WO2016004780A1 - 一种自行车踏频传感器 - Google Patents

一种自行车踏频传感器 Download PDF

Info

Publication number
WO2016004780A1
WO2016004780A1 PCT/CN2015/077363 CN2015077363W WO2016004780A1 WO 2016004780 A1 WO2016004780 A1 WO 2016004780A1 CN 2015077363 W CN2015077363 W CN 2015077363W WO 2016004780 A1 WO2016004780 A1 WO 2016004780A1
Authority
WO
WIPO (PCT)
Prior art keywords
bicycle
data
cadence sensor
acceleration
unit
Prior art date
Application number
PCT/CN2015/077363
Other languages
English (en)
French (fr)
Inventor
刘勇
Original Assignee
深圳前海零距物联网科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201410338595.1A external-priority patent/CN104077795B/zh
Application filed by 深圳前海零距物联网科技有限公司 filed Critical 深圳前海零距物联网科技有限公司
Priority to US15/127,791 priority Critical patent/US10156582B2/en
Priority to EP15819731.9A priority patent/EP3163310B1/en
Publication of WO2016004780A1 publication Critical patent/WO2016004780A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62JCYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
    • B62J45/00Electrical equipment arrangements specially adapted for use as accessories on cycles, not otherwise provided for
    • B62J45/40Sensor arrangements; Mounting thereof
    • B62J45/41Sensor arrangements; Mounting thereof characterised by the type of sensor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62JCYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
    • B62J45/00Electrical equipment arrangements specially adapted for use as accessories on cycles, not otherwise provided for
    • B62J45/40Sensor arrangements; Mounting thereof
    • B62J45/42Sensor arrangements; Mounting thereof characterised by mounting
    • B62J45/421Sensor arrangements; Mounting thereof characterised by mounting at the pedal crank
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C22/00Measuring distance traversed on the ground by vehicles, persons, animals or other moving solid bodies, e.g. using odometers, using pedometers
    • G01C22/002Measuring distance traversed on the ground by vehicles, persons, animals or other moving solid bodies, e.g. using odometers, using pedometers for cycles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P1/00Details of instruments
    • G01P1/02Housings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/0802Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed

Definitions

  • the invention relates to a motion data acquisition sensor, in particular to a sensor for collecting the pedaling frequency when a bicycle is in motion.
  • the existing sensor for collecting the bicycle pedaling frequency (also called the cadence sensor) mainly adopts the induction principle, and the magnet is matched with the Hall element counter, and the magnet cooperates with the induction coil counter to realize the acquisition of the cadence data. Since the pedaling frequency sensor requires two moving parts to cooperate with each other to obtain corresponding data, at least one of the components needs to be fixed on the frame, and the other component needs to be fixed to rotate on the crank associated with the central axis.
  • the existing bicycle does not provide a position for fixing the cadence sensor firmly.
  • the corresponding component can be fixed to the corresponding position of the bicycle through the strap, and the long-term movement causes the position between the two components of the paired sensing to be offset, which affects stability.
  • the technical problem to be solved by the present invention is to provide a bicycle cadence sensor which can accurately collect the frequency of pedaling during bicycle movement in real time, and has a compact structure, stable and reliable.
  • the bicycle using the cadence sensor is easy to install, is not easy to loose, and the collected data is reliable.
  • the bicycle cadence sensor comprises a signal acquisition unit arranged in the real-time acquisition of the circuit board for moving the acceleration change or/and the angular velocity change in different directions, and a data transmission unit for transmitting the collected data to the terminal, and a signal acquisition unit and a data transmission unit.
  • Working power supply a signal acquisition unit arranged in the real-time acquisition of the circuit board for moving the acceleration change or/and the angular velocity change in different directions.
  • circuit board is further provided with a data conversion unit for converting the change data of the acceleration or/and the angular velocity into the number of rotations, and the input end and the output end of the data conversion unit are respectively combined with the signal acquisition unit and the data transmission unit signal. connection.
  • the signal acquisition unit includes a two-axis or three-axis acceleration sensor that collects motion acceleration.
  • the signal acquisition unit further includes a three-axis gyro sensor that acquires an angular velocity.
  • the data transmission unit includes a WIFI unit or a Bluetooth unit.
  • the cadence sensor further includes a housing having a hollow end and an expansion member threadedly engaged with the housing, wherein the hollow housing is provided with a circuit board and a battery integrated with the circuit and the component, and the housing is The tip is provided with a cover that forms an electrical circuit between the circuit board and the battery.
  • the expansion member is provided with a ladder-shaped through hole along the central axis thereof, and the through hole wall is provided with a thread matched with the housing, and the through hole wall is provided with at least one expansion communicating with the inner and outer holes of the inner through hole. mouth.
  • expansion ports are 2-4, and are evenly distributed on the wall of the through hole.
  • the bicycle cadence sensor comprises a signal acquisition unit arranged in a real-time acquisition of a circuit board for real-time acquisition of a change in motion acceleration or/and an angular velocity change, and a data transmission unit for transmitting the collected data to the terminal, and a signal acquisition unit and Data transfer list
  • the power of the yuan work When used, the cadence sensor is fixed in the air shaft of the bicycle. The central axis rotates synchronously with the bicycle crank and the pedal. When the bicycle is riding, the acceleration change or/and the angular velocity change data are collected in real time, and transmitted to the corresponding data transmission unit.
  • the processing terminal performs processing to obtain the real-time bicycle central axis rotation frequency, thereby determining the cadence data during riding, and realizing the collection of the cadence data during the bicycle exercise.
  • the cadence sensor subtly counts the data such as acceleration or/and angular velocity during cycling, it does not require periodic relative motion between the two components to sense and count, and has a simple structure and small size. Stable and reliable.
  • the existing bicycle is used to reduce the weight and the central shaft is hollow. After installation, no obvious parts are exposed and no looseness occurs. It can be applied to all bicycles with hollow structure in the middle axis, which has better versatility.
  • FIG. 1 is a schematic block diagram of an embodiment of a cadence sensor of the present invention.
  • FIG. 2 is a block diagram showing the principle of another embodiment of the cadence sensor of the present invention.
  • FIG. 3 is a schematic structural view of an embodiment of the inventive cadence device.
  • FIG. 4 is a schematic cross-sectional view of the inventive cadence device in an axial direction.
  • FIG. 5 is a schematic view showing the fixing structure of the cadence sensor of the present invention and the bicycle.
  • Fig. 6 is a schematic view showing another structure of the cadence sensor of the present invention and the bicycle.
  • Fig. 7 is an enlarged schematic view showing the structure of the mating position of Fig. 6.
  • the present invention provides an embodiment of a bicycle cadence sensor.
  • the bicycle cadence sensor comprises: a signal acquisition unit 1 configured to transmit a change in motion acceleration or/and an angular velocity in a different direction of the shaft in real-time acquisition of the circuit board, and a data transmission unit 3 for transmitting the collected data to the terminal, and a signal acquisition unit 1 and a power supply 4 in which the data transfer unit 3 operates.
  • the circuit board provided with the circuit is disposed in the housing, and the data acquisition unit 1 for real-time collecting acceleration changes or/and angular velocity changes in different directions is provided on the circuit board, and the signal acquisition unit 1 is configured by the data transmission unit 3.
  • the acquired acceleration change or/and the angular velocity change data are transmitted to the terminal for processing in real time, and the pedaling frequency during riding is recorded or recorded for easy collection and utilization.
  • the data transmission unit 3 includes a wireless transmission unit or a wired transmission unit. Since the bicycle cadence sensor rotates with the central axis while riding, it is preferable to use a WIFI unit, a Bluetooth unit, or other short-range wireless transmission unit for data transmission.
  • the signal acquisition unit 1 When the signal acquisition unit 1 collects acceleration data of different directions during bicycle movement, the signal acquisition unit 1 includes a two-axis or three-axis acceleration sensor, wherein when the two-axis sensor is installed, the rotation plane and the two axes of the sensor must be formed. Uniform plane, and Triaxial sensors are not subject to this limitation.
  • the cadence sensor When used, the cadence sensor is fixed with the central axis of the bicycle, and rotates synchronously.
  • the middle shaft rotates, the position of the cadence sensor changes, and the acceleration acceleration sensor changes in different directions of the rotating surface, and the central axis is cycled when the bicycle is riding.
  • sexual rotation therefore, the periodic variation of the gravitational acceleration in different directions of the rotating surface can be obtained by the acceleration sensor, and the frequency of the rotation of the central axis can be obtained according to the time required for one rotation, that is, the acquisition of the cadence data is realized.
  • the signal acquisition unit 1 When the signal acquisition unit 1 collects angular velocity change data in different directions during bicycle motion, the signal acquisition unit 1 includes a three-axis gyro sensor.
  • the cadence sensor rotates synchronously with the central axis.
  • the gyro frequency sensor can output its angular velocity during the rotation process, and the rotation angle change data can be calculated according to the angular velocity.
  • the central axis rotates for one week
  • the three-axis gyroscope The sensor also rotates 360 degrees synchronously, so the time required to change 360 degrees according to its rotation angle can be converted into the pedaling frequency, and the data of the bicycle cadence data can be collected.
  • the cadence sensor In use, the cadence sensor is fixed in the air shaft of the bicycle, and the central shaft rotates synchronously with the pedal.
  • the data When the bicycle is in motion, the data is transmitted to the corresponding processing terminal through the data transmission unit by detecting the gravitational acceleration or/and the angular velocity change data.
  • the existing bicycle is used to reduce the weight, and the central shaft is provided with a hollow structure, and no obvious parts are exposed after installation, and looseness does not occur.
  • it can be applied to all bicycles with hollow structure in the middle axis, which has better versatility.
  • the power source 4 adopts a twist button battery. Since the cadence sensor has its own power supply, on the one hand, the cadence sensor periodically rotates during operation, and it is inconvenient to pass the external power source. Power supply; on the other hand, it is easy to install because it does not need to reserve the power output line.
  • the present invention proposes another embodiment based on the above embodiment.
  • the data conversion unit 2 is further disposed between the signal acquisition unit 1 and the data transmission unit 3, and the data conversion unit 2 converts the signal collected by the signal acquisition unit 1 into frequency corresponding data of the bicycle pedaling, and outputs the data through the data transmission.
  • the unit 3 transmits to the corresponding processing terminal, such as a smart phone with processing software, etc., after necessary processing, the bicycle pedaling frequency data can be obtained, and other units and data processing methods are unchanged.
  • This embodiment can obtain real-time bicycle pedaling frequency directly by the mobile terminal by installing necessary processing software, without requiring the mobile terminal to be a specially designed dedicated device or a dedicated computing application.
  • the cadence sensor further includes a housing 2' that is hollow at one end and an expansion member 1' that is threadedly engaged with the housing 2'.
  • the hollow housing 2' is internally integrated.
  • the circuit board 4' and the battery 5' of the circuit and the component are provided with a cover 3' for forming an electrical circuit between the circuit board 4' and the battery 5'.
  • the circuit and components of the cadence sensor are integrated on a circuit board 4', and the circuit board 4' and the battery 5' are disposed in a housing 2' which is hollow at one end, and the end of the housing 2' A cover 3' is provided which forms an electrical circuit between the circuit board 4' and the battery 5', and the housing 2' is threadedly engaged with the expansion member 1'.
  • the expansion member 1' is provided with a through-hole 10' along the central axis thereof, and the through-hole wall is provided with a thread 12' which cooperates with the housing 1', and at least one communication inner passage is provided on the wall of the through hole.
  • the expansion member 1' is provided with at least one expansion port 11'. When the expansion port 11' is two or more, the expansion port 11' Evenly distributed on the wall of the through hole, according to the cost and the production process, the expansion port 11' is preferably 2-5.
  • the expansion member 1' in the cadence sensor D is placed in the hollow bicycle center shaft B during use, and is moved into the expansion member 1" by rotating the housing 2', since the housing 2'
  • the axial section is a trapezoidal structure, that is, a large one, and the other head is small, so that the expansion member 1' is pressed outward during the inward movement of the casing 2', and the expansion port 11' is engaged.
  • the wall outside the expansion member 1' is squeezed and fastened to the center shaft, so that it is well fixed, and the loosening phenomenon is not easy to occur, and the fixed rear housing 2' is almost hidden in the center shaft, and the structure of the bicycle does not need to be performed.
  • the transformation can be easily fixed.
  • the cadence sensor D is a two-axis or three-axis acceleration sensor or a three-axis gyro sensor that collects angular velocity, bicycle riding is not required by the interaction between the two separate components.
  • the thickness can be 5-10MM and the diameter is less than 3CM.
  • the cadence sensor D is fixed to the bicycle crank C by the strap E.
  • the treading frequency can be determined by detecting the rotational frequency of the crank rotation during operation. Its small size does not affect the use of bicycles after installation.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Gyroscopes (AREA)
  • Traffic Control Systems (AREA)
  • Professional, Industrial, Or Sporting Protective Garments (AREA)

Abstract

本发明公开一种自行车踏频传感器,包括设于电路板实时采集中轴转动不同方向运动加速度变化或/和角速度变化的信号采集单元和将采集的数据传输给终端的数据传输单元,以及供各单元工作的电源。使用时将踏频传感器固定在自行车中空中轴,该中轴与自行车曲柄和踏板同步转动,骑行运动时,实时采集加速度变化或/和角速度变化数据,通过数据传输单元将传输给相应的处理终端进行处理,获得实时的自行车中轴转动频率,进而实现对骑行时踏频数据的采集。由于踏频传感器巧妙地将通过自行车运动时加速度或/和角速度等数据周期性变化实现计数,其不需要分离的两个部件之间周期性相对运动来感应进行计数,结构简单,体积小巧,工作稳定可靠。

Description

[根据细则26改正26.05.2015] 一种自行车踏频传感器 技术领域
本发明涉及运动数据采集传感器,尤其涉及一种用于采集自行车运动时踩踏频率的传感器。
背景技术
在进行跑步及骑乘自行车等运动时,通过采集重要运动数据,如踩踏频率来记录和分析运动表现,便于制定适合的运动计划。
现有的用于采集自行车踩踏频率的传感器(也称为踏频传感器)主要采用感应原理,多为磁铁与霍尔元件计数器配合,磁铁与感应线圈计数器配合,实现采集踏频数据。由于踩踏频率传感器都需要两个分离部件之间相互运动配合才能获得相应数据,其中至少有一个部件需要固定在车架上,另一部件需要固定在与中轴联动的曲柄上同步转动才能实现。现有的自行车并没有提供可以牢靠固定踏频传感器位置,通常只能通过绑带将相应部件固定在自行车相应位置,长时间运动使配对感应的两部件之间位置发生偏移,影响稳定性。
发明内容
本发明主要解决的技术问题是提供一种自行车踏频传感器,该自行车踏频传感器可以实时精确采集自行车运动时踩踏的频率,结构紧凑,稳定可靠。采用该踏频传感器的自行车其安装方便,不易松脱,采集的数据可靠。
为了解决上述技术问题,本发明提供一种自行车踏频传感器,该 自行车踏频传感器包括设于电路板实时采集中轴转动不同方向运动加速度变化或/和角速度变化的信号采集单元和将采集的数据传输给终端的数据传输单元,以及供信号采集单元和数据传输单元工作的电源。
进一步地说,所述电路板上还设有将加速度或/和角速度的变化数据转换为转动次数的数据转换单元,该数据转换单元的输入端和输出端分别与信号采集单元和数据传输单元信号连接。
进一步地说,所述信号采集单元包括采集运动加速度的两轴或三轴加速度传感器。
进一步地说,所述信号采集单元还包括采集角速度的三轴陀螺仪传感器。
进一步地说,所述数据传输单元包括WIFI单元或蓝牙单元。
进一步地说,所述踏频传感器还包括一端中空的壳体和与该壳体螺纹配合的膨胀部件,所述中空的壳体内设置集成有电路及元器件的电路板和电池,该壳体的端头设有使电路板与电池形成电回路的盖体。
进一步地说,所述膨胀部件设有沿其中轴呈梯字通孔,该通孔壁上设有与壳体配合的螺纹,所述通孔壁上至少设有一个连通内通孔内外的膨胀口。
进一步地说,所述膨胀口为2-4个,且均匀分布在通孔壁。
本发明自行车踏频传感器,包括设于电路板实时采集中轴转动不同方向运动加速度变化或/和角速度变化的信号采集单元和将采集的数据传输给终端的数据传输单元,以及供信号采集单元和数据传输单 元工作的电源。使用时将踏频传感器固定在自行车中空中轴,该中轴与自行车曲柄和踏板同步转动,在自行车骑行运动时,实时采集加速度变化或/和角速度变化数据,通过数据传输单元将传输给相应的处理终端进行处理,获得实时的自行车中轴转动频率,进而可以确定骑行时踏频数据,实现对自行车运动时踏频数据的采集。由于踏频传感器巧妙地将通过自行车运动时加速度或/和角速度等数据周期性变化实现计数,其不需要分离的两个部件之间周期性相对运动来感应进行计数,结构简单,体积小巧,工作稳定可靠。利用现有自行车为减轻重量而将中轴为中空这一结构进行安装,安装后不会有明显的部件外露,且不会出现松脱现象。可以适用于所有中轴为中空结构的自行车,具有更好的通用性。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单介绍,显而易见地,而描述中的附图是本发明的一些实施例,对于本领域普通技术人员来说,在不付出创造性劳动的前提下,还可以根据这些附图获得其他附图。
图1是本发明踏频传感器实施例原理框图。
图2是本发明另一种踏频传感器实施例原理框图。
图3是发明踏频装置实施例结构示意图。
图4是发明踏频装置沿轴向剖图结构示意图。
图5是本发明踏频传感器与自行车配合固定结构示意图。
图6是本发明踏频传感器与自行车配合固定另一种结构示意图。
图7是图6配合位置结构放大示意图。
具体实施方式
为了使该发明的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1所示,本发明提供一种自行车踏频传感器实施例。
该自行车踏频传感器包括:设于电路板实时采集中轴转动不同方向运动加速度变化或/和角速度变化的信号采集单元1和将采集的数据传输给终端的数据传输单元3,以及供信号采集单元1和数据传输单元3工作的电源4。
具体地说,设有电路的电路板设置在壳体内,在电路板上设有实时采集不同方向运动的加速度变化或/和角速度变化的数据采集单元1,由数据传输单元3将信号采集单元1采集的加速度变化或/和角速度变化的数据实时传输给终端进行处理,输出或记录骑行时踩踏频率,便于收集和利用。
所述数据传输单元3包括无线传输单元或有线传输单元,由于该自行车踏频传感器在骑行时,随中轴转动,最好采用WIFI单元、蓝牙单元或其它近距离无线传输单元进行数据传输。
当所述信号采集单元1采集自行车运动时不同方向加速度数据时,该信号采集单元1包括两轴或三轴加速度传感器,其中采用两轴传感器安装时,必须将旋转平面与传感器两轴所形成的平面一致,而 三轴传感器则不受此限制。
使用时踏频传感器与自行车中轴固定,同步转动,当中轴转动时踏频传感器位置发生变化,对应加速度传感器在旋转面不同方向上重力加速度值发生变化,而自行车骑行时,中轴为周期性转动,因此可以通过加速度传感器采集的旋转面不同方向重力加速度的周期性变化,根据旋转一周所需的时间即可获得中轴转动的频率,即实现踏频数据的采集。
当所述信号采集单元1采集自行车运动时不同方向角速度变化数据时,该信号采集单元1包括三轴陀螺仪传感器。使用时,踏频传感器与中轴同步转动,踏频传感器在转动过程中三轴陀螺仪传感器可以输出其角速度,根据角速度可计算出旋转角度变化数据,中轴转动一周时,该三轴陀螺仪传感器也同步旋转一周即360度,因此根据其旋转角度变化360度所需的时间即可转换为踩踏频率,实现对自行车运动踏频数据的采集。
使用时,将踏频传感器固定在自行车中空中轴,该中轴与踏板同步转动,在自行车运动时,通过检测重力加速度或/和角速度变化数据,通过数据传输单元将传输给相应的处理终端处理,获得相应的踏频数据,实现对自行车运动时踏频数据的采集。由于该踏频传感器巧妙地将加速度或/和角速度等数据周期性变化实现计数,其不需要分离的两个部件之间的相对运动来感应进行计数,结构简单,防尘防水,工作稳定可靠。安装时利用现有自行车为减轻重量而将中轴设置了中空这一结构,安装后不会有明显的部件外露,且不会出现松脱现象。同时可以适用于所有中轴为中空结构的自行车,具有更好的通用性。
在本实施例中,所述电源4采用扭扣电池,由于踏频传感器自带电源,一方面踏频传感器工作时周期性转动,不方便通过外接电源方 式进行供电;另一方面,由于不需要预留电源输出线路,也方便安装。
如图2所示,本发明在上述施例的基础上还提出另一实施例。
还包括一个设置于信号采集单元1和数据传输单元3之间的数据转换单元2,该数据转换单元2将信号采集单元1采集的信号转换为自行车踩踏的频率对应数据进行输出,并通过数据传输单元3传输给相应的处理终端,如带有处理软件的智能手机等,经过必要处理可以获得自行车踩踏频率数据,其他单元和数据处理方式不变。该实施例可以直接由移动终端通过安装必要的处理软件即可以获得实时的自行车踩踏频率,而不需要移动终端为特殊设计的专用设备或专用计算应用程序。
如图3和图4所示,所述踏频传感器还包括一端中空的壳体2′和与该壳体2′螺纹配合的膨胀部件1′,所述中空的壳体2′内设置集成有电路及元器件的电路板4′和电池5′,该壳体2′的端头设有使电路板4′与电池5′形成电回路的盖体3′。具体地说,所述踏频传感器的电路及元器件集成在电路板4′上,该电路板4′和电池5′设置在一端中空的壳体2′内,该壳体2′的端头设有使电路板4′与电池5′形成电回路的盖体3′,所述壳体2′与膨胀部件1′螺纹配合。
所述膨胀部件1′设有沿其中轴呈梯字通孔10′,该通孔壁上设有与壳体1′配合的螺纹12′,所述通孔壁上至少设有一个连通内通孔12′内外的膨胀口11′。也即膨胀部件1′设有沿其中轴剖视呈梯字形的内螺纹结构,该内螺纹与壳体2上的外螺纹22′配合。所述膨胀部件1′至少设有一个膨胀口11′,当膨胀口11′为两个及以上时,膨胀口11′ 均匀分布在通孔壁上,根据成本及生产工艺,该膨胀口11′为2-5个为宜。
如图5所示,使用时将踏频传感器D中的膨胀部件1′放置在中空自行车中轴B内,通过转动壳体2′,使其向膨胀部件1″内移动,由于壳体2′沿其轴向剖面为梯形结构,即一大,另一头小这种结构,使得壳体2′向内移动过程中膨胀部件1′被向外挤压,在膨胀口11′的配合下,使其膨胀部件1′外的壁与中轴挤压紧固,从而很好地固定,不容易出现松脱现象,且固定后壳体2′同等几乎隐藏在中轴,不需要对自行车的结构进行改造就可以方便地固定。
如图6和图7所示,由于踏频传感器D是通过两轴或三轴的加速度传感器或采集角速度的三轴陀螺仪传感器,无需通过两分离部件之间的相互作用的方式获得自行车骑行时踩踏数据,其厚度可以做到5-10MM,直径3CM以内。当待安装的自行车中轴为实心结构,即自行车为普通的自行车时,通过绑带E将踏频传感器D固定在自行车曲柄C上即可。工作时通过检测曲柄转动的转动频率,进而可以确定踩踏频率。其体积小,安装后不影响自行车的使用。
以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,而这些修改或替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (8)

  1. 自行车踏频传感器,其特征在于:
    包括设于电路板实时采集中轴转动不同方向运动加速度变化或/和角速度变化的信号采集单元和将采集的数据传输给终端的数据传输单元,以及供信号采集单元和数据传输单元工作的电源。
  2. 根据权利要求1所述的自行车踏频传感器,其特征在于:
    所述电路板上还设有将加速度或/和角速度的变化数据转换为转动次数的数据转换单元,该数据转换单元的输入端和输出端分别与信号采集单元和数据传输单元信号连接。
  3. 根据权利要求1或2所述的自行车踏频传感器,其特征在于:
    所述信号采集单元包括采集运动加速度的两轴或三轴加速度传感器。
  4. 根据权利要求3所述的自行车踏频传感器,其特征在于:
    所述信号采集单元还包括采集角速度的三轴陀螺仪传感器。
  5. 根据权利要求1或2所述的自行车踏频传感器,其特征在于:
    所述数据传输单元包括WIFI单元或蓝牙单元。
  6. 根据权利要求1或2所述的自行车踏频传感器,其特征在于:
    所述踏频传感器还包括一端中空的壳体和与该壳体螺纹配合的膨胀部件,所述中空的壳体内设置集成有电路及元器件的电路板和电池,该壳体的端头设有使电路板与电池形成电回路的盖体。
  7. 根据权利要求6所述的自行车踏频传感器,其特征在于:
    所述膨胀部件设有沿其中轴呈梯字通孔,该通孔壁上设有与壳体配合的螺纹,所述通孔壁上至少设有一个连通内通孔内外的膨胀口。
  8. 根据权利要求7所述的自行车踏频传感器,其特征在于:
    所述膨胀口为2-4个,且均匀分布在通孔壁。
PCT/CN2015/077363 2014-07-11 2015-04-24 一种自行车踏频传感器 WO2016004780A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/127,791 US10156582B2 (en) 2014-07-11 2015-04-24 Bicycle pedaling frequency sensor
EP15819731.9A EP3163310B1 (en) 2014-07-11 2015-04-24 Bicycle pedaling frequency sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410338595.1 2014-07-11
CN201410338595.1A CN104077795B (zh) 2014-05-30 2014-07-11 自行车踏频传感器及固定装置

Publications (1)

Publication Number Publication Date
WO2016004780A1 true WO2016004780A1 (zh) 2016-01-14

Family

ID=55068673

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/077363 WO2016004780A1 (zh) 2014-07-11 2015-04-24 一种自行车踏频传感器

Country Status (3)

Country Link
US (1) US10156582B2 (zh)
EP (1) EP3163310B1 (zh)
WO (1) WO2016004780A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3266692A1 (en) * 2016-07-06 2018-01-10 Sram, Llc Pedal activity sensor and methods of pedaling analysis
CN110412307A (zh) * 2019-09-02 2019-11-05 浙江超级电气科技有限公司 一种无线踏频感应装置
US11001327B1 (en) 2020-02-19 2021-05-11 Sram, Llc Pedal detection devices for bicycles
US20210276654A1 (en) * 2020-03-06 2021-09-09 Tektro Technology Corporation Measuring device and measuring method for measuring bicycle pedaling frequency

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170003311A1 (en) * 2015-07-01 2017-01-05 Sheng-Chia Optical Co., Ltd. Method for Detecting Bicycle Pedaling Frequencies
US10179621B2 (en) 2016-09-16 2019-01-15 Kurt Stillman Wheel telemetry monitoring system
WO2018098655A1 (zh) * 2016-11-30 2018-06-07 吴品盛 用于自行车的动力感测系统
CN107192853A (zh) * 2017-07-24 2017-09-22 桂林航天工业学院 角速度传感器测试装置及系统
US11361602B2 (en) * 2018-04-13 2022-06-14 Huawei Technologies Co., Ltd. Method for calculating tread frequency of bicycle, wearable device, and storage medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2339990Y (zh) * 1998-05-12 1999-09-22 王运频 助力车智能控制用测蹬速、蹬加速度传感器
CN101041109A (zh) * 2007-04-19 2007-09-26 大连交通大学 自行车模拟训练器
CN104077795A (zh) * 2014-05-30 2014-10-01 深圳前海零距物联网科技有限公司 自行车踏频传感器及固定装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4526036A (en) * 1983-12-30 1985-07-02 Morrison Thomas R Cadence meter
EP2433097B1 (en) * 2010-10-15 2013-04-03 AR Innovation AG Sensor apparatus and method for determining pedalling cadence and travelling speed of a bicycle
EP2658434B1 (en) * 2010-12-30 2015-12-02 AR Innovation AG Method for configuring a motion sensor as well as a configurable motion sensor and a system for configuring such a motion sensor
JP2014521105A (ja) * 2011-07-18 2014-08-25 マイケル, ジェイ グラッシ, トルクセンサ
EP2805141B1 (en) * 2012-04-09 2018-06-06 Belon Engineering Inc. Rotation sensor for an electrical bike pedal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2339990Y (zh) * 1998-05-12 1999-09-22 王运频 助力车智能控制用测蹬速、蹬加速度传感器
CN101041109A (zh) * 2007-04-19 2007-09-26 大连交通大学 自行车模拟训练器
CN104077795A (zh) * 2014-05-30 2014-10-01 深圳前海零距物联网科技有限公司 自行车踏频传感器及固定装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3266692A1 (en) * 2016-07-06 2018-01-10 Sram, Llc Pedal activity sensor and methods of pedaling analysis
US10416186B2 (en) 2016-07-06 2019-09-17 Sram, Llc Pedal activity sensor and methods of pedaling analysis
US10900986B2 (en) 2016-07-06 2021-01-26 Sram, Llc Pedal activity sensor and methods of pedaling analysis
CN110412307A (zh) * 2019-09-02 2019-11-05 浙江超级电气科技有限公司 一种无线踏频感应装置
US11001327B1 (en) 2020-02-19 2021-05-11 Sram, Llc Pedal detection devices for bicycles
US20210276654A1 (en) * 2020-03-06 2021-09-09 Tektro Technology Corporation Measuring device and measuring method for measuring bicycle pedaling frequency

Also Published As

Publication number Publication date
EP3163310B1 (en) 2019-01-09
US20170097375A1 (en) 2017-04-06
EP3163310A4 (en) 2017-06-21
EP3163310A1 (en) 2017-05-03
US10156582B2 (en) 2018-12-18

Similar Documents

Publication Publication Date Title
WO2016004780A1 (zh) 一种自行车踏频传感器
CN104077795B (zh) 自行车踏频传感器及固定装置
CN110954257B (zh) 具有施力力道直接量测装置的曲柄
CN204883391U (zh) 一种用于控制云台的体感遥控器
CN105856273A (zh) 一种工业机器人运动学性能测试装置
JP2015529330A5 (zh)
CN101191715A (zh) 数显线卷尺
US11406869B2 (en) Systems and methods for power meter calibration
WO2018058270A1 (zh) 脚蹬、骑行设备及数据生成方法
CN203966199U (zh) 自行车踏频传感器及固定装置
CN203772887U (zh) 用于检测旋转体状态的装置及包含此装置的轮毂里程表
CN104129470B (zh) 扭力感应器
TW201520980A (zh) 可即時估算踏頻之視頻裝置
US11325673B2 (en) Power sensing system for bicycles
CN106382912B (zh) 基于双传感器的刷牙角度检测装置及方法
CN206007982U (zh) 健身设备数据监测装置
CN104061942A (zh) 一种速度蓝牙发射接收显示装置
CN111044072A (zh) 基于智能穿戴设备的人体运动状态判断方法和计步方法
CN105480365A (zh) 卡路里消耗检测装置及方法
CN205691133U (zh) 一种具有测距功能的脚腕式计步装置
CN220772394U (zh) 一种多功能拉力传感组件
CN203122370U (zh) 一种人体健康指数综合评测装置
CN204821968U (zh) 具踏频感测装置的自行车踏板
CN209728685U (zh) 用于动作捕捉的小型传感器装置
KR20150026639A (ko) 스마트 자전거 운동량 측정기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15819731

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15127791

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015819731

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015819731

Country of ref document: EP