WO2016005430A1 - Rotor pour une machine tournante - Google Patents

Rotor pour une machine tournante Download PDF

Info

Publication number
WO2016005430A1
WO2016005430A1 PCT/EP2015/065562 EP2015065562W WO2016005430A1 WO 2016005430 A1 WO2016005430 A1 WO 2016005430A1 EP 2015065562 W EP2015065562 W EP 2015065562W WO 2016005430 A1 WO2016005430 A1 WO 2016005430A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
axis
leading edge
rotor
trailing edge
Prior art date
Application number
PCT/EP2015/065562
Other languages
English (en)
Inventor
Jean-Marc NOURRY
Original Assignee
Nourry Jean-Marc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nourry Jean-Marc filed Critical Nourry Jean-Marc
Priority to EP15735681.7A priority Critical patent/EP3167184A1/fr
Publication of WO2016005430A1 publication Critical patent/WO2016005430A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/06Rotors
    • F03D3/061Rotors characterised by their aerodynamic shape, e.g. aerofoil profiles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/005Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  the axis being vertical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/06Rotors
    • F03D3/062Rotors characterised by their construction elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Definitions

  • the present invention relates to a rotor for a rotating machine such as a tidal turbine or a wind turbine, and a rotary machine comprising such a rotor.
  • Darrieus type rotors which include a shaft with a vertical axis of rotation and a certain number of blades equidistant from the axis of rotation, fixed to the shaft and distributed angularly one after the other around the shaft. .
  • the blades have a relatively small angular coverage and are spaced apart which creates gaps between two consecutive blades. Due to these empty spaces, the rotation of the rotor under the action of a moving fluid is effected by blows which can, in time, damage the rotor elements and more particularly the rolling members.
  • An object of the present invention is to provide a rotor for a rotating machine which does not have the drawbacks of the prior art and which in particular makes it possible to obtain the suppression of torque fluctuations.
  • a rotor for a rotating machine disposed in a moving fluid said rotor comprising:
  • each assembly has an inner blade disposed closest to the shaft, an outer blade disposed furthest from the shaft and an intermediate blade disposed between the inner blade and the outer blade,
  • each blade has in the plane perpendicular to the axis, a wing profile whose intrados is oriented towards the axis,
  • each blade has a leading edge and a trailing edge and the distance between the axis and the leading edge is greater than the distance between the axis and the trailing edge, the leading edge of the inner blade is downstream with respect to an upstream line passing through the axis and the leading edge of the intermediate blade and the leading edge of the outer blade is upstream with respect to the upstream line, and
  • the trailing edge of the inner blade is downstream with respect to a downstream line passing through the axis and the trailing edge of the intermediate blade and the trailing edge of the outer blade is upstream with respect to the downstream line .
  • the orientation of each blade is such that, when the blade is moving in the same direction as the fluid flow, the resultant of the forces exerted by the fluid flow on the blade does not pass through the axis, and the orientation of each blade is such that, when the blade is moving in the opposite direction to that of the fluid flow, the resultant forces exerted by the flow of fluid on the blade passes through the axis.
  • the difference between the distance between the axis and the leading edge and the distance between the axis and the trailing edge decreases from the inner blade to the outer blade.
  • the angle between the straight line passing through the axis and the leading edge of the outer blade and the straight line passing through the axis and the trailing edge of the inner blade is of the order of 97.3 ° .
  • the angle between the straight line passing through the axis and the leading edge of the inner blade and the upstream straight line is at least 8.9 °, and the angle between the straight line passing through the axis and by the leading edge of the outer blade and the upstream straight is at least 14.7 °.
  • the distance between the axis and the leading edge of the inner blade is of the order of 104% of D
  • the distance between the axis and the leading edge of the blade intermediate is of the order of 133% of D
  • the distance between the axis and the leading edge of the outer blade is of the order of 163% of D.
  • the plane containing the axis and the leading edge of the inner blade and the plane containing the leading edge of the inner blade and the trailing edge of the inner blade form an angle of the order of 38, 5 °
  • the plane containing the axis and the leading edge of the intermediate blade and the plane containing the leading edge of the intermediate blade and the trailing edge of the intermediate blade form an angle of the order of 52 , 5 °
  • the plane containing the axis and the leading edge of the outer blade and the plane containing the leading edge of the outer blade and the trailing edge of the outer blade form an angle of the order 60.2 °.
  • the invention also proposes a rotating machine comprising an electric generator comprising a generator rotor and a generator stator and a rotor according to one of the preceding variants rotating the generator rotor.
  • FIG. unique represents a top view of a rotor according to the invention.
  • Fig. unique shows a rotor 100 for a rotating machine type tidal or wind turbine.
  • the rotating machine also comprises an electric generator comprising a generator rotor and a generator stator and wherein the generator rotor is rotated by the rotor 100.
  • the rotor 100 has a shaft 102 rotatable about its axis 104.
  • the rotor 100 is immersed in a moving fluid represented by the arrows 10 which drives the rotor 100 in rotation.
  • the fluid is typically water or air.
  • the axis 104 can take different orientations and be placed horizontally, vertically or diagonally in the fluid flow.
  • the rotor 100 has at least three sets of blades 106a-c regularly distributed angularly about the shaft 102 and each assembly 106a-c is fixed to the shaft 102.
  • Each assembly 106a-c has an inner blade 108a, an intermediate blade 108b and an outer blade 108c.
  • the following description is applied to the first set of blades 106a but it applies in the same way to the other sets 106b-c.
  • the inner blade 108a is disposed closest to the shaft 102
  • the outer blade 108c is disposed farthest from the shaft 102
  • the intermediate blade 108b is disposed between the inner blade 108a and the outer blade 108c.
  • Each blade 108a-c has in the plane perpendicular to the axis 104, a wing profile whose intrados is oriented towards the axis 104 and each blade 108a-c extends along a certain length along the axis. axis 104.
  • the length of the shaft 102 and the blades 108a-c determines the elongation of the rotor and is defined with respect to the nature of the fluid (density, speed, etc.).
  • Each profile is here a profile of the Eiffel type, the hollow of each blade 108a c is 10% of the value of the rope of the blade 108a-c. But it is possible to use blades 108a-c of different profile such as NACA type.
  • the centers of curvature of the three blades 108a-c are not confused with each other or with the center of the shaft 102. In other words, the shaft 102 and the blades 108a-c are not concentric.
  • Each blade 108a-c has a leading edge 110a-c through which the fluid drives said blade 108a-c to rotate, and a trailing edge 112a-c through which the fluid escapes.
  • each blade 108a-c In the plane perpendicular to the axis 104, and for each blade 108a-c, the distance between the axis 104 and the leading edge 1 10a-c is greater than the distance between the axis 104 and the trailing edge 112a-c. Thus, each blade 108a-c has an orientation that tends to tighten the trailing edge 112a-c against the shaft 102.
  • the blades 108a-c overlap.
  • the leading edge 110a of the inner blade 108a is downstream with respect to the upstream line 114 passing through the axis 104 and the leading edge 110b of the intermediate blade 108b and the leading edge 110c of the blade 108c is upstream with respect to the upstream line 114.
  • the angle between the straight line passing through the axis 104 and the leading edge 110a of the inner blade 108a and the upstream straight line 114 is at least 8.9 °, and the angle between the line passing through the axis 104 and the leading edge 110c of the outer blade 108c and the upstream line 114 is at least 14.7 °.
  • the trailing edge 112a of the inner blade 108a is downstream with respect to the downstream line 116 passing through the axis 104 and the trailing edge 112b of the intermediate blade 108b and the trailing edge 112c of the outer blade 108c is upstream with respect to the downstream line 116.
  • Such a rotor makes it possible to have a greater angular coverage which limits the fluctuations of the torque during the rotation of the rotor 100.
  • the difference between the distance between the axis 104 and the leading edge 110a-c and the distance between the axis 104 and the trailing edge 112a-c decreases by inner blade 108a to outer blade 108c.
  • the blades 108a-c are close to the concentricity with the axis 104.
  • the angle between the straight line passing through the axis 104 and the leading edge 110c of the outer blade 108c and the straight line passing through the axis 104 and the trailing edge of the inner blade 108a is the order of 97.3 °.
  • the angle of leakage which is the angle between the straight line passing through the axis 104 and the trailing edge of the inner blade 108a of an assembly 106a, and the straight line passing through the axis 104 and the leading edge 110c of the outer blade 108c of the assembly 106c in the direction of rotation, is then of the order of 22.7 °.
  • Such an implantation makes it possible to obtain a ratio of 81% between the angular aperture covered by the blades 108a-c and 360 °, which eliminates the fluctuations in the torque and preserves the components of the rotor 100 during rotation.
  • the reliability of the rotor 100 is then increased and its maintenance cost is reduced accordingly.
  • the flow of fluid acts on the inside of the blades 108a-c to rotate the rotor 100.
  • the diameter of the shaft 102 determines the rope of the blades 108a-c.
  • the shaft 104 then plays the role of an obstacle that slows downstream fluid flow.
  • the rope of each blade 108a-c has the formula:
  • Rope 108% of D, where D is the diameter of the shaft 102.
  • the minimum distance between the blades 108a-c between them or between the inner blade 108a and the shaft 102 must be greater than 20% of the rope of the blade 108a-c.
  • each blade 108a-c is such that, when the blade 108a-c is moving in the same direction as the fluid flow, the resultant forces exerted by the fluid flow on the blade 108a-c passes. not by the axis 104, thus creating a torque promoting rotation.
  • the orientation of each blade 108a-c is such that, when the blade 108a-c is moving in the opposite direction to that of the fluid flow, the resultant forces exerted by the fluid flow on the blade 108a-c passes by the axis 104, thus creating no torque.
  • the distance between the axis 104 and the leading edge 110a of the inner blade 108a is of the order of 104% of D
  • the distance between the axis 104 and the leading edge 110b of the intermediate blade 108b is of the order of 133% of D
  • the distance between the axis 104 and the leading edge 110c of the outer blade 108c is of the order of 163% of D.
  • the plane containing the axis 104 and the leading edge 110a of the inner blade 108a and the plane containing the leading edge 110a of the inner blade 108a and the trailing edge 112a of the inner blade 108a form an angle of the order of 38.5 °
  • the plane containing the axis 104 and the leading edge 110b of the intermediate blade 108b and the plane containing the leading edge 110b of the intermediate blade 108b and the trailing edge 1 12b of the intermediate blade 108b form an angle of the order of 52.5 °
  • the plane containing the axis 104 and the leading edge 1 10c of the outer blade 108c and the plane containing the leading edge 110c of the outer blade 108c and the trailing edge 112c of the outer blade 108c form an angle of the order of 60.2 °.
  • each blade 108a-c is ensured by plates 118, which take the form of plates perpendicular to the axis 104, which are fixed to the shaft 102 which extend radially relative to the shaft 102 and on which blades 108a-c are fixed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Wind Motors (AREA)

Abstract

L'invention concerne un rotor (100) pour une machine tournante et comportant : - un arbre (102) mobile en rotation autour de son axe (104), - au moins trois ensembles de pales (106a-c) répartis angulairement autour de l'arbre (102) et fixés à l'arbre (102), chaque ensemble (106a-c) présente une pale intérieure (108a) disposée la plus proche de l'arbre (102), une pale extérieure (108c) disposée la plus loin de l'arbre (102) et une pale intermédiaire (108b) disposée entre la pale intérieure (108a) et la pale extérieure (108c), chaque pale (108a-c) présente dans le plan perpendiculaire à l'axe (104), un profil d'aile dont l'intrados est orienté vers l'axe (104), chaque pale (108a-c) présente un bord d'attaque (110a-c) et un bord de fuite (112a-c) et la distance entre l'axe (104) et le bord d'attaque (1 lOa-c) est supérieure à la distance entre l'axe (104) et le bord de fuite (112a-c), le bord d'attaque (110a) de la pale intérieure (108a) est en aval par rapport à une ligne amont (114) passant par l'axe (104) et par le bord d'attaque (110b) de la pale intermédiaire (108b) et le bord d'attaque (110c) de la pale extérieure (108c) est en amont par rapport à la ligne amont (114), et le bord de fuite (112a) de la pale intérieure (108a) est en aval par rapport à une ligne aval (116) passant par l'axe (104) et par le bord de fuite (112b) de la pale intermédiaire (108b) et le bord de fuite (112c) de la pale extérieure (108c) est en amont par rapport à la ligne aval (116).

Description

Rotor pour une machine tournante
La présente invention concerne un rotor pour une machine tournante telle qu'une hydrolienne ou une éolienne, ainsi qu'une machine tournante comportant un tel rotor.
Il existe des rotors du type Darrieus qui comportent un arbre à axe de rotation vertical et un certains nombre de pales équidistantes de l'axe de rotation, fixées à l'arbre et réparties angulairement les unes à la suite des autres autour de l'arbre.
Les pales présentent une couverture angulaire relativement réduite et sont espacées les unes des autres ce qui crée des espaces vides entre deux pales consécutives. Du fait de ces espaces vides, la rotation du rotor sous l'action d'un fluide en mouvement s'effectue par à coups ce qui peut, à termes, endommager les éléments du rotor et plus particulièrement les organes de roulement.
Un objet de la présente invention est de proposer un rotor pour une machine tournante qui ne présente pas les inconvénients de l'art antérieur et qui en particulier permet d'obtenir la suppression des fluctuations du couple.
A cet effet, est proposé un rotor pour une machine tournante disposée dans un fluide en mouvement, ledit rotor comportant :
- un arbre mobile en rotation autour de son axe,
- au moins trois ensembles de pales répartis angulairement autour de l'arbre et fixés à l'arbre, chaque ensemble présente une pale intérieure disposée la plus proche de l'arbre, une pale extérieure disposée la plus loin de l'arbre et une pale intermédiaire disposée entre la pale intérieure et la pale extérieure,
chaque pale présente dans le plan perpendiculaire à l'axe, un profil d'aile dont l'intrados est orienté vers l'axe,
chaque pale présente un bord d'attaque et un bord de fuite et la distance entre l'axe et le bord d'attaque est supérieure à la distance entre l'axe et le bord de fuite, le bord d'attaque de la pale intérieure est en aval par rapport à une ligne amont passant par l'axe et par le bord d'attaque de la pale intermédiaire et le bord d'attaque de la pale extérieure est en amont par rapport à la ligne amont, et
le bord de fuite de la pale intérieure est en aval par rapport à une ligne aval passant par l'axe et par le bord de fuite de la pale intermédiaire et le bord de fuite de la pale extérieure est en amont par rapport à la ligne aval.
Avantageusement, l'orientation de chaque pale est telle que, lorsque la pale est en mouvement dans le même sens que le flux de fluide, la résultante des forces exercées par le flux de fluide sur la pale ne passe pas par l'axe, et l'orientation de chaque pale est telle que, lorsque la pale est en mouvement dans le sens contraire à celui du flux de fluide, la résultante des forces exercées par le flux de fluide sur la pale passe par l'axe.
Avantageusement, la différence entre la distance entre l'axe et le bord d'attaque et la distance entre l'axe et le bord de fuite diminue de la pale intérieure vers la pale extérieure.
Avantageusement, l'angle entre la droite passant par l'axe et le bord d'attaque de la pale extérieure et la droite passant par l'axe et le bord de fuite de la pale intérieure est de l'ordre de 97,3°.
Avantageusement, la corde de chaque pale répond à la formule: Corde = 108% de D, où D est le diamètre de l'arbre.
Avantageusement, l'angle entre la droite passant par l'axe et par le bord d'attaque de la pale intérieure et la droite amont est au minimum de 8,9°, et l'angle entre la droite passant par l'axe et par le bord d'attaque de la pale extérieure et la droite amont est au minimum de 14,7°.
Avantageusement, la distance entre l'axe et le bord d'attaque de la pale intérieure est de l'ordre de 104% de D, la distance entre l'axe et le bord d'attaque de la pale intermédiaire est de l'ordre de 133% de D, et la distance entre l'axe et le bord d'attaque de la pale extérieure est de l'ordre de 163% de D.
Avantageusement, le plan contenant l'axe et le bord d'attaque de la pale intérieure et le plan contenant le bord d'attaque de la pale intérieure et le bord de fuite de la pale intérieure forment un angle de l'ordre de 38,5°, le plan contenant l'axe et le bord d'attaque de la pale intermédiaire et le plan contenant le bord d'attaque de la pale intermédiaire et le bord de fuite de la pale intermédiaire forment un angle de l'ordre de 52,5°, et le plan contenant l'axe et le bord d'attaque de la pale extérieure et le plan contenant le bord d'attaque de la pale extérieure et le bord de fuite de la pale extérieure forment un angle de l'ordre de 60,2°.
L'invention propose également une machine tournante comportant un générateur électrique comportant un rotor de générateur et un stator de générateur et un rotor selon l'une des variantes précédentes entraînant en rotation le rotor de générateur.
Les caractéristiques de l'invention mentionnées ci-dessus, ainsi que d'autres, apparaîtront plus clairement à la lecture de la description suivante d'un exemple de réalisation, ladite description étant faite en relation avec la Fig. unique qui représente une vue de dessus d'un rotor selon l'invention.
La Fig. unique montre un rotor 100 pour une machine tournante du type hydrolienne ou éolienne. La machine tournante comporte également un générateur électrique comportant un rotor de générateur et un stator de générateur et où le rotor de générateur est entraîné en rotation par le rotor 100.
Le rotor 100 présente un arbre 102 mobile en rotation autour de son axe 104. Le rotor 100 est plongé dans un fluide en mouvement représenté par les flèches 10 qui entraîne le rotor 100 en rotation.
Le fluide est typiquement de l'eau ou de l'air.
L'axe 104 peut prendre différentes orientations et être placé horizontalement, verticalement ou en diagonalement dans le flux du fluide.
Le rotor 100 présente au moins trois ensembles de pales 106a-c régulièrement répartis angulairement autour de l'arbre 102 et chaque ensemble 106a-c est fixé à l'arbre 102.
Chaque ensemble 106a-c présente une pale intérieure 108a, une pale intermédiaire 108b et une pale extérieure 108c. La description qui suit est appliquée au premier ensemble de pales 106a mais elle s'applique de la même manière aux autres ensembles 106b-c. La pale intérieure 108a est disposée la plus proche de l'arbre 102, la pale extérieure 108c est disposée la plus loin de l'arbre 102 et la pale intermédiaire 108b est disposée entre la pale intérieure 108a et la pale extérieure 108c.
Chaque pale 108a-c présente dans le plan perpendiculaire à l'axe 104, un profil d'aile dont l'intrados est orienté vers l'axe 104 et chaque pale 108a-c s'étend sur une certaine longueur le long de l'axe 104.
La longueur de l'arbre 102 et des pales 108a-c détermine l'allongement du rotor et est définie au regard de la nature du fluide (densité, vitesse,...).
Chaque profil est ici un profil du type Eiffel, dont le creux de chaque pale 108a- c est de 10% de la valeur de la corde de la pale 108a-c. Mais il est possible d'utiliser des pales 108a-c de profil différent comme par exemple de type NACA.
Les centres de courbure des trois pales 108a-c ne sont pas confondus entre eux ni avec le centre de l'arbre 102. En d'autres termes, l'arbre 102 et les pales 108a-c ne sont pas concentriques.
Chaque pale 108a-c présente un bord d'attaque 110a-c par lequel le fluide attaque ladite pale 108a-c pour la faire tourner, et un bord de fuite 112a-c par où le fluide s'échappe.
Dans le plan perpendiculaire à l'axe 104, et pour chaque pale 108a-c, la distance entre l'axe 104 et le bord d'attaque 1 lOa-c est supérieure à la distance entre l'axe 104 et le bord de fuite 112a-c. Ainsi, chaque pale 108a-c présente une orientation qui tend à resserrer le bord de fuite 112a-c contre l'arbre 102.
Pour couvrir un angle plus important, les pales 108a-c se recouvrent. Le bord d'attaque 110a de la pale intérieure 108a est en aval par rapport à la ligne amont 114 passant par l'axe 104 et par le bord d'attaque 110b de la pale intermédiaire 108b et le bord d'attaque 110c de la pale extérieure 108c est en amont par rapport à la ligne amont 114.
Selon un mode de réalisation préféré de l'invention, l'angle entre la droite passant par l'axe 104 et par le bord d'attaque 110a de la pale intérieure 108a et la droite amont 114 est au minimum de 8,9°, et l'angle entre la droite passant par l'axe 104 et par le bord d'attaque 110c de la pale extérieure 108c et la droite amont 114 est au minimum de 14,7°.
De la même manière, le bord de fuite 112a de la pale intérieure 108a est en aval par rapport à la ligne aval 116 passant par l'axe 104 et par le bord de fuite 112b de la pale intermédiaire 108b et le bord de fuite 112c de la pale extérieure 108c est en amont par rapport à la ligne aval 116.
Un tel rotor permet d'avoir une couverture angulaire plus importante qui limite les fluctuations du couple lors de la rotation du rotor 100.
De surcroît, l'augmentation de la surface alaire accroît la puissance du rotor.
Dans le mode de réalisation de l'invention présenté ici, la différence entre la distance entre l'axe 104 et le bord d'attaque 110a-c et la distance entre l'axe 104 et le bord de fuite 112a-c diminue de la pale intérieure 108a vers la pale extérieure 108c. Ainsi, en progressant de la pale intérieure 108a à la pale extérieure 108c, les pales 108a-c se rapprochent de la concentricité avec l'axe 104.
Pour un meilleur recouvrement, l'angle entre la droite passant par l'axe 104 et le bord d'attaque 110c de la pale extérieure 108c et la droite passant par l'axe 104 et le bord de fuite de la pale intérieure 108a est de l'ordre de 97,3°. L'angle de fuite qui est l'angle entre la droite passant par l'axe 104 et le bord de fuite de la pale intérieure 108a d'un ensemble 106a et la droite passant par l'axe 104 et le bord d'attaque 110c de la pale extérieure 108c de l'ensemble 106c antérieur dans le sens de rotation, est alors de l'ordre de 22.7°. Une telle implantation permet d'obtenir un rapport de 81% entre l'ouverture angulaire couvert par les pales 108a-c et 360°, ce qui supprime les fluctuations du couple et préserve les composants du rotor 100 lors de la rotation.
La fiabilité du rotor 100 est alors accrue et son coût de maintenance est réduit d'autant.
Le flux de fluide agit sur l'intérieur des pales 108a-c pour faire tourner le rotor 100. Pour limiter l'action du flux de fluide sur les pales 108a-c lors de la remontée contre le flux de fluide, le diamètre de l'arbre 102 détermine la corde des pales 108a-c. L'arbre 104 joue alors le rôle d'un obstacle qui ralentit le flux de fluide en aval.
De préférence, la corde de chaque pale 108a-c répond à la formule:
Corde = 108% de D, où D est le diamètre de l'arbre 102.
La distance minimale entre les pales 108a-c entre elles ou entre la pale intérieure 108a et l'arbre 102 doit être supérieure à 20% de la corde de la pale 108a-c.
L'orientation de chaque pale 108a-c est telle que, lorsque la pale 108a-c est en mouvement dans le même sens que le flux de fluide, la résultante des forces exercées par le flux de fluide sur la pale 108a-c ne passe pas par l'axe 104, créant ainsi un couple favorisant la rotation. L'orientation de chaque pale 108a-c est telle que, lorsque la pale 108a-c est en mouvement dans le sens contraire à celui du flux de fluide, la résultante des forces exercées par le flux de fluide sur la pale 108a-c passe par l'axe 104, ne créant ainsi aucun couple.
Dans le mode de réalisation de l'invention présenté ici:
- la distance entre l'axe 104 et le bord d'attaque 110a de la pale intérieure 108a est de l'ordre de 104% de D,
- la distance entre l'axe 104 et le bord d'attaque 110b de la pale intermédiaire 108b est de l'ordre de 133% de D, et
- la distance entre l'axe 104 et le bord d'attaque 110c de la pale extérieure 108c est de l'ordre de 163% de D.
De la même manière,
- le plan contenant l'axe 104 et le bord d'attaque 110a de la pale intérieure 108a et le plan contenant le bord d'attaque 110a de la pale intérieure 108a et le bord de fuite 112a de la pale intérieure 108a forment un angle de l'ordre de 38,5°,
- le plan contenant l'axe 104 et le bord d'attaque 110b de la pale intermédiaire 108b et le plan contenant le bord d'attaque 110b de la pale intermédiaire 108b et le bord de fuite 1 12b de la pale intermédiaire 108b forment un angle de l'ordre de 52,5°, et
- le plan contenant l'axe 104 et le bord d'attaque 1 10c de la pale extérieure 108c et le plan contenant le bord d'attaque 110c de la pale extérieure 108c et le bord de fuite 112c de la pale extérieure 108c forment un angle de l'ordre de 60,2°.
Le maintien de chaque pale 108a-c est assuré par des platines 118, qui prennent la forme de plaques perpendiculaires à l'axe 104, qui sont fixées à l'arbre 102 qui s'étendent radialement par rapport à l'arbre 102 et sur lesquelles les pales 108a-c sont fixées.
Bien entendu, la présente invention n'est pas limitée aux exemples et modes de réalisation décrits et représentés, mais elle est susceptible de nombreuses variantes accessibles à l'homme de l'art.

Claims

REVENDICATIONS
1) Rotor (100) pour une machine tournante disposée dans un fluide en mouvement (10), ledit rotor (100) comportant :
- un arbre (102) mobile en rotation autour de son axe (104),
- au moins trois ensembles de pales (106a-c) répartis angulairement autour de l'arbre (102) et fixés à l'arbre (102),
chaque ensemble (106a-c) présente une pale intérieure (108a) disposée la plus proche de l'arbre (102), une pale extérieure (108c) disposée la plus loin de l'arbre (102) et une pale intermédiaire (108b) disposée entre la pale intérieure (108a) et la pale extérieure (108c),
chaque pale (108a-c) présente dans le plan perpendiculaire à l'axe (104), un profil d'aile dont l'intrados est orienté vers l'axe (104),
chaque pale (108a-c) présente un bord d'attaque (110a-c) et un bord de fuite (112a-c) et la distance entre l'axe (104) et le bord d'attaque (1 lOa-c) est supérieure à la distance entre l'axe (104) et le bord de fuite (112a-c),
le bord d'attaque (110a) de la pale intérieure (108a) est en aval par rapport à une ligne amont (114) passant par l'axe (104) et par le bord d'attaque (110b) de la pale intermédiaire (108b) et le bord d'attaque (110c) de la pale extérieure (108c) est en amont par rapport à la ligne amont (114), et
le bord de fuite (112a) de la pale intérieure (108a) est en aval par rapport à une ligne aval (116) passant par l'axe (104) et par le bord de fuite (112b) de la pale intermédiaire (108b) et le bord de fuite (112c) de la pale extérieure (108c) est en amont par rapport à la ligne aval (116). 2) Rotor (100) selon la revendication 1, caractérisé en ce que l'orientation de chaque pale (108a-c) est telle que, lorsque la pale (108a-c) est en mouvement dans le même sens que le flux de fluide, la résultante des forces exercées par le flux de fluide sur la pale (108a-c) ne passe pas par l'axe (104), et en ce que l'orientation de chaque pale (108a-c) est telle que, lorsque la pale (108a-c) est en mouvement dans le sens contraire à celui du flux de fluide, la résultante des forces exercées par le flux de fluide sur la pale (108a-c) passe par l'axe (104). 3) Rotor (100) selon l'une des revendications 1 ou 2, caractérisé en ce que la différence entre la distance entre l'axe (104) et le bord d'attaque (1 lOa-c) et la distance entre l'axe (104) et le bord de fuite (1 12a-c) diminue de la pale intérieure (108a) vers la pale extérieure (108c). 4) Rotor (100) selon l'une des revendications 1 à 3, caractérisé en ce que l'angle entre la droite passant par l'axe (104) et le bord d'attaque (110c) de la pale extérieure (108c) et la droite passant par l'axe (104) et le bord de fuite de la pale intérieure (108a) est de l'ordre de 97,3°.
5) Rotor (100) selon l'une des revendications 1 à 4, caractérisé en ce que la corde de chaque pale (108a-c) répond à la formule: Corde = 108% de D, où D est le diamètre de l'arbre (102).
6) Rotor (100) selon l'une des revendications 1 à 5, caractérisé en ce que l'angle entre la droite passant par l'axe (104) et par le bord d'attaque (110a) de la pale intérieure (108a) et la droite amont (114) est au minimum de 8,9°, et l'angle entre la droite passant par l'axe (104) et par le bord d'attaque (110c) de la pale extérieure (108c) et la droite amont (114) est au minimum de 14,7°.
7) Rotor (100) selon l'une des revendications 1 à 6, caractérisé en ce que la distance entre l'axe (104) et le bord d'attaque (110a) de la pale intérieure (108a) est de l'ordre de 104% de D, en ce que la distance entre l'axe (104) et le bord d'attaque (110b) de la pale intermédiaire (108b) est de l'ordre de 133% de D, et en ce que la distance entre l'axe (104) et le bord d'attaque (110c) de la pale extérieure (108c) est de l'ordre de 163% de D.
8) Rotor (100) selon l'une des revendications 1 à 7, caractérisé en ce que le plan contenant l'axe (104) et le bord d'attaque (110a) de la pale intérieure (108a) et le plan contenant le bord d'attaque (110a) de la pale intérieure (108a) et le bord de fuite (112a) de la pale intérieure (108a) forment un angle de l'ordre de 38,5°, en ce que le plan contenant l'axe (104) et le bord d'attaque (110b) de la pale intermédiaire (108b) et le plan contenant le bord d'attaque (110b) de la pale intermédiaire (108b) et le bord de fuite (1 12b) de la pale intermédiaire (108b) forment un angle de l'ordre de 52,5°, et en ce que le plan contenant l'axe (104) et le bord d'attaque (110c) de la pale extérieure (108c) et le plan contenant le bord d'attaque (110c) de la pale extérieure (108c) et le bord de fuite (112c) de la pale extérieure (108c) forment un angle de l'ordre de 60,2°.
9) Machine tournante comportant un générateur électrique comportant un rotor de générateur et un stator de générateur et un rotor selon l'une des revendications 1 à 8 entraînant en rotation le rotor de générateur.
PCT/EP2015/065562 2014-07-11 2015-07-08 Rotor pour une machine tournante WO2016005430A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP15735681.7A EP3167184A1 (fr) 2014-07-11 2015-07-08 Rotor pour une machine tournante

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1456706 2014-07-11
FR1456706A FR3023580B1 (fr) 2014-07-11 2014-07-11 Rotor pour une machine tournante

Publications (1)

Publication Number Publication Date
WO2016005430A1 true WO2016005430A1 (fr) 2016-01-14

Family

ID=51659864

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/065562 WO2016005430A1 (fr) 2014-07-11 2015-07-08 Rotor pour une machine tournante

Country Status (3)

Country Link
EP (1) EP3167184A1 (fr)
FR (1) FR3023580B1 (fr)
WO (1) WO2016005430A1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4350900A (en) * 1980-11-10 1982-09-21 Baughman Harold E Wind energy machine
DE10105570A1 (de) * 2001-02-06 2002-08-14 Wolfgang Althaus Windkraftmaschine
WO2011021733A1 (fr) * 2009-08-20 2011-02-24 Tak Seung-Ho Appareil de génération d'énergie éolienne complexe de type à vitesse variable et procédé correspondant
US20120121379A1 (en) * 2010-11-15 2012-05-17 Chuy-Nan Chio Tower type vertical axle windmill

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4350900A (en) * 1980-11-10 1982-09-21 Baughman Harold E Wind energy machine
DE10105570A1 (de) * 2001-02-06 2002-08-14 Wolfgang Althaus Windkraftmaschine
WO2011021733A1 (fr) * 2009-08-20 2011-02-24 Tak Seung-Ho Appareil de génération d'énergie éolienne complexe de type à vitesse variable et procédé correspondant
US20120121379A1 (en) * 2010-11-15 2012-05-17 Chuy-Nan Chio Tower type vertical axle windmill

Also Published As

Publication number Publication date
EP3167184A1 (fr) 2017-05-17
FR3023580B1 (fr) 2016-08-12
FR3023580A1 (fr) 2016-01-15

Similar Documents

Publication Publication Date Title
EP2620635B1 (fr) Pale pour rotor d'hydrolienne, rotor d'hydrolienne comprenant une telle pale, hydrolienne associée et procédé de fabrication d'une telle pale
EP2620634B1 (fr) Rotor d'hydrolienne comportant au moins une pâle mobile en rotation autour d'un axe radial et des moyens de limitation du mouvement en rotation de ladite pâle, et hydrolienne comprenant un tel rotor
CA2837829C (fr) Pale, en particulier a calage variable, helice comprenant de telles pales, et turbomachine correspondante
CA2980979C (fr) Rotor de type savonius
CA2885650C (fr) Carter et roue a aubes de turbomachine
FR2889261A1 (fr) Dispositif eolien
EP2801702A1 (fr) Virole interne de redresseur de turbomachine avec abradable
EP3015714B1 (fr) Compresseur de turbomachine axiale avec double rotors contrarotatifs
EP2260203A2 (fr) Organe formant pointe pour roue de machine hydraulique, roue et machine hydraulique équipées d'un tel organe
EP3273003A1 (fr) Caisson à aubes de redresseur de compresseur de turbomachine axiale
FR3029960A1 (fr) Roue a aubes avec joint radial pour une turbine de turbomachine
WO2015121579A1 (fr) Dispositif pour fixer des pales a calage variable d'une hélice non carénée d'une turbomachine
WO2014202903A1 (fr) Roue centrifuge
EP3167184A1 (fr) Rotor pour une machine tournante
EP2636884A1 (fr) Dispositif de conversion de l'énergie cinétique d'un fluide en énergie mécanique, à régulation de la puissance captée
FR2901580A1 (fr) Rotor prefectionne et eolienne
GB2461862A (en) Fluid flow kinetic energy station using pressure faces which swing onto stoppers
EP3106655B1 (fr) Turbine hydraulique à flux traversant
FR3057540A1 (fr) Helicoptere comprenant au moins un systeme de guidage des extremites des pales d'un rotor
EP3068979B1 (fr) Élément annulaire de carter de turbomachine
WO2017077250A1 (fr) Rotor pour hydrolienne
EP2861865B1 (fr) Dispositif de transformation de l'énergie cinétique d'un fluide en énergie mécanique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15735681

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015735681

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015735681

Country of ref document: EP