diene synthetic rubbers such as polyurethane rubber, fluorine rubber, silicone rubber, epichlorohydrin rubber, and natural rubber can be mentioned.
  • a thermosetting elastomer is preferable because it can suppress the sag of the magnetic elastomer accompanying heat generation and overload of the battery. More preferred is polyurethane rubber (also referred to as polyurethane elastomer) or silicone rubber (also referred to as silicone elastomer).
  • Polyurethane elastomer is obtained by reacting polyol and polyisocyanate.
  • an active hydrogen-containing compound and a magnetic filler are mixed, and an isocyanate component is mixed here to obtain a mixed solution.
  • a liquid mixture can also be obtained by mixing a magnetic filler with an isocyanate component and mixing an active hydrogen-containing compound. The mixed liquid is poured into a mold subjected to a release treatment, and then heated to a curing temperature and cured to produce a magnetic elastomer.
  • a magnetic elastomer can be produced by adding a magnetic filler to a silicone elastomer precursor, mixing it, putting it in a mold, and then heating and curing it. In addition, you may add a solvent as needed.
  • isocyanate component that can be used in the polyurethane elastomer
  • compounds known in the field of polyurethane can be used.
  • the isocyanate component may be modified such as urethane modification, allophanate modification, biuret modification, and isocyanurate modification.
  • Preferred isocyanate components are 2,4-toluene diisocyanate, 2,6-toluene diisocyanate, 4,4'-diphenylmethane diisocyanate, more preferably 2,4-toluene diisocyanate, 2,6-toluene diisocyanate.
  • polyurethane those usually used in the technical field of polyurethane can be used.
  • Polyester polyol such as polyester polyol, polycaprolactone polyol, reaction product of polyester glycol and alkylene carbonate such as polycaprolactone, and the like, and the reaction of the resulting reaction mixture with organic polyol.
  • Polyester polycarbonate polyol reacted with dicarboxylic acid, esterification of polyhydroxyl compound and aryl carbonate High molecular weight polyol polycarbonate polyols obtained by the reaction can be mentioned. These may be used alone or in combination of two or more.
  • Preferred active hydrogen-containing compounds are polytetramethylene glycol, polypropylene glycol, a copolymer of propylene oxide and ethylene oxide, 3-methyl-1,5-pentane adipate, more preferably a copolymer of polypropylene glycol, propylene oxide and ethylene oxide. It is a coalescence.
  • the isocyanate component As a preferred combination of the isocyanate component and the active hydrogen-containing compound, as the isocyanate component, one or more of 2,4-toluene diisocyanate, 2,6-toluene diisocyanate, and 4,4′-diphenylmethane diisocyanate, active hydrogen
  • the contained compound include polytetramethylene glycol, polypropylene glycol, a copolymer of propylene oxide and ethylene oxide, and one or more of 3-methyl-1,5-pentaneadipate.
  • a combination of 2,4-toluene diisocyanate and / or 2,6-toluene diisocyanate as the isocyanate component and polypropylene glycol and / or a copolymer of propylene oxide and ethylene oxide as the active hydrogen-containing compound. is there.
  • the polymer matrix layer 3 may be a foam containing dispersed filler and bubbles.
  • a general resin foam can be used as the foam, but it is preferable to use a thermosetting resin foam in consideration of characteristics such as compression set.
  • the thermosetting resin foam include a polyurethane resin foam and a silicone resin foam. Among these, a polyurethane resin foam is preferable.
  • the above-mentioned isocyanate component and active hydrogen-containing compound can be used for the polyurethane resin foam.
  • the amount of the magnetic filler in the magnetic elastomer is preferably 1 to 450 parts by weight, more preferably 2 to 400 parts by weight with respect to 100 parts by weight of the elastomer component. If it is less than 1 part by weight, it tends to be difficult to detect a change in the magnetic field, and if it exceeds 450 parts by weight, the magnetic elastomer itself may become brittle.
  • a sealing material for sealing the polymer matrix layer 3 may be provided to the extent that the flexibility of the polymer matrix layer 3 is not impaired.
  • a thermoplastic resin, a thermosetting resin, or a mixture thereof can be used as the sealing material.
  • thermoplastic resin examples include styrene-based thermoplastic elastomers, polyolefin-based thermoplastic elastomers, polyurethane-based thermoplastic elastomers, polyester-based thermoplastic elastomers, polyamide-based thermoplastic elastomers, polybutadiene-based thermoplastic elastomers, polyisoprene-based thermoplastic elastomers, Fluorine-based thermoplastic elastomer, ethylene / ethyl acrylate copolymer, ethylene / vinyl acetate copolymer, polyvinyl chloride, polyvinylidene chloride, chlorinated polyethylene, fluororesin, polyamide, polyethylene, polypropylene, polyethylene terephthalate, polybutylene terephthalate, polystyrene, polybutadiene Etc.
  • thermosetting resin examples include polyisoprene rubber, polybutadiene rubber, styrene / butadiene rubber, polychloroprene rubber, diene-based synthetic rubber such as acrylonitrile / butadiene rubber, ethylene / propylene rubber, ethylene / propylene / diene rubber, butyl rubber, Non-diene rubbers such as acrylic rubber, polyurethane rubber, fluorine rubber, silicone rubber, epichlorohydrin rubber, natural rubber, polyurethane resin, silicone resin, epoxy resin and the like can be mentioned. These films may be laminated, or may be a film including a metal foil such as an aluminum foil or a metal vapor deposition film in which a metal is vapor deposited on the film.
  • a metal foil such as an aluminum foil or a metal vapor deposition film in which a metal is vapor deposited on the film.
  • the polymer matrix layer 3 may be one in which fillers are unevenly distributed in the thickness direction.
  • the polymer matrix layer 3 may have a structure composed of two layers of a region on one side with a relatively large amount of filler and a region on the other side with a relatively small amount of filler.
  • the region on one side containing a large amount of filler the change in the external field with respect to small deformation of the polymer matrix layer 3 becomes large, so that the sensor sensitivity to a low internal pressure can be enhanced.
  • the region on the other side with relatively little filler is relatively flexible and easy to move. By attaching this region, the polymer matrix layer 3 (especially the region on one side) is likely to be deformed.
  • the filler uneven distribution ratio in the region on one side is preferably more than 50, more preferably 60 or more, and further preferably 70 or more. In this case, the filler uneven distribution rate in the other region is less than 50.
  • the filler uneven distribution rate in the region on one side is 100 at the maximum, and the filler uneven distribution rate in the region on the other side is 0 at the minimum. Therefore, a laminate structure of an elastomer layer containing a filler and an elastomer layer not containing a filler may be used.
  • the filler After introducing the filler into the elastomer component, it can be allowed to stand at room temperature or at a predetermined temperature, and then spontaneously settled according to the weight of the filler, by changing the temperature and time of standing.
  • the filler uneven distribution rate can be adjusted.
  • the filler may be unevenly distributed using a physical force such as centrifugal force or magnetic force.
  • the polymer matrix layer may be constituted by a laminate composed of a plurality of layers having different filler contents.
  • the filler uneven distribution rate is measured by the following method. That is, the cross section of the polymer matrix layer is observed at a magnification of 100 using a scanning electron microscope-energy dispersive X-ray analyzer (SEM-EDS). The area of the entire cross section in the thickness direction and the two areas obtained by dividing the cross section into two in the thickness direction are each subjected to elemental analysis of a metal element specific to the filler (for example, Fe element in the case of the magnetic filler of this embodiment). Find the abundance. For this abundance, the ratio of one area to the entire area in the thickness direction is calculated, and this is used as the filler uneven distribution rate in the one area. The filler uneven distribution rate in the other region is the same as this.
  • SEM-EDS scanning electron microscope-energy dispersive X-ray analyzer
  • the other region with relatively little filler may have a structure formed of a foam containing bubbles.
  • the polymer matrix layer 3 is further easily deformed and the sensor sensitivity is enhanced.
  • region of one side may be formed with the foam with the area
  • Such a polymer matrix layer in which at least a part in the thickness direction is a foam is composed of a laminate composed of a plurality of layers (for example, a non-foamed layer containing a filler and a foamed layer not containing a filler). It doesn't matter.
  • a magnetoresistive element for example, a magnetoresistive element, a Hall element, an inductor, an MI element, a fluxgate sensor, or the like can be used as the detection unit 4 that detects a change in the magnetic field.
  • the magnetoresistive element include a semiconductor compound magnetoresistive element, an anisotropic magnetoresistive element (AMR), a giant magnetoresistive element (GMR), and a tunnel magnetoresistive element (TMR).
  • AMR anisotropic magnetoresistive element
  • GMR giant magnetoresistive element
  • TMR tunnel magnetoresistive element
  • the Hall element is preferable because it has high sensitivity over a wide range and is useful as the detection unit 4.
  • the Hall element for example, EQ-430L manufactured by Asahi Kasei Electronics Corporation can be used.
  • the secondary battery 2 in which the gas expansion has progressed may lead to troubles such as ignition and rupture
  • charging and discharging are performed. It is configured to be blocked.
  • the signal detected by the detection sensor 5 is transmitted to the control device 6, and the control device 6 transmits a signal to the switching circuit 7 when a change in the external field exceeding the set value is detected by the detection sensor 5.
  • the current from the power generation device (or charging device) 8 is cut off, and charging / discharging to the battery module 1 is cut off. Thereby, the trouble resulting from gas bulging can be prevented beforehand.
  • the secondary battery is a lithium ion secondary battery
  • the present invention is not limited thereto.
  • the secondary battery used is not limited to a non-aqueous electrolyte secondary battery such as a lithium ion battery, and may be an aqueous electrolyte secondary battery such as a nickel metal hydride battery.
  • the polymer matrix layer may contain conductive fillers such as metal particles, carbon black, and carbon nanotubes as fillers, and the detector may detect changes in the electric field (changes in resistance and dielectric constant) as external fields. It is done.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)

Abstract

A sealed secondary battery deterioration diagnosis method comprising: a step for detecting deformation of the sealed secondary battery to determine a first curved line indicating the relationship between a discharge capacity from the fully charged state or a charge capacity to the fully charged state and the detected deformation amount of the sealed secondary battery; a step for determining a second curved line L2 indicating the relationship between said charge/discharge capacity and the slope of the first curved line; a step for calculating a charge/discharge capacity Qc between stage change points P1, P2 appearing as minimum values on the second curved line L2; and a step for calculating the maintenance rate of an active material on the basis of a ratio Qc/Qs of the charge/discharge capacity Qc with respect to a charge/discharge capacity Qs between stage change points Ps1, Ps2 in a predetermined reference state.

Description

密閉型二次電池の劣化診断方法及び劣化診断システムDegradation diagnosis method and degradation diagnosis system for sealed secondary battery
 本発明は、密閉型二次電池の劣化を診断する方法及びシステムに関する。 The present invention relates to a method and system for diagnosing deterioration of a sealed secondary battery.
 近年、リチウムイオン二次電池に代表される密閉型二次電池(以下、単に「二次電池」と呼ぶことがある)は、携帯電話やノートパソコンなどのモバイル機器だけでなく、電気自動車やハイブリッド車といった電動車両用の電源としても利用されている。二次電池は、充放電を繰り返すことにより劣化するとともに、その劣化の進行に伴って残容量の正確な把握が難しくなる。 In recent years, sealed secondary batteries represented by lithium ion secondary batteries (hereinafter sometimes referred to simply as “secondary batteries”) are not only mobile devices such as mobile phones and laptop computers, but also electric vehicles and hybrids. It is also used as a power source for electric vehicles such as cars. The secondary battery deteriorates by repeating charge and discharge, and it becomes difficult to accurately grasp the remaining capacity as the deterioration progresses.
 特許文献1には、二次電池の定電流充電または定電流放電を行いながら所定時間あたりの電池電圧の変化を逐次測定し、その電池電圧の変化が所定値以下である時間に基づいて、二次電池の劣化率を算出する方法が記載されている。しかし、かかる所定時間あたりの電池電圧は、測定時点までの充放電履歴に依存して変化するため、充放電を繰り返しながら使用する用途、例えば充放電を頻繁に繰り返す電動車両に搭載される環境下での使用には適していない。 In Patent Document 1, a change in battery voltage per predetermined time is sequentially measured while performing constant current charging or constant current discharging of a secondary battery, and based on the time when the change in the battery voltage is equal to or less than a predetermined value, A method for calculating the deterioration rate of the secondary battery is described. However, since the battery voltage per predetermined time changes depending on the charge / discharge history up to the time of measurement, it is used in an environment where the battery is installed in an electric vehicle that is used repeatedly while charging / discharging, for example, charging / discharging frequently. Not suitable for use in
 特許文献2には、バッテリーを一旦完全に放電させた後で満充電とし、そのときの充電用電流の電流量を積算することにより充電容量を算出する方法が記載されている。しかし、実際の使用においてバッテリーを完全に放電させることは稀であるため、充放電を繰り返しながら使用する用途、例えば充放電を頻繁に繰り返す電動車両に搭載される環境下での使用には適していない。 Patent Document 2 describes a method for calculating a charge capacity by fully charging a battery once it is completely discharged and integrating the amount of current for charging at that time. However, since it is rare that a battery is completely discharged in actual use, it is suitable for use in applications where charging and discharging are repeated, for example, in an environment mounted on an electric vehicle that frequently charges and discharges. Absent.
 特許文献3には、二次電池の電圧と内部圧力を検出し、劣化していない二次電池の電圧と内部圧力との関係データ、及び、二次電池の内部圧力と電池容量との関係データを用いて、二次電池の劣化を算出する方法が記載されている。しかし、二次電池を使用する環境や条件によって劣化メカニズムが異なる場合があるため、様々なパターンの関係データを用意しなければならないうえ、どのパターンに該当するのかの判断も困難である。 In Patent Document 3, the voltage and internal pressure of the secondary battery are detected, the relational data between the voltage and the internal pressure of the secondary battery that is not deteriorated, and the relational data between the internal pressure of the secondary battery and the battery capacity. Describes a method of calculating deterioration of a secondary battery using However, since the deterioration mechanism may differ depending on the environment and conditions in which the secondary battery is used, it is necessary to prepare various patterns of relational data and it is difficult to determine which pattern is applicable.
特開2002-340997号公報JP 2002-340997 A 特開2008-278624号公報JP 2008-278624 A 特開2013-92398号公報JP2013-92398A
 本発明は上記実情に鑑みてなされたものであり、その目的は、充放電を繰り返しながら使用する用途であっても、密閉型二次電池の劣化を簡便且つ高精度に診断できる方法及びシステムを提供することにある。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method and system capable of easily and accurately diagnosing deterioration of a sealed secondary battery even in applications where charging and discharging are repeated. It is to provide.
 本発明に係る密閉型二次電池の劣化診断方法は、前記密閉型二次電池の変形を検出し、満充電状態からの放電容量または満充電状態までの充電容量と、検出した前記密閉型二次電池の変形量との関係を表す第1曲線を求めるステップと、その充放電容量と前記第1曲線の傾きとの関係を表す第2曲線を求めるステップと、前記第2曲線に極値として現れるステージ変化点間の充放電容量Qcを算出するステップと、所定の基準状態におけるステージ変化点間の充放電容量Qsに対する前記充放電容量Qcの比Qc/Qsに基づいて、活物質の維持率を算出するステップと、を含むものである。 The degradation diagnosis method for a sealed secondary battery according to the present invention detects deformation of the sealed secondary battery, discharge capacity from a fully charged state or a charged capacity up to a fully charged state, and the detected sealed secondary battery. A step of obtaining a first curve representing a relationship with the deformation amount of the secondary battery, a step of obtaining a second curve representing the relationship between the charge / discharge capacity and the slope of the first curve, and an extreme value in the second curve. Based on the step of calculating the charge / discharge capacity Qc between the stage change points that appear and the ratio Qc / Qs of the charge / discharge capacity Qc to the charge / discharge capacity Qs between the stage change points in a predetermined reference state The step of calculating is included.
 第2曲線に現れる極値は電極のステージ変化に起因し、活物質が失活している場合は、充放電に寄与する活物質量が減少しているために、ステージ変化点間の充放電容量Qcが小さくなる。このため、基準状態における充放電容量Qsと充放電容量Qcとの比Qc/Qsを指標にすることで、充放電に寄与する活物質がどの程度維持されているか、即ち活物質の維持率を算出できる。また、第2曲線の出処となる第1曲線は、満充電状態からの放電容量または満充電状態までの充電容量と二次電池の変形量との関係であり、電動車両のように充放電を頻繁に繰り返す環境下でも満充電状態になる機会は度々ある。よって、この方法であれば、充放電を繰り返しながら使用する用途であっても、密閉型二次電池の劣化を簡便且つ高精度に診断できる。 The extreme value appearing in the second curve is due to the stage change of the electrode, and when the active material is deactivated, the amount of active material contributing to charge / discharge is reduced, so the charge / discharge between the stage change points The capacity Qc is reduced. Therefore, by using the ratio Qc / Qs between the charge / discharge capacity Qs and the charge / discharge capacity Qc in the reference state as an index, the extent to which the active material contributing to charge / discharge is maintained, that is, the maintenance ratio of the active material is determined. It can be calculated. The first curve, which is the origin of the second curve, is the relationship between the discharge capacity from the fully charged state or the charge capacity until the fully charged state and the deformation amount of the secondary battery. There are many occasions when the battery is fully charged even in a repetitive environment. Therefore, with this method, deterioration of the sealed secondary battery can be diagnosed simply and with high accuracy even in applications where charging and discharging are repeated.
 上記の劣化診断方法では、前記充放電容量Qcが前記充放電容量Qsと同じ大きさになるように、前記維持率を用いて前記第2曲線を補正するステップと、前記補正後の第2曲線でのステージ変化点と、それに対応する所定の基準状態でのステージ変化点との充放電容量差に基づいて、副反応による容量バランスずれ量を算出するステップと、を含むことが好ましい。 In the deterioration diagnosis method, the step of correcting the second curve using the maintenance rate so that the charge / discharge capacity Qc is the same as the charge / discharge capacity Qs, and the corrected second curve It is preferable to include a step of calculating a capacity balance deviation amount due to a side reaction based on a charge / discharge capacity difference between the stage change point at and a stage change point corresponding to the predetermined reference state.
 このように第2曲線を補正することにより、維持率にて把握される活物質の失活が無いものと仮定した第2曲線が得られる。そして、補正後の第2曲線と基準状態との間に見られる上記の充放電容量差は、正負と負極との容量バランスにずれが生じている結果であり、そのずれは、正極での副反応量と負極での副反応量との相違により生じる。したがって、この充放電容量差に基づき、副反応による容量バランスずれ量を算出でき、密閉型二次電池の劣化をより高精度に診断できる。更に、この副反応による容量バランスずれ量は、活物質の維持率と併せて、密閉型二次電池の残容量の予測に役立てることができる。 By correcting the second curve in this way, a second curve is obtained assuming that there is no deactivation of the active material grasped by the maintenance rate. The charge / discharge capacity difference seen between the corrected second curve and the reference state is a result of a deviation in the capacity balance between positive and negative and the negative electrode. This is caused by the difference between the reaction amount and the side reaction amount at the negative electrode. Therefore, based on this charge / discharge capacity difference, the capacity balance deviation amount due to the side reaction can be calculated, and deterioration of the sealed secondary battery can be diagnosed with higher accuracy. Further, the amount of capacity balance deviation due to this side reaction can be used for predicting the remaining capacity of the sealed secondary battery together with the maintenance rate of the active material.
 上記の劣化診断方法は、前記第2曲線に現れるピークの幅に基づいて算出される充放電容量が、それに対応する所定の基準状態でのピークの幅に基づいて算出される充放電容量よりも大きい場合に、反応分布の拡大による劣化モードと判定するステップを含むものでもよい。これにより、反応分布の拡大を容易に検出することができる。 In the deterioration diagnosis method, the charge / discharge capacity calculated based on the peak width appearing in the second curve is more than the charge / discharge capacity calculated based on the corresponding peak width in a predetermined reference state. In the case of being large, it may include a step of determining a degradation mode due to expansion of the reaction distribution. Thereby, expansion of the reaction distribution can be easily detected.
 反応分布の拡大による劣化モードと判定した場合に、前記第2曲線に現れるピークの立ち上がりの充電容量に充電開始時の残容量を加えた値の2倍を超えない範囲で定電流充電するステップを含むことが好ましい。これにより、リチウム金属の析出を生じるなどの不都合を避けることができ、しかもそのために電池を完全放電状態にする必要がない。 When it is determined that the degradation mode is due to the expansion of the reaction distribution, the step of charging at a constant current within a range not exceeding twice the value obtained by adding the remaining capacity at the start of charging to the charging capacity at the rising edge of the peak appearing in the second curve. It is preferable to include. As a result, inconveniences such as precipitation of lithium metal can be avoided, and it is not necessary to completely discharge the battery.
 本発明に係る密閉型二次電池の劣化診断方法では、前記密閉型二次電池に高分子マトリックス層を貼り付け、前記高分子マトリックス層は、その高分子マトリックス層の変形に応じて外場に変化を与えるフィラーを分散させて含有したものであり、その高分子マトリックス層の変形に応じた前記外場の変化を検出することにより、前記密閉型二次電池の変形を検出することが好ましい。これにより密閉型二次電池の変形を高感度に検出し、密閉型二次電池の劣化を精度良く診断することができる。 In the degradation diagnosis method for a sealed secondary battery according to the present invention, a polymer matrix layer is attached to the sealed secondary battery, and the polymer matrix layer is exposed to an external field according to deformation of the polymer matrix layer. It is preferable that a change-providing filler is contained in a dispersed manner, and that the deformation of the sealed secondary battery is detected by detecting the change in the external field according to the deformation of the polymer matrix layer. Thereby, deformation of the sealed secondary battery can be detected with high sensitivity, and deterioration of the sealed secondary battery can be diagnosed with high accuracy.
 上記においては、前記高分子マトリックス層が前記フィラーとしての磁性フィラーを含有し、前記外場としての磁場の変化を検出することにより、前記密閉型二次電池の変形を検出することが好ましい。これにより、高分子マトリックス層の変形に伴う磁場の変化を配線レスで検出することができる。また、感度領域が広いホール素子を利用できることから、より広範囲にわたって高感度な検出が可能となる。 In the above, it is preferable that the polymer matrix layer contains a magnetic filler as the filler, and the deformation of the sealed secondary battery is detected by detecting a change in the magnetic field as the external field. Thereby, the change of the magnetic field accompanying the deformation of the polymer matrix layer can be detected without wiring. In addition, since a Hall element having a wide sensitivity region can be used, highly sensitive detection can be performed over a wider range.
 また、本発明に係る密閉型二次電池の劣化診断システムは、前記密閉型二次電池の変形を検出する検出センサと、満充電状態からの放電容量または満充電状態までの充電容量と、前記検出センサで検出した前記密閉型二次電池の変形量との関係を表す第1曲線、及び、その充放電容量と前記第1曲線の傾きとの関係を表す第2曲線を求め、前記第2曲線に極値として現れるステージ変化点間の充放電容量Qcを算出し、所定の基準状態におけるステージ変化点間の充放電容量Qsに対する充放電容量Qcの比Qc/Qsに基づいて、活物質の維持率を算出する制御装置と、を備えるものである。 Further, the sealed secondary battery deterioration diagnosis system according to the present invention includes a detection sensor for detecting deformation of the sealed secondary battery, a discharge capacity from a fully charged state or a charged capacity up to a fully charged state, A first curve representing the relationship between the deformation amount of the sealed secondary battery detected by the detection sensor and a second curve representing the relationship between the charge / discharge capacity and the slope of the first curve are obtained, and the second curve The charge / discharge capacity Qc between the stage change points appearing as extreme values in the curve is calculated, and based on the ratio Qc / Qs of the charge / discharge capacity Qc to the charge / discharge capacity Qs between the stage change points in a predetermined reference state, And a control device for calculating a maintenance rate.
 第2曲線に現れる極値は電極のステージ変化に起因し、活物質が失活している場合は、充放電に寄与する活物質量が減少しているために、ステージ変化点間の充放電容量Qcが小さくなる。このため、基準状態における充放電容量Qsと充放電容量Qcとの比Qc/Qsを指標にすることで、充放電に寄与する活物質がどの程度維持されているか、即ち活物質の維持率を算出できる。また、第2曲線の出処となる第1曲線は、満充電状態からの放電容量または満充電状態までの充電容量と二次電池の変形量との関係であり、電動車両のように充放電を頻繁に繰り返す環境下でも満充電状態になる機会は度々ある。よって、このシステムであれば、充放電を繰り返しながら使用する用途であっても、密閉型二次電池の劣化を簡便且つ高精度に診断できる。 The extreme value appearing in the second curve is due to the stage change of the electrode, and when the active material is deactivated, the amount of active material contributing to charge / discharge is reduced, so the charge / discharge between the stage change points The capacity Qc is reduced. Therefore, by using the ratio Qc / Qs between the charge / discharge capacity Qs and the charge / discharge capacity Qc in the reference state as an index, the extent to which the active material contributing to charge / discharge is maintained, that is, the maintenance ratio of the active material is determined. It can be calculated. The first curve, which is the origin of the second curve, is the relationship between the discharge capacity from the fully charged state or the charge capacity until the fully charged state and the deformation amount of the secondary battery. There are many occasions when the battery is fully charged even in a repetitive environment. Therefore, this system can easily and accurately diagnose the deterioration of the sealed secondary battery even in applications where charging and discharging are repeated.
 上記の劣化診断システムでは、前記制御装置は、前記充放電容量Qcが前記充放電容量Qsと同じ大きさになるように、前記維持率を用いて前記第2曲線を補正し、その補正後の第2曲線でのステージ変化点と、それに対応する所定の基準状態でのステージ変化点との充放電容量差に基づいて、副反応による容量バランスずれ量を算出することが好ましい。 In the above degradation diagnosis system, the control device corrects the second curve using the maintenance rate so that the charge / discharge capacity Qc is the same as the charge / discharge capacity Qs, and after the correction, It is preferable to calculate the capacity balance deviation amount due to the side reaction based on the charge / discharge capacity difference between the stage change point in the second curve and the corresponding stage change point in a predetermined reference state.
 このように第2曲線を補正することにより、維持率にて把握される活物質の失活が無いものと仮定した第2曲線が得られる。そして、補正後の第2曲線と基準状態との間に見られる上記の充放電容量差は、正負と負極との容量バランスにずれが生じている結果であり、そのずれは、正極での副反応量と負極での副反応量との相違により生じる。したがって、この充放電容量差に基づき、副反応による容量バランスずれ量を算出でき、密閉型二次電池の劣化をより高精度に診断できる。更に、この副反応による容量バランスずれ量は、活物質の維持率と併せて、密閉型二次電池の残容量の予測に役立てることができる。 By correcting the second curve in this way, a second curve is obtained assuming that there is no deactivation of the active material grasped by the maintenance rate. The charge / discharge capacity difference seen between the corrected second curve and the reference state is a result of a deviation in the capacity balance between positive and negative and the negative electrode. This is caused by the difference between the reaction amount and the side reaction amount at the negative electrode. Therefore, based on this charge / discharge capacity difference, the capacity balance deviation amount due to the side reaction can be calculated, and deterioration of the sealed secondary battery can be diagnosed with higher accuracy. Further, the amount of capacity balance deviation due to this side reaction can be used for predicting the remaining capacity of the sealed secondary battery together with the maintenance rate of the active material.
 上記の劣化診断システムは、前記第2曲線に現れるピークの幅に基づいて算出される充放電容量が、それに対応する所定の基準状態でのピークの幅に基づいて算出される充放電容量よりも大きい場合に、反応分布の拡大による劣化モードと判定するものでもよい。これにより、反応分布の拡大を容易に検出することができる。 In the above deterioration diagnosis system, the charge / discharge capacity calculated based on the peak width appearing in the second curve is more than the charge / discharge capacity calculated based on the corresponding peak width in a predetermined reference state. When it is large, it may be determined as a deterioration mode due to expansion of the reaction distribution. Thereby, expansion of the reaction distribution can be easily detected.
 反応分布の拡大による劣化モードと判定した場合に、前記第2曲線に現れるピークの立ち上がりの充電容量に充電開始時の残容量を加えた値の2倍を超えない範囲で定電流充電するものが好ましい。これにより、リチウム金属の析出を生じるなどの不都合を避けることができ、しかもそのために電池を完全放電状態にする必要がない。 When it is determined that the deterioration mode is due to the expansion of the reaction distribution, a battery that performs constant current charging within a range not exceeding twice the value obtained by adding the remaining capacity at the start of charging to the charging capacity at the rising edge of the peak appearing in the second curve. preferable. As a result, inconveniences such as precipitation of lithium metal can be avoided, and it is not necessary to completely discharge the battery.
 本発明に係る密閉型二次電池の劣化診断システムでは、前記検出センサが、前記密閉型二次電池に貼り付けられる高分子マトリックス層と、検出部とを備え、前記高分子マトリックス層が、その高分子マトリックス層の変形に応じて外場に変化を与えるフィラーを分散させて含有し、前記検出部が前記外場の変化を検出することが好ましい。これにより密閉型二次電池の変形を高感度に検出し、密閉型二次電池の劣化を精度良く診断することができる。 In the degradation diagnosis system for a sealed secondary battery according to the present invention, the detection sensor includes a polymer matrix layer attached to the sealed secondary battery, and a detection unit, and the polymer matrix layer includes It is preferable that a filler that changes the external field according to the deformation of the polymer matrix layer is dispersed and contained, and the detection unit detects the change of the external field. Thereby, deformation of the sealed secondary battery can be detected with high sensitivity, and deterioration of the sealed secondary battery can be diagnosed with high accuracy.
 上記においては、前記高分子マトリックス層が前記フィラーとしての磁性フィラーを含有し、前記検出部が前記外場としての磁場の変化を検出することが好ましい。これにより、高分子マトリックス層の変形に伴う磁場の変化を配線レスで検出することができる。また、感度領域が広いホール素子を検出部として利用できることから、より広範囲にわたって高感度な検出が可能となる。 In the above, it is preferable that the polymer matrix layer contains a magnetic filler as the filler, and the detection unit detects a change in the magnetic field as the external field. Thereby, the change of the magnetic field accompanying the deformation of the polymer matrix layer can be detected without wiring. In addition, since a Hall element having a wide sensitivity region can be used as the detection unit, highly sensitive detection can be performed over a wider range.
本発明に係る劣化診断方法を実行するためのシステムの一例を示すブロック図The block diagram which shows an example of the system for performing the deterioration diagnostic method which concerns on this invention 密閉型二次電池を模式的に示す(a)斜視図と(b)A-A断面図(A) perspective view and (b) AA cross-sectional view schematically showing a sealed secondary battery 密閉型二次電池を模式的に示す(a)斜視図と(b)B-B断面図(A) perspective view and (b) BB sectional view schematically showing a sealed secondary battery 満充電状態からの放電容量と検出した二次電池の変形量との関係を示すグラフGraph showing the relationship between the discharge capacity from the fully charged state and the amount of deformation of the detected secondary battery 満充電状態からの放電容量と第1曲線の傾きとの関係を示すグラフGraph showing the relationship between the discharge capacity from the fully charged state and the slope of the first curve 満充電状態からの放電容量と第1曲線の傾きとの関係を示すグラフGraph showing the relationship between the discharge capacity from the fully charged state and the slope of the first curve 満充電状態までの充電容量と第1曲線の傾きとの関係を表すグラフA graph showing the relationship between the charge capacity up to the fully charged state and the slope of the first curve 満充電状態までの充電容量と第1曲線の傾きとの関係を表すグラフA graph showing the relationship between the charge capacity up to the fully charged state and the slope of the first curve
 以下、本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described.
 図1は、電気自動車やハイブリッド車といった電動車両に搭載されるシステムを示している。このシステムは、複数の密閉型二次電池2により構成された組電池を筐体内に収容してなる電池モジュール1を備える。本実施形態では、4つの二次電池2が2並列2直列に接続されているが、電池の数や接続形態はこれに限定されない。図1では電池モジュール1を1つだけ示しているが、実際には複数の電池モジュール1を含んだ電池パックとして装備される。電池パックでは、複数の電池モジュール1が直列に接続され、それらがコントローラなどの諸般の機器と一緒に筐体内に収容される。電池パックの筐体は、車載に適した形状に、例えば車両の床下形状に合わせた形状に形成される。 FIG. 1 shows a system mounted on an electric vehicle such as an electric vehicle or a hybrid vehicle. This system includes a battery module 1 in which an assembled battery composed of a plurality of sealed secondary batteries 2 is housed in a casing. In the present embodiment, four secondary batteries 2 are connected in two parallel two series, but the number of batteries and the connection form are not limited to this. Although only one battery module 1 is shown in FIG. 1, the battery pack 1 actually includes a plurality of battery modules 1. In the battery pack, a plurality of battery modules 1 are connected in series, and they are housed in a casing together with various devices such as a controller. The casing of the battery pack is formed in a shape suitable for in-vehicle use, for example, a shape that matches the underfloor shape of the vehicle.
 図2に示した二次電池2は、密閉された外装体21の内部に電極群22が収容されたセル(単電池)として構成されている。電極群22は、正極23と負極24がそれらの間にセパレータ25を介して積層または捲回された構造を有し、セパレータ25には電解液が保持されている。本実施形態の二次電池2は、外装体21としてアルミラミネート箔などのラミネートフィルムを用いたラミネート電池であり、具体的には容量1.44Ahのラミネート型リチウムイオン二次電池である。二次電池2は全体として薄型の直方体形状に形成され、X,Y及びZ方向は、それぞれ二次電池2の長さ方向,幅方向及び厚み方向に相当する。また、Z方向は、正極23と負極24の厚み方向でもある。 The secondary battery 2 shown in FIG. 2 is configured as a cell (single cell) in which an electrode group 22 is accommodated in a sealed outer casing 21. The electrode group 22 has a structure in which a positive electrode 23 and a negative electrode 24 are laminated or wound through a separator 25 therebetween, and the separator 25 holds an electrolytic solution. The secondary battery 2 of the present embodiment is a laminated battery using a laminated film such as an aluminum laminated foil as the outer package 21, and is specifically a laminated lithium ion secondary battery having a capacity of 1.44 Ah. The secondary battery 2 is formed in a thin rectangular parallelepiped shape as a whole, and the X, Y, and Z directions correspond to the length direction, the width direction, and the thickness direction of the secondary battery 2, respectively. The Z direction is also the thickness direction of the positive electrode 23 and the negative electrode 24.
 二次電池2には、その二次電池2の変形を検出する検出センサ5が取り付けられている。検出センサ5は、二次電池2に貼り付けられる高分子マトリックス層3と、検出部4とを備える。高分子マトリックス層3は、その高分子マトリックス層3の変形に応じて外場に変化を与えるフィラーを分散させて含有している。本実施形態の高分子マトリックス層3は、柔軟な変形が可能なエラストマー素材によりシート状に形成されている。検出部4は、外場の変化を検出する。二次電池2が膨れて変形すると、それに応じて高分子マトリックス層3が変形し、その高分子マトリックス層3の変形に伴う外場の変化が検出部4により検出される。このようにして、二次電池1の変形を高感度に検出できる。 The secondary battery 2 is provided with a detection sensor 5 that detects deformation of the secondary battery 2. The detection sensor 5 includes a polymer matrix layer 3 attached to the secondary battery 2 and a detection unit 4. The polymer matrix layer 3 contains a filler that disperses the external field according to deformation of the polymer matrix layer 3 in a dispersed manner. The polymer matrix layer 3 of the present embodiment is formed in a sheet shape from an elastomer material that can be flexibly deformed. The detector 4 detects a change in the external field. When the secondary battery 2 swells and deforms, the polymer matrix layer 3 is deformed accordingly, and a change in the external field accompanying the deformation of the polymer matrix layer 3 is detected by the detection unit 4. In this way, deformation of the secondary battery 1 can be detected with high sensitivity.
 図2の例では、二次電池2の外装体21に高分子マトリックス層3を貼り付けているため、外装体21の変形(主に膨れ)に応じて高分子マトリックス層3を変形させることができる。一方、図3のように、二次電池2の電極群22に高分子マトリックス層3を貼り付けてもよく、かかる構成によれば、電極群22の変形(主に膨れ)に応じて高分子マトリックス層3を変形させることができる。検出する二次電池1の変形は、外装体21及び電極群22の何れの変形であっても構わない。 In the example of FIG. 2, since the polymer matrix layer 3 is attached to the outer package 21 of the secondary battery 2, the polymer matrix layer 3 can be deformed according to deformation (mainly swelling) of the outer package 21. it can. On the other hand, as shown in FIG. 3, the polymer matrix layer 3 may be attached to the electrode group 22 of the secondary battery 2, and according to such a configuration, the polymer is changed according to deformation (mainly swelling) of the electrode group 22. The matrix layer 3 can be deformed. The deformation of the secondary battery 1 to be detected may be any deformation of the outer package 21 and the electrode group 22.
 検出センサ5によって検出した信号は制御装置6に伝達され、これにより二次電池2の変形に関する情報が制御装置6に供給される。制御装置6は、その情報を用いて、具体的には以下のステップ1~4を含む処理に基づき、より好ましくはステップ5,6をも含めて、二次電池2の劣化診断を行う。尚、下記の例では、満充電状態から任意の放電状態まで放電したときの挙動について説明するが、これに限定されるものではない。 The signal detected by the detection sensor 5 is transmitted to the control device 6, whereby information relating to the deformation of the secondary battery 2 is supplied to the control device 6. The control device 6 performs deterioration diagnosis of the secondary battery 2 using the information, specifically based on processing including the following steps 1 to 4 and more preferably including steps 5 and 6. In addition, although the following example demonstrates the behavior when it discharges from a full charge state to arbitrary discharge states, it is not limited to this.
 まず、二次電池2の変形を検出し、満充電状態からの放電容量と検出した二次電池2の変形量との関係を表す第1曲線を求める(ステップ1)。図4のグラフには、充放電の工程を500サイクル繰り返した後の二次電池2において求めた第1曲線L1を示している。充放電の工程では、二次電池2を25℃の恒温槽に入れ、120分静置後、1.44Aの充電電流で4.3Vまで定電流充電し、4.3Vに到達後、0.07Aに電流値が減衰するまで定電圧充電を行い、その後10分間の開回路状態を保持し、1.44Aの電流で3.0Vまで定電流放電を行った。尚、未使用の劣化していない二次電池2において、その満充電状態から完全放電状態までの放電容量は1440mAhであった。 First, the deformation of the secondary battery 2 is detected, and a first curve representing the relationship between the discharge capacity from the fully charged state and the detected deformation amount of the secondary battery 2 is obtained (step 1). The graph of FIG. 4 shows the first curve L1 obtained in the secondary battery 2 after 500 cycles of the charge / discharge process. In the charging / discharging process, the secondary battery 2 is placed in a constant temperature bath at 25 ° C., left still for 120 minutes, charged at a constant current of 4.3 V with a charging current of 1.44 A, reaches 4.3 V, and then reaches 0.00 V. A constant voltage charge was performed until the current value decreased to 07 A, and then an open circuit state was maintained for 10 minutes, and a constant current discharge was performed to 3.0 V with a current of 1.44 A. In addition, in the unused secondary battery 2 which did not deteriorate, the discharge capacity from the fully charged state to the fully discharged state was 1440 mAh.
 図4のグラフにおいて、横軸は、原点を満充電状態とする放電容量Qであり、縦軸は、検出した二次電池2の変形量Tである。満充電状態からの放電容量Qが増加するにつれて、二次電池2の変形量Tは小さくなる。これは、充電された二次電池2では、活物質の体積変化による電極群22の膨れ(以下、「電極膨れ」と呼ぶことがある)が生じており、放電に伴って電極群22の膨れが小さくなるためである。曲線Ls1は、基準状態の二次電池2における、満充電状態からの放電容量と二次電池2の変形量との関係を表している。この曲線Ls1は、劣化していない初期段階の二次電池2を基準状態として、例えば製造時または出荷前の二次電池2を対象に、第1曲線L1と同様にして求められる。 4, the horizontal axis is the discharge capacity Q with the origin at the fully charged state, and the vertical axis is the detected deformation amount T of the secondary battery 2. As the discharge capacity Q from the fully charged state increases, the deformation amount T of the secondary battery 2 decreases. This is because, in the charged secondary battery 2, the electrode group 22 swells (hereinafter sometimes referred to as “electrode swell”) due to the volume change of the active material, and the electrode group 22 swells along with the discharge. This is because becomes smaller. A curve Ls1 represents the relationship between the discharge capacity from the fully charged state and the deformation amount of the secondary battery 2 in the secondary battery 2 in the reference state. The curve Ls1 is obtained in the same manner as the first curve L1, for example, for the secondary battery 2 at the time of manufacture or before shipment, with the secondary battery 2 in an initial stage that has not deteriorated as a reference state.
 二次電池2では、過充電などに起因して電解液が分解されると、その分解ガスによる内圧の上昇に伴って膨れ(以下、「ガス膨れ」と呼ぶことがある)を生じることがある。検出センサ5は、このガス膨れによる二次電池2の変形も検出するが、それは変形量Tの全体的な大きさとして反映されるに過ぎず、放電容量Qの増加に伴う変化としては現れない。したがって、図4において、放電容量Qの増加に伴って変形量Tが減少しているのは電極膨れの影響であり、同じ放電容量Qでも第1曲線L1の方が曲線Ls1よりも大きい変形量Tを示すのはガス膨れの影響である。 In the secondary battery 2, when the electrolytic solution is decomposed due to overcharge or the like, the electrolyte may swell as the internal pressure increases due to the decomposed gas (hereinafter sometimes referred to as “gas swell”). . The detection sensor 5 also detects the deformation of the secondary battery 2 due to this gas expansion, but this is only reflected as the overall size of the deformation amount T and does not appear as a change accompanying an increase in the discharge capacity Q. . Therefore, in FIG. 4, the deformation amount T decreases as the discharge capacity Q increases due to the effect of electrode swelling, and even with the same discharge capacity Q, the first curve L1 has a larger deformation amount than the curve Ls1. T is the effect of gas swell.
 第1曲線L1は、電極のステージ変化に起因して、図4のように幾分かの凹凸を含んだ形状となる。例えば負極にグラファイト(黒鉛)を用いたリチウムイオン二次電池の場合、そのグラファイトの結晶状態は、満充電状態から放電するに伴って順次にステージ変化することが知られている。これは、リチウムイオンの挿入量に伴ってグラファイトの結晶状態が段階的に変化し、グラフェン層間の平均距離が段階的に拡大することで負極の活物質が膨張するためである。要するに、ステージ変化によって活物質の体積は段階的に変化し、それが第1曲線L1や曲線Ls1には反映されている。このような第1曲線L1を求めるうえで、二次電池2の変形を高感度に検出する検出センサ5が好適である。 The first curve L1 has a shape including some irregularities as shown in FIG. 4 due to the stage change of the electrode. For example, in the case of a lithium ion secondary battery using graphite (graphite) for the negative electrode, it is known that the crystalline state of the graphite sequentially changes in stages as it is discharged from the fully charged state. This is because the crystalline state of graphite changes stepwise with the amount of lithium ions inserted, and the average distance between graphene layers expands stepwise to expand the active material of the negative electrode. In short, the volume of the active material changes stepwise due to the stage change, which is reflected in the first curve L1 and the curve Ls1. In obtaining such a first curve L1, the detection sensor 5 that detects the deformation of the secondary battery 2 with high sensitivity is suitable.
 次に、その充放電容量(放電容量と充電容量との総称であり、本実施形態では満充電状態からの放電容量である)と第1曲線の傾きとの関係を表す第2曲線を求める(ステップ2)。図5のグラフには、第1曲線L1から求めた第2曲線L2を示している。この第1曲線L1の傾きdT/dQは、変形量Tを放電容量Qで微分したときの微分値として得られる。第2曲線L2は、極値として現れる2つのステージ変化点P1,P2を有し、これらは上述したステージ変化に起因するものである。曲線Ls2は、基準状態の二次電池2における、充放電容量(本実施形態では放電容量)と第1曲線の傾きとの関係を表す。この曲線Ls2は、第1曲線L1から第2曲線L2を求めるのと同じ要領により、曲線Ls1から求められる。曲線Ls2も、2つのステージ変化点Ps1,Ps2を有する。 Next, a second curve representing the relationship between the charge / discharge capacity (a general term for discharge capacity and charge capacity, which is the discharge capacity from the fully charged state in this embodiment) and the slope of the first curve is obtained ( Step 2). The graph of FIG. 5 shows the second curve L2 obtained from the first curve L1. The slope dT / dQ of the first curve L1 is obtained as a differential value when the deformation amount T is differentiated by the discharge capacity Q. The second curve L2 has two stage change points P1 and P2 that appear as extreme values, which are caused by the stage change described above. A curve Ls2 represents the relationship between the charge / discharge capacity (discharge capacity in the present embodiment) and the slope of the first curve in the secondary battery 2 in the reference state. The curve Ls2 is obtained from the curve Ls1 in the same manner as obtaining the second curve L2 from the first curve L1. The curve Ls2 also has two stage change points Ps1 and Ps2.
 リチウムイオン二次電池の負極に用いられる活物質には、リチウムイオンを電気化学的に挿入及び脱離することが可能なものが用いられるが、上記のような複数のステージ変化点を有する第2曲線を得るうえでは、グラファイトを含む負極が好ましく用いられる。また、正極に用いられる活物質としては、LiCoO、LiMn、LiNiO、Li(MnAl)、Li(NiCoAl)O、LiFePO、Li(NiMnCo)Oなどを例示することができる。 As the active material used for the negative electrode of the lithium ion secondary battery, a material capable of electrochemically inserting and extracting lithium ions is used, and the second material having a plurality of stage change points as described above. In obtaining the curve, a negative electrode containing graphite is preferably used. Examples of the active material used for the positive electrode include LiCoO 2 , LiMn 2 O 4 , LiNiO 2 , Li (MnAl) 2 O 4 , Li (NiCoAl) O 2 , LiFePO 4 , and Li (NiMnCo) O 2. be able to.
 続いて、第2曲線に極値として現れるステージ変化点間の充放電容量Qcを算出する(ステップ3)。極値は極小値と極大値の総称であり、ステージ変化点は、放電時には極小値として現れ、充電時には極大値として現れる。本実施形態では、満充電状態からの放電容量を見ているので、ステージ変化点P1,P2が極小値として現れる。図5では、ステージ変化点P1,P2間の充放電容量Qc、及び、ステージ変化点Ps1,Ps2間の充放電容量Qsを示している。例えば負極にグラファイトを用いたリチウムイオン二次電池の場合、そのステージ変化は、カーボン24個に対してリチウムイオン1個以上が挿入されたときと、カーボン12個に対してリチウムイオン1個以上が挿入されたときに生じる。したがって、充放電容量Qcの減少は、このようなリチウムイオンの挿入や脱離が可能なカーボン量の減少を示唆するものであり、これによって活物質の失活を推察できる。 Subsequently, the charge / discharge capacity Qc between the stage change points appearing as extreme values on the second curve is calculated (step 3). The extreme value is a collective term of the local minimum value and the local maximum value, and the stage change point appears as a local minimum value during discharging and as a local maximum value during charging. In this embodiment, since the discharge capacity from the fully charged state is viewed, the stage change points P1 and P2 appear as minimum values. FIG. 5 shows the charge / discharge capacity Qc between the stage change points P1, P2 and the charge / discharge capacity Qs between the stage change points Ps1, Ps2. For example, in the case of a lithium ion secondary battery using graphite as a negative electrode, the stage changes when one or more lithium ions are inserted for 24 carbons and when one or more lithium ions are inserted for 12 carbons. Occurs when inserted. Therefore, the decrease in the charge / discharge capacity Qc suggests a decrease in the amount of carbon capable of inserting and desorbing lithium ions, and thus the deactivation of the active material can be inferred.
 そして、所定の基準状態におけるステージ変化点間の充放電容量Qsに対する充放電容量Qcの比Qc/Qsに基づいて、活物質の維持率を算出する(ステップ4)。例えば、充放電容量Qcが411mAhであり、充放電容量Qsが514mAhである場合には、それらの比Qc/Qsに基づいて、活物質の維持率Rを0.8(≒411/514)と算出できる。これは、充放電の工程を500サイクル繰り返した後の二次電池2では、充放電に寄与する活物質が8割ほど維持され、換言すれば充放電に寄与する活物質が8割まで減少していることを意味し、このようにして二次電池2の劣化を診断できる。 Then, based on the ratio Qc / Qs of the charge / discharge capacity Qc to the charge / discharge capacity Qs between the stage change points in a predetermined reference state, the active material maintenance ratio is calculated (step 4). For example, when the charge / discharge capacity Qc is 411 mAh and the charge / discharge capacity Qs is 514 mAh, the active material maintenance ratio R is 0.8 (≈411 / 514) based on the ratio Qc / Qs. It can be calculated. This is because in the secondary battery 2 after 500 cycles of the charge / discharge process, about 80% of the active material contributing to charge / discharge is maintained, in other words, the active material contributing to charge / discharge is reduced to 80%. In this way, the deterioration of the secondary battery 2 can be diagnosed.
 上述のように、充放電容量Qcは第2曲線L2から求められ、その第2曲線L2の出処となる第1曲線L1は、満充電状態からの放電容量Qと二次電池2の変形量Tとの関係として求められる。そして、電動車両のように充放電を頻繁に繰り返す環境下であっても、満充電状態になる機会は度々あることから、本実施形態の方法によれば、そのような充放電を繰り返しながら使用する用途であっても、二次電池2の劣化を簡便且つ高精度に診断することができる。 As described above, the charge / discharge capacity Qc is obtained from the second curve L2, and the first curve L1 serving as the source of the second curve L2 is the discharge capacity Q from the fully charged state and the deformation amount T of the secondary battery 2. As a relationship. And even in an environment where charging and discharging are frequently repeated as in an electric vehicle, there are many opportunities to become fully charged, so according to the method of this embodiment, it is used while repeating such charging and discharging. Even if it is a use to do, the deterioration of the secondary battery 2 can be diagnosed simply and with high accuracy.
 曲線Ls1は、劣化していない初期段階の二次電池2を基準状態として、例えば製造時または出荷前の二次電池2を対象にして予め取得される。したがって、曲線Ls2、ステージ変化点Ps1,Ps2及び充放電容量Qsも事前に求めておくことができる。これらのデータは、制御装置6が備える不図示の記憶部に記憶しておくことができるが、上記の劣化診断には、このうち少なくとも充放電容量Qsがあれば足りる。 The curve Ls1 is acquired in advance for the secondary battery 2 at the time of manufacture or before shipment, for example, with the secondary battery 2 in the initial stage that has not deteriorated as a reference state. Therefore, the curve Ls2, the stage change points Ps1 and Ps2, and the charge / discharge capacity Qs can also be obtained in advance. These data can be stored in a storage unit (not shown) included in the control device 6, but at least the charge / discharge capacity Qs is sufficient for the above-described deterioration diagnosis.
 本実施形態では、更に以下のステップ5,6を実行することにより、副反応による容量バランスずれ量を算出して、二次電池2の劣化をより精度良く診断できる。そのうえ、副反応による容量バランスずれ量を活物質の維持率と併せて勘案することにより、二次電池2の残容量の予測に役立てることができる。 In this embodiment, by further executing the following steps 5 and 6, the amount of capacity balance shift due to the side reaction can be calculated, and the deterioration of the secondary battery 2 can be diagnosed more accurately. In addition, by taking into account the amount of capacity balance deviation due to the side reaction together with the maintenance rate of the active material, it can be used to predict the remaining capacity of the secondary battery 2.
 充放電容量Qcを算出した後、充放電容量Qcが充放電容量Qsと同じ大きさになるように、活物質の維持率を用いて第2曲線を補正する(ステップ5)。具体的には、第2曲線の放電容量の値を活物質の維持率で除算する。このステップは、充放電容量Qcの算出後であればよく、維持率の算出前でも構わない。図6のグラフには、第2曲線L2を補正して得られた第2曲線L2’を示している。充放電容量Qcが411mAhであり、充放電容量Qsが514mAhである場合、第2曲線L2の放電容量Qの値を、維持率Rとしての0.8で除算すればよい。これにより、補正後の第2曲線L2’の充放電容量Qc’は、充放電容量Qsと同じ514mAhとなる。 After calculating the charge / discharge capacity Qc, the second curve is corrected using the retention rate of the active material so that the charge / discharge capacity Qc is the same as the charge / discharge capacity Qs (step 5). Specifically, the discharge capacity value of the second curve is divided by the retention rate of the active material. This step may be after the calculation of the charge / discharge capacity Qc, and may be before the maintenance rate is calculated. The graph of FIG. 6 shows a second curve L2 'obtained by correcting the second curve L2. When the charge / discharge capacity Qc is 411 mAh and the charge / discharge capacity Qs is 514 mAh, the value of the discharge capacity Q of the second curve L2 may be divided by 0.8 as the maintenance ratio R. As a result, the corrected charge / discharge capacity Qc ′ of the second curve L2 ′ is 514 mAh, which is the same as the charge / discharge capacity Qs.
 補正後の第2曲線L2’は、維持率Rにて把握された活物質の失活が無いものと仮定したときの、満充電状態からの放電容量Qと第1曲線L1の傾きdT/dQとの関係を表す曲線として求められる。しかしながら、図6のように第2曲線L2’は曲線Ls2に一致せず、そのステージ変化点P1’(またはP2’)と、それに対応するステージ変化点Ps1(またはPs2)との間には充放電容量差Qdが見られる。この充放電容量差Qdは、正極23と負極24との容量バランスにずれが生じている結果であり、そのずれは、正極23での副反応量と負極24での副反応量との相違により生じる。 The corrected second curve L2 ′ indicates the discharge capacity Q from the fully charged state and the slope dT / dQ of the first curve L1 when it is assumed that there is no deactivation of the active material ascertained by the maintenance ratio R. It is calculated | required as a curve showing the relationship. However, as shown in FIG. 6, the second curve L2 ′ does not coincide with the curve Ls2, and there is a space between the stage change point P1 ′ (or P2 ′) and the corresponding stage change point Ps1 (or Ps2). A discharge capacity difference Qd is observed. This charge / discharge capacity difference Qd is a result of a shift in the capacity balance between the positive electrode 23 and the negative electrode 24, and this shift is due to the difference between the side reaction amount at the positive electrode 23 and the side reaction amount at the negative electrode 24. Arise.
 上記のように第2曲線を補正した後、その補正後の第2曲線でのステージ変化点と、それに対応する所定の基準状態でのステージ変化点との充放電容量差に基づいて、副反応による容量バランスずれ量を算出する(ステップ6)。例えば充放電容量差Qdが116mAhである場合には、その分の副反応が負極24で余計に生じたと判定でき、副反応による容量バランスずれ量が116mAh分であると算出される。これは、活物質の失活量を補正する(即ち、第2曲線L2’を曲線Ls2に一致させる)には、第2曲線L2’を放電容量Qの正の方向(グラフの右方向)へ116mAh分シフトさせる必要があることから、そのように考えられる。 After correcting the second curve as described above, the side reaction is determined based on the charge / discharge capacity difference between the stage change point in the corrected second curve and the corresponding stage change point in a predetermined reference state. The amount of capacity balance deviation due to is calculated (step 6). For example, when the charge / discharge capacity difference Qd is 116 mAh, it can be determined that an excessive side reaction has occurred in the negative electrode 24, and the capacity balance deviation due to the side reaction is calculated to be 116 mAh. In order to correct the deactivation amount of the active material (that is, to make the second curve L2 ′ coincide with the curve Ls2), the second curve L2 ′ is directed in the positive direction of the discharge capacity Q (right direction of the graph). This is considered because it is necessary to shift by 116 mAh.
 このように、活物質の維持率を算出するだけでなく、副反応による容量バランスずれ量を算出することにより、二次電池2の劣化をより高精度に診断できる。更に、この副反応による容量バランスずれ量を活物質の維持率と併せて勘案することで、第1曲線L1の終点を推測でき、それによって二次電池2の残容量を予測できる。例えば、劣化前の容量が1440mAhであった二次電池に対して充放電を500サイクル繰り返した後、活物質の維持率Rが0.8であり、副反応による容量バランスずれ量が116mAh分であると診断された場合、その第1曲線L1の終点での放電容量Qの値(mAh)は、1440×0.8+116から推測され、そこから診断時点での放電容量を差し引くことで残容量を予測できる。 Thus, not only calculating the maintenance rate of the active material, but also calculating the amount of capacity balance deviation due to side reactions, the deterioration of the secondary battery 2 can be diagnosed with higher accuracy. Furthermore, the end point of the first curve L1 can be estimated by considering the capacity balance deviation amount due to this side reaction together with the maintenance ratio of the active material, and thereby the remaining capacity of the secondary battery 2 can be predicted. For example, after charging and discharging a secondary battery having a capacity of 1440 mAh before deterioration for 500 cycles, the active material retention rate R is 0.8, and the capacity balance deviation due to side reaction is 116 mAh min. When it is diagnosed, the value (mAh) of the discharge capacity Q at the end point of the first curve L1 is estimated from 1440 × 0.8 + 116, and the remaining capacity is calculated by subtracting the discharge capacity at the time of diagnosis from there. Predictable.
 以上のように、本実施形態の劣化診断方法及び劣化診断システムは、単に二次電池の容量減少を検知するのではなく、どのような容量劣化が二次電池に生じているのかを把握でき、具体的には、どれほどの割合で活物質が維持されているか(裏を返せば、どれほどの割合で活物質が失活しているか)、及び、どれほどの副反応(充放電に寄与しない電気化学反応)が起きたのか、という劣化情報を詳細に得ることができる。更には、その劣化した二次電池に対する放電容量の終点を推測して、残容量を予測することができる。このような劣化診断は、残容量の予測も含めて、制御装置6により実行される。 As described above, the deterioration diagnosis method and the deterioration diagnosis system of the present embodiment can grasp what capacity deterioration is occurring in the secondary battery, not simply detecting the capacity decrease of the secondary battery, Specifically, how much active material is maintained (in other words, how much active material is deactivated), and how much side reaction (electrochemistry that does not contribute to charge / discharge) It is possible to obtain detailed degradation information indicating whether or not (reaction) has occurred. Furthermore, the remaining capacity can be predicted by estimating the end point of the discharge capacity for the deteriorated secondary battery. Such deterioration diagnosis is executed by the control device 6 including prediction of the remaining capacity.
 前述の実施形態では、満充電状態から任意の放電状態まで放電したときの挙動について説明したが、これとは逆に、任意の放電状態から満充電状態まで充電したときの挙動についても、上記と同様の手順により劣化診断を行うことができる。その場合、ステップ1では、満充電状態までの充電容量と検出した二次電池の変形量との関係を表す第1曲線が求められる。図4のグラフの横軸は逆になり、満充電状態までの充電容量が増加するにつれて(即ち、満充電状態に近付くにつれて)、二次電池の変形量は大きくなる。また、ステップ2では、その充放電容量(満充電状態までの充電容量)と第1曲線の傾きとの関係を表す第2曲線が求められる。図5,6のグラフでは、横軸だけでなく縦軸も逆になり、上向きのピークを有する第2曲線が得られるとともに、その第2曲線に極大値としてステージ変化点が現れる(例えば、図7参照)。 In the above-described embodiment, the behavior when discharging from a fully charged state to an arbitrary discharging state has been described. Conversely, the behavior when charging from an arbitrary discharging state to a fully charged state is also described above. The deterioration diagnosis can be performed by the same procedure. In this case, in step 1, a first curve representing the relationship between the charged capacity up to the fully charged state and the detected deformation amount of the secondary battery is obtained. The horizontal axis of the graph of FIG. 4 is reversed, and the amount of deformation of the secondary battery increases as the charging capacity up to the fully charged state increases (that is, as it approaches the fully charged state). In Step 2, a second curve representing the relationship between the charge / discharge capacity (charge capacity up to the fully charged state) and the slope of the first curve is obtained. In the graphs of FIGS. 5 and 6, not only the horizontal axis but also the vertical axis is reversed, a second curve having an upward peak is obtained, and a stage change point appears as a maximum value in the second curve (for example, FIG. 7).
 次に、反応分布の拡大による劣化モードを判定する実施形態について、図7,8を参照して説明する。この劣化モードの判定は、上述した活物質の維持率の算出と併用することができる。この場合、活物質の維持率の算出と劣化モードの判定のどちらを先に行ってもよいし、これらを同時に行っても構わない。 Next, an embodiment for determining the deterioration mode by expansion of the reaction distribution will be described with reference to FIGS. This determination of the deterioration mode can be used in combination with the above-described calculation of the active material maintenance rate. In this case, either the calculation of the maintenance ratio of the active material or the determination of the deterioration mode may be performed first, or these may be performed simultaneously.
 図7は、充放電容量(満充電状態までの充電容量)と第1曲線の傾きとの関係を表すグラフである。第2曲線L3は、上記の如きステップ1,2により求められる。第2曲線L3の出処となる第1曲線については、図示を省略する。第2曲線L3は、極値として(充電時なので極大値として)現れる2つのステージ変化点P3,P4を有する。また、第2曲線L3には、そのステージ変化点P3,P4を持つ2つの上向きのピークが現れており、これらは上述したステージ変化に起因するものである。 FIG. 7 is a graph showing the relationship between the charge / discharge capacity (charge capacity until fully charged) and the slope of the first curve. The second curve L3 is obtained by steps 1 and 2 as described above. The illustration of the first curve serving as the source of the second curve L3 is omitted. The second curve L3 has two stage change points P3 and P4 that appear as extreme values (as maximum values during charging). In addition, two upward peaks having the stage change points P3 and P4 appear in the second curve L3, which are caused by the stage change described above.
 第2曲線L3に現れる2つのピークは、それぞれ、その容量(図7では充電容量)でのステージ変化が完了する個々の活物質量を示す。ピークの始点(ベースラインBLから離れ始める点)の容量Qp31,Qp41は、それぞれ電極内の多数の活物質の中で最も反応が早く進む容量、即ち最も早くステージ変化を始める容量である。ピークの終点(ベースラインBLに接し始める点)の容量Qp32,Qp42は、それぞれ電極内の全ての活物質のステージ変化が完了する容量である。ベースラインBLは、各ピーク前後の変曲点を結ぶ直線により定められる。充放電容量Qw3は、ピークの始点から終点に至るベース幅に基づいて算出され、具体的には容量Qp32から容量Qp31を差し引くことにより求められる。充放電容量Qw4も、これと同様である。充放電容量Qw3,Qw4は、それぞれ電極内の個々の活物質の反応速度の分布を示す。したがって、二次電池2の劣化の前後においてベース幅などのピークの幅を比較することにより、電極内の活物質の反応分布を把握できる。 The two peaks appearing in the second curve L3 indicate the amount of each active material that completes the stage change in its capacity (charge capacity in FIG. 7). Capacitances Qp31 and Qp41 at the peak start point (points starting from the base line BL) are the capacity at which the reaction proceeds most quickly among the large number of active materials in the electrode, that is, the capacity at which the stage change starts at the earliest. Capacitances Qp32 and Qp42 at the end points of the peaks (points starting to contact the base line BL) are capacitances at which the stage change of all the active materials in the electrodes is completed. The base line BL is defined by a straight line connecting inflection points before and after each peak. The charge / discharge capacity Qw3 is calculated based on the base width from the start point to the end point of the peak, and is specifically obtained by subtracting the capacity Qp31 from the capacity Qp32. The charge / discharge capacity Qw4 is the same as this. The charge / discharge capacities Qw3 and Qw4 indicate the reaction rate distributions of the individual active materials in the electrodes. Therefore, the reaction distribution of the active material in the electrode can be grasped by comparing the peak width such as the base width before and after the deterioration of the secondary battery 2.
 一般的に、反応分布の拡大は、電極内のイオン抵抗または電気抵抗の増加に起因する。反応分布が拡大することにより、充電時にはリチウム金属の析出に至るまでの充電容量が減少し、リチウム金属が析出しやすくなる。析出したリチウム金属はデンドライト状に成長し、正極と負極とのショートを引き起こすなどの不都合を生じうる。また、放電時においては、反応分布が拡大することにより、最も反応が進みやすい活物質で過放電を生じ、電池の劣化を促進するという不都合がある。 Generally, the expansion of the reaction distribution is caused by an increase in ionic resistance or electrical resistance in the electrode. By expanding the reaction distribution, the charge capacity until the lithium metal is deposited during charging is reduced, and the lithium metal is easily deposited. The deposited lithium metal grows in a dendrite shape, which may cause inconveniences such as causing a short circuit between the positive electrode and the negative electrode. Further, at the time of discharging, there is an inconvenience that the reaction distribution is expanded, so that overdischarge occurs in the active material in which the reaction is most likely to proceed, and the deterioration of the battery is promoted.
 図8のグラフには、基準状態の二次電池2における、充放電容量(本実施形態では充電容量)と第1曲線の傾きとの関係を表す曲線Ls3を示している。曲線Ls3の出処となる第1曲線は、図4の曲線Ls1と同様に、劣化していない初期段階の二次電池2を基準状態として、例えば製造時または出荷前の二次電池2を対象として、予め取得することができる。したがって、曲線Ls3だけでなく、ステージ変化点Ps3,Ps4、ベースラインBLs、容量Qps31,Qps32,Qps41,Qps42、及び、充放電容量Qws3,Qws4も事前に求めておくことができる。充放電容量Qws3は、ピークのベース幅に基づいて算出され、具体的には容量Qps32から容量Qps31を差し引くことにより求められる。充放電容量Qws4も、これと同様である。 The graph of FIG. 8 shows a curve Ls3 representing the relationship between the charge / discharge capacity (charge capacity in the present embodiment) and the slope of the first curve in the secondary battery 2 in the reference state. The first curve that is the origin of the curve Ls3 is the same as the curve Ls1 in FIG. 4, with the secondary battery 2 in the initial stage that is not deteriorated as a reference state, for example, the secondary battery 2 before manufacture or before shipment. , Can be acquired in advance. Accordingly, not only the curve Ls3 but also the stage change points Ps3 and Ps4, the baseline BLs, the capacities Qps31, Qps32, Qps41, and Qps42, and the charge / discharge capacities Qws3 and Qws4 can be obtained in advance. The charge / discharge capacity Qws3 is calculated on the basis of the peak base width, and is specifically obtained by subtracting the capacity Qps31 from the capacity Qps32. The charge / discharge capacity Qws4 is the same as this.
 上記のように、各ピークの幅は、電極内の活物質の反応速度の分布を反映するものであるから、第2曲線L3に現れるピークの幅が、それに対応する所定の基準状態でのピークの幅よりも大きい場合には、反応分布の拡大による劣化モードと判定できる。本実施形態では、図7,8のように、第2曲線L3の充放電容量Qw3が、それに対応する基準状態での充放電容量Qws3よりも大きいため、劣化前と比較して反応分布が拡大している、即ち反応分布の拡大による劣化モードと判定される。充放電容量Qw4と充放電容量Qws4との比較においても、これと同様である。劣化モードを判定する際には、どちらのピークで比較しても構わない。 As described above, since the width of each peak reflects the reaction rate distribution of the active material in the electrode, the width of the peak appearing in the second curve L3 corresponds to the peak in a predetermined reference state corresponding thereto. If it is larger than the width of, it can be determined that the degradation mode is due to expansion of the reaction distribution. In this embodiment, as shown in FIGS. 7 and 8, since the charge / discharge capacity Qw3 of the second curve L3 is larger than the charge / discharge capacity Qws3 in the corresponding reference state, the reaction distribution is expanded compared to before deterioration. That is, it is determined that the deterioration mode is caused by expansion of the reaction distribution. The same applies to the comparison between the charge / discharge capacity Qw4 and the charge / discharge capacity Qws4. When determining the deterioration mode, either peak may be compared.
 このように、充放電容量Qw3と充放電容量Qws3との比較によって、または充放電容量Qw4と充放電容量Qws4との比較によって、反応分布の拡大を容易に検出できる。本実施形態において、判定のために比較される充放電容量は、ピークのベース幅に基づいて算出されるが、これに限られず、ピークの他の幅に基づいて算出しても構わない。例えば、ピークの半値幅(ピークの高さの半分の位置における幅)に基づいて充放電容量を算出し、その比較によって劣化モードの判定を行ってもよい。かかる方法であっても、劣化前後の反応分布の拡大を判断することができる。 Thus, the expansion of the reaction distribution can be easily detected by comparing the charge / discharge capacity Qw3 and the charge / discharge capacity Qws3 or by comparing the charge / discharge capacity Qw4 and the charge / discharge capacity Qws4. In the present embodiment, the charge / discharge capacities to be compared for determination are calculated based on the base width of the peak, but are not limited to this, and may be calculated based on another width of the peak. For example, the charge / discharge capacity may be calculated based on the half width of the peak (the width at the half position of the peak height), and the deterioration mode may be determined by comparison. Even with this method, it is possible to determine the expansion of the reaction distribution before and after deterioration.
 更に、ピークの幅と、放電レートや温度毎の容量の関係を予め取得することにより、その結果を参照して、現状の電池の放電レートや温度に依存する残容量を予測することもできる。 Furthermore, by acquiring in advance the relationship between the peak width and the capacity for each discharge rate and temperature, the remaining capacity depending on the current battery discharge rate and temperature can be predicted by referring to the result.
 通常、負極にグラファイトを用いたリチウムイオン二次電池では、ステージ2及び3のステージ変化が充放電中に観察される。本実施形態は、負極にグラファイトを用いた例であり、図7,8のグラフでは、ステージ3への変化が左方のピークとして観察され、ステージ2への変化が右方のピークとして観察される。このうち、ステージ2への変化は、12個のカーボン(炭素原子)に対して1個のリチウムイオンを挿入した状態である。種々な不都合を招来するリチウム金属の析出は、12個の炭素原子に対して2個以上のリチウムイオンを挿入しようとした状態(即ち、6個の炭素原子に対して1個以上のリチウムイオンを挿入しようとした状態)で起こる。したがって、完全放電状態からステージ2までの充電容量の2倍以上の充電容量をインターカレーションすることで、リチウム金属の析出に至る。 Usually, in a lithium ion secondary battery using graphite as a negative electrode, stage changes of stages 2 and 3 are observed during charging and discharging. This embodiment is an example in which graphite is used for the negative electrode. In the graphs of FIGS. 7 and 8, the change to the stage 3 is observed as the left peak, and the change to the stage 2 is observed as the right peak. The Among these, the change to stage 2 is a state in which one lithium ion is inserted into 12 carbons (carbon atoms). Lithium metal deposition, which causes various inconveniences, is a state where two or more lithium ions are inserted into 12 carbon atoms (ie, one or more lithium ions are inserted into 6 carbon atoms). It happens in the state of trying to insert). Therefore, the lithium metal is deposited by intercalating a charge capacity more than twice the charge capacity from the fully discharged state to the stage 2.
 既述のように、ピークの立ち上がりの充電容量(始点での充電容量)は、電極内の多数の活物質の中で最も反応が早く進む容量、即ち電池内で最も早くステージ変化を始める容量を示す。したがって、ステージ2への変化を示すピークにおいては、そのピークの立ち上がりの充電容量の2倍の値に基づき、リチウム金属が析出する容量を予測することが可能である。このことから、本実施形態では、充電容量Qp41の2倍の値が、リチウム金属が析出する容量であると判断できる。 As described above, the charge capacity at the rising edge of the peak (the charge capacity at the start point) is the capacity at which the reaction proceeds most quickly among the many active materials in the electrode, that is, the capacity at which the stage change is started the fastest in the battery. Show. Therefore, at the peak indicating the change to the stage 2, it is possible to predict the capacity at which the lithium metal is deposited based on the value twice the charge capacity at the rising edge of the peak. From this, in this embodiment, it can be judged that a value twice as large as the charge capacity Qp41 is a capacity for depositing lithium metal.
 電池の初期の設計では、ピークの立ち上がりの充電容量の2倍の容量に到達する前に、設定した上限電圧に到達し、定電流充電から定電圧充電に切り替わるため、リチウム金属の析出は生じない。しかしながら、電池の劣化に伴って、活物質表面への堆積物や結着剤の弛緩などによりイオン抵抗や電気抵抗が増大すると、反応分布が拡大し、ピークの立ち上がりの充電容量が低容量側へシフトする。その場合、設定した上限電圧に到達してから定電圧充電に切り替える制御法では、リチウム金属の析出を免れない。 In the initial design of the battery, the set upper limit voltage is reached and the constant current charge is switched to the constant voltage charge before reaching the double capacity of the charge capacity at the rising edge of the peak, so that lithium metal does not precipitate. . However, as the battery deteriorates and the ionic resistance and electrical resistance increase due to the deposits on the surface of the active material and the relaxation of the binder, the reaction distribution expands, and the charge capacity at the peak rises to the low capacity side. shift. In that case, in the control method of switching to constant voltage charging after reaching the set upper limit voltage, lithium metal deposition is unavoidable.
 そこで、反応分布の拡大による劣化モードと判定した場合には、第2曲線L3に現れるピークの立ち上がりの充電容量Qp41に充電開始時の残容量を加えた値の2倍を超えない範囲で定電流充電するステップを含むことが好ましい。かかる方法では、反応分布の拡大による劣化を生じていても、最も充電速度の早い活物質のステージ2への変化を検出して定電流充電を終了させるため、リチウム金属の析出を生じない。その結果、安全性を向上するとともに、劣化の進行を抑制できる。定電流充電の終了後は、充電を終了してもよいし、或いは定電圧充電に切り替えてもよい。 Therefore, when it is determined that the deterioration mode is due to the expansion of the reaction distribution, the constant current is within a range not exceeding twice the value obtained by adding the remaining capacity at the start of charging to the charging capacity Qp41 at the rising edge of the peak appearing in the second curve L3. It preferably includes a step of charging. In such a method, even if deterioration due to expansion of the reaction distribution occurs, the change in the active material having the fastest charging speed to the stage 2 is detected and the constant current charging is terminated, so that lithium metal is not deposited. As a result, safety can be improved and the progress of deterioration can be suppressed. After the constant current charging is finished, the charging may be finished or switched to constant voltage charging.
 電池の使用においては、電池を完全に放電させることが稀であり、幾らか容量を残した状態で充電を開始するのが通常である。この場合、充電容量Qp41までの充電容量は、充電開始時の残容量に応じて変化する。更に言えば、リチウム金属を析出する容量は、充電容量Qp41に充電開始時の残容量(完全放電状態であれば実質的にゼロ)を加えた値の2倍以上の充電容量となる。そこで、上記ステップでは、充電容量Qp41に充電開始時の残容量を加えた値の2倍を超えない範囲で定電流充電するようにしている。このため、劣化診断や好適な充電条件を選択するにあたり、完全放電状態にする必要はない。 When using a battery, it is rare that the battery is completely discharged, and charging is usually started with some capacity left. In this case, the charge capacity up to the charge capacity Qp41 changes according to the remaining capacity at the start of charging. Furthermore, the capacity for depositing lithium metal is a charge capacity that is twice or more the value obtained by adding the remaining capacity at the start of charging (substantially zero if fully discharged) to the charging capacity Qp41. Therefore, in the above step, constant current charging is performed within a range not exceeding twice the value obtained by adding the remaining capacity at the start of charging to the charging capacity Qp41. For this reason, it is not necessary to set it in a completely discharged state in order to diagnose deterioration and to select suitable charging conditions.
 図2に示した実施形態では、正極23と負極24の厚み方向、即ちZ方向(図2(b)の上下方向)に電極群22と対向する外装体21の壁部28aに高分子マトリックス層3を貼り付けている。壁部28aの外面は外装体21の上面に相当する。高分子マトリックス層3は、壁部28aを挟んで電極群22と相対し、電極群22の上面と平行に配置されている。電極膨れは、活物質の体積変化に伴う電極群22の厚み変化に起因するためにZ方向での作用が大きい。したがって、高分子マトリックス層3を壁部28aに貼り付けた本実施形態では、電極膨れを高感度に検出でき、延いては劣化診断を精度良く行うことができる。 In the embodiment shown in FIG. 2, the polymer matrix layer is formed on the wall portion 28 a of the exterior body 21 that faces the electrode group 22 in the thickness direction of the positive electrode 23 and the negative electrode 24, that is, the Z direction (vertical direction in FIG. 2B). 3 is pasted. The outer surface of the wall portion 28 a corresponds to the upper surface of the exterior body 21. The polymer matrix layer 3 is opposed to the electrode group 22 with the wall portion 28 a interposed therebetween, and is disposed in parallel with the upper surface of the electrode group 22. Since the electrode swelling is caused by the change in the thickness of the electrode group 22 accompanying the change in the volume of the active material, the action in the Z direction is large. Therefore, in the present embodiment in which the polymer matrix layer 3 is attached to the wall portion 28a, it is possible to detect the swollen electrode with high sensitivity, and thus to accurately perform the deterioration diagnosis.
 図3に示した実施形態では、電極群22に対して、正極23と負極24の厚み方向、即ちZ方向(図3(b)の上下方向)から高分子マトリックス層3を貼り付けている。これにより、金属缶などの堅牢な材料で外装体が形成されている場合であっても、その電極群22の膨れ、即ち電極膨れを高精度に検出でき、延いては劣化診断を精度良く行うことができる。 In the embodiment shown in FIG. 3, the polymer matrix layer 3 is attached to the electrode group 22 from the thickness direction of the positive electrode 23 and the negative electrode 24, that is, the Z direction (vertical direction in FIG. 3B). Thereby, even when the exterior body is formed of a robust material such as a metal can, the swollenness of the electrode group 22, that is, the electrode swollenness can be detected with high accuracy, and the deterioration diagnosis can be accurately performed. be able to.
 検出部4は、外場の変化を検出可能な箇所に配置され、好ましくは二次電池2の膨れによる影響を受けにくい比較的堅固な箇所に貼り付けられる。本実施形態では、図2(b)のように、壁部28aに対向する電池モジュールの筐体11の内面に検出部4を貼り付けている。電池モジュールの筐体11は、例えば金属またはプラスチックにより形成され、ラミネートフィルムが用いられる場合もある。図面上、検出部4は、高分子マトリックス層3と近接して配置されているが、高分子マトリックス層3から離して配置しても構わない。 The detection unit 4 is disposed at a location where a change in the external field can be detected, and is preferably affixed to a relatively rigid location that is not easily affected by the swelling of the secondary battery 2. In this embodiment, as shown in FIG. 2B, the detection unit 4 is attached to the inner surface of the casing 11 of the battery module facing the wall 28a. The casing 11 of the battery module is formed of, for example, metal or plastic, and a laminate film may be used. In the drawing, the detection unit 4 is disposed close to the polymer matrix layer 3, but may be disposed away from the polymer matrix layer 3.
 本実施形態では、高分子マトリックス層3が上記フィラーとしての磁性フィラーを含有し、検出部4が上記外場としての磁場の変化を検出する例を示す。この場合、高分子マトリックス層3は、エラストマー成分からなるマトリックスに磁性フィラーが分散してなる磁性エラストマー層であることが好ましい。 In the present embodiment, an example is shown in which the polymer matrix layer 3 contains a magnetic filler as the filler, and the detection unit 4 detects a change in the magnetic field as the external field. In this case, the polymer matrix layer 3 is preferably a magnetic elastomer layer in which a magnetic filler is dispersed in a matrix made of an elastomer component.
 磁性フィラーとしては、希土類系、鉄系、コバルト系、ニッケル系、酸化物系などが挙げられるが、より高い磁力が得られる希土類系が好ましい。磁性フィラーの形状は、特に限定されるものではなく、球状、扁平状、針状、柱状および不定形のいずれであってよい。磁性フィラーの平均粒径は、好ましくは0.02~500μm、より好ましくは0.1~400μm、更に好ましくは0.5~300μmである。平均粒径が0.02μmより小さいと、磁性フィラーの磁気特性が低下する傾向にあり、平均粒径が500μmを超えると、磁性エラストマー層の機械的特性が低下して脆くなる傾向にある。 Examples of the magnetic filler include rare earths, irons, cobalts, nickels, oxides, etc., but rare earths capable of obtaining higher magnetic force are preferable. The shape of the magnetic filler is not particularly limited, and may be spherical, flat, needle-like, columnar, or indefinite. The average particle size of the magnetic filler is preferably 0.02 to 500 μm, more preferably 0.1 to 400 μm, and still more preferably 0.5 to 300 μm. When the average particle size is smaller than 0.02 μm, the magnetic properties of the magnetic filler tend to be lowered, and when the average particle size exceeds 500 μm, the mechanical properties of the magnetic elastomer layer tend to be lowered and become brittle.
 磁性フィラーは、着磁後にエラストマー中に導入しても構わないが、エラストマーに導入した後に着磁することが好ましい。エラストマーに導入した後に着磁することで磁石の極性の制御が容易となり、磁場の検出が容易になる。 The magnetic filler may be introduced into the elastomer after magnetization, but is preferably magnetized after being introduced into the elastomer. Magnetization after introduction into the elastomer facilitates control of the polarity of the magnet and facilitates detection of the magnetic field.
 エラストマー成分には、熱可塑性エラストマー、熱硬化性エラストマーまたはそれらの混合物を用いることができる。熱可塑性エラストマーとしては、例えばスチレン系熱可塑性エラストマー、ポリオレフィン系熱可塑性エラストマー、ポリウレタン系熱可塑性エラストマー、ポリエステル系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマー、ポリブタジエン系熱可塑性エラストマー、ポリイソプレン系熱可塑性エラストマー、フッ素ゴム系熱可塑性エラストマー等を挙げることができる。また、熱硬化性エラストマーとしては、例えばポリイソプレンゴム、ポリブタジエンゴム、スチレン-ブタジエンゴム、ポリクロロプレンゴム、ニトリルゴム、エチレン-プロピレンゴム等のジエン系合成ゴム、エチレン-プロピレンゴム、ブチルゴム、アクリルゴム、ポリウレタンゴム、フッ素ゴム、シリコーンゴム、エピクロルヒドリンゴム等の非ジエン系合成ゴム、および天然ゴム等を挙げることができる。このうち好ましいのは熱硬化性エラストマーであり、これは電池の発熱や過負荷に伴う磁性エラストマーのへたりを抑制できるためである。更に好ましくは、ポリウレタンゴム(ポリウレタンエラストマーともいう)またはシリコーンゴム(シリコーンエラストマーともいう)である。 As the elastomer component, a thermoplastic elastomer, a thermosetting elastomer, or a mixture thereof can be used. Examples of the thermoplastic elastomer include styrene-based thermoplastic elastomer, polyolefin-based thermoplastic elastomer, polyurethane-based thermoplastic elastomer, polyester-based thermoplastic elastomer, polyamide-based thermoplastic elastomer, polybutadiene-based thermoplastic elastomer, polyisoprene-based thermoplastic elastomer, A fluororubber-based thermoplastic elastomer can be used. Examples of the thermosetting elastomer include polyisoprene rubber, polybutadiene rubber, styrene-butadiene rubber, polychloroprene rubber, nitrile rubber, diene synthetic rubber such as ethylene-propylene rubber, ethylene-propylene rubber, butyl rubber, acrylic rubber, Non-diene synthetic rubbers such as polyurethane rubber, fluorine rubber, silicone rubber, epichlorohydrin rubber, and natural rubber can be mentioned. Among these, a thermosetting elastomer is preferable because it can suppress the sag of the magnetic elastomer accompanying heat generation and overload of the battery. More preferred is polyurethane rubber (also referred to as polyurethane elastomer) or silicone rubber (also referred to as silicone elastomer).
 ポリウレタンエラストマーは、ポリオールとポリイソシアネートとを反応させることにより得られる。ポリウレタンエラストマーをエラストマー成分として用いる場合、活性水素含有化合物と磁性フィラーを混合し、ここにイソシアネート成分を混合させて混合液を得る。また、イソシアネート成分に磁性フィラーを混合し、活性水素含有化合物を混合させることで混合液を得ることも出来る。その混合液を離型処理したモールド内に注型し、その後硬化温度まで加熱して硬化することにより、磁性エラストマーを製造することができる。また、シリコーンエラストマーをエラストマー成分として用いる場合、シリコーンエラストマーの前駆体に磁性フィラーを入れて混合し、型内に入れ、その後加熱して硬化させることにより磁性エラストマーを製造することができる。なお、必要に応じて溶剤を添加してもよい。 Polyurethane elastomer is obtained by reacting polyol and polyisocyanate. When using a polyurethane elastomer as an elastomer component, an active hydrogen-containing compound and a magnetic filler are mixed, and an isocyanate component is mixed here to obtain a mixed solution. Moreover, a liquid mixture can also be obtained by mixing a magnetic filler with an isocyanate component and mixing an active hydrogen-containing compound. The mixed liquid is poured into a mold subjected to a release treatment, and then heated to a curing temperature and cured to produce a magnetic elastomer. When a silicone elastomer is used as an elastomer component, a magnetic elastomer can be produced by adding a magnetic filler to a silicone elastomer precursor, mixing it, putting it in a mold, and then heating and curing it. In addition, you may add a solvent as needed.
 ポリウレタンエラストマーに使用できるイソシアネート成分としては、ポリウレタンの分野において公知の化合物を使用できる。例えば、2,4-トルエンジイソシアネート、2,6-トルエンジイソシアネート、2,2’-ジフェニルメタンジイソシアネート、2,4’-ジフェニルメタンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、1,5-ナフタレンジイソシアネート、p-フェニレンジイソシアネート、m-フェニレンジイソシアネート、p-キシリレンジイソシアネート、m-キシリレンジイソシアネート等の芳香族ジイソシアネート、エチレンジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート、1,6-ヘキサメチレンジイソシアネート等の脂肪族ジイソシアネート、1,4-シクロヘキサンジイソシアネート、4,4’-ジシクロへキシルメタンジイソシアネート、イソホロンジイソシアネート、ノルボルナンジイソシアネート等の脂環式ジイソシアネートを挙げることができる。これらは1種で用いても、2種以上を混合して用いてもよい。また、イソシアネート成分は、ウレタン変性、アロファネート変性、ビウレット変性、及びイソシアヌレート変性等の変性化したものであってもよい。好ましいイソシアネート成分は、2,4-トルエンジイソシアネート、2,6-トルエンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、より好ましくは2,4-トルエンジイソシアネート、2,6-トルエンジイソシアネートである。 As the isocyanate component that can be used in the polyurethane elastomer, compounds known in the field of polyurethane can be used. For example, 2,4-toluene diisocyanate, 2,6-toluene diisocyanate, 2,2′-diphenylmethane diisocyanate, 2,4′-diphenylmethane diisocyanate, 4,4′-diphenylmethane diisocyanate, 1,5-naphthalene diisocyanate, p-phenylene Aromatic diisocyanates such as diisocyanate, m-phenylene diisocyanate, p-xylylene diisocyanate, m-xylylene diisocyanate, ethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, 1,6-hexamethylene diisocyanate 1,4-cyclohexane diisocyanate, 4,4'-dicyclohexylmethane diisocyanate, isophorone diisocyanate, nor It can be mentioned alicyclic diisocyanates such as Renan diisocyanate. These may be used alone or in combination of two or more. The isocyanate component may be modified such as urethane modification, allophanate modification, biuret modification, and isocyanurate modification. Preferred isocyanate components are 2,4-toluene diisocyanate, 2,6-toluene diisocyanate, 4,4'-diphenylmethane diisocyanate, more preferably 2,4-toluene diisocyanate, 2,6-toluene diisocyanate.
 活性水素含有化合物としては、ポリウレタンの技術分野において、通常用いられるものを用いることができる。例えば、ポリテトラメチレングリコール、ポリプロピレングリコール、ポリエチレングリコール、プロピレンオキサイドとエチレンオキサイドの共重合体等に代表されるポリエーテルポリオール、ポリブチレンアジペート、ポリエチレンアジペート、3-メチル-1,5-ペンタンアジペートに代表されるポリエステルポリオール、ポリカプロラクトンポリオール、ポリカプロラクトンのようなポリエステルグリコールとアルキレンカーボネートとの反応物などで例示されるポリエステルポリカーボネートポリオール、エチレンカーボネートを多価アルコールと反応させ、次いで得られた反応混合物を有機ジカルボン酸と反応させたポリエステルポリカーボネートポリオール、ポリヒドロキシル化合物とアリールカーボネートとのエステル交換反応により得られるポリカーボネートポリオール等の高分子量ポリオールを挙げることができる。これらは単独で用いてもよく、2種以上を併用してもよい。 As the active hydrogen-containing compound, those usually used in the technical field of polyurethane can be used. For example, polytetramethylene glycol, polypropylene glycol, polyethylene glycol, polyether polyol represented by copolymer of propylene oxide and ethylene oxide, polybutylene adipate, polyethylene adipate, representative of 3-methyl-1,5-pentane adipate Polyester polyol such as polyester polyol, polycaprolactone polyol, reaction product of polyester glycol and alkylene carbonate such as polycaprolactone, and the like, and the reaction of the resulting reaction mixture with organic polyol. Polyester polycarbonate polyol reacted with dicarboxylic acid, esterification of polyhydroxyl compound and aryl carbonate High molecular weight polyol polycarbonate polyols obtained by the reaction can be mentioned. These may be used alone or in combination of two or more.
 活性水素含有化合物として上述した高分子量ポリオール成分の他に、エチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、1,4-ブタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール、1,4-シクロヘキサンジメタノール、3-メチル-1,5-ペンタンジオール、ジエチレングリコール、トリエチレングリコール、1,4-ビス(2-ヒドロキシエトキシ)ベンゼン、トリメチロールプロパン、グリセリン、1,2,6-ヘキサントリオール、ペンタエリスリトール、テトラメチロールシクロヘキサン、メチルグルコシド、ソルビトール、マンニトール、ズルシトール、スクロース、2,2,6,6-テトラキス(ヒドロキシメチル)シクロヘキサノール、及びトリエタノールアミン等の低分子量ポリオール成分、エチレンジアミン、トリレンジアミン、ジフェニルメタンジアミン、ジエチレントリアミン等の低分子量ポリアミン成分を用いてもよい。これらは1種単独で用いてもよく、2種以上を併用してもよい。更に、4,4’-メチレンビス(o-クロロアニリン)(MOCA)、2,6-ジクロロ-p-フェニレンジアミン、4,4’-メチレンビス(2,3-ジクロロアニリン)、3,5-ビス(メチルチオ)-2,4-トルエンジアミン、3,5-ビス(メチルチオ)-2,6-トルエンジアミン、3,5-ジエチルトルエン-2,4-ジアミン、3,5-ジエチルトルエン-2,6-ジアミン、トリメチレングリコール-ジ-p-アミノベンゾエート、ポリテトラメチレンオキシド-ジ-p-アミノベンゾエート、1,2-ビス(2-アミノフェニルチオ)エタン、4,4’-ジアミノ-3,3’-ジエチル-5,5’-ジメチルジフェニルメタン、N,N’-ジ-sec-ブチル-4,4’-ジアミノジフェニルメタン、4,4’-ジアミノ-3,3’-ジエチルジフェニルメタン、4,4’-ジアミノ-3,3’-ジエチル-5,5’-ジメチルジフェニルメタン、4,4’-ジアミノ-3,3’-ジイソプロピル-5,5’-ジメチルジフェニルメタン、4,4’-ジアミノ-3,3’,5,5’-テトラエチルジフェニルメタン、4,4’-ジアミノ-3,3’,5,5’-テトライソプロピルジフェニルメタン、m-キシリレンジアミン、N,N’-ジ-sec-ブチル-p-フェニレンジアミン、m-フェニレンジアミン、及びp-キシリレンジアミン等に例示されるポリアミン類を混合することもできる。好ましい活性水素含有化合物は、ポリテトラメチレングリコール、ポリプロピレングリコール、プロピレンオキサイドとエチレンオキサイドの共重合体、3-メチル-1,5-ペンタンアジペート、より好ましくはポリプロピレングリコール、プロピレンオキサイドとエチレンオキサイドの共重合体である。 In addition to the high molecular weight polyol component described above as the active hydrogen-containing compound, ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,4-butanediol, 1,6-hexanediol, neopentyl glycol, 1,4-cyclohexanedimethanol, 3-methyl-1,5-pentanediol, diethylene glycol, triethylene glycol, 1,4-bis (2-hydroxyethoxy) benzene, trimethylolpropane, glycerin, 1,2,6- Hexanetriol, pentaerythritol, tetramethylolcyclohexane, methylglucoside, sorbitol, mannitol, dulcitol, sucrose, 2,2,6,6-tetrakis (hydroxymethyl) cyclohexanol, and triethanol Low molecular weight polyol component of such emissions, ethylenediamine, tolylenediamine, diphenylmethane diamine, may be used low molecular weight polyamine component of diethylenetriamine. These may be used alone or in combination of two or more. Further, 4,4′-methylenebis (o-chloroaniline) (MOCA), 2,6-dichloro-p-phenylenediamine, 4,4′-methylenebis (2,3-dichloroaniline), 3,5-bis ( Methylthio) -2,4-toluenediamine, 3,5-bis (methylthio) -2,6-toluenediamine, 3,5-diethyltoluene-2,4-diamine, 3,5-diethyltoluene-2,6- Diamine, trimethylene glycol-di-p-aminobenzoate, polytetramethylene oxide-di-p-aminobenzoate, 1,2-bis (2-aminophenylthio) ethane, 4,4'-diamino-3,3 ' -Diethyl-5,5'-dimethyldiphenylmethane, N, N'-di-sec-butyl-4,4'-diaminodiphenylmethane, 4,4'-diamy -3,3'-diethyldiphenylmethane, 4,4'-diamino-3,3'-diethyl-5,5'-dimethyldiphenylmethane, 4,4'-diamino-3,3'-diisopropyl-5,5'- Dimethyldiphenylmethane, 4,4′-diamino-3,3 ′, 5,5′-tetraethyldiphenylmethane, 4,4′-diamino-3,3 ′, 5,5′-tetraisopropyldiphenylmethane, m-xylylenediamine, Polyamines exemplified by N, N′-di-sec-butyl-p-phenylenediamine, m-phenylenediamine, p-xylylenediamine and the like can also be mixed. Preferred active hydrogen-containing compounds are polytetramethylene glycol, polypropylene glycol, a copolymer of propylene oxide and ethylene oxide, 3-methyl-1,5-pentane adipate, more preferably a copolymer of polypropylene glycol, propylene oxide and ethylene oxide. It is a coalescence.
 イソシアネート成分と活性水素含有化合物の好ましい組み合わせとしては、イソシアネート成分として、2,4-トルエンジイソシアネート、2,6-トルエンジイソシアネート、および4,4’-ジフェニルメタンジイソシアネートの1種または2種以上と、活性水素含有化合物として、ポリテトラメチレングリコール、ポリプロピレングリコール、プロピレンオキサイドとエチレンオキサイドの共重合体、および3-メチル-1,5-ペンタンアジペートの1種または2種以上との組み合わせである。より好ましくは、イソシアネート成分として、2,4-トルエンジイソシアネートおよび/または2,6-トルエンジイソシアネートと、活性水素含有化合物として、ポリプロピレングリコール、および/またはプロピレンオキサイドとエチレンオキサイドの共重合体との組み合わせである。 As a preferred combination of the isocyanate component and the active hydrogen-containing compound, as the isocyanate component, one or more of 2,4-toluene diisocyanate, 2,6-toluene diisocyanate, and 4,4′-diphenylmethane diisocyanate, active hydrogen Examples of the contained compound include polytetramethylene glycol, polypropylene glycol, a copolymer of propylene oxide and ethylene oxide, and one or more of 3-methyl-1,5-pentaneadipate. More preferably, a combination of 2,4-toluene diisocyanate and / or 2,6-toluene diisocyanate as the isocyanate component and polypropylene glycol and / or a copolymer of propylene oxide and ethylene oxide as the active hydrogen-containing compound. is there.
 高分子マトリックス層3は、分散したフィラーと気泡を含有する発泡体でもよい。発泡体としては、一般の樹脂フォームを用いることができるが、圧縮永久歪などの特性を考慮すると熱硬化性樹脂フォームを用いることが好ましい。熱硬化性樹脂フォームとしては、ポリウレタン樹脂フォーム、シリコーン樹脂フォームなどが挙げられ、このうちポリウレタン樹脂フォームが好適である。ポリウレタン樹脂フォームには、上掲したイソシアネート成分や活性水素含有化合物を使用できる。 The polymer matrix layer 3 may be a foam containing dispersed filler and bubbles. A general resin foam can be used as the foam, but it is preferable to use a thermosetting resin foam in consideration of characteristics such as compression set. Examples of the thermosetting resin foam include a polyurethane resin foam and a silicone resin foam. Among these, a polyurethane resin foam is preferable. The above-mentioned isocyanate component and active hydrogen-containing compound can be used for the polyurethane resin foam.
 磁性エラストマー中の磁性フィラーの量は、エラストマー成分100重量部に対して、好ましくは1~450重量部、より好ましくは2~400重量部である。これが1重量部より少ないと、磁場の変化を検出することが難しくなる傾向にあり、450重量部を超えると、磁性エラストマー自体が脆くなる場合がある。 The amount of the magnetic filler in the magnetic elastomer is preferably 1 to 450 parts by weight, more preferably 2 to 400 parts by weight with respect to 100 parts by weight of the elastomer component. If it is less than 1 part by weight, it tends to be difficult to detect a change in the magnetic field, and if it exceeds 450 parts by weight, the magnetic elastomer itself may become brittle.
 磁性フィラーの防錆などを目的として、高分子マトリックス層3の柔軟性を損なわない程度に、高分子マトリックス層3を封止する封止材を設けてもよい。封止材には、熱可塑性樹脂、熱硬化性樹脂またはそれらの混合物を用いることができる。熱可塑性樹脂としては、例えばスチレン系熱可塑性エラストマー、ポリオレフィン系熱可塑性エラストマー、ポリウレタン系熱可塑性エラストマー、ポリエステル系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマー、ポリブタジエン系熱可塑性エラストマー、ポリイソプレン系熱可塑性エラストマー、フッ素系熱可塑性エラストマー、エチレン・アクリル酸エチルコポリマー、エチレン・酢酸ビニルコポリマー、ポリ塩化ビニル、ポリ塩化ビニリデン、塩素化ポリエチレン、フッ素樹脂、ポリアミド、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリスチレン、ポリブタジエン等を挙げることができる。また、熱硬化性樹脂としては、例えばポリイソプレンゴム、ポリブタジエンゴム、スチレン・ブタジエンゴム、ポリクロロプレンゴム、アクリロニトリル・ブタジエンゴム等のジエン系合成ゴム、エチレン・プロピレンゴム、エチレン・プロピレン・ジエンゴム、ブチルゴム、アクリルゴム、ポリウレタンゴム、フッ素ゴム、シリコーンゴム、エピクロルヒドリンゴム等の非ジエン系ゴム、天然ゴム、ポリウレタン樹脂、シリコーン樹脂、エポキシ樹脂等を挙げることができる。これらのフィルムは積層されていてもよく、また、アルミ箔などの金属箔や上記フィルム上に金属が蒸着された金属蒸着膜を含むフィルムであってもよい。 For the purpose of rust prevention of the magnetic filler, a sealing material for sealing the polymer matrix layer 3 may be provided to the extent that the flexibility of the polymer matrix layer 3 is not impaired. As the sealing material, a thermoplastic resin, a thermosetting resin, or a mixture thereof can be used. Examples of the thermoplastic resin include styrene-based thermoplastic elastomers, polyolefin-based thermoplastic elastomers, polyurethane-based thermoplastic elastomers, polyester-based thermoplastic elastomers, polyamide-based thermoplastic elastomers, polybutadiene-based thermoplastic elastomers, polyisoprene-based thermoplastic elastomers, Fluorine-based thermoplastic elastomer, ethylene / ethyl acrylate copolymer, ethylene / vinyl acetate copolymer, polyvinyl chloride, polyvinylidene chloride, chlorinated polyethylene, fluororesin, polyamide, polyethylene, polypropylene, polyethylene terephthalate, polybutylene terephthalate, polystyrene, polybutadiene Etc. Examples of the thermosetting resin include polyisoprene rubber, polybutadiene rubber, styrene / butadiene rubber, polychloroprene rubber, diene-based synthetic rubber such as acrylonitrile / butadiene rubber, ethylene / propylene rubber, ethylene / propylene / diene rubber, butyl rubber, Non-diene rubbers such as acrylic rubber, polyurethane rubber, fluorine rubber, silicone rubber, epichlorohydrin rubber, natural rubber, polyurethane resin, silicone resin, epoxy resin and the like can be mentioned. These films may be laminated, or may be a film including a metal foil such as an aluminum foil or a metal vapor deposition film in which a metal is vapor deposited on the film.
 高分子マトリックス層3は、その厚み方向にフィラーが偏在しているものでも構わない。例えば、高分子マトリックス層3が、フィラーが相対的に多い一方側の領域と、フィラーが相対的に少ない他方側の領域との二層からなる構造でもよい。フィラーを多く含有する一方側の領域では、高分子マトリックス層3の小さな変形に対する外場の変化が大きくなるため、低い内圧に対するセンサ感度を高められる。また、フィラーが相対的に少ない他方側の領域は比較的柔軟で動きやすく、この領域を貼り付けることにより、高分子マトリックス層3(特に一方側の領域)が変形しやすくなる。 The polymer matrix layer 3 may be one in which fillers are unevenly distributed in the thickness direction. For example, the polymer matrix layer 3 may have a structure composed of two layers of a region on one side with a relatively large amount of filler and a region on the other side with a relatively small amount of filler. In the region on one side containing a large amount of filler, the change in the external field with respect to small deformation of the polymer matrix layer 3 becomes large, so that the sensor sensitivity to a low internal pressure can be enhanced. Further, the region on the other side with relatively little filler is relatively flexible and easy to move. By attaching this region, the polymer matrix layer 3 (especially the region on one side) is likely to be deformed.
 一方側の領域でのフィラー偏在率は、好ましくは50を超え、より好ましくは60以上であり、更に好ましくは70以上である。この場合、他方側の領域でのフィラー偏在率は50未満となる。一方側の領域でのフィラー偏在率は最大で100であり、他方側の領域でのフィラー偏在率は最小で0である。したがって、フィラーを含むエラストマー層と、フィラーを含まないエラストマー層との積層体構造でも構わない。フィラーの偏在には、エラストマー成分にフィラーを導入した後、室温あるいは所定の温度で静置し、そのフィラーの重さにより自然沈降させる方法を使用でき、静置する温度や時間を変化させることでフィラー偏在率を調整できる。遠心力や磁力のような物理的な力を用いて、フィラーを偏在させてもよい。或いは、フィラーの含有量が異なる複数の層からなる積層体により高分子マトリックス層を構成しても構わない。 The filler uneven distribution ratio in the region on one side is preferably more than 50, more preferably 60 or more, and further preferably 70 or more. In this case, the filler uneven distribution rate in the other region is less than 50. The filler uneven distribution rate in the region on one side is 100 at the maximum, and the filler uneven distribution rate in the region on the other side is 0 at the minimum. Therefore, a laminate structure of an elastomer layer containing a filler and an elastomer layer not containing a filler may be used. For the uneven distribution of the filler, after introducing the filler into the elastomer component, it can be allowed to stand at room temperature or at a predetermined temperature, and then spontaneously settled according to the weight of the filler, by changing the temperature and time of standing. The filler uneven distribution rate can be adjusted. The filler may be unevenly distributed using a physical force such as centrifugal force or magnetic force. Alternatively, the polymer matrix layer may be constituted by a laminate composed of a plurality of layers having different filler contents.
 フィラー偏在率は、以下の方法により測定される。即ち、走査型電子顕微鏡-エネルギー分散型X線分析装置(SEM-EDS)を用いて、高分子マトリックス層の断面を100倍で観察する。その断面の厚み方向全体の領域と、その断面を厚み方向に二等分した2つの領域に対し、それぞれ元素分析によりフィラー固有の金属元素(本実施形態の磁性フィラーであれば例えばFe元素)の存在量を求める。この存在量について、厚み方向全体の領域に対する一方側の領域の比率を算出し、それを一方側の領域でのフィラー偏在率とする。他方側の領域でのフィラー偏在率も、これと同様である。 The filler uneven distribution rate is measured by the following method. That is, the cross section of the polymer matrix layer is observed at a magnification of 100 using a scanning electron microscope-energy dispersive X-ray analyzer (SEM-EDS). The area of the entire cross section in the thickness direction and the two areas obtained by dividing the cross section into two in the thickness direction are each subjected to elemental analysis of a metal element specific to the filler (for example, Fe element in the case of the magnetic filler of this embodiment). Find the abundance. For this abundance, the ratio of one area to the entire area in the thickness direction is calculated, and this is used as the filler uneven distribution rate in the one area. The filler uneven distribution rate in the other region is the same as this.
 フィラーが相対的に少ない他方側の領域は、気泡を含有する発泡体で形成されている構造でも構わない。これにより、高分子マトリックス層3が更に変形しやすくなってセンサ感度が高められる。また、他方側の領域とともに一方側の領域が発泡体で形成されていてもよく、その場合の高分子マトリックス層3は全体が発泡体となる。このような厚み方向の少なくとも一部が発泡体である高分子マトリックス層は、複数の層(例えば、フィラーを含有する無発泡層と、フィラーを含有しない発泡層)からなる積層体により構成されていても構わない。 The other region with relatively little filler may have a structure formed of a foam containing bubbles. Thereby, the polymer matrix layer 3 is further easily deformed and the sensor sensitivity is enhanced. Moreover, the area | region of one side may be formed with the foam with the area | region of the other side, and the polymer matrix layer 3 in that case becomes a foam entirely. Such a polymer matrix layer in which at least a part in the thickness direction is a foam is composed of a laminate composed of a plurality of layers (for example, a non-foamed layer containing a filler and a foamed layer not containing a filler). It doesn't matter.
 磁場の変化を検出する検出部4には、例えば、磁気抵抗素子、ホール素子、インダクタ、MI素子、フラックスゲートセンサなどを用いることができる。磁気抵抗素子としては、半導体化合物磁気抵抗素子、異方性磁気抵抗素子(AMR)、巨大磁気抵抗素子(GMR)、トンネル磁気抵抗素子(TMR)が挙げられる。このうち好ましいのはホール素子であり、これは広範囲にわたって高い感度を有し、検出部4として有用なためである。ホール素子には、例えば旭化成エレクトロニクス株式会社製EQ-430Lが使用できる。 For example, a magnetoresistive element, a Hall element, an inductor, an MI element, a fluxgate sensor, or the like can be used as the detection unit 4 that detects a change in the magnetic field. Examples of the magnetoresistive element include a semiconductor compound magnetoresistive element, an anisotropic magnetoresistive element (AMR), a giant magnetoresistive element (GMR), and a tunnel magnetoresistive element (TMR). Among these, the Hall element is preferable because it has high sensitivity over a wide range and is useful as the detection unit 4. As the Hall element, for example, EQ-430L manufactured by Asahi Kasei Electronics Corporation can be used.
 ガス膨れが進行した二次電池2は発火や破裂などのトラブルに至ることがあるため、本実施形態では、二次電池2が変形したときの膨張量が所定以上である場合に、充放電が遮断されるように構成されている。具体的には、検出センサ5によって検出した信号が制御装置6に伝達され、設定値以上の外場の変化が検出センサ5により検出された場合に、制御装置6がスイッチング回路7へ信号を発信して発電装置(または充電装置)8からの電流を遮断し、電池モジュール1への充放電が遮断される状態にする。これにより、ガス膨れに起因するトラブルを未然に防止することができる。 Since the secondary battery 2 in which the gas expansion has progressed may lead to troubles such as ignition and rupture, in this embodiment, when the expansion amount when the secondary battery 2 is deformed is greater than or equal to a predetermined amount, charging and discharging are performed. It is configured to be blocked. Specifically, the signal detected by the detection sensor 5 is transmitted to the control device 6, and the control device 6 transmits a signal to the switching circuit 7 when a change in the external field exceeding the set value is detected by the detection sensor 5. Then, the current from the power generation device (or charging device) 8 is cut off, and charging / discharging to the battery module 1 is cut off. Thereby, the trouble resulting from gas bulging can be prevented beforehand.
 前述の実施形態では、二次電池がリチウムイオン二次電池である例を示したが、これに限られない。使用される二次電池は、リチウムイオン電池などの非水系電解液二次電池に限られず、ニッケル水素電池などの水系電解液二次電池であっても構わない。 In the above-described embodiment, an example in which the secondary battery is a lithium ion secondary battery has been described, but the present invention is not limited thereto. The secondary battery used is not limited to a non-aqueous electrolyte secondary battery such as a lithium ion battery, and may be an aqueous electrolyte secondary battery such as a nickel metal hydride battery.
 前述の実施形態では、高分子マトリックス層の変形に伴う磁場の変化を検出部により検出する例を示したが、他の外場の変化を検出する構成でもよい。例えば、高分子マトリックス層がフィラーとして金属粒子、カーボンブラック、カーボンナノチューブなどの導電性フィラーを含有し、検出部が外場としての電場の変化(抵抗および誘電率の変化)を検出する構成が考えられる。 In the above-described embodiment, the example in which the change in the magnetic field due to the deformation of the polymer matrix layer is detected by the detection unit has been described. However, other changes in the external field may be detected. For example, the polymer matrix layer may contain conductive fillers such as metal particles, carbon black, and carbon nanotubes as fillers, and the detector may detect changes in the electric field (changes in resistance and dielectric constant) as external fields. It is done.
 本発明は上述した実施形態に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲内で種々の改良変更が可能である。 The present invention is not limited to the embodiment described above, and various improvements and modifications can be made without departing from the spirit of the present invention.
1   電池モジュール
2   密閉型二次電池
3   高分子マトリックス層
4   検出部
5   検出センサ
6   制御装置
7   スイッチング回路
8   発電装置または充電装置
21  外装体
22  電極群
23  正極
24  負極
25  セパレータ
L1  第1曲線
L2  第2曲線
P1  ステージ変化点
P2  ステージ変化点
DESCRIPTION OF SYMBOLS 1 Battery module 2 Sealed secondary battery 3 Polymer matrix layer 4 Detection part 5 Detection sensor 6 Control device 7 Switching circuit 8 Power generation device or charging device 21 Exterior body 22 Electrode group 23 Positive electrode 24 Negative electrode 25 Separator L1 First curve L2 First 2 Curve P1 Stage change point P2 Stage change point

Claims (12)

  1.  密閉型二次電池の劣化診断方法において、
     前記密閉型二次電池の変形を検出し、満充電状態からの放電容量または満充電状態までの充電容量と、検出した前記密閉型二次電池の変形量との関係を表す第1曲線を求めるステップと、
     その充放電容量と前記第1曲線の傾きとの関係を表す第2曲線を求めるステップと、
     前記第2曲線に極値として現れるステージ変化点間の充放電容量Qcを算出するステップと、
     所定の基準状態におけるステージ変化点間の充放電容量Qsに対する前記充放電容量Qcの比Qc/Qsに基づいて、活物質の維持率を算出するステップと、を含むことを特徴とする密閉型二次電池の劣化診断方法。
    In the method for diagnosing deterioration of sealed secondary batteries,
    The deformation of the sealed secondary battery is detected, and a first curve representing the relationship between the discharge capacity from the fully charged state or the charged capacity to the fully charged state and the detected deformation amount of the sealed secondary battery is obtained. Steps,
    Obtaining a second curve representing the relationship between the charge / discharge capacity and the slope of the first curve;
    Calculating a charge / discharge capacity Qc between stage change points appearing as extreme values in the second curve;
    Calculating a maintenance factor of the active material based on a ratio Qc / Qs of the charge / discharge capacity Qc to the charge / discharge capacity Qs between the stage change points in a predetermined reference state. Secondary battery deterioration diagnosis method.
  2.  前記充放電容量Qcが前記充放電容量Qsと同じ大きさになるように、前記維持率を用いて前記第2曲線を補正するステップと、
     前記補正後の第2曲線でのステージ変化点と、それに対応する所定の基準状態でのステージ変化点との充放電容量差に基づいて、副反応による容量バランスずれ量を算出するステップと、を含む請求項1に記載の密閉型二次電池の劣化診断方法。
    Correcting the second curve using the maintenance factor so that the charge / discharge capacity Qc is the same as the charge / discharge capacity Qs;
    Calculating a capacity balance deviation amount due to a side reaction based on a charge / discharge capacity difference between the stage change point in the corrected second curve and the corresponding stage change point in a predetermined reference state; The deterioration diagnosis method for a sealed secondary battery according to claim 1.
  3.  前記第2曲線に現れるピークの幅に基づいて算出される充放電容量が、それに対応する所定の基準状態でのピークの幅に基づいて算出される充放電容量よりも大きい場合に、反応分布の拡大による劣化モードと判定するステップを含む請求項1または2に記載の密閉型二次電池の劣化診断方法。 When the charge / discharge capacity calculated based on the peak width appearing in the second curve is larger than the charge / discharge capacity calculated based on the corresponding peak width in a predetermined reference state, The deterioration diagnosis method for a sealed secondary battery according to claim 1, comprising a step of determining a deterioration mode due to expansion.
  4.  反応分布の拡大による劣化モードと判定した場合に、前記第2曲線に現れるピークの立ち上がりの充電容量に充電開始時の残容量を加えた値の2倍を超えない範囲で定電流充電するステップを含む請求項3に記載の密閉型二次電池の劣化診断方法。 When it is determined that the deterioration mode is due to the expansion of the reaction distribution, the step of performing constant current charging in a range not exceeding twice the value obtained by adding the remaining capacity at the start of charging to the charging capacity at the rising edge of the peak appearing in the second curve A deterioration diagnosis method for a sealed secondary battery according to claim 3.
  5.  前記密閉型二次電池に高分子マトリックス層を貼り付け、前記高分子マトリックス層は、その高分子マトリックス層の変形に応じて外場に変化を与えるフィラーを分散させて含有したものであり、
     その高分子マトリックス層の変形に応じた前記外場の変化を検出することにより、前記密閉型二次電池の変形を検出する請求項1~4いずれか1項に記載の密閉型二次電池の劣化診断方法。
    A polymer matrix layer is affixed to the sealed secondary battery, and the polymer matrix layer contains dispersed fillers that change the external field according to deformation of the polymer matrix layer.
    The sealed secondary battery according to any one of claims 1 to 4, wherein the deformation of the sealed secondary battery is detected by detecting a change in the external field according to the deformation of the polymer matrix layer. Degradation diagnosis method.
  6.  前記高分子マトリックス層が前記フィラーとしての磁性フィラーを含有し、
     前記外場としての磁場の変化を検出することにより、前記密閉型二次電池の変形を検出する請求項5に記載の密閉型二次電池の劣化診断方法。
    The polymer matrix layer contains a magnetic filler as the filler,
    The deterioration diagnosis method for a sealed secondary battery according to claim 5, wherein the deformation of the sealed secondary battery is detected by detecting a change in a magnetic field as the external field.
  7.  密閉型二次電池の劣化診断システムにおいて、
     前記密閉型二次電池の変形を検出する検出センサと、
     満充電状態からの放電容量または満充電状態までの充電容量と、前記検出センサで検出した前記密閉型二次電池の変形量との関係を表す第1曲線、及び、その充放電容量と前記第1曲線の傾きとの関係を表す第2曲線を求め、前記第2曲線に極値として現れるステージ変化点間の充放電容量Qcを算出し、所定の基準状態におけるステージ変化点間の充放電容量Qsに対する充放電容量Qcの比Qc/Qsに基づいて、活物質の維持率を算出する制御装置と、を備えることを特徴とする密閉型二次電池の劣化診断システム。
    In a sealed secondary battery deterioration diagnosis system,
    A detection sensor for detecting deformation of the sealed secondary battery;
    A first curve representing a relationship between a discharge capacity from a full charge state or a charge capacity to a full charge state and a deformation amount of the sealed secondary battery detected by the detection sensor, and the charge / discharge capacity and the first A second curve representing the relationship with the slope of one curve is obtained, the charge / discharge capacity Qc between the stage change points appearing as extreme values in the second curve is calculated, and the charge / discharge capacity between the stage change points in a predetermined reference state And a controller for calculating a maintenance factor of the active material based on a ratio Qc / Qs of the charge / discharge capacity Qc with respect to Qs.
  8.  前記制御装置は、前記充放電容量Qcが前記充放電容量Qsと同じ大きさになるように、前記維持率を用いて前記第2曲線を補正し、その補正後の第2曲線でのステージ変化点と、それに対応する所定の基準状態でのステージ変化点との充放電容量差に基づいて、副反応による容量バランスずれ量を算出する請求項7に記載の密閉型二次電池の劣化診断システム。 The control device corrects the second curve using the maintenance factor so that the charge / discharge capacity Qc is the same as the charge / discharge capacity Qs, and changes the stage in the second curve after the correction. 8. The deterioration diagnosis system for a sealed secondary battery according to claim 7, wherein a capacity balance deviation amount due to a side reaction is calculated based on a charge / discharge capacity difference between a point and a stage change point corresponding to the predetermined reference state. .
  9.  前記第2曲線に現れるピークの幅に基づいて算出される充放電容量が、それに対応する所定の基準状態でのピークの幅に基づいて算出される充放電容量よりも大きい場合に、反応分布の拡大による劣化モードと判定する請求項7または8に記載の密閉型二次電池の劣化診断システム。 When the charge / discharge capacity calculated based on the peak width appearing in the second curve is larger than the charge / discharge capacity calculated based on the corresponding peak width in a predetermined reference state, The degradation diagnosis system for a sealed secondary battery according to claim 7, wherein the degradation mode is determined to be a degradation mode due to expansion.
  10.  反応分布の拡大による劣化モードと判定した場合に、前記第2曲線に現れるピークの立ち上がりの充電容量に充電開始時の残容量を加えた値の2倍を超えない範囲で定電流充電する請求項9に記載の密閉型二次電池の劣化診断システム。 The constant current charging is performed in a range not exceeding twice the value obtained by adding the remaining capacity at the start of charging to the charging capacity at the rising edge of the peak appearing in the second curve when it is determined that the deterioration mode is due to expansion of the reaction distribution. 10. A deterioration diagnosis system for a sealed secondary battery according to 9.
  11.  前記検出センサが、前記密閉型二次電池に貼り付けられる高分子マトリックス層と、検出部とを備え、
     前記高分子マトリックス層が、その高分子マトリックス層の変形に応じて外場に変化を与えるフィラーを分散させて含有し、前記検出部が前記外場の変化を検出する請求項7~10いずれか1項に記載の密閉型二次電池の劣化診断システム。
    The detection sensor includes a polymer matrix layer attached to the sealed secondary battery, and a detection unit,
    11. The polymer matrix layer contains dispersed fillers that change the external field according to deformation of the polymer matrix layer, and the detection unit detects the change in the external field. 2. A degradation diagnosis system for a sealed secondary battery according to item 1.
  12.  前記高分子マトリックス層が前記フィラーとしての磁性フィラーを含有し、前記検出部が前記外場としての磁場の変化を検出する請求項11に記載の密閉型二次電池の劣化診断システム。 The deterioration diagnosis system for a sealed secondary battery according to claim 11, wherein the polymer matrix layer contains a magnetic filler as the filler, and the detection unit detects a change in a magnetic field as the external field.
PCT/JP2015/065539 2014-07-10 2015-05-29 Sealed secondary battery deterioration diagnosis method and deterioration diagnosis system WO2016006359A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/312,897 US20180038917A1 (en) 2014-07-10 2015-05-29 Sealed secondary battery deterioration diagnosis method and deterioration diagnosis system
EP15819037.1A EP3168632B1 (en) 2014-07-10 2015-05-29 Sealed secondary battery deterioration diagnosis method and deterioration diagnosis system
CN201580030206.1A CN106471385A (en) 2014-07-10 2015-05-29 The deterioration diagnosis method of enclosed secondary battery and deterioration diagnostic system
KR1020167036374A KR20170009995A (en) 2014-07-10 2015-05-29 Sealed secondary batery deterioration diagnosis method and deterioration diagnosis system

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2014142099 2014-07-10
JP2014-142099 2014-07-10
JP2014-240180 2014-11-27
JP2014240180 2014-11-27
JP2015036892A JP6186385B2 (en) 2014-07-10 2015-02-26 Degradation diagnosis method and degradation diagnosis system for sealed secondary battery
JP2015-036892 2015-02-26

Publications (1)

Publication Number Publication Date
WO2016006359A1 true WO2016006359A1 (en) 2016-01-14

Family

ID=55064001

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/065539 WO2016006359A1 (en) 2014-07-10 2015-05-29 Sealed secondary battery deterioration diagnosis method and deterioration diagnosis system

Country Status (1)

Country Link
WO (1) WO2016006359A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017168422A (en) * 2016-03-15 2017-09-21 東洋ゴム工業株式会社 Method and system of predicting remaining capacity of sealed-type secondary battery
WO2017158923A1 (en) * 2016-03-15 2017-09-21 東洋ゴム工業株式会社 Sealed-type secondary battery remaining capacity prediction method, remaining capacity prediction system, battery internal information acquisition method, and battery control method
WO2019044067A1 (en) * 2017-08-29 2019-03-07 Toyo Tire株式会社 State prediction method for secondary battery, charge control method, and system
CN109690856A (en) * 2016-08-19 2019-04-26 通伊欧轮胎株式会社 Utilize the manufacturing method and battery pack of the battery pack of used battery
EP4089791A4 (en) * 2020-03-11 2023-08-09 LG Energy Solution, Ltd. Secondary battery and lithium precipitation detection method therefor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011007805A1 (en) * 2009-07-17 2011-01-20 本田技研工業株式会社 Monitoring system for lithium ion secondary cell and monitoring method for lithium ion secondary cell
JP2013196805A (en) * 2012-03-16 2013-09-30 Hitachi Ltd Lithium ion secondary battery system and method for controlling lithium ion secondary battery system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011007805A1 (en) * 2009-07-17 2011-01-20 本田技研工業株式会社 Monitoring system for lithium ion secondary cell and monitoring method for lithium ion secondary cell
JP2013196805A (en) * 2012-03-16 2013-09-30 Hitachi Ltd Lithium ion secondary battery system and method for controlling lithium ion secondary battery system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017168422A (en) * 2016-03-15 2017-09-21 東洋ゴム工業株式会社 Method and system of predicting remaining capacity of sealed-type secondary battery
WO2017158923A1 (en) * 2016-03-15 2017-09-21 東洋ゴム工業株式会社 Sealed-type secondary battery remaining capacity prediction method, remaining capacity prediction system, battery internal information acquisition method, and battery control method
CN109690856A (en) * 2016-08-19 2019-04-26 通伊欧轮胎株式会社 Utilize the manufacturing method and battery pack of the battery pack of used battery
WO2019044067A1 (en) * 2017-08-29 2019-03-07 Toyo Tire株式会社 State prediction method for secondary battery, charge control method, and system
EP4089791A4 (en) * 2020-03-11 2023-08-09 LG Energy Solution, Ltd. Secondary battery and lithium precipitation detection method therefor

Similar Documents

Publication Publication Date Title
JP6186385B2 (en) Degradation diagnosis method and degradation diagnosis system for sealed secondary battery
JP6209173B2 (en) Degradation diagnosis method and degradation diagnosis system for sealed secondary battery
TWI631356B (en) Residual capacity prediction method for sealed secondary battery, residual capacity prediction system, method for obtaining internal battery information, and battery control method
JP6176632B2 (en) Abnormality determination method for assembled battery and abnormality determination device for assembled battery
WO2019044067A1 (en) State prediction method for secondary battery, charge control method, and system
WO2018034019A1 (en) Assembled battery manufacturing method using used batteries, and assembled battery
WO2016006359A1 (en) Sealed secondary battery deterioration diagnosis method and deterioration diagnosis system
JP6200880B2 (en) Method for detecting deformation of sealed secondary battery and sealed secondary battery
WO2018173360A1 (en) Method for charging non-aqueous secondary cell
WO2017158923A1 (en) Sealed-type secondary battery remaining capacity prediction method, remaining capacity prediction system, battery internal information acquisition method, and battery control method
JP2019220348A (en) Secondary battery deformation detection system, method, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15819037

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15312897

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015819037

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015819037

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167036374

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE