WO2016006091A1 - Power system analysis device and method - Google Patents

Power system analysis device and method Download PDF

Info

Publication number
WO2016006091A1
WO2016006091A1 PCT/JP2014/068530 JP2014068530W WO2016006091A1 WO 2016006091 A1 WO2016006091 A1 WO 2016006091A1 JP 2014068530 W JP2014068530 W JP 2014068530W WO 2016006091 A1 WO2016006091 A1 WO 2016006091A1
Authority
WO
WIPO (PCT)
Prior art keywords
power system
system analysis
nodes
analysis device
power
Prior art date
Application number
PCT/JP2014/068530
Other languages
French (fr)
Japanese (ja)
Inventor
犬塚 達基
俊之 三宅
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2014/068530 priority Critical patent/WO2016006091A1/en
Publication of WO2016006091A1 publication Critical patent/WO2016006091A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks

Definitions

  • the present invention relates to a power system analysis apparatus and method for analyzing a power system.
  • the power system is operated with a balance between supply and demand, while various devices that generate and consume power perform their own operations.
  • many power plants that generate electric power have been centrally installed and operated by electric power companies.
  • distributed power sources such as solar power generation and wind power generation have begun to spread in order to utilize natural energy.
  • the power generation amount of these distributed power sources varies depending on weather conditions. For example, the amount of solar radiation, wind direction, and wind speed cause changes in power generation.
  • a large-capacity storage battery may be mounted on an electric vehicle or the like, and may be connected to the grid while changing the connection point, the connection time, the charge / discharge capacity, and the like.
  • the power system is composed of a combination of L (inductance), C (capacitance), R (resistance), etc., and the state values of the power system are V (voltage), I (current), P (active power), Q (invalid) Power) and ⁇ (phase).
  • L inductance
  • C capacitor
  • R resistance
  • phase
  • Simulators that perform power flow calculations for system analysis using equations related to such power systems are widely used. It is used to calculate the power flowing through the line by specifying state values such as input / output power of the load.
  • Patent Document 1 as a method for calculating a mathematical model of a power system by parallel calculation. The behavior of voltage and current is calculated by setting the time step for calculation and repeatedly calculating.
  • the power equation described above is a nonlinear simultaneous equation
  • a numerical calculation method such as the Newton-Raphson method is used.
  • a matrix-type nonlinear power equation is prepared in advance. Therefore, if there is a change in the system configuration, it is necessary to rewrite the power equation, which is a mathematical model, and the power flow calculation cannot be continued in response to another structure (mesh structure, tree structure, etc.) or dynamic reconfiguration of the power system.
  • Patent Document 1 calculates a voltage / current waveform for the purpose of power system surge analysis, and is not suitable for calculating power flow.
  • the present invention provides a power system analysis device that analyzes a power system configured based on a plurality of nodes and a branch that connects the nodes, and includes power on a load side connected to the nodes.
  • Means for calculating a load power indicative of a complex voltage gradient of the branch based on the load power, and a complex voltage of an adjacent node connected to the node via the branch based on the complex voltage gradient And means for calculating the correction amount for nodes within a predetermined range in the power system.
  • power flow calculation can be started without preprocessing such as making a mathematical model in advance. , Tree structure, etc.) or dynamic flow reconstruction can be continued.
  • Off-line may be used for the purpose of evaluating and analyzing the characteristics of the system configuration in advance.
  • the purpose is to calculate a control command to a control device in the power system, an online form is obtained.
  • the present invention described below can be applied to both online and offline.
  • Fig. 1 schematically shows the configuration of the power system.
  • the node 101 is a system component such as a transformer, reactance, capacitance, etc., or a load installed by a consumer, a distributed power source using renewable energy.
  • the branch 102 is a line connecting the nodes 101 and has characteristics such as line type and line impedance.
  • the power system can be described as a relationship in which the node 101 and the branch 102 are connected. For example, a method for describing the connection relationship between the node 101 and the branch 102 with text data is easy to create and highly versatile, but preprocessing for replacing the text data with a mathematical model is essential.
  • the present invention arranges the node 101 and the branch 102 in a diagrammatic manner.
  • the mathematical model will be called a graphical model.
  • the graphical meaning is to describe a picture on a two-dimensional plane while maintaining the adjacent relationship between the node 101 and the branch 102. In other words, this corresponds to writing the elements that are adjacent to each other on the power system so that they are adjacent to each other in a two-dimensional array.
  • this two-dimensional array has a data structure prepared in a programming language, it is possible to refer to adjacent elements by changing the array index by one.
  • the two-dimensional array is a memory device, the elements in the adjacent relationship can be referred to by regular change of the memory address.
  • the node 101 is represented by a symbol ⁇
  • the branch 102 is represented by a line connecting ⁇
  • information on the node 101 and the branch 102 can be written as attached information.
  • the node 101 and the branch 102 may be represented by the same symbol ⁇ . Or you may handle the intersection of a grid-like vertical and horizontal line as an element. Since the node 101 and the branch 102 have different functions, they may be distinguished from each other.
  • Such a schematic model enables interactive data input with the operator.
  • the above-described graphically represented screen is presented to the operator, and the operator can write the power system while viewing the screen, or can correct the data input in advance.
  • the written screen can be used for a calculation procedure to be described later by treating it as a two-dimensional schematic model. Since the calculation results are made of the same two-dimensional array, the calculation results can be displayed on the screen superimposed on the input data.
  • a node of interest is N 3
  • an adjacent node is N 4
  • a branch connecting the two is Line 34 .
  • the voltage of each node is V 3 and V 4
  • the impedance of the branch is Z 34
  • the flowing current is I 34 .
  • the node N 4 is connected to a load and consumes power S. In the initial state, all node voltages are Vs, and the current flowing through the branch is zero. By initializing the impedance of the branch as infinite, it does not contribute to the calculation of the power flow when there is no allocation of power system elements.
  • These variables are expressed as complex numbers including phase. In the following description, the complex number format may not be specified for the sake of simplicity.
  • FIG. 5 shows a flowchart. Since the power S is consumed at the node N 4 , the current L 4 flowing through the load is
  • V 3 V 4 -I 34 ⁇ Z 34 You can correct it. Or it may share the magnitude of the voltage correction calculated in the node N 3 and the node N 4 adjacent.
  • this correction value is obtained only from the relationship between the node N 3 and the node N 4 , but in reality, other connected nodes must be considered. Further, when the correction value is directly used, the solution may oscillate or diverge. Therefore, a correction coefficient K is prepared so that the correction is gradually performed, and the following is set as a correction value.
  • V 3 (V 4 -I 34 ⁇ Z 34 ) ⁇ K
  • the correction coefficient K is used as a numerical value of 0 ⁇ K ⁇ 1 in the repeated calculation described below.
  • the above basic calculation is obtained from the relationship between two adjacent nodes.
  • This procedure may be extended to the relationship between adjacent nodes as shown in FIG.
  • the relationship between the complex voltage and the complex current is derived from the relationship between the node N of interest and the node adjacent to the node N.
  • the correction coefficient K is used as a numerical value of 0 ⁇ K ⁇ 1 to gradually reflect the correction value in the repeated calculation described below.
  • the correction value is calculated by scanning all the combinations of nodes and branches constituting the system.
  • FIG. 8 shows an example of the order in which the calculation proceeds.
  • the scanning order may be such that the upper left of the graphical model is the starting point and the lower right is the ending point, such as the scanning order of electron beams of a cathode ray tube.
  • the correction amount gradually decreases and approaches a stable state.
  • the situation gradually approaching the stable state is adjusted by the correction coefficient K described above.
  • a method for setting the correction coefficient K will be described later.
  • the power flow calculation procedure of the present invention does not need to prepare a mathematical model of the power system in advance. Since iterative calculations are performed based on the schematic model, if there is a change in the system configuration over the course of the iterative calculation, there is a feature that enables dynamic reconfiguration that can be reflected in the calculation simply by changing the schematic model . There is no need to do any pre-processing before starting the tidal calculation.
  • the calculation can be advanced by scanning the two-dimensional array prepared on the memory. This two-dimensional array can have the same data structure for the purpose of writing the configuration of the power system and the purpose of writing the result.
  • the procedure for obtaining a stable power solution according to the present invention by repetitive calculation reproduces the state in which power gradually diffuses, similar to heat diffusion.
  • the temperature is a scalar value
  • the power system is represented by a complex number. Elements constituting the power system include supply and consumption of power.
  • the present invention interprets the flow of power to reach a stable solution through repeated trial and error. In the process of trial and error leading to a stable solution, the correction amount per time may be an appropriate minute amount that does not diverge.
  • Correction coefficient setting method adaptive setting The correction coefficient K is prepared and the correction amount is calculated.
  • This correction coefficient is set to 0 ⁇ K ⁇ 1 as described above.
  • the size can be variably set while observing the above restrictions. These tendencies may vary depending on the structure of the system.
  • the correction coefficient the same numerical value may be used for the entire system, but it may be a different correction coefficient depending on the type and area of the system. Further, in combination with means for observing the degree of convergence, the numerical values may be switched in the process of repeated calculation.
  • a numerical value is set by preparing means for determining and determining determination criteria such as stable convergence and quick convergence.
  • a numerical value for characteristic confirmation can be set, and the numerical value can be variably set based on the result.
  • the correction coefficient may be set to a different value depending on the part or region of the system configuration.
  • the device may be configured such that the operator sets this correction factor via an interface.
  • an interface that allows the operator to explicitly adjust the correction coefficient can be prepared. This purpose is useful, for example, to help the operator learn the calculation algorithm.
  • the impedance load is a device whose load power is determined based on Ohm's law, and corresponds to, for example, a lamp.
  • the constant power load is a device that uses a semiconductor circuit to control the load power to be constant. For example, there is a corresponding device such as an air conditioner.
  • the load for driving the semiconductor circuit by program control can have power characteristics that cannot be approximated by the simple mathematical model as described above. It is easy to reproduce the operation of the program control in the repeated calculation. Both loads consider the characteristics of active power and reactive power, that is, power factor.
  • the node voltage is corrected in the process of repetitive calculation, so that the current flowing through the load changes due to voltage fluctuation.
  • the recalculation of these load powers is executed in the repeated calculation.
  • Equipment that supplies power can be regarded as a load having a minus sign. Since the storage battery performs both consumption and supply, it can be regarded as a load that can be switched. Since both are DC power supplies, conversion by an inverter is indispensable for connecting to an AC system.
  • PCS Power Conditioning System
  • PCS Power Conditioning System
  • control functions such as control of power factor (active power and reactive power) and suppression of power supply in addition to the inverter function. If these operation contents are known, it is easy to incorporate them into the power flow calculation procedure of the present invention.
  • the voltage used in the power system is called a voltage class.
  • a high voltage is used to reduce power loss due to the line, and in the power distribution system, a low voltage suitable for supplying to general consumers is used.
  • Transformers are used to convert these voltages.
  • the transformer is a device that performs voltage conversion using a ratio of the number of windings on the primary side and the secondary side.
  • the voltage conversion function of the transformer is assigned as a function of a node connected to the branch on the primary side and the secondary side.
  • the primary side and the secondary side are discriminated and the winding ratio between the primary side and the secondary side is set in advance.
  • the complex voltage and complex current of this node itself are set as the primary side, for example.
  • the complex voltage and complex current converted by the winding ratio are allocated to the branch connected to the secondary side.
  • the node having the function of the transformer can see the converted complex voltage and complex current on the primary side and the secondary side, respectively.
  • a switching converter is configured by combining an inductance, a capacitance, a diode, and the like with a semiconductor switch that performs high-speed on / off.
  • a switching converter is configured by combining an inductance, a capacitance, a diode, and the like with a semiconductor switch that performs high-speed on / off.
  • Control equipment for the purpose of voltage stabilization is used in the power system.
  • control content is transmitted from a centralized management means. The operation of these control devices is simulated and incorporated into the power flow calculation.
  • SVR is a kind of transformer, it can be handled in the same way as the above-mentioned transformer. However, the turns ratio can be changed by tap switching. An input means for the tap switching signal is prepared. Voltage control devices such as SVCs and storage batteries can be handled in the same way as loads connected to nodes. Both can be incorporated into the tidal current calculation by deciding the operation of the aircraft while observing the voltage and current in the process of repeated calculations.
  • Constraint function In the operation of the power system, control is performed to achieve a desired state.
  • One of them is voltage, and if it is a distribution system, it is required to be within the range of 101 ⁇ 6V. Similar voltage ranges are determined for other voltage classes.
  • the present invention in order to realize such a voltage range constraint, provides a voltage constraint function in the process of calculating the voltage of the node and branch.
  • the correction amount is multiplied by a constraint function so that the correction amount is not directed to the outside of the voltage range.
  • FIG. 9 shows an example of the constraint function. If the shape has a size of 0 around the voltage range, this constraint function works so as not to create a correction amount that goes outside the voltage range. Or it can be rephrased as an induction function because it works to induce voltage.
  • the above constraint function or induction function can be determined in advance, and can be arbitrarily changed while observing the state of the system. Since the power flow calculation means stores the state value of the entire target system in a variable or some kind of memory, it goes without saying that the state at an arbitrary location can be observed. Furthermore, it is possible to prepare some evaluation function created by combining variables, and to switch the above-described constraint function or induction function while looking at the result of the evaluation function.
  • the target value is a state value such as voltage, current, or power, or a tap setting value of a device including a tap switching unit.
  • This procedure can be used to calculate a control signal for voltage stabilization of the power system, such as setting a higher voltage or setting a lower voltage.
  • Three-phase unbalanced power systems are often configured as a set of three phases shifted in AC phase.
  • One method applied to the polyphase is to assign one line to one phase, and the polyphase is described by combining single-phase lines.
  • the other is to assign polyphase properties to one line and incorporate the polyphase calculation into a single line calculation procedure.
  • the present invention can realize any configuration.
  • GUI In the present invention, nodes and branches are arranged in a diagrammatic manner to advance calculation of power flow.
  • a graphical user interface can be used as a diagrammatic arrangement mechanism. An example is shown below.
  • a screen on which array elements as shown in FIG. 10 are arranged is prepared.
  • the element ⁇ is distinguished by a node and a branch, and both are arranged alternately.
  • This figure shows the progress of the repeated calculation described by the mouse operation on the display screen 104 of the PC 103.
  • the nodes and branches are actually selected with a mouse, pen, or keyboard.
  • the selected array element is assigned a device type, function, performance, etc. in configuring the power system. When it is not assigned, only selectable frameworks are shown or initial values are provided so as not to contribute to the system configuration. In order to improve the visual design and improve the efficiency of the operator, elements that do not contribute may be written.
  • display can be performed using the above-described array element format, and state values relating to the power system can be displayed. It is possible to confirm the state of convergence with the so-called “jiwajiwa”. However, this does not always indicate a transient response. Thus, by displaying the power system input screen and the screen for displaying the result of power flow calculation in an overlapping manner, the relationship between the cause and the result can be displayed in an easily understandable manner.
  • the present invention can be used as a simulator for analyzing a power system.
  • the present invention can also be used as a control device that generates a control signal for controlling an electric power system.
  • various sensor data related to the power system can be collected and used in a calculation procedure.
  • the control device can be applied to any configuration called a centralized type or a distributed type. Compare the collected sensor data with the simulator output according to the present invention, and correct the characteristics of the simulator of the present invention so as to reduce the error between the two. It can be used as a so-called observer.
  • the processor format is not limited, but a general-purpose processor called CPU (Central Processing Unit), a many-core processor called GPU (Graphic Processing Unit, General Purpose Unit, etc.), etc. are used.
  • CPU Central Processing Unit
  • GPU Graphic Processing Unit, General Purpose Unit, etc.
  • FIG. 11 in general, there are many configurations in which the CPU 105 performs overall system processing such as OS management, and the GPU 106 is installed as an additional device of the system.
  • the additional device equipped with the GPU 106 can be obtained as a general-purpose graphics board 109 or a dedicated parallel computing board.
  • a two-dimensional array memory 107 for handling image data is provided.
  • the nodes and branches of the power system are allocated to a two-dimensional array memory, and the device characteristics are written in the memory 107. Nodes and branches may be assigned as different variables in the same memory area. In any case, the operation is regularly executed by storing the adjacent nodes and the characteristics of the branch connecting them in a memory with regular addresses.
  • the GPU 106 is characterized by including a plurality of arithmetic units, and the individual arithmetic units execute memory access and arithmetic operations in parallel, thereby realizing high-speed overall signal processing.
  • the characteristic data of the power system is graphically arranged in the memory 107. It becomes easy to assign a plurality of arithmetic units included in the GPU 106 to elements constituting the power system. A plurality of arithmetic units can perform parallel processing, which is effective in speeding up repeated calculations.
  • the program for instructing the calculation procedure is described in the same manner as the image processing that handles pixel data, and the effect of parallel execution is obtained.
  • the graphics board 109 provided with the GPU 106 can execute parallel computation and screen display simultaneously.
  • the memory 107 that stores the elements and status of the system configuration may be used in common for both purposes.
  • Electric power can be replaced with other energy by unit conversion.
  • J Ws.
  • the energy flowing through the devices and branches arranged at the nodes may be replaced with heat.
  • a primary side and a secondary side having different units as in the transformer described above are prepared. The primary side and the secondary side are distinguished from each other, power is taken into the primary side, and the secondary side has a function of heat diffusion (or consumption). Both perform energy conversion according to the conversion equation described above.
  • the flow of electric power and heat can be calculated by performing energy conversion in the repeated calculation of the power flow calculation of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

If a change occurs in the configuration of a power system, it becomes necessary to rewrite a power equation that is a mathematical model, and load flow calculation cannot be continued in response to other power system structures (a mesh structure, a tree structure, or the like) or dynamic reconfiguration. Accordingly, the present invention is a power system analysis device that analyzes a power system configured on the basis of a plurality of nodes and branches that connect the nodes, said power system analysis device being characterized by the provision of: a means for calculating a load power that represents the power on a load side that is connected to the nodes; a means for calculating the complex voltage gradient of the branches on the basis of the load power; a means for calculating, on the basis of the complex voltage gradient, a correction amount for the complex voltage of an adjacent node that is connected to the nodes via the branches; and a means for calculating the correction amount for nodes within a predetermined range in the power system.

Description

電力系統解析装置および方法Power system analysis apparatus and method
 本発明は電力系統の解析する電力系統解析装置および方法に関する。 The present invention relates to a power system analysis apparatus and method for analyzing a power system.
 電力系統には、電力の生成と消費を行う多種多様の機器が独自の動作を行うなかで、需給バランスを保持した運用が行われている。従来は、電力を生成する発電所の多くは集中型に設置されて電力会社が運用していた。しかし近年、自然エネルギーの活用を図るため太陽光発電、風力発電などの分散型の電源が普及を始めている。これらの分散電源は気象状況に依存して発電量が変動する。例えば日射量、風向と風速などが発電量の変化を引き起こす。また大容量の蓄電池が電気自動車などに搭載されて、連系点、連系する時刻、充放電の容量などが変化しながら系統に連系されることがある。これらの変動要因は例えば電力系統の電圧変動などを引き起こし、電力の品質を劣化させる。
電力系統は、L(インダクタンス)、C(キャパシタンス)、R(抵抗)などの組み合わせで構成され、電力系統の状態値はV(電圧)、I(電流)、P(有効電力)、Q(無効電力)、θ(位相)などで表記される。これらの状態値は、例えば電力、電圧などの方程式で数式モデルを記述できる。
The power system is operated with a balance between supply and demand, while various devices that generate and consume power perform their own operations. Conventionally, many power plants that generate electric power have been centrally installed and operated by electric power companies. Recently, however, distributed power sources such as solar power generation and wind power generation have begun to spread in order to utilize natural energy. The power generation amount of these distributed power sources varies depending on weather conditions. For example, the amount of solar radiation, wind direction, and wind speed cause changes in power generation. In addition, a large-capacity storage battery may be mounted on an electric vehicle or the like, and may be connected to the grid while changing the connection point, the connection time, the charge / discharge capacity, and the like. These fluctuation factors cause, for example, voltage fluctuations in the power system, and degrade the quality of power.
The power system is composed of a combination of L (inductance), C (capacitance), R (resistance), etc., and the state values of the power system are V (voltage), I (current), P (active power), Q (invalid) Power) and θ (phase). For these state values, a mathematical model can be described by equations such as power and voltage.
 このような電力系統に関わる方程式を利用した系統解析のための電力潮流計算を行うシミュレータが広く利用されている。負荷の入出力電力などの状態値を指定して、線路を流れる電力を算出することなどに利用する。 Simulators that perform power flow calculations for system analysis using equations related to such power systems are widely used. It is used to calculate the power flowing through the line by specifying state values such as input / output power of the load.
 文献は引用しないが電力潮流計算の手法が公知技術として知られている。電力系統の電力潮流を解析するには電圧V、電流I、アドミッタンスA、電力Sとおけば、 Although the literature is not cited, the power flow calculation method is known as a known technique. To analyze the power flow of the power grid, if you have voltage V, current I, admittance A, power S,
 〔数1〕
 I=A・V
 両辺にVを掛けて電力Sの単位に変換すれば、
[Equation 1]
I = A ・ V
Multiply both sides by V and convert to unit of power S,
 〔数2〕
 S =I・V=A・V・V
 これは非線形の連立方程式になり電力方程式と呼ばれている。この方程式を解くことで電力の潮流を算出できる。
[Equation 2]
S = I ・ V = A ・ V ・ V
This is a nonlinear simultaneous equation and is called a power equation. By solving this equation, the power flow can be calculated.
 また電力系統の数式モデルを並列計算で計算する手法として特許文献1がある。計算上の時間刻みを設定して、繰り返し計算することで電圧、電流の振る舞いを算出する。 Further, there is Patent Document 1 as a method for calculating a mathematical model of a power system by parallel calculation. The behavior of voltage and current is calculated by setting the time step for calculation and repeatedly calculating.
特開平9-107633JP-A-9-107633
 前記した電力方程式は非線形の連立方程式なので、ニュートンラプソン法などの数値計算による解法が用いられる。電力方程式をニュートンラプソン法による収束計算で解くには、事前にマトリクス形式の非線形の電力方程式を準備する。したがって系統構成に変更があれば数式モデルである電力方程式の書き換えが必要になり、電力系統の他構造(メッシュ構造、木構造など)又は動的な再構成に対応して潮流計算を継続できない。 Since the power equation described above is a nonlinear simultaneous equation, a numerical calculation method such as the Newton-Raphson method is used. In order to solve the power equation by convergence calculation using the Newton-Raphson method, a matrix-type nonlinear power equation is prepared in advance. Therefore, if there is a change in the system configuration, it is necessary to rewrite the power equation, which is a mathematical model, and the power flow calculation cannot be continued in response to another structure (mesh structure, tree structure, etc.) or dynamic reconfiguration of the power system.
 特許文献1は電力系統のサージ解析を目的にして電圧電流の波形を算出するもので、電力潮流の算出には適さない。 Patent Document 1 calculates a voltage / current waveform for the purpose of power system surge analysis, and is not suitable for calculating power flow.
  上記課題を解決する為に本発明は、複数のノードと、前記ノード同士を接続するブランチとに基づいて構成される電力系統を解析する電力系統解析装置において、前記ノードに接続する負荷側の電力を示す負荷電力を算出する手段と、前記負荷電力に基づいて前記ブランチの複素電圧勾配を算出する手段と、前記複素電圧勾配に基づいて前記ノードに前記ブランチを介して接続する隣接ノードの複素電圧の修正量を算出する手段と、前記電力系統における所定の範囲内のノードについて前記修正量を算出する手段と、を備える。 In order to solve the above-described problem, the present invention provides a power system analysis device that analyzes a power system configured based on a plurality of nodes and a branch that connects the nodes, and includes power on a load side connected to the nodes. Means for calculating a load power indicative of a complex voltage gradient of the branch based on the load power, and a complex voltage of an adjacent node connected to the node via the branch based on the complex voltage gradient And means for calculating the correction amount for nodes within a predetermined range in the power system.
 本発明によれば、電力潮流の計算において電力系統の図式モデルを利用するので、事前に数式モデルを作るなどの前処理をすることなく潮流計算を始められるので、電力系統の他構造(メッシュ構造、木構造など)又は動的な再構成に対応して潮流計算を継続可能である。 According to the present invention, since a power system schematic model is used in power flow calculation, power flow calculation can be started without preprocessing such as making a mathematical model in advance. , Tree structure, etc.) or dynamic flow reconstruction can be continued.
系統構成の一例を示す図Diagram showing an example of system configuration 二次元配列の図式モデルの一例を示す図Diagram showing an example of a two-dimensional array diagram model 二次元配列の図式モデルの一例を示す図Diagram showing an example of a two-dimensional array diagram model 隣接ノード間の電圧勾配を示す図Diagram showing voltage gradient between adjacent nodes フローチャートflowchart 隣接ノードの設定例を示す図Figure showing an example of setting adjacent nodes 隣接ノードの設定例を示す図Figure showing an example of setting adjacent nodes 電力系統の走査順序を示す図Diagram showing power system scanning order 制約関数の説明図Illustration of constraint function 装置構成を示す図Diagram showing device configuration 装置構成を示す図Diagram showing device configuration
 以下、図面等を用いて、本発明の実施形態について説明する。以下の実施例は本願発明の内容の具体例を示すものであり、本願発明がこれらの実施例に限定されるものではなく、本明細書に開示される技術的思想の範囲内において当業者による様々な変更および修正が可能である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The following examples show specific examples of the contents of the present invention, and the present invention is not limited to these examples, but by those skilled in the art within the scope of the technical idea disclosed in this specification. Various changes and modifications are possible.
提案方式の原理
 ここで解析対象とする電力系統と、該電力系統を模擬する電力潮流計算の関係について整理する。まず時間的な関係として、オンライン、オフラインの区別がある。前者のオンラインは、電力系統の動作と潮流計算の動作は、同じ時刻で同期している。計算機の処理速度、データ伝送速度などの要因はあるが、一般にオンラインと言えば、同じ時刻を共有する。電力系統に備えたセンサから系統の状態値を入力して潮流計算に利用することができる。一方、後者のオフラインは時刻の共有を前提としない非同期の動作を指す。電力系統から系統の状態値を一旦メモリ等に記憶しておき、過去データとして利用することになる。オンラインとオフラインは、潮流計算の利用目的に依存して適宜に使い分けられる。事前に系統構成の特長を評価解析する目的であればオフラインで良い。一方、電力系統にある制御装置への制御指令を算出することが目的であればオンラインの形態になる。以下に説明する本発明は、上記のオンラインとオフラインのいずれにも適用できる。
Principle of Proposed Method Here, the relationship between the power system to be analyzed and the power flow calculation that simulates the power system is organized. First, there is a time relationship between online and offline. In the former online, the operation of the power system and the operation of power flow calculation are synchronized at the same time. Although there are factors such as the processing speed of the computer and the data transmission speed, generally speaking, online refers to the same time. System state values can be input from sensors provided in the power system and used for power flow calculations. On the other hand, the latter offline refers to an asynchronous operation that does not assume time sharing. The state value of the system from the power system is temporarily stored in a memory or the like and used as past data. Online and offline are properly used depending on the purpose of tidal current calculation. Off-line may be used for the purpose of evaluating and analyzing the characteristics of the system configuration in advance. On the other hand, if the purpose is to calculate a control command to a control device in the power system, an online form is obtained. The present invention described below can be applied to both online and offline.
 図1に電力系統の構成を模式的に示す。電力系統を構成する基本要素として、ノード101(図中ではNと表記)と、ノード間を接続するブランチ102(図中ではLineと表記)の2種を用意する。ノード101は、変圧器、リアクタンス、キャパシタンスなど、あるいは需要家が設置する負荷、再エネ利用の分散電源などの系統構成要素である。ブランチ102はノード101を接続する線路であって、線種、線路インピーダンスなどの特性を持つ。電力系統はノード101とブランチ102を接続した関係として記述することができる。例えばテキストデータで、ノード101とブランチ102の接続関係を記述する方法は、簡単に作成できて汎用性が高いが、テキストデータを数式モデルに置き換えるための前処理が不可欠である。 Fig. 1 schematically shows the configuration of the power system. As basic elements constituting the power system, two types of nodes 101 (denoted as N in the figure) and branches 102 (denoted as Line in the figure) connecting the nodes are prepared. The node 101 is a system component such as a transformer, reactance, capacitance, etc., or a load installed by a consumer, a distributed power source using renewable energy. The branch 102 is a line connecting the nodes 101 and has characteristics such as line type and line impedance. The power system can be described as a relationship in which the node 101 and the branch 102 are connected. For example, a method for describing the connection relationship between the node 101 and the branch 102 with text data is easy to create and highly versatile, but preprocessing for replacing the text data with a mathematical model is essential.
 これに対して本発明は、図的にノード101とブランチ102を配置する。前記の数式モデルに対して図式モデルと呼ぶことにする。図的の意味は、ノード101とブランチ102の隣接関係を維持しながら2次元平面に絵を描くように記述することである。これは言い換えれば、電力系統上で隣接関係にある要素を、2次元配列で隣接関係にあるように要素を書き込むことに相当する。この2次元配列がプログラム言語に用意されたデータ構造であるとき、配列のインデックスを一つ変化させることで、隣接関係にある要素を参照できる。あるいは2次元配列がメモリ装置であるとき、メモリアドレスの規則的な変化で、隣接関係にある要素を参照できる。 On the other hand, the present invention arranges the node 101 and the branch 102 in a diagrammatic manner. The mathematical model will be called a graphical model. The graphical meaning is to describe a picture on a two-dimensional plane while maintaining the adjacent relationship between the node 101 and the branch 102. In other words, this corresponds to writing the elements that are adjacent to each other on the power system so that they are adjacent to each other in a two-dimensional array. When this two-dimensional array has a data structure prepared in a programming language, it is possible to refer to adjacent elements by changing the array index by one. Alternatively, when the two-dimensional array is a memory device, the elements in the adjacent relationship can be referred to by regular change of the memory address.
 図式モデルを図的に表現するには幾つかの方法がある。図2に示すようにノード101を記号□、ブランチ102を□を繋ぐ線で表記して、ノード101とブランチ102の情報を付属情報として書き込むことができる。図3に示すようにノード101とブランチ102を同じ記号□で表記しても良い。あるいは、格子状の縦横線の交差点を要素として扱っても良い。ノード101とブランチ102は機能が異なるので、両者を区別しても良い。二次元配列の隣接関係として、あるノード101から見て上下左右斜めの8方向とする方法、あるノード101から見て上下左右の4方向とする方法、あるノード101から見て適宜の1方向とする方法、などとする。これらは後述する計算手順に関わってくる。 There are several ways to graphically represent a schematic model. As shown in FIG. 2, the node 101 is represented by a symbol □, the branch 102 is represented by a line connecting □, and information on the node 101 and the branch 102 can be written as attached information. As shown in FIG. 3, the node 101 and the branch 102 may be represented by the same symbol □. Or you may handle the intersection of a grid-like vertical and horizontal line as an element. Since the node 101 and the branch 102 have different functions, they may be distinguished from each other. As an adjacent relationship of the two-dimensional array, there are a method of diagonally up and down, left and right as viewed from a certain node 101, a method of four directions up and down, left and right as viewed from a certain node 101, and an appropriate one direction as viewed from a certain node How to do, etc. These are related to the calculation procedure described later.
 このような図式モデルは、操作者との対話的なデータ入力を可能とする。前記した図的表現した画面を操作者に提示し、操作者は画面を見ながら電力系統を書き込み、あるいは事前に入力されたデータの修正を行うことができる。さらに書き込まれた画面は二次元配列の図式モデルとして扱うことで後述する計算手順に利用できる。計算結果は同じ二次元配列で作られるので、入力データに重畳して計算結果を画面表示することができる。これらの入力、計算、結果の段階で使う二次元配列データ、および二次元配列データを蓄積する手段は共通に作ることができる。 Such a schematic model enables interactive data input with the operator. The above-described graphically represented screen is presented to the operator, and the operator can write the power system while viewing the screen, or can correct the data input in advance. Furthermore, the written screen can be used for a calculation procedure to be described later by treating it as a two-dimensional schematic model. Since the calculation results are made of the same two-dimensional array, the calculation results can be displayed on the screen superimposed on the input data. These input, calculation, two-dimensional array data used in the result stage, and means for storing the two-dimensional array data can be made in common.
 図4に示すように、ある着目するノードをN3、隣接するノードをN4、両者を繋ぐブランチをLine34とする。それぞれのノードの電圧をV3、V4、ブランチのインピーダンスをZ34、流れる電流をI34とする。ノードN4には負荷が連系し電力Sを消費する。初期状態ではすべてのノード電圧はVs、ブランチを流れる電流は0とする。ブランチのインピーダンスは無限大として初期化しておくことで、電力系統の要素の割り当てがないとき電力潮流の計算に寄与しないことになる。これらの変数は、位相を含めた複素数で表記する。以下の説明は、表記を簡単にするため複素数形式を明示しない場合がある。図5にフローチャートを示す。ノードN4で電力Sを消費するのだから、負荷に流れる電流L4は、 As shown in FIG. 4, a node of interest is N 3 , an adjacent node is N 4 , and a branch connecting the two is Line 34 . The voltage of each node is V 3 and V 4 , the impedance of the branch is Z 34 , and the flowing current is I 34 . The node N 4 is connected to a load and consumes power S. In the initial state, all node voltages are Vs, and the current flowing through the branch is zero. By initializing the impedance of the branch as infinite, it does not contribute to the calculation of the power flow when there is no allocation of power system elements. These variables are expressed as complex numbers including phase. In the following description, the complex number format may not be specified for the sake of simplicity. FIG. 5 shows a flowchart. Since the power S is consumed at the node N 4 , the current L 4 flowing through the load is
〔数3〕
 L4=S / V4
 ノードN4に繋がるブランチの電流は、
[Equation 3]
L 4 = S / V 4
The branch current leading to node N 4 is
〔数4〕
 I34= L4
 この電流をノードN3とノードN4間で流すにはオームの法則から、
[Equation 4]
I 34 = L 4
To pass this current between node N 3 and node N 4 from Ohm's law,
〔数5〕
 I34 =( V4- V3) / Z34
でなければならない。
[Equation 5]
I 34 = (V 4 -V 3 ) / Z 34
Must.
 この関係を満たすには、ノード間の複素数電流と複素数電圧の関係を成り立たせるように修正をすることが必要である。つまりノードN3の電圧を In order to satisfy this relationship, it is necessary to make modifications so as to establish the relationship between the complex current and the complex voltage between the nodes. In other words, the voltage at node N 3
〔数6〕
V3= V4- I34・Z34
に修正すればよい。あるいは隣接するノードN3とノードN4で算出した電圧修正の大きさを分担しても良い。
[Equation 6]
V 3 = V 4 -I 34・ Z 34
You can correct it. Or it may share the magnitude of the voltage correction calculated in the node N 3 and the node N 4 adjacent.
 ただし、この修正値はノードN3とノードN4の関係だけから求めているが、実際には他に繋がっているノードを考慮しなければならない。また上記修正値を直接利用すると、解の振動あるいは発散が起きる場合がある。そこで、徐々に修正が掛かるように修正係数Kを用意して、以下を修正値とする。 However, this correction value is obtained only from the relationship between the node N 3 and the node N 4 , but in reality, other connected nodes must be considered. Further, when the correction value is directly used, the solution may oscillate or diverge. Therefore, a correction coefficient K is prepared so that the correction is gradually performed, and the following is set as a correction value.
〔数7〕
V3=( V4- I34・Z34)・K
修正係数Kは0<K<1の数値として、以下に述べる繰り返し計算のなかで利用する。
[Equation 7]
V 3 = (V 4 -I 34・ Z 34 ) ・ K
The correction coefficient K is used as a numerical value of 0 <K <1 in the repeated calculation described below.
 図6に示すように上記の基本演算は隣接する二つのノードの関係から求めている。この手順は、図7に示すように隣接する複数のノードの関係に拡大して良い。例えば、着目するノードNと、ノードNに隣接するノードの関係から複素電圧と複素電流の関係を導く。 As shown in FIG. 6, the above basic calculation is obtained from the relationship between two adjacent nodes. This procedure may be extended to the relationship between adjacent nodes as shown in FIG. For example, the relationship between the complex voltage and the complex current is derived from the relationship between the node N of interest and the node adjacent to the node N.
 この場合も修正係数Kは0<K<1の数値として、以下に述べる繰り返し計算のなかで修正値を徐々に反映するために利用する。 In this case as well, the correction coefficient K is used as a numerical value of 0 <K <1 to gradually reflect the correction value in the repeated calculation described below.
 本発明は、上記手順を基本として、系統を構成するすべてのノードとブランチの組み合わせを走査するようにして修正値を計算していく。図8に計算を進める順序の例を示す。例えば、ブラウン管の電子ビームのスキャン順序のように、図式モデルの左上を始点として右下を終点とするようにスキャンする順序で良い。電力系統の要素が割り当てられていない格子点のインピーダンスを無限大に初期化しておくことで、ほかのノード、ブランチに影響しないので、要素の割り当ての有無を判断することなく、規則的にスキャンできることになる。あるいは、系統構成が複雑な領域については、収束を助けるために繰り返し計算を多めに行って良い。電力系統が配置されていない領域はスキャンを飛ばすことで、高速化を実現することもできる。このような電力系統の配置の粗密は、事前に判定を行っても、スキャンの繰り返しの過程で判断しても良い。 In the present invention, based on the above procedure, the correction value is calculated by scanning all the combinations of nodes and branches constituting the system. FIG. 8 shows an example of the order in which the calculation proceeds. For example, the scanning order may be such that the upper left of the graphical model is the starting point and the lower right is the ending point, such as the scanning order of electron beams of a cathode ray tube. By initializing the impedance of grid points to which elements of the power system are not assigned to infinity, other nodes and branches are not affected, so scanning can be performed regularly without determining whether elements are assigned. become. Alternatively, for a region with a complicated system configuration, a large number of repeated calculations may be performed to help convergence. It is also possible to increase the speed by skipping scanning in the area where the power system is not arranged. Such density of power system arrangement may be determined in advance or may be determined in the course of repeated scanning.
 前記した図式モデルを適宜な順番でスキャンする手順を繰り返すことで、修正量は徐々に小さくなり安定状態に近づく。この徐々に安定状態に近づく状況を、前記した修正係数Kにより調整する。修正係数Kの設定方法については後述する。 繰 り 返 す By repeating the procedure for scanning the above-described schematic model in an appropriate order, the correction amount gradually decreases and approaches a stable state. The situation gradually approaching the stable state is adjusted by the correction coefficient K described above. A method for setting the correction coefficient K will be described later.
 この繰り返し計算には二つの考え方がある。一つは、ある固定した時刻の状態値を算出するために繰り返し計算による安定解を得る。他方は、時刻の進みに同期して、逐次に繰り返し計算をすることで安定解に追従する。あるいは両者を混在させて、ある時刻で繰り返し計算をしてから、時刻を進めて、継続して繰り返し計算をする。安定解が得られているか否かを判定するには、何らかのしきい値を用いて収束判定する。あるいは判定することなく、繰り返し計算の回数を設定して結果を安定解とする。 There are two approaches to this iterative calculation. One obtains a stable solution by iterative calculation in order to calculate a state value at a certain fixed time. The other follows a stable solution by sequentially calculating repeatedly in synchronization with the advance of time. Alternatively, both are mixed and repeated calculation is performed at a certain time, then the time is advanced and repeated calculation is continued. In order to determine whether or not a stable solution has been obtained, a convergence determination is made using some threshold value. Or, without determining, the number of repeated calculations is set and the result is set as a stable solution.
 オンライン装置の構成で、時間の経過に沿って逐次に繰り返し計算を進めることは、上記の繰り返し計算を適宜に組み合わせることで実現できる。逐次追従の計算では、各時刻において十分に収束していない場合があるが、時刻が進むにつれて追従することを優先することになる。あるいはオフライン装置の構成であれば、時間軸を止めて計算できるので、各時刻における繰り返し計算を十分に行い収束させれば良いことになる。 In the configuration of the online device, iteratively proceeding with repeated calculations over time can be realized by appropriately combining the above repeated calculations. In the calculation of sequential tracking, there is a case where the time does not sufficiently converge at each time, but priority is given to tracking as time progresses. Or if it is the structure of an off-line apparatus, since it can calculate by stopping a time axis, it will suffice if it repeats calculation sufficiently at each time and it is made to converge.
 上記に説明したように、本発明の電力潮流の計算手順は事前に電力系統の数式モデルを用意する必要がない。図式モデルに基づいて繰り返し計算を行うので、繰り返し計算の時間経過のなかで系統構成に変更があるならば図式モデルを変更するだけで計算に反映できるという動的再構成が可能である特長がある。潮流計算を開始するまでに何らかの前処理をする必要はない。メモリ上に用意した二次元配列を走査していくことで計算を進めることができる。この二次元配列は、電力系統の構成を書き込む用途と、その結果を書き込む用途でデータ構成を同一にできる。 As described above, the power flow calculation procedure of the present invention does not need to prepare a mathematical model of the power system in advance. Since iterative calculations are performed based on the schematic model, if there is a change in the system configuration over the course of the iterative calculation, there is a feature that enables dynamic reconfiguration that can be reflected in the calculation simply by changing the schematic model . There is no need to do any pre-processing before starting the tidal calculation. The calculation can be advanced by scanning the two-dimensional array prepared on the memory. This two-dimensional array can have the same data structure for the purpose of writing the configuration of the power system and the purpose of writing the result.
 系統がメッシュ型構造、ループ型構造、木構造、あるいはこれらの混在であっても、そもそも本発明の図式モデルにこれらの区別は無いので計算手順を変更する必要はない。 Even if the system is a mesh type structure, a loop type structure, a tree structure, or a mixture of these, there is no need to change the calculation procedure because there is no such distinction in the schematic model of the present invention.
 なお、上記の計算範囲は、電力系統全体でも良いし、所定の範囲内でも当然適用できる。 Note that the above calculation range may be applied to the entire power system, or of course within a predetermined range.
電力の拡散
 上記の原理を別の観点から説明する。熱の流れをアナロジーとしてみる。有限要素法で温度分布を算出する手順は、隣接する要素間で流れる熱量を、微分方程式あるいは差分方程式として用意して計算の基本単位とする。この基本単位の計算を構造体全体にわたり繰り返すことで安定解を得る。
Electric power diffusion The above principle will be described from another viewpoint. Look at the heat flow as an analogy. In the procedure for calculating the temperature distribution by the finite element method, the amount of heat flowing between adjacent elements is prepared as a differential equation or a difference equation and used as a basic unit of calculation. A stable solution is obtained by repeating the calculation of this basic unit over the entire structure.
 本発明による電力の安定解を繰り返し計算で得る手順は、熱の拡散と同様に、電力が徐々に拡散していく様子を再現していると言える。ただし温度はスカラー値であるのに対して電力系統は複素数で表される。電力系統を構成する要素は、電力の供給と消費がある。本発明は、電力の流れは、試行錯誤を繰り返して安定解に辿り着くと解釈する。安定解に至るまでの試行錯誤の過程では、一回当たりの修正量は発散しない程度の適宜な微小量とすれば良い。 It can be said that the procedure for obtaining a stable power solution according to the present invention by repetitive calculation reproduces the state in which power gradually diffuses, similar to heat diffusion. However, while the temperature is a scalar value, the power system is represented by a complex number. Elements constituting the power system include supply and consumption of power. The present invention interprets the flow of power to reach a stable solution through repeated trial and error. In the process of trial and error leading to a stable solution, the correction amount per time may be an appropriate minute amount that does not diverge.
修正係数の設定方法、適応的な設定
 修正係数Kを用意して修正量を算出する。この修正係数は前記したように0<K<1とする。大きいほど解の発散が起きやすく、小さいほど安定するまでの繰り返し計算の回数が増える傾向にある。上記の制約を守りながら大きさを可変設定することができる。これらの傾向は系統の構造によって変化する場合がある。この修正係数は、系統の全体に渡り同じ数値を利用しても良いが、系統の種別、領域などにより異なる修正係数として良い。また収束の程度を観察する手段と組み合わせて、繰り返し計算の過程で数値を切り替えて良い。安定して収束すること、素早く収束すること、などの判定基準を用意して決める手段を用意して数値を設定する。系統構成に依存する収束の具合が不明なとき、特性確認のための数値設定を行い、その結果に基づいて数値を可変設定することができる。系統構成の部分あるいは領域によって安定性が異なるとき、修正係数は系統構成の部分あるいは領域によって異なる数値を設定して良い。
Correction coefficient setting method, adaptive setting The correction coefficient K is prepared and the correction amount is calculated. This correction coefficient is set to 0 <K <1 as described above. The larger the value, the more likely the solution to diverge, and the smaller the value, the greater the number of iterative calculations to stabilize. The size can be variably set while observing the above restrictions. These tendencies may vary depending on the structure of the system. As the correction coefficient, the same numerical value may be used for the entire system, but it may be a different correction coefficient depending on the type and area of the system. Further, in combination with means for observing the degree of convergence, the numerical values may be switched in the process of repeated calculation. A numerical value is set by preparing means for determining and determining determination criteria such as stable convergence and quick convergence. When the degree of convergence depending on the system configuration is unknown, a numerical value for characteristic confirmation can be set, and the numerical value can be variably set based on the result. When the stability differs depending on the part or region of the system configuration, the correction coefficient may be set to a different value depending on the part or region of the system configuration.
 あるいは、この修正係数はインタフェースを介して操作者が設定するように装置を構成して良い。例えば、操作者が明示的に修正係数を調整できるようなインタフェースを用意することができる。この目的は、例えば操作者の計算アルゴリズムの習得を助けるために役に立つ。 Alternatively, the device may be configured such that the operator sets this correction factor via an interface. For example, an interface that allows the operator to explicitly adjust the correction coefficient can be prepared. This purpose is useful, for example, to help the operator learn the calculation algorithm.
負荷
 電力系統に連系する負荷には様々な特性があり、線形、非線形の区別、あるいはインピーダンス負荷、定電力負荷などの区別、さらにはプログラム制御される負荷、などがある。ここでインピーダンス負荷は、オームの法則に基づいて負荷電力が決まる機器であり、例えば電灯などが該当する。定電力負荷は、半導体回路を利用して、負荷電力が一定になるように制御する機器であり、例えばエアコンディショナなどに該当機器がある。その他、プログラム制御により半導体回路を駆動させる負荷は、上記のような簡単な数式モデルでは近似できない電力特性を持たせることができる。繰り返し計算のなかで、プログラム制御の動作を再現することは容易である。いずれの負荷も、有効電力と無効電力の特性、つまり力率を考慮する。このためには前記したように複素形式で計算するのが便利である。本発明の潮流計算は、繰り返し計算の過程でノード電圧を修正するので、電圧の変動により、負荷に流れる電流が変化する。繰り返し計算の中で、これらの負荷電力の再計算を併せて実行する。
Loads There are various characteristics of loads linked to the power system, such as linear and non-linear distinction, impedance load, constant power load, etc., and program-controlled load. Here, the impedance load is a device whose load power is determined based on Ohm's law, and corresponds to, for example, a lamp. The constant power load is a device that uses a semiconductor circuit to control the load power to be constant. For example, there is a corresponding device such as an air conditioner. In addition, the load for driving the semiconductor circuit by program control can have power characteristics that cannot be approximated by the simple mathematical model as described above. It is easy to reproduce the operation of the program control in the repeated calculation. Both loads consider the characteristics of active power and reactive power, that is, power factor. For this purpose, it is convenient to calculate in a complex form as described above. In the power flow calculation of the present invention, the node voltage is corrected in the process of repetitive calculation, so that the current flowing through the load changes due to voltage fluctuation. The recalculation of these load powers is executed in the repeated calculation.
 太陽光発電などのように電力を供給する機器は、マイナスの符号を持つ負荷と見立てることができる。蓄電池は、消費と供給の両者を行うので、符号の切り替えができる負荷と見立てることができる。いずれも直流電源なので、交流系統に連系するにはインバータによる変換が不可欠である。例えばPCS(Power Conditioning System)と呼ばれる機器は、インバータ機能に加えて、力率(有効電力と無効電力)の制御、電力供給の抑圧などの制御機能を備える場合がある。これらの動作内容が分かっているならば、本発明の潮流計算手順に組み込むことは容易である。 Equipment that supplies power, such as solar power generation, can be regarded as a load having a minus sign. Since the storage battery performs both consumption and supply, it can be regarded as a load that can be switched. Since both are DC power supplies, conversion by an inverter is indispensable for connecting to an AC system. For example, a device called PCS (Power Conditioning System) may have control functions such as control of power factor (active power and reactive power) and suppression of power supply in addition to the inverter function. If these operation contents are known, it is easy to incorporate them into the power flow calculation procedure of the present invention.
トランス(変圧器)
 電力系統で利用する電圧は電圧階級と呼ばれている。送電系統では線路による電力ロスを低減するため高電圧が利用され、配電系統では一般の需要家に供給するに適した低電圧を利用している。これらの電圧を変換するために変圧器が利用されている。変圧器は、一次側と二次側の巻線数の比を用いて、電圧の変換を行う装置である。本発明は、変圧器の電圧変換の機能は、一次側と二次側のブランチと繋がるノードの機能として割り当てる。ノードには、一次側と二次側の判別と、その一次側と二次側の巻線比を事前に設定する。このノード自体の複素電圧と複素電流は、例えば一次側として設定する。そして、二次側に繋がるブランチには、巻線比で変換した複素電圧と複素電流を割り当てる。こうして変圧器の機能を備えるノードは、一次側と二次側のそれぞれには変換された複素電圧と複素電流が見えることになる。
Transformer
The voltage used in the power system is called a voltage class. In the power transmission system, a high voltage is used to reduce power loss due to the line, and in the power distribution system, a low voltage suitable for supplying to general consumers is used. Transformers are used to convert these voltages. The transformer is a device that performs voltage conversion using a ratio of the number of windings on the primary side and the secondary side. In the present invention, the voltage conversion function of the transformer is assigned as a function of a node connected to the branch on the primary side and the secondary side. In the node, the primary side and the secondary side are discriminated and the winding ratio between the primary side and the secondary side is set in advance. The complex voltage and complex current of this node itself are set as the primary side, for example. And the complex voltage and complex current converted by the winding ratio are allocated to the branch connected to the secondary side. Thus, the node having the function of the transformer can see the converted complex voltage and complex current on the primary side and the secondary side, respectively.
 また半導体回路を利用したスイッチング・コンバータと呼ばれる回路構成で電圧変換を行う機能を組み込むことができる。スイッチング・コンバータは、高速なオンオフを行う半導体スイッチに、インダクタンス、キャパシタンス、ダイオードなどを組み合わせて構成する。ただし電圧変換に着目するときは、上記の半導体回路、および高速なスイッチング動作を考慮する必要はない。 Also, it is possible to incorporate a function for performing voltage conversion with a circuit configuration called a switching converter using a semiconductor circuit. A switching converter is configured by combining an inductance, a capacitance, a diode, and the like with a semiconductor switch that performs high-speed on / off. However, when paying attention to voltage conversion, it is not necessary to consider the semiconductor circuit and the high-speed switching operation.
電圧制御機器
 電力系統には、電圧の安定化を目的とした制御機器が使われている。個々の機器が独立して動作する場合のほか、集中的に管理する手段から制御内容が伝達されてくる場合がある。これらの制御機器の動作を模擬して電力潮流計算に取り込む。
Voltage control equipment Control equipment for the purpose of voltage stabilization is used in the power system. In addition to cases where individual devices operate independently, there are cases where control content is transmitted from a centralized management means. The operation of these control devices is simulated and incorporated into the power flow calculation.
 SVRは一種の変圧器であるから、前記した変圧器と同様に扱える。ただしタップ切り替えにより巻線比が可変となる。このタップ切り替え信号の入力手段を用意しておく。SVC、蓄電池などの電圧制御機器は、ノードに連系する負荷と同様に扱うこともできる。いずれも、繰り返し計算の過程で電圧と電流を観測しながら自機の動作を決めるようにして、潮流計算に組み込むことができる。 ∙ Since SVR is a kind of transformer, it can be handled in the same way as the above-mentioned transformer. However, the turns ratio can be changed by tap switching. An input means for the tap switching signal is prepared. Voltage control devices such as SVCs and storage batteries can be handled in the same way as loads connected to nodes. Both can be incorporated into the tidal current calculation by deciding the operation of the aircraft while observing the voltage and current in the process of repeated calculations.
制約関数
 電力系統の運用においては、望ましい状態になるような制御が行われる。その一つが電圧であり、配電系統であれば101±6V の範囲に収めることが求められている。ほかの電圧階級でも同様の電圧範囲が決められている。
Constraint function In the operation of the power system, control is performed to achieve a desired state. One of them is voltage, and if it is a distribution system, it is required to be within the range of 101 ± 6V. Similar voltage ranges are determined for other voltage classes.
 本発明は、このような電圧範囲の制約を実現するために、本発明はノードおよびブランチの電圧計算の過程に電圧の制約関数を用意する。そして電圧範囲の周辺近くにあるとき算出する修正量については、さらに電圧範囲の外側方向に向かないように修正量に制約関数を掛ける。図9に制約関数の一例を示す。電圧範囲の周辺では大きさが0になる形状とするならば、この制約関数は電圧範囲の外側に向かう修正量を作らないように働く。あるいは、電圧を誘導するように働くので誘導関数と言い換えることができる。 In the present invention, in order to realize such a voltage range constraint, the present invention provides a voltage constraint function in the process of calculating the voltage of the node and branch. For the correction amount calculated when it is near the periphery of the voltage range, the correction amount is multiplied by a constraint function so that the correction amount is not directed to the outside of the voltage range. FIG. 9 shows an example of the constraint function. If the shape has a size of 0 around the voltage range, this constraint function works so as not to create a correction amount that goes outside the voltage range. Or it can be rephrased as an induction function because it works to induce voltage.
 上記の制約関数、あるいは誘導関数は、事前に関数を決めておくことができるほか、系統の状態を観察しながら任意に変化させていくことができる。潮流計算手段は対象とする系統全体の状態値を変数、あるいは何らかのメモリに格納しているわけだから、任意箇所の状態を観察できることは言うまでもない。さらに、変数を組み合わせて作る何らかの評価関数を用意しておき、評価関数の結果を見ながら前記した制約関数、あるいは誘導関数を切り替えていくことができる。電圧、電流、電力などの状態値、あるいはタップ切り替え手段を備える装置のタップ設定値などを対象にする。 ∙ The above constraint function or induction function can be determined in advance, and can be arbitrarily changed while observing the state of the system. Since the power flow calculation means stores the state value of the entire target system in a variable or some kind of memory, it goes without saying that the state at an arbitrary location can be observed. Furthermore, it is possible to prepare some evaluation function created by combining variables, and to switch the above-described constraint function or induction function while looking at the result of the evaluation function. The target value is a state value such as voltage, current, or power, or a tap setting value of a device including a tap switching unit.
 また時間的な要素を取り込み、日中の需要家の負荷が大きい時間帯、夜間の供給過剰になる時間帯などの状況から、前記した制約関数、あるいは誘導関数を切り替えていくことができる。 Also, it is possible to switch the constraint function or the induction function as described above from the situation such as the time zone when the load on the customer during the day is large or the time when the supply is excessive at night, taking in the time factor.
 この手順は、電圧の高め設定、低め設定などの、電力系統の電圧安定化の制御信号を算出することに利用できる。 This procedure can be used to calculate a control signal for voltage stabilization of the power system, such as setting a higher voltage or setting a lower voltage.
3相不平衡
 電力系統は、交流の位相をずらした3相を一組として構成する場合が多い。一方、単に交流の電力の潮流を解析するには1相だけを考慮すれば良いことも多い。多相に適用する一つの方法は、一つの相に一つの線路を割り当てることであり、単相の線路を組み合わせて多相を表記する。他方は、一つの線路に多相のプロパティを割り当てて、単一の線路の計算手順のなかに多相の計算を組み込むことである。本発明は、いずれの構成も実現できる。
Three-phase unbalanced power systems are often configured as a set of three phases shifted in AC phase. On the other hand, in order to simply analyze the power flow of alternating current, it is often necessary to consider only one phase. One method applied to the polyphase is to assign one line to one phase, and the polyphase is described by combining single-phase lines. The other is to assign polyphase properties to one line and incorporate the polyphase calculation into a single line calculation procedure. The present invention can realize any configuration.
GUI
 本発明は、ノードとブランチを図的に配置して、電力潮流の計算を進める。
この図的に配置する仕組みとして、グラフィカル・ユーザ・インタフェースを利用できる。以下に一例を示す。
GUI
In the present invention, nodes and branches are arranged in a diagrammatic manner to advance calculation of power flow.
A graphical user interface can be used as a diagrammatic arrangement mechanism. An example is shown below.
 図10に示すような配列要素を並べた画面を用意する。要素である□は、ノードとブランチで区別して、両者を互い違いに配置する。なお、本図はPC103の表示画面104のマウス操作で記述する繰り返し計算の途中経過の表示しているものである。
これらの入力画面を事前に用意したうえで、実際にノードとブランチを、マウス、ペン、あるいはキーボードなどで選択する。選択した配列要素には、電力系統を構成するうえでの機器種別、機能、性能、などを割り当てる。割り当てないときは、選択可能な枠組みを示すだけ、あるいは初期値を備えるだけにして系統構成に寄与しないようにする。見た目のデザインを向上させて、操作者の効率を向上させるために、寄与しない要素を書き込んでも良い。
A screen on which array elements as shown in FIG. 10 are arranged is prepared. The element □ is distinguished by a node and a branch, and both are arranged alternately. This figure shows the progress of the repeated calculation described by the mouse operation on the display screen 104 of the PC 103.
After preparing these input screens in advance, the nodes and branches are actually selected with a mouse, pen, or keyboard. The selected array element is assigned a device type, function, performance, etc. in configuring the power system. When it is not assigned, only selectable frameworks are shown or initial values are provided so as not to contribute to the system configuration. In order to improve the visual design and improve the efficiency of the operator, elements that do not contribute may be written.
 繰り返し計算の過程を含めて、上記の配列要素の形式を利用して表示を行い、電力系統に関わる状態値を表示することができる。いわゆる「じわじわ」と収束する状況を確認することができる。ただし、これは過渡応答を示すとは限らない。
こうして、電力系統の入力画面と、潮流計算の結果を表示する画面を重畳して表示することで、原因と結果の関連を分かりやすく表示することができる。
Including the process of repeated calculation, display can be performed using the above-described array element format, and state values relating to the power system can be displayed. It is possible to confirm the state of convergence with the so-called “jiwajiwa”. However, this does not always indicate a transient response.
Thus, by displaying the power system input screen and the screen for displaying the result of power flow calculation in an overlapping manner, the relationship between the cause and the result can be displayed in an easily understandable manner.
 本発明は電力系統を解析するシミュレータとして利用できる。また本発明は、電力系統を制御するための制御信号を生成する制御装置として利用できる。本発明を制御装置として利用するとき、電力系統に関わる各種のセンサデータを採取して、計算手順のなかで利用することができる。制御装置は、集中型あるいは分散型と呼ばれる構成のいずれにも適用できる。採取したセンサデータと、本発明によるシミュレータ出力を比較して、両者の誤差が小さくなるように本発明のシミュレータの特性を修正する、
いわゆるオブザーバとして利用できる。
The present invention can be used as a simulator for analyzing a power system. The present invention can also be used as a control device that generates a control signal for controlling an electric power system. When the present invention is used as a control device, various sensor data related to the power system can be collected and used in a calculation procedure. The control device can be applied to any configuration called a centralized type or a distributed type. Compare the collected sensor data with the simulator output according to the present invention, and correct the characteristics of the simulator of the present invention so as to reduce the error between the two.
It can be used as a so-called observer.
並列計算による高速化
 演算の高速化を実現するため、並列プログラミング、あるいはマルチコアプロセッサによる並列処理、などを利用する。プロセッサの形式を限定するものではなく、CPU(Central Processing Unit)と呼ばれる汎用のプロセッサ、GPU(Graphic Processing Unit,  General Purpose Unit など)と呼ばれるメニイコア(many core)・プロセッサなどを利用する。図11に示すように、一般にCPU105がOSの管理などシステム全体の処理を行い、そのシステムの付加装置としてGPU106が設置される構成が多い。このGPU106が搭載された付加装置は、汎用のグラフィックスボード109、あるいは専用の並列計算ボードとして入手できる。画像データを扱うための2次元配列のメモリ107を備える。ただし、画像処理は、画素単位のスカラー値を対象とするのに対して、本発明の電力潮流計算では複素数の演算を基本とする。複素数は、実部と虚部に分解すれば、個々はスカラー値として扱うことはできる。しかし、複素数の乗除を伴う演算は実部と虚部が関連付けられるので、両者を独立して扱うわけにはいかない。
Speeding up by parallel computing Parallel programming or parallel processing by a multi-core processor is used to speed up computations. The processor format is not limited, but a general-purpose processor called CPU (Central Processing Unit), a many-core processor called GPU (Graphic Processing Unit, General Purpose Unit, etc.), etc. are used. As shown in FIG. 11, in general, there are many configurations in which the CPU 105 performs overall system processing such as OS management, and the GPU 106 is installed as an additional device of the system. The additional device equipped with the GPU 106 can be obtained as a general-purpose graphics board 109 or a dedicated parallel computing board. A two-dimensional array memory 107 for handling image data is provided. However, while image processing is targeted for scalar values in units of pixels, the power flow calculation of the present invention is based on complex numbers. Complex numbers can be treated as scalar values by decomposing them into real and imaginary parts. However, since operations involving complex number multiplication and division are associated with the real part and the imaginary part, they cannot be handled independently.
 次に並列計算の手法を、GPU106を用いて例示する。電力系統のノードとブランチを2次元配列のメモリに割り当てて機器特性をメモリ107に書き込んでおく。ノードとブランチは同じメモリ領域の異なる変数として両者を割り当てても良い。いずれの場合でも、隣接するノードと、それを繋ぐブランチの特性を、規則性のあるアドレスでメモリ蓄積することで、演算を規則的に実行する。GPU106は、複数の演算部を備えることが特長であり、個々の演算部はメモリアクセスおよび演算を並列に実行することで、全体の信号処理の高速化を実現する。 Next, an example of a parallel calculation method using the GPU 106 will be described. The nodes and branches of the power system are allocated to a two-dimensional array memory, and the device characteristics are written in the memory 107. Nodes and branches may be assigned as different variables in the same memory area. In any case, the operation is regularly executed by storing the adjacent nodes and the characteristics of the branch connecting them in a memory with regular addresses. The GPU 106 is characterized by including a plurality of arithmetic units, and the individual arithmetic units execute memory access and arithmetic operations in parallel, thereby realizing high-speed overall signal processing.
 本発明の電力系統の潮流計算においては、電力系統の特性データをメモリ107に図的に配置する。GPU106が備える複数の演算部を、電力系統を構成する要素に割り当てることが容易になる。複数の演算部で並列処理することができるようになり、繰り返し計算の高速化に効果がある。計算手順を指示するプログラムは、画素データを扱う画像処理と同様に記述して、並列実行の効果を得る。またGPU106を備えるグラフィックスボード109は、並列演算と画面表示を同時に実行することができる。系統構成の要素と状態を記憶するメモリ107を、両者の目的に共通に利用して良い。 In the power flow calculation of the power system of the present invention, the characteristic data of the power system is graphically arranged in the memory 107. It becomes easy to assign a plurality of arithmetic units included in the GPU 106 to elements constituting the power system. A plurality of arithmetic units can perform parallel processing, which is effective in speeding up repeated calculations. The program for instructing the calculation procedure is described in the same manner as the image processing that handles pixel data, and the effect of parallel execution is obtained. Further, the graphics board 109 provided with the GPU 106 can execute parallel computation and screen display simultaneously. The memory 107 that stores the elements and status of the system configuration may be used in common for both purposes.
 GPU106を活用するには、メモリの使い方、CPU105とのデータ交換の仕組み、などに注意する。GPU106がアクセスするメモリには、スピードと容量が異なる幾つかの種類がある。アクセス回数の多いデータはスピードの速いメモリに蓄積するのが望ましい。 ∙ To use the GPU 106, pay attention to the use of memory and the mechanism of data exchange with the CPU 105. There are several types of memory accessed by the GPU 106 with different speeds and capacities. It is desirable to store frequently accessed data in a fast memory.
熱モデルとの組み合わせ
 電力は、単位換算することで別のエネルギーに置き換えることができる。例えば熱と電力は、J=Wsの関係式を使ってジュールとワットの単位を変換できる。このような単位換算を介在させることで、ノードに配置する機器、ブランチを流れるエネルギーを熱に置き換えて良い。
前記した変圧器のように異なる単位を持つ一次側と二次側を用意する。一次側と二次側を区別して、一次側に電力を取り込んで、二次側に熱拡散(あるいは消費)の機能を持たせる。両者は前記した変換式でエネルギーの変換を行う。本発明の電力潮流計算の繰り返し計算のなかでエネルギー変換することで電力と熱の流れを算出できる。
Combination with thermal model Electric power can be replaced with other energy by unit conversion. For example, heat and power can be converted to units of joules and watts using the relational equation J = Ws. By interposing such unit conversion, the energy flowing through the devices and branches arranged at the nodes may be replaced with heat.
A primary side and a secondary side having different units as in the transformer described above are prepared. The primary side and the secondary side are distinguished from each other, power is taken into the primary side, and the secondary side has a function of heat diffusion (or consumption). Both perform energy conversion according to the conversion equation described above. The flow of electric power and heat can be calculated by performing energy conversion in the repeated calculation of the power flow calculation of the present invention.
 ある地域、あるいはある建物のなかで消費される熱エネルギーと、それを電力潮流として供給する電力系統を組み合わせて計算する。 Calculate by combining the heat energy consumed in a certain area or building and the power system that supplies it as a power flow.
101 ノード
102 ブランチ
103 PC
104 表示画面
105 CPU
106 GUI
107 メモリ
108 ハードディスク
109 グラフィックボード
110 入出力IF
111 プロセッサ
112 ディスプレイ
113 バス
101 Node 102 Branch 103 PC
104 Display screen 105 CPU
106 GUI
107 memory 108 hard disk 109 graphic board 110 input / output IF
111 processor 112 display 113 bus

Claims (15)

  1.  複数のノードと、前記ノード同士を接続するブランチとに基づいて構成される電力系統を解析する電力系統解析装置において、
     前記ノードに接続する負荷側の電力を示す負荷電力を算出する手段と、
     前記負荷電力に基づいて前記ブランチの複素電圧勾配を算出する手段と、
     前記複素電圧勾配に基づいて前記ノードに前記ブランチを介して接続する隣接ノードの複素電圧の修正量を算出する手段と、
     前記電力系統における所定の範囲内のノードについて前記修正量を算出する手段と、
     を備えることを特徴とする電力系統解析装置。
    In a power system analysis device that analyzes a power system configured based on a plurality of nodes and a branch connecting the nodes,
    Means for calculating load power indicating load-side power connected to the node;
    Means for calculating a complex voltage gradient of the branch based on the load power;
    Means for calculating a correction amount of a complex voltage of an adjacent node connected to the node via the branch based on the complex voltage gradient;
    Means for calculating the correction amount for nodes within a predetermined range in the power system;
    A power system analysis device comprising:
  2.  請求項1記載の電力系統解析装置において、
     前記複素電圧勾配は、前記負荷電力に基づいて算出される前記ブランチの複素電流に基づいて算出し、
     前記修正量は、前記複素電圧と前記隣接ノードの初期値との差分に基づいて算出することを特徴とする電力系統解析装置。
    In the electric power system analysis device according to claim 1,
    The complex voltage gradient is calculated based on the complex current of the branch calculated based on the load power;
    The power system analysis apparatus characterized in that the correction amount is calculated based on a difference between the complex voltage and an initial value of the adjacent node.
  3.  請求項1記載の電力系統解析装置において、
     前記複素電圧勾配に基づいて前記隣接ノード及び前記ノードそれぞれの複素電圧の修正量を算出することを特徴とする電力系統解析装置。
    In the electric power system analysis device according to claim 1,
    An electric power system analyzing apparatus that calculates a correction amount of the complex voltage of each of the adjacent node and the node based on the complex voltage gradient.
  4.  請求項1記載の電力系統解析装置において、
     前記修正量を前記電力系統の構成情報又は状態情報と共に重層表示するインターフェイスをさらに備えることを特徴とする電力系統解析装置。
    In the electric power system analysis device according to claim 1,
    The power system analysis apparatus further comprising an interface for displaying the correction amount in a multi-layered manner together with configuration information or status information of the power system.
  5.  請求項1記載の電力系統解析装置において、
     前記隣接ノードにブランチを介して接続する前記ノードとは別の隣接ノードの前記修正量を算出し、その走査を前記所定の範囲内のノードについて順番に行うことを特徴とする電力系統解析装置。
    In the electric power system analysis device according to claim 1,
    An electric power system analysis apparatus characterized in that the correction amount of an adjacent node different from the node connected to the adjacent node via a branch is calculated, and the scan is sequentially performed on the nodes within the predetermined range.
  6.  請求項5記載の電力系統解析装置において、
     前記走査を前記所定の範囲内のノードについて行った後、前記電力系統の各ノードにおける前記修正量が所定の閾値内に収束するまで前記走査を初めから繰り返すことを特徴とする電力系統解析装置。
    In the electric power system analysis device according to claim 5,
    The power system analysis apparatus characterized by repeating the scan from the beginning after the scan is performed on nodes within the predetermined range until the correction amount at each node of the power system converges within a predetermined threshold.
  7.  請求項5記載の電力系統解析装置において、
     前記走査を前記所定の範囲内のノードについて行った後、所定の回数分前記走査を初めから繰り返すことを特徴とする電力系統解析装置。
    In the electric power system analysis device according to claim 5,
    The power system analysis apparatus characterized by repeating the scanning from the beginning for a predetermined number of times after the scanning is performed for nodes within the predetermined range.
  8.  請求項1記載の電力系統解析装置において、
     前記修正量は、前記複素電圧と0より大きくかつ1より小さい修正係数との積を取った値であることを特徴とする電力系統解析装置。
    In the electric power system analysis device according to claim 1,
    The correction amount is a value obtained by taking a product of the complex voltage and a correction coefficient larger than 0 and smaller than 1.
  9.  請求項8記載の電力系統解析装置において、
     前記修正係数は、前記電力系統の種別又は所定領域ごとに異なる値で設定することを特徴とする電力系統解析装置。
    In the electric power system analysis device according to claim 8,
    The power system analysis apparatus, wherein the correction coefficient is set with a different value for each type or predetermined area of the power system.
  10.  請求項8記載の電力系統解析装置において、
     前記修正係数は、前記電力系統における規定の電圧範囲内に収束させる為の制約関数を用いて算出することを特徴とする電力系統解析装置。
    In the electric power system analysis device according to claim 8,
    The power system analysis apparatus characterized in that the correction coefficient is calculated using a constraint function for convergence within a specified voltage range in the power system.
  11.  請求項8記載の電力系統解析装置において、
     前記修正係数を調整できるインターフェイスをさらに備えることを特徴とする電力系統解析装置。
    In the electric power system analysis device according to claim 8,
    An electric power system analyzing apparatus further comprising an interface capable of adjusting the correction coefficient.
  12.  請求項1記載の電力系統解析装置において、
     前記修正量で前記複素電圧を修正した後、前記負荷電力を再度計算することを特徴とする電力系統解析装置。
    In the electric power system analysis device according to claim 1,
    After correcting the complex voltage with the correction amount, the load power is calculated again.
  13.  請求項1記載の電力系統解析装置において、
     前記ノードにはSVR又はコンバータを含む変圧器、SVC又は蓄電池を含む電圧制御機器の内少なくとも一つが含まれることを特徴とする電力系統解析装置。
    In the electric power system analysis device according to claim 1,
    The node includes at least one of a transformer including an SVR or a converter, a voltage control device including an SVC or a storage battery.
  14.  請求項1記載の電力系統解析装置において、
     前記算出した電力情報を熱情報を含む他形式のエネルギー情報に変換する手段と、
     前記他形式のエネルギー情報を前記電力情報と併せて重層表示するインターフェイスとを更に備えることを特徴とする電力系統解析装置。
    In the electric power system analysis device according to claim 1,
    Means for converting the calculated power information into other types of energy information including thermal information;
    An electric power system analyzing apparatus further comprising an interface for displaying the energy information of the other format in combination with the power information.
  15.  複数のノードと、前記ノード同士を接続するブランチとに基づいて構成される電力系統を解析する電力系統解析方法において、
     前記ノードに接続する負荷側の電力を示す負荷電力を算出するステップと、
     前記負荷電力に基づいて前記ブランチの複素電圧勾配を算出するステップと、
     前記複素電圧勾配に基づいて前記ノードに前記ブランチを介して接続する隣接ノードの複素電圧の修正量を算出するステップと、
     前記電力系統における所定の範囲内のノードについて前記修正量を算出するステップと、
     を備えることを特徴とする電力系統解析方法。
    In a power system analysis method for analyzing a power system configured based on a plurality of nodes and a branch connecting the nodes,
    Calculating load power indicating load-side power connected to the node;
    Calculating a complex voltage gradient of the branch based on the load power;
    Calculating a correction amount of a complex voltage of an adjacent node connected to the node via the branch based on the complex voltage gradient;
    Calculating the correction amount for nodes within a predetermined range in the power system;
    A power system analysis method comprising:
PCT/JP2014/068530 2014-07-11 2014-07-11 Power system analysis device and method WO2016006091A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/068530 WO2016006091A1 (en) 2014-07-11 2014-07-11 Power system analysis device and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/068530 WO2016006091A1 (en) 2014-07-11 2014-07-11 Power system analysis device and method

Publications (1)

Publication Number Publication Date
WO2016006091A1 true WO2016006091A1 (en) 2016-01-14

Family

ID=55063764

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/068530 WO2016006091A1 (en) 2014-07-11 2014-07-11 Power system analysis device and method

Country Status (1)

Country Link
WO (1) WO2016006091A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107633132A (en) * 2017-09-18 2018-01-26 湖南大学 The equivalent recognition methods of spatial distribution dynamic load

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09205731A (en) * 1996-01-24 1997-08-05 Tokyo Electric Power Co Inc:The Power system computing device
JP2003235157A (en) * 2002-02-05 2003-08-22 Mitsubishi Electric Corp Creating method for row equipment group and method for tide calculation in electric power system
JP2005033848A (en) * 2003-07-07 2005-02-03 Tm T & D Kk Method for calculating phase angle difference of power system, method for calculating phase angle of power system, and power system analyzer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09205731A (en) * 1996-01-24 1997-08-05 Tokyo Electric Power Co Inc:The Power system computing device
JP2003235157A (en) * 2002-02-05 2003-08-22 Mitsubishi Electric Corp Creating method for row equipment group and method for tide calculation in electric power system
JP2005033848A (en) * 2003-07-07 2005-02-03 Tm T & D Kk Method for calculating phase angle difference of power system, method for calculating phase angle of power system, and power system analyzer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107633132A (en) * 2017-09-18 2018-01-26 湖南大学 The equivalent recognition methods of spatial distribution dynamic load

Similar Documents

Publication Publication Date Title
US11068634B2 (en) Method, computer program and system providing real-time power grid hypothesis testing and contingency planning
Castro et al. Optimal voltage control in distribution network in the presence of DGs
US20180158152A1 (en) Methods and Software for Calculating Optimal Power Flow in an Electrical Power Grid and Utilizations of Same
US11245284B2 (en) Power allocation of multi-parallel power electronic transformers
CN108292842B (en) Power sharing for DC microgrid
Chang et al. Novel mixed-integer method to optimize distributed generation mix in primary distribution systems
CN104769802A (en) Method for the computer-aided control of the power in an electrical grid
US9252633B2 (en) System and method for accelerated assessment of operational uncertainties in electrical power distribution systems
Beerten et al. MatACDC-an open source software tool for steady-state analysis and operation of HVDC grids
CN110574272A (en) Matrix converter control method and system
Coffrin et al. Accurate load and generation scheduling for linearized DC models with contingencies
Overbye et al. Delaunay triangulation based wide-area visualization of electric transmission grids
Li et al. A multi-objective stochastic-information gap decision model for soft open points planning considering power fluctuation and growth uncertainty
Gil-González et al. A mixed-integer second-order cone model for optimal siting and sizing of dynamic reactive power compensators in distribution grids
Azim et al. A proportional power sharing method through a local control for a low-voltage islanded microgrid
Rigo-Mariani et al. A clusterized energy management with linearized losses in the presence of multiple types of distributed generation
Kenyon et al. Criticality of inverter controller order in power system dynamic studies–Case study: Maui island
Sandoval et al. Future grid business model innovation: distributed energy resources services platform for renewable energy integration
WO2016006091A1 (en) Power system analysis device and method
Leibfried et al. Operating power grids with few flow control buses
Astero et al. Small-signal stability and load-sharing improvement of autonomous microgrids using auxiliary loop
Sreeram et al. Hopf bifurcation analysis in droop controlled islanded microgrids
Gupta et al. Comparison of deterministic and probabilistic radial distribution systems load flow
Fetzer et al. Integration of voltage dependent power injections of distributed generators into the power flow by using a damped Newton method
Ibrahim A comparative study of PC based software packages for power engineering education and research

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14897330

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14897330

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP