WO2016006351A1 - Plant resistance inducing control agent, plant resistance inducing control method, plant disease prevention method, insect prevention method, plant growth promoter, microbial infection efficiency promoter, and transgene expression efficiency promoter - Google Patents

Plant resistance inducing control agent, plant resistance inducing control method, plant disease prevention method, insect prevention method, plant growth promoter, microbial infection efficiency promoter, and transgene expression efficiency promoter Download PDF

Info

Publication number
WO2016006351A1
WO2016006351A1 PCT/JP2015/065242 JP2015065242W WO2016006351A1 WO 2016006351 A1 WO2016006351 A1 WO 2016006351A1 JP 2015065242 W JP2015065242 W JP 2015065242W WO 2016006351 A1 WO2016006351 A1 WO 2016006351A1
Authority
WO
WIPO (PCT)
Prior art keywords
plant
carbon atoms
linear
group
compound
Prior art date
Application number
PCT/JP2015/065242
Other languages
French (fr)
Japanese (ja)
Inventor
和之 平塚
里江子 小倉
晴登 石川
Original Assignee
国立大学法人横浜国立大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人横浜国立大学 filed Critical 国立大学法人横浜国立大学
Priority to JP2016532490A priority Critical patent/JP6652763B2/en
Publication of WO2016006351A1 publication Critical patent/WO2016006351A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/34Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom
    • A01N43/40Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom six-membered rings

Definitions

  • the present invention relates to a plant resistance induction control agent, a plant resistance induction control method, a plant disease control method, a pest control method, a plant growth promoter, a microbial infection efficiency promoter, and a transgene expression efficiency promoter.
  • Plants are invaded and attacked by various pathogenic microorganisms such as filamentous fungi, bacteria and viruses. Plants have developed defense mechanisms to combat them. There are various stages in the defense mechanism. First, in the stage before the pathogen invades, the pathogenic invasion is blocked by the physical barrier by the cell wall and the opening and closing of the stoma of the leaves. Plant cells recognize the pathogen invasion even after the pathogen has invaded, and have a mechanism that inhibits the progression of infection by accumulating polysaccharides at the intrusion site (see Ton and Mauch-Mani, 2009). Furthermore, plants have a mechanism that enhances resistance not only at the site of pathogenic infection but also at a non-infected site by transmitting a signal from the infected site to the whole body. This mechanism involves the expression of plant hormones and numerous genes.
  • SA systemic acquired resistance
  • SA salicylic acid
  • SA is mainly known to induce resistance to “active parasitic pathogens”, pathogens that nourish from living cells. In many cases, the parasitic parasite pathogens absorb nutrients from plant cells and coexist with plants.
  • rice blast fungus as an active parasitic fungus.
  • ISR Induced Systemic Resistance
  • JA jasmonic acid
  • Gray mold fungus infects almost all plants, and drug resistant bacteria are very likely to occur.
  • a compound having an activity to induce SAR has a poor control effect against rot-causing pathogens, and existing plant activators such as probenazole are ineffective against rot-causing pathogens such as gray mold. Therefore, if there is a compound having an activity to induce the ISR system, there is a possibility that it can be used as a new pest control material that is effective even for diseases that cannot be dealt with by the existing SAR resistance inducers.
  • Bestatin Bestatin (Bestain) is reported to be a compound that specifically activates the JA signal (Non-patent Document 1).
  • Non-Patent Documents 2 to 4 hexanoic acid, arachidonic acid, N-acylamide (alkamide) and the like are known as defense activation-inducing compounds by JA / ET signal transduction system. It has been shown using Arabidopsis that both of these induce the expression of JA responsive genes including PDF1.2 and VSP2 and are effective in suppressing the formation of lesions of gray mold. In addition, in the treatment of hexanoic acid and arachidonic acid, suppression of lesion formation has been observed in tomato as well (Non-patent Document 5). This indicates that JA resistance inducers are effective in controlling gray mold. However, the effectiveness of these drugs also has problems such as the need for high concentration treatment, and they have not been put into practical use as JA-based resistance inducers.
  • Non-Patent Documents 1 to 5 a plurality of compounds that activate the JA signal have been reported (Non-Patent Documents 1 to 5), but the resistance induction is not so high and has not been put into practical use. From such circumstances, the discovery of a novel compound having activity to induce the ISR system and its application to pest control are expected. In addition, it is known that the SAR system is suppressed by activating the JA signal system, and the SAR system defense response expression is controlled by a highly effective JA signal activator, resulting in the growth and growth of plants. The improvement of foreign gene expression efficiency using pathogens can also be expected.
  • This invention is made
  • the present invention provides a plant resistance induction control agent, a plant resistance induction control method, a plant disease control method, a pest control method, a plant growth promoter, a microorganism infection efficiency promotion having the following characteristics: An agent and a transgene expression efficiency promoting agent are provided.
  • a plant resistance induction controlling agent comprising a compound represented by the following general formula (1) or a salt thereof as an active ingredient.
  • X 1 , X 2 , X 3 , X 4 , X 5 , X 6 , X 7 , X 8 , X 9 and X 10 each independently represent CH or N (provided that X 1 , X 2 , Any two or more of X 3 , X 4 and X 5 are not N, and any two or more of X 6 , X 7 , X 8 , X 9 and X 10 are not N).
  • R 1 represents a linear or branched haloalkyl group having 1 to 4 carbon atoms, a halogen atom, a nitro group, or a cyano group
  • R 2 represents a linear or branched alkyl group having 1 to 4 carbon atoms or a linear or branched alkenyl group having 2 to 4 carbon atoms.
  • R 3 represents a hydrogen atom, a linear or branched alkyl group having 1 to 4 carbon atoms, or a linear or branched alkenyl group having 2 to 4 carbon atoms
  • R 4 represents a linear or branched alkyl group having 1 to 4 carbon atoms, a linear or branched alkenyl group having 2 to 4 carbon atoms, or a halogen atom.
  • n represents the number of R 1 and is 0 or 1.
  • m represents the number of R 2 and is an integer of 0 to 5, and when m is 2 or more, R 2 may be the same or different from each other. However, n + m is an integer of 5 or less.
  • p represents the number of R 4 and is an integer of 0 to 5, and when p is 2 or more, R 4 may be the same or different from each other.
  • a plant resistance induction control method comprising bringing a plant resistance induction control agent according to any one of [1] to [3] into contact with a plant.
  • a plant disease control method comprising using the plant resistance induction control method according to [4].
  • a pest control method comprising using the plant resistance induction control method according to [4].
  • X 1 , X 2 , X 3 , X 4 , X 5 , X 6 , X 7 , X 8 , X 9 and X 10 each independently represent CH or N (provided that X 1 , X 2 , Any two or more of X 3 , X 4 and X 5 are not N, and any two or more of X 6 , X 7 , X 8 , X 9 and X 10 are not N).
  • R 1 represents a linear or branched haloalkyl group having 1 to 4 carbon atoms, a halogen atom, a nitro group, or a cyano group
  • R 2 represents a linear or branched alkyl group having 1 to 4 carbon atoms or a linear or branched alkenyl group having 2 to 4 carbon atoms.
  • R 3 represents a hydrogen atom, a linear or branched alkyl group having 1 to 4 carbon atoms, or a linear or branched alkenyl group having 2 to 4 carbon atoms
  • R 4 represents a linear or branched alkyl group having 1 to 4 carbon atoms, a linear or branched alkenyl group having 2 to 4 carbon atoms, or a halogen atom.
  • n represents the number of R 1 and is 0 or 1.
  • m represents the number of R 2 and is an integer of 0 to 5, and when m is 2 or more, R 2 may be the same or different from each other. However, n + m is an integer of 5 or less.
  • X 1 , X 2 , X 3 , X 4 , X 5 , X 6 , X 7 , X 8 , X 9 and X 10 each independently represent CH or N (provided that X 1 , X 2 , Any two or more of X 3 , X 4 and X 5 are not N, and any two or more of X 6 , X 7 , X 8 , X 9 and X 10 are not N).
  • R 1 represents a linear or branched haloalkyl group having 1 to 4 carbon atoms, a halogen atom, a nitro group, or a cyano group
  • R 2 represents a linear or branched alkyl group having 1 to 4 carbon atoms or a linear or branched alkenyl group having 2 to 4 carbon atoms.
  • R 3 represents a hydrogen atom, a linear or branched alkyl group having 1 to 4 carbon atoms, or a linear or branched alkenyl group having 2 to 4 carbon atoms
  • R 4 represents a linear or branched alkyl group having 1 to 4 carbon atoms, a linear or branched alkenyl group having 2 to 4 carbon atoms, or a halogen atom.
  • n represents the number of R 1 and is 0 or 1.
  • m represents the number of R 2 and is an integer of 0 to 5, and when m is 2 or more, R 2 may be the same or different from each other. However, n + m is an integer of 5 or less.
  • X 1 , X 2 , X 3 , X 4 , X 5 , X 6 , X 7 , X 8 , X 9 and X 10 each independently represent CH or N (provided that X 1 , X 2 , Any two or more of X 3 , X 4 and X 5 are not N, and any two or more of X 6 , X 7 , X 8 , X 9 and X 10 are not N).
  • R 1 represents a linear or branched haloalkyl group having 1 to 4 carbon atoms, a halogen atom, a nitro group, or a cyano group
  • R 2 represents a linear or branched alkyl group having 1 to 4 carbon atoms or a linear or branched alkenyl group having 2 to 4 carbon atoms.
  • R 3 represents a hydrogen atom, a linear or branched alkyl group having 1 to 4 carbon atoms, or a linear or branched alkenyl group having 2 to 4 carbon atoms
  • R 4 represents a linear or branched alkyl group having 1 to 4 carbon atoms, a linear or branched alkenyl group having 2 to 4 carbon atoms, or a halogen atom.
  • n represents the number of R 1 and is 0 or 1.
  • m represents the number of R 2 and is an integer of 0 to 5, and when m is 2 or more, R 2 may be the same or different from each other. However, n + m is an integer of 5 or less.
  • p represents the number of R 4 and is an integer of 0 to 5, and when p is 2 or more, R 4 may be the same or different from each other. ]
  • plant diseases can be reduced.
  • a plant disease can be reduced by the simple method of exposing a plant resistance induction
  • this method can control (also referred to as prevention or treatment) that a target plant is infected with a pathogenic bacterium, and exhibits excellent control effects against pests.
  • derivation control agent can be used as a plant growth promoter, and can promote the growth of a plant by this.
  • the plant resistance induction control agent can be used as a microbial infection efficiency promoter, thereby suppressing the expression of SAR defense response and improving the artificial microbial infection efficiency to the plant body.
  • the expression efficiency of the introduced gene can be improved.
  • Plant resistance induction control agent contains a compound represented by the following general formula (1) or a salt thereof as an active ingredient.
  • X 1 , X 2 , X 3 , X 4 , X 5 , X 6 , X 7 , X 8 , X 9 and X 10 each independently represent CH or N (provided that X 1 , X 2 , Any two or more of X 3 , X 4 and X 5 are not N, and any two or more of X 6 , X 7 , X 8 , X 9 and X 10 are not N).
  • R 1 represents a linear or branched haloalkyl group having 1 to 4 carbon atoms, a halogen atom, a nitro group, or a cyano group
  • R 2 represents a linear or branched alkyl group having 1 to 4 carbon atoms or a linear or branched alkenyl group having 2 to 4 carbon atoms.
  • R 3 represents a hydrogen atom, a linear or branched alkyl group having 1 to 4 carbon atoms, or a linear or branched alkenyl group having 2 to 4 carbon atoms
  • R 4 represents a linear or branched alkyl group having 1 to 4 carbon atoms, a linear or branched alkenyl group having 2 to 4 carbon atoms, or a halogen atom.
  • n represents the number of R 1 and is 0 or 1.
  • m represents the number of R 2 and is an integer of 0 to 5, and when m is 2 or more, R 2 may be the same or different from each other. However, n + m is an integer of 5 or less.
  • p represents the number of R 4 and is an integer of 0 to 5, and when p is 2 or more, R 4 may be the same or different from each other. ]
  • R 1 and R 2 are each independently substituted for any hydrogen atom (H) of X 1 , X 2 , X 3 , X 4 and X 5 which is CH.
  • R 4 each independently substitutes a hydrogen atom (H) of any one of X 6 , X 7 , X 8 , X 9 and X 10 that is CH.
  • the halogen atom of R 1 is an element belonging to Group 17 in the periodic table such as F, Cl, Br, and I.
  • the linear or branched haloalkyl group having 1 to 4 carbon atoms of R 1 is an alkyl group in which at least one hydrogen atom is substituted with a halogen atom independently selected.
  • the halogen atom is the same as the above halogen atom.
  • Examples of the linear or branched alkyl group having 1 to 4 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group. Group, sec-butyl group and tert-butyl group.
  • Examples of the haloalkyl group having 1 to 4 carbon atoms include a fluoromethyl group, a difluoromethyl group, a trifluoromethyl group, and a chloroethyl group, and a trifluoromethyl group is preferable.
  • the linear or branched alkyl group having 1 to 4 carbon atoms of R 2 is the same as the linear or branched alkyl group having 1 to 4 carbon atoms described for the haloalkyl group of R 1. is there.
  • the linear or branched alkyl group having 1 to 4 carbon atoms of R 2 preferably has 1 to 3 carbon atoms, and more preferably 1 or 2 carbon atoms.
  • the linear or branched alkenyl group having 1 to 4 carbon atoms of R 2 preferably has 2 to 3 carbon atoms. Examples of the alkenyl group include ethenyl group (vinyl group) and 2-propenyl group (allyl group).
  • the linear or branched alkyl group having 1 to 4 carbon atoms for R 3 and R 4 is the same as the alkyl group described for the haloalkyl group for R 1 .
  • the linear or branched alkenyl group having 2 to 4 carbon atoms in R 3 and R 4 is the same as the alkenyl group in R 2 .
  • the halogen atom of R 4 is an element belonging to Group 17 in the periodic table such as F, Cl, Br, I, etc., and F is preferable.
  • R 1 , R 2 , R 3 , R 4 a combination in which n is 1, R 1 is a haloalkyl group, m is 0, R 3 is a hydrogen atom, and p is 0, a combination in which n is 1, R 1 is a haloalkyl group, m is 0, R 3 is a hydrogen atom, p is 1 and R 4 is a halogen atom, a combination in which n is 1, R 1 is a trifluoromethyl group, m is 0, R 3 is a hydrogen atom, and p is 0, a combination in which n is 1, R 1 is a trifluoromethyl group, m is 0, R 3 is a hydrogen atom, p is 1 and R 4 is a halogen atom, Examples include a combination in which n is 1, R 1 is a trifluoromethyl group, m is 0, R 3 is a hydrogen atom, p is 1 and R 4 is a fluorine atom, a fluorine fluoride
  • the compound represented by the general formula (1) may be a salt, and the salt is preferably an agriculturally acceptable salt.
  • the compound represented by the general formula (1) is a compound having a pyridine ring.
  • examples of the salt include those in which the pyridine reacts with an acid to form a salt.
  • the salt is preferably water-soluble.
  • the compound represented by the general formula (1) includes compounds represented by the following general formulas (2-1) to (2-3).
  • examples of the compound represented by the general formula (1-2) include compounds represented by the following general formula (3-1).
  • examples of the compound represented by the general formula (1-2) include compounds represented by the following general formula (3-2).
  • examples of the compound represented by the general formula (1-2) include compounds represented by the following general formula (3-3).
  • examples of the compound represented by the general formula (1-2) include compounds represented by the following general formula (3-4).
  • R 1 , R 2 , R 3 and R 4 a combination in which n is 1, R 1 is a haloalkyl group, m is 0, R 3 is a hydrogen atom, and p is 0, a combination in which n is 1, R 1 is a haloalkyl group, m is 0, R 3 is a hydrogen atom, p is 1 and R 4 is a halogen atom, a combination in which n is 1, R 1 is a trifluoromethyl group, m is 0, R 3 is a hydrogen atom, and p is 0, a combination in which n is 1, R 1 is a trifluoromethyl group, m is 0, R 3 is a hydrogen atom, p is 1 and R 4 is a halogen atom, Examples include a combination in which n is 1, R 1 is a trifluoromethyl group, m is 0, R 3 is a hydrogen atom, p is 1 and R 4 is a halogen atom, Examples include a combination in which n
  • Examples of the compound represented by the general formula (3-2) include compounds represented by the following general formulas (3-2-1) to (3-2-3).
  • R 1 , R 2 , R 3 , R 4 , m and p are the same as those in the general formula (1). ]
  • R 1 , R 2 , R 3 , and R 4 a combination in which n is 1, R 1 is a haloalkyl group, m is 0, R 3 is a hydrogen atom, and p is 0, a combination in which n is 1, R 1 is a haloalkyl group, m is 0, R 3 is a hydrogen atom, p is 1 and R 4 is a halogen atom, a combination in which n is 1, R 1 is a trifluoromethyl group, m is 0, R 3 is a hydrogen atom, and p is 0, a combination in which n is 1, R 1 is a trifluoromethyl group, m is 0, R 3 is a hydrogen atom, p is 1 and R 4 is a halogen atom, Examples include a combination in which n is 1, R 1 is a trifluoromethyl group, m is 0, R 3 is a hydrogen atom, p is 1 and R 4 is a halogen atom, Examples include a combination in which
  • Examples of the compound represented by the general formula (3-4) include compounds represented by the following general formulas (3-4-1) to (3-4-3).
  • R 1 , R 2 , R 3 , R 4 , m and p are the same as those in the general formula (1). ]
  • N- (pyridin-2-yl) benzenesulfonamide (compound of formula 1-1-1), N- (pyridin-2-yl) -4-methylpyridine-2-sulfonamide (compound of formula 1-1-2), N- (5-isopropylpyridin-2-yl) -4-chlorobenzenesulfonamide (compound of formula 1-1-3), N- (5-chloropyridin-2-yl) pyridine-3-sulfonamide (compound of formula 1-1-4), N- (2-chloro-3-methylpyridin-6-yl) benzenesulfonamide (compound of formula 1-1-5), N- (4-chloropyridin-2-yl) benzenesulfonamide (compound of formula 1-1-6), N- (5-trifluoromethylpyridin-2-yl) benzenesulfonamide (compound of formula 1-1-7), N-methyl-N- (5-trifluoromethylpyridin-2-
  • Specific examples of the compound represented by the general formula (1) or a salt thereof listed above include, in particular, N- (5-trifluoromethylpyridin-2-yl) benzenesulfonamide (formula 1-1 7), N- (6-trifluoromethylpyridin-2-yl) pyridine-3-sulfonamide (compound of formula 1-1-9), or N- (6-trifluoromethylpyridin-2-yl) ) -2-Fluorobenzenesulfonamide (compound of formula 1-1-10) or a salt thereof is preferred.
  • One embodiment of the present invention is selected from the group consisting of the compounds represented by the general formulas (1-1-7), (1-1-9), and (1-1-10) and salts thereof
  • a plant resistance induction controlling agent containing any one or more as an active ingredient can be mentioned.
  • a plant resistance induction regulator comprising as an active ingredient any one or more selected from the group consisting of the compound represented by the general formula (1-1-7) and salts thereof Is mentioned.
  • a plant resistance induction regulator comprising as an active ingredient any one or more selected from the group consisting of the compound represented by the general formula (1-1-9) and salts thereof Is mentioned.
  • a plant resistance induction regulator comprising as an active ingredient any one or more selected from the group consisting of the compound represented by the general formula (1-1-10) and salts thereof Is mentioned.
  • the compound represented by the general formula (1) may have a tautomer or a geometric isomer depending on the type of substituent.
  • the compound represented by the general formula (1) may be described in only one form of an isomer, but the active ingredient of the present invention includes other isomers, and isomers. Or a mixture thereof.
  • the compound represented by the general formula (1) may have an asymmetric carbon atom or axial asymmetry, and an optical isomer based on this may exist.
  • the active ingredient of the present invention includes those obtained by separating optical isomers of the compound represented by the general formula (1) or a mixture thereof.
  • the salt of the compound of the general formula (1) is preferably an agriculturally acceptable salt of the compound of the general formula (1), and forms an acid addition salt or a salt with a base depending on the type of substituent.
  • inorganic acids such as hydrochloric acid, hydrobromic acid, hydroiodic acid, sulfuric acid, nitric acid, phosphoric acid, formic acid, acetic acid, propionic acid, oxalic acid, malonic acid, succinic acid, fumaric acid, maleic acid
  • Acid addition with organic acids such as lactic acid, malic acid, mandelic acid, tartaric acid, dibenzoyltartaric acid, ditoluoyltartaric acid, citric acid, methanesulfonic acid, ethanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, aspartic acid, glutamic acid Salts, salts with inorganic bases such as sodium, potassium, magnesium,
  • Hydrochloric acid hydrobromic acid, hydroiodic acid, sulfuric acid, nitric acid, phosphoric acid, etc.
  • Inorganic acids formic acid, acetic acid, propionic acid, oxalic acid, malonic acid, succinic acid, fumaric acid, maleic acid, lactic acid, malic acid, mandelic acid, tartaric acid, dibenzoyltartaric acid, ditoluoyltartaric acid, citric acid, methanesulfonic acid, ethane Acid addition salts with organic acids such as sulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, aspartic acid and glutamic acid are preferred.
  • the active ingredient of the present invention includes various hydrates and solvates of the compound of the above general formula (1) and salts thereof, and crystalline polymorphic substances.
  • the active ingredient of the present invention also includes compounds labeled with various radioactive or non-radioactive isotopes.
  • the compound of the general formula (1) and salts thereof can be used as the compound of the general formula (1) and salts thereof.
  • the compound of the said General formula (1) and its salt can be manufactured by applying the various well-known synthesis methods using the characteristics based on the basic structure or the kind of substituent. At that time, depending on the type of the functional group, it may be effective in terms of production technology to replace the functional group with an appropriate protecting group well known to those skilled in the art at the stage from the raw material to the intermediate.
  • the typical manufacturing method of the compound of the said General formula (1) is demonstrated, the manufacturing method of the active ingredient of this invention is not limited to the example shown below.
  • the compound of the general formula (1) can be produced as a free compound, a salt thereof, a hydrate, a solvate, or a crystalline polymorphic substance.
  • the salt of the compound of the general formula (1) can also be produced by subjecting it to a salt formation reaction well known to those skilled in the art. Isolation and purification of the compound of the general formula (1) are performed by applying ordinary chemical operations such as extraction, fractional crystallization, various fractional chromatography and the like.
  • X in the formula (A1) represents a halogen atom, preferably chloro or bromo, more preferably chloro.
  • This production method is a method for producing the compound represented by the general formula (1) by sulfonylamidation of the sulfonyl halide compound (A1) and the amine compound (A2).
  • sulfonylamidation a method well known to those skilled in the art can be used.
  • the compound (A1) and the compound (A2) are used in an equivalent amount or in an excess amount, and a mixture of these is used in the presence of a condensing agent or a base.
  • the reaction is carried out in a solvent inert to the reaction under cooling to heating, preferably at ⁇ 20 ° C. to 60 ° C., usually for 0.1 hour to 5 days with stirring.
  • Examples of the solvent used here are not particularly limited, but include aromatic hydrocarbons such as benzene, toluene and xylene, halogenated hydrocarbons such as dichloromethane, 1,2-dichloroethane and chloroform, diethyl ether and tetrahydrofuran. Ethers such as dioxane and dimethoxyethane, aprotic polar solvents such as N, N-dimethylformamide, dimethyl sulfoxide and N-methylpyrrolidone, esters such as ethyl acetate and butyl acetate, acetonitrile, propionitrile and the like Nitriles or water, and mixtures thereof.
  • aromatic hydrocarbons such as benzene, toluene and xylene
  • halogenated hydrocarbons such as dichloromethane, 1,2-dichloroethane and chloroform
  • diethyl ether diethyl ether and tetrahydr
  • condensing agent examples include, but are not limited to, 1- (3-dimethylaminopropyl) -3-ethylcarbodiimide, dicyclohexylcarbodiimide, 1,1′-carbonyldiimidazole, diphenylphosphoric acid amide, phosphorus oxychloride and the like. It is not something. Use of an additive (for example, 1-hydroxybenzotriazole) may be effective for smoothly proceeding the reaction.
  • the base examples include organic bases such as triethylamine, N, N-diisopropylethylamine, N-methylmorpholine and pyridine, or inorganic bases such as potassium carbonate, sodium carbonate, potassium hydroxide, sodium hydroxide, potassium t-butoxide and sodium ethoxide. Although a base can be used, it is not limited to these.
  • Lv represents a leaving group, preferably halogen, alkylsulfonyloxy, arylsulfonyloxy, more preferably fluoro, chloro, bromo, methane. Sulfonyloxy, ethanesulfonyloxy, benzenesulfonyloxy, trifluorobenzenesulfonyloxy.
  • This production method is a method for producing the compound represented by the general formula (1) from the sulfonamide compound (B1) and the aryl compound (B2).
  • the compound represented by the general formula (1) is produced by subjecting to an ipso substitution reaction.
  • an ipso substitution reaction a method well known to those skilled in the art can be used.
  • the compound (B1) and the compound (B2) are used in an equivalent amount or in excess, and a mixture of these is used as an inert solvent for the reaction.
  • the reaction is performed in the middle or without a solvent, under cooling to heating, preferably at 0 ° C. to 80 ° C., usually for 0.1 hour to 5 days.
  • Examples of the solvent used here are not particularly limited, but include aromatic hydrocarbons, halogenated hydrocarbons, ethers, aprotic polar solvents, esters, nitriles, and mixtures thereof. It is done. Performing the reaction in the presence of an organic base or an inorganic base may be effective for smoothly progressing the reaction.
  • the coupling reaction can be performed by a method well known to those skilled in the art.
  • the transition metal include tetrakis (triphenylphosphine) palladium, dichlorobis (triphenylphosphine) palladium, palladium chloride-1-1'-bis (diphenylphosphine).
  • a palladium catalyst such as fino) ferrocene is preferably used.
  • an inorganic base is preferably used together.
  • the sulfonyl halide compound (A1) can be produced by subjecting the corresponding sulfonic acid compound to a method well known to those skilled in the art, for example, a halogenation reaction.
  • the sulfonic acid compound can be produced by subjecting the corresponding amino compound to a method well known to those skilled in the art, for example, a Sandmeyer reaction.
  • the amino compound can be produced by subjecting the corresponding nitro compound to a method well known to those skilled in the art, for example, a reduction reaction.
  • the sulfonamide compound (B1) in which R3 is not a hydrogen atom is subjected to methods well known to those skilled in the art, such as N-alkylation and N-alkenylation reactions. Can be manufactured.
  • the sulfonamide compound (B1) in which R3 is a hydrogen atom is obtained by subjecting the halogenated sulfonyl compound (A1) to a method well known to those skilled in the art, for example, a sulfonamidation reaction with ammonia or a protected amine. Can be manufactured.
  • the sulfonamide compound (B1) in which R3 is not a hydrogen atom is produced by a sulfonamidation reaction between a halogenated sulfonyl compound (A1) and a primary amine having an R3 group or a secondary amine having an R3 group and a protecting group. You can also When it is produced by a sulfonamidation reaction between the R3 group and a secondary amine having a protective group, the protective group is removed as necessary.
  • the plant resistance induction control in the present invention and the present specification includes inducing, enhancing, promoting, and maintaining plant disease resistance or pest resistance. Since the plant resistance induction control agent of the present invention controls the induction of disease resistance, it can also be provided as a plant disease control agent. Since the plant resistance induction control agent of the present invention controls the induction of pest resistance, it can also be provided as a pest control agent.
  • Inducing, strengthening and promoting plant disease resistance or insect pest resistance is a comparison between a plant treated with the plant resistance induction control agent of the present invention and an untreated plant. This means that in the plant treated with the plant resistance induction controlling agent of the invention, the expression of plant resistance or pest resistance is significantly improved.
  • Maintaining disease resistance or pest resistance of a plant means that a plant treated with the plant resistance induction control agent of the present invention is compared with an untreated plant, and the plant resistance induction control agent of the present invention is compared. It means that the expression of plant resistance or pest resistance is significantly prolonged for a long time in the treated plant.
  • the expression of disease resistance in plants can be determined by, for example, the following indicators, as shown in Examples described later.
  • [1] Using the expression of a gene specifically induced in the JA response pathway as an index, the plant treated with the plant resistance induction regulator of the present invention is compared with the untreated plant. In the plant treated with the plant resistance induction control agent, the expression of the disease resistance can be judged when the expression of the gene is significantly improved.
  • [2] Using the degree of the state of plant disease as an index, a plant treated with the plant resistance induction control agent of the present invention is compared with an untreated plant. In the treated plant, when the disease state of the plant disease is significantly improved, the expression of disease resistance can be determined.
  • the expression of insect pest resistance in a plant can be determined by, for example, the following index, as shown in Examples described later. [3] Using the expression of a gene specifically induced in the JA response pathway as an index, the plant treated with the plant resistance induction regulator of the present invention is compared with the untreated plant. In the plant treated with the plant resistance induction regulator, the expression of pest resistance can be determined when the expression of the gene is significantly improved. “4” The plant resistance of the present invention is compared by comparing the plant treated with the plant resistance induction control agent of the present invention with an untreated plant using the degree of feeding damage of the plant as an index. In the plant treated with the induction control agent, when the state of feeding damage of the plant body is improved, the expression of pest resistance can be determined.
  • the expression of pest resistance can be determined when the number of living organisms such as pests in the treatment area of the plant resistance induction control agent is low.
  • the control of plant diseases in the present invention and the specification of the present application refers to the inactivation effect on the fungus causing plant disease, the effect of preventing the infection of fungus causing plant disease, and the growth of the fungus causing plant disease. Includes suppression or prevention effects.
  • the pest control in the present invention and the specification of the present application includes an effect of depleting pests, an effect of killing pests, and an effect of repelling pests.
  • the type of plant to be used for the plant resistance induction control agent of the present invention is not particularly limited as long as it is a plant that can acquire resistance by inducing the ISR system, and even a land plant is an aquatic plant It may be.
  • land plants angiosperms and gymnosperms are suitable, and they may be herbs or woods.
  • Rosaceae Citrus, Grapeaceae, Orchidaceae, Orchidaceae, Lilyaceae, Leguminosae, Rubiaceae, Euphorbiaceae, Cyperaceae, Ceramaceae, Perillaceae, Cucurbitaceae, Eggplant, And Brassicaceae are more preferred, and solanaceae, Cucurbitaceae and Brassicaceae are more preferred.
  • An example of the lily family plant is onion.
  • An example of the leguminous plant is soybean.
  • An example of the celery family plant is carrot.
  • Examples of the grass family include rice, corn, wheat and wheat.
  • Examples of the cucurbitaceae plant include melon, watermelon, winter melon, cucumber, and pumpkin.
  • Examples of the solanaceous plant include tobacco, tomato, potato, eggplant and bell pepper.
  • Examples of the Brassicaceae plants include, for example, Nazuna, Brassica, Cabbage, Kale, Chinese cabbage, turnip, Japanese radish, Wasabi and mustard.
  • Preferable plants to be used for the plant resistance induction controlling agent of the present invention include tomato, tobacco, cucumber, tuna and rape.
  • the plant resistance induction controlling agent of the present invention may be provided in the form of a powder, tablet, granule, fine granule or the like by mixing with an agriculturally acceptable carrier, a bulking agent or the like, if necessary.
  • an agriculturally acceptable carrier e.g., a wax, a wax, or a wax, or a surfactant, emulsifiers, dispersants and the like to form dosage forms such as emulsions, solutions, suspensions, wettable powders, water solvents, oils and the like.
  • the solvent for dissolving the plant resistance induction control agent may be appropriately selected according to the plant resistance induction control agent or the kind of the plant, but a sulfoxide compound such as dimethyl sulfoxide (DMSO); N, N-dimethylformamide (DMF) ), Amide compounds such as N, N-dimethylacetamide (DMAc), N-methylpyrrolidone (NMP), and the like, and preferred are hydrophilic solvents.
  • DMSO dimethyl sulfoxide
  • DMF N-dimethylformamide
  • Amide compounds such as N, N-dimethylacetamide (DMAc), N-methylpyrrolidone (NMP), and the like, and preferred are hydrophilic solvents.
  • the plant resistance induction control agent of the present invention may be provided in a dosage form that is used in combination with other agricultural and horticultural agents.
  • the plant resistance induction control agent of the present invention and other JA type resistance induction control agents such as bestatin, hexanoic acid, arachidonic acid, N-acylamide and the like are provided in a dosage form such as a combination or a combination preparation. May be.
  • the plant resistance induction control agent of the present invention and a known SAR resistance induction control agent may be provided in a dosage form such as a combination or a combined preparation.
  • the pathogen to be protected by the use of the plant resistance induction regulator of the present invention is not particularly limited, but is preferably a pathogen that causes induction of the ISR system or can be protected by induction of the ISR system.
  • a pathogen that causes induction of the ISR system and can be protected by induction of the ISR system is preferable. From such a viewpoint, it is more preferable that the pathogen to be protected by the plant resistance induction controlling agent of the present invention is a rot-causing pathogen.
  • gray mold fungus (Botrytis cinerea), potato anthracnose fungus (Colletotrichum atramentarium), cucumber anthracnose fungus (Colletotrichum lagenarium), tomato blight fungus (Phytophthora infestans), wheat rot fungus (Gaeumannomyces graminis) Soft rot fungus (Erwinia carotovora), black spot fungus (Diplocarpon rosae), rot fungus (Valsa ceratosperma), blight fungus (Cryphonectria parasitica), ergot fungus (Claviceps purpurea), pear black spot fungus (Alternaria alternata), brown rot fungus ella (Mycos pinodes), rice sesame leaf blight fungus (Cochliobolus miyabeanus), spot blight fungus (Stemphylium lyco
  • Sp. Cucumerinum can be exemplified pathogens such as Ralstonia solanacearum (Ralstonia solanacearum).
  • pathogens such as Ralstonia solanacearum (Ralstonia solanacearum).
  • Alternaria alternata bacterium belonging to the genus Alternaria and Botrytis cinerea bacterium belonging to the genus Botrytis can be exemplified as typical humic pathogens.
  • fungi of the genus Alternaria which are rot pathogens, Botrytis cinerea, Botrytis byssoidea, Botrytis squamosa, Botrytis allii, etc.
  • the genus Botrytis are: Among them, Alternaria alternata belonging to the genus Alternaria, Botrytis cinerea bacteria belonging to the Botrytis genus can be exemplified as suitable use targets, and tomato gray mold fungus (Botrytis cinerea) or cucumber gray mold fungus (Botrytis cinerea) can be exemplified as particularly suitable use targets.
  • the humic pathogenic bacteria include humic pathogenic bacteria that become conditionally humic depending on the surrounding environment.
  • Organisms such as pests to be controlled by the use of the plant resistance induction control agent of the present invention are not particularly limited. As described above, the ISR system induces a defense response against “injuries” such as food damage by pests. Therefore, the plant resistance induction control agent of the present invention can be applied to a wide variety of organisms such as insects and mites that feed on plants as a control agent.
  • Examples of organisms such as pests to be controlled by the use of the plant resistance induction regulator of the present invention include Coleoptera pests such as Azuki beetle (Callosobruchus chinensis), scales such as Plutella xylostella and Pieris rapae Pests of the eye, Musca domestica, Dacus cucurbitae, etc., Nezara antennata, Hemiptera, Frankliniella occidentalis, etc. ), Etc., cockroach insects such as Blattella germanica, various insect pests such as nematodes such as Dermatophagoides farinae, nematodes such as sweet potato nematode (Meloidogyne incognita).
  • Coleoptera pests such as Azuki beetle (Callosobruchus chinensis), scales such as Plutella xylostella and Pieris rapae Pests of the eye, Musca domestica, Dacus cucurbita
  • Forest pests include Coleoptera, Ptertypus quercivorus and other pests, Tomicus piniperda, and other species, Mochamus alternatus (Mochamus alternatus) Examples thereof include pests of the genus Mochamus to which M. saltuaris and the like belong.
  • the plant resistance induction control agent according to the present invention was found to have a controlling effect against the blue pear (Plutella xylostella) and the peach aphid (Myzus persicae). Is preferably applied to pests belonging to the order Lepidoptera typified by goldfish, and more preferably applied to pests of the family Plutellidae.
  • the plant resistance induction control agent according to the present invention was found to have a controlling effect against the peach aphid (Myzus persicae), It is preferably applied to pests belonging to the hemiptera represented by aphids, and more preferably applied to pests of the aphid superfamily (Aphidoidea).
  • the present invention provides a plant resistance induction control method in which the compound represented by the general formula (1) or a salt thereof is brought into contact with a plant to be applied.
  • the present invention provides a compound represented by the above general formula (1) or a salt thereof for controlling plant resistance induction.
  • the present invention provides use of a compound represented by the above general formula (1) or a salt thereof for controlling plant resistance induction.
  • the present invention provides use of a compound represented by the above general formula (1) or a salt thereof for producing a plant resistance induction controlling agent.
  • the plant resistance induction control agent can induce resistance by bringing an effective amount into contact with a plant to be applied.
  • the method of bringing the effective amount of the plant resistance induction controlling agent into contact with the plant may be the same as in the case of the known induction agent, and the treatment method applied to the plant, the soil where the plant is cultivated, or the hydroponic solution where the plant is cultivated. Can be mentioned.
  • Treatment methods include, for example, a method in which a plant resistance induction control agent is sprayed on soil in which plants are grown, a method of mixing with soil, a method of soil irrigation, and a plant resistance induction in which a plant resistance induction control agent is dissolved. Examples thereof include a method of applying or spraying a control agent solution to a plant, a method of growing a plant in the plant resistance induction control agent solution, and a method of mixing a plant resistance induction control agent into a hydroponic solution.
  • the site of the plant body to be treated or administered with the plant resistance induction control agent is not particularly limited.
  • all the leaves, stems, and roots of the plant body may be sprayed, or only some leaves, some stems, and some roots may be sprayed.
  • the secondary metabolite produced in the sprayed site reaches the necessary site of the plant body, and resistance to pests can be obtained even in the site where the plant body is not sprayed.
  • Resistance to pests can also be obtained by infiltrating the plant body from the root system by soil treatment, immersion treatment, or the like.
  • derivation control agent can be suitably adjusted according to an induction control agent and the kind of plant.
  • the amount of the active ingredient used per time is 1 to 20 kg / 10a, 1 to 10 kg / 10a, 1 to 1.3 kg / 10a, and can be used once a year or multiple times as needed during the period from the time the plants germinate until they are harvested. When used multiple times, it is preferable to use it 2 to 6 times a year and 1 to 3 times a month.
  • concentration of the compound or its salt represented by the said General formula (1) contained in an induction control agent solution is 0.1.
  • ⁇ 500 ⁇ M, 1 to 500 ⁇ M, 1 to 300 ⁇ M, 1 to 100 ⁇ M are preferable, and 10 to 50 ⁇ M are more preferable.
  • the use amount of the induction control agent solution having a concentration of 0.1 to 500 ⁇ M or 1 to 500 ⁇ M per time is set to 1 to 1000 ⁇ L per leaf, and during the period from the germination of the plant to the harvest, Can be used once or multiple times as needed.
  • the concentration of the compound represented by the general formula (1) or a salt thereof contained in the induction control agent solution in the case of treating with a method of growing a plant in the induction control agent solution such as hydroponics is 0.1.
  • -500 ⁇ M are preferred, 1-500 ⁇ M are preferred, 1-300 ⁇ M are more preferred, 1-100 ⁇ M are more preferred, and 10-50 ⁇ M are particularly preferred.
  • the amount of the induction control agent solution having a concentration of 0.1 to 500 ⁇ M or 1 to 500 ⁇ M used per time is 1 to 1000 ⁇ L per plant body, and during the period from when the plant germinates until it is harvested, Can be used once a year or multiple times as needed. When used multiple times, it is preferable to use it 2 to 6 times a year and 1 to 3 times a month.
  • the timing of use of the resistance induction control agent of the present invention can be used at any time of planting, sowing, transplanting, or planting. Moreover, it can be applied at any stage of growth of seeds, seedlings, juveniles, and mature individuals.
  • tomato for example, it is applied 1 to 3 times after 20 days after germination to 14 days before harvest.
  • cucumber for example, it is applied 1 to 3 times after 20 days after germination to 14 days before harvest.
  • cabbage for example, it is applied 1 to 3 times from 20 days after germination to 14 days before harvest.
  • the plant resistance induction controlling agent of the present invention may be used in combination with other agricultural and horticultural agents.
  • the plant resistance induction controlling agent and other agricultural and horticultural agents may be used simultaneously or separately.
  • the plant resistance induction control agent of the present invention may be used in combination with other JA resistance induction control agents such as bestatin, hexanoic acid, arachidonic acid, N-acylamide and the like.
  • the plant resistance induction control agent of the present invention and a known SAR resistance induction control agent may be used in combination.
  • the plant resistance induction control agent may be brought into contact with the plant body after the occurrence of pests or the onset of plant diseases. Further, the plant resistance induction controlling agent may be used prophylactically, and the plant resistance induction controlling agent may be brought into contact with the plant body before occurrence of pests or plant diseases.
  • the resistance induction control agent of the present invention can induce good resistance by treating the active ingredient at a low concentration as compared with the conventional JA resistance induction control agent.
  • the plant resistance induction control agent of the present invention can also be used as a plant growth promoter. It is known that SAR response and plant hatching are closely related, and that biomass is reduced under SAR response induction. As will be shown in Examples described later, the plant growth promoter according to the present invention has inhibitory control activity on the expression of SAR defense response gene. Therefore, according to the plant growth promoting agent of the present invention, a plant growth promoting effect can be obtained. Examples of the plant growth promoter include those similar to those described in the plant resistance induction control agent, and thus the description thereof is omitted.
  • the plant growth promoter of the present invention may be provided in a dosage form that is used in combination with other agricultural and horticultural agents.
  • it may be provided in a dosage form such as a mixture or a combination preparation of the plant growth promoter of the present invention and other known compounds having a plant growth promoting effect.
  • the plant growth promoter of the present invention may be used in combination with other agricultural and horticultural agents.
  • the plant growth promoter and other agricultural and horticultural agents may be used simultaneously or separately. For example, you may use together the plant growth promoter of this invention, and the compound which has another well-known plant growth promotion effect.
  • the plant growth promoter of the present invention has a plant growth promoting effect.
  • the expression of the plant growth promoting effect in the plant can be determined by, for example, the following index as shown in the examples described later.
  • the plant growth promoter of the present invention is compared with a plant treated with the plant growth promoter of the present invention using the growth rate of the plant as an index. When the growth rate of the plant body is significantly increased, the expression of the plant growth promoting effect can be determined.
  • “2” The plant growth promoter of the present invention is treated by comparing the plant treated with the plant growth promoter of the present invention with the untreated plant using the biomass of the plant at a specific time as an index. In the case of the plant, when the biomass of the plant body at a specific time is significantly increased, the expression of the plant growth promoting effect can be determined.
  • the present invention provides a method for promoting plant growth comprising contacting a plant growth promoter with a plant. Since the method which can illustrate the method similar to what was demonstrated in the method of contacting a plant resistance induction
  • the present invention provides a compound represented by the above general formula (1) or a salt thereof for promoting plant growth. In one embodiment, the present invention provides use of a compound represented by the above general formula (1) or a salt thereof for promoting plant growth. In one embodiment, the present invention provides use of a compound represented by the above general formula (1) or a salt thereof for producing a plant growth promoter.
  • the plant resistance induction regulator of the present invention can also be used as a microbial infection efficiency promoter or a transgene expression efficiency promoter.
  • the plant resistance induction controlling agent of the present invention suppresses the expression of SAR defense response and promotes artificial microbial infection efficiency to plants.
  • the microbial infection efficiency promoting agent according to the present invention has an effect of promoting gene transfer expression by the agroinfiltration method. Therefore, according to the microbial infection efficiency promoter of the present invention, the effect of promoting microbial infection efficiency to plants can be obtained.
  • the plant resistance induction regulator of the present invention can also be used as a transformation promoter, a gene transfer promoter, and a transgene expression efficiency promoter.
  • the microbial infection efficiency promoter include those similar to those described in the plant resistance induction control agent, and thus the description thereof is omitted.
  • the transgene expression efficiency promoter include those similar to those described in the plant resistance induction control agent, and thus the description thereof is omitted.
  • the target microorganism include Agrobacterium and various plant viruses that infect plants.
  • the gene to be introduced is not particularly limited as long as it can be introduced by the microorganism.
  • the microorganism infection efficiency promoter of the present invention may be provided in a dosage form that is used in combination with other agricultural and horticultural agents.
  • it may be provided in a dosage form such as a mixture or a combination preparation of the microbial infection efficiency promoter of the present invention and other known compounds having an effect of promoting microbial infection efficiency.
  • the transgene expression efficiency promoter of the present invention and other known transgene expression efficiency promoting effects may be provided in a dosage form such as a combination or a combined preparation.
  • the microbial infection efficiency promoter of the present invention may be used in combination with an agricultural and horticultural agent.
  • the microbial infection efficiency promoter and other agricultural and horticultural agents may be used simultaneously or separately.
  • the plant growth promoter of the present invention may be used in combination with other known compounds having an effect of promoting the efficiency of microbial infection.
  • the transgene expression efficiency promoting agent of the present invention may be used in combination with other known compounds having a transgene expression efficiency promoting effect.
  • the microbial infection efficiency promoter of the present invention has an effect of promoting microbial infection efficiency.
  • the expression of the effect of promoting microbial infection efficiency in plants can be determined by, for example, the following indicators, as shown in the examples described later. “1”
  • the expression level of the gene is significantly increased in the plant treated with the microbial infection efficiency promoting agent of the present invention, compared with a non-plant, the expression of the microbial infection efficiency promoting effect can be determined.
  • the transgene expression efficiency promoter of the present invention has an effect of promoting transgene expression efficiency.
  • the expression of the effect of promoting transgene expression efficiency in plants can be determined by, for example, the following indicators, as shown in the Examples described later. “1”
  • the expression level of the gene is significantly increased in the plant treated with the microbial infection efficiency promoting agent of the present invention, compared with a non-plant, the expression of the microbial infection efficiency promoting effect can be determined.
  • the present invention provides a method for promoting microbial infection comprising contacting a plant with a microbial infection efficiency promoter. Since the method which can illustrate the method similar to what was demonstrated in the method of contacting a plant resistance induction
  • the present invention provides a compound represented by the above general formula (1) or a salt thereof for promoting microbial infection efficiency. In one embodiment, the present invention provides use of a compound represented by the above general formula (1) or a salt thereof for promoting microbial infection efficiency. In one embodiment, the present invention provides the use of a compound represented by the above general formula (1) or a salt thereof for producing a microbial infection efficiency promoter.
  • the present invention provides a method for promoting transgene expression efficiency, which comprises contacting a plant with a transgene expression efficiency promoter.
  • the method for promoting the efficiency of transgene expression comprising introducing a gene into a plant by a microorganism and bringing the plant resistance induction regulator of the present invention into contact with the plant Is mentioned.
  • the method for promoting transgene expression efficiency according to the present invention comprises introducing a gene into a plant by a microorganism, bringing the plant resistance induction regulator of the present invention into contact with the plant, and expressing the gene. Examples include a method for promoting transgene expression efficiency.
  • the introduction of a gene into a plant by a microorganism may be performed after the transgene expression efficiency promoter of the present invention is brought into contact with the plant, or may be performed simultaneously. Since the method of bringing the transgene expression efficiency promoter of the present invention into contact with a plant can be exemplified by the same method as described in the method of bringing a plant resistance induction regulator into contact with a plant, description thereof is omitted.
  • a method for introducing a gene into a plant by a microorganism can be performed by a known method such as an agroinfiltration method.
  • the target plant into which the gene is introduced is used to include plant cells, tissues, cell masses, callus, and plant individuals.
  • the present invention provides a compound represented by the above general formula (1) or a salt thereof for promoting transgene expression efficiency. In one embodiment, the present invention provides use of a compound represented by the above general formula (1) or a salt thereof for promoting transgene expression efficiency. In one embodiment, the present invention provides the use of a compound represented by the above general formula (1) or a salt thereof for producing a transgene expression efficiency promoter.
  • the promoter sequence of the VSP1 gene was ligated upstream of Fluc of a plasmid (pBI221-Fluc) having a gene sequence of a reporter gene (firefly luciferase gene (FLuc)) to obtain a pBI121-VSP1 :: Fluc plasmid.
  • the plasmid was introduced into Arabidopsis thaliana through Agrobacterium tumefaciens LBA4404 to obtain transformed Arabidopsis VSP1 :: Fluc having VSP1 :: Fluc.
  • the transformed Arabidopsis seeds were sown in a multiwell plate and germinated in a luciferin aqueous solution.
  • DMSO dimethyl sulfoxide
  • the luminescence intensity of Fluc protein was measured by treatment with Compound X on Arabidopsis thaliana 35S :: Fluc (compound X group).
  • Fluc compound X group
  • a group treated with DMSO alone instead of the DMSO solution of each compound X DMSO group
  • a group treated with a DMSO solution of MeJA instead of the DMSO solution of each compound X (MeJA group)
  • the luminescence intensity of Fluc protein was measured.
  • the luminescence intensity values of the Fluc protein in the compound X group, DMSO group, and MeJA group were almost the same value (the luminescence intensity was about 3000 (number of photons / minute / ⁇ m 2 ) after 120 hours of treatment).
  • VSP1 induces the expression of VSP1 gene.
  • the expression of VSP1 gene is specifically induced in the JA response pathway. Therefore, it was confirmed that the resistance was induced by the ISR system that is known to be induced through JA by treating the compound X with plants.
  • Compound X has VSP1 gene expression-inducing activity even in Arabidopsis thaliana 3-week-old individuals. Further, when the resistance induction mode was compared between Compound X and MeJA, it was found that the resistance induction effect of Compound X was exhibited from the same early point as MeJA. And the resistance inducing action of Compound X lasted longer than that of MeJA. From this, it can be seen that Compound X has a very excellent resistance-inducing action having both immediate effect and sustainability.
  • FIG. 1 (b) is a photograph of the plant 3 days after inoculation. As shown in FIG.1 (b), many lesions were seen on the leaf of the plant body.
  • Example 1 instead of DMSO aqueous solution (approx. 0.03%), the compound X aqueous solution prepared using DMSO aqueous solution (approx. Were tested in the same manner as in Comparative Example 1.
  • FIG. 1 (c) is a mature Arabidopsis thaliana plant (Col-0) 37 days after sowing.
  • FIG. 1 (d) is a photograph of the plant 3 days after inoculation. Compared with the plant body of Comparative Example 1 (FIG.
  • FIG. 2 (a) is a photograph of leaves obtained from a plant 5 days after inoculation. It can be seen that lesions are found on the leaves and the growth of the leaves is poor.
  • Example 2 Compared with DMSO aqueous solution (about 3%), soaked compound X aqueous solution prepared using DMSO aqueous solution (about 3%) to contain compound X instead of DMSO aqueous solution (about 0.03%). Tested as in Example 2.
  • FIG. 2 (b) is a photograph of the plant 5 days after inoculation. Compared with the plant body of Comparative Example 2 (FIG. 2 (a)), the plant body of Example 2 (FIG. 2 (b)) has a reduced area of lesions and good leaf growth. I understand.
  • the graph of FIG. 2 (c) quantifies the results obtained in ⁇ Test 2>.
  • the vertical axis of the graph is the value of the result of measuring the maximum lesion diameter in each inoculated leaf at 5 days after seeding of gray mold.
  • the area of the lesion was reduced in the individual given Compound X. From this, it was confirmed that Compound X has a high control effect against gray mold fungus in mature tomato plants.
  • FIG. 3 (a) is a photograph of leaves obtained from a plant 5 days after inoculation. It can be seen that lesions are found on the leaves and the growth of the leaves is poor.
  • FIG. 3 (b) is a photograph of the plant 5 days after inoculation. Compared with the plant body of Comparative Example 3 (FIG. 3A), the plant body of Example 3 (FIG. 3B) has a small lesion area and good leaf growth. I understand.
  • the graph of FIG.3 (c) quantifies the result obtained by ⁇ Test 3>.
  • the vertical axis of the graph is a measurement of the maximum diameter of lesions occurring on the plant body at 5 days after seeding of the gray mold fungus.
  • the lesion area was suppressed to be small in the individual given Compound X. From this, it was confirmed that Compound X has a high control effect against gray mold fungus in mature cucumber individuals.
  • ⁇ Test 4> Untreated group The peach aphid (Myzus persicae) was released to the mature cabbage individuals after 85 days after sowing. The number of peach aphids was counted 2 days, 6 days, 9 days, 15 days, and 22 days after Compound X spraying. [Example 4] The surface of the plant body is sprayed on a compound X aqueous solution prepared by diluting 30 mM DMSO solvent 1000 times with well water and adding the spreading agent mylino to 5000 times so that compound X is contained at 30 ⁇ M. The test was conducted in the same manner as in Comparative Example 4 except that a sufficient amount was sprayed so as to be sufficiently wet and given to mature cabbage individuals. The investigation in ⁇ Test 4> was commissioned to the Japan Plant Protection Association.
  • Test 4 The results of Test 4 are shown in Table 1.
  • the numerical value of Example 4 in Table 1 is expressed as a corrected density index based on the value obtained in Comparative Example 4. From the results shown in Table 1, it was clarified that in this test, Compound X exhibits a controlling effect against peach aphid until 9 days after the application of Compound X.
  • ⁇ Test 5> [Comparative Example 5] In Comparative Example 4, the test was conducted in the same manner as in Comparative Example 4 except that the test was started after inoculating 100 eggs per strain 2 days after spraying Compound X instead of Peachella xylostella instead of the peach aphid. went. The total number of young moth larvae of young larvae, middle larvae and old larvae 9 days, 15 days and 22 days after release was counted. [Example 5] Instead of DMSO aqueous solution (about 3%), Compound X aqueous solution prepared using DMSO aqueous solution (about 3%) so as to contain Compound X at 30 ⁇ M is sprayed on the whole plant by spraying to give mature cabbage individuals. The test was performed in the same manner as in Comparative Example 5 except that. The investigation of ⁇ Test 5> was commissioned to the Japan Plant Protection Association.
  • Test 5 The results of Test 5 are shown in Table 2. From the results shown in Table 2, it was clarified that in this test, Compound X exerts a remarkable and long-lasting control effect on the diamondback moth.
  • a spreading agent Mylino was added so as to be 5000 times to prepare a compound X diluted drug solution for spraying.
  • the compound X diluted chemical was sprayed on cabbage (three cabbage leaves) 21 days after sowing.
  • compound X diluted chemical was sprayed on cabbage (34 cabbage leaves) 28 days after sowing.
  • compound X diluted chemical was sprayed on cabbage (45 cabbage leaves) 35 days after sowing.
  • a sufficient amount of the diluted chemical solution was sprayed using a back sprayer so that the front and back of the leaves were wet. Thereafter, observation (photographing) was performed 57 days after sowing.
  • a DMSO solution of Compound X containing Compound X at final concentrations of 1 ⁇ M, 5 ⁇ M, and 10 ⁇ M was prepared.
  • a DMJA solution of MeJA was prepared instead of the DMSO solution of Compound X.
  • Agrobacterium LBA4404 strain having an intron-inserted luciferase gene (inserted between CaMV35S promoter and HSP terminator) was treated and infected by an ordinary method on seedlings 11 days after sowing.
  • the luciferase activity was continuously monitored up to 144 hours after Agrobacterium infection by luminescence observation with a high sensitivity camera. The results of monitoring are shown in FIG.
  • the vertical axis of the graph shown in FIG. 7 is an average value of relative activities 48 to 120 hours after infection.
  • a clear increase in gene expression was confirmed in all treatment groups of Compound X at final concentrations of 1 ⁇ M, 5 ⁇ M, and 10 ⁇ M. In particular, a clear increase in expression was observed even when treated with a relatively low concentration (1 ⁇ M) of Compound X.
  • the present invention can be used in the entire field of plant cultivation.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

A plant resistance inducing control agent containing a compound represented by formula (1) or a salt thereof as an active ingredient. X1-10: CH, N (however, N is 0-1 in X1-5 and X6-10). R1: C1-4 straight-chain or branched haloalkyl, halogen, NO2, CN. R2: C1-4 straight-chain or branched alkyl, C2-4 straight-chain or branched alkenyl. R3: H, C1-4 straight-chain or branched alkyl, C2-4 straight-chain or branched alkenyl. R4: C1-4 straight-chain or branched alkyl, C2-4 straight-chain or branched alkenyl, halogen. n: 0-1. m: 0-5. p: 0-5.

Description

植物抵抗性誘導制御剤、植物抵抗性誘導制御方法、植物病害の防除方法、害虫の防除方法、植物生育促進剤、微生物感染効率促進剤、及び導入遺伝子発現効率促進剤Plant resistance induction control agent, plant resistance induction control method, plant disease control method, pest control method, plant growth promoter, microbial infection efficiency promoter, and transgene expression efficiency promoter
 本発明は、植物抵抗性誘導制御剤、植物抵抗性誘導制御方法、植物病害の防除方法、害虫の防除方法、植物生育促進剤、微生物感染効率促進剤、及び導入遺伝子発現効率促進剤に関する。
 本願は、2014年7月9日に、日本に出願された特願2014-141566号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a plant resistance induction control agent, a plant resistance induction control method, a plant disease control method, a pest control method, a plant growth promoter, a microbial infection efficiency promoter, and a transgene expression efficiency promoter.
This application claims priority on July 9, 2014 based on Japanese Patent Application No. 2014-141466 for which it applied to Japan, and uses the content here.
 植物は糸状菌や細菌、ウィルスなど様々な病原微生物の侵入・攻撃を受ける。それらに対抗するために植物は防御機構を発達させている。防御機構には様々な段階があり、まず病原が侵入する前の段階では細胞壁による物理的障壁や葉の気孔開閉などにより病原侵入を阻止する。病原が侵入した後でも植物細胞が病原侵入を認識し、侵入個所に多糖類を蓄積することで感染の進行を阻害する機構を持つ(Ton and Mauch-Mani, 2009参照)。さらに、植物は病原の感染部位だけでなく、感染を受けた部位からシグナルを全身に伝達することで非感染部位においても抵抗性を強化する機構を持つ。この機構には植物ホルモンや多数の遺伝子の発現が関与している。 Plants are invaded and attacked by various pathogenic microorganisms such as filamentous fungi, bacteria and viruses. Plants have developed defense mechanisms to combat them. There are various stages in the defense mechanism. First, in the stage before the pathogen invades, the pathogenic invasion is blocked by the physical barrier by the cell wall and the opening and closing of the stoma of the leaves. Plant cells recognize the pathogen invasion even after the pathogen has invaded, and have a mechanism that inhibits the progression of infection by accumulating polysaccharides at the intrusion site (see Ton and Mauch-Mani, 2009). Furthermore, plants have a mechanism that enhances resistance not only at the site of pathogenic infection but also at a non-infected site by transmitting a signal from the infected site to the whole body. This mechanism involves the expression of plant hormones and numerous genes.
 全身に抵抗性を誘導する機構として、植物ホルモンであるサリチル酸(salicylic acid; SA) がシグナル伝達に関与する全身獲得抵抗性(Systemic Acquired Resistance; SAR)があり、近年研究が進んでいる。SARによる防御応答は、植物自体の病害抵抗性を強化するために広範囲な病原に対抗することができることが明らかになっている。 
 SAは主に、生きた細胞から栄養をとる病原体である「活物寄生性病原菌」に対する抵抗性を誘導することが知られている。活物寄生性病原菌は植物細胞から養分を吸い取り、植物と共存する形態をとることが多い。活物寄生性病原菌としてイネいもち病菌がある。
 SARを誘導する活性を有する化合物は抵抗性誘導剤または植物活性化剤として実用化され、主に我が国のイネの病害防除に有効な資材として活用されており、プロベナゾール(商品名オリゼメート)の例では、開発後30年以上経過しているにもかかわらず、年間100億円程度の売り上げがある。プロぺナゾールの他にもSARを誘導する活性を有する抵抗性誘導剤または植物活性化剤が複数あり、パリダマイシンA(VMA)、ベンゾチアジアゾール(BTH)、チアジニル(TDL)、イソチアニルなどが知られている。
As a mechanism for inducing resistance throughout the body, there is systemic acquired resistance (SAR) in which salicylic acid (SA), a plant hormone, is involved in signal transduction, and research has been progressing in recent years. It has been shown that the defense response by SAR can combat a wide range of pathogens to enhance the disease resistance of the plant itself.
SA is mainly known to induce resistance to “active parasitic pathogens”, pathogens that nourish from living cells. In many cases, the parasitic parasite pathogens absorb nutrients from plant cells and coexist with plants. There is a rice blast fungus as an active parasitic fungus.
Compounds that have the activity to induce SAR have been put into practical use as resistance inducers or plant activators, and are mainly used as effective materials for disease control in rice in Japan. In the example of probenazole (trade name oryzate) Even though more than 30 years have passed since the development, there are sales of about 10 billion yen per year. In addition to propenazole, there are a plurality of resistance inducers or plant activators having an activity to induce SAR, and known are paridamycin A (VMA), benzothiadiazole (BTH), thiazinyl (TDL), and isothianyl. ing.
 一方、SARと異なる作用機構で働く病害抵抗性発現の仕組みも知られている。誘導抵抗性(Induced Systemic Resistance: ISR)は、SARと異なりSAには依存せず、植物ホルモンであるジャスモン酸(jasmonic acid:JA)に依存した病害抵抗性発現の経路により誘導されることが知られている(図4参照)。ISRでは、誘導される防御応答遺伝子及び抵抗対象として有効な病原体の種類もSARとは異なっていることが判明している。
 JAは主に、死細胞から栄養をとる病原体である「腐生性病原菌」に対する抵抗性、及び害虫による食害等の「傷害」に対する防御応答を誘導する。代表的な腐生性病原菌として灰色かび病菌がある。灰色かび病菌はほとんど全ての植物に感染するとともに、薬剤耐性菌が非常に発生しやすい。しかし、SARを誘導する活性を有する化合物では腐生性病原菌に対する防除効果に乏しく、プロベナゾール等の既存の植物活性化剤では、灰色かび病菌のような腐生性病原菌に対して無効である。
 従って、ISR系を誘導する活性を有する化合物があれば、既存のSAR系の抵抗性誘導剤では対処できないタイプの病害にも有効な新規な病害虫防除資材として活用できる可能性がある。しかし、これまでの研究では、商業的に利用可能な程度にそのような活性を有する低分子化合物は見出されていない。ベスタチン(Bestain)はJAシグナルを特異的に活性化させる化合物であると報告されている(非特許文献1)。また、これまでに、JA/ET シグナル伝達系による防御活性化誘導化合物として、ヘキサン酸,アラキドン酸,N-アシルアミド(アルカミド)などが知られている(非特許文献2~4) 。これらはいずれも PDF1.2 や VSP2 を含む JA 応答性遺伝子の発現を誘導し、灰色かび病菌の病斑形成の抑制等に効果があることが、シロイヌナズナを用いて示されている。また、ヘキサン酸,アラキドン酸の処理においてはトマトにおいても同様にその病斑形成の抑制が観察されている(非特許文献5) 。これは、JA 系抵抗性誘導剤が灰色かび病防除に有効であることを示している。しかし、これらの薬剤の有効性は高濃度処理を必要とするなどの問題点もあり、JA系抵抗性誘導剤として実用化には至っていない。
On the other hand, a mechanism for developing disease resistance that works by a different mechanism of action from SAR is also known. Induced Systemic Resistance (ISR) is not dependent on SA, unlike SAR, and is induced by the pathogenesis of disease resistance depending on the plant hormone jasmonic acid (JA). (See FIG. 4). In ISR, it has been found that the defense response gene to be induced and the type of pathogen effective as a resistance target are also different from SAR.
JA mainly induces a resistance response to “septic pathogens”, which are pathogens that nourish from dead cells, and a protective response to “injuries” such as insect damage caused by pests. A representative fungal pathogen is gray mold. Gray mold fungus infects almost all plants, and drug resistant bacteria are very likely to occur. However, a compound having an activity to induce SAR has a poor control effect against rot-causing pathogens, and existing plant activators such as probenazole are ineffective against rot-causing pathogens such as gray mold.
Therefore, if there is a compound having an activity to induce the ISR system, there is a possibility that it can be used as a new pest control material that is effective even for diseases that cannot be dealt with by the existing SAR resistance inducers. However, previous studies have not found low molecular weight compounds having such activity to the extent that they are commercially available. Bestatin (Bestain) is reported to be a compound that specifically activates the JA signal (Non-patent Document 1). So far, hexanoic acid, arachidonic acid, N-acylamide (alkamide) and the like are known as defense activation-inducing compounds by JA / ET signal transduction system (Non-Patent Documents 2 to 4). It has been shown using Arabidopsis that both of these induce the expression of JA responsive genes including PDF1.2 and VSP2 and are effective in suppressing the formation of lesions of gray mold. In addition, in the treatment of hexanoic acid and arachidonic acid, suppression of lesion formation has been observed in tomato as well (Non-patent Document 5). This indicates that JA resistance inducers are effective in controlling gray mold. However, the effectiveness of these drugs also has problems such as the need for high concentration treatment, and they have not been put into practical use as JA-based resistance inducers.
 上記のように、JAシグナルを活性化させる化合物は複数報告されているが(非特許文献1~5)、抵抗性誘導はそれほど高くなく実用化には至っていない。このような経緯から、ISR系を誘導する活性を有する新規化合物の発見と病害虫防除への応用が期待されている。また、JAシグナル系を活性化させることにより、SAR系が抑制されることが知られており、効力が高いJAシグナル活性化物質によってSAR系防御応答発現を制御し、結果として植物体の生育や病原体を用いた外来遺伝子発現効率の向上も期待できる。
 本発明は上記事情に鑑みてなされたものであり、植物抵抗性誘導制御活性に優れる植物抵抗性誘導制御剤の提供を課題とする。
As described above, a plurality of compounds that activate the JA signal have been reported (Non-Patent Documents 1 to 5), but the resistance induction is not so high and has not been put into practical use. From such circumstances, the discovery of a novel compound having activity to induce the ISR system and its application to pest control are expected. In addition, it is known that the SAR system is suppressed by activating the JA signal system, and the SAR system defense response expression is controlled by a highly effective JA signal activator, resulting in the growth and growth of plants. The improvement of foreign gene expression efficiency using pathogens can also be expected.
This invention is made | formed in view of the said situation, and makes it a subject to provide the plant resistance induction control agent which is excellent in plant resistance induction control activity.
 上記課題を解決するため、本発明は、下記の特徴を有する植物抵抗性誘導制御剤、植物抵抗性誘導制御方法、植物病害の防除方法、害虫の防除方法、植物生育促進剤、微生物感染効率促進剤、及び導入遺伝子発現効率促進剤を提供する。 In order to solve the above-mentioned problems, the present invention provides a plant resistance induction control agent, a plant resistance induction control method, a plant disease control method, a pest control method, a plant growth promoter, a microorganism infection efficiency promotion having the following characteristics: An agent and a transgene expression efficiency promoting agent are provided.
[1]下記一般式(1)で表される化合物又はその塩を有効成分として含有する植物抵抗性誘導制御剤。
Figure JPOXMLDOC01-appb-C000007
[式(1)中、
 X、X、X、X、X、X、X、X、X及びX10は、それぞれ独立して、CH又はNを表し(但し、X、X、X、X及びXのいずれか2以上がNとなることはなく、X、X、X、X及びX10のいずれか2以上がNとなることはない。)、
 Rは炭素数1~4の直鎖状若しくは分岐鎖状のハロアルキル基、ハロゲン原子、ニトロ基又はシアノ基を表し、
 Rは炭素数1~4の直鎖状若しくは分岐鎖状のアルキル基又は炭素数2~4の直鎖状若しくは分岐鎖状のアルケニル基を表す。
 Rは水素原子、炭素数1~4の直鎖状若しくは分岐鎖状のアルキル基又は炭素数2~4の直鎖状若しくは分岐鎖状のアルケニル基を表し、
 Rは、炭素数1~4の直鎖状若しくは分岐鎖状のアルキル基、炭素数2~4の直鎖状若しくは分岐鎖状のアルケニル基、又はハロゲン原子を表す。
 nはRの数を表し、0又は1である。mはRの数を表し、0~5のいずれかの整数であり、mが2以上のとき、R同士は互いに同一でも異なっていてもよい。但し、n+mは5以下の整数である。pはRの数を表し、0~5のいずれかの整数であり、pが2以上のとき、R同士は互いに同一でも異なっていてもよい。]
[2]前記一般式(1)が、下記一般式(1-2)で表される化合物である前記[1]に記載の植物抵抗性誘導制御剤。
Figure JPOXMLDOC01-appb-C000008
[式(1-2)中、X、X、R、R、R、R、n、m及びpは前記と同一の意味を表す。]
[3]前記一般式(1)が、下記一般式(3-2-2)で表される化合物である前記[1]又は[2]に記載の植物抵抗性誘導制御剤。
Figure JPOXMLDOC01-appb-C000009
[式(3-2-2)中、R、R、R、R、n、m及びpは前記と同一の意味を表す。]
[4]前記[1]~[3]のいずれか一つに記載の植物抵抗性誘導制御剤を植物に接触させることを含む植物抵抗性誘導制御方法。
[5]前記[4]に記載の植物抵抗性誘導制御方法を使用することを含む植物病害の防除方法。
[6]前記[4]に記載の植物抵抗性誘導制御方法を使用することを含む害虫の防除方法。
[7]下記一般式(1)で表される化合物又はその塩を有効成分として含有する植物生育促進剤。
Figure JPOXMLDOC01-appb-C000010
[式(1)中、
 X、X、X、X、X、X、X、X、X及びX10は、それぞれ独立して、CH又はNを表し(但し、X、X、X、X及びXのいずれか2以上がNとなることはなく、X、X、X、X及びX10のいずれか2以上がNとなることはない。)、
 Rは炭素数1~4の直鎖状若しくは分岐鎖状のハロアルキル基、ハロゲン原子、ニトロ基又はシアノ基を表し、
 Rは炭素数1~4の直鎖状若しくは分岐鎖状のアルキル基又は炭素数2~4の直鎖状若しくは分岐鎖状のアルケニル基を表す。
 Rは水素原子、炭素数1~4の直鎖状若しくは分岐鎖状のアルキル基又は炭素数2~4の直鎖状若しくは分岐鎖状のアルケニル基を表し、
 Rは、炭素数1~4の直鎖状若しくは分岐鎖状のアルキル基、炭素数2~4の直鎖状若しくは分岐鎖状のアルケニル基、又はハロゲン原子を表す。
 nはRの数を表し、0又は1である。mはRの数を表し、0~5のいずれかの整数であり、mが2以上のとき、R同士は互いに同一でも異なっていてもよい。但し、n+mは5以下の整数である。pはRの数を表し、0~5のいずれかの整数であり、pが2以上のとき、R同士は互いに同一でも異なっていてもよい。]
[8]下記一般式(1)で表される化合物又はその塩を有効成分として含有する微生物感染効率促進剤。
Figure JPOXMLDOC01-appb-C000011
[式(1)中、
 X、X、X、X、X、X、X、X、X及びX10は、それぞれ独立して、CH又はNを表し(但し、X、X、X、X及びXのいずれか2以上がNとなることはなく、X、X、X、X及びX10のいずれか2以上がNとなることはない。)、
 Rは炭素数1~4の直鎖状若しくは分岐鎖状のハロアルキル基、ハロゲン原子、ニトロ基又はシアノ基を表し、
 Rは炭素数1~4の直鎖状若しくは分岐鎖状のアルキル基又は炭素数2~4の直鎖状若しくは分岐鎖状のアルケニル基を表す。
 Rは水素原子、炭素数1~4の直鎖状若しくは分岐鎖状のアルキル基又は炭素数2~4の直鎖状若しくは分岐鎖状のアルケニル基を表し、
 Rは、炭素数1~4の直鎖状若しくは分岐鎖状のアルキル基、炭素数2~4の直鎖状若しくは分岐鎖状のアルケニル基、又はハロゲン原子を表す。
 nはRの数を表し、0又は1である。mはRの数を表し、0~5のいずれかの整数であり、mが2以上のとき、R同士は互いに同一でも異なっていてもよい。但し、n+mは5以下の整数である。pはRの数を表し、0~5のいずれかの整数であり、pが2以上のとき、R同士は互いに同一でも異なっていてもよい。]
[9]下記一般式(1)で表される化合物又はその塩を有効成分として含有する導入遺伝子発現効率促進剤。
Figure JPOXMLDOC01-appb-C000012
[式(1)中、
 X、X、X、X、X、X、X、X、X及びX10は、それぞれ独立して、CH又はNを表し(但し、X、X、X、X及びXのいずれか2以上がNとなることはなく、X、X、X、X及びX10のいずれか2以上がNとなることはない。)、
 Rは炭素数1~4の直鎖状若しくは分岐鎖状のハロアルキル基、ハロゲン原子、ニトロ基又はシアノ基を表し、
 Rは炭素数1~4の直鎖状若しくは分岐鎖状のアルキル基又は炭素数2~4の直鎖状若しくは分岐鎖状のアルケニル基を表す。
 Rは水素原子、炭素数1~4の直鎖状若しくは分岐鎖状のアルキル基又は炭素数2~4の直鎖状若しくは分岐鎖状のアルケニル基を表し、
 Rは、炭素数1~4の直鎖状若しくは分岐鎖状のアルキル基、炭素数2~4の直鎖状若しくは分岐鎖状のアルケニル基、又はハロゲン原子を表す。
 nはRの数を表し、0又は1である。mはRの数を表し、0~5のいずれかの整数であり、mが2以上のとき、R同士は互いに同一でも異なっていてもよい。但し、n+mは5以下の整数である。pはRの数を表し、0~5のいずれかの整数であり、pが2以上のとき、R同士は互いに同一でも異なっていてもよい。]
[1] A plant resistance induction controlling agent comprising a compound represented by the following general formula (1) or a salt thereof as an active ingredient.
Figure JPOXMLDOC01-appb-C000007
[In Formula (1),
X 1 , X 2 , X 3 , X 4 , X 5 , X 6 , X 7 , X 8 , X 9 and X 10 each independently represent CH or N (provided that X 1 , X 2 , Any two or more of X 3 , X 4 and X 5 are not N, and any two or more of X 6 , X 7 , X 8 , X 9 and X 10 are not N).
R 1 represents a linear or branched haloalkyl group having 1 to 4 carbon atoms, a halogen atom, a nitro group, or a cyano group,
R 2 represents a linear or branched alkyl group having 1 to 4 carbon atoms or a linear or branched alkenyl group having 2 to 4 carbon atoms.
R 3 represents a hydrogen atom, a linear or branched alkyl group having 1 to 4 carbon atoms, or a linear or branched alkenyl group having 2 to 4 carbon atoms,
R 4 represents a linear or branched alkyl group having 1 to 4 carbon atoms, a linear or branched alkenyl group having 2 to 4 carbon atoms, or a halogen atom.
n represents the number of R 1 and is 0 or 1. m represents the number of R 2 and is an integer of 0 to 5, and when m is 2 or more, R 2 may be the same or different from each other. However, n + m is an integer of 5 or less. p represents the number of R 4 and is an integer of 0 to 5, and when p is 2 or more, R 4 may be the same or different from each other. ]
[2] The plant resistance induction controlling agent according to [1], wherein the general formula (1) is a compound represented by the following general formula (1-2).
Figure JPOXMLDOC01-appb-C000008
[In the formula (1-2), X 1 , X 7 , R 1 , R 2 , R 3 , R 4 , n, m and p have the same meaning as described above. ]
[3] The plant resistance induction controlling agent according to [1] or [2], wherein the general formula (1) is a compound represented by the following general formula (3-2-2).
Figure JPOXMLDOC01-appb-C000009
[In the formula (3-2-2), R 1 , R 2 , R 3 , R 4 , n, m and p have the same meaning as described above. ]
[4] A plant resistance induction control method comprising bringing a plant resistance induction control agent according to any one of [1] to [3] into contact with a plant.
[5] A plant disease control method comprising using the plant resistance induction control method according to [4].
[6] A pest control method comprising using the plant resistance induction control method according to [4].
[7] A plant growth promoter containing a compound represented by the following general formula (1) or a salt thereof as an active ingredient.
Figure JPOXMLDOC01-appb-C000010
[In Formula (1),
X 1 , X 2 , X 3 , X 4 , X 5 , X 6 , X 7 , X 8 , X 9 and X 10 each independently represent CH or N (provided that X 1 , X 2 , Any two or more of X 3 , X 4 and X 5 are not N, and any two or more of X 6 , X 7 , X 8 , X 9 and X 10 are not N).
R 1 represents a linear or branched haloalkyl group having 1 to 4 carbon atoms, a halogen atom, a nitro group, or a cyano group,
R 2 represents a linear or branched alkyl group having 1 to 4 carbon atoms or a linear or branched alkenyl group having 2 to 4 carbon atoms.
R 3 represents a hydrogen atom, a linear or branched alkyl group having 1 to 4 carbon atoms, or a linear or branched alkenyl group having 2 to 4 carbon atoms,
R 4 represents a linear or branched alkyl group having 1 to 4 carbon atoms, a linear or branched alkenyl group having 2 to 4 carbon atoms, or a halogen atom.
n represents the number of R 1 and is 0 or 1. m represents the number of R 2 and is an integer of 0 to 5, and when m is 2 or more, R 2 may be the same or different from each other. However, n + m is an integer of 5 or less. p represents the number of R 4 and is an integer of 0 to 5, and when p is 2 or more, R 4 may be the same or different from each other. ]
[8] A microorganism infection efficiency promoter containing a compound represented by the following general formula (1) or a salt thereof as an active ingredient.
Figure JPOXMLDOC01-appb-C000011
[In Formula (1),
X 1 , X 2 , X 3 , X 4 , X 5 , X 6 , X 7 , X 8 , X 9 and X 10 each independently represent CH or N (provided that X 1 , X 2 , Any two or more of X 3 , X 4 and X 5 are not N, and any two or more of X 6 , X 7 , X 8 , X 9 and X 10 are not N).
R 1 represents a linear or branched haloalkyl group having 1 to 4 carbon atoms, a halogen atom, a nitro group, or a cyano group,
R 2 represents a linear or branched alkyl group having 1 to 4 carbon atoms or a linear or branched alkenyl group having 2 to 4 carbon atoms.
R 3 represents a hydrogen atom, a linear or branched alkyl group having 1 to 4 carbon atoms, or a linear or branched alkenyl group having 2 to 4 carbon atoms,
R 4 represents a linear or branched alkyl group having 1 to 4 carbon atoms, a linear or branched alkenyl group having 2 to 4 carbon atoms, or a halogen atom.
n represents the number of R 1 and is 0 or 1. m represents the number of R 2 and is an integer of 0 to 5, and when m is 2 or more, R 2 may be the same or different from each other. However, n + m is an integer of 5 or less. p represents the number of R 4 and is an integer of 0 to 5, and when p is 2 or more, R 4 may be the same or different from each other. ]
[9] A transgene expression efficiency promoter containing a compound represented by the following general formula (1) or a salt thereof as an active ingredient.
Figure JPOXMLDOC01-appb-C000012
[In Formula (1),
X 1 , X 2 , X 3 , X 4 , X 5 , X 6 , X 7 , X 8 , X 9 and X 10 each independently represent CH or N (provided that X 1 , X 2 , Any two or more of X 3 , X 4 and X 5 are not N, and any two or more of X 6 , X 7 , X 8 , X 9 and X 10 are not N).
R 1 represents a linear or branched haloalkyl group having 1 to 4 carbon atoms, a halogen atom, a nitro group, or a cyano group,
R 2 represents a linear or branched alkyl group having 1 to 4 carbon atoms or a linear or branched alkenyl group having 2 to 4 carbon atoms.
R 3 represents a hydrogen atom, a linear or branched alkyl group having 1 to 4 carbon atoms, or a linear or branched alkenyl group having 2 to 4 carbon atoms,
R 4 represents a linear or branched alkyl group having 1 to 4 carbon atoms, a linear or branched alkenyl group having 2 to 4 carbon atoms, or a halogen atom.
n represents the number of R 1 and is 0 or 1. m represents the number of R 2 and is an integer of 0 to 5, and when m is 2 or more, R 2 may be the same or different from each other. However, n + m is an integer of 5 or less. p represents the number of R 4 and is an integer of 0 to 5, and when p is 2 or more, R 4 may be the same or different from each other. ]
  本発明の植物抵抗性誘導制御剤によれば、植物病害を低減することができる。また、本発明の植物抵抗性誘導制御方法によれば、対象となる植物に植物抵抗性誘導制御剤を暴露するという簡易な方法で、植物病害を低減することができる。また、この方法によって、対象となる植物が病原菌に感染することを防除(予防又は治療ともいう)することができると共に、害虫に対して優れた防除効力を発揮する。
 また、植物抵抗性誘導制御剤は、植物生育促進剤として使用でき、これによって植物の生育を促進させることが出来る。
 また、植物抵抗性誘導制御剤は、微生物感染効率促進剤として使用でき、これによってSAR系防御応答発現を抑制し、植物体への人為的な微生物感染効率を向上させることができ、植物体へ遺伝子が導入された場合には、その導入遺伝子の発現効率を向上させることが出来る。
According to the plant resistance induction control agent of the present invention, plant diseases can be reduced. Moreover, according to the plant resistance induction | guidance | derivation control method of this invention, a plant disease can be reduced by the simple method of exposing a plant resistance induction | guidance | derivation control agent to the plant used as object. In addition, this method can control (also referred to as prevention or treatment) that a target plant is infected with a pathogenic bacterium, and exhibits excellent control effects against pests.
Moreover, a plant resistance induction | guidance | derivation control agent can be used as a plant growth promoter, and can promote the growth of a plant by this.
In addition, the plant resistance induction control agent can be used as a microbial infection efficiency promoter, thereby suppressing the expression of SAR defense response and improving the artificial microbial infection efficiency to the plant body. When a gene is introduced, the expression efficiency of the introduced gene can be improved.
シロイヌナズナ成熟個体において、灰色かび病菌に対する化合物Xの防除効果を評価した結果である。It is the result of having evaluated the control effect of the compound X with respect to a gray mold fungus in an Arabidopsis thaliana individual. トマト成熟個体において、灰色かび病菌に対する化合物Xの防除効果を評価した結果である。It is the result of having evaluated the control effect of the compound X with respect to a gray mold fungus in a tomato mature individual. キュウリ成熟個体において、灰色かび病菌に対する化合物Xの防除効果を評価した結果である。It is the result of having evaluated the control effect of the compound X with respect to a gray mold fungus in a cucumber mature individual. 病害抵抗性に関わるシグナル伝達経路を説明する図である。It is a figure explaining the signal transduction pathway in connection with disease resistance. PR-1a::Flucを有するシロイヌナズナに対する化合物X処理による、SA応答性遺伝子発現の測定結果である。It is a measurement result of SA responsive gene expression by the compound X process with respect to Arabidopsis thaliana which has PR-1a :: Fluc. キャベツに対する化合物X処理による、生育促進効果の観察結果を示す写真である。It is a photograph which shows the observation result of the growth promotion effect by the compound X process with respect to a cabbage. タバコに対する化合物X処理による、微生物感染効率と導入遺伝子発現効率向上効果を評価した結果である。This is a result of evaluating the effect of improving compound infection efficiency and transgene expression efficiency by compound X treatment on tobacco.
 以下、本発明の好ましい例を説明するが、本発明はこれら例に限定されることはない。本発明の趣旨を逸脱しない範囲で、構成の付加、省略、置換、およびその他の変更が可能である。以下、本発明についてより詳細に説明する。 Hereinafter, preferred examples of the present invention will be described, but the present invention is not limited to these examples. Additions, omissions, substitutions, and other modifications can be made without departing from the spirit of the present invention. Hereinafter, the present invention will be described in more detail.
≪植物抵抗性誘導制御剤≫
 本発明の植物抵抗性誘導制御剤は、下記一般式(1)で表される化合物又はその塩を有効成分として含有する。
≪Plant resistance induction control agent≫
The plant resistance induction controlling agent of the present invention contains a compound represented by the following general formula (1) or a salt thereof as an active ingredient.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
[式(1)中、
 X、X、X、X、X、X、X、X、X及びX10は、それぞれ独立して、CH又はNを表し(但し、X、X、X、X及びXのいずれか2以上がNとなることはなく、X、X、X、X及びX10のいずれか2以上がNとなることはない。)、
 Rは炭素数1~4の直鎖状若しくは分岐鎖状のハロアルキル基、ハロゲン原子、ニトロ基又はシアノ基を表し、
 Rは炭素数1~4の直鎖状若しくは分岐鎖状のアルキル基又は炭素数2~4の直鎖状若しくは分岐鎖状のアルケニル基を表す。
 Rは水素原子、炭素数1~4の直鎖状若しくは分岐鎖状のアルキル基又は炭素数2~4の直鎖状若しくは分岐鎖状のアルケニル基を表し、
 Rは、炭素数1~4の直鎖状若しくは分岐鎖状のアルキル基、炭素数2~4の直鎖状若しくは分岐鎖状のアルケニル基、又はハロゲン原子を表す。
 nはRの数を表し、0又は1である。mはRの数を表し、0~5のいずれかの整数であり、mが2以上のとき、R同士は互いに同一でも異なっていてもよい。但し、n+mは5以下の整数である。pはRの数を表し、0~5のいずれかの整数であり、pが2以上のとき、R同士は互いに同一でも異なっていてもよい。]
[In Formula (1),
X 1 , X 2 , X 3 , X 4 , X 5 , X 6 , X 7 , X 8 , X 9 and X 10 each independently represent CH or N (provided that X 1 , X 2 , Any two or more of X 3 , X 4 and X 5 are not N, and any two or more of X 6 , X 7 , X 8 , X 9 and X 10 are not N).
R 1 represents a linear or branched haloalkyl group having 1 to 4 carbon atoms, a halogen atom, a nitro group, or a cyano group,
R 2 represents a linear or branched alkyl group having 1 to 4 carbon atoms or a linear or branched alkenyl group having 2 to 4 carbon atoms.
R 3 represents a hydrogen atom, a linear or branched alkyl group having 1 to 4 carbon atoms, or a linear or branched alkenyl group having 2 to 4 carbon atoms,
R 4 represents a linear or branched alkyl group having 1 to 4 carbon atoms, a linear or branched alkenyl group having 2 to 4 carbon atoms, or a halogen atom.
n represents the number of R 1 and is 0 or 1. m represents the number of R 2 and is an integer of 0 to 5, and when m is 2 or more, R 2 may be the same or different from each other. However, n + m is an integer of 5 or less. p represents the number of R 4 and is an integer of 0 to 5, and when p is 2 or more, R 4 may be the same or different from each other. ]
 R及びRは、それぞれ独立して、CHであるX、X、X、X及びXのいずれかの水素原子(H)を置換している。
 Rは、それぞれ独立して、CHであるX、X、X、X及びX10のいずれかの水素原子(H)を置換している。
 Rの前記ハロゲン原子は、F,Cl, Br, I等の周期表において第17族に属する元素である。
 Rの炭素数1~4の直鎖状又は分岐鎖状の前記ハロアルキル基は、少なくとも一つの水素原子が独立して選ばれるハロゲン原子で置換されているアルキル基である。ハロゲン原子は前記ハロゲン原子と同様であり、炭素数1~4の直鎖状又は分岐鎖状のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基を例示できる。炭素数1~4のハロアルキル基としては、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、クロロエチル基等が挙げられ、トリフルオロメチル基が好ましい。
R 1 and R 2 are each independently substituted for any hydrogen atom (H) of X 1 , X 2 , X 3 , X 4 and X 5 which is CH.
R 4 each independently substitutes a hydrogen atom (H) of any one of X 6 , X 7 , X 8 , X 9 and X 10 that is CH.
The halogen atom of R 1 is an element belonging to Group 17 in the periodic table such as F, Cl, Br, and I.
The linear or branched haloalkyl group having 1 to 4 carbon atoms of R 1 is an alkyl group in which at least one hydrogen atom is substituted with a halogen atom independently selected. The halogen atom is the same as the above halogen atom. Examples of the linear or branched alkyl group having 1 to 4 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group. Group, sec-butyl group and tert-butyl group. Examples of the haloalkyl group having 1 to 4 carbon atoms include a fluoromethyl group, a difluoromethyl group, a trifluoromethyl group, and a chloroethyl group, and a trifluoromethyl group is preferable.
 Rの炭素数1~4の直鎖状又は分岐鎖状のアルキル基としては、Rのハロアルキル基で説明した炭素数1~4の直鎖状又は分岐鎖状の前記アルキル基と同様である。Rの炭素数1~4の直鎖状又は分岐鎖状の前記アルキル基は、炭素数1~3が好ましく、炭素数1又は2がより好ましい。
 Rの炭素数1~4の直鎖状又は分岐鎖状の前記アルケニル基は、炭素数2~3が好ましい。前記アルケニル基としては、エテニル基(ビニル基)、2-プロペニル基(アリル基)が例示できる。
The linear or branched alkyl group having 1 to 4 carbon atoms of R 2 is the same as the linear or branched alkyl group having 1 to 4 carbon atoms described for the haloalkyl group of R 1. is there. The linear or branched alkyl group having 1 to 4 carbon atoms of R 2 preferably has 1 to 3 carbon atoms, and more preferably 1 or 2 carbon atoms.
The linear or branched alkenyl group having 1 to 4 carbon atoms of R 2 preferably has 2 to 3 carbon atoms. Examples of the alkenyl group include ethenyl group (vinyl group) and 2-propenyl group (allyl group).
 R、Rにおける炭素数1~4の直鎖状又は分岐鎖状のアルキル基は、Rのハロアルキル基で説明した前記アルキル基と同様である。
 R、Rにおける炭素数2~4の直鎖状又は分岐鎖状のアルケニル基は、Rにおける前記アルケニル基と同様である。
 Rの前記ハロゲン原子は、F,Cl, Br, I等の周期表において第17族に属する元素であり、Fが好ましい。
The linear or branched alkyl group having 1 to 4 carbon atoms for R 3 and R 4 is the same as the alkyl group described for the haloalkyl group for R 1 .
The linear or branched alkenyl group having 2 to 4 carbon atoms in R 3 and R 4 is the same as the alkenyl group in R 2 .
The halogen atom of R 4 is an element belonging to Group 17 in the periodic table such as F, Cl, Br, I, etc., and F is preferable.
 式(1)において、R、R、R、Rの好ましい組み合わせとしては、
 nが1であってRがハロアルキル基、mが0であり、Rが水素原子、pが0である組み合わせ、
 nが1であってRがハロアルキル基、mが0であり、Rが水素原子、pが1であってRがハロゲン原子である組み合わせ、
 nが1であってRがトリフルオロメチル基、mが0であり、Rが水素原子、pが0である組み合わせ、
 nが1であってRがトリフルオロメチル基、mが0であり、Rが水素原子、pが1であってRがハロゲン原子である組み合わせ、
 nが1であってRがトリフルオロメチル基、mが0であり、Rが水素原子、pが1であってRがフッ素原子である組み合わせ、を例示できる。
In the formula (1), as a preferable combination of R 1 , R 2 , R 3 , R 4 ,
a combination in which n is 1, R 1 is a haloalkyl group, m is 0, R 3 is a hydrogen atom, and p is 0,
a combination in which n is 1, R 1 is a haloalkyl group, m is 0, R 3 is a hydrogen atom, p is 1 and R 4 is a halogen atom,
a combination in which n is 1, R 1 is a trifluoromethyl group, m is 0, R 3 is a hydrogen atom, and p is 0,
a combination in which n is 1, R 1 is a trifluoromethyl group, m is 0, R 3 is a hydrogen atom, p is 1 and R 4 is a halogen atom,
Examples include a combination in which n is 1, R 1 is a trifluoromethyl group, m is 0, R 3 is a hydrogen atom, p is 1 and R 4 is a fluorine atom.
 一般式(1)で表される化合物は塩であってもよく、その塩は農業上許容可能な塩であることが好ましい。例えば、X~Xのうちのいずれか一つがNであって残りがCHである場合、一般式(1)で表される化合物はピリジン環を有する化合物となる。その場合、前記塩としては、当該ピリジンが酸と反応して、塩を形成したものが挙げられる。また、当該塩は水溶性であることが好ましい。 The compound represented by the general formula (1) may be a salt, and the salt is preferably an agriculturally acceptable salt. For example, when any one of X 1 to X 5 is N and the remaining is CH, the compound represented by the general formula (1) is a compound having a pyridine ring. In that case, examples of the salt include those in which the pyridine reacts with an acid to form a salt. The salt is preferably water-soluble.
 一般式(1)で表される化合物において、X~XがCHである場合、下記一般式(1-1)で表される化合物が挙げられる。 In the compound represented by the general formula (1), when X 2 to X 5 are CH, a compound represented by the following general formula (1-1) is exemplified.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
[式中、X、X、X、X、X、X10、R、R、R、R、n、m及びpは、前記一般式(1)におけるものと同じである。] [Wherein, X 1 , X 6 , X 7 , X 8 , X 9 , X 10 , R 1 , R 2 , R 3 , R 4 , n, m and p are the same as those in the general formula (1)] The same. ]
 一般式(1)で表される化合物において、X~X、X~X10がCHである場合、下記一般式(1-2)で表される化合物が挙げられる。 In the compound represented by the general formula (1), when X 2 to X 6 and X 8 to X 10 are CH, a compound represented by the following general formula (1-2) is exemplified.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
[式中、X、X、R、R、R、R、n、m及びpは、前記一般式(1)におけるものと同じである。] [Wherein, X 1 , X 7 , R 1 , R 2 , R 3 , R 4 , n, m and p are the same as those in the general formula (1). ]
 一般式(1)で表される化合物は、下記一般式(2-1)~(2-3)で表される化合物を包含する。 The compound represented by the general formula (1) includes compounds represented by the following general formulas (2-1) to (2-3).
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
[式中、X、X、R、R、R、R、m及びpは、前記一般式(1)におけるものと同じである。] [Wherein, X 1 , X 7 , R 1 , R 2 , R 3 , R 4 , m and p are the same as those in the general formula (1). ]
 X及びXがCHである場合、前記一般式(1-2)で表される化合物としては、下記一般式(3-1)で表される化合物が挙げられる。
 XがNであり、XがCHである場合、前記一般式(1-2)で表される化合物としては、下記一般式(3-2)で表される化合物が挙げられる。
 XがCHであり、XがNである場合、前記一般式(1-2)で表される化合物としては、下記一般式(3-3)で表される化合物が挙げられる。
 X及びXがNの場合、前記一般式(1-2)で表される化合物としては、下記一般式(3-4)で表される化合物が挙げられる。
When X 1 and X 7 are CH, examples of the compound represented by the general formula (1-2) include compounds represented by the following general formula (3-1).
When X 1 is N and X 7 is CH, examples of the compound represented by the general formula (1-2) include compounds represented by the following general formula (3-2).
When X 1 is CH and X 7 is N, examples of the compound represented by the general formula (1-2) include compounds represented by the following general formula (3-3).
When X 1 and X 7 are N, examples of the compound represented by the general formula (1-2) include compounds represented by the following general formula (3-4).
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
[式中、R、R、R、R、n、m及びpは、前記一般式(1)におけるものと同じである。] [Wherein R 1 , R 2 , R 3 , R 4 , n, m and p are the same as those in the general formula (1). ]
 前記一般式(3-2)で表される化合物において、R、R、R、Rの好ましい組み合わせとしては、
 nが1であってRがハロアルキル基、mが0であり、Rが水素原子、pが0である組み合わせ、
 nが1であってRがハロアルキル基、mが0であり、Rが水素原子、pが1であってRがハロゲン原子である組み合わせ、
 nが1であってRがトリフルオロメチル基、mが0であり、Rが水素原子、pが0である組み合わせ、
 nが1であってRがトリフルオロメチル基、mが0であり、Rが水素原子、pが1であってRがハロゲン原子である組み合わせ、
 nが1であってRがトリフルオロメチル基、mが0であり、Rが水素原子、pが1であってRがフッ素原子である組み合わせ、を例示できる。
In the compound represented by the general formula (3-2), as a preferable combination of R 1 , R 2 , R 3 and R 4 ,
a combination in which n is 1, R 1 is a haloalkyl group, m is 0, R 3 is a hydrogen atom, and p is 0,
a combination in which n is 1, R 1 is a haloalkyl group, m is 0, R 3 is a hydrogen atom, p is 1 and R 4 is a halogen atom,
a combination in which n is 1, R 1 is a trifluoromethyl group, m is 0, R 3 is a hydrogen atom, and p is 0,
a combination in which n is 1, R 1 is a trifluoromethyl group, m is 0, R 3 is a hydrogen atom, p is 1 and R 4 is a halogen atom,
Examples include a combination in which n is 1, R 1 is a trifluoromethyl group, m is 0, R 3 is a hydrogen atom, p is 1 and R 4 is a fluorine atom.
 前記一般式(3-2)で表される化合物としては、下記一般式(3-2-1)~(3-2-3)で表される化合物が挙げられる。 Examples of the compound represented by the general formula (3-2) include compounds represented by the following general formulas (3-2-1) to (3-2-3).
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
[式中、R、R、R、R、m及びpは、前記一般式(1)におけるものと同じである。] [Wherein, R 1 , R 2 , R 3 , R 4 , m and p are the same as those in the general formula (1). ]
 前記一般式(3-4)で表される化合物において、R、R、R、Rの好ましい組み合わせとしては、
 nが1であってRがハロアルキル基、mが0であり、Rが水素原子、pが0である組み合わせ、
 nが1であってRがハロアルキル基、mが0であり、Rが水素原子、pが1であってRがハロゲン原子である組み合わせ、
 nが1であってRがトリフルオロメチル基、mが0であり、Rが水素原子、pが0である組み合わせ、
 nが1であってRがトリフルオロメチル基、mが0であり、Rが水素原子、pが1であってRがハロゲン原子である組み合わせ、
 nが1であってRがトリフルオロメチル基、mが0であり、Rが水素原子、pが1であってRがフッ素原子である組み合わせ、を例示できる。
In the compound represented by the general formula (3-4), as a preferable combination of R 1 , R 2 , R 3 , and R 4 ,
a combination in which n is 1, R 1 is a haloalkyl group, m is 0, R 3 is a hydrogen atom, and p is 0,
a combination in which n is 1, R 1 is a haloalkyl group, m is 0, R 3 is a hydrogen atom, p is 1 and R 4 is a halogen atom,
a combination in which n is 1, R 1 is a trifluoromethyl group, m is 0, R 3 is a hydrogen atom, and p is 0,
a combination in which n is 1, R 1 is a trifluoromethyl group, m is 0, R 3 is a hydrogen atom, p is 1 and R 4 is a halogen atom,
Examples include a combination in which n is 1, R 1 is a trifluoromethyl group, m is 0, R 3 is a hydrogen atom, p is 1 and R 4 is a fluorine atom.
 前記一般式(3-4)で表される化合物としては、下記一般式(3-4-1)~(3-4-3)で表される化合物が挙げられる。 Examples of the compound represented by the general formula (3-4) include compounds represented by the following general formulas (3-4-1) to (3-4-3).
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
[式中、R、R、R、R、m及びpは、前記一般式(1)におけるものと同じである。] [Wherein, R 1 , R 2 , R 3 , R 4 , m and p are the same as those in the general formula (1). ]
 前記一般式(1)で表される化合物又はその塩のより具体的な例としては、以下の化合物又はその塩を挙げることができる。また、それらの化学構造を以下に示す。なお、前記一般式(1)で表される化合物は以下の例に限定されない。 Specific examples of the compound represented by the general formula (1) or a salt thereof include the following compounds or salts thereof. Their chemical structures are shown below. In addition, the compound represented by the said General formula (1) is not limited to the following examples.
 N-(ピリジン-2-イル)ベンゼンスルホンアミド(式1-1-1の化合物)、
 N-(ピリジン-2-イル)-4-メチルピリジン-2-スルホンアミド(式1-1-2の化合物)、
 N-(5-イソプロピルピリジン-2-イル)-4-クロロベンゼンスルホンアミド(式1-1-3の化合物)、
 N-(5-クロロピリジン-2-イル)ピリジン-3-スルホンアミド(式1-1-4の化合物)、
 N-(2-クロロ-3-メチルピリジン-6-イル)ベンゼンスルホンアミド(式1-1-5の化合物)、
 N-(4-クロロピリジン-2-イル)ベンゼンスルホンアミド(式1-1-6の化合物)、
 N-(5-トリフルオロメチルピリジン-2-イル)ベンゼンスルホンアミド(式1-1-7の化合物)、
 N-メチル-N-(5-トリフルオロメチルピリジン-2-イル)-4-メチルベンゼンスルホンアミド(式1-1-8の化合物)、
 N-(6-トリフルオロメチルピリジン-2-イル)ピリジン-3-スルホンアミド(式1-1-9の化合物)、
 N-(6-トリフルオロメチルピリジン-2-イル)-2-フルオロベンゼンスルホンアミド(式1-1-10の化合物)、
 N-(6-シアノピリジン-2-イル)ベンゼンスルホンアミド(式1-1-11の化合物)、
 N-(3-シアノ-2-イソプロピルピリジン-6-イル)ベンゼンスルホンアミド(式1-1-12の化合物)、
 N-(4-シアノピリジン-2-イル)ピリジン-4-スルホンアミド(式1-1-13の化合物)、
 N-(6-ニトロピリジン-2-イル)-3-メチルベンゼンスルホンアミド(式1-1-14の化合物)、
 N-(5-ニトロピリジン-2-イル)ピリジン-3-スルホンアミド(式1-1-15の化合物)、及び、
 N-(4-ニトロピリジン-2-イル)-N-ビニルベンゼンスルホンアミド(式1-1-16の化合物)。
N- (pyridin-2-yl) benzenesulfonamide (compound of formula 1-1-1),
N- (pyridin-2-yl) -4-methylpyridine-2-sulfonamide (compound of formula 1-1-2),
N- (5-isopropylpyridin-2-yl) -4-chlorobenzenesulfonamide (compound of formula 1-1-3),
N- (5-chloropyridin-2-yl) pyridine-3-sulfonamide (compound of formula 1-1-4),
N- (2-chloro-3-methylpyridin-6-yl) benzenesulfonamide (compound of formula 1-1-5),
N- (4-chloropyridin-2-yl) benzenesulfonamide (compound of formula 1-1-6),
N- (5-trifluoromethylpyridin-2-yl) benzenesulfonamide (compound of formula 1-1-7),
N-methyl-N- (5-trifluoromethylpyridin-2-yl) -4-methylbenzenesulfonamide (compound of formula 1-1-8),
N- (6-trifluoromethylpyridin-2-yl) pyridine-3-sulfonamide (compound of formula 1-1-9),
N- (6-trifluoromethylpyridin-2-yl) -2-fluorobenzenesulfonamide (compound of formula 1-1-10),
N- (6-cyanopyridin-2-yl) benzenesulfonamide (compound of formula 1-1-11),
N- (3-cyano-2-isopropylpyridin-6-yl) benzenesulfonamide (compound of formula 1-1-12),
N- (4-cyanopyridin-2-yl) pyridine-4-sulfonamide (compound of formula 1-1-13),
N- (6-nitropyridin-2-yl) -3-methylbenzenesulfonamide (compound of formula 1-1-14),
N- (5-nitropyridin-2-yl) pyridine-3-sulfonamide (compound of formula 1-1-15), and
N- (4-nitropyridin-2-yl) -N-vinylbenzenesulfonamide (compound of formula 1-1-16).
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 上記に挙げた、前記一般式(1)で表される化合物又はその塩の具体例としては、特に、N-(5-トリフルオロメチルピリジン-2-イル)ベンゼンスルホンアミド(式1-1-7の化合物)、N-(6-トリフルオロメチルピリジン-2-イル)ピリジン-3-スルホンアミド(式1-1-9の化合物)、若しくはN-(6-トリフルオロメチルピリジン-2-イル)-2-フルオロベンゼンスルホンアミド(式1-1-10の化合物)、又はその塩が好ましい。
 本発明の一態様としては、前記一般式(1-1-7)、(1-1-9)、及び(1-1-10)で表される化合物並びにそれらの塩からなる群から選ばれるいずれか一つ以上を有効成分として含有する植物抵抗性誘導制御剤が挙げられる。
 本発明の一態様としては、前記一般式(1-1-7)で表される化合物及びそれらの塩からなる群から選ばれるいずれか一つ以上を有効成分として含有する植物抵抗性誘導制御剤が挙げられる。
 本発明の一態様としては、前記一般式(1-1-9)で表される化合物及びそれらの塩からなる群から選ばれるいずれか一つ以上を有効成分として含有する植物抵抗性誘導制御剤が挙げられる。
 本発明の一態様としては、前記一般式(1-1-10)で表される化合物及びそれらの塩からなる群から選ばれるいずれか一つ以上を有効成分として含有する植物抵抗性誘導制御剤が挙げられる。
Specific examples of the compound represented by the general formula (1) or a salt thereof listed above include, in particular, N- (5-trifluoromethylpyridin-2-yl) benzenesulfonamide (formula 1-1 7), N- (6-trifluoromethylpyridin-2-yl) pyridine-3-sulfonamide (compound of formula 1-1-9), or N- (6-trifluoromethylpyridin-2-yl) ) -2-Fluorobenzenesulfonamide (compound of formula 1-1-10) or a salt thereof is preferred.
One embodiment of the present invention is selected from the group consisting of the compounds represented by the general formulas (1-1-7), (1-1-9), and (1-1-10) and salts thereof A plant resistance induction controlling agent containing any one or more as an active ingredient can be mentioned.
As one aspect of the present invention, a plant resistance induction regulator comprising as an active ingredient any one or more selected from the group consisting of the compound represented by the general formula (1-1-7) and salts thereof Is mentioned.
As one aspect of the present invention, a plant resistance induction regulator comprising as an active ingredient any one or more selected from the group consisting of the compound represented by the general formula (1-1-9) and salts thereof Is mentioned.
As one aspect of the present invention, a plant resistance induction regulator comprising as an active ingredient any one or more selected from the group consisting of the compound represented by the general formula (1-1-10) and salts thereof Is mentioned.
 前記一般式(1)で表される化合物には、置換基の種類によって、互変異性体や幾何異性体が存在しうる。本明細書中、前記一般式(1)で表される化合物が異性体の一形態のみで記載されることがあるが、本発明の有効成分は、それ以外の異性体も包含し、異性体の分離されたもの、あるいはそれらの混合物も包含する。
 また、前記一般式(1)で表される化合物は、不斉炭素原子や軸不斉を有する場合があり、これに基づく光学異性体が存在しうる。本発明の有効成分は、前記一般式(1)で表される化合物の光学異性体の分離されたもの、あるいはそれらの混合物も包含する。
The compound represented by the general formula (1) may have a tautomer or a geometric isomer depending on the type of substituent. In the present specification, the compound represented by the general formula (1) may be described in only one form of an isomer, but the active ingredient of the present invention includes other isomers, and isomers. Or a mixture thereof.
In addition, the compound represented by the general formula (1) may have an asymmetric carbon atom or axial asymmetry, and an optical isomer based on this may exist. The active ingredient of the present invention includes those obtained by separating optical isomers of the compound represented by the general formula (1) or a mixture thereof.
 前記一般式(1)の化合物の塩とは、前記一般式(1)の化合物の農業上許容可能な塩であることが好ましく、置換基の種類によって、酸付加塩又は塩基との塩を形成する場合がある。具体的には、塩酸、臭化水素酸、ヨウ化水素酸、硫酸、硝酸、リン酸等の無機酸や、ギ酸、酢酸、プロピオン酸、シュウ酸、マロン酸、コハク酸、フマル酸、マレイン酸、乳酸、リンゴ酸、マンデル酸、酒石酸、ジベンゾイル酒石酸、ジトルオイル酒石酸、クエン酸、メタンスルホン酸、エタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸、アスパラギン酸、グルタミン酸等の有機酸との酸付加塩、ナトリウム、カリウム、マグネシウム、カルシウム、アルミニウム等の無機塩基、メチルアミン、エチルアミン、エタノールアミン、リシン、オルニチン等の有機塩基との塩、アセチルロイシン等の各種アミノ酸及びアミノ酸誘導体の塩やアンモニウム塩等が挙げられ、塩酸、臭化水素酸、ヨウ化水素酸、硫酸、硝酸、リン酸等の無機酸や、ギ酸、酢酸、プロピオン酸、シュウ酸、マロン酸、コハク酸、フマル酸、マレイン酸、乳酸、リンゴ酸、マンデル酸、酒石酸、ジベンゾイル酒石酸、ジトルオイル酒石酸、クエン酸、メタンスルホン酸、エタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸、アスパラギン酸、グルタミン酸等の有機酸との酸付加塩が好ましい。 The salt of the compound of the general formula (1) is preferably an agriculturally acceptable salt of the compound of the general formula (1), and forms an acid addition salt or a salt with a base depending on the type of substituent. There is a case. Specifically, inorganic acids such as hydrochloric acid, hydrobromic acid, hydroiodic acid, sulfuric acid, nitric acid, phosphoric acid, formic acid, acetic acid, propionic acid, oxalic acid, malonic acid, succinic acid, fumaric acid, maleic acid Acid addition with organic acids such as lactic acid, malic acid, mandelic acid, tartaric acid, dibenzoyltartaric acid, ditoluoyltartaric acid, citric acid, methanesulfonic acid, ethanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, aspartic acid, glutamic acid Salts, salts with inorganic bases such as sodium, potassium, magnesium, calcium and aluminum, salts with organic bases such as methylamine, ethylamine, ethanolamine, lysine and ornithine, salts of various amino acids and amino acid derivatives such as acetylleucine, ammonium salts, etc. Hydrochloric acid, hydrobromic acid, hydroiodic acid, sulfuric acid, nitric acid, phosphoric acid, etc. Inorganic acids, formic acid, acetic acid, propionic acid, oxalic acid, malonic acid, succinic acid, fumaric acid, maleic acid, lactic acid, malic acid, mandelic acid, tartaric acid, dibenzoyltartaric acid, ditoluoyltartaric acid, citric acid, methanesulfonic acid, ethane Acid addition salts with organic acids such as sulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, aspartic acid and glutamic acid are preferred.
 さらに本発明の有効成分は、前記一般式(1)の化合物及びその塩の各種の水和物や溶媒和物、及び結晶多形の物質も包含する。また、本発明の有効成分は、種々の放射性又は非放射性同位体でラベルされた化合物も包含する。 Furthermore, the active ingredient of the present invention includes various hydrates and solvates of the compound of the above general formula (1) and salts thereof, and crystalline polymorphic substances. The active ingredient of the present invention also includes compounds labeled with various radioactive or non-radioactive isotopes.
 本発明において、前記一般式(1)の化合物及びその塩は、市販された化合物及びその塩を使用することができる。また、前記一般式(1)の化合物及びその塩は、その基本構造あるいは置換基の種類に基づく特徴を利用し、種々の公知の合成法を適用して製造することができる。その際、官能基の種類によっては、当該官能基を原料から中間体へ至る段階で、当業者によく知られた適切な保護基に置き換えておくことが製造技術上効果的な場合がある。
 以下、前記一般式(1)の化合物の代表的な製造法を説明するが、本発明の有効成分の製造法は、以下に示した例には限定されない。
 なお、前記一般式(1)の化合物は、遊離化合物、その塩、水和物、溶媒和物、あるいは結晶多形の物質として製造されうる。前記一般式(1)の化合物の塩は、当業者によく知られた造塩反応に付すことにより製造することもできる。前記一般式(1)の化合物の単離、精製は、抽出、分別結晶化、各種分画クロマトグラフィー等、通常の化学操作を適用して行われる。
In the present invention, commercially available compounds and salts thereof can be used as the compound of the general formula (1) and salts thereof. Moreover, the compound of the said General formula (1) and its salt can be manufactured by applying the various well-known synthesis methods using the characteristics based on the basic structure or the kind of substituent. At that time, depending on the type of the functional group, it may be effective in terms of production technology to replace the functional group with an appropriate protecting group well known to those skilled in the art at the stage from the raw material to the intermediate.
Hereinafter, although the typical manufacturing method of the compound of the said General formula (1) is demonstrated, the manufacturing method of the active ingredient of this invention is not limited to the example shown below.
The compound of the general formula (1) can be produced as a free compound, a salt thereof, a hydrate, a solvate, or a crystalline polymorphic substance. The salt of the compound of the general formula (1) can also be produced by subjecting it to a salt formation reaction well known to those skilled in the art. Isolation and purification of the compound of the general formula (1) are performed by applying ordinary chemical operations such as extraction, fractional crystallization, various fractional chromatography and the like.
(第一製法) (First manufacturing method)
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
(式中の記号は、前記と同一の意味を表す。式(A1)中のXはハロゲン原子を表し、好適にはクロロ若しくはブロモ、さらに好適にはクロロである。) (The symbol in the formula represents the same meaning as described above. X in the formula (A1) represents a halogen atom, preferably chloro or bromo, more preferably chloro.)
 本製法は、ハロゲン化スルホニル化合物(A1)とアミン化合物(A2)とをスルホニルアミド化することにより、前記一般式(1)で表される化合物を製造する方法である。
 スルホニルアミド化は、当業者によく知られた手法を用いることができ、例えば、化合物(A1)と化合物(A2)とを当量若しくは一方を過剰量用い、これらの混合物を縮合剤若しくは塩基の存在下、反応に不活性な溶媒中、冷却下から加熱下、好ましくは-20℃~60℃において、通常0.1時間~5日間撹拌して行われる。ここで用いられる溶媒の例としては、特に限定はされないが、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、ジクロロメタン、1,2-ジクロロエタン、クロロホルム等のハロゲン化炭化水素類、ジエチルエーテル、テトラヒドロフラン、ジオキサン、ジメトキシエタン等のエーテル類、N,N-ジメチルホルムアミド、ジメチルスルホキシド、N-メチルピロリドン等の非プロトン性極性溶媒類、酢酸エチル、酢酸ブチル等のエステル類、アセトニトリル、プロピオニトリル等のニトリル類、又は水、及びこれらの混合物が挙げられる。縮合剤としては、1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド、ジシクロヘキシルカルボジイミド、1,1’-カルボニルジイミダゾール、ジフェニルリン酸アミド、オキシ塩化リン等が挙げられるが、これらに限定されるものではない。添加剤(例えば、1-ヒドロキシベンゾトリアゾール)を用いることが反応を円滑に進行させる上で有効な場合がある。塩基としては、トリエチルアミン、N,N-ジイソプロピルエチルアミン、N-メチルモルホリン、ピリジン等の有機塩基、又は炭酸カリウム、炭酸ナトリウム、水酸化カリウム、水酸化ナトリウム、カリウムt-ブトキシド、ナトリウムエトキシド等の無機塩基を用いることができるが、これらに限定されるものではない。
This production method is a method for producing the compound represented by the general formula (1) by sulfonylamidation of the sulfonyl halide compound (A1) and the amine compound (A2).
For the sulfonylamidation, a method well known to those skilled in the art can be used. For example, the compound (A1) and the compound (A2) are used in an equivalent amount or in an excess amount, and a mixture of these is used in the presence of a condensing agent or a base. The reaction is carried out in a solvent inert to the reaction under cooling to heating, preferably at −20 ° C. to 60 ° C., usually for 0.1 hour to 5 days with stirring. Examples of the solvent used here are not particularly limited, but include aromatic hydrocarbons such as benzene, toluene and xylene, halogenated hydrocarbons such as dichloromethane, 1,2-dichloroethane and chloroform, diethyl ether and tetrahydrofuran. Ethers such as dioxane and dimethoxyethane, aprotic polar solvents such as N, N-dimethylformamide, dimethyl sulfoxide and N-methylpyrrolidone, esters such as ethyl acetate and butyl acetate, acetonitrile, propionitrile and the like Nitriles or water, and mixtures thereof. Examples of the condensing agent include, but are not limited to, 1- (3-dimethylaminopropyl) -3-ethylcarbodiimide, dicyclohexylcarbodiimide, 1,1′-carbonyldiimidazole, diphenylphosphoric acid amide, phosphorus oxychloride and the like. It is not something. Use of an additive (for example, 1-hydroxybenzotriazole) may be effective for smoothly proceeding the reaction. Examples of the base include organic bases such as triethylamine, N, N-diisopropylethylamine, N-methylmorpholine and pyridine, or inorganic bases such as potassium carbonate, sodium carbonate, potassium hydroxide, sodium hydroxide, potassium t-butoxide and sodium ethoxide. Although a base can be used, it is not limited to these.
(第二製法) (Second manufacturing method)
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
(式中の記号は、前記と同一の意味を表す。Lvは脱離基を表し、好適にはハロゲン、アルキルスルホニルオキシ、アリールスルホニルオキシであり、より好適には、フルオロ、クロロ、ブロモ、メタンスルホニルオキシ、エタンスルホニルオキシ、ベンゼンスルホニルオキシ、トリフルオロベンゼンスルホニルオキシである。) (The symbols in the formula represent the same meaning as described above. Lv represents a leaving group, preferably halogen, alkylsulfonyloxy, arylsulfonyloxy, more preferably fluoro, chloro, bromo, methane. Sulfonyloxy, ethanesulfonyloxy, benzenesulfonyloxy, trifluorobenzenesulfonyloxy.)
 本製法は、スルホンアミド化合物(B1)とアリール化合物(B2)とから前記一般式(1)で表される化合物を製造する方法である。
 好適には、イプソ置換反応に付すことにより、前記一般式(1)で表される化合物が製造される。イプソ置換反応は当業者によく知られた手法を用いることができ、例えば、化合物(B1)と化合物(B2)とを当量若しくは一方を過剰量用い、これらの混合物を、反応に不活性な溶媒中、又は無溶媒下、冷却下から加熱下、好ましくは0℃~80℃において、通常0.1時間~5日間撹拌して行われる。ここで用いられる溶媒の例としては、特に限定はされないが、芳香族炭化水素類、ハロゲン化炭化水素類、エーテル類、非プロトン性極性溶媒類、エステル類、ニトリル類、及びこれらの混合物が挙げられる。有機塩基や無機塩基の存在下で反応を行うことが反応を円滑に進行させる上で有効な場合がある。
This production method is a method for producing the compound represented by the general formula (1) from the sulfonamide compound (B1) and the aryl compound (B2).
Preferably, the compound represented by the general formula (1) is produced by subjecting to an ipso substitution reaction. For the ipso substitution reaction, a method well known to those skilled in the art can be used. For example, the compound (B1) and the compound (B2) are used in an equivalent amount or in excess, and a mixture of these is used as an inert solvent for the reaction. The reaction is performed in the middle or without a solvent, under cooling to heating, preferably at 0 ° C. to 80 ° C., usually for 0.1 hour to 5 days. Examples of the solvent used here are not particularly limited, but include aromatic hydrocarbons, halogenated hydrocarbons, ethers, aprotic polar solvents, esters, nitriles, and mixtures thereof. It is done. Performing the reaction in the presence of an organic base or an inorganic base may be effective for smoothly progressing the reaction.
 また、イプソ置換反応に代えて、遷移金属を用いたカップリング反応により、前記一般式(1)で表される化合物を製造することもできる。カップリング反応は当業者によく知られた手法を用いることができ、遷移金属としてはテトラキス(トリフェニルホスフィン)パラジウム、ジクロロビス(トリフェニルホスフィン)パラジウム、塩化パラジウム-1-1’-ビス(ジフェニルホスフィノ)フェロセン等のパラジウム触媒が好適に用いられる。この際、無機塩基が好適に併せて用いられる。 Moreover, it can replace with an ipso substitution reaction and can also manufacture the compound represented by the said General formula (1) by the coupling reaction using a transition metal. The coupling reaction can be performed by a method well known to those skilled in the art. Examples of the transition metal include tetrakis (triphenylphosphine) palladium, dichlorobis (triphenylphosphine) palladium, palladium chloride-1-1'-bis (diphenylphosphine). A palladium catalyst such as fino) ferrocene is preferably used. At this time, an inorganic base is preferably used together.
(原料合成)
 ハロゲン化スルホニル化合物(A1)は、対応するスルホン酸化合物を当業者によく知られた方法、例えばハロゲン化反応に付することで製造することができる。前記スルホン酸化合物は、対応するアミノ化合物を当業者によく知られた方法、例えばザンドマイヤー反応に付することで製造することができる。前記アミノ化合物は、対応するニトロ化合物を当業者によく知られた方法、例えば還元反応に付することで製造することができる。
 R3が水素原子ではないスルホンアミド化合物(B1)は、R3が水素原子であるスルホンアミド化合物(B1)を当業者によく知られた方法、例えばN-アルキル化、N-アルケニル化反応に付することで製造することができる。前記R3が水素原子であるスルホンアミド化合物(B1)は、ハロゲン化スルホニル化合物(A1)を当業者によく知られた方法、例えば、アンモニア若しくは保護されたアミンとのスルホンアミド化反応に付することで製造することができる。保護されたアミンとのスルホンアミド化反応により製造された場合には、必要に応じて保護基の脱離反応を行う。
 R3が水素原子ではないスルホンアミド化合物(B1)は、ハロゲン化スルホニル化合物(A1)と、R3基を有する一級アミン、若しくはR3基とさらに保護基を有する二級アミンとのスルホンアミド化反応により製造することもできる。R3基とさらに保護基を有する二級アミンとのスルホンアミド化反応により製造された場合には、必要に応じて保護基の脱離反応を行う。
(Raw material synthesis)
The sulfonyl halide compound (A1) can be produced by subjecting the corresponding sulfonic acid compound to a method well known to those skilled in the art, for example, a halogenation reaction. The sulfonic acid compound can be produced by subjecting the corresponding amino compound to a method well known to those skilled in the art, for example, a Sandmeyer reaction. The amino compound can be produced by subjecting the corresponding nitro compound to a method well known to those skilled in the art, for example, a reduction reaction.
For the sulfonamide compound (B1) in which R3 is not a hydrogen atom, the sulfonamide compound (B1) in which R3 is a hydrogen atom is subjected to methods well known to those skilled in the art, such as N-alkylation and N-alkenylation reactions. Can be manufactured. The sulfonamide compound (B1) in which R3 is a hydrogen atom is obtained by subjecting the halogenated sulfonyl compound (A1) to a method well known to those skilled in the art, for example, a sulfonamidation reaction with ammonia or a protected amine. Can be manufactured. When it is produced by a sulfonamidation reaction with a protected amine, a protecting group is eliminated as necessary.
The sulfonamide compound (B1) in which R3 is not a hydrogen atom is produced by a sulfonamidation reaction between a halogenated sulfonyl compound (A1) and a primary amine having an R3 group or a secondary amine having an R3 group and a protecting group. You can also When it is produced by a sulfonamidation reaction between the R3 group and a secondary amine having a protective group, the protective group is removed as necessary.
 前記一般式(1)の化合物は、文献(H. Nakayama et al., “Synthesis of N-(Trifluoromethyl-2-pyridinyl)arenesulfonamides as an Inhibitor of Secretory Phospholipase A2” Chemical and Pharmaceutical Bulletin (2011) Vol. 59 No. 6,p783-786.)や、文献(T. Gelbrich et al., “Structural systematics of 4,4'-disubstituted benzenesulfonamidobenzenes. 1. Overview and dimer-based isostructures” Acta Crystallographica Section B (2007). Vol. 63, Part 4, p621-632.)を参考にして製造してもよい。 The compound of the general formula (1) is described in the literature (H. Nakayama et al., “Synthesis of N- (Trifluoromethyl-2-pyridinyl) arenesulfonamides as an Inhibitor of Secretory Phospholipase A 2 ” Chemical and Pharmaceutical Bulletin (2011) Vol. 59 No. 6, p783-786.) And literature (T. Gelbrich et al., “Structural systematics of 4,4'-disubstituted benzenesulfonamidobenzenes. 1. Overview and dimer-based isostructures” Acta Crystallographica Section B (2007). Vol. 63, Part 4, p621-632.).
 本発明及び本願明細書における植物抵抗性誘導制御とは、植物の病害抵抗性又は害虫抵抗性を誘導する、強化する、促進する、および維持することを含む。
 本発明の植物抵抗性誘導制御剤は、病害抵抗性の誘導を制御するので、植物病害防除剤としても提供可能である。
 本発明の植物抵抗性誘導制御剤は、害虫抵抗性の誘導を制御するので、害虫防除剤としても提供可能である。
The plant resistance induction control in the present invention and the present specification includes inducing, enhancing, promoting, and maintaining plant disease resistance or pest resistance.
Since the plant resistance induction control agent of the present invention controls the induction of disease resistance, it can also be provided as a plant disease control agent.
Since the plant resistance induction control agent of the present invention controls the induction of pest resistance, it can also be provided as a pest control agent.
 植物の病害抵抗性若しくは害虫抵抗性を、誘導する、強化する、及び促進するとは、本発明の植物抵抗性誘導制御剤が処理された植物と、処理されていない植物とを比較して、本発明の植物抵抗性誘導制御剤が処理された植物において、有意に植物抵抗性若しくは害虫抵抗性の発現を向上させることを意味する。
 植物の病害抵抗性又は害虫抵抗性を維持するとは、本発明の植物抵抗性誘導制御剤が処理された植物と、処理されていない植物とを比較して、本発明の植物抵抗性誘導制御剤が処理された植物において、有意に植物抵抗性若しくは害虫抵抗性の発現を長く持続させることを意味する。
Inducing, strengthening and promoting plant disease resistance or insect pest resistance is a comparison between a plant treated with the plant resistance induction control agent of the present invention and an untreated plant. This means that in the plant treated with the plant resistance induction controlling agent of the invention, the expression of plant resistance or pest resistance is significantly improved.
Maintaining disease resistance or pest resistance of a plant means that a plant treated with the plant resistance induction control agent of the present invention is compared with an untreated plant, and the plant resistance induction control agent of the present invention is compared. It means that the expression of plant resistance or pest resistance is significantly prolonged for a long time in the treated plant.
 植物における病害抵抗性の発現は、後述の実施例に示すように、例えば、以下の指標により判断できる。
「1」JA応答経路で特異的に発現誘導される遺伝子の発現を指標とし、本発明の植物抵抗性誘導制御剤が処理された植物と、処理されていない植物とを比較して、本発明の植物抵抗性誘導制御剤が処理された植物において、該遺伝子の発現が有意に向上していた場合に、病害抵抗性の発現を判断できる。
「2」植物病の状態の程度を指標とし、本発明の植物抵抗性誘導制御剤が処理された植物と、処理されていない植物とを比較して、本発明の植物抵抗性誘導制御剤が処理された植物において、植物病の病態が有意に改善していた場合に、病害抵抗性の発現を判断できる。
The expression of disease resistance in plants can be determined by, for example, the following indicators, as shown in Examples described later.
[1] Using the expression of a gene specifically induced in the JA response pathway as an index, the plant treated with the plant resistance induction regulator of the present invention is compared with the untreated plant. In the plant treated with the plant resistance induction control agent, the expression of the disease resistance can be judged when the expression of the gene is significantly improved.
[2] Using the degree of the state of plant disease as an index, a plant treated with the plant resistance induction control agent of the present invention is compared with an untreated plant. In the treated plant, when the disease state of the plant disease is significantly improved, the expression of disease resistance can be determined.
 植物における害虫抵抗性の発現は、後述の実施例に示すように、例えば、以下の指標により判断できる。
「3」JA応答経路で特異的に発現誘導される遺伝子の発現を指標とし、本発明の植物抵抗性誘導制御剤が処理された植物と、処理されていない植物とを比較して、本発明の植物抵抗性誘導制御剤が処理された植物において、該遺伝子の発現が有意に向上していた場合に、害虫抵抗性の発現を判断できる。
「4」植物体の摂食被害の状態の程度を指標とし、本発明の植物抵抗性誘導制御剤が処理された植物と、処理されていない植物とを比較して、本発明の植物抵抗性誘導制御剤が処理された植物において、植物体の摂食被害の状態が改善していた場合に、害虫抵抗性の発現を判断できる。
「5」植物抵抗性誘導制御剤の処理区における害虫等の生物の生息状態を指標とし、本発明の植物抵抗性誘導制御剤が処理された植物と、処理されていない植物とを比較して、本発明の植物抵抗性誘導制御剤が処理された植物において、植物抵抗性誘導制御剤の処理区における害虫等の生物の生息数が低い場合に、害虫抵抗性の発現を判断できる。
The expression of insect pest resistance in a plant can be determined by, for example, the following index, as shown in Examples described later.
[3] Using the expression of a gene specifically induced in the JA response pathway as an index, the plant treated with the plant resistance induction regulator of the present invention is compared with the untreated plant. In the plant treated with the plant resistance induction regulator, the expression of pest resistance can be determined when the expression of the gene is significantly improved.
“4” The plant resistance of the present invention is compared by comparing the plant treated with the plant resistance induction control agent of the present invention with an untreated plant using the degree of feeding damage of the plant as an index. In the plant treated with the induction control agent, when the state of feeding damage of the plant body is improved, the expression of pest resistance can be determined.
"5" Using a plant habitat state of a pest or the like in an area treated with a plant resistance induction control agent as an index, comparing a plant treated with the plant resistance induction control agent of the present invention with an untreated plant In the plant treated with the plant resistance induction control agent of the present invention, the expression of pest resistance can be determined when the number of living organisms such as pests in the treatment area of the plant resistance induction control agent is low.
 本発明及び本願明細書における植物病害の防除とは、植物病の原因となる菌に対する不活化効果、植物病の原因となる菌への感染防止効果、及び植物病の原因となる菌の増殖の抑制若しくは阻止の効果を含む。
 本発明及び本願明細書における害虫の防除とは、有害生物を衰弱させる効果、有害生物を死滅させる効果、及び有害生物を忌避させる効果、を含むものである。
The control of plant diseases in the present invention and the specification of the present application refers to the inactivation effect on the fungus causing plant disease, the effect of preventing the infection of fungus causing plant disease, and the growth of the fungus causing plant disease. Includes suppression or prevention effects.
The pest control in the present invention and the specification of the present application includes an effect of depleting pests, an effect of killing pests, and an effect of repelling pests.
 本発明の植物抵抗性誘導制御剤の使用対象となる植物の種類は、前記ISR系が誘導されることにより抵抗性を獲得できる植物であれば特に制限されず、陸上植物であっても水生植物であってもよい。陸上植物としては、被子植物、裸子植物が好適であり、草本であっても木本であってもよい。被子植物としては、バラ科、ミカン科、ブドウ科、キク科、ラン科、ユリ科、マメ科、イネ科、アカネ科、トウダイグサ科、カヤツリグサ科、セリ科、シソ科、ウリ科、ナス科、及びアブラナ科がより好適であり、ナス科、ウリ科及びアブラナ科が更に好適である。 The type of plant to be used for the plant resistance induction control agent of the present invention is not particularly limited as long as it is a plant that can acquire resistance by inducing the ISR system, and even a land plant is an aquatic plant It may be. As land plants, angiosperms and gymnosperms are suitable, and they may be herbs or woods. As angiosperms, Rosaceae, Citrus, Grapeaceae, Orchidaceae, Orchidaceae, Lilyaceae, Leguminosae, Rubiaceae, Euphorbiaceae, Cyperaceae, Ceramaceae, Perillaceae, Cucurbitaceae, Eggplant, And Brassicaceae are more preferred, and solanaceae, Cucurbitaceae and Brassicaceae are more preferred.
 前記ユリ科の植物としては、タマネギが例示できる。前記マメ科の植物としては、大豆が例示できる。前記セリ科の植物としては、ニンジンが例示できる。前記イネ科の植物としては、例えばイネ、トウモロコシ、ムギ、コムギ等が挙げられる。前記ウリ科の植物としては、例えばメロン、スイカ、冬瓜、キュウリ、カボチャなどが挙げられる。前記ナス科の植物としては、例えばタバコ、トマト、ジャガイモ、ナス、ピーマンなどが挙げられる。前記アブラナ科の植物としては、例えばナズナ、アブラナ、キャベツ、ケール、ハクサイ、カブ、ダイコン、ワサビ、カラシなどが挙げられる。
 本発明の植物抵抗性誘導制御剤の使用対象となる、好ましい植物として、トマト、タバコ、キュウリ、ナズナ、及びアブラナが挙げられる。
An example of the lily family plant is onion. An example of the leguminous plant is soybean. An example of the celery family plant is carrot. Examples of the grass family include rice, corn, wheat and wheat. Examples of the cucurbitaceae plant include melon, watermelon, winter melon, cucumber, and pumpkin. Examples of the solanaceous plant include tobacco, tomato, potato, eggplant and bell pepper. Examples of the Brassicaceae plants include, for example, Nazuna, Brassica, Cabbage, Kale, Chinese cabbage, turnip, Japanese radish, Wasabi and mustard.
Preferable plants to be used for the plant resistance induction controlling agent of the present invention include tomato, tobacco, cucumber, tuna and rape.
 本発明の植物抵抗性誘導制御剤は、必要に応じ、農業上許容可能な担体、増量剤等と混合して、粉剤、錠剤、粒剤、微粒剤等の製剤形態で提供されてもよい。あるいは、農業上許容可能な溶媒、界面活性剤、乳化剤、分散剤等と混合して、乳剤、液剤、懸濁剤、水和剤、水溶剤、油剤等の剤型にすることもできる。 The plant resistance induction controlling agent of the present invention may be provided in the form of a powder, tablet, granule, fine granule or the like by mixing with an agriculturally acceptable carrier, a bulking agent or the like, if necessary. Alternatively, it can be mixed with agriculturally acceptable solvents, surfactants, emulsifiers, dispersants and the like to form dosage forms such as emulsions, solutions, suspensions, wettable powders, water solvents, oils and the like.
 植物抵抗性誘導制御剤を溶解させる溶媒は、植物抵抗性誘導制御剤や植物の種類に応じて適宜選択すればよいが、ジメチルスルホキシド(DMSO)等のスルホキシド化合物;N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド(DMAc)、N-メチルピロリドン(NMP)等のアミド化合物等、親水性溶媒が好ましいものとして例示できる。 The solvent for dissolving the plant resistance induction control agent may be appropriately selected according to the plant resistance induction control agent or the kind of the plant, but a sulfoxide compound such as dimethyl sulfoxide (DMSO); N, N-dimethylformamide (DMF) ), Amide compounds such as N, N-dimethylacetamide (DMAc), N-methylpyrrolidone (NMP), and the like, and preferred are hydrophilic solvents.
 本発明の植物抵抗性誘導制御剤は、他の農園芸用剤と併用されるような剤型で提供されてもよい。
 例えば、本発明の植物抵抗性誘導制御剤と、ベスタチン、ヘキサン酸、アラキドン酸、N-アシルアミド等のその他のJA系抵抗性誘導制御剤との、合剤、組み合わせ製剤等の剤型で提供されてもよい。
 また例えば、本発明の植物抵抗性誘導制御剤と、公知のSAR系抵抗性誘導制御剤の、合剤、組み合わせ製剤等の剤型で提供されてもよい。
The plant resistance induction control agent of the present invention may be provided in a dosage form that is used in combination with other agricultural and horticultural agents.
For example, the plant resistance induction control agent of the present invention and other JA type resistance induction control agents such as bestatin, hexanoic acid, arachidonic acid, N-acylamide and the like are provided in a dosage form such as a combination or a combination preparation. May be.
Moreover, for example, the plant resistance induction control agent of the present invention and a known SAR resistance induction control agent may be provided in a dosage form such as a combination or a combined preparation.
 本発明の植物抵抗性誘導制御剤の使用による防御の対象となる病原体は、特に制限されないが、ISR系の誘導を引き起こすか、ISR系の誘導により防御され得る病原体であることが好ましい。又は、ISR系の誘導を引き起こし、且つISR系の誘導により防御され得る病原体であることが好ましい。このような観点から、本発明の植物抵抗性誘導制御剤によって防御対象となる病原体は、腐生性病原菌であることがより好ましい。腐生性病原菌としては、灰色かび病菌(Botrytis cinerea),ジャガイモ炭そ病菌(Colletotrichum atramentarium),キュウリ炭そ病菌(Colletotrichum lagenarium),トマト疫病菌(Phytophthora infestans),ムギ類立枯病菌(Gaeumannomyces graminis),軟腐病菌(Erwinia carotovora),黒点病菌(Diplocarpon rosae),腐らん病菌(Valsa ceratosperma),胴枯病菌(Cryphonectria parasitica),麦角病菌(Claviceps purpurea),ナシ黒斑病菌(Alternaria alternata),褐紋病菌(Mycosphaerella pinodes),イネごま葉枯病菌(Cochliobolus miyabeanus),斑点病菌(Stemphylium lycopersici),菌核病菌(Sclerotinia sclerotiorum)、,モニリア病菌(Monilinia sp.),葉かび病菌(Passalora fulva),キュウリつる割病菌(Fusarium oxysporum f. sp. cucumerinum),萎凋病菌(Fusarium oxysporum),ブナ科樹木萎凋病菌(Raffaelea quercivora),緑かび病菌(Penicillium digitatum),青かび病菌(Penicillium italicum),カンキツかいよう病菌(Xanthomonas campestris pv. citri),青枯病菌(Ralstonia solanacearum)などの病原菌を例示することができる。なかでも、Alternaria属のAlternaria alternata菌、Botrytis属のBotrytis cinerea菌を代表的な腐生性病原菌をとして例示できる。
 なかでも、本発明の植物抵抗性誘導制御剤の使用による防御の対象となる病原体として、腐生性病原菌であるAlternaria属の菌、腐生性病原菌であるBotrytis cinerea、Botrytis byssoidea、Botrytis squamosa、Botrytis allii等のBotrytis属の菌を好適に例示できる。なかでも、Alternaria属のAlternaria alternata、Botrytis属のBotrytis cinerea菌を好適な使用対象として例示でき、トマト灰色かび病菌(Botrytis cinerea)又はキュウリ灰色かび病菌(Botrytis cinerea)を特に好適な使用対象として例示できる。
 腐生性病原菌としては、周囲の環境により条件的に腐生性となる腐生性病原菌も包含する。
The pathogen to be protected by the use of the plant resistance induction regulator of the present invention is not particularly limited, but is preferably a pathogen that causes induction of the ISR system or can be protected by induction of the ISR system. Alternatively, a pathogen that causes induction of the ISR system and can be protected by induction of the ISR system is preferable. From such a viewpoint, it is more preferable that the pathogen to be protected by the plant resistance induction controlling agent of the present invention is a rot-causing pathogen. As rot-causing pathogens, gray mold fungus (Botrytis cinerea), potato anthracnose fungus (Colletotrichum atramentarium), cucumber anthracnose fungus (Colletotrichum lagenarium), tomato blight fungus (Phytophthora infestans), wheat rot fungus (Gaeumannomyces graminis) Soft rot fungus (Erwinia carotovora), black spot fungus (Diplocarpon rosae), rot fungus (Valsa ceratosperma), blight fungus (Cryphonectria parasitica), ergot fungus (Claviceps purpurea), pear black spot fungus (Alternaria alternata), brown rot fungus ella (Mycos pinodes), rice sesame leaf blight fungus (Cochliobolus miyabeanus), spot blight fungus (Stemphylium lycopersici), mycorrhizal fungus (Sclerotinia sclerotiorum), monilinia fungus (Monilinia sp.), leaf fungus fungus (Passalora fulva) Fusarium oxysporum f. Sp. Cucumerinum), Fusarium oxysporum, Raffaelea quercivora, green mold Penicillium digitatum), blue mold fungus (Penicillium italicum), citrus canker (Xanthomonas campestris pv. Citri), can be exemplified pathogens such as Ralstonia solanacearum (Ralstonia solanacearum). Among them, Alternaria alternata bacterium belonging to the genus Alternaria and Botrytis cinerea bacterium belonging to the genus Botrytis can be exemplified as typical humic pathogens.
Among them, as pathogens to be protected by the use of the plant resistance induction regulator of the present invention, fungi of the genus Alternaria which are rot pathogens, Botrytis cinerea, Botrytis byssoidea, Botrytis squamosa, Botrytis allii, etc. Examples of the genus Botrytis are: Among them, Alternaria alternata belonging to the genus Alternaria, Botrytis cinerea bacteria belonging to the Botrytis genus can be exemplified as suitable use targets, and tomato gray mold fungus (Botrytis cinerea) or cucumber gray mold fungus (Botrytis cinerea) can be exemplified as particularly suitable use targets. .
The humic pathogenic bacteria include humic pathogenic bacteria that become conditionally humic depending on the surrounding environment.
 本発明の植物抵抗性誘導制御剤の使用による防除の対象となる害虫等の生物は、特に制限されない。上述のように、ISR系は害虫による食害等の「傷害」に対する防御応答を誘導する。したがって、本発明の植物抵抗性誘導制御剤は、防除剤として、植物を摂食する昆虫やダニ等の、広範囲の種類の害虫等の生物にも適用することができる。
 本発明の植物抵抗性誘導制御剤の使用による防除の対象となる害虫等の生物としては、アズキゾウムシ(Callosobruchus chinensis)等の甲虫目害虫、コナガ(Plutella xylostella)、モンシロチョウ(Pieris rapae)等の鱗翅目害虫、イエバエ(Musca domestica)、ウリミバエ(Dacus cucurbitae)等の双翅目害虫、アオクサカメムシ(Nezara antennata)半翅目害虫、ミカンキイロアザミウマ(Frankliniella occidentalis)等のアザミウマ目害虫、トノサマバッタ(Locusta migratoria)等の直翅目害虫、チャバネゴキブリ(Blattella germanica)等のゴキブリ目害虫、コナヒョウヒダニ(Dermatophagoides farinae)等のダニ目害虫、サツマイモネコブセンチュウ (Meloidogyne incognita)等の線虫類などの各種農業害虫を含む。林木害虫としては、甲虫目害虫が挙げられ、カシノナガキクイムシ(Platypus quercivorus)等のナガキクイムシ科害虫、マツノキクイムシ(Tomicus piniperda)等のキクイムシ科害虫が挙げられ、その他、マツノマダラカミキリ(Mochamus alternatus)やカラフトヒゲナガカミキリ(M. saltuaris)等が属するヒゲナガカミキリ属(Mochamus)害虫などを例示することができる。
 後述する実施例において、本発明にかかる植物抵抗性誘導制御剤により、コナガ(Plutella xylostella)及びモモアカアブラムシ(Myzus persicae)に対する防除効果が認められたことから、本発明の植物抵抗性誘導制御剤は、コナガに代表される鱗翅目(Lepidoptera)に属する害虫に対して適用されることが好ましく、コナガ科(Plutellidae)の害虫に対して適用されことがより好ましい。また、後述する実施例において、本発明にかかる植物抵抗性誘導制御剤により、モモアカアブラムシ(Myzus persicae)に対する防除効果が認められたことから、本発明の植物抵抗性誘導制御剤は、モアカアブラムシに代表される半翅目(Hemiptera)に属する害虫に対して適用されることが好ましく、アブラムシ上科(Aphidoidea)の害虫に対して適用されることがより好ましい。
Organisms such as pests to be controlled by the use of the plant resistance induction control agent of the present invention are not particularly limited. As described above, the ISR system induces a defense response against “injuries” such as food damage by pests. Therefore, the plant resistance induction control agent of the present invention can be applied to a wide variety of organisms such as insects and mites that feed on plants as a control agent.
Examples of organisms such as pests to be controlled by the use of the plant resistance induction regulator of the present invention include Coleoptera pests such as Azuki beetle (Callosobruchus chinensis), scales such as Plutella xylostella and Pieris rapae Pests of the eye, Musca domestica, Dacus cucurbitae, etc., Nezara antennata, Hemiptera, Frankliniella occidentalis, etc. ), Etc., cockroach insects such as Blattella germanica, various insect pests such as nematodes such as Dermatophagoides farinae, nematodes such as sweet potato nematode (Meloidogyne incognita). Forest pests include Coleoptera, Ptertypus quercivorus and other pests, Tomicus piniperda, and other species, Mochamus alternatus (Mochamus alternatus) Examples thereof include pests of the genus Mochamus to which M. saltuaris and the like belong.
In Examples to be described later, the plant resistance induction control agent according to the present invention was found to have a controlling effect against the blue pear (Plutella xylostella) and the peach aphid (Myzus persicae). Is preferably applied to pests belonging to the order Lepidoptera typified by goldfish, and more preferably applied to pests of the family Plutellidae. Further, in the examples described later, since the plant resistance induction control agent according to the present invention was found to have a controlling effect against the peach aphid (Myzus persicae), It is preferably applied to pests belonging to the hemiptera represented by aphids, and more preferably applied to pests of the aphid superfamily (Aphidoidea).
 本発明は、上記一般式(1)で表される化合物又はその塩を適用対象の植物に接触させる、植物抵抗性誘導制御方法を提供する。
 一実施形態において、本発明は、植物抵抗性誘導制御のための上記一般式(1)で表される化合物又はその塩を提供する。
 一実施形態において、本発明は、植物抵抗性誘導制御のための上記一般式(1)で表される化合物又はその塩の使用を提供する。
 一実施形態において、本発明は、植物抵抗性誘導制御剤を製造するための上記一般式(1)で表される化合物又はその塩の使用を提供する。
The present invention provides a plant resistance induction control method in which the compound represented by the general formula (1) or a salt thereof is brought into contact with a plant to be applied.
In one embodiment, the present invention provides a compound represented by the above general formula (1) or a salt thereof for controlling plant resistance induction.
In one embodiment, the present invention provides use of a compound represented by the above general formula (1) or a salt thereof for controlling plant resistance induction.
In one embodiment, the present invention provides use of a compound represented by the above general formula (1) or a salt thereof for producing a plant resistance induction controlling agent.
 植物抵抗性誘導制御剤は、有効量を適用対象の植物に接触させることで、抵抗性を誘導できる。
 植物抵抗性誘導制御剤の有効量を植物に接触させる方法は、公知の誘導剤の場合と同様でよく、植物、植物を栽培する土壌、又は植物を栽培する水耕液に施用する処理方法が挙げられる。処理方法としては、例えば、植物が生育している土壌に植物抵抗性誘導制御剤を散布する方法、土壌混和する方法、土壌潅注する方法、植物抵抗性誘導制御剤を溶解させた植物抵抗性誘導制御剤溶液を植物に塗布又は噴霧する方法、該植物抵抗性誘導制御剤溶液中で植物を生育させる方法、水耕液へ植物抵抗性誘導制御剤を混入する方法、が例示できる。
The plant resistance induction control agent can induce resistance by bringing an effective amount into contact with a plant to be applied.
The method of bringing the effective amount of the plant resistance induction controlling agent into contact with the plant may be the same as in the case of the known induction agent, and the treatment method applied to the plant, the soil where the plant is cultivated, or the hydroponic solution where the plant is cultivated. Can be mentioned. Treatment methods include, for example, a method in which a plant resistance induction control agent is sprayed on soil in which plants are grown, a method of mixing with soil, a method of soil irrigation, and a plant resistance induction in which a plant resistance induction control agent is dissolved. Examples thereof include a method of applying or spraying a control agent solution to a plant, a method of growing a plant in the plant resistance induction control agent solution, and a method of mixing a plant resistance induction control agent into a hydroponic solution.
 本発明の植物の抵抗性誘導制御方法において、植物抵抗性誘導制御剤を処理又は投与する植物体の部位は特に制限されない。例えば、植物体が有する全ての葉や茎、根の全体に噴霧してもよいし、一部の葉や一部の茎、一部の根だけに噴霧してもよい。植物体全体に噴霧しない場合にも、噴霧された部位において生産された二次代謝物が、植物体の必要な箇所へ行き渡って、噴霧されていない部位においても病害虫に対する抵抗性が獲得されうる。また、土壌処理、浸漬処理などにより根系から植物体へ浸透させることによっても病害虫に対する抵抗性が獲得されうる。 In the plant resistance induction control method of the present invention, the site of the plant body to be treated or administered with the plant resistance induction control agent is not particularly limited. For example, all the leaves, stems, and roots of the plant body may be sprayed, or only some leaves, some stems, and some roots may be sprayed. Even when the whole plant body is not sprayed, the secondary metabolite produced in the sprayed site reaches the necessary site of the plant body, and resistance to pests can be obtained even in the site where the plant body is not sprayed. Resistance to pests can also be obtained by infiltrating the plant body from the root system by soil treatment, immersion treatment, or the like.
 植物抵抗性誘導制御剤の使用量は、誘導制御剤や植物の種類に応じて適宜調節できる。土壌に誘導制御剤を散布、混和又は潅注する方法で処理する場合には、例えば、一回あたりの有効成分の使用量を1~20kg/10a、1~10kg/10a、1~1.3kg/10aとし、植物が発芽してから収穫されるまでの期間中、年に一回、又は必要に応じて複数回使用できる。複数回使用する場合は、年に2~6回、月に1~3回の頻度で使用することが好ましい。
 また、前記誘導制御剤溶液を植物の茎葉に塗布又は噴霧する方法で処理する場合、誘導制御剤溶液に含まれる前記一般式(1)で表される化合物又はその塩の濃度は、0.1~500μM、1~500μM、1~300μM、1~100μMが好ましく、10~50μMがより好ましい。例えば、濃度が0.1~500μM又は1~500μMの誘導制御剤溶液の一回あたりの使用量を葉一枚あたり1~1000μLとし、植物が発芽してから収穫されるまでの期間中、年に一回、又は必要に応じて複数回使用できる。複数回使用する場合は、年に2~6回、月に1~3回の頻度で使用することが好ましい。
 水耕栽培など、前記誘導制御剤溶液中で植物を生育させる方法で処理する場合の誘導制御剤溶液に含まれる前記一般式(1)で表される化合物又はその塩の濃度は、0.1~500μMが好ましく、1~500μMが好ましく、1~300μMがより好ましく、1~100μMがさらに好ましく、10~50μMが特に好ましい。例えば、濃度が0.1~500μM又は1~500μMの誘導制御剤溶液の一回あたりの使用量を植物体1個体あたり1~1000μLとし、植物が発芽してから収穫されるまでの期間中、年に一回、又は必要に応じて複数回使用できる。複数回使用する場合は、年に2~6回、月に1~3回の頻度で使用することが好ましい。
The usage-amount of a plant resistance induction | guidance | derivation control agent can be suitably adjusted according to an induction control agent and the kind of plant. In the case of treating the soil with a method of spraying, mixing or irrigating the induction control agent, for example, the amount of the active ingredient used per time is 1 to 20 kg / 10a, 1 to 10 kg / 10a, 1 to 1.3 kg / 10a, and can be used once a year or multiple times as needed during the period from the time the plants germinate until they are harvested. When used multiple times, it is preferable to use it 2 to 6 times a year and 1 to 3 times a month.
Moreover, when processing with the method of apply | coating or spraying the said induction control agent solution to the foliage of a plant, the density | concentration of the compound or its salt represented by the said General formula (1) contained in an induction control agent solution is 0.1. ˜500 μM, 1 to 500 μM, 1 to 300 μM, 1 to 100 μM are preferable, and 10 to 50 μM are more preferable. For example, the use amount of the induction control agent solution having a concentration of 0.1 to 500 μM or 1 to 500 μM per time is set to 1 to 1000 μL per leaf, and during the period from the germination of the plant to the harvest, Can be used once or multiple times as needed. When used multiple times, it is preferable to use it 2 to 6 times a year and 1 to 3 times a month.
The concentration of the compound represented by the general formula (1) or a salt thereof contained in the induction control agent solution in the case of treating with a method of growing a plant in the induction control agent solution such as hydroponics is 0.1. -500 μM are preferred, 1-500 μM are preferred, 1-300 μM are more preferred, 1-100 μM are more preferred, and 10-50 μM are particularly preferred. For example, the amount of the induction control agent solution having a concentration of 0.1 to 500 μM or 1 to 500 μM used per time is 1 to 1000 μL per plant body, and during the period from when the plant germinates until it is harvested, Can be used once a year or multiple times as needed. When used multiple times, it is preferable to use it 2 to 6 times a year and 1 to 3 times a month.
 本発明の抵抗性誘導制御剤の使用のタイミングは、植物体の播種時、移植時又は定植時のいずれの時期でも使用可能である。また、種、芽生え、幼体、成熟個体のいずれの成長段階でも施用可能である。
 トマトの場合、例えば、発芽後20日以降~収穫14日前までに1~3回回施用されることが挙げられる。
 キュウリの場合、例えば、発芽後20日以降~収穫14日前までに1~3回施用されることが挙げられる。
 キャベツの場合、例えば、発芽後20日以降~収穫14日前までに1~3回施用されることが挙げられる。
The timing of use of the resistance induction control agent of the present invention can be used at any time of planting, sowing, transplanting, or planting. Moreover, it can be applied at any stage of growth of seeds, seedlings, juveniles, and mature individuals.
In the case of tomato, for example, it is applied 1 to 3 times after 20 days after germination to 14 days before harvest.
In the case of cucumber, for example, it is applied 1 to 3 times after 20 days after germination to 14 days before harvest.
In the case of cabbage, for example, it is applied 1 to 3 times from 20 days after germination to 14 days before harvest.
 本発明の植物抵抗性誘導制御剤は、他の農園芸用剤と組み合わせて用いられてもよい。植物抵抗性誘導制御剤および他の農園芸用剤を同時に使用されてもよいし、別々に使用されてもよい。
 例えば、本発明の植物抵抗性誘導制御剤と、ベスタチン、ヘキサン酸、アラキドン酸、N-アシルアミド等の、その他のJA系抵抗性誘導制御剤とを併用して用いてもよい。
 また例えば、本発明の植物抵抗性誘導制御剤と、公知のSAR系抵抗性誘導制御剤とを、併用して用いてもよい。
The plant resistance induction controlling agent of the present invention may be used in combination with other agricultural and horticultural agents. The plant resistance induction controlling agent and other agricultural and horticultural agents may be used simultaneously or separately.
For example, the plant resistance induction control agent of the present invention may be used in combination with other JA resistance induction control agents such as bestatin, hexanoic acid, arachidonic acid, N-acylamide and the like.
Further, for example, the plant resistance induction control agent of the present invention and a known SAR resistance induction control agent may be used in combination.
 植物抵抗性誘導制御剤は、害虫の発生又は植物病の発病後に、植物抵抗性誘導制御剤を植物体に接触させてもよい。また、植物抵抗性誘導制御剤は、予防的に用いられてもよく、害虫の発生又は植物病の発病前に、植物抵抗性誘導制御剤を植物体に接触させてもよい。 The plant resistance induction control agent may be brought into contact with the plant body after the occurrence of pests or the onset of plant diseases. Further, the plant resistance induction controlling agent may be used prophylactically, and the plant resistance induction controlling agent may be brought into contact with the plant body before occurrence of pests or plant diseases.
 本発明の抵抗性誘導制御剤は、従来のJA系抵抗性誘導制御剤と比較して、低濃度での有効成分の処理で良好な抵抗性誘導が可能である。 The resistance induction control agent of the present invention can induce good resistance by treating the active ingredient at a low concentration as compared with the conventional JA resistance induction control agent.
≪植物生育促進剤≫
 本発明の植物抵抗性誘導制御剤は、植物生育促進剤としても利用可能である。
 SAR応答と植物体の矮化は密接に関係し、SAR応答誘導下においてはバイオマスの低下が起こることが知られている。後述する実施例において示されるように、本発明に係る植物生育促進剤は、SAR系防御応答遺伝子発現の抑制的制御活性を有する。したがって、本発明の植物育成促進剤によれば、植物の生育促進効果が得られる。植物生育促進剤としては、植物抵抗性誘導制御剤において説明したものと同様のものが例示できるため、説明を省略する。
≪Plant growth promoter≫
The plant resistance induction control agent of the present invention can also be used as a plant growth promoter.
It is known that SAR response and plant hatching are closely related, and that biomass is reduced under SAR response induction. As will be shown in Examples described later, the plant growth promoter according to the present invention has inhibitory control activity on the expression of SAR defense response gene. Therefore, according to the plant growth promoting agent of the present invention, a plant growth promoting effect can be obtained. Examples of the plant growth promoter include those similar to those described in the plant resistance induction control agent, and thus the description thereof is omitted.
 本発明の植物生育促進剤は、他の農園芸用剤と併用されるような剤型で提供されてもよい。
 例えば、本発明の植物生育促進剤と、その他の公知の植物生育促進効果を有する化合物との、合剤、組み合わせ製剤等の剤型で提供されてもよい。
The plant growth promoter of the present invention may be provided in a dosage form that is used in combination with other agricultural and horticultural agents.
For example, it may be provided in a dosage form such as a mixture or a combination preparation of the plant growth promoter of the present invention and other known compounds having a plant growth promoting effect.
 本発明の植物生育促進剤は、他の農園芸用剤と組み合わせて用いられてもよい。植物生育促進剤および他の農園芸用剤を同時に使用されてもよいし、別々に使用されてもよい。
 例えば、本発明の植物生育促進剤と、その他の公知の植物生育促進効果を有する化合物とを併用して用いてもよい。
The plant growth promoter of the present invention may be used in combination with other agricultural and horticultural agents. The plant growth promoter and other agricultural and horticultural agents may be used simultaneously or separately.
For example, you may use together the plant growth promoter of this invention, and the compound which has another well-known plant growth promotion effect.
 本発明の植物生育促進剤は、植物生育促進効果を有する。植物における植物生育促進効果の発現は、後述の実施例に示すように、例えば、以下の指標により判断できる。
「1」植物体の成長速度を指標とし、本発明の植物生育促進剤が処理された植物と、処理されていない植物とを比較して、本発明の植物生育促進剤が処理された植物において、植物体の成長速度が有意に増加していた場合に、植物生育促進効果の発現を判断できる。
「2」特定の時点における植物体のバイオマスを指標とし、本発明の植物生育促進剤が処理された植物と、処理されていない植物とを比較して、本発明の植物生育促進剤が処理された植物において、特定の時点における植物体のバイオマスが有意に増加していた場合に、植物生育促進効果の発現を判断できる。
The plant growth promoter of the present invention has a plant growth promoting effect. The expression of the plant growth promoting effect in the plant can be determined by, for example, the following index as shown in the examples described later.
[1] In a plant treated with the plant growth promoter of the present invention, the plant growth promoter of the present invention is compared with a plant treated with the plant growth promoter of the present invention using the growth rate of the plant as an index. When the growth rate of the plant body is significantly increased, the expression of the plant growth promoting effect can be determined.
“2” The plant growth promoter of the present invention is treated by comparing the plant treated with the plant growth promoter of the present invention with the untreated plant using the biomass of the plant at a specific time as an index. In the case of the plant, when the biomass of the plant body at a specific time is significantly increased, the expression of the plant growth promoting effect can be determined.
 一実施形態において、本発明は、植物生育促進剤を植物に接触させることを含む植物生育促進方法を提供する。係る方法は、植物抵抗性誘導制御剤を植物に接触させる方法において説明したものと同様の方法が例示できるため、説明を省略する。 In one embodiment, the present invention provides a method for promoting plant growth comprising contacting a plant growth promoter with a plant. Since the method which can illustrate the method similar to what was demonstrated in the method of contacting a plant resistance induction | guidance | derivation control agent with a plant can be illustrated, description is abbreviate | omitted.
 一実施形態において、本発明は、植物生育促進のための上記一般式(1)で表される化合物又はその塩を提供する。
 一実施形態において、本発明は、植物生育促進のための上記一般式(1)で表される化合物又はその塩の使用を提供する。
 一実施形態において、本発明は、植物生育促進剤を製造するための上記一般式(1)で表される化合物又はその塩の使用を提供する。
In one embodiment, the present invention provides a compound represented by the above general formula (1) or a salt thereof for promoting plant growth.
In one embodiment, the present invention provides use of a compound represented by the above general formula (1) or a salt thereof for promoting plant growth.
In one embodiment, the present invention provides use of a compound represented by the above general formula (1) or a salt thereof for producing a plant growth promoter.
≪微生物感染効率促進剤・導入遺伝子発現効率促進剤≫
 本発明の植物抵抗性誘導制御剤は、微生物感染効率促進剤、又は導入遺伝子発現効率促進剤としても利用可能である。
 本発明の植物抵抗性誘導制御剤は、SAR系防御応答発現を抑制し、植物体への人為的な微生物感染効率を促進させる。後述する実施例において示されるように、本発明に係る微生物感染効率促進剤は、アグロインフィルトレーション法による遺伝子導入発現促進効果を有する。したがって、本発明の微生物感染効率促進剤によれば、植物への微生物感染効率促進効果が得られる。本発明の微生物感染効率促進剤によれば、例えば、アグロバクテリウム(Agrobacterium)による植物の形質転換効率の促進、形質転換後の遺伝子発現の促進が達成される。この場合、本発明の植物抵抗性誘導制御剤は、形質転換促進剤、遺伝子導入促進剤、導入遺伝子発現効率促進剤としても利用可能である。
 微生物感染効率促進剤としては、植物抵抗性誘導制御剤において説明したものと同様のものが例示できるため、説明を省略する。導入遺伝子発現効率促進剤としては、植物抵抗性誘導制御剤において説明したものと同様のものが例示できるため、説明を省略する。対象の微生物としては、アグロバクテリウムの他、植物に感染する各種植物ウイルスを例示できる。導入される遺伝子としては、当該微生物によって導入可能な遺伝子であれば、特に制限されない。
<Microbial infection efficiency promoter / transgene expression efficiency promoter>
The plant resistance induction regulator of the present invention can also be used as a microbial infection efficiency promoter or a transgene expression efficiency promoter.
The plant resistance induction controlling agent of the present invention suppresses the expression of SAR defense response and promotes artificial microbial infection efficiency to plants. As shown in the Examples described later, the microbial infection efficiency promoting agent according to the present invention has an effect of promoting gene transfer expression by the agroinfiltration method. Therefore, according to the microbial infection efficiency promoter of the present invention, the effect of promoting microbial infection efficiency to plants can be obtained. According to the microbial infection efficiency promoter of the present invention, for example, promotion of plant transformation efficiency by Agrobacterium and promotion of gene expression after transformation are achieved. In this case, the plant resistance induction regulator of the present invention can also be used as a transformation promoter, a gene transfer promoter, and a transgene expression efficiency promoter.
Examples of the microbial infection efficiency promoter include those similar to those described in the plant resistance induction control agent, and thus the description thereof is omitted. Examples of the transgene expression efficiency promoter include those similar to those described in the plant resistance induction control agent, and thus the description thereof is omitted. Examples of the target microorganism include Agrobacterium and various plant viruses that infect plants. The gene to be introduced is not particularly limited as long as it can be introduced by the microorganism.
 本発明の微生物感染効率促進剤は、他の農園芸用剤と併用されるような剤型で提供されてもよい。
 例えば、本発明の微生物感染効率促進剤と、その他の公知の微生物感染効率促進効果を有する化合物との、合剤、組み合わせ製剤等の剤型で提供されてもよい。
 例えば、本発明の導入遺伝子発現効率促進剤と、その他の公知の導入遺伝子発現効率促進効果を有する化合物との、合剤、組み合わせ製剤等の剤型で提供されてもよい。
The microorganism infection efficiency promoter of the present invention may be provided in a dosage form that is used in combination with other agricultural and horticultural agents.
For example, it may be provided in a dosage form such as a mixture or a combination preparation of the microbial infection efficiency promoter of the present invention and other known compounds having an effect of promoting microbial infection efficiency.
For example, the transgene expression efficiency promoter of the present invention and other known transgene expression efficiency promoting effects may be provided in a dosage form such as a combination or a combined preparation.
 本発明の微生物感染効率促進剤は、農園芸用剤と組み合わせて用いられてもよい。微生物感染効率促進剤および他の農園芸用剤を同時に使用されてもよいし、別々に使用されてもよい。
 例えば、本発明の植物生育促進剤と、その他の公知の微生物感染効率促進効果を有する化合物とを併用して用いてもよい。
 例えば、本発明の導入遺伝子発現効率促進剤と、その他の公知の導入遺伝子発現効率促進効果を有する化合物とを併用して用いてもよい。
The microbial infection efficiency promoter of the present invention may be used in combination with an agricultural and horticultural agent. The microbial infection efficiency promoter and other agricultural and horticultural agents may be used simultaneously or separately.
For example, the plant growth promoter of the present invention may be used in combination with other known compounds having an effect of promoting the efficiency of microbial infection.
For example, the transgene expression efficiency promoting agent of the present invention may be used in combination with other known compounds having a transgene expression efficiency promoting effect.
 本発明の微生物感染効率促進剤は、微生物感染効率促進効果を有する。植物における微生物感染効率促進効果の発現は、後述の実施例に示すように、例えば、以下の指標により判断できる。
「1」植物体に形質転換能を有する微生物を感染させ、該微生物により植物へ導入された遺伝子の発現量を指標とし、本発明の微生物感染効率促進剤が処理された植物と、処理されていない植物とを比較して、本発明の微生物感染効率促進剤が処理された植物において、前記遺伝子の発現量が有意に増加していた場合に、微生物感染効率促進効果の発現を判断できる。
The microbial infection efficiency promoter of the present invention has an effect of promoting microbial infection efficiency. The expression of the effect of promoting microbial infection efficiency in plants can be determined by, for example, the following indicators, as shown in the examples described later.
“1” A plant having been treated with the microorganism infection efficiency promoter of the present invention using the expression level of a gene introduced into the plant by the microorganism as an index by infecting the plant body with a microorganism having transformation ability, When the expression level of the gene is significantly increased in the plant treated with the microbial infection efficiency promoting agent of the present invention, compared with a non-plant, the expression of the microbial infection efficiency promoting effect can be determined.
 本発明の導入遺伝子発現効率促進剤は、導入遺伝子発現効率促進効果を有する。植物における導入遺伝子発現効率促進効果の発現は、後述の実施例に示すように、例えば、以下の指標により判断できる。
「1」植物体に形質転換能を有する微生物を感染させ、該微生物により植物へ導入された遺伝子の発現量を指標とし、本発明の微生物感染効率促進剤が処理された植物と、処理されていない植物とを比較して、本発明の微生物感染効率促進剤が処理された植物において、前記遺伝子の発現量が有意に増加していた場合に、微生物感染効率促進効果の発現を判断できる。
The transgene expression efficiency promoter of the present invention has an effect of promoting transgene expression efficiency. The expression of the effect of promoting transgene expression efficiency in plants can be determined by, for example, the following indicators, as shown in the Examples described later.
“1” A plant having been treated with the microorganism infection efficiency promoter of the present invention using the expression level of a gene introduced into the plant by the microorganism as an index by infecting the plant body with a microorganism having transformation ability, When the expression level of the gene is significantly increased in the plant treated with the microbial infection efficiency promoting agent of the present invention, compared with a non-plant, the expression of the microbial infection efficiency promoting effect can be determined.
 一実施形態において、本発明は、微生物感染効率促進剤を植物に接触させることを含む微生物感染促進方法を提供する。係る方法は、植物抵抗性誘導制御剤を植物に接触させる方法において説明したものと同様の方法が例示できるため、説明を省略する。 In one embodiment, the present invention provides a method for promoting microbial infection comprising contacting a plant with a microbial infection efficiency promoter. Since the method which can illustrate the method similar to what was demonstrated in the method of contacting a plant resistance induction | guidance | derivation control agent with a plant can be illustrated, description is abbreviate | omitted.
 一実施形態において、本発明は、微生物感染効率促進のための上記一般式(1)で表される化合物又はその塩を提供する。
 一実施形態において、本発明は、微生物感染効率促進のための上記一般式(1)で表される化合物又はその塩の使用を提供する。
 一実施形態において、本発明は、微生物感染効率促進剤を製造するための上記一般式(1)で表される化合物又はその塩の使用を提供する。
In one embodiment, the present invention provides a compound represented by the above general formula (1) or a salt thereof for promoting microbial infection efficiency.
In one embodiment, the present invention provides use of a compound represented by the above general formula (1) or a salt thereof for promoting microbial infection efficiency.
In one embodiment, the present invention provides the use of a compound represented by the above general formula (1) or a salt thereof for producing a microbial infection efficiency promoter.
 一実施形態において、本発明は、導入遺伝子発現効率促進剤を植物に接触させることを含む導入遺伝子発現効率促進方法を提供する。
 本発明に係る導入遺伝子発現効率促進方法の一実施形態として、微生物によって植物へ遺伝子を導入し、本発明の植物抵抗性誘導制御剤を前記植物に接触させることを含む、導入遺伝子発現効率促進方法が挙げられる。
 本発明に係る導入遺伝子発現効率促進方法の一実施形態として、微生物によって植物へ遺伝子を導入し、本発明の植物抵抗性誘導制御剤を前記植物に接触させ、前記遺伝子を発現させることを含む、導入遺伝子発現効率促進方法が挙げられる。
 微生物によって植物へ遺伝子を導入することは、本発明の導入遺伝子発現効率促進剤を前記植物に接触させることよりも後に行ってもよく、同時に行ってもよい。
 本発明の導入遺伝子発現効率促進剤を植物に接触させる方法は、植物抵抗性誘導制御剤を植物に接触させる方法において説明したものと同様の方法が例示できるため、説明を省略する。微生物によって植物へ遺伝子を導入する方法は、アグロインフィルトレーション法等の公知の方法により行うことができる。遺伝子を導入する対象の植物は、植物の細胞、組織、細胞塊、カルス、及び植物個体を包含する意味で用いている。
In one embodiment, the present invention provides a method for promoting transgene expression efficiency, which comprises contacting a plant with a transgene expression efficiency promoter.
As one embodiment of the method for promoting the efficiency of transgene expression according to the present invention, the method for promoting the efficiency of transgene expression comprising introducing a gene into a plant by a microorganism and bringing the plant resistance induction regulator of the present invention into contact with the plant Is mentioned.
As one embodiment of the method for promoting transgene expression efficiency according to the present invention, the method comprises introducing a gene into a plant by a microorganism, bringing the plant resistance induction regulator of the present invention into contact with the plant, and expressing the gene. Examples include a method for promoting transgene expression efficiency.
The introduction of a gene into a plant by a microorganism may be performed after the transgene expression efficiency promoter of the present invention is brought into contact with the plant, or may be performed simultaneously.
Since the method of bringing the transgene expression efficiency promoter of the present invention into contact with a plant can be exemplified by the same method as described in the method of bringing a plant resistance induction regulator into contact with a plant, description thereof is omitted. A method for introducing a gene into a plant by a microorganism can be performed by a known method such as an agroinfiltration method. The target plant into which the gene is introduced is used to include plant cells, tissues, cell masses, callus, and plant individuals.
 一実施形態において、本発明は、導入遺伝子発現効率促進のための上記一般式(1)で表される化合物又はその塩を提供する。
 一実施形態において、本発明は、導入遺伝子発現効率促進のための上記一般式(1)で表される化合物又はその塩の使用を提供する。
 一実施形態において、本発明は、導入遺伝子発現効率促進剤を製造するための上記一般式(1)で表される化合物又はその塩の使用を提供する。
In one embodiment, the present invention provides a compound represented by the above general formula (1) or a salt thereof for promoting transgene expression efficiency.
In one embodiment, the present invention provides use of a compound represented by the above general formula (1) or a salt thereof for promoting transgene expression efficiency.
In one embodiment, the present invention provides the use of a compound represented by the above general formula (1) or a salt thereof for producing a transgene expression efficiency promoter.
 次に実施例を示して本発明をさらに詳細に説明するが、本発明は以下の実施例に限定されるものではない。 Next, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.
<VSP1遺伝子の発現を誘導する化合物の選抜>
 まず、文献(Utsugi et al. (1998) Plant Mol Biol 38:565-576; Guerineau et al. (2003) J Exp Bot 54:1153-1162)に示された結果に沿って、PCRにより、シロイヌナズナ(Arabidopsis thaliana ecotype Columbia)のゲノムDNAからVSP1遺伝子のプロモーター配列を増幅した。レポーター遺伝子(ホタルルシフェラーゼ遺伝子(FLuc))の遺伝子配列を有するプラスミド(pBI221-Fluc)のFlucの上流に、VSP1遺伝子のプロモーター配列を連結し、pBI121-VSP1::Flucプラスミドを得た。該プラスミドをアグロバクテリウム(Agrobacterium tumefaciens LBA4404)を介してシロイヌナズナに導入し、VSP1::Flucを有する形質転換シロイヌナズナVSP1::Flucを得た。この形質転換シロイヌナズナの種子をマルチウェルプレートに播種し、ルシフェリン水溶液中で発芽させた。
 一般に販売されている化合物ライブラリの各化合物のジメチルスルホキシド(DMSO)溶液をそれぞれ調製し、化合物の濃度が30μMの濃度となるように、この溶液を各ウェルに加えて、形質転換シロイヌナズナの芽生えを処理した。生育は22℃、12時間暗期/12時間明期(70μmolm-2-1)の光周期条件下で行った。
<Selection of compounds that induce VSP1 gene expression>
First, according to the results shown in the literature (Utsugi et al. (1998) Plant Mol Biol 38: 565-576; Guerineau et al. (2003) J Exp Bot 54: 1153-1162), by PCR, Arabidopsis thaliana ( The promoter sequence of VSP1 gene was amplified from genomic DNA of Arabidopsis thaliana ecotype Columbia. The promoter sequence of the VSP1 gene was ligated upstream of Fluc of a plasmid (pBI221-Fluc) having a gene sequence of a reporter gene (firefly luciferase gene (FLuc)) to obtain a pBI121-VSP1 :: Fluc plasmid. The plasmid was introduced into Arabidopsis thaliana through Agrobacterium tumefaciens LBA4404 to obtain transformed Arabidopsis VSP1 :: Fluc having VSP1 :: Fluc. The transformed Arabidopsis seeds were sown in a multiwell plate and germinated in a luciferin aqueous solution.
Prepare a dimethyl sulfoxide (DMSO) solution of each compound in a commercially available compound library, and add this solution to each well so that the concentration of the compound is 30 μM to treat the seedlings of transformed Arabidopsis thaliana did. Growth was performed under photoperiod conditions of 22 ° C., 12 hours dark period / 12 hours light period (70 μmolm −2 S −1 ).
 フォトカウンティング装置(ARGUSシステム、浜松ホトニクス社製)及びソフトウェア(AQUACOSMOS、浜松ホトニクス社製)を使用して、各ウェル内の発光強度を測定してレポーターであるFlucの発現量を測定することで、各化合物のVSP1遺伝子発現誘導活性についてそれぞれ評価した。 By using a photocounting device (ARGUS system, manufactured by Hamamatsu Photonics) and software (AQUACOSMOS, manufactured by Hamamatsu Photonics), measuring the luminescence intensity in each well and measuring the expression level of the reporter Fluc, The VSP1 gene expression inducing activity of each compound was evaluated.
 その結果、前記式(1-1-7)で表される化合物の処理、(1-1-9)で表される化合物の処理、及び(1-1-10)で表される化合物の処理により、上記形質転換シロイヌナズナVSP1::FlucにおいてFlucタンパク質が発現誘導されることが明らかとなった。前記式(1-1-7)で表される化合物を、以下「化合物X」という。 As a result, treatment of the compound represented by the formula (1-1-7), treatment of the compound represented by (1-1-9), and treatment of the compound represented by (1-1-10) Thus, it was revealed that expression of Fluc protein was induced in the transformed Arabidopsis VSP1 :: Fluc. The compound represented by the formula (1-1-7) is hereinafter referred to as “Compound X”.
 形質転換シロイヌナズナVSP1::Flucでは、化合物X処理数時間後からFlucタンパク質の発光強度が上昇し始めたのが確認できた。その後、化合物X処理144時間後には、形質転換シロイヌナズナVSP1::FlucでのFlucタンパク質の発光強度が約90(フォトン数/分/μm)に達した。化合物X未処理の場合、形質転換シロイヌナズナVSP1::FlucでのFlucタンパク質の発光は検出されなかった。このことから、化合物Xは、シロイヌナズナ芽生えにおいて、VSP1遺伝子の発現誘導活性を有することが示唆された。 In transformed Arabidopsis VSP1 :: Fluc, it was confirmed that the luminescence intensity of the Fluc protein started to increase after several hours of treatment with Compound X. Thereafter, after 144 hours of treatment with Compound X, the luminescence intensity of Fluc protein in transformed Arabidopsis VSP1 :: Fluc reached about 90 (number of photons / min / μm 2 ). When Compound X was not treated, no luminescence of Fluc protein was detected in transformed Arabidopsis VSP1 :: Fluc. From this, it was suggested that Compound X has VSP1 gene expression inducing activity in Arabidopsis seedlings.
<Fluc遺伝子発現に対する化合物Xの影響評価>
 次に、化合物XによるFluc遺伝子発現誘導活性への影響を35S:: Flucを有する形質転換シロイヌナズナを用いて確認した(n = 16)。シロイヌナズナ35S:: Flucは、上記VSP1:: Flucの作出と同様にして行った。
<Evaluation of the effect of Compound X on Fluc gene expression>
Next, the effect of compound X on Fluc gene expression inducing activity was confirmed using transformed Arabidopsis thaliana having 35S :: Fluc (n = 16). Arabidopsis thaliana 35S :: Fluc was performed in the same manner as the production of VSP1 :: Fluc.
 シロイヌナズナ35S:: Flucに対する化合物X処理による、Flucタンパク質の発光強度を測定した(化合物X群)。また、コントロールとして、上記各化合物XのDMSO溶液に代えてDMSOのみを処理した群(DMSO群)、及び、上記各化合物XのDMSO溶液に代えてMeJAのDMSO溶液を処理した群(MeJA群)でもFlucタンパク質の発光強度を測定した。測定の結果、化合物X群、DMSO群、MeJA群でのFlucタンパク質の発光強度の値は、ほぼ同様の値(処理120時間後に発光強度が約3000(フォトン数/分/μm))であった。このことから、化合物XはFluc遺伝子発現活性には影響を与えないことが確認された。これら結果から、化合物XがVSP1遺伝子プロモーターに作用することで明瞭なVSP1遺伝子発現誘導活性を示していることが確認された。
 さらに、上記と同様にして誘導処理した5週齢の野生型シロイヌナズナからRNAを抽出し、RT-PCR法を用いて内在性のVSP1遺伝子発現を定量したところ、Flucを用いた場合と同様に明瞭な発現誘導が観察され、化合物X処理による内在性のVSP1遺伝子発現の誘導が確認された。
The luminescence intensity of Fluc protein was measured by treatment with Compound X on Arabidopsis thaliana 35S :: Fluc (compound X group). As a control, a group treated with DMSO alone instead of the DMSO solution of each compound X (DMSO group), and a group treated with a DMSO solution of MeJA instead of the DMSO solution of each compound X (MeJA group) But the luminescence intensity of Fluc protein was measured. As a result of the measurement, the luminescence intensity values of the Fluc protein in the compound X group, DMSO group, and MeJA group were almost the same value (the luminescence intensity was about 3000 (number of photons / minute / μm 2 ) after 120 hours of treatment). It was. From this, it was confirmed that Compound X does not affect Fluc gene expression activity. From these results, it was confirmed that compound X exhibits a clear VSP1 gene expression inducing activity by acting on the VSP1 gene promoter.
Furthermore, RNA was extracted from 5-week-old wild-type Arabidopsis thaliana induced as described above, and endogenous VSP1 gene expression was quantified using the RT-PCR method. As clearly as with Fluc. Induction of endogenous VSP1 gene expression by compound X treatment was confirmed.
 以上の結果から、化合物Xは、VSP1遺伝子の発現を誘導することが示された。VSP1遺伝子はJA応答経路で特異的に発現誘導される。したがって、化合物Xを植物に処理することで、JAを介して誘導されることが知られるISR系により、抵抗性が誘導されることが確認された。 From the above results, it was shown that Compound X induces the expression of VSP1 gene. The expression of VSP1 gene is specifically induced in the JA response pathway. Therefore, it was confirmed that the resistance was induced by the ISR system that is known to be induced through JA by treating the compound X with plants.
<シロイヌナズナ3週齢個体における化合物Xの作用評価>
 上記選抜実験では、シロイヌナズナの芽生えに対する抵抗性誘導を評価した。同様の実験をシロイヌナズナ3週齢個体(n = 24)に対して行った。
 化合物XのDMSO溶液を調整し、化合物Xの濃度が30μMの濃度となるようにこの溶液を各ウェルに加えて、形質転換シロイヌナズナを処理した群(化合物X群)、上記化合物XのDMSO溶液に代えてDMSOのみを処理した群(DMSO群)に対する評価を行った。更に、化合物X群、DMSO群の他に、化合物XのDMSO溶液に代えてMeJAのDMSO溶液を処理した群(MeJA群)に対する評価も行った。
<Evaluation of the effect of Compound X in 3 weeks old Arabidopsis thaliana>
In the selection experiment, the resistance induction of Arabidopsis seedlings was evaluated. A similar experiment was performed on an Arabidopsis thaliana 3-week-old individual (n = 24).
A DMSO solution of Compound X was prepared, and this solution was added to each well so that the concentration of Compound X was 30 μM, and the transformed Arabidopsis thaliana was treated (Compound X group). Instead, the group treated with DMSO alone (DMSO group) was evaluated. Furthermore, in addition to the compound X group and the DMSO group, the group treated with the DMSO solution of MeJA instead of the DMSO solution of the compound X (MeJA group) was also evaluated.
 化合物X群及びMeJA群の形質転換シロイヌナズナVSP1::Flucでは、各化合物処理の直後からFlucタンパク質の発光強度が上昇し始めたのが確認できた。処理72時間後には、化合物X群及びMeJA群の形質転換シロイヌナズナVSP1::FlucでのFlucタンパク質の発光強度の値は、約250(フォトン数/分/μm))であった。一方DMSO群のシロイヌナズナVSP1::Flucでは、Flucタンパク質の発光は検出されなかった。このことから、化合物Xは、シロイヌナズナ3週齢個体においても、VSP1遺伝子の発現誘導活性を有するすることが示唆された。
 また、化合物XとMeJAとで抵抗性誘導の様態を比較すると、化合物Xの抵抗性誘導作用は、MeJAと同様の早い時点から発揮されることが判明した。そして、化合物Xの抵抗性誘導作用はMeJAの抵抗性誘導作用よりも長期間継続していた。このことから、化合物Xは、即効性と持続性を兼ね備える、非常に優れた抵抗性誘導作用を有していることがわかる。
In the transformed Arabidopsis VSP1 :: Fluc of the compound X group and the MeJA group, it was confirmed that the luminescence intensity of the Fluc protein started to increase immediately after each compound treatment. 72 hours after the treatment, the value of the luminescence intensity of the Fluc protein in the transformed Arabidopsis VSP1 :: Fluc of the compound X group and the MeJA group was about 250 (number of photons / min / μm 2 )). On the other hand, in Arabidopsis VSP1 :: Fluc in the DMSO group, no luminescence of Fluc protein was detected. From this, it was suggested that Compound X has VSP1 gene expression-inducing activity even in Arabidopsis thaliana 3-week-old individuals.
Further, when the resistance induction mode was compared between Compound X and MeJA, it was found that the resistance induction effect of Compound X was exhibited from the same early point as MeJA. And the resistance inducing action of Compound X lasted longer than that of MeJA. From this, it can be seen that Compound X has a very excellent resistance-inducing action having both immediate effect and sustainability.
<SAR系防御応答遺伝子発現に対する化合物Xの抑制効果>
 形質転換シロイヌナズナPR-1a::Flucを用いて、化合物XのSAR系へ影響を評価した。PR-1aはSA応答経路で特異的に発現誘導される遺伝子である(Tanaka T, Ono S, Watakabe Y, Hiratsuka K (2006), Bioluminescence reporter assay system to monitor Arabidopsis MPK3 gene expression in response to infection by Botrytis cinerea. J. Gen. Plant Pathol. 72, 1-5)。
 評価はシロイヌナズナPR-1a::Flucの芽生えに対して行った(n = 8)。化合物X,SAまたはMeJAの濃度が30μMの濃度となるようにDMSO溶液として各ウェルに加え、発光活性の推移を観察した(図5)。DMSOと比較してSA単独処理では明瞭な発現誘導が観察されたが、MeJAまたは化合物X処理ではSAによる発現誘導の抑制が観察され、その抑制活性は化合物Xが持続的であり、より効果的であることが示唆された。このことから、化合物Xは、SAR系防御応答遺伝子発現の抑制的制御活性を有することがわかる。
<Inhibitory effect of compound X on SAR defense response gene expression>
The effect of Compound X on the SAR system was evaluated using transformed Arabidopsis PR-1a :: Fluc. PR-1a is a gene specifically induced in the SA response pathway (Tanaka T, Ono S, Watakabe Y, Hiratsuka K (2006), Bioluminescence reporter assay system to monitor Arabidopsis MPK3 gene expression in response to infection by Botrytis cinerea. J. Gen. Plant Pathol. 72, 1-5).
Evaluation was performed on the seedlings of Arabidopsis PR-1a :: Fluc (n = 8). A DMSO solution was added to each well so that the concentration of Compound X, SA or MeJA was 30 μM, and the transition of luminescence activity was observed (FIG. 5). In contrast to DMSO, clear expression induction was observed with SA alone, but with MeJA or Compound X treatment, suppression of expression induction by SA was observed, and the suppression activity was more effective with compound X being sustained. It was suggested that This shows that Compound X has an inhibitory control activity on the expression of SAR defense response gene.
<化合物Xの抗菌活性の評価>
 化合物X自体の抗菌活性を確認するため、阻止円法による評価を行った。ここでは炭疽病菌と灰色かび病菌に対する抗菌活性を調査した。炭疽病菌は活物寄生性病原菌の代表であり、灰色かび病菌は腐生性病原菌の代表である。
 炭疽病菌 (C.higginsianum) の胞子100μl (1.0×105spores/ml) をPDA培地に塗布し、さらに化合物X液 10μl (100mM)を処理した。陽性対照にはハイグロマイシン10μl (100mM)、陰性対照にはDMSOを用いた。これを10日間24℃下暗所にて培養した。
 灰色かび病菌 (B.cinerea) の胞子100μl (3.0×105spores/ml)をPSA培地に塗布し、さらに化合物X液 10μl (100mM)を処理した。陽性対象にはハイグロマイシン10μl(100mM)、陰性対象にはDMSOを用いた。これを5日間24℃下で培養した。
 試験の結果、化合物Xは100mMという高濃度処理においても炭疽病菌、灰色かび病菌に対して抗菌活性を示さないことが明らかとなった。抗菌活性を持たない化合物は、薬剤耐性菌を生みにくい。したがって、本発明の植物抵抗性誘導制御剤にかかる化合物Xは、薬剤耐性菌を生みにくく、長期間の利用が見込める点においても優れている。
<Evaluation of antibacterial activity of Compound X>
In order to confirm the antibacterial activity of Compound X itself, evaluation by the inhibition circle method was performed. Here we investigated the antibacterial activity against anthrax and gray mold. Anthracnose fungi are representative of active parasitic fungi, and gray mold fungus is representative of saprophytic fungi.
100 μl (1.0 × 10 5 spores / ml) of anthrax anthracnose (C. higginsianum) was applied to PDA medium, and further treated with 10 μl (100 mM) of Compound X solution. Hygromycin 10 μl (100 mM) was used as a positive control, and DMSO was used as a negative control. This was cultured in the dark at 24 ° C. for 10 days.
100 μl (3.0 × 10 5 spores / ml) of B. cinerea spores were applied to the PSA medium, and further treated with 10 μl of Compound X solution (100 mM). Hygromycin 10 μl (100 mM) was used for positive subjects and DMSO was used for negative subjects. This was cultured at 24 ° C. for 5 days.
As a result of the test, it was clarified that Compound X does not exhibit antibacterial activity against anthrax and gray mold even at a high concentration treatment of 100 mM. Compounds that do not have antibacterial activity are less likely to produce drug-resistant bacteria. Therefore, the compound X according to the plant resistance induction controlling agent of the present invention is excellent in that it is difficult to produce drug-resistant bacteria and can be used for a long time.
≪化合物Xの植物抵抗性誘導の評価≫
<試験1>
[比較例1]
 播種37日後のシロイヌナズナ成熟個体(Col-0)(図1(a))に対して、DMSO水溶液(約0.03%)を土壌中に加え、DMSO水溶液を根から吸わせるようにしてシロイヌナズナ成熟個体に与えた。その72時間後に、シロイヌナズナ成熟個体に対して、胞子濃度5×104 spores/mlに調製した灰色かび病菌を含む滅菌水をスプレーで接種し、22℃、12時間暗期/12時間明期(70μmolm-2-1)の光周期条件下で生育させた。図1(b)は接種3日後の植物体の写真である。図1(b)に示すように、植物体の葉に多数の病斑が見られた。
[実施例1]
 DMSO水溶液(約0.03%)の代わりに、30μMで化合物Xを含むようにDMSO水溶液(約0.03%)を用いてに調製した化合物X水溶液を根から吸わせるようにしてシロイヌナズナ成熟個体に与えた以外は、比較例1と同様に試験した。(図1(c))は播種37日後のシロイヌナズナ成熟植物体(Col-0)である。図1(d)は接種3日後の植物体の写真である。比較例1の植物体(図1(b))と比較して、実施例1の植物体(図1(d))では病斑の発生が抑えられていることが分かる。
 以上の結果から、シロイヌナズナ成熟個体において、化合物Xが、灰色かび病菌に対する浸潤抑制効果を示し、灰色かび病菌に対する高い防除効果を示すことが明らかである。
≪Evaluation of plant resistance induction of compound X≫
<Test 1>
[Comparative Example 1]
To mature Arabidopsis thaliana (Col-0) (Fig. 1 (a)) 37 days after sowing, add DMSO aqueous solution (approximately 0.03%) to the soil and let the DMSO aqueous solution absorb from the roots. Gave. 72 hours later, mature Arabidopsis thaliana individuals were inoculated by spray with sterile water containing gray mold prepared at a spore concentration of 5 × 10 4 spores / ml, 22 ° C., 12 hours dark period / 12 hours light period ( 70 μmolm −2 S −1 ). FIG. 1 (b) is a photograph of the plant 3 days after inoculation. As shown in FIG.1 (b), many lesions were seen on the leaf of the plant body.
[Example 1]
Instead of DMSO aqueous solution (approx. 0.03%), the compound X aqueous solution prepared using DMSO aqueous solution (approx. Were tested in the same manner as in Comparative Example 1. (FIG. 1 (c)) is a mature Arabidopsis thaliana plant (Col-0) 37 days after sowing. FIG. 1 (d) is a photograph of the plant 3 days after inoculation. Compared with the plant body of Comparative Example 1 (FIG. 1B), it can be seen that the occurrence of lesions is suppressed in the plant body of Example 1 (FIG. 1D).
From the above results, it is clear that in Arabidopsis matured individuals, Compound X exhibits an infiltration inhibitory effect on gray mold and a high control effect on gray mold.
<試験2>
[比較例2]
 発芽46日後のトマト成熟個体に対して、1株あたり150mL量のDMSO水溶液(約0.03%)を浸漬処理した。その72時間後に、トマト成熟個体に対して、胞子濃度1×10spores/mlに調製した灰色かび病菌5μLをスポット接種し、Light 16h 22℃で生育させた。図2(a)は接種5日後の植物体から得た葉の写真である。葉に病斑が見られ、葉の生育が不良であることが分かる。
[実施例2]
 DMSO水溶液(約0.03%)の代わりに、30μMで化合物Xを含むようにDMSO水溶液(約3%)を用いてに調製した化合物X水溶液を浸漬処理してトマト成熟個体に与えた以外は、比較例2と同様に試験した。図2(b)は接種5日後の植物体の写真である。比較例2の植物体(図2(a))と比較して、実施例2の植物体(図2(b))では病斑の面積が小さく抑えられ、葉の生育が良好であることが分かる。
<Test 2>
[Comparative Example 2]
A mature tomato individual 46 days after germination was immersed in a 150 mL DMSO aqueous solution (about 0.03%) per strain. 72 hours later, mature tomato individuals were spot-inoculated with 5 μL of gray mold fungus prepared at a spore concentration of 1 × 10 5 spores / ml and grown at 22 ° C. Light 16h. FIG. 2 (a) is a photograph of leaves obtained from a plant 5 days after inoculation. It can be seen that lesions are found on the leaves and the growth of the leaves is poor.
[Example 2]
Compared with DMSO aqueous solution (about 3%), soaked compound X aqueous solution prepared using DMSO aqueous solution (about 3%) to contain compound X instead of DMSO aqueous solution (about 0.03%). Tested as in Example 2. FIG. 2 (b) is a photograph of the plant 5 days after inoculation. Compared with the plant body of Comparative Example 2 (FIG. 2 (a)), the plant body of Example 2 (FIG. 2 (b)) has a reduced area of lesions and good leaf growth. I understand.
 図2(c)のグラフは、<試験2>で得られた結果を定量したものである。グラフの縦軸は、灰色かび病菌の播種5日後時点にて、各接種葉における最大病斑直径を計測した結果の値である。
 図2(c)のグラフから明らかなように、化合物Xを与えた個体では病斑の面積が小さく抑えられたことがわかる。このことから、トマト成熟個体において、化合物Xが灰色かび病菌に対する高い防除効果を有することが確認された。
The graph of FIG. 2 (c) quantifies the results obtained in <Test 2>. The vertical axis of the graph is the value of the result of measuring the maximum lesion diameter in each inoculated leaf at 5 days after seeding of gray mold.
As is clear from the graph of FIG. 2 (c), it can be seen that the area of the lesion was reduced in the individual given Compound X. From this, it was confirmed that Compound X has a high control effect against gray mold fungus in mature tomato plants.
<試験3>
 [比較例3]
 発芽46日後のキュウリ成熟個体に対して、1株あたり150mL量のDMSO水溶液(約0.03%)を浸漬処理した。その72時間後に、キュウリ成熟個体に対して胞子濃度1×10spores/mlに調製した灰色かび病菌5μLをスポット接種し、Light 16h 22℃で生育させた。図3(a)は接種5日後の植物体から得た葉の写真である。葉に病斑が見られ、葉の生育が不良であることが分かる。
[実施例3]
 DMSO水溶液(約0.03%)の代わりに、30μMで化合物Xを含むようにDMSO水溶液(約3%)を用いてに調製した化合物X水溶液を浸漬処理してキュウリ成熟個体に与えた以外は、比較例3と同様に試験した。図3(b)は接種5日後の植物体の写真である。比較例3の植物体(図3(a))と比較して、実施例3の植物体(図3(b))では病斑の面積が小さく抑えられ、葉の生育が良好であることが分かる。
<Test 3>
[Comparative Example 3]
A cucumber mature individual 46 days after germination was immersed in a 150 mL DMSO aqueous solution (about 0.03%) per strain. 72 hours later, 5 μL of gray mold fungus prepared to a spore concentration of 1 × 10 5 spores / ml was spot-inoculated to mature cucumber individuals and grown at 22 ° C. in Light 16h. FIG. 3 (a) is a photograph of leaves obtained from a plant 5 days after inoculation. It can be seen that lesions are found on the leaves and the growth of the leaves is poor.
[Example 3]
Compared with DMSO aqueous solution (about 3%) prepared by using DMSO aqueous solution (about 3%) so that it contains Compound X at 30 μM instead of DMSO aqueous solution (about 0.03%) Tested as in Example 3. FIG. 3 (b) is a photograph of the plant 5 days after inoculation. Compared with the plant body of Comparative Example 3 (FIG. 3A), the plant body of Example 3 (FIG. 3B) has a small lesion area and good leaf growth. I understand.
 図3(c)のグラフは、<試験3>で得られた結果を定量したものである。グラフの縦軸は、灰色かび病菌の播種5日後時点にて、植物体に生じた病斑の最大直径を測定したものである。
 図3(c)のグラフから明らかなように、化合物Xを与えた個体では病斑の面積が小さく抑えられたことがわかる。このことから、キュウリ成熟個体において、化合物Xが灰色かび病菌に対する高い防除効果を有することが確認された。
The graph of FIG.3 (c) quantifies the result obtained by <Test 3>. The vertical axis of the graph is a measurement of the maximum diameter of lesions occurring on the plant body at 5 days after seeding of the gray mold fungus.
As is apparent from the graph of FIG. 3C, it can be seen that the lesion area was suppressed to be small in the individual given Compound X. From this, it was confirmed that Compound X has a high control effect against gray mold fungus in mature cucumber individuals.
<試験4>
 [比較例4]無処理区
 播種85日後後のキャベツ成熟個体に対して、キャベツ成熟個体へモモアカアブラムシ(Myzus persicae)を放した。化合物X散布から2日後、6日後、9日後、15日後、22日後のモモアカアブラムシの数を計測した。
 [実施例4]
 30μMで化合物Xを含むように、30mM DMSO溶媒を、井戸水を用いて1000倍希釈し、展着剤マイリノーを5000倍になるように添加して調製した化合物X水溶液を、スプレーで植物体表面が十分に濡れるように十分量を噴霧してキャベツ成熟個体に与えた以外は、比較例4と同様に試験した。なお、<試験4>の調査は日本植物防疫協会に委託して行った。
<Test 4>
[Comparative Example 4] Untreated group The peach aphid (Myzus persicae) was released to the mature cabbage individuals after 85 days after sowing. The number of peach aphids was counted 2 days, 6 days, 9 days, 15 days, and 22 days after Compound X spraying.
[Example 4]
The surface of the plant body is sprayed on a compound X aqueous solution prepared by diluting 30 mM DMSO solvent 1000 times with well water and adding the spreading agent mylino to 5000 times so that compound X is contained at 30 μM. The test was conducted in the same manner as in Comparative Example 4 except that a sufficient amount was sprayed so as to be sufficiently wet and given to mature cabbage individuals. The investigation in <Test 4> was commissioned to the Japan Plant Protection Association.
 試験4の結果を表1に示す。表1中の実施例4の数値は、比較例4で得られた値を基準とした補正密度指数として表している。表1に示す結果から、本試験において化合物Xは、化合物X散布後9日後までの間、モモアカアブラムシに対する防除効果を発揮することが明らかとなった。 The results of Test 4 are shown in Table 1. The numerical value of Example 4 in Table 1 is expressed as a corrected density index based on the value obtained in Comparative Example 4. From the results shown in Table 1, it was clarified that in this test, Compound X exhibits a controlling effect against peach aphid until 9 days after the application of Compound X.
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000029
<試験5>
[比較例5]
 上記比較例4において、モモアカアブラムシに代えてコナガ(Plutella xylostella)を、化合物X散布後2日後に株あたり100卵を接種して試験を開始した以外は、上記比較例4と同様に試験を行った。放虫から9日後、15日後、22日後の若齢幼虫、中齢幼虫、老齢幼虫の合計生息コナガ幼虫数を計測した。
[実施例5]
 DMSO水溶液(約3%)の代わりに、30μMで化合物Xを含むようにDMSO水溶液(約3%)を用いてに調製した化合物X水溶液を植物体全体にスプレーで噴霧してキャベツ成熟個体に与えた以外は、比較例5と同様に試験した。なお、<試験5>の調査は日本植物防疫協会に委託して行った。
<Test 5>
[Comparative Example 5]
In Comparative Example 4, the test was conducted in the same manner as in Comparative Example 4 except that the test was started after inoculating 100 eggs per strain 2 days after spraying Compound X instead of Peachella xylostella instead of the peach aphid. went. The total number of young moth larvae of young larvae, middle larvae and old larvae 9 days, 15 days and 22 days after release was counted.
[Example 5]
Instead of DMSO aqueous solution (about 3%), Compound X aqueous solution prepared using DMSO aqueous solution (about 3%) so as to contain Compound X at 30 μM is sprayed on the whole plant by spraying to give mature cabbage individuals. The test was performed in the same manner as in Comparative Example 5 except that. The investigation of <Test 5> was commissioned to the Japan Plant Protection Association.
 試験5の結果を表2に示す。表2に示す結果から、本試験において化合物Xは、コナガに対して顕著で持続的な防除効果を発揮することが明らかとなった。 The results of Test 5 are shown in Table 2. From the results shown in Table 2, it was clarified that in this test, Compound X exerts a remarkable and long-lasting control effect on the diamondback moth.
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000030
<化合物X処理による生育促進効果の評価>
 SAR応答と植物体の矮化は密接に関係し、SAR応答誘導下においてはバイオマスの低下が起こることが知られている。そこで、SAR抑制活性を示す化合物Xの処理による植物体の生育への影響を評価した。
 評価は、キャベツ(品種:金系201号)に対して行った。キャベツ生育条件は、播種:128穴セルトレイ、キャベツ育苗期:1区64株連性なし(2ブロック調査)、定植:播種29日後、定植後:1区14株2連性とした。
 化合物Xの粉末を15mMになるようDMSOで溶解し、井戸水を用いて所定濃度の1000倍に希釈した(散布濃度は、15μM)。さらに展着剤マイリノーを5000倍になるように添加し、散布用の化合物X希釈薬液を用意した。
 薬液散布1回目として、播種21日後のキャベツ(キャベツ本葉3枚)に化合物X希釈薬液を散布した。薬液散布2回目として、播種28日後のキャベツ(キャベツ本葉34枚)に化合物X希釈薬液を散布した。薬液散布3回目として、播種35日後のキャベツ(キャベツ本葉45枚)に化合物X希釈薬液を散布した。希釈薬液は、背負式噴霧器を用いて葉の表裏が濡れるように十分量を散布した。その後、播種後57日後に、観察(撮影)を行った。
<Evaluation of growth promotion effect by compound X treatment>
It is known that SAR response and plant hatching are closely related, and that biomass is reduced under SAR response induction. Then, the influence on the growth of the plant body by the process of the compound X which shows SAR inhibitory activity was evaluated.
The evaluation was performed on cabbage (variety: gold type 201). The cabbage growth conditions were as follows: sowing: 128-well cell tray, cabbage seedling raising period: 1 ward, 64 strains not connected (2 block survey), planting: 29 days after sowing, after planting: 1 ward, 14 strains, 2 continuity.
Compound X powder was dissolved in DMSO to 15 mM and diluted 1000 times the predetermined concentration using well water (spraying concentration was 15 μM). Further, a spreading agent Mylino was added so as to be 5000 times to prepare a compound X diluted drug solution for spraying.
As the first chemical spraying, the compound X diluted chemical was sprayed on cabbage (three cabbage leaves) 21 days after sowing. As a second chemical spray, compound X diluted chemical was sprayed on cabbage (34 cabbage leaves) 28 days after sowing. As a third chemical spray, compound X diluted chemical was sprayed on cabbage (45 cabbage leaves) 35 days after sowing. A sufficient amount of the diluted chemical solution was sprayed using a back sprayer so that the front and back of the leaves were wet. Thereafter, observation (photographing) was performed 57 days after sowing.
 観察結果を図6に示す。化合物X処理を行った区(化合物X処理区)と、化合物X処理を行わなかった区(化合物X未処理区)とで、植物体の生育状況を比較したところ、化合物X処理区では、化合物X未処理区と比較して、明瞭な生育促進効果が観察された。 The observation results are shown in FIG. When the growth status of the plant body was compared between the group treated with compound X (compound X-treated group) and the group not treated with compound X (compound X-untreated group), A clear growth promoting effect was observed compared to the X untreated section.
<化合物X処理による微生物感染効率向上効果>
 化合物Xを終濃度1μM、5μM、10μMの各濃度で含む化合物XのDMSO溶液を調整した。また、化合物XのDMSO溶液に代えてMeJAのDMSO溶液を用意した。ウェルにタバコ(Nicotiana tabacum SR1株)を播種し、調整した各濃度の液を各ウェルに加え、22℃連続光下でタバコを発芽させ、生育させた(N=24(各濃度群))。播種11日後の幼植物体に、イントロン挿入型ルシフェラーゼ遺伝子(CaMV35SプロモーターとHSPターミネーター間に挿入)を有するアグロバクテリウムLBA4404株を、常法により処理し、感染させた。高感度カメラによる発光観察により、アグロバクテリウム感染後144時間後までのルシフェラーゼ活性を連続モニタリングした。モニタリングの結果を図7に示す。図7に示すグラフの縦軸は、感染後48~120時間後の相対活性の平均値である。化合物Xを終濃度1μM、5μM、10μMのいずれの処理区においても、明瞭な遺伝子発現の増高が確認された。特に、比較的低濃度(1μM)の化合物X処理においても明瞭な発現上昇が観察された。
<Microbial infection efficiency improvement effect by compound X treatment>
A DMSO solution of Compound X containing Compound X at final concentrations of 1 μM, 5 μM, and 10 μM was prepared. In addition, a DMJA solution of MeJA was prepared instead of the DMSO solution of Compound X. Tobacco (Nicotiana tabacum SR1 strain) was seeded in the well, and each adjusted liquid was added to each well, and tobacco was germinated and grown under continuous light at 22 ° C. (N = 24 (each concentration group)). Agrobacterium LBA4404 strain having an intron-inserted luciferase gene (inserted between CaMV35S promoter and HSP terminator) was treated and infected by an ordinary method on seedlings 11 days after sowing. The luciferase activity was continuously monitored up to 144 hours after Agrobacterium infection by luminescence observation with a high sensitivity camera. The results of monitoring are shown in FIG. The vertical axis of the graph shown in FIG. 7 is an average value of relative activities 48 to 120 hours after infection. A clear increase in gene expression was confirmed in all treatment groups of Compound X at final concentrations of 1 μM, 5 μM, and 10 μM. In particular, a clear increase in expression was observed even when treated with a relatively low concentration (1 μM) of Compound X.
 本発明は、植物の育成分野全般で利用可能である。 The present invention can be used in the entire field of plant cultivation.

Claims (9)

  1.  下記一般式(1)で表される化合物又はその塩を有効成分として含有する植物抵抗性誘導制御剤。
    Figure JPOXMLDOC01-appb-C000001
    [式(1)中、
     X、X、X、X、X、X、X、X、X及びX10は、それぞれ独立して、CH又はNを表し(但し、X、X、X、X及びXのいずれか2以上がNとなることはなく、X、X、X、X及びX10のいずれか2以上がNとなることはない。)、
     Rは炭素数1~4の直鎖状若しくは分岐鎖状のハロアルキル基、ハロゲン原子、ニトロ基又はシアノ基を表し、
     Rは炭素数1~4の直鎖状若しくは分岐鎖状のアルキル基又は炭素数2~4の直鎖状若しくは分岐鎖状のアルケニル基を表す。
     Rは水素原子、炭素数1~4の直鎖状若しくは分岐鎖状のアルキル基又は炭素数2~4の直鎖状若しくは分岐鎖状のアルケニル基を表し、
     Rは、炭素数1~4の直鎖状若しくは分岐鎖状のアルキル基、炭素数2~4の直鎖状若しくは分岐鎖状のアルケニル基、又はハロゲン原子を表す。
     nはRの数を表し、0又は1である。mはRの数を表し、0~5のいずれかの整数であり、mが2以上のとき、R同士は互いに同一でも異なっていてもよい。但し、n+mは5以下の整数である。pはRの数を表し、0~5のいずれかの整数であり、pが2以上のとき、R同士は互いに同一でも異なっていてもよい。]
    A plant resistance induction controlling agent comprising a compound represented by the following general formula (1) or a salt thereof as an active ingredient.
    Figure JPOXMLDOC01-appb-C000001
    [In Formula (1),
    X 1 , X 2 , X 3 , X 4 , X 5 , X 6 , X 7 , X 8 , X 9 and X 10 each independently represent CH or N (provided that X 1 , X 2 , Any two or more of X 3 , X 4 and X 5 are not N, and any two or more of X 6 , X 7 , X 8 , X 9 and X 10 are not N).
    R 1 represents a linear or branched haloalkyl group having 1 to 4 carbon atoms, a halogen atom, a nitro group, or a cyano group,
    R 2 represents a linear or branched alkyl group having 1 to 4 carbon atoms or a linear or branched alkenyl group having 2 to 4 carbon atoms.
    R 3 represents a hydrogen atom, a linear or branched alkyl group having 1 to 4 carbon atoms, or a linear or branched alkenyl group having 2 to 4 carbon atoms,
    R 4 represents a linear or branched alkyl group having 1 to 4 carbon atoms, a linear or branched alkenyl group having 2 to 4 carbon atoms, or a halogen atom.
    n represents the number of R 1 and is 0 or 1. m represents the number of R 2 and is an integer of 0 to 5, and when m is 2 or more, R 2 may be the same or different from each other. However, n + m is an integer of 5 or less. p represents the number of R 4 and is an integer of 0 to 5, and when p is 2 or more, R 4 may be the same or different from each other. ]
  2.  前記一般式(1)が、下記一般式(1-2)で表される化合物である請求項1に記載の植物抵抗性誘導制御剤。
    Figure JPOXMLDOC01-appb-C000002
    [式(1-2)中、X、X、R、R、R、R、n、m及びpは前記と同一の意味を表す。]
    The plant resistance induction controlling agent according to claim 1, wherein the general formula (1) is a compound represented by the following general formula (1-2).
    Figure JPOXMLDOC01-appb-C000002
    [In the formula (1-2), X 1 , X 7 , R 1 , R 2 , R 3 , R 4 , n, m and p have the same meaning as described above. ]
  3.  前記一般式(1)が、下記一般式(3-2-2)で表される化合物である請求項2に記載の植物抵抗性誘導制御剤。
    Figure JPOXMLDOC01-appb-C000003
    [式(3-2-2)中、R、R、R、R、n、m及びpは前記と同一の意味を表す。]
    The plant resistance induction controlling agent according to claim 2, wherein the general formula (1) is a compound represented by the following general formula (3-2-2).
    Figure JPOXMLDOC01-appb-C000003
    [In the formula (3-2-2), R 1 , R 2 , R 3 , R 4 , n, m and p have the same meaning as described above. ]
  4.  請求項1~3のいずれか一項に記載の植物抵抗性誘導制御剤を植物に接触させることを含む植物抵抗性誘導制御方法。 A plant resistance induction control method comprising bringing a plant resistance induction control agent according to any one of claims 1 to 3 into contact with a plant.
  5.  請求項4に記載の植物抵抗性誘導制御方法を使用することを含む植物病害の防除方法。 A plant disease control method comprising using the plant resistance induction control method according to claim 4.
  6.  請求項4に記載の植物抵抗性誘導制御方法を使用することを含む害虫の防除方法。 A method for controlling pests comprising using the plant resistance induction control method according to claim 4.
  7.  下記一般式(1)で表される化合物又はその塩を有効成分として含有する植物生育促進剤。
    Figure JPOXMLDOC01-appb-C000004
    [式(1)中、
     X、X、X、X、X、X、X、X、X及びX10は、それぞれ独立して、CH又はNを表し(但し、X、X、X、X及びXのいずれか2以上がNとなることはなく、X、X、X、X及びX10のいずれか2以上がNとなることはない。)、
     Rは炭素数1~4の直鎖状若しくは分岐鎖状のハロアルキル基、ハロゲン原子、ニトロ基又はシアノ基を表し、
     Rは炭素数1~4の直鎖状若しくは分岐鎖状のアルキル基又は炭素数2~4の直鎖状若しくは分岐鎖状のアルケニル基を表す。
     Rは水素原子、炭素数1~4の直鎖状若しくは分岐鎖状のアルキル基又は炭素数2~4の直鎖状若しくは分岐鎖状のアルケニル基を表し、
     Rは、炭素数1~4の直鎖状若しくは分岐鎖状のアルキル基、炭素数2~4の直鎖状若しくは分岐鎖状のアルケニル基、又はハロゲン原子を表す。
     nはRの数を表し、0又は1である。mはRの数を表し、0~5のいずれかの整数であり、mが2以上のとき、R同士は互いに同一でも異なっていてもよい。但し、n+mは5以下の整数である。pはRの数を表し、0~5のいずれかの整数であり、pが2以上のとき、R同士は互いに同一でも異なっていてもよい。]
    A plant growth promoter comprising a compound represented by the following general formula (1) or a salt thereof as an active ingredient.
    Figure JPOXMLDOC01-appb-C000004
    [In Formula (1),
    X 1 , X 2 , X 3 , X 4 , X 5 , X 6 , X 7 , X 8 , X 9 and X 10 each independently represent CH or N (provided that X 1 , X 2 , Any two or more of X 3 , X 4 and X 5 are not N, and any two or more of X 6 , X 7 , X 8 , X 9 and X 10 are not N).
    R 1 represents a linear or branched haloalkyl group having 1 to 4 carbon atoms, a halogen atom, a nitro group, or a cyano group,
    R 2 represents a linear or branched alkyl group having 1 to 4 carbon atoms or a linear or branched alkenyl group having 2 to 4 carbon atoms.
    R 3 represents a hydrogen atom, a linear or branched alkyl group having 1 to 4 carbon atoms, or a linear or branched alkenyl group having 2 to 4 carbon atoms,
    R 4 represents a linear or branched alkyl group having 1 to 4 carbon atoms, a linear or branched alkenyl group having 2 to 4 carbon atoms, or a halogen atom.
    n represents the number of R 1 and is 0 or 1. m represents the number of R 2 and is an integer of 0 to 5, and when m is 2 or more, R 2 may be the same or different from each other. However, n + m is an integer of 5 or less. p represents the number of R 4 and is an integer of 0 to 5, and when p is 2 or more, R 4 may be the same or different from each other. ]
  8.  下記一般式(1)で表される化合物又はその塩を有効成分として含有する微生物感染効率促進剤。
    Figure JPOXMLDOC01-appb-C000005
    [式(1)中、
     X、X、X、X、X、X、X、X、X及びX10は、それぞれ独立して、CH又はNを表し(但し、X、X、X、X及びXのいずれか2以上がNとなることはなく、X、X、X、X及びX10のいずれか2以上がNとなることはない。)、
     Rは炭素数1~4の直鎖状若しくは分岐鎖状のハロアルキル基、ハロゲン原子、ニトロ基又はシアノ基を表し、
     Rは炭素数1~4の直鎖状若しくは分岐鎖状のアルキル基又は炭素数2~4の直鎖状若しくは分岐鎖状のアルケニル基を表す。
     Rは水素原子、炭素数1~4の直鎖状若しくは分岐鎖状のアルキル基又は炭素数2~4の直鎖状若しくは分岐鎖状のアルケニル基を表し、
     Rは、炭素数1~4の直鎖状若しくは分岐鎖状のアルキル基、炭素数2~4の直鎖状若しくは分岐鎖状のアルケニル基、又はハロゲン原子を表す。
     nはRの数を表し、0又は1である。mはRの数を表し、0~5のいずれかの整数であり、mが2以上のとき、R同士は互いに同一でも異なっていてもよい。但し、n+mは5以下の整数である。pはRの数を表し、0~5のいずれかの整数であり、pが2以上のとき、R同士は互いに同一でも異なっていてもよい。]
    A microorganism infection efficiency promoter containing a compound represented by the following general formula (1) or a salt thereof as an active ingredient.
    Figure JPOXMLDOC01-appb-C000005
    [In Formula (1),
    X 1 , X 2 , X 3 , X 4 , X 5 , X 6 , X 7 , X 8 , X 9 and X 10 each independently represent CH or N (provided that X 1 , X 2 , Any two or more of X 3 , X 4 and X 5 are not N, and any two or more of X 6 , X 7 , X 8 , X 9 and X 10 are not N).
    R 1 represents a linear or branched haloalkyl group having 1 to 4 carbon atoms, a halogen atom, a nitro group, or a cyano group,
    R 2 represents a linear or branched alkyl group having 1 to 4 carbon atoms or a linear or branched alkenyl group having 2 to 4 carbon atoms.
    R 3 represents a hydrogen atom, a linear or branched alkyl group having 1 to 4 carbon atoms, or a linear or branched alkenyl group having 2 to 4 carbon atoms,
    R 4 represents a linear or branched alkyl group having 1 to 4 carbon atoms, a linear or branched alkenyl group having 2 to 4 carbon atoms, or a halogen atom.
    n represents the number of R 1 and is 0 or 1. m represents the number of R 2 and is an integer of 0 to 5, and when m is 2 or more, R 2 may be the same or different from each other. However, n + m is an integer of 5 or less. p represents the number of R 4 and is an integer of 0 to 5, and when p is 2 or more, R 4 may be the same or different from each other. ]
  9.  下記一般式(1)で表される化合物又はその塩を有効成分として含有する導入遺伝子発現効率促進剤。
    Figure JPOXMLDOC01-appb-C000006
    [式(1)中、
     X、X、X、X、X、X、X、X、X及びX10は、それぞれ独立して、CH又はNを表し(但し、X、X、X、X及びXのいずれか2以上がNとなることはなく、X、X、X、X及びX10のいずれか2以上がNとなることはない。)、
     Rは炭素数1~4の直鎖状若しくは分岐鎖状のハロアルキル基、ハロゲン原子、ニトロ基又はシアノ基を表し、
     Rは炭素数1~4の直鎖状若しくは分岐鎖状のアルキル基又は炭素数2~4の直鎖状若しくは分岐鎖状のアルケニル基を表す。
     Rは水素原子、炭素数1~4の直鎖状若しくは分岐鎖状のアルキル基又は炭素数2~4の直鎖状若しくは分岐鎖状のアルケニル基を表し、
     Rは、炭素数1~4の直鎖状若しくは分岐鎖状のアルキル基、炭素数2~4の直鎖状若しくは分岐鎖状のアルケニル基、又はハロゲン原子を表す。
     nはRの数を表し、0又は1である。mはRの数を表し、0~5のいずれかの整数であり、mが2以上のとき、R同士は互いに同一でも異なっていてもよい。但し、n+mは5以下の整数である。pはRの数を表し、0~5のいずれかの整数であり、pが2以上のとき、R同士は互いに同一でも異なっていてもよい。]
    A transgene expression efficiency promoter containing a compound represented by the following general formula (1) or a salt thereof as an active ingredient.
    Figure JPOXMLDOC01-appb-C000006
    [In Formula (1),
    X 1 , X 2 , X 3 , X 4 , X 5 , X 6 , X 7 , X 8 , X 9 and X 10 each independently represent CH or N (provided that X 1 , X 2 , Any two or more of X 3 , X 4 and X 5 are not N, and any two or more of X 6 , X 7 , X 8 , X 9 and X 10 are not N).
    R 1 represents a linear or branched haloalkyl group having 1 to 4 carbon atoms, a halogen atom, a nitro group, or a cyano group,
    R 2 represents a linear or branched alkyl group having 1 to 4 carbon atoms or a linear or branched alkenyl group having 2 to 4 carbon atoms.
    R 3 represents a hydrogen atom, a linear or branched alkyl group having 1 to 4 carbon atoms, or a linear or branched alkenyl group having 2 to 4 carbon atoms,
    R 4 represents a linear or branched alkyl group having 1 to 4 carbon atoms, a linear or branched alkenyl group having 2 to 4 carbon atoms, or a halogen atom.
    n represents the number of R 1 and is 0 or 1. m represents the number of R 2 and is an integer of 0 to 5, and when m is 2 or more, R 2 may be the same or different from each other. However, n + m is an integer of 5 or less. p represents the number of R 4 and is an integer of 0 to 5, and when p is 2 or more, R 4 may be the same or different from each other. ]
PCT/JP2015/065242 2014-07-09 2015-05-27 Plant resistance inducing control agent, plant resistance inducing control method, plant disease prevention method, insect prevention method, plant growth promoter, microbial infection efficiency promoter, and transgene expression efficiency promoter WO2016006351A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016532490A JP6652763B2 (en) 2014-07-09 2015-05-27 Pest control agent, pest control method, transformation efficiency promoter, and transformation efficiency promotion method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-141566 2014-07-09
JP2014141566 2014-07-09

Publications (1)

Publication Number Publication Date
WO2016006351A1 true WO2016006351A1 (en) 2016-01-14

Family

ID=55063993

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/065242 WO2016006351A1 (en) 2014-07-09 2015-05-27 Plant resistance inducing control agent, plant resistance inducing control method, plant disease prevention method, insect prevention method, plant growth promoter, microbial infection efficiency promoter, and transgene expression efficiency promoter

Country Status (2)

Country Link
JP (1) JP6652763B2 (en)
WO (1) WO2016006351A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022196649A1 (en) * 2021-03-19 2022-09-22 国立大学法人横浜国立大学 Method for inducing plant resistance, plant resistance-inducing agent and biostimulant
WO2023062667A1 (en) 2021-10-11 2023-04-20 国立大学法人東北大学 Method for inducing plant disease resistance, device for inducing plant disease resistance, and agent for inducing plant disease resistance

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61257960A (en) * 1985-05-13 1986-11-15 Mitsui Toatsu Chem Inc Sulfonamide based compound and agricultural germicide
JPS62158254A (en) * 1985-12-23 1987-07-14 サンド・アクチエンゲゼルシヤフト Novel compound
JPS63303970A (en) * 1987-06-03 1988-12-12 Ishihara Sangyo Kaisha Ltd N-pyridinylbenzenesulfonamide compound and fungicide for agricultural and horticultural purposes, containing the same
JP2001026506A (en) * 1999-04-28 2001-01-30 Takeda Chem Ind Ltd Sulfonamide derivative
JP2002284609A (en) * 2001-01-16 2002-10-03 Takeda Chem Ind Ltd Composition for agricultural and horticultural containing sulfonamide derivative

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61257960A (en) * 1985-05-13 1986-11-15 Mitsui Toatsu Chem Inc Sulfonamide based compound and agricultural germicide
JPS62158254A (en) * 1985-12-23 1987-07-14 サンド・アクチエンゲゼルシヤフト Novel compound
JPS63303970A (en) * 1987-06-03 1988-12-12 Ishihara Sangyo Kaisha Ltd N-pyridinylbenzenesulfonamide compound and fungicide for agricultural and horticultural purposes, containing the same
JP2001026506A (en) * 1999-04-28 2001-01-30 Takeda Chem Ind Ltd Sulfonamide derivative
JP2002284609A (en) * 2001-01-16 2002-10-03 Takeda Chem Ind Ltd Composition for agricultural and horticultural containing sulfonamide derivative

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022196649A1 (en) * 2021-03-19 2022-09-22 国立大学法人横浜国立大学 Method for inducing plant resistance, plant resistance-inducing agent and biostimulant
WO2023062667A1 (en) 2021-10-11 2023-04-20 国立大学法人東北大学 Method for inducing plant disease resistance, device for inducing plant disease resistance, and agent for inducing plant disease resistance

Also Published As

Publication number Publication date
JP6652763B2 (en) 2020-02-26
JPWO2016006351A1 (en) 2017-06-15

Similar Documents

Publication Publication Date Title
ES2648965T3 (en) Pyrazole fungicidal mixtures
US20140150134A1 (en) Insect-combating preparation and method based on rnai technology
CN107205392A (en) The phenyl pyrimidine class of weeding
CN105555777A (en) Anthranilamide compounds, their mixtures and the use thereof as pesticides
TW200526122A (en) Synergistic fungicidal active compound combinations
TW201231655A (en) Soybean event SYHT04R and compositions and methods for detection thereof
US20230133398A1 (en) Methods and agricultural compositions for preventing or controlling plant diseases
WO2014142074A1 (en) Composition for enhancing plant disease control effect of monosaccharide
US10905120B2 (en) ABA receptor agonists that modulate transpiration
CN105531265A (en) Pesticide compounds
CN107535504A (en) Application of 1,3,4 thiadiazole compounds in bacterial blight of rice is prevented and treated
BR112019021388B1 (en) COMPOUNDS, AGRICULTURAL AND HORTICULTURAL PEST CONTROL AGENT, AGRICULTURAL AND HORTICULTURAL FUNGICIDE AND METHODS FOR PREVENTING AND/OR TREATMENT OF A PLANT DISEASE
JP6652763B2 (en) Pest control agent, pest control method, transformation efficiency promoter, and transformation efficiency promotion method
WO2015088038A1 (en) Aromatic compound and application for same
CN105579446A (en) N-acylimino heterocyclic compounds
AU2016380736B2 (en) High stress resistant plant growth regulator and preparation and use thereof
JP6670499B2 (en) Plant resistance induction controlling agent, method for controlling plant resistance induction, and method for controlling plant disease
JP6624074B2 (en) Carbamate compounds and uses thereof
JP6624076B2 (en) Carbamate compounds and uses thereof
JP6624077B2 (en) Carbamate compounds and uses thereof
WO2022196649A1 (en) Method for inducing plant resistance, plant resistance-inducing agent and biostimulant
JP5807955B2 (en) Resistance inducer for plants, method for inducing plant resistance, and method for preventing plant diseases
Navarro-Acevedo Development and Testing of Harpin Based Products for the Control of Nematodes and Fungal Plant Pathogens
TWI631897B (en) Method for protecting useful plants or plant propagation material
CN112574194B (en) Pyrimidine salt compound synthesis and application

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15818387

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016532490

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15818387

Country of ref document: EP

Kind code of ref document: A1