WO2016006357A1 - Water pump and assembly method for water pump - Google Patents

Water pump and assembly method for water pump Download PDF

Info

Publication number
WO2016006357A1
WO2016006357A1 PCT/JP2015/065359 JP2015065359W WO2016006357A1 WO 2016006357 A1 WO2016006357 A1 WO 2016006357A1 JP 2015065359 W JP2015065359 W JP 2015065359W WO 2016006357 A1 WO2016006357 A1 WO 2016006357A1
Authority
WO
WIPO (PCT)
Prior art keywords
drive shaft
water pump
impeller
cross
shape
Prior art date
Application number
PCT/JP2015/065359
Other languages
French (fr)
Japanese (ja)
Inventor
雄介 古澤
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to US15/316,938 priority Critical patent/US20170114792A1/en
Priority to DE112015003163.4T priority patent/DE112015003163T5/en
Priority to CN201580033592.XA priority patent/CN106471255A/en
Priority to JP2016532494A priority patent/JP6188942B2/en
Publication of WO2016006357A1 publication Critical patent/WO2016006357A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/18Rotors
    • F04D29/20Mounting rotors on shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/021Units comprising pumps and their driving means containing a coupling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/02Selection of particular materials
    • F04D29/026Selection of particular materials especially adapted for liquid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/043Shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/18Rotors
    • F04D29/22Rotors specially for centrifugal pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/60Mounting; Assembling; Disassembling
    • F04D29/62Mounting; Assembling; Disassembling of radial or helico-centrifugal pumps
    • F04D29/628Mounting; Assembling; Disassembling of radial or helico-centrifugal pumps especially adapted for liquid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/30Retaining components in desired mutual position
    • F05D2260/36Retaining components in desired mutual position by a form fit connection, e.g. by interlocking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/40Organic materials
    • F05D2300/44Resins

Definitions

  • the present invention relates to a water pump which is applied to, for example, an engine cooling system of a motor vehicle and is provided to circulate cooling water in the cooling system, and a method of assembling the water pump.
  • Patent Document 1 As a conventional water pump of this type, one described in Patent Document 1 below is known.
  • this water pump includes a pump housing having a pump chamber therein, a cylindrical drive shaft formed of a synthetic resin material, and rotatably supported in the pump chamber, and one end of the drive shaft.
  • a synthetic resin impeller provided at the other end of the drive shaft; and a mechanical seal interposed between the pump housing and the drive shaft to seal between the pump chamber and the ball bearing And.
  • the impeller and the drive shaft are the vibration of the inner peripheral surface of the insertion hole formed in a substantially circular shape in a horizontal cross section at the central position of the impeller and the outer peripheral surface of the other end of the drive shaft inserted in the insertion hole. It is integrally rotatably coupled by welding.
  • the impeller and the drive shaft are integrally rotatably coupled by vibration welding as described above, when the vibration welding is insufficient, the bonding strength of the welding surface is reduced. When the cooling water is pumped, the connection is separated, which may cause slippage or slippage between the impeller and the drive shaft.
  • the present invention has been made in view of the circumstances of the conventional water pump, and provides a water pump that can control slippage of the impeller relative to the drive shaft and dropout from the drive shaft.
  • a drive shaft is disposed in a pump housing and is formed by a synthetic resin material, and a pulley rotatably provided integrally with one end of the drive shaft and transmitting power from a drive source to rotate the drive shaft;
  • An impeller formed of a synthetic resin material and fitted to the other end of the drive shaft through a fitting hole, and the impeller is interposed between the other end of the drive shaft and the fitting hole of the impeller
  • a restricting portion is provided which restricts the axial maximum engagement position of the impeller, and the axial movement of the impeller in the maximum engagement position cooperates with the restriction portion on the tip end side of the other end of the drive shaft
  • the cross-sectional shape of the portion fitted to the impeller as a rotation restricting portion
  • the cross-sectional shape of the fitting hole is the other end It was formed as a rotation regulation part as well as the part of It is characterized.
  • the coupling force between the impeller and the drive shaft can be improved, and slippage of the impeller relative to the drive shaft and detachment from the drive shaft can be restricted.
  • FIG. 1 is a longitudinal cross-sectional view of the water pump in the 1st Embodiment of this invention. It is an exploded perspective view of a water pump in a 1st embodiment. It is an A arrow line view of FIG. (A) is an enlarged perspective view of a drive shaft provided in the first embodiment, and (B) is a sectional view taken along the line AA of (A).
  • A) is a perspective view which shows and shows the principal part of 1st Embodiment
  • (B) is an enlarged view of (A).
  • FIG. 1 It is a disassembled perspective view which shows the operation process at the time of assembling
  • (A) is an enlarged perspective view of a drive shaft provided in a second embodiment of the present invention, and (B) is a cross-sectional view taken along the line BB of (A).
  • (A) is an enlarged perspective view of a drive shaft provided in a third embodiment of the present invention, and (B) is a cross-sectional view taken along the line CC of (A).
  • (A) is an enlarged perspective view of a drive shaft provided in a fourth embodiment of the present invention, and (B) is a cross-sectional view taken along the line DD of (A).
  • (A) is an enlarged perspective view of a drive shaft provided in a fifth embodiment of the present invention, and (B) is a cross-sectional view taken along the line EE of (A).
  • the water pump 1 is applied to a cooling device for circulating antifreeze liquid (ethylene glycol), which is cooling water, between a radiator of an automobile and an internal combustion engine.
  • antifreeze liquid ethylene glycol
  • the water pump 1 is directly attached by bolting or the like to the side of a cylinder block of an internal combustion engine (not shown) and has a pump housing 3 having a pump chamber 3 in the front end on the cylinder block side.
  • a pulley 5 rotatably supported by a single ball bearing 4 as a bearing on the front end side of the pump housing 2, and a metal insert interposed between the pulley 5 and the ball bearing 4 6 and a drive shaft 7 which is disposed through the inside of the pump housing 2 and has one end side integrally formed with the pulley 5 and is fixed to the other end side of the drive shaft 7 so as to be rotatable in the pump chamber 3
  • a mechanical shaft that is interposed between the pump housing 2 and the drive shaft 7 to seal between the pump chamber 3 and the ball bearing 4.
  • the pump housing 2 is integrally formed of an aluminum alloy material, and the housing body 10 on the side of the pump chamber 3 is formed in a deformed annular ring, and a cylindrical portion with a step diameter on the rear end side of the housing body 10 It has 11 in one.
  • the housing body 10 is provided at its front end with a flat annular mounting surface 10a that abuts on a flat portion of the side of the cylinder block, and a mounting bolt screwed to the cylinder block is inserted around the outer periphery.
  • a plurality of bosses 10c in which the bolt holes 10b are formed are provided in a projecting manner.
  • a discharge port 10d for discharging the cooling water flowing into the pump chamber 3 from the suction port on the radiator side (not shown) into the water jacket in the cylinder block as the impeller 8 rotates. It is formed.
  • the cylindrical portion 11 has a large diameter cylindrical portion 11a on the side of the pump chamber 3, and a medium diameter cylindrical portion 11b extending in the direction of the ball bearing 4 from the large diameter cylindrical portion 11a. And a small diameter cylindrical portion 11c extending from the middle diameter cylindrical portion 11b to one end side of the drive shaft 7.
  • the middle diameter cylindrical portion 11 b is vertically formed with a drain hole 12 through which water droplets of cooling water leaked from the mechanical seal 9 flow downward on the lower side in the direction of gravity.
  • a drain chamber 13 for collecting and storing water droplets dropped from the drain hole 12 is formed across the inside of the large diameter cylindrical portion 11a.
  • a lower end opening of the drain chamber 13 is sealed in a liquid tight manner by a drain cap 14.
  • the ball bearing 4 is general, and as shown in FIG. 1 and FIG. 2, the inner ring 4a press-fitted into the small diameter cylindrical portion 11c, the outer ring 4b press-fitted into the insert 6, and the inner ring A plurality of balls 4c are provided so as to be rollable between a ring 4a and an outer ring 4b via a cage.
  • the maximum press-fit position of the inner ring 4 a in the axial direction is regulated by the front end face of the medium-diameter cylindrical portion 11 b of the cylindrical portion 11.
  • the axial position of the outer ring 4 b is set in advance by the press-fit length into the insert 6.
  • first and second seal members 15 and 16 are provided at the axial direction front and rear ends of the ball bearing 4 for preventing intrusion of dust etc. into the ball bearing 4.
  • the two seal members 15 and 16 are formed in a substantially annular shape, and are disposed to face each other in the axial direction of the ball bearing 4.
  • the first seal member 15 is fixed in a sandwiched state between the middle diameter cylindrical portion 11b and one end surface of the inner ring 4a.
  • the second seal member 16 is fixed in a sandwiched state between the second seal member 16 and the other end surface of the inner ring 4a by a retainer 17 which is a holding member.
  • the pulley 5 is integrally formed with the drive shaft 7 by a synthetic resin material containing a glass fiber 26 described later, as shown in FIGS. 1 and 2, from the one end side of the drive shaft 7 in the radial direction.
  • a flange wall 5a which is a disk-shaped end wall extending, a large diameter cylindrical base 5b bent in the axial direction of the drive shaft 7 from the outer peripheral edge of the flange wall 5a, and the cylindrical base 5b
  • the belt mounting portion 5c is provided to project from the outer peripheral surface.
  • through holes 18 for inserting a jig at the time of assembly are axially formed at substantially equally spaced positions in the circumferential direction.
  • the reinforcing rib 19 is integrally provided on the outer surface along the radial direction from the central position.
  • the cylindrical base 5 b is provided with the metal cylindrical insert 6 on the inner peripheral side.
  • the insert 6 comprises a cylindrical main body 6a and a flange portion 6b integrally formed at the end of the main body 6a, and the flange portion 6b is embedded in the cylindrical base portion 5b at the time of resin molding of the pulley 5 Fixed.
  • the belt mounting portion 5c is configured such that a rotational force is transmitted to the outer periphery formed in the shape of a corrugated tooth by a transmission belt wound around a drive pulley fixed to the tip end portion of a crankshaft not shown. .
  • the drive shaft 7 is formed in a cylindrical shape and a step shape by a synthetic resin material into which glass fibers 26 described later are compounded, and is integrally integrated with the center of the flange wall 5 a of the pulley 5 from the axial direction.
  • a large diameter shaft portion 7a which is one end coupled to the middle diameter shaft portion 7b which is the other end portion axially extended from the other end edge of the large diameter shaft portion 7a, and the middle diameter shaft portion It is comprised from the small diameter axial part 7c which is the other end similarly extended axially from the other end edge of 7b.
  • the drive shaft 7 has a tapered shape in which the diameter gradually decreases from the large diameter shaft portion 7a to the tip of the small diameter shaft portion 7c, that is, the rigidity of the large diameter shaft portion 7a which is a connecting portion with the pulley 5 is secured. It is formed in a shape that takes into consideration the draft when drawing out from the mold after injection molding.
  • the impeller 8 is fitted to the medium diameter shaft portion 7 b so as to straddle the small diameter shaft portion 7 c via a fitting hole 23 described later.
  • a part of the middle diameter shaft portion 7b (fitting portion 20), which is a fitting range with the fitting hole 23, has a cross section as a rotation restricting portion that restricts the relative rotation of the impeller 8 with respect to the drive shaft 7. It is formed in the non-perfect circle shape.
  • the fitting portion 20 of the outer peripheral surface from the substantially central position in the axial direction of the medium diameter shaft portion 7b to the end edge on the small diameter shaft portion 7c side.
  • a pair of recesses 21 is formed at a position of 180 ° in the circumferential direction.
  • the outer circumferential surface of each of the recesses 21 is formed as a curved surface, and the circumferential side edges thereof are connected to the outer circumferential surface of the middle diameter shaft portion 7 b with a gentle curved surface.
  • the fitting portion 20 of the middle diameter shaft portion 7b which is a fitting range with the fitting hole 23 has a non-perfect circle shape having a cross-sectional shape that is point-symmetrical and has a smooth uneven shape. It has a shape.
  • the small diameter shaft portion 7c has a role as a guide portion when the impeller 8 is assembled, and the tip end portion is formed to project from the front end side of the impeller 8 and the protruding portion 7d is formed.
  • a tapered surface 7e is formed at the tip end edge.
  • annular first step 22 that constitutes a part of the restricting portion is formed so as to be orthogonal to the axial direction at the connection point between the medium diameter shaft 7b and the small diameter shaft 7c. .
  • the impeller 8 is integrally formed of a synthetic resin material and, as shown in FIG. 1 to FIG. 3 and FIG. 6, has a substantially disc-like base 8a and a central portion of the base 8a It is comprised from the axial part 8b and the eight blade parts 8c radially formed from the outer peripheral surface of the axial part 8b in the front side of the said base 8a.
  • the base 8a is formed to a predetermined thickness and rotates with a gap on the back of the pump chamber 3, and as shown in FIG. 2, FIG. 3 and FIG. A pair of small diameter through holes 8d are bored at approximately the middle position, and the mechanical seal 9 is cooled by flowing cooling water to the back surface of the base 8a through the small diameter through holes 8d, 8d. The seizure due to the sliding friction between the mechanical seal 9 and the drive shaft 7 is suppressed.
  • a fitting hole 23 into which the other end of the drive shaft 7 is fitted is formed in a penetrating manner in the inner axial direction of the shaft portion 8b, and the fitting hole 23 is fitted to the drive shaft 7 A position corresponding to the fitting portion 20 of the medium diameter shaft portion 7b is formed in the large diameter fitting hole portion 23a as a rotation restricting portion having a cross sectional shape substantially the same as the cross sectional shape of the fitting portion 20 There is.
  • the inner peripheral surface shape of the large diameter fitting hole portion 23a is formed in the same cross section wedge shape
  • the impeller 8 is fitted across the medium diameter shaft 7 b and the small diameter shaft 7 c of the drive shaft 7.
  • the small diameter fitting hole 23b through which the small diameter shaft portion 7c of the fitting hole 23 is inserted is formed in a cylindrical shape following the outer peripheral surface shape of the small diameter shaft portion 7c.
  • the large diameter fitting hole portion 23a is formed to have a slightly larger diameter and a uniform inner diameter with respect to the maximum diameter of the fitting portion 20 having a downward tapered shape toward the tip end side of the drive shaft 7
  • the small diameter fitting hole 23b is formed to have a slightly larger diameter and a uniform inner diameter with respect to the maximum diameter of the small diameter shaft portion 7c, and the impeller 8 and the drive shaft 7 are separated It is designed to be mated.
  • annular second step portion 24 which constitutes a part of the regulating portion is formed.
  • the second step portion 24 is formed to be orthogonal to the axial direction, and when the impeller 8 is inserted into the drive shaft 7, the drive formed to be orthogonal to the axial direction as well. It abuts on the first step portion 22 on the side of the shaft 7 so that the axial movement on the side of the large diameter shaft portion 7a beyond that is restricted.
  • the impeller 8 is determined by the first stepped portion 22 and the second stepped portion 24 to determine the maximum fitting position with respect to the drive shaft 7, and the axial movement from here to the large diameter shaft portion 7a is performed. It is supposed to be regulated.
  • the small diameter shaft portion 7c is formed to project from the front surface side of the impeller 8, but it is fixed to the projecting portion 7d.
  • a metal push nut 25 which is a member is engaged.
  • the push nut 25 is formed in a thin disc shape, and an insertion hole 25a smaller in diameter than the small diameter shaft portion 7c of the drive shaft 7 is formed at the center position. It is done.
  • a plurality of claws 25c are formed on the push nut 25 via a plurality of cut-outs 25b cut out in the direction of the insertion hole 25a from the outer peripheral part, and the push nut 25 is disposed at the maximum push-in position. It fixes by making each tip edge of each nail
  • the mechanical seal 9 is a general one as shown in FIG. 1 and FIG. 2, and the cartridge portion 9 a is fixed to the inner peripheral surface of the medium diameter cylindrical portion 11 b of the cylindrical portion 11; A sleeve portion 9b supported on the outer peripheral surface of the medium diameter shaft portion 7b of the shaft 7, and a seal portion 9c provided between the inner peripheral side of the cartridge portion 9a and the outer peripheral side of the sleeve portion 9b It consists of
  • the said pulley 5 and the drive shaft 7 are integrally resin-molded by the metal mold
  • This synthetic resin material is injected from a position corresponding to the end face of the small diameter shaft 7c of the drive shaft 7 of the mold, and is axially inserted into the flange wall 5a of the pulley 5 of the large diameter shaft 7a. When it flows to the coupled position, it flows radially to the position of the outer peripheral edge of the belt mounting portion 5c of the pulley 5 in this radial direction, whereby the entire mold is filled.
  • the glass fiber 26 is oriented in the flow direction of the synthetic resin material in the vicinity of the portion which was in contact with the mold at the time of resin molding, that is, in the vicinity of the outer peripheral surface of the pulley 5 and the drive shaft 7
  • the glass fiber 26a inside is oriented along the circumferential direction, whereas the glass near the outer peripheral surface is The fibers 26b are oriented along the axial direction (see the arrow in FIG. 5 (B)).
  • the impeller 8 is moved from the tip end side of the small diameter shaft portion 7c of the drive shaft 7 along the axial direction while being fitted to the large diameter shaft portion 7a side.
  • the first step 22 on the seventh side and the second step 24 on the impeller 8 abut against each other (a maximum fitting position).
  • the impeller 8 is rotated with respect to the drive shaft 7, the impeller 8 is further pushed toward the large diameter shaft portion 7a, and it is confirmed whether the fitting between the fitting portion 20 and the large diameter fitting hole 23a is secure. .
  • the push nut 25 is engaged with each of the claws 25c at the projecting portion 7d of the small diameter shaft 7c which protrudes from the front side of the shaft 8b of the impeller 8 while maintaining the impeller 8 in the maximum fitting position. Is inserted while being elastically deformed in the radial direction, and pushed into the front end surface position of the shaft portion 8b of the protruding portion 7d.
  • the push nut 25 is engaged with the outer peripheral surface of the projecting portion 7d while the claws 25c are elastically deformed in the radial direction. Then, the tip end edge of each claw 25c bites into the outer peripheral surface of the projecting portion 7d by elastic force (restoration force) in the diameter reducing direction, so that the push nut 25 is fixed in axial position. ing.
  • the impeller 8 is fitted with a large diameter fitting portion of the impeller 8 with the fitting portion 20 of the medium diameter shaft portion 7b of the drive shaft 7 formed in a substantially wedge shape in cross section.
  • the relative rotation is restricted by the foraminous part 23 a, and the axial movement is restricted by the restricting part consisting of the first and second step parts 22 and 24 and the push nut 25. It is firmly assembled.
  • the impeller 8 is rotated via the drive shaft 7 integrally formed with the pulley 5.
  • the pump action is performed, and cooling water is pumped from the discharge port 10d to the water jacket of the engine to cool the entire internal combustion engine.
  • the impeller is formed by fitting the fitting portion 20 of the medium diameter shaft portion 7b formed in substantially the same cross section wedge shape with the large diameter fitting hole portion 23a of the impeller 8
  • the relative rotation with respect to the drive shaft 7 was restricted to improve the coupling strength to the force in the rotational direction, that is, the rotation stopping force.
  • the coupling strength between the drive shaft 7 and the impeller 8 is improved, the idle rotation of the impeller 8 with respect to the drive shaft 7 and the dropout from the drive shaft 7 can be reliably suppressed. .
  • the push nut 25 is made of metal and the drive shaft 7 is made of synthetic resin, the small diameter shaft portion 7c is in contact with the tip edge of each claw 25c of the push nut 25. It is necessary to take into consideration the possibility that the part is corroded by resin creep (aging deterioration), the push nut 25 is detached from the drive shaft 7, and the connection between the drive shaft 7 and the impeller 8 is released.
  • the push nut 25 and the small diameter shaft portion are formed by using the push nut 25 which is formed in a thin disk shape and is fixed in line contact or point contact with the small diameter shaft portion 7c.
  • the contact range with 7c was made very small. That is, even if the resin creep occurs on the contact surface of the small diameter shaft portion 7c with the push nut 25 and the push nut 25 moves to the tip end side of the drive shaft 7, the range is extremely narrow. Can be reduced to maintain the connection between the drive shaft 7 and the impeller 8.
  • the small diameter shaft portion 7c of the drive shaft 7 is formed to project from the front end side of the impeller 8, and the push nut 25 is positioned at the front end surface of the shaft portion 8b of the impeller 8 at the projecting portion 7d. Therefore, even if the resin creep occurs and the push nut 25 moves to the tip side of the small diameter shaft portion 7c, it is bitten into the moved end and fixed again, and the drive shaft 7 and the impeller 8 and Connection is maintained.
  • the cross-sectional shape (wedge shape) of the fitting portion 20 is formed into a smooth uneven shape having no corner portion (edge), stress compared to a shape having a corner portion Concentration is less likely to occur.
  • the cross-sectional shape of the fitting portion 20 is also point-symmetrical, stress concentration is unlikely to occur regardless of the rotational direction, and, for example, it flows by inertia immediately after the operation of the water pump 1 is stopped. Even in the case of receiving a rotational force in a direction reverse to the normal direction from the cooling water, stress concentration is less likely to occur in the fitting portion 20.
  • the fitting portion 20 is formed in a shape that avoids stress concentration, it is possible to effectively suppress the deformation, breakage or the like of the drive shaft 7 (the fitting portion 20).
  • the glass fiber 26 is contained in the inside of the drive shaft 7, but the glass fiber 26 has an effect of improving the rigidity against the force orthogonal to the oriented direction. There is. That is, since the glass fibers 26b in the vicinity of the outer peripheral surface of the drive shaft 7 are oriented along the axial direction, the rigidity (torsional rigidity) with respect to the rotation direction which is the orthogonal direction is improved.
  • the outer peripheral surface of the fitting portion 20 is all formed by a curved surface and the surface area is larger than the shape including the linear portion, the glass oriented in the direction orthogonal to the rotation direction Since the proportion of the fibers 26 b is increased, the torsional rigidity of the fitting portion 20 is further improved.
  • the assembly of the impeller 8 to the drive shaft 7 is entirely performed in the axial direction, the assembling workability is improved and the tip of the drive shaft 7 is stronger in the radial direction. Since no load is applied, the assembly operation can be performed without deforming the drive shaft 7.
  • FIG. 9 shows the second embodiment, and the basic configuration is the same as that of the first embodiment, but the fitting portion 20 of the medium diameter shaft portion 7b of the drive shaft 7 and the large diameter fitting hole of the impeller 8 The difference is that 23a is formed in a substantially elliptical shape in cross section.
  • FIG. 10 shows the third embodiment, and the basic configuration is the same as that of the first embodiment, but the fitting portion 20 of the medium diameter shaft portion 7b of the drive shaft 7 and the large diameter fitting hole of the impeller 8 The difference is that the cross section 23a is formed in a substantially oval shape in cross section.
  • fourth and fifth embodiments 11 and 12 show the fourth and fifth embodiments of the present invention, in which the fitting portion 20 of the medium diameter shaft portion 7b of the drive shaft 7 and the large diameter fitting hole portion 23a of the impeller 8 are cross sections. It is formed in a polygonal shape.
  • the fitting portion 20 and the large diameter fitting hole 23a are formed in a substantially hexagonal cross section.
  • the fitting portion 20 and the large diameter fitting hole 23a are formed in a substantially rectangular shape in cross section.
  • corner portions 27 edges
  • stress concentration is likely to occur in the vicinity of the corner portions 27 as compared with the first embodiment and the like. Since the corner portions 27 firmly engage with the inner peripheral surface of the large diameter fitting hole portion 23a, the idle rotation of the impeller 8 with respect to the drive shaft 7 can be further suppressed (FIG. 11 (B), FIG. 12 (B )reference). Each corner 27 is rounded to avoid excessive stress concentration.
  • the drive shaft 7 and the pulley 5 are described as being integrally formed, but they may be separately formed.
  • the first and second step portions 22 and 24 are used as the restricting portions for restricting the maximum fitting position of the impeller 8 with respect to the drive shaft 7.
  • the restricting portions are limited to the step portions. It is not something that can be done.
  • a fixing member is not restricted to this, For example, it is also possible to apply a snap ring.

Abstract

The present invention comprises a drive shaft (7) formed from a synthetic resin material, a pulley (5) provided to be integrally rotatable with a large diameter shaft portion (7a) side of the drive shaft, and an impeller (8) formed from a synthetic resin material and fitted astride an intermediate shaft portion (7b) and small diameter shaft portion (7c) by means of a fitting hole (23), wherein first and second step portions (22, 24) that delimit the maximum fitting position of the impeller in the axial direction are provided between the other end of the drive shaft and the fitting hole, a pushnut (25) that, in concert with the first and second step portions, restricts the movement of the impeller (8) in the axial direction at the maximum fitting position is provided to a projection (7d) on the impeller front surface side of the drive shaft, the cross section of a fitting part (20) of the intermediate shaft portion is cocoon-shaped, and the cross section of a large diameter fitting aperture portion (23a) is the same cocoon shape as the fitting part (20). Consequently, the coupling force between the impeller and the drive shaft is improved and it is possible to restrict the slipping of the impeller with respect to the drive shaft and disengagement from the drive shaft.

Description

ウォータポンプ及び該ウォータポンプの組立方法Water pump and method of assembling the water pump
 本発明は、例えば自動車のエンジン冷却装置に適用され、該冷却装置内における冷却水の循環に供されるウォータポンプ及び該ウォータポンプの組立方法に関する。 The present invention relates to a water pump which is applied to, for example, an engine cooling system of a motor vehicle and is provided to circulate cooling water in the cooling system, and a method of assembling the water pump.
 この種の従来のウォータポンプとしては、以下の特許文献1に記載されたものが知られている。 As a conventional water pump of this type, one described in Patent Document 1 below is known.
 概略を説明すると、このウォータポンプは、内部にポンプ室を有するポンプハウジングと、合成樹脂材によって円柱状に形成され、前記ポンプ室内に回転自在に支持される駆動軸と、該駆動軸の一端部にフランジ壁を介して一体に結合され、外部から動力が伝達されて回転する合成樹脂製のプーリと、該プーリの内周側に円筒状の金属製インサートを介して設けられたボールベアリングと、前記駆動軸の他端部に設けられた合成樹脂製のインペラと、前記ポンプハウジングと前記駆動軸との間に介装されて、前記ポンプ室と前記ボールベアリングとの間をシールするメカニカルシールと、を備えている。 Generally described, this water pump includes a pump housing having a pump chamber therein, a cylindrical drive shaft formed of a synthetic resin material, and rotatably supported in the pump chamber, and one end of the drive shaft. A pulley made of synthetic resin integrally connected via a flange wall and rotated by external power transfer, and a ball bearing provided on the inner peripheral side of the pulley via a cylindrical metal insert, A synthetic resin impeller provided at the other end of the drive shaft; and a mechanical seal interposed between the pump housing and the drive shaft to seal between the pump chamber and the ball bearing And.
 前記インペラと駆動軸とは、インペラの中央位置に横断面ほぼ円形状に貫通形成された挿通孔の内周面と、前記挿通孔に挿通された駆動軸の他端部の外周面との振動溶着によって一体回転可能に結合されている。 The impeller and the drive shaft are the vibration of the inner peripheral surface of the insertion hole formed in a substantially circular shape in a horizontal cross section at the central position of the impeller and the outer peripheral surface of the other end of the drive shaft inserted in the insertion hole. It is integrally rotatably coupled by welding.
特開2002-349481号公報Japanese Patent Application Publication No. 2002-349481
 しかしながら、前記インペラと駆動軸とは、前述したように、振動溶着によって一体回転可能に結合されているものの、この振動溶着が不十分であった場合には、溶着面の結合強度が低下して、冷却水の圧送に際して結合が剥離され、これによって、インペラと駆動軸との間に空転や脱落が生じてしまうおそれがあった。 However, although the impeller and the drive shaft are integrally rotatably coupled by vibration welding as described above, when the vibration welding is insufficient, the bonding strength of the welding surface is reduced. When the cooling water is pumped, the connection is separated, which may cause slippage or slippage between the impeller and the drive shaft.
 本発明は、前記従来のウォータポンプの実情に鑑みて案出されたもので、インペラの駆動軸に対する空転や駆動軸からの脱落を規制し得るウォータポンプを提供するものである。 The present invention has been made in view of the circumstances of the conventional water pump, and provides a water pump that can control slippage of the impeller relative to the drive shaft and dropout from the drive shaft.
 本発明は、ポンプハウジング内に挿通配置され、合成樹脂材によって形成された駆動軸と、該駆動軸の一端側に一体回転可能に設けられ、駆動源から動力が伝達されて回転するプーリと、合成樹脂材によって形成され、嵌合孔を介して前記駆動軸の他端部と嵌合するインペラと、を備え、前記駆動軸の他端部と前記インペラの嵌合孔との間に、前記インペラの軸方向の最大嵌合位置を規制する規制部を設けると共に、前記駆動軸の他端部先端側に、前記最大嵌合位置にある前記インペラの軸方向の移動を前記規制部と協働して規制する固定部材を設け、前記駆動軸の他端部の前記インペラに嵌合する部位の横断面形状を回転規制部として形成すると共に、前記嵌合孔の横断面形状を前記他端部の部位と同じく回転規制部として形成したことを特徴としている。 According to the present invention, a drive shaft is disposed in a pump housing and is formed by a synthetic resin material, and a pulley rotatably provided integrally with one end of the drive shaft and transmitting power from a drive source to rotate the drive shaft; An impeller formed of a synthetic resin material and fitted to the other end of the drive shaft through a fitting hole, and the impeller is interposed between the other end of the drive shaft and the fitting hole of the impeller A restricting portion is provided which restricts the axial maximum engagement position of the impeller, and the axial movement of the impeller in the maximum engagement position cooperates with the restriction portion on the tip end side of the other end of the drive shaft Of the other end of the drive shaft and the cross-sectional shape of the portion fitted to the impeller as a rotation restricting portion, and the cross-sectional shape of the fitting hole is the other end It was formed as a rotation regulation part as well as the part of It is characterized.
 本発明によれば、インペラと駆動軸との結合力を向上させて、インペラの駆動軸に対する空転や駆動軸からの脱落を規制することができる。 According to the present invention, the coupling force between the impeller and the drive shaft can be improved, and slippage of the impeller relative to the drive shaft and detachment from the drive shaft can be restricted.
本発明の第1の実施形態におけるウォータポンプの縦断面図である。It is a longitudinal cross-sectional view of the water pump in the 1st Embodiment of this invention. 第1の実施形態におけるウォータポンプの分解斜視図である。It is an exploded perspective view of a water pump in a 1st embodiment. 図1のA矢視図である。It is an A arrow line view of FIG. (A)は第1の実施形態に供される駆動軸の拡大斜視図であり、(B)は(A)のA-A線断面図である。(A) is an enlarged perspective view of a drive shaft provided in the first embodiment, and (B) is a sectional view taken along the line AA of (A). (A)は第1の実施形態の要部を断面して示す斜視図であり、(B)は(A)の拡大図である。(A) is a perspective view which shows and shows the principal part of 1st Embodiment, (B) is an enlarged view of (A). 第1の実施形態に供されるインペラの背面斜視図である。It is a rear perspective view of an impeller provided to a 1st embodiment. 第1の実施形態に供されるインペラを駆動軸に組み付ける際の作業工程を示す分解斜視図である。It is a disassembled perspective view which shows the operation process at the time of assembling | attaching the impeller provided to 1st Embodiment to a drive shaft. 第1の実施形態に供されるインペラが駆動軸に組み付けられた状態を部分的に断面して示す斜視図である。It is a perspective view which partially shows in cross section the state where the impeller provided to a 1st embodiment was attached to a drive shaft. (A)は本発明の第2実施形態に供される駆動軸の拡大斜視図であり、(B)は(A)のB-B線断面図である。(A) is an enlarged perspective view of a drive shaft provided in a second embodiment of the present invention, and (B) is a cross-sectional view taken along the line BB of (A). (A)は本発明の第3実施形態に供される駆動軸の拡大斜視図であり、(B)は(A)のC-C線断面図である。(A) is an enlarged perspective view of a drive shaft provided in a third embodiment of the present invention, and (B) is a cross-sectional view taken along the line CC of (A). (A)は本発明の第4実施形態に供される駆動軸の拡大斜視図であり、(B)は(A)のD-D線断面図である。(A) is an enlarged perspective view of a drive shaft provided in a fourth embodiment of the present invention, and (B) is a cross-sectional view taken along the line DD of (A). (A)は本発明の第5実施形態に供される駆動軸の拡大斜視図であり、(B)は(A)のE-E線断面図である。(A) is an enlarged perspective view of a drive shaft provided in a fifth embodiment of the present invention, and (B) is a cross-sectional view taken along the line EE of (A).
〔第1実施形態〕
 以下、本発明に係るウォータポンプの各実施形態を図面に基づいて詳述する。このウォータポンプ1は、自動車のラジエータと内燃機関の間で冷却水である不凍液(エチレングリコール)を循環させる冷却装置に適用されている。
First Embodiment
Hereinafter, each embodiment of a water pump concerning the present invention is explained in full detail based on a drawing. The water pump 1 is applied to a cooling device for circulating antifreeze liquid (ethylene glycol), which is cooling water, between a radiator of an automobile and an internal combustion engine.
 このウォータポンプ1は、図1及び図2に示すように、図外の内燃機関のシリンダブロックの側部にボルト固定等により直接取り付けられ、シリンダブロック側の前端部内にポンプ室3を有するポンプハウジング2と、該ポンプハウジング2の前端側に軸受部である単一のボールベアリング4によって回転自在に支持されたプーリ5と、該プーリ5とボールベアリング4の間に介装された金属製のインサート6と、前記ポンプハウジング2の内部に挿通配置され、一端側が前記プーリ5と一体形成された駆動軸7と、該駆動軸7の他端側に固定されて、前記ポンプ室3内に回転自在に収容されたインペラ8と、前記ポンプハウジング2と駆動軸7との間に介装されて、前記ポンプ室3と前記ボールベアリング4との間をシールするメカニカルシール9と、から主として構成されている。 As shown in FIGS. 1 and 2, the water pump 1 is directly attached by bolting or the like to the side of a cylinder block of an internal combustion engine (not shown) and has a pump housing 3 having a pump chamber 3 in the front end on the cylinder block side. 2, a pulley 5 rotatably supported by a single ball bearing 4 as a bearing on the front end side of the pump housing 2, and a metal insert interposed between the pulley 5 and the ball bearing 4 6 and a drive shaft 7 which is disposed through the inside of the pump housing 2 and has one end side integrally formed with the pulley 5 and is fixed to the other end side of the drive shaft 7 so as to be rotatable in the pump chamber 3 And a mechanical shaft that is interposed between the pump housing 2 and the drive shaft 7 to seal between the pump chamber 3 and the ball bearing 4. A seal 9, which is mainly comprised.
 前記ポンプハウジング2は、アルミニウム合金材で一体に形成され、ポンプ室3側のハウジング本体10が異形円環状に形成されていると共に、該ハウジング本体10の後端側に段差径状の筒状部11を一体に有している。 The pump housing 2 is integrally formed of an aluminum alloy material, and the housing body 10 on the side of the pump chamber 3 is formed in a deformed annular ring, and a cylindrical portion with a step diameter on the rear end side of the housing body 10 It has 11 in one.
 前記ハウジング本体10は、前端にシリンダブロックの側部に有する平面部に当接する平坦な環状の取付面10aが形成されていると共に、外周にはシリンダブロックに螺着固定される取付ボルトが挿通されるボルト孔10bが形成されたボス部10cが複数突設されている。 The housing body 10 is provided at its front end with a flat annular mounting surface 10a that abuts on a flat portion of the side of the cylinder block, and a mounting bolt screwed to the cylinder block is inserted around the outer periphery. A plurality of bosses 10c in which the bolt holes 10b are formed are provided in a projecting manner.
 また、このハウジング本体10の内部には、図外のラジエータ側の吸入ポートからポンプ室3に流入した冷却水をインペラ8の回転に伴ってシリンダブロック内のウォータジャケット内に吐出する吐出ポート10dが形成されている。 Further, inside the housing main body 10, there is a discharge port 10d for discharging the cooling water flowing into the pump chamber 3 from the suction port on the radiator side (not shown) into the water jacket in the cylinder block as the impeller 8 rotates. It is formed.
 前記筒状部11は、図1~図3に示すように、ポンプ室3側の大径筒部11aと、該大径筒部11aから前記ボールベアリング4方向へ延出した中径筒部11bと、該中径筒部11bから駆動軸7の一端側へ延出した小径筒部11cと、から構成されている。 As shown in FIGS. 1 to 3, the cylindrical portion 11 has a large diameter cylindrical portion 11a on the side of the pump chamber 3, and a medium diameter cylindrical portion 11b extending in the direction of the ball bearing 4 from the large diameter cylindrical portion 11a. And a small diameter cylindrical portion 11c extending from the middle diameter cylindrical portion 11b to one end side of the drive shaft 7.
 前記中径筒部11bは、重力方向下側に前記メカニカルシール9から漏れ出た冷却水の水滴を流下させるドレン孔12が上下方向に貫通形成されていると共に、該ドレン孔12の下側には該ドレン孔12から滴下した水滴を捕集貯留するドレンチャンバ13が前記大径筒部11aの内部に跨って形成されている。このドレンチャンバ13は、下端開口がドレンキャップ14によって液密的に封止されている。 The middle diameter cylindrical portion 11 b is vertically formed with a drain hole 12 through which water droplets of cooling water leaked from the mechanical seal 9 flow downward on the lower side in the direction of gravity. A drain chamber 13 for collecting and storing water droplets dropped from the drain hole 12 is formed across the inside of the large diameter cylindrical portion 11a. A lower end opening of the drain chamber 13 is sealed in a liquid tight manner by a drain cap 14.
 前記ボールベアリング4は、一般的なものであって、図1及び図2に示すように、前記小径筒部11cに圧入された内輪4aと、前記インサート6に圧入された外輪4bと、前記内輪4aと外輪4bとの間に保持器を介して転動自在に設けられた複数のボール4cとから構成されている。 The ball bearing 4 is general, and as shown in FIG. 1 and FIG. 2, the inner ring 4a press-fitted into the small diameter cylindrical portion 11c, the outer ring 4b press-fitted into the insert 6, and the inner ring A plurality of balls 4c are provided so as to be rollable between a ring 4a and an outer ring 4b via a cage.
 前記内輪4aは、その軸方向の最大圧入位置が前記筒状部11の中径筒部11bの前端面によって規制されている。一方、外輪4bは、予め前記インサート6内への圧入長さで軸方向の位置が設定される。 The maximum press-fit position of the inner ring 4 a in the axial direction is regulated by the front end face of the medium-diameter cylindrical portion 11 b of the cylindrical portion 11. On the other hand, the axial position of the outer ring 4 b is set in advance by the press-fit length into the insert 6.
 前記ボールベアリング4の軸方向前後端には、図1及び図2に示すように、ボールベアリング4内部に塵芥などの侵入を阻止する一対の第1,第2シール部材15,16がそれぞれ設けられており、この両シール部材15,16は、ほぼ円環状に形成されると共に、ボールベアリング4の軸方向両側を覆うように対向配置されている。 As shown in FIGS. 1 and 2, a pair of first and second seal members 15 and 16 are provided at the axial direction front and rear ends of the ball bearing 4 for preventing intrusion of dust etc. into the ball bearing 4. The two seal members 15 and 16 are formed in a substantially annular shape, and are disposed to face each other in the axial direction of the ball bearing 4.
 前記第1シール部材15は、前記中径筒部11bと内輪4aの一端面との間に狭持状態に固定されている。一方、第2シール部材16は、保持部材であるリテーナ17によって内輪4aの他端面との間に狭持状態に固定されている。 The first seal member 15 is fixed in a sandwiched state between the middle diameter cylindrical portion 11b and one end surface of the inner ring 4a. On the other hand, the second seal member 16 is fixed in a sandwiched state between the second seal member 16 and the other end surface of the inner ring 4a by a retainer 17 which is a holding member.
 前記プーリ5は、図1及び図2に示すように、後述するガラス繊維26の配合された合成樹脂材により前記駆動軸7と一体成形されており、該駆動軸7の一端側から径方向に延出した円盤状の端壁であるフランジ壁5aと、該フランジ壁5aの外周縁から駆動軸7の軸方向に折曲された大径状の筒状基部5bと、該筒状基部5bの外周面に突設されたベルト装着部5cとから構成されている。 The pulley 5 is integrally formed with the drive shaft 7 by a synthetic resin material containing a glass fiber 26 described later, as shown in FIGS. 1 and 2, from the one end side of the drive shaft 7 in the radial direction. A flange wall 5a which is a disk-shaped end wall extending, a large diameter cylindrical base 5b bent in the axial direction of the drive shaft 7 from the outer peripheral edge of the flange wall 5a, and the cylindrical base 5b The belt mounting portion 5c is provided to project from the outer peripheral surface.
 前記フランジ壁5aは、図1及び図2に示すように、円周方向のほぼ等間隔位置に組み付け時の治具を挿入するための貫通孔18が軸方向へ6つ貫通成形されていると共に、外面には中央位置から放射方向へ沿った補強リブ19が一体に設けられている。 As shown in FIGS. 1 and 2, in the flange wall 5a, six through holes 18 for inserting a jig at the time of assembly are axially formed at substantially equally spaced positions in the circumferential direction. The reinforcing rib 19 is integrally provided on the outer surface along the radial direction from the central position.
 前記筒状基部5bは、図1に示すように、内周側に金属円筒状の前記インサート6が設けられている。このインサート6は、円筒状の本体6aと、該本体6aの先端に一体に有するフランジ部6bと、から構成され、プーリ5の樹脂成形時に前記フランジ部6bが筒状基部5bに埋設されて一体的に固定されている。 As shown in FIG. 1, the cylindrical base 5 b is provided with the metal cylindrical insert 6 on the inner peripheral side. The insert 6 comprises a cylindrical main body 6a and a flange portion 6b integrally formed at the end of the main body 6a, and the flange portion 6b is embedded in the cylindrical base portion 5b at the time of resin molding of the pulley 5 Fixed.
 前記ベルト装着部5cは、波形歯状に形成された外周に、図外のクランクシャフトの先端部に固定された駆動プーリに巻回された伝達ベルトによって回転力が伝達されるようになっている。 The belt mounting portion 5c is configured such that a rotational force is transmitted to the outer periphery formed in the shape of a corrugated tooth by a transmission belt wound around a drive pulley fixed to the tip end portion of a crankshaft not shown. .
 前記駆動軸7は、図1に示すように、後述するガラス繊維26が配合された合成樹脂材によって円柱状でかつ段差形状に形成され、前記プーリ5のフランジ壁5aの中央に軸方向から一体に結合された一端部である大径軸部7aと、該大径軸部7aの他端縁から軸方向に延出された他端部である中径軸部7bと、該中径軸部7bの他端縁から軸方向に延出された同じく他端部である小径軸部7cと、から構成されている。 As shown in FIG. 1, the drive shaft 7 is formed in a cylindrical shape and a step shape by a synthetic resin material into which glass fibers 26 described later are compounded, and is integrally integrated with the center of the flange wall 5 a of the pulley 5 from the axial direction. A large diameter shaft portion 7a which is one end coupled to the middle diameter shaft portion 7b which is the other end portion axially extended from the other end edge of the large diameter shaft portion 7a, and the middle diameter shaft portion It is comprised from the small diameter axial part 7c which is the other end similarly extended axially from the other end edge of 7b.
 また、前記駆動軸7は、前記大径軸部7aから小径軸部7cの先端へと漸次小径するテーパ形状、つまりプーリ5との結合部である大径軸部7aの剛性を確保しつつ、射出成形後の型から引き抜く際の抜き勾配を考慮した形状に形成されている。 Further, the drive shaft 7 has a tapered shape in which the diameter gradually decreases from the large diameter shaft portion 7a to the tip of the small diameter shaft portion 7c, that is, the rigidity of the large diameter shaft portion 7a which is a connecting portion with the pulley 5 is secured. It is formed in a shape that takes into consideration the draft when drawing out from the mold after injection molding.
 前記中径軸部7bには、図1及び図8に示すように、前記インペラ8が後述する嵌合孔23を介して小径軸部7cと跨るようにして嵌合されるようになっており、この嵌合孔23との嵌合範囲である中径軸部7bの一部(嵌合部位20)は、前記インペラ8の前記駆動軸7に対する相対回転を規制する回転規制部として、横断面非真円形状に形成されている。 As shown in FIGS. 1 and 8, the impeller 8 is fitted to the medium diameter shaft portion 7 b so as to straddle the small diameter shaft portion 7 c via a fitting hole 23 described later. A part of the middle diameter shaft portion 7b (fitting portion 20), which is a fitting range with the fitting hole 23, has a cross section as a rotation restricting portion that restricts the relative rotation of the impeller 8 with respect to the drive shaft 7. It is formed in the non-perfect circle shape.
 具体的に説明すると、中径軸部7bの軸方向ほぼ中央位置から小径軸部7c側の端縁までの外周面の嵌合部位20は、図4(A),(B)に示すように、円周方向180°位置に一対の凹部21が形成されている。この各凹部21,21は、外周面が曲面にて形成されていると共に、その円周方向両側縁が中径軸部7bの外周面となだらかな曲面をもって連接している。 Specifically, as shown in FIGS. 4A and 4B, the fitting portion 20 of the outer peripheral surface from the substantially central position in the axial direction of the medium diameter shaft portion 7b to the end edge on the small diameter shaft portion 7c side. A pair of recesses 21 is formed at a position of 180 ° in the circumferential direction. The outer circumferential surface of each of the recesses 21 is formed as a curved surface, and the circumferential side edges thereof are connected to the outer circumferential surface of the middle diameter shaft portion 7 b with a gentle curved surface.
 これにより、前記嵌合孔23との嵌合範囲である中径軸部7bの前記嵌合部位20は、横断面形状が点対称でかつ滑らかな凹凸形状に形成された非真円形状の繭形状となっている。 As a result, the fitting portion 20 of the middle diameter shaft portion 7b, which is a fitting range with the fitting hole 23, has a non-perfect circle shape having a cross-sectional shape that is point-symmetrical and has a smooth uneven shape. It has a shape.
 前記小径軸部7cは、前記インペラ8を組み付ける際のガイド部としての役割を有しており、該インペラ8の前端側から先端部が突出するように形成されていると共に、この突出部位7dの先端縁には、テーパ面7eが形成されている。 The small diameter shaft portion 7c has a role as a guide portion when the impeller 8 is assembled, and the tip end portion is formed to project from the front end side of the impeller 8 and the protruding portion 7d is formed. A tapered surface 7e is formed at the tip end edge.
 また、前記中径軸部7bと小径軸部7cとの結合個所には、規制部の一部を構成する円環状の第1段差部22が軸方向に対して直交するように形成されている。 Further, an annular first step 22 that constitutes a part of the restricting portion is formed so as to be orthogonal to the axial direction at the connection point between the medium diameter shaft 7b and the small diameter shaft 7c. .
 前記インペラ8は、合成樹脂材によって一体に形成され、図1~図3及び図6に示すように、ほぼ円盤状の基部8aと、該基部8aの中央部から前後軸方向へ突設された軸部8bと、前記基部8aの前面側でかつ前記軸部8bの外周面から放射状に形成された8枚の羽根部8cと、から構成されている。 The impeller 8 is integrally formed of a synthetic resin material and, as shown in FIG. 1 to FIG. 3 and FIG. 6, has a substantially disc-like base 8a and a central portion of the base 8a It is comprised from the axial part 8b and the eight blade parts 8c radially formed from the outer peripheral surface of the axial part 8b in the front side of the said base 8a.
 前記基部8aは、所定肉厚に形成されて、前記ポンプ室3の背面に隙間をもって回転すると共に、図2,図3及び図6に示すように、その円周方向180°位置でかつ径方向ほぼ中間位置に一対の小径貫通孔8dが穿設されており、該各小径貫通孔8d,8dを介して冷却水を基部8aの背面へ流入させることで、前記メカニカルシール9を冷却して、該メカニカルシール9と前記駆動軸7との摺動摩擦による焼き付きを抑制するようになっている。 The base 8a is formed to a predetermined thickness and rotates with a gap on the back of the pump chamber 3, and as shown in FIG. 2, FIG. 3 and FIG. A pair of small diameter through holes 8d are bored at approximately the middle position, and the mechanical seal 9 is cooled by flowing cooling water to the back surface of the base 8a through the small diameter through holes 8d, 8d. The seizure due to the sliding friction between the mechanical seal 9 and the drive shaft 7 is suppressed.
 前記軸部8bの内部軸方向には、前記駆動軸7の他端部が嵌入する嵌合孔23が貫通形成されており、この嵌合孔23は、前記駆動軸7と嵌合した際の中径軸部7bの嵌合部位20と相当する位置が、該嵌合部位20の横断面形状とほぼ同一な横断面形状を有する回転規制部としての大径嵌合孔部23aに形成されている。 A fitting hole 23 into which the other end of the drive shaft 7 is fitted is formed in a penetrating manner in the inner axial direction of the shaft portion 8b, and the fitting hole 23 is fitted to the drive shaft 7 A position corresponding to the fitting portion 20 of the medium diameter shaft portion 7b is formed in the large diameter fitting hole portion 23a as a rotation restricting portion having a cross sectional shape substantially the same as the cross sectional shape of the fitting portion 20 There is.
 すなわち、前記中径軸部7bの嵌合部位20が横断面繭形状の軸部に形成されている一方で、大径嵌合孔部23aの内周面形状が同一な横断面繭形状に形成されており、これによって、前記インペラ8が前記駆動軸7の中径軸部7bと小径軸部7cとに跨って嵌合されるようになっている。また、嵌合孔23の小径軸部7cが挿通される小径嵌合孔部23bは、前記小径軸部7cの外周面形状に倣って円筒状に形成されている。 That is, while the fitting portion 20 of the medium diameter shaft portion 7b is formed on the shaft portion with a cross section wedge shape, the inner peripheral surface shape of the large diameter fitting hole portion 23a is formed in the same cross section wedge shape Thus, the impeller 8 is fitted across the medium diameter shaft 7 b and the small diameter shaft 7 c of the drive shaft 7. The small diameter fitting hole 23b through which the small diameter shaft portion 7c of the fitting hole 23 is inserted is formed in a cylindrical shape following the outer peripheral surface shape of the small diameter shaft portion 7c.
 なお、前記大径嵌合孔部23aは、前記駆動軸7の先端側へ向かって下りテーパ形状を有する嵌合部位20の最大径に対して僅かに大径でかつ均一な内径に形成されていると共に、前記小径嵌合孔部23bは、前記小径軸部7cの最大径に対して僅かに大径でかつ均一な内径に形成されており、前記インペラ8と駆動軸7とは、すきまばめ状に嵌合されるようになっている。 The large diameter fitting hole portion 23a is formed to have a slightly larger diameter and a uniform inner diameter with respect to the maximum diameter of the fitting portion 20 having a downward tapered shape toward the tip end side of the drive shaft 7 The small diameter fitting hole 23b is formed to have a slightly larger diameter and a uniform inner diameter with respect to the maximum diameter of the small diameter shaft portion 7c, and the impeller 8 and the drive shaft 7 are separated It is designed to be mated.
 さらに、前記嵌合孔23の前記大径嵌合孔部23aと小径嵌合孔部23bとの間には、規制部の一部を構成する円環状の第2段差部24が形成されている。 Further, between the large diameter fitting hole portion 23a and the small diameter fitting hole portion 23b of the fitting hole 23, an annular second step portion 24 which constitutes a part of the regulating portion is formed. .
 この第2段差部24は、軸方向に対して直交するように形成されており、駆動軸7にインペラ8を嵌入させた際に、同じく軸方向に対して直交するように形成された前記駆動軸7側の第1段差部22と当接し、それ以上の大径軸部7a側の軸方向の移動が規制されるようになっている。 The second step portion 24 is formed to be orthogonal to the axial direction, and when the impeller 8 is inserted into the drive shaft 7, the drive formed to be orthogonal to the axial direction as well. It abuts on the first step portion 22 on the side of the shaft 7 so that the axial movement on the side of the large diameter shaft portion 7a beyond that is restricted.
 したがって、前記インペラ8は、前記第1段差部22と第2段差部24とによって、駆動軸7に対する最大嵌合位置が定められると共に、ここから大径軸部7a側への軸方向の移動が規制されるようになっている。 Therefore, the impeller 8 is determined by the first stepped portion 22 and the second stepped portion 24 to determine the maximum fitting position with respect to the drive shaft 7, and the axial movement from here to the large diameter shaft portion 7a is performed. It is supposed to be regulated.
 また、前記インペラ8を駆動軸7に組み付けた際には、前述したように、インペラ8の前面側から小径軸部7cが突出するように形成されているが、この突出部位7dには、固定部材である金属製のプッシュナット25が係入されている。 Further, when the impeller 8 is assembled to the drive shaft 7, as described above, the small diameter shaft portion 7c is formed to project from the front surface side of the impeller 8, but it is fixed to the projecting portion 7d. A metal push nut 25 which is a member is engaged.
 前記プッシュナット25は、図1及び図2に示すように、薄板円板状に形成されると共に、その中央位置には、前記駆動軸7の小径軸部7cよりも小径な挿入孔25aが形成されている。 As shown in FIGS. 1 and 2, the push nut 25 is formed in a thin disc shape, and an insertion hole 25a smaller in diameter than the small diameter shaft portion 7c of the drive shaft 7 is formed at the center position. It is done.
 また、プッシュナット25には、外周部から挿入孔25a方向へ切り欠かれた複数の切り込み部25bを介して複数の爪部25cが形成されており、前記プッシュナット25は、最大押し込み位置で前記各爪部25cの各先端縁を前記突出部位7dの外周面に線接触もしくは点接触状に食い込ませることによって固定されている。これにより、前記インペラ8は、前記両段差部22,24側と反対側への軸方向の移動が規制されるようになっている。 Further, a plurality of claws 25c are formed on the push nut 25 via a plurality of cut-outs 25b cut out in the direction of the insertion hole 25a from the outer peripheral part, and the push nut 25 is disposed at the maximum push-in position. It fixes by making each tip edge of each nail | claw part 25c bite in the outer peripheral surface of the said protrusion part 7d in line contact or point contact form. As a result, the movement of the impeller 8 in the axial direction to the side opposite to the step portions 22 and 24 is restricted.
 前記メカニカルシール9は、図1及び図2に示すように、一般的なものであって、前記筒状部11の中径筒部11bの内周面に固定されたカートリッジ部9aと、前記駆動軸7の中径軸部7bの外周面に支持されたスリーブ部9bと、前記カートリッジ部9aの内周側と前記スリーブ部9bの外周側との間に設けられて摺動するシール部9cとから構成されている。 The mechanical seal 9 is a general one as shown in FIG. 1 and FIG. 2, and the cartridge portion 9 a is fixed to the inner peripheral surface of the medium diameter cylindrical portion 11 b of the cylindrical portion 11; A sleeve portion 9b supported on the outer peripheral surface of the medium diameter shaft portion 7b of the shaft 7, and a seal portion 9c provided between the inner peripheral side of the cartridge portion 9a and the outer peripheral side of the sleeve portion 9b It consists of
 なお、前記プーリ5及び駆動軸7は、前述したように、金型により一体に樹脂成形されているが、その成形の際には、短いガラス繊維26が配合された合成樹脂材が用いられる。 In addition, although the said pulley 5 and the drive shaft 7 are integrally resin-molded by the metal mold | die as mentioned above, the synthetic resin material with which the short glass fiber 26 was mix | blended is used in the case of the shaping | molding.
 この合成樹脂材は、前記金型の前記駆動軸7の小径軸部7cの先端面と対応する位置から注入され、軸方向に沿って大径軸部7aの前記プーリ5のフランジ壁5aとの結合位置まで流動すると、今度はプーリ5のベルト装着部5cの外周縁位置へ向かって径方向へと放射状に流動し、これにより、金型全体に充填されるようになっている。 This synthetic resin material is injected from a position corresponding to the end face of the small diameter shaft 7c of the drive shaft 7 of the mold, and is axially inserted into the flange wall 5a of the pulley 5 of the large diameter shaft 7a. When it flows to the coupled position, it flows radially to the position of the outer peripheral edge of the belt mounting portion 5c of the pulley 5 in this radial direction, whereby the entire mold is filled.
 このとき、前記ガラス繊維26は、樹脂成形時に前記金型と接していた部位の近傍、つまり、前記プーリ5及び駆動軸7の外周面近傍において合成樹脂材の流動方向へ配向されており、例えば、図5(A),(B)に示す駆動軸7の中径軸部7bにおいては、内部のガラス繊維26aが円周方向に沿って配向されているのに対して、外周面近傍のガラス繊維26bは軸方向に沿って配向されている(図5(B)の矢印参照)。
〔インペラと駆動軸との組付方法〕
 以下、前記インペラ8の駆動軸7に対する組付方法について説明する。
At this time, the glass fiber 26 is oriented in the flow direction of the synthetic resin material in the vicinity of the portion which was in contact with the mold at the time of resin molding, that is, in the vicinity of the outer peripheral surface of the pulley 5 and the drive shaft 7 In the medium diameter shaft portion 7b of the drive shaft 7 shown in FIGS. 5 (A) and 5 (B), the glass fiber 26a inside is oriented along the circumferential direction, whereas the glass near the outer peripheral surface is The fibers 26b are oriented along the axial direction (see the arrow in FIG. 5 (B)).
[Assembling method of impeller and drive shaft]
Hereinafter, a method of assembling the impeller 8 to the drive shaft 7 will be described.
 まず、前記インペラ8を前記駆動軸7に対して相対回転させることで、駆動軸7の嵌合部位20とインペラ8の大径嵌合孔部23aとを予め位置合わせしておく。 First, by relatively rotating the impeller 8 with respect to the drive shaft 7, the fitting portion 20 of the drive shaft 7 and the large diameter fitting hole 23a of the impeller 8 are aligned in advance.
 次に、図7に示すように、前記インペラ8を、前記駆動軸7の小径軸部7cの先端縁側から軸方向に沿って前記大径軸部7a側へ嵌合させつつ移動させ、駆動軸7側の第1段差部22とインペラ8側の第2段差部24とが当接する位置(最大嵌合位置)まで押し込む。このとき、インペラ8を駆動軸7に対して回転させつつ大径軸部7a側へさらに押し込み、前記嵌合部位20と大径嵌合孔部23aとの嵌合が確実であるかを確認する。 Next, as shown in FIG. 7, the impeller 8 is moved from the tip end side of the small diameter shaft portion 7c of the drive shaft 7 along the axial direction while being fitted to the large diameter shaft portion 7a side. The first step 22 on the seventh side and the second step 24 on the impeller 8 abut against each other (a maximum fitting position). At this time, while the impeller 8 is rotated with respect to the drive shaft 7, the impeller 8 is further pushed toward the large diameter shaft portion 7a, and it is confirmed whether the fitting between the fitting portion 20 and the large diameter fitting hole 23a is secure. .
 その後、前記インペラ8を前記最大嵌合位置に維持しつつ、該インペラ8の軸部8bの前面側から突出した前記小径軸部7cの突出部位7dに、前記プッシュナット25を、各爪部25cを拡径方向へ弾性変形させながら係入させ、前記突出部位7dの前記軸部8bの前端面位置にまで押し込む。 Thereafter, the push nut 25 is engaged with each of the claws 25c at the projecting portion 7d of the small diameter shaft 7c which protrudes from the front side of the shaft 8b of the impeller 8 while maintaining the impeller 8 in the maximum fitting position. Is inserted while being elastically deformed in the radial direction, and pushed into the front end surface position of the shaft portion 8b of the protruding portion 7d.
 これにより、前記プッシュナット25は、各爪部25cが拡径方向へ弾性変形された状態のまま前記突出部位7dの外周面に係入される。そして、各爪部25cの先端縁が縮径方向への弾性力(復原力)によって前記突出部位7dの外周面に食い込むことにより、前記プッシュナット25は、軸方向位置が固定されるようになっている。 As a result, the push nut 25 is engaged with the outer peripheral surface of the projecting portion 7d while the claws 25c are elastically deformed in the radial direction. Then, the tip end edge of each claw 25c bites into the outer peripheral surface of the projecting portion 7d by elastic force (restoration force) in the diameter reducing direction, so that the push nut 25 is fixed in axial position. ing.
 以上の方法により、前記インペラ8は、図8に示すように、それぞれ横断面ほぼ繭形状に形成された前記駆動軸7の中径軸部7bの嵌合部位20と前記インペラ8の大径嵌合孔部23aとによって相対回転が規制されると共に、前記第1,第2段差部22,24からなる規制部と前記プッシュナット25とによって軸方向の移動が規制されて、駆動軸7に対して強固に組み付けられる。
〔第1実施形態の作用効果〕
 したがって、この実施形態によれば、機関のクランクシャフトが回転駆動して前記プーリ5が回転駆動されると、該プーリ5と一体成形された前記駆動軸7を介して前記インペラ8が回転してポンプ作用を行い、冷却水を前記吐出ポート10dから機関のウォータジャケットに圧送して内燃機関全体の冷却を行う。
By the above method, as shown in FIG. 8, the impeller 8 is fitted with a large diameter fitting portion of the impeller 8 with the fitting portion 20 of the medium diameter shaft portion 7b of the drive shaft 7 formed in a substantially wedge shape in cross section. The relative rotation is restricted by the foraminous part 23 a, and the axial movement is restricted by the restricting part consisting of the first and second step parts 22 and 24 and the push nut 25. It is firmly assembled.
[Operation and effect of the first embodiment]
Therefore, according to this embodiment, when the crankshaft of the engine is rotationally driven and the pulley 5 is rotationally driven, the impeller 8 is rotated via the drive shaft 7 integrally formed with the pulley 5. The pump action is performed, and cooling water is pumped from the discharge port 10d to the water jacket of the engine to cool the entire internal combustion engine.
 このとき、前記駆動軸7とインペラ8との間には、回転力の伝達に伴うモーメント力(円周方向の力)及び前記各羽根部8cが冷却水を圧送する際の反力による駆動軸7の先端方向へのアキシャル荷重(軸方向の力)が作用するが、駆動軸7とインペラ8との結合強度が低いと、回転力の授受が不十分となってインペラ8が駆動軸7に対して空転を起こしたり、アキシャル荷重に耐えられずにインペラ8が駆動軸7から脱落したりという問題が生じるおそれがあった。 At this time, between the drive shaft 7 and the impeller 8, the drive shaft by the moment force (force in the circumferential direction) accompanying the transmission of the rotational force and the reaction force when each blade portion 8 c pumps cooling water. An axial load (axial force) acts in the direction of the tip end of 7, but when the coupling strength between the drive shaft 7 and the impeller 8 is low, the exchange of rotational force becomes insufficient and the impeller 8 becomes the drive shaft 7 On the other hand, there has been a possibility that a problem such as idling may occur or the impeller 8 may come off from the drive shaft 7 without being able to withstand the axial load.
 これに対して、本実施形態では、ほぼ同一な横断面繭形状に形成された前記中径軸部7bの嵌合部位20と前記インペラ8の大径嵌合孔部23aとの嵌合によってインペラ8の駆動軸7に対する相対回転を規制し、回転方向の力に対する結合強度、つまり回転止め力を向上させた。 On the other hand, in the present embodiment, the impeller is formed by fitting the fitting portion 20 of the medium diameter shaft portion 7b formed in substantially the same cross section wedge shape with the large diameter fitting hole portion 23a of the impeller 8 The relative rotation with respect to the drive shaft 7 was restricted to improve the coupling strength to the force in the rotational direction, that is, the rotation stopping force.
 すなわち、プーリ5の回転に伴って駆動軸7が回転されると、嵌合部位20と大径嵌合孔部23aとが互いに噛み合うことで相対回転が規制されて、確実にインペラ8へ回転力を伝達する。 That is, when the drive shaft 7 is rotated with the rotation of the pulley 5, the relative rotation is restricted by the engagement between the fitting portion 20 and the large diameter fitting hole portion 23a, and the rotational force to the impeller 8 is reliably achieved. To communicate.
 また、本実施形態では、前記第1,第2段差部22,24とプッシュナット25との協働によってインペラ8の前後軸方向の移動を確実に規制することから、結合強度がさらに向上する。 Further, in the present embodiment, since the movement of the impeller 8 in the front-rear axial direction is surely restricted by the cooperation of the first and second step parts 22 and 24 and the push nut 25, the bonding strength is further improved.
 すなわち、インペラ8に駆動軸7先端側への軸方向へ沿ったアキシャル荷重がかかったとしても、プッシュナット25の内周側に設けられた各爪部25cの先端縁が弾性力によって小径軸部7cの外周面に食い込んで強固に係入されていることから、インペラ8の移動が強固に規制される。 That is, even if axial load along the axial direction to the tip end side of the drive shaft 7 is applied to the impeller 8, the tip edge of each claw 25 c provided on the inner peripheral side of the push nut 25 has a small diameter shaft by elastic force. Since it bites into the outer peripheral surface of 7 c and is firmly engaged, the movement of the impeller 8 is strongly restricted.
 したがって、本実施形態によれば、駆動軸7とインペラ8との間の結合強度が向上することから、インペラ8の駆動軸7に対する空転や駆動軸7からの脱落を確実に抑制することができる。 Therefore, according to the present embodiment, since the coupling strength between the drive shaft 7 and the impeller 8 is improved, the idle rotation of the impeller 8 with respect to the drive shaft 7 and the dropout from the drive shaft 7 can be reliably suppressed. .
 また、本実施形態においては、前記プッシュナット25が金属製である一方、前記駆動軸7が合成樹脂製であることから、小径軸部7cのプッシュナット25の各爪部25c先端縁との接触部が樹脂クリープ(経時劣化)によって侵食され、プッシュナット25が駆動軸7から外れ、駆動軸7とインペラ8との結合が解除されてしまう可能性を考慮する必要がある。 Further, in the present embodiment, since the push nut 25 is made of metal and the drive shaft 7 is made of synthetic resin, the small diameter shaft portion 7c is in contact with the tip edge of each claw 25c of the push nut 25. It is necessary to take into consideration the possibility that the part is corroded by resin creep (aging deterioration), the push nut 25 is detached from the drive shaft 7, and the connection between the drive shaft 7 and the impeller 8 is released.
 このため、本実施形態では、前記プッシュナット25として薄板円板状に形成され、前記小径軸部7cと線接触もしくは点接触状に固定されるものを用いることで、プッシュナット25と小径軸部7cとの接触範囲をごく僅かなものとした。すなわち、小径軸部7cのプッシュナット25との接触面に樹脂クリープが生じ、プッシュナット25が駆動軸7の先端側へ移動したとしても、生じる範囲が非常に狭いことから、該樹脂クリープによる悪影響が低減され、駆動軸7とインペラ8との結合を維持することが可能となる。 For this reason, in the present embodiment, the push nut 25 and the small diameter shaft portion are formed by using the push nut 25 which is formed in a thin disk shape and is fixed in line contact or point contact with the small diameter shaft portion 7c. The contact range with 7c was made very small. That is, even if the resin creep occurs on the contact surface of the small diameter shaft portion 7c with the push nut 25 and the push nut 25 moves to the tip end side of the drive shaft 7, the range is extremely narrow. Can be reduced to maintain the connection between the drive shaft 7 and the impeller 8.
 また、前記駆動軸7の小径軸部7cは、インペラ8の前端側から突出するように形成されていると共に、前記プッシュナット25は、その突出部位7dのインペラ8の軸部8bの前端面位置に係入されていることから、仮に樹脂クリープが生じてプッシュナット25が小径軸部7cの先端側へ移動したとしても、その移動した先に食い込んで再び固定され、駆動軸7とインペラ8との結合が維持される。 Further, the small diameter shaft portion 7c of the drive shaft 7 is formed to project from the front end side of the impeller 8, and the push nut 25 is positioned at the front end surface of the shaft portion 8b of the impeller 8 at the projecting portion 7d. Therefore, even if the resin creep occurs and the push nut 25 moves to the tip side of the small diameter shaft portion 7c, it is bitten into the moved end and fixed again, and the drive shaft 7 and the impeller 8 and Connection is maintained.
 また、本実施形態では、前記嵌合部位20の横断面形状(繭形状)を、角部(エッジ)を有さない滑らかな凹凸形状に形成したことから、角部を有する形状に比べて応力集中が生じにくくなっている。 Further, in the present embodiment, since the cross-sectional shape (wedge shape) of the fitting portion 20 is formed into a smooth uneven shape having no corner portion (edge), stress compared to a shape having a corner portion Concentration is less likely to occur.
 さらに、前記嵌合部位20の横断面形状は点対称形状でもあるから、回転方向に依らず応力集中が生じにくくなっており、例えば、ウォータポンプ1の運転が停止した直後に、慣性によって流動する冷却水から通常とは逆方向の回転力を受けた場合であっても、嵌合部位20に応力集中は生じにくくなっている。 Furthermore, since the cross-sectional shape of the fitting portion 20 is also point-symmetrical, stress concentration is unlikely to occur regardless of the rotational direction, and, for example, it flows by inertia immediately after the operation of the water pump 1 is stopped. Even in the case of receiving a rotational force in a direction reverse to the normal direction from the cooling water, stress concentration is less likely to occur in the fitting portion 20.
 このように、前記嵌合部位20が応力集中を避ける形状に形成されていることから、駆動軸7(嵌合部位20)の変形や破損などを効果的に抑制することができる。 Thus, since the fitting portion 20 is formed in a shape that avoids stress concentration, it is possible to effectively suppress the deformation, breakage or the like of the drive shaft 7 (the fitting portion 20).
 また、本実施形態では、前記駆動軸7の内部にガラス繊維26が含有されているが、このガラス繊維26は、配向された方向と直交する方向の力に対する剛性を向上させる効果を有している。すなわち、前記駆動軸7は、外周面近傍のガラス繊維26bが軸方向に沿って配向されていることから、直交する方向である回転方向に対する剛性(ねじり剛性)が向上している。 Further, in the present embodiment, the glass fiber 26 is contained in the inside of the drive shaft 7, but the glass fiber 26 has an effect of improving the rigidity against the force orthogonal to the oriented direction. There is. That is, since the glass fibers 26b in the vicinity of the outer peripheral surface of the drive shaft 7 are oriented along the axial direction, the rigidity (torsional rigidity) with respect to the rotation direction which is the orthogonal direction is improved.
 特に、本実施形態では、前記嵌合部位20の外周面が全て曲面によって形成され、直線部分を含む形状に比べて表面積が大きくなっていることから、回転方向と直交する向きに配向されたガラス繊維26bの割合が増加するため、嵌合部位20のねじり剛性がより向上している。 In particular, in the present embodiment, since the outer peripheral surface of the fitting portion 20 is all formed by a curved surface and the surface area is larger than the shape including the linear portion, the glass oriented in the direction orthogonal to the rotation direction Since the proportion of the fibers 26 b is increased, the torsional rigidity of the fitting portion 20 is further improved.
 したがって、駆動軸7(嵌合部位20)の変形や破損などをより効果的に抑制することができる。 Therefore, deformation, breakage or the like of the drive shaft 7 (fitting portion 20) can be more effectively suppressed.
 さらに、本実施形態では、前記駆動軸7に対する前記インペラ8の組み付けを全て軸方向から行っているため、組付作業性が向上されると共に、駆動軸7の先端部に対して径方向から強い負荷がかかることもないため、駆動軸7を変形させることなく組付作業を行うことができる。 Furthermore, in the present embodiment, since the assembly of the impeller 8 to the drive shaft 7 is entirely performed in the axial direction, the assembling workability is improved and the tip of the drive shaft 7 is stronger in the radial direction. Since no load is applied, the assembly operation can be performed without deforming the drive shaft 7.
 また、前記プッシュナット25を外すことのみで前記駆動軸7とインペラ8との結合を解除できることから、圧入や溶着といった結合方法に比べて分解にかかる作業性も向上される。
〔第2,第3実施形態〕
 図9は第2実施形態を示し、基本構成は第1の実施形態と同様であるが、前記駆動軸7の中径軸部7bの嵌合部位20及び前記インペラ8の大径嵌合孔部23aが横断面ほぼ楕円形状に形成されている点で異なる。
Further, since the connection between the drive shaft 7 and the impeller 8 can be released only by removing the push nut 25, the workability for disassembling can be improved as compared with a connection method such as press-fitting or welding.
Second and third embodiments
FIG. 9 shows the second embodiment, and the basic configuration is the same as that of the first embodiment, but the fitting portion 20 of the medium diameter shaft portion 7b of the drive shaft 7 and the large diameter fitting hole of the impeller 8 The difference is that 23a is formed in a substantially elliptical shape in cross section.
 図10は第3実施形態を示し、基本構成は第1の実施形態と同様であるが、前記駆動軸7の中径軸部7bの嵌合部位20及び前記インペラ8の大径嵌合孔部23aが横断面ほぼ長円形状に形成されている点で異なる。 FIG. 10 shows the third embodiment, and the basic configuration is the same as that of the first embodiment, but the fitting portion 20 of the medium diameter shaft portion 7b of the drive shaft 7 and the large diameter fitting hole of the impeller 8 The difference is that the cross section 23a is formed in a substantially oval shape in cross section.
 これらもまた、第1の実施形態と同様に、前記嵌合部位20の外周面に角部(エッジ)を有さない形状であることから、嵌合部位20の内部の局部的な応力集中を緩和することができる。
〔第4,第5実施形態〕
 図11,図12は本発明の第4,第5実施形態を示し、共に前記駆動軸7の中径軸部7bの嵌合部位20及び前記インペラ8の大径嵌合孔部23aを横断面多角形状に形成している。
As in the first embodiment, these are also shaped so as not to have corners (edges) on the outer peripheral surface of the fitting portion 20, so local stress concentration inside the fitting portion 20 can be achieved. It can be relaxed.
Fourth and fifth embodiments
11 and 12 show the fourth and fifth embodiments of the present invention, in which the fitting portion 20 of the medium diameter shaft portion 7b of the drive shaft 7 and the large diameter fitting hole portion 23a of the impeller 8 are cross sections. It is formed in a polygonal shape.
 図11に示す第4実施形態は、前記嵌合部位20及び大径嵌合孔部23aが横断面ほぼ六角形状に形成されている。 In the fourth embodiment shown in FIG. 11, the fitting portion 20 and the large diameter fitting hole 23a are formed in a substantially hexagonal cross section.
 図12に示す第5実施形態は、前記嵌合部位20及び大径嵌合孔部23aが横断面ほぼ四角形状に形成されている。 In the fifth embodiment shown in FIG. 12, the fitting portion 20 and the large diameter fitting hole 23a are formed in a substantially rectangular shape in cross section.
 これらは、前記嵌合部位20の外周面に複数の角部27(エッジ)を有しており、第1の実施形態などに比べて該角部27近傍に応力集中が生じやすくなっているものの、これら角部27が大径嵌合孔部23aの内周面と強固に噛み合うことから、駆動軸7に対するインペラ8の空転をさらに抑制することができる(図11(B),図12(B)参照)。なお、前記各角部27には、過度の応力集中を避けるために丸め加工が施されている。 Although these have a plurality of corner portions 27 (edges) on the outer peripheral surface of the fitting portion 20, stress concentration is likely to occur in the vicinity of the corner portions 27 as compared with the first embodiment and the like. Since the corner portions 27 firmly engage with the inner peripheral surface of the large diameter fitting hole portion 23a, the idle rotation of the impeller 8 with respect to the drive shaft 7 can be further suppressed (FIG. 11 (B), FIG. 12 (B )reference). Each corner 27 is rounded to avoid excessive stress concentration.
 本発明は、前記各実施形態の構成に限定されるものではなく、発明の趣旨を逸脱しない範囲で構成を変更することも可能である。 The present invention is not limited to the configuration of each of the above-described embodiments, and the configuration can be changed without departing from the scope of the invention.
 例えば、前記各実施形態では、前記駆動軸7とプーリ5とが一体に成形されたものとして説明したが、これらは別体に成形されたものであってもよい。 For example, in each of the embodiments, the drive shaft 7 and the pulley 5 are described as being integrally formed, but they may be separately formed.
 また、前記各実施形態では、前記インペラ8の前記駆動軸7に対する最大嵌合位置を規制する規制部として、第1,第2段差部22,24を用いたが、規制部は段差部に限られるものではない。 In each of the above embodiments, the first and second step portions 22 and 24 are used as the restricting portions for restricting the maximum fitting position of the impeller 8 with respect to the drive shaft 7. However, the restricting portions are limited to the step portions. It is not something that can be done.
 さらに、前記各実施形態では、固定部材として前記プッシュナット25を用いたが、固定部材はこれに限らず、例えばスナップリングを適用することも可能である。 Furthermore, although the said push nut 25 was used as a fixing member in said each embodiment, a fixing member is not restricted to this, For example, it is also possible to apply a snap ring.

Claims (19)

  1.  ポンプハウジング内に挿通配置され、合成樹脂材によって形成された駆動軸と、
     該駆動軸の一端側に一体回転可能に設けられ、駆動源から動力が伝達されて回転するプーリと、
     合成樹脂材によって形成され、嵌合孔を介して前記駆動軸の他端部と嵌合するインペラと、
     を備え、
     前記駆動軸の他端部と前記インペラの嵌合孔との間に、前記インペラの軸方向の最大嵌合位置を規制する規制部を設けると共に、前記駆動軸の他端部先端側に、前記最大嵌合位置にある前記インペラの軸方向の移動を前記規制部と協働して規制する固定部材を設け、前記駆動軸の他端部の前記インペラに嵌合する部位の横断面形状を回転規制部として形成すると共に、前記嵌合孔の横断面形状を前記駆動軸の他端部の部位と同じく回転規制部として形成したことを特徴とするウォータポンプ。
    A drive shaft disposed in the pump housing and formed of a synthetic resin material;
    A pulley which is integrally rotatably provided at one end of the drive shaft and receives power from the drive source to rotate;
    An impeller formed of a synthetic resin material and fitted to the other end of the drive shaft through a fitting hole;
    Equipped with
    Between the other end of the drive shaft and the fitting hole of the impeller, there is provided a regulating portion for regulating the maximum fitting position in the axial direction of the impeller, and at the other end tip end side of the drive shaft, A fixing member for restricting axial movement of the impeller in the maximum fitting position in cooperation with the restricting portion is provided, and a cross section of a portion of the other end of the drive shaft to be fitted to the impeller is rotated. A water pump characterized in that it is formed as a restricting portion, and the cross-sectional shape of the fitting hole is formed as a rotation restricting portion like the portion of the other end of the drive shaft.
  2.  請求項1に記載のウォータポンプにおいて、
     前記駆動軸の他端部の前記インペラに嵌合する部位の横断面形状を角部のない形状に形成すると共に、前記嵌合孔の横断面形状を前記駆動軸の他端部の部位と同じく角部のない形状に形成したことを特徴とするウォータポンプ。
    In the water pump according to claim 1,
    The cross-sectional shape of the portion of the other end of the drive shaft to be fitted to the impeller is formed to have no corner, and the cross-sectional shape of the fitting hole is the same as the portion of the other end of the drive shaft. A water pump characterized in that it has a cornerless shape.
  3.  請求項2に記載のウォータポンプにおいて、
     前記駆動軸の他端部の前記インペラの嵌合する部位の横断面形状を全体が曲面形状となるように形成すると共に、前記嵌合孔の横断面形状を前記駆動軸の他端部の部位と同じく全体が曲面形状となるように形成したことを特徴とするウォータポンプ。
    In the water pump according to claim 2,
    The cross-sectional shape of the fitting portion of the impeller at the other end of the drive shaft is formed to be a curved surface as a whole, and the cross-sectional shape of the fitting hole is a portion of the other end of the drive shaft The water pump is characterized in that it has a curved surface as a whole.
  4.  請求項3に記載のウォータポンプにおいて、
     前記駆動軸の他端部の前記インペラに嵌合する部位の横断面形状を滑らかな凹凸形状に形成すると共に、前記嵌合孔の横断面形状を前記駆動軸の他端部の部位と同じく滑らかな凹凸形状に形成したことを特徴とするウォータポンプ。
    In the water pump according to claim 3,
    The cross-sectional shape of the portion of the other end of the drive shaft to be fitted to the impeller is formed into a smooth uneven shape, and the cross-sectional shape of the fitting hole is as smooth as the portion of the other end of the drive shaft Water pump characterized in that it has an irregular shape.
  5.  請求項4に記載のウォータポンプにおいて、
     前記駆動軸を形成する前記合成樹脂材はガラス繊維を含み、該ガラス繊維は前記駆動軸の外表面において軸方向に沿って配向していることを特徴とするウォータポンプ。
    In the water pump according to claim 4,
    The water pump, wherein the synthetic resin material forming the drive shaft includes glass fibers, and the glass fibers are oriented along the axial direction on the outer surface of the drive shaft.
  6.  請求項5に記載のウォータポンプにおいて、
     前記駆動軸の他端部の前記インペラに嵌合する部位の横断面形状を点対称形状に形成すると共に、前記嵌合孔の横断面形状を前記駆動軸の他端部の部位と同じく点対称形状に形成したことを特徴とするウォータポンプ。
    In the water pump according to claim 5,
    The cross-sectional shape of the portion of the other end of the drive shaft to be fitted to the impeller is formed point-symmetrically, and the cross-sectional shape of the fitting hole is point-symmetrical similarly to the portion of the other end of the drive shaft A water pump characterized in that it has a shape.
  7.  請求項3に記載のウォータポンプにおいて、
     前記駆動軸の他端部の前記インペラに嵌合する部位の横断面形状を楕円形状に形成すると共に、前記嵌合孔の横断面形状を前記駆動軸の他端部の部位と同じく楕円形状に形成したことを特徴とするウォータポンプ。
    In the water pump according to claim 3,
    The cross-sectional shape of the portion of the other end of the drive shaft to be fitted to the impeller is formed in an elliptical shape, and the cross-sectional shape of the fitting hole is elliptical as in the region of the other end of the drive shaft A water pump characterized by being formed.
  8.  請求項1に記載のウォータポンプにおいて、
     前記駆動軸の他端部の前記インペラに嵌合する部位の横断面形状を多角形状に形成すると共に、前記嵌合孔の横断面形状を前記駆動軸の他端部の部位と同じく多角形状に形成したことを特徴とするウォータポンプ。
    In the water pump according to claim 1,
    The cross-sectional shape of the portion of the other end of the drive shaft to be fitted to the impeller is formed into a polygonal shape, and the cross-sectional shape of the fitting hole is also polygonal like the portion of the other end of the drive shaft A water pump characterized by being formed.
  9.  請求項8に記載のウォータポンプにおいて、
     前記多角形状は、六角形状であることを特徴とするウォータポンプ。
    In the water pump according to claim 8,
    The water pump characterized in that the polygonal shape is a hexagonal shape.
  10.  請求項8に記載のウォータポンプにおいて、
     前記多角形状は、四角形状であることを特徴とするウォータポンプ。
    In the water pump according to claim 8,
    The water pump characterized in that the polygonal shape is a square shape.
  11.  請求項1に記載のウォータポンプにおいて、
     前記駆動軸の他端側を、前記固定部材から突出させたことを特徴とするウォータポンプ。
    In the water pump according to claim 1,
    The water pump, wherein the other end side of the drive shaft is protruded from the fixing member.
  12.  請求項11に記載のウォータポンプにおいて、
     前記固定部材は、前記駆動軸の外表面に点接触又は線接触によって固定されていることを特徴とするウォータポンプ。
    In the water pump according to claim 11,
    The water pump, wherein the fixing member is fixed to an outer surface of the drive shaft by point contact or line contact.
  13.  請求項12に記載のウォータポンプにおいて、
     前記固定部材は、止め輪であることを特徴とするウォータポンプ。
    In the water pump according to claim 12,
    The water pump, wherein the fixing member is a retaining ring.
  14.  請求項13に記載のウォータポンプにおいて、
     前記止め輪は、プッシュナットであることを特徴とするウォータポンプ。
    In the water pump according to claim 13,
    The water pump, wherein the retaining ring is a push nut.
  15.  請求項1に記載のウォータポンプにおいて、
     前記駆動軸を、前記プーリ側へ上り傾斜するテーパ形状に形成したことを特徴とするウォータポンプ。
    In the water pump according to claim 1,
    The water pump, wherein the drive shaft is formed in a tapered shape that inclines upward to the pulley side.
  16.  軸方向の一端側に筒状部を有するポンプハウジングと、
     該ポンプハウジング内に回転自在に支持され、合成樹脂材によって形成された駆動軸と、
     前記駆動軸の一端部に一体に固定された円盤状の端壁及び該端壁の外周縁に一体に結合されて前記筒状部を囲繞するように設けられた筒状基部を有する、合成樹脂材によって形成されたプーリと、
     前記筒状基部の内周に固定された筒状の金属部材と、
     前記金属部材と前記筒状部との間に改装されて、前記駆動軸を回転自在に軸受けする軸受部と、
     合成樹脂材によって形成され、前記駆動軸の他端側と嵌合するインペラと、
     を備え、
     前記駆動軸の他端部と前記インペラの嵌合孔との間に、前記インペラの軸方向の最大嵌合位置を規制する規制部を設けると共に、前記駆動軸の他端部先端側に、前記最大嵌合位置にある前記インペラの軸方向の移動を前記規制部と協働して規制する固定部材を設け、前記駆動軸の他端部の前記インペラに嵌合する部位の横断面形状を回転規制部として形成すると共に、前記嵌合孔の横断面形状を前記駆動軸の他端部の部位と同じく回転規制部として形成したことを特徴とするウォータポンプ。
    A pump housing having a cylindrical portion at one end in the axial direction;
    A drive shaft rotatably supported in the pump housing and formed of a synthetic resin material;
    A synthetic resin having a disk-like end wall integrally fixed to one end of the drive shaft and a cylindrical base integrally coupled to an outer peripheral edge of the end wall so as to surround the cylindrical portion A pulley formed by the material,
    A cylindrical metal member fixed to the inner periphery of the cylindrical base;
    A bearing portion which is refurbished between the metal member and the tubular portion and rotatably bears the drive shaft;
    An impeller formed of a synthetic resin material and fitted to the other end side of the drive shaft;
    Equipped with
    Between the other end of the drive shaft and the fitting hole of the impeller, there is provided a regulating portion for regulating the maximum fitting position in the axial direction of the impeller, and at the other end tip end side of the drive shaft, A fixing member for restricting axial movement of the impeller in the maximum fitting position in cooperation with the restricting portion is provided, and a cross section of a portion of the other end of the drive shaft to be fitted to the impeller is rotated. A water pump characterized in that it is formed as a restricting portion, and the cross-sectional shape of the fitting hole is formed as a rotation restricting portion like the portion of the other end of the drive shaft.
  17.  ポンプハウジング内に挿通配置され、合成樹脂材によって形成された駆動軸と、
     該駆動軸の一端側に一体回転可能に設けられ、駆動源から動力が伝達されて回転するプーリと、
     合成樹脂材によって形成され、前記駆動軸の他端側と嵌合するインペラと、
     前記駆動軸の前記インペラよりも他端側に取り付けられた中空の固定部材と、
     を備えていることを特徴とするウォータポンプの組立方法であって、
     前記インペラを、前記駆動軸の他端側の先端部から軸方向に沿って嵌合させた後に、前記インペラと前記駆動軸との間に設けられた規制部によって前記プーリ側への移動が規制される位置まで押し込む第1工程と、
     前記固定部材を、前記インペラから突出している前記駆動軸の他端側の先端部から軸方向に沿って嵌合させた後に、前記駆動軸の前記インペラの前端面位置に固定する第2工程と、
     を有するウォータポンプの組立方法。
    A drive shaft disposed in the pump housing and formed of a synthetic resin material;
    A pulley which is integrally rotatably provided at one end of the drive shaft and receives power from the drive source to rotate;
    An impeller formed of a synthetic resin material and fitted to the other end side of the drive shaft;
    A hollow fixing member mounted on the other end side of the driving shaft relative to the impeller;
    A method of assembling a water pump, comprising:
    After the impeller is fitted along the axial direction from the tip on the other end side of the drive shaft, the movement to the pulley side is restricted by the restricting portion provided between the impeller and the drive shaft The first step of pushing to the position where
    And a second step of fixing the fixing member in the front end position of the impeller of the drive shaft after fitting the fixing member along the axial direction from the tip end portion of the other end of the drive shaft projecting from the impeller ,
    A method of assembling a water pump having:
  18.  請求項17に記載のウォータポンプの組立方法において、
     前記固定部材は、前記駆動軸の他端部の軸方向先端側から係入固定することを特徴とするウォータポンプの組立方法。
    In the water pump assembling method according to claim 17,
    The method of assembling a water pump, wherein the fixing member is engaged and fixed from an axial tip end side of the other end of the drive shaft.
  19.  請求項18に記載のウォータポンプの組立方法において、
     前記固定部材は、内周側に形成される爪部を前記駆動軸に食い込ませることで係入固定することを特徴とするウォータポンプの組立方法。
    A method of assembling a water pump according to claim 18, wherein
    The method of assembling a water pump according to claim 1, wherein the fixing member is engaged and fixed by causing a claw portion formed on an inner peripheral side to bite into the drive shaft.
PCT/JP2015/065359 2014-07-09 2015-05-28 Water pump and assembly method for water pump WO2016006357A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/316,938 US20170114792A1 (en) 2014-07-09 2015-05-28 Water pump and assembly method for water pump
DE112015003163.4T DE112015003163T5 (en) 2014-07-09 2015-05-28 Water pump and installation method for a water pump
CN201580033592.XA CN106471255A (en) 2014-07-09 2015-05-28 Water pump and the assemble method of this water pump
JP2016532494A JP6188942B2 (en) 2014-07-09 2015-05-28 Water pump and method for assembling the water pump

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014140974 2014-07-09
JP2014-140974 2014-07-09

Publications (1)

Publication Number Publication Date
WO2016006357A1 true WO2016006357A1 (en) 2016-01-14

Family

ID=55063999

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/065359 WO2016006357A1 (en) 2014-07-09 2015-05-28 Water pump and assembly method for water pump

Country Status (5)

Country Link
US (1) US20170114792A1 (en)
JP (1) JP6188942B2 (en)
CN (1) CN106471255A (en)
DE (1) DE112015003163T5 (en)
WO (1) WO2016006357A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7891776B2 (en) 2002-11-23 2011-02-22 Silverbrook Research Pty Ltd Nozzle arrangement with different sized heater elements

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017150254A1 (en) * 2016-03-03 2017-09-08 株式会社Ihi Rotary machine
DE102017209482A1 (en) 2017-06-06 2018-12-06 Audi Ag Ring for a mechanical seal
IT201800007110A1 (en) * 2018-07-11 2020-01-11 PUMP FOR COOLING CIRCUIT OF ENGINE FOR VEHICLE.

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070036660A1 (en) * 2005-08-10 2007-02-15 Envirotech Pumpsystems, Inc. Low-profile impeller bolt
JP2007205246A (en) * 2006-02-01 2007-08-16 Toyota Motor Corp Water pump and hybrid vehicle
EP2119918A2 (en) * 2008-05-17 2009-11-18 Wilo Ag Mounting of a pump wheel
JP2012077643A (en) * 2010-09-30 2012-04-19 Kobe Steel Ltd Rotor for centrifugal fluid machinery
JP2012112341A (en) * 2010-11-26 2012-06-14 Hitachi Automotive Systems Ltd Water pump

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS542402Y1 (en) * 1970-06-05 1979-02-01
JPH02135699U (en) * 1989-04-13 1990-11-13
US5759019A (en) * 1994-02-14 1998-06-02 Steven M. Wood Progressive cavity pumps using composite materials
CA2207985C (en) * 1994-12-19 2007-11-27 Amsler, Peter Process for manufacturing components made of fiber-reinforced thermoplastic materials and components manufactured by this process
US6068457A (en) * 1998-12-03 2000-05-30 American Standard Inc. Lobed pinion drive shaft for refrigeration compressor
CN2445117Y (en) * 2000-09-30 2001-08-29 杭州制氧机总厂活塞式压缩机厂 Centrifugal chlorine compresser
JP2002349481A (en) * 2001-05-22 2002-12-04 Aisin Seiki Co Ltd Water pump
US6986644B2 (en) * 2003-05-02 2006-01-17 Envirotech Pumpsystems, Inc. Hard material impeller and methods and apparatus for construction
CN201129557Y (en) * 2007-11-23 2008-10-08 李伯明 Novel hollow insulated composite pipes
CN101221842B (en) * 2007-12-04 2010-12-15 李伯明 High-strength novel hollow insulation composite pipe
EP2554848B1 (en) * 2010-03-31 2017-12-20 Nabtesco Automotive Corporation Vacuum pump
CN102767536A (en) * 2012-06-28 2012-11-07 福建省银象电器有限公司 Unit pump structure of looping type impeller of well diving pump
JP5993289B2 (en) * 2012-11-21 2016-09-14 日立オートモティブシステムズ株式会社 Water pump

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070036660A1 (en) * 2005-08-10 2007-02-15 Envirotech Pumpsystems, Inc. Low-profile impeller bolt
JP2007205246A (en) * 2006-02-01 2007-08-16 Toyota Motor Corp Water pump and hybrid vehicle
EP2119918A2 (en) * 2008-05-17 2009-11-18 Wilo Ag Mounting of a pump wheel
JP2012077643A (en) * 2010-09-30 2012-04-19 Kobe Steel Ltd Rotor for centrifugal fluid machinery
JP2012112341A (en) * 2010-11-26 2012-06-14 Hitachi Automotive Systems Ltd Water pump

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7891776B2 (en) 2002-11-23 2011-02-22 Silverbrook Research Pty Ltd Nozzle arrangement with different sized heater elements

Also Published As

Publication number Publication date
CN106471255A (en) 2017-03-01
US20170114792A1 (en) 2017-04-27
JP6188942B2 (en) 2017-08-30
JPWO2016006357A1 (en) 2017-04-27
DE112015003163T5 (en) 2017-04-20

Similar Documents

Publication Publication Date Title
WO2016006357A1 (en) Water pump and assembly method for water pump
US20100259121A1 (en) Power transmission device
US20150075943A1 (en) Power transmitting device with overrunning decoupler
US20090186728A1 (en) Power transmission apparatus
JPH11141577A (en) One-way clutch
EP3152458B1 (en) Torsional vibration damper with an interlocked isolator
US7909701B2 (en) Power transmission apparatus
JP2003161333A (en) Torque transmission apparatus
US7922611B2 (en) Power transmission system
JP2006112427A (en) Fuel pump assembly
JP2007100716A (en) Drive sprocket support structure
US10012233B2 (en) Ventilation system
US9611858B2 (en) Water pump with reinforcement rib
US10711684B2 (en) Fluid fan clutch
KR100653695B1 (en) Clutchless Compressor with Connecting Part Shaped with Parting Part
JP5077771B2 (en) Torque transmission device
JP4353102B2 (en) Power transmission device
JP2003322174A (en) Spring clutch
WO2015040973A1 (en) Water pump
JP2009185893A (en) Damper spring assembly
JP2007127175A (en) Resin pulley
JP5993289B2 (en) Water pump
KR101505877B1 (en) Tension pulley
JP2012002240A (en) Damper pulley for absorbing rotation variation
KR101918402B1 (en) Chain driving device for oil pump

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15819543

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016532494

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15316938

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112015003163

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15819543

Country of ref document: EP

Kind code of ref document: A1