WO2016004651A1 - 分布式电源与微网接入主电网的管理方法 - Google Patents

分布式电源与微网接入主电网的管理方法 Download PDF

Info

Publication number
WO2016004651A1
WO2016004651A1 PCT/CN2014/082781 CN2014082781W WO2016004651A1 WO 2016004651 A1 WO2016004651 A1 WO 2016004651A1 CN 2014082781 W CN2014082781 W CN 2014082781W WO 2016004651 A1 WO2016004651 A1 WO 2016004651A1
Authority
WO
WIPO (PCT)
Prior art keywords
micro
grid
strategy
power
parameters
Prior art date
Application number
PCT/CN2014/082781
Other languages
English (en)
French (fr)
Inventor
黄荣辉
罗华永
黄璞
张捷
沈磊
付世峻
孙梦
朱海萍
何灵慧
Original Assignee
四川中电启明星信息技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 四川中电启明星信息技术有限公司 filed Critical 四川中电启明星信息技术有限公司
Publication of WO2016004651A1 publication Critical patent/WO2016004651A1/zh
Priority to PH12017500226A priority Critical patent/PH12017500226A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers

Definitions

  • the invention relates to the field of collaborative management of a main power grid, a micro network and a distributed power source, and in particular to a management method for a distributed power source and a micro network to access a main power grid.
  • the control strategy for this interface mainly studies constant power control, droop control and constant voltage constant frequency control.
  • the control strategy of the domestic research microgrid is mainly to control the output power of the micro power supply.
  • the control of the power electronic interface mainly refers to the control of the DC/AC inverter link.
  • the power grid dispatching instructions cannot be generated to the microgrid, and then the microgrid is determined according to the instructions. A line process of the strategy.
  • the existing distributed micro-network has limited monitoring capabilities, and cannot automatically adjust the operating strategy according to environmental changes. It cannot perform real-time detection on distributed micro-network devices and then corresponding operational policies, and cannot accurately determine which type of event belongs. For example, the system causes an uncertain or accidental island operation through accidental factors such as fault tripping. Since the output of the photovoltaic system is intermittent and random, it is difficult to complete the power generation prediction model. The charge and discharge management of the energy storage unit is also a complex planning problem involving multiple time periods. In addition, the current distributed power supply and microgrid cannot form a Set effective operating rules, automatically exit the operation after system failure, energy comprehensive optimization is difficult, indirectly affect the surrounding environment, and it is difficult to operate the main power grid. Summary of the invention
  • the object of the present invention is to provide a distributed power source and a microgrid to access the main grid management method, and solve the problem of unified scheduling when the grid performs the demand response during the peak period of power consumption, and make up for the safety stability when the distributed power source is connected to the main grid.
  • the demand response, scheduling process, and micro-grid strategy form a closed loop to ensure stable, controllable, and distributed power between the distributed power source and the microgrid, and between the microgrid and the main grid. Coordinated control, joint strategy control of the overall operation of the microgrid to improve power supply reliability.
  • the management method of the distributed power source and the micro network accessing the main power grid includes the following steps:
  • Step A Grid demand response or daily dispatch: The main grid issues power supply requirements or daily dispatching work to form a demand response;
  • Step B response demand: The generated demand response is released to the micro-network point, and the micro-grid responds to the demand;
  • Step C strategy formulation: Simulation and simulation micro-network system, parameter adjustment of each micro-power system device of the micro-network, according to parameters The adjustment value corresponds to the parameter influence table, and the power generation prediction is obtained according to the matching algorithm. Then, the economic benefits brought by the parameter adjustment are obtained by combining the information such as the electricity price, and the parameters are adjusted according to the result, and finally a reasonable maximum benefit model is obtained, forming Corresponding strategy
  • Step D Scheduling process approval: Send the formed corresponding strategy to the scheduling for process approval
  • Step E Execution strategy: After step D, in the case of daily scheduling, perform corresponding according to weather conditions, working days, seasons, etc. The daily dispatching strategy; when the main power grid issues the demand response task, adjust the microgrid equipment parameters, predict the power generation curve according to the equipment parameters and the weather environment, and submit the demand response strategy when the curve meets the power demand of the large grid supply, the scheduling process After the approval is completed, the strategy is executed on the demand response date.
  • the adjustment of the parameters of the micro-network device is adjusted by matching the three-dimensional dynamic library, and the three-dimensional dynamic library is formulated as follows: parameters of the micro-network device and the weather environment , component temperature, irradiance, wind speed, etc. are collected, arranged and combined by the program, tracking one parameter, and recording the influence of one of the parameters on the microgrid power generation under the condition that all other parameters are unchanged, according to the change of the parameter, The coordinate curve is formed and incorporated into the dynamic library. The same method incorporates the influence values of other parameters into the dynamic library, and finally forms a three-dimensional dynamic library. According to the opening time of the micro power supply, the program automatically improves the three-dimensional dynamic library.
  • the power generation prediction is based on: collecting variable parameters including component temperature, ambient temperature, irradiance, and wind speed, and collecting micro power supply device parameters, and arranging and combining by using programs. , form a parameter influence table.
  • the policy formulation is divided into a manual mode policy and an automatic mode policy.
  • the operator's subjective setting policy is used to save the execution strategy;
  • the network system automatically retrieves the dynamic library according to the weather environment and other information, performs similar matching of parameter values, and automatically adjusts the parameter configuration of each micro-network device to make the micro-network system operate optimally.
  • the present invention has the following advantages and beneficial effects:
  • the invention solves the problem of unified scheduling when the power grid performs demand response during the peak period of power consumption, and compensates for the lack of security stability when the distributed power source is connected to the main power grid, and forms a demand response, scheduling process, and micro network strategy. Closed loop, ensuring stable and controllable control of power transmission between the distributed power source and the microgrid, and between the microgrid and the main grid, and coordinated control between multiple distributed power sources, and joint policy control for the overall operation of the microgrid. Improve power supply reliability.
  • the invention initiates the demand by the main power grid, and after the micro-network point responds by default, according to the demand quantity, In response to the date, weather, wind direction and other parameters, the dynamic library is matched, the formation strategy meets the requirements of the main grid, and finally the main grid is fed back to automatically complete the response.
  • the present invention applies different control strategies for different problems existing in the microgrid.
  • the microgrid reduces the power generation cost of the distributed power source, and optimizes the microgrid under the premise of satisfying the basic operation constraints of the microgrid.
  • the power output of different distributed power and energy storage systems minimizes the total operating cost of the entire microgrid.
  • the invention effectively manages the entire microgrid, from the demand of the main power grid to the automatic response of the micro power supply, without the administrator on-site management configuration, and the system automatically obtains the optimal operation strategy in response to the local load to respond to the main power grid.
  • the micro-grid when the micro-grid is running in daily operation, when the customized strategy is installed, it is set to the automatic adjustment mode.
  • the system automatically adjusts the micro-power supply parameters according to the dynamic library according to changes in external temperature, illuminance, wind, etc., and fine-tunes the current operation strategy. , if it has better economic benefits than the original operation strategy, it will automatically switch to the adjusted strategy, so that the microgrid can operate safely and stably in the optimal mode.
  • Figure 1 is a flow chart of the method of the present invention.
  • FIG. 3 is a flow chart of forming a three-dimensional dynamic library according to the present invention.
  • FIG. 4 is a flow chart of forming a power generation prediction basis according to the present invention.
  • FIG. 5 is a flowchart of formulating a manual mode policy or an automatic mode policy according to the present invention.
  • Micro-grid (micro grid): Also translated as micro-grid, refers to a small power distribution system that is a collection of distributed power sources, energy storage devices, energy conversion devices, related loads and monitoring and protection devices.
  • An autonomous system that can achieve self-control, protection and management can be operated in parallel with the main grid or in isolation, and is an important part of the smart grid.
  • Distributed power supply refers to a small modular, environmentally compatible, independent power supply with a voltage rating of 35kV and below that is not directly connected to a centralized transmission system. It mainly includes power generation equipment and energy storage devices. These power supplies are owned by the power department, power users, or third parties to meet the power system and user-specific requirements.
  • Photovoltaic power generation equipment Solar power generation is divided into solar thermal power generation and photovoltaic power generation. Generally speaking, solar power generation refers to solar photovoltaic power generation, referred to as "photovoltaic". Photovoltaic power generation is a technique that uses the photovoltaic effect of a semiconductor interface to convert light energy directly into electrical energy. The key component of this technology is the solar cell. The solar cells are packaged and protected in series to form a large-area solar cell module, which is combined with a power controller to form a photovoltaic power generation device.
  • On-grid It means that it is integrated into the main power grid during power generation.
  • the generated power can be used by itself.
  • the redundant supply to other users in the main power grid is generally used in cities or other densely populated areas, and the power transmission cost is low.
  • Isolated island refers to independent power generation. The power generated is purely used by itself. It will cause problems such as low power generation efficiency and degraded power generation. Generally used in remote areas, such as deserts or pastures, it will cost much less than erecting cables.
  • DR Demand Response
  • the short name of power demand response refers to the direct compensation notice of the inductive reduction load sent by the power user when the power wholesale market price increases or the system reliability is threatened. Or after the power price rises, change its solid Some have used the electricity mode to reduce or shift the power load for a certain period of time and respond to the power supply, thereby ensuring the stability of the power grid and suppressing the short-term behavior of rising electricity prices.
  • Main grid It is the current national power grid, which includes power plants, substations, transmission line networks, distribution transformers and low-voltage line networks.
  • the management method of distributed power and micro-grid access to the main power grid includes the following steps:
  • Step A Grid demand response or daily dispatch: The main grid issues power supply requirements or daily dispatching work to form a demand response;
  • Step B Responding to the demand: The formed demand response is released to the micro-network point, and the micro-network responds to the demand;
  • Step C Strategy formulation: Simulation and simulation of the micro-grid system, first of all, for example, the same-generation power generation system in the micro-grid
  • the stator device, the inverter device, the inverter device, etc. perform device parameter adjustment, such as a photovoltaic power generation system such as a battery panel, an inverter, etc., to perform device parameter adjustment, and then adjust the value according to the parameter, corresponding to the parameter influence table, and Combined with the weather environment, the power generation forecast is obtained according to the supporting algorithm, and the economic benefits brought by the parameter adjustment are combined with the information such as the electricity price.
  • device parameter adjustment such as a photovoltaic power generation system such as a battery panel, an inverter, etc.
  • the parameters are adjusted according to the results, and finally a reasonable maximum benefit model is obtained to meet the economic benefits of practical application. , forming a strategy; if the economic benefits are not met, the equipment parameters such as the stator equipment, the inverter equipment, the inverter equipment, etc. of the micro power supply system of the microgrid, such as the photovoltaic power generation system, will be adjusted again. Equipment parameters such as battery boards, inverters, etc., then root According to the parameter adjustment value, corresponding to the parameter influence table, combined with the weather environment, the power generation prediction is obtained according to the supporting algorithm, and the economic benefits brought by the parameter adjustment are obtained by combining the information such as the electricity price, and the parameters are adjusted according to the result, and finally a reasonable result is obtained.
  • the model that satisfies the greatest benefit, to meet the economic benefits of practical applications, Forming a strategy;
  • Step D Scheduling process approval: Send the formed corresponding strategy to the scheduling for process approval
  • Step E Execution strategy: After step D, in the case of daily scheduling, perform corresponding according to weather conditions, working days, seasons, etc. The daily dispatching strategy; when the main power grid issues the demand response task, adjust the microgrid equipment parameters, predict the power generation curve according to the equipment parameters and the weather environment, and submit the demand response strategy when the curve meets the power demand of the large grid supply, the scheduling process After the approval is completed, the strategy is executed on the demand response date.
  • the demand is initiated by the main grid.
  • the dynamic library is matched, the strategy is formed to meet the requirements of the main grid, and finally the main grid is fed back. , the response is automatically completed.
  • Optimize the operation of the microgrid according to the simulation management model realize the computer simulation of the distributed power microgrid, determine the value of the microgrid safety margin, calculate the reliability of the distributed components into the grid, according to the weather, workday, demand response, etc.
  • Factors establish the operation mode of the micro-grid system, realize the objectives of economic load distribution and operation benefit optimization, and ensure the optimal operation of the micro-grid.
  • the main grid station distributes the demand instruction to the micro-network point according to the prediction of each micro-network power generation, and is unified by the power grid. Dispatching, comprehensive utilization of energy, and in the absence of manual duties, the automatic mode is turned on, and the micro-grid operation strategy can be automatically switched according to weather conditions, holidays, and the like.
  • the demand response, scheduling process, and micro-network strategy form a closed loop to ensure the stability of power transmission between the distributed power source and the micro-network and between the micro-network and the main power grid.
  • the microgrid reduces the power generation cost of the distributed power supply, and optimizes the distributed power supply in the microgrid under the premise of meeting the basic operation constraints of the microgrid.
  • the power output of the energy storage system minimizes the total operating cost of the entire microgrid.
  • step A grid demand response or daily dispatch: the main grid issues power supply requirements or daily dispatching work Demand response;
  • Step B Response demand: The generated demand response is released to the micro-network point, and the micro-grid responds to the demand;
  • Step C Strategy formulation: Simulation and simulation micro-grid system, collecting variable parameters such as component temperature, ambient temperature, irradiance, wind speed, etc. And collecting the fixed parameters of the micro power supply device, using the program to arrange and combine, forming a parameter influence table, and performing the stator device, the inverter device, the inverter device, etc. in the micro power supply system of the microgrid, such as the same power generation system.
  • Equipment parameter adjustment such as photovoltaic power generation system such as battery board, inverter and other equipment to adjust the equipment parameters, and then according to the parameter adjustment value, corresponding to the parameter impact table, combined with the weather environment, according to the supporting algorithm to obtain power generation prediction, and then combine
  • the electricity price and other information will lead to the economic benefits brought by the parameter adjustment.
  • the parameters will be adjusted, and finally a reasonable maximum benefit model will be obtained to meet the economic benefits of the actual application and form a strategy. If the economic benefits are not met, it will be again In the various micro power systems of the network, such as the same power generation system Equipment, inverter equipment, inverter equipment, etc.
  • equipment parameters such as photovoltaic panels, such as panels, inverters, etc.
  • parameter adjustment values corresponding to the parameter impact table, combined with weather Environment, according to the supporting algorithm to obtain the power generation forecast, combined with the price of electricity and other information to obtain the economic benefits brought by the parameter adjustment, according to the results and then adjust the parameters, and finally get a reasonable model to meet the maximum benefit, to meet the economic benefits of practical applications, Forming a strategy;
  • the adjustment of the micro-network device parameters is adjusted by matching the three-dimensional dynamic library, and the three-dimensional dynamic library is formulated as follows:
  • the micro-network device parameters, the weather environment, the component temperature, the irradiance, the wind speed, etc. are collected, and the program is arranged and combined, and the tracking is performed.
  • the coordinate curve is formed and incorporated into the dynamic library, and the same method affects other parameters.
  • the value is incorporated into the dynamic library, and finally a three-dimensional dynamic library is formed.
  • the program automatically and continuously improves the three-dimensional dynamic library.
  • the microgrid database formed by using dynamic parameters and fixed parameters, according to the time increase, according to the new data generated by the dynamic library self-improvement, the longer the time is more accurate; when the power generation forecast is made in the future, according to the weather conditions, radiation, Wind speed, temperature, equipment parameters and other conditions can be mapped to the dynamic library to obtain the predicted power generation value.
  • Step D Scheduling process approval: Send the formed corresponding strategy to the scheduling for process approval
  • Step E Execution strategy: After step D, in the case of daily scheduling, perform corresponding according to weather conditions, working days, seasons, etc. The daily dispatching strategy; when the main power grid issues the demand response task, adjust the microgrid equipment parameters, predict the power generation curve according to the equipment parameters and the weather environment, and submit the demand response strategy when the curve meets the power demand of the large grid supply, the scheduling process After the approval is completed, the strategy is executed on the demand response date.
  • the computer simulation of the power supply microgrid can determine the value of the microgrid safety margin, the reliability calculation of the distributed components into the grid, and the operation mode of the microgrid system according to the weather, working day, demand response and other factors, and realize the economic load.
  • the objectives of allocation and operation benefit optimization ensure the optimal operation of the microgrid.
  • the grid main station uniformly distributes demand instructions to the micro-network points according to the micro-grid power generation predictions, and is uniformly dispatched by the power grid, comprehensively utilizing energy, and in the absence of manual duties.
  • the automatic mode is turned on, and the micro-network operation strategy can be automatically switched according to weather conditions, holidays, and the like.
  • the strategy is formulated, and
  • the micro-network system is subjectively configured by the operator under the manual mode policy, that is, the subjective setting policy, thereby forming a policy, and then saving the execution strategy;
  • the micro-network system is under the automatic mode policy,
  • the network system automatically detects the dynamic library according to weather, wind direction, radiation and other weather environment information, performs similar matching of parameter values, automatically adjusts the parameter configuration of each micro-network device, forms a strategy, enables the micro-network system to operate in an optimal mode, and passes the ambient temperature.
  • the environmental collection of wind direction, radiation, illumination, etc., combined with the dynamic library automatically matches the strategy of optimal operation of the microgrid in this environment, and the microgrid automatically changes the operation strategy.
  • the entire micro-grid is effectively managed, from the main grid to the demand to the micro-power automatic response, without the administrator on-site management configuration, the system automatically obtains the optimal operation strategy to respond to the main grid on the premise of meeting the local load, and the micro-network is During daily operation, when the customized strategy is installed, set to automatic adjustment mode, the system automatically adjusts the micro power supply parameters according to the dynamic library according to changes in external temperature, illuminance, wind, etc., fine-tunes the current running strategy, compared to the original operating strategy. If there is better economic benefit, it will automatically switch to the adjusted strategy, so that the microgrid can be safely and stably transported in the optimal mode. Row.
  • Optimize the operation of the microgrid according to the simulation management model realize the computer simulation of the distributed power microgrid, determine the value of the microgrid safety margin, calculate the reliability of the distributed components into the grid, according to the weather, workday, demand response, etc.
  • Factors establish the operation mode of the micro-grid system, realize the objectives of economic load distribution and operation benefit optimization, and ensure the optimal operation of the micro-grid.
  • the main grid station distributes the demand instruction to the micro-network point according to the prediction of each micro-network power generation, and is unified by the power grid. Dispatching, comprehensive utilization of energy, and in the absence of manual duties, the automatic mode is turned on, and the micro-grid operation strategy can be automatically switched according to weather conditions, holidays, and the like.
  • the invention solves the problem of unified scheduling when the power grid performs demand response during the peak period of power consumption, and compensates for the lack of security stability when the distributed power source is connected to the main power grid, and forms a closed loop for the demand response, the scheduling process, and the micro network strategy. Stable, controllable, and coordinated control of power transmission between the distributed power source and the microgrid, and between the microgrid and the main grid, and joint policy control of the overall operation of the microgrid to improve reliable power supply Sex.

Abstract

分布式电源与微网接入主电网的管理方法,包括:电网需求响应或日常调度;响应需求;策略制定:模拟仿真微网系统,对微网的各个微电源系统的设备进行参数调整,根据参数调整值,对应到参数影响表,根据配套算法得出发电预测,再结合电价等信息得出参数调整带来的经济效益,根据结果再调整参数,最后得出一个合理的最大效益的模型,形成对应策略;调度流程审批;执行策略,将需求响应、调度流程、微网策略形成一个闭环,提高供电可靠性,解决在用电高峰期,电网执行需求响应时统一调度问题,保证分布式电源与微网之间,以及微网与主电网之间功率传输的稳定、可控、多个分布式电源之间的协调控制,对微网的整体运行进行联合策略控制。

Description

分布式电源与微网接入主电网的管理方法
技术领域
本发明涉及主电网、 微网、 分布式电源协同管理领域, 具体的说, 是分 布式电源与微网接入主电网的管理方法。
背景技术
目前在世界范围研究微网运行策略控制主要集中在微电源的逆变器接 口, 针对该接口的控制策略主要研究有恒功率控制、 下垂控制和恒压恒频控 制。 国内研究微网的控制策略主要在于控制微电源输出功率, 对电力电子接 口控制主要指对 DC/AC逆变环节的控制。 研究逆变器接口的直接控制目标 有两种: 控制输出电压幅值与频率; 在有电压支撑的情况下控制输出电流的 幅值与频率。 由于微电源受环境因素影响很大, 这些控制策略无法根据环境 条件变化自动调用相应的运行方式, 在大电网需求响应时, 也不能形成电网 调度下达指令到微网, 再由微网根据指令制定策略的一条线流程。
现有的分布式微网的监控能力有限, 而且不能根据环境变化自动调整运 行策略, 不能对分布式微网设备进行实时检测后作出对应的运行策略, 也不 能准确判断属于哪一类事件问题。 比如系统通过故障跳闸等偶然因素造成范 围不确定、偶然形成的孤岛运行。 由于光伏系统的输出具有间歇性和随机性, 因此很难完成发电预测模型, 储能单元的充放电管理也是一个涉及多时段的 复杂规划问题, 另外, 目前的分布式电源和微网不能形成一套有效的运行规 则, 系统故障后自动退出运行, 能源综合优化困难, 间接性影响周边环境, 对主电网运行调度困难。 发明内容
本发明的目的在于提供分布式电源与微网接入主电网的管理方法, 解决 在用电高峰期, 电网执行需求响应时统一调度问题, 弥补分布式电源接入主 电网时在安全稳定性上的不足, 将需求响应、 调度流程、 微网策略形成一个 闭环,保证分布式电源与微网之间, 以及微网与主电网之间功率传输的稳定、 可控、 多个分布式电源之间的协调控制, 对微网的整体运行进行联合策略控 制, 提高供电可靠性。
本发明通过下述技术方案实现: 分布式电源与微网接入主电网的管理方 法, 包括如下歩骤:
歩骤 A、 电网需求响应或日常调度: 主电网发出供电需求或日常调度工 作形成需求响应;
歩骤 B、 响应需求: 形成的需求响应发布到微网点, 微网响应需求; 歩骤 C、 策略制定: 模拟仿真微网系统, 对微网的各个微电源系统的设 备进行参数调整, 根据参数调整值, 对应到参数影响表, 根据配套算法得出 发电预测, 再结合电价等信息得出参数调整带来的经济效益, 根据结果再调 整参数, 最后得出一个合理的最大效益的模型, 形成对应策略;
歩骤 D、 调度流程审批: 将形成的对应策略发往调度进行流程审批; 歩骤 E、 执行策略: 经歩骤 D, 在日常调度情况下, 根据天气状况、 是 否工作日、季节等执行对应的日常调度策略;在主电网下达需求响应任务时, 调整微网设备参数, 根据设备参数、 天气环境预测出发电曲线, 当曲线满足 供应大电网用电需求时, 提交该需求响应策略, 调度流程审批结束后, 需求 响应日执行该策略。 进一歩的, 为更好的实现本发明, 在所述歩骤 C中, 微网设备参数的调 整通过匹配三维动态库来调整, 且三维动态库制定方法如下: 对微网设备参 数以及天气环境、 组件温度、 辐照度、 风速等进行采集, 利用程序进行排列 组合, 跟踪一个参数, 在所有其余参数不变情况下, 记录其中一个参数给微 网发电带来的影响, 根据该参数变化, 形成坐标曲线, 纳入动态库, 同样方 法将其他参数的影响值纳入动态库, 最后形成三维动态库, 根据微电源的开 放时间, 程序自动不断完善三维动态库。
进一歩的, 为更好的实现本发明, 发电预测的形成依据为: 采集包括组 件温度、 环境温度、辐照度、 风速组成的可变参数, 并采集微电源设备参数, 利用程序进行排列组合, 形成参数影响表。
进一歩的, 为更好的实现本发明, 所述策略制定, 分为手动模式策略和 自动模式策略, 手动模式策略下, 由操作者主观的设置策略进行保存执行策 略; 自动模式策略下, 微网系统自动根据天气环境等信息, 检索动态库, 进 行参数数值相近匹配, 自动调整各微网设备参数配置, 使微网系统最优模式 运行。
本发明与现有技术相比, 具有以下优点及有益效果:
( 1 ) 本发明解决在用电高峰期, 电网执行需求响应时统一调度问题,弥 补分布式电源接入主电网时在安全稳定性上的不足,将需求响应、调度流程、 微网策略形成一个闭环, 保证分布式电源与微网之间, 以及微网与主电网之 间功率传输的稳定、 可控、 多个分布式电源之间的协调控制, 对微网的整体 运行进行联合策略控制, 提高供电可靠性。
( 2 ) 本发明由主电网发起需求, 微网点默认响应后, 根据需求量, 结合 响应日期的天气、 风向等参数, 匹配动态库, 形成策略满足主电网需求, 最 后反馈主电网, 自动完成响应。
(3 )本发明针对微网存在的不同问题应用不同的控制策略,微网在孤岛 运行模式下, 降低分布式电源的发电成本, 在满足微网基本运行约束条件的 前提下, 优化微网内不同分布式电源和储能系统的功率输出, 使整个微网的 总运行成本最小。
(4)本发明将整个微网进行有效的管理,从主电网下达需求到微电源自 动响应, 无需管理员现场管理配置, 系统在满足本地负载的前提下自动得出 最优运行策略响应主电网, 另外微网在日常运行的时候, 安装已经定制的策 略运行时, 设置为自动调整模式下, 系统根据外界温度、 照度、 风力等变化, 自动根据动态库调整微电源设备参数, 微调当前运行策略, 比原运行策略有 更好的经济效益则自动切换到调整后的策略, 使微网更好的以最优模式安全 稳定的运行。
附图说明
图 1为本发明所述方法流程图。
图 2为本发明所述策略制定流程图。
图 3为本发明所述三维动态库形成流程图。
图 4为本发明所述发电预测依据形成的流程图。
图 5为本发明所述手动模式策略或自动模式策略的制定流程图。
具体实施方式
下面结合实施例对本发明作进一歩地详细说明, 但本发明的实施方式不 限于此。 微网 (micro-grid, micro grid): 也译为微电网, 是指由分布式电源、 储 能装置、 能量转换装置、 相关负荷和监控、 保护装置汇集而成的小型发配电 系统, 是一个能够实现自我控制、 保护和管理的自治系统, 既可以与主电网 并网运行, 也可以孤立运行, 是智能电网的重要组成部分。
分布式电源: 指功率为数千瓦至 50MW小型模块式的、与环境兼容的不 直接与集中输电系统相连的 35kV及以下电压等级的独立电源, 主要包括发 电设备和储能装置。 这些电源由电力部门、 电力用户或第三方所有, 用以满 足电力系统和用户特定的要求。
光伏发电装置: 太阳能发电分为光热发电和光伏发电, 通常说的太阳能 发电指的是太阳能光伏发电, 简称"光电"。光伏发电是利用半导体界面的光 生伏特效应而将光能直接转变为电能的一种技术。 这种技术的关键元件是太 阳能电池。 太阳能电池经过串联后进行封装保护可形成大面积的太阳电池组 件, 再配合上功率控制器等部件就形成了光伏发电装置。
并网: 意思就是发电时并入主电网运行, 发出的电力可以自用, 多余的 供应主电网中其他用户, 一般用于城市或其他人口密集区, 电力输送成本较 低。
孤岛: 指独立的发电, 发出的电力纯粹供应自己使用, 会造成发电效率 低, 发电质量下降等问题, 一般用于偏远地区, 比如荒漠或牧场, 将比架设 电缆的成本低许多。
需求响应 (Demand Response, 简称 DR ) : 即电力需求响应的简称, 是 指当电力批发市场价格升高或系统可靠性受威胁时, 电力用户接收到供电方 发出的诱导性减少负荷的直接补偿通知或者电力价格上升信号后, 改变其固 有的习惯用电模式, 达到减少或者推移某时段的用电负荷而响应电力供应, 从而保障电网稳定, 并抑制电价上升的短期行为。
主电网: 就是现在的国家电力网, 包含有发电厂、 变电站、输电线路网、 配电变压器和低压线路网。
实施例 1 :
分布式电源与微网接入主电网的管理方法, 如图 1、 图 2所示, 包括如 下歩骤:
歩骤 A、 电网需求响应或日常调度: 主电网发出供电需求或日常调度工 作形成需求响应;
歩骤 B、 响应需求: 形成的需求响应发布到微网点, 微网响应需求; 歩骤 C、 策略制定: 模拟仿真微网系统, 首先对微网的各个微电源系统 中的诸如同歩发电系统的定子设备、 逆变器设备、 变频器设备等进行设备参 数调整,诸如光伏发电系统的诸如电池板、逆变器等设备进行设备参数调整, 然后根据参数调整值, 对应到参数影响表, 并结合天气环境, 根据配套算法 得出发电预测, 再结合电价等信息得出参数调整带来的经济效益, 根据结果 再调整参数, 最后得出一个合理的最大效益的模型, 满足实际应用的经济效 益, 形成策略; 如不满足经济效益, 将再次对微网的各个微电源系统中的诸 如同歩发电系统的定子设备、逆变器设备、变频器设备等进行设备参数调整, 诸如光伏发电系统的诸如电池板、 逆变器等设备进行设备参数调整, 然后根 据参数调整值, 对应到参数影响表, 并结合天气环境, 根据配套算法得出发 电预测, 再结合电价等信息得出参数调整带来的经济效益, 根据结果再调整 参数,最后得出一个合理的满足最大效益的模型,满足实际应用的经济效益, 形成策略;
在策略制定时可根据天气信息、节日、季节等信息, 制定春夏秋冬策略、 工作日策略、 节假日策略、 天气策略, 同时将这些单一策略形成组合策略, 对分布式电源硬件的的控制也采用单一控制和组合控制, 单一控制可对设备 某一参数进行控制, 组合控制可将多参数组合, 比如孤岛 /并网就是将逆变器 等设备进行参数组合控制;
歩骤 D、 调度流程审批: 将形成的对应策略发往调度进行流程审批; 歩骤 E、 执行策略: 经歩骤 D, 在日常调度情况下, 根据天气状况、 是 否工作日、季节等执行对应的日常调度策略;在主电网下达需求响应任务时, 调整微网设备参数, 根据设备参数、 天气环境预测出发电曲线, 当曲线满足 供应大电网用电需求时, 提交该需求响应策略, 调度流程审批结束后, 需求 响应日执行该策略。
结合歩骤 A到歩骤 E, 由主电网发起需求, 微网点默认响应后, 根据需 求量, 结合响应日期的天气、 风向等参数, 匹配动态库, 形成策略满足主电 网需求, 最后反馈主电网, 自动完成响应。 根据仿真管理等模型优化微网的 运行, 实现分布式电源微网的计算机仿真, 能够确定微网安全裕度的数值, 分布式元件加入电网的可靠性计算, 根据天气、 工作日、 需求响应等因素制 定微网系统的运行方式, 实现了经济负荷分配、 运行效益优化等目标, 保证 微网的最优运行, 同时电网主站根据各微网点发电预测统一向微网点分发需 求指令, 由电网统一调度, 综合利用能源, 另外在无人工职守的情况下, 开 启自动模式, 可以根据天气环境状况、 节假日等自动切换微网运行策略。
解决在用电高峰期, 电网执行需求响应时统一调度问题, 弥补分布式电 源接入主电网时在安全稳定性上的不足, 将需求响应、 调度流程、 微网策略 形成一个闭环, 保证分布式电源与微网之间, 以及微网与主电网之间功率传 输的稳定、 可控、 多个分布式电源之间的协调控制, 对微网的整体运行进行 联合策略控制, 提高供电可靠性。
针对微网存在的不同问题应用不同的控制策略,微网在孤岛运行模式下, 降低分布式电源的发电成本, 在满足微网基本运行约束条件的前提下, 优化 微网内不同分布式电源和储能系统的功率输出, 使整个微网的总运行成本最 小。
实施例 2:
本实施例是在上述实施例的基础上进一歩优化, 如图 1、 图 2、 图 3、图 4所示, 歩骤 A、 电网需求响应或日常调度: 主电网发出供电需求或日常调 度工作形成需求响应;
歩骤 B、 响应需求: 形成的需求响应发布到微网点, 微网响应需求; 歩骤 C、 策略制定: 模拟仿真微网系统, 采集组件温度、 环境温度、 辐 照度、 风速等可变参数, 并采集包括微电源设备固定参数, 利用程序进行排 列组合, 形成参数影响表, 对微网的各个微电源系统中的诸如同歩发电系统 的定子设备、 逆变器设备、 变频器设备等进行设备参数调整, 诸如光伏发电 系统的诸如电池板、逆变器等设备进行设备参数调整,然后根据参数调整值, 对应到参数影响表, 并结合天气环境, 根据配套算法得出发电预测, 再结合 电价等信息得出参数调整带来的经济效益, 根据结果再调整参数, 最后得出 一个合理的最大效益的模型, 满足实际应用的经济效益, 形成策略; 如不满 足经济效益, 将再次对微网的各个微电源系统中的诸如同歩发电系统的定子 设备、 逆变器设备、 变频器设备等进行设备参数调整, 诸如光伏发电系统的 诸如电池板、 逆变器等设备进行设备参数调整, 然后根据参数调整值, 对应 到参数影响表, 并结合天气环境, 根据配套算法得出发电预测, 再结合电价 等信息得出参数调整带来的经济效益, 根据结果再调整参数, 最后得出一个 合理的满足最大效益的模型, 满足实际应用的经济效益, 形成策略;
微网设备参数的调整通过匹配三维动态库来调整, 且三维动态库制定方 法如下: 对微网设备参数以及天气环境、 组件温度、 辐照度、 风速等进行采 集, 利用程序进行排列组合, 跟踪一个参数, 在所有其余参数不变情况下, 记录微网影响, 即其中一个参数给微网发电带来的影响, 根据该参数变化, 形成坐标曲线, 纳入动态库, 同样方法将其他参数的影响值纳入动态库, 最 后形成三维动态库,根据微电源的开放时间,程序自动不断完善三维动态库。 采用动态参数和固定参数形成的微网数据库, 根据时间增长, 根据产生的新 数据动态库自我完善, 时间越长越准确; 在日后做发电量预测的时候, 根据 该日的天气状况、 辐射、 风速、 温度、 设备参数等条件可以对应到动态库, 得出发电预测值。
歩骤 D、 调度流程审批: 将形成的对应策略发往调度进行流程审批; 歩骤 E、 执行策略: 经歩骤 D, 在日常调度情况下, 根据天气状况、 是 否工作日、季节等执行对应的日常调度策略;在主电网下达需求响应任务时, 调整微网设备参数, 根据设备参数、 天气环境预测出发电曲线, 当曲线满足 供应大电网用电需求时, 提交该需求响应策略, 调度流程审批结束后, 需求 响应日执行该策略。
结合歩骤 A到歩骤 E, 根据仿真管理等模型优化微网的运行, 实现分布 式电源微网的计算机仿真, 能够确定微网安全裕度的数值, 分布式元件加入 电网的可靠性计算, 根据天气、 工作日、 需求响应等因素制定微网系统的运 行方式, 实现了经济负荷分配、运行效益优化等目标, 保证微网的最优运行, 同时电网主站根据各微网点发电预测统一向微网点分发需求指令, 由电网统 一调度, 综合利用能源, 另外在无人工职守的情况下, 开启自动模式, 可以 根据天气环境状况、 节假日等自动切换微网运行策略。
实施例 3:
本实施例是在上述实施例的基础上进一歩优化, 如图 1、 图 2、 图 3、图 4、 图 5所示, 进一歩的, 为更好的实现本发明, 所述策略制定, 分为手动模 式策略和自动模式策略, 微网系统在手动模式策略下, 由操作者主观配置, 即主观的设置策略, 从而形成策略, 然后进行保存执行策略; 微网系统在自 动模式策略下, 微网系统自动根据温度、 风向、 辐射等天气环境信息, 自动 检测动态库, 进行参数数值相近匹配, 自动调整各微网设备参数配置, 形成 策略, 使微网系统最优模式运行, 通过环境温度、 风向、 辐射、 照度等环境 采集量, 结合动态库, 自动匹配形成微网在该环境下最优运行的策略, 微网 自动改变运行策略。
将整个微网进行有效的管理, 从主电网下达需求到微电源自动响应, 无 需管理员现场管理配置, 系统在满足本地负载的前提下自动得出最优运行策 略响应主电网, 另外微网在日常运行的时候, 安装已经定制的策略运行时, 设置为自动调整模式下, 系统根据外界温度、 照度、 风力等变化, 自动根据 动态库调整微电源设备参数, 微调当前运行策略, 比原运行策略有更好的经 济效益则自动切换到调整后的策略, 使微网更好的以最优模式安全稳定的运 行。
根据仿真管理等模型优化微网的运行, 实现分布式电源微网的计算机仿 真, 能够确定微网安全裕度的数值, 分布式元件加入电网的可靠性计算, 根 据天气、 工作日、 需求响应等因素制定微网系统的运行方式, 实现了经济负 荷分配、 运行效益优化等目标, 保证微网的最优运行, 同时电网主站根据各 微网点发电预测统一向微网点分发需求指令, 由电网统一调度, 综合利用能 源, 另外在无人工职守的情况下, 开启自动模式, 可以根据天气环境状况、 节假日等自动切换微网运行策略。
本发明解决在用电高峰期, 电网执行需求响应时统一调度问题, 弥补分 布式电源接入主电网时在安全稳定性上的不足, 将需求响应、 调度流程、 微 网策略形成一个闭环, 保证分布式电源与微网之间, 以及微网与主电网之间 功率传输的稳定、 可控、 多个分布式电源之间的协调控制, 对微网的整体运 行进行联合策略控制, 提高供电可靠性。
以上所述, 仅是本发明的较佳实施例, 并非对本发明做任何形式上的限 制, 凡是依据本发明的技术实质对以上实施例所作的任何简单修改、 等同变 化, 均落入本发明的保护范围之内。

Claims

M ^ ^
1、分布式电源与微网接入主电网的管理方法, 其特征在于: 包括如下歩 骤:
歩骤 A、 电网需求响应或日常调度: 主电网发出供电需求或日常调度工 作形成需求响应;
歩骤 B、 响应需求: 形成的需求响应发布到微网点, 微网响应需求; 歩骤 C、 策略制定: 模拟仿真微网系统, 对微网的各个微电源系统的设 备进行参数调整, 根据参数调整值, 对应到参数影响表, 根据配套算法得出 发电预测, 再结合电价等信息得出参数调整带来的经济效益, 根据结果再调 整参数, 最后得出一个合理的最大效益的模型, 形成对应策略;
歩骤 D、 调度流程审批: 将形成的对应策略发往调度进行流程审批; 歩骤 E、 执行策略: 经歩骤 D, 在日常调度情况下, 根据天气状况、 是 否工作日、季节等执行对应的日常调度策略;在主电网下达需求响应任务时, 调整微网设备参数, 根据设备参数、 天气环境预测出发电曲线, 当曲线满足 供应大电网用电需求时, 提交该需求响应策略, 调度流程审批结束后, 需求 响应日执行该策略。
2、 根据权利要求 1所述的分布式电源与微网接入主电网的管理方法,其 特征在于: 在所述歩骤 C中, 微网设备参数的调整通过匹配三维动态库来调 整, 且三维动态库制定方法如下: 对微网设备参数以及天气环境、组件温度、 辐照度、 风速等进行采集, 利用程序进行排列组合, 跟踪一个参数, 在所有 其余参数不变情况下, 记录其中一个参数给微网发电带来的影响, 根据该参 数变化, 形成坐标曲线, 纳入动态库, 同样方法将其他参数的影响值纳入动 态库, 最后形成三维动态库, 根据微电源的开放时间, 程序自动不断完善三 维动态库。
3、根据权利要求 1或 2所述的分布式电源与微网接入主电网的管理方法, 其特征在于: 发电预测的形成依据为: 采集包括组件温度、 环境温度、 辐照 度、风速组成的可变参数, 并采集微电源设备参数, 利用程序进行排列组合, 形成参数影响表。
4、根据权利要求 1或 2所述的分布式电源与微网接入主电网的管理方法, 其特征在于: 所述策略制定, 分为手动模式策略和自动模式策略, 手动模式 策略下, 由操作者主观的设置策略进行保存执行策略; 自动模式策略下, 微 网系统自动根据天气环境等信息, 检索动态库, 进行参数数值相近匹配, 自 动调整各微网设备参数配置, 使微网系统最优模式运行。
PCT/CN2014/082781 2014-07-07 2014-07-23 分布式电源与微网接入主电网的管理方法 WO2016004651A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PH12017500226A PH12017500226A1 (en) 2014-07-07 2017-02-07 Management method for connecting distributed power supplies and micro grid to main power grid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410319318.6A CN104124704B (zh) 2014-07-07 2014-07-07 分布式电源与微网接入主电网的管理方法
CN201410319318.6 2014-07-07

Publications (1)

Publication Number Publication Date
WO2016004651A1 true WO2016004651A1 (zh) 2016-01-14

Family

ID=51770019

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/082781 WO2016004651A1 (zh) 2014-07-07 2014-07-23 分布式电源与微网接入主电网的管理方法

Country Status (3)

Country Link
CN (1) CN104124704B (zh)
PH (1) PH12017500226A1 (zh)
WO (1) WO2016004651A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10938214B2 (en) 2017-12-12 2021-03-02 Abb Power Grids Switzerland Ag Selection of grid forming power generators based on location in a microgrid
US11862976B2 (en) 2018-08-14 2024-01-02 Carrier Corporation Generation of demand response events based on grid operations and faults

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105337273A (zh) * 2015-09-18 2016-02-17 北京德意新能电气有限公司 一种适用于智能电网的电能集成互联系统
CN108549256B (zh) * 2018-04-08 2021-09-03 中国电力科学研究院有限公司 一种需求响应数字物理混合仿真方法和系统
CN108988329B (zh) * 2018-08-01 2021-04-23 国网安徽省电力有限公司培训中心 一种电力系统节能发电调度控制器及调度方法
CN109149769A (zh) * 2018-09-10 2019-01-04 浙江电腾云光伏科技有限公司 一种电网车侧区域分布式光伏运维管理平台

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120101639A1 (en) * 2010-10-21 2012-04-26 The Boeing Company Microgrid Control System
CN102684199A (zh) * 2012-06-05 2012-09-19 国电南瑞科技股份有限公司 一种微电网与配电网交换功率的多时间尺度控制方法
US20130046668A1 (en) * 2011-08-18 2013-02-21 Siemens Corporation Aggregator-based electric microgrid for residential applications incorporating renewable energy sources
CN103490410A (zh) * 2013-08-30 2014-01-01 江苏省电力设计院 一种基于多目标优化的微电网规划和容量配置方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080040263A1 (en) * 2006-08-10 2008-02-14 V2 Green, Inc. Business Methods in a Power Aggregation System for Distributed Electric Resources
US9893526B2 (en) * 2011-03-25 2018-02-13 Green Charge Networks Llc Networked power management and demand response
CN102289566B (zh) * 2011-07-08 2014-07-09 浙江大学 独立运行模式下的微电网多时间尺度能量优化调度方法
CN102376039A (zh) * 2011-12-08 2012-03-14 重庆市电力公司 实现电力物资立体化实时调度指挥的方法
CN102496949B (zh) * 2011-12-19 2014-08-27 天津市电力公司 一种用于对微网储能系统进行优化控制的方法及系统
CN102420428A (zh) * 2011-12-19 2012-04-18 天津市电力公司 一种用于对微网能量进行管理的方法及系统
CN202584219U (zh) * 2012-01-20 2012-12-05 贵州电网公司信息通信分公司 一体化、智能化、可视化配电生产及业务集成系统
CN102810186A (zh) * 2012-08-01 2012-12-05 江苏省电力设计院 多时间尺度微网能量优化管理体系结构及其方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120101639A1 (en) * 2010-10-21 2012-04-26 The Boeing Company Microgrid Control System
US20130046668A1 (en) * 2011-08-18 2013-02-21 Siemens Corporation Aggregator-based electric microgrid for residential applications incorporating renewable energy sources
CN102684199A (zh) * 2012-06-05 2012-09-19 国电南瑞科技股份有限公司 一种微电网与配电网交换功率的多时间尺度控制方法
CN103490410A (zh) * 2013-08-30 2014-01-01 江苏省电力设计院 一种基于多目标优化的微电网规划和容量配置方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10938214B2 (en) 2017-12-12 2021-03-02 Abb Power Grids Switzerland Ag Selection of grid forming power generators based on location in a microgrid
US11862976B2 (en) 2018-08-14 2024-01-02 Carrier Corporation Generation of demand response events based on grid operations and faults

Also Published As

Publication number Publication date
PH12017500226A1 (en) 2017-07-10
CN104124704A (zh) 2014-10-29
CN104124704B (zh) 2016-06-08

Similar Documents

Publication Publication Date Title
Padmanathan et al. Integrating solar photovoltaic energy conversion systems into industrial and commercial electrical energy utilization—A survey
Li et al. Comprehensive review of renewable energy curtailment and avoidance: a specific example in China
Wu et al. Smart grids with intelligent periphery: An architecture for the energy internet
Sechilariu et al. Building integrated photovoltaic system with energy storage and smart grid communication
CN102427244B (zh) 大规模光伏风电信息接入系统
WO2016004651A1 (zh) 分布式电源与微网接入主电网的管理方法
TW201716786A (zh) 分配的能量系統邊緣單元
CN105406515A (zh) 分级控制的独立微网
Amin et al. Performance analysis of an experimental smart building: Expectations and outcomes
Prema et al. Predictive models for power management of a hybrid microgrid—A review
Sun et al. Optimize globally, control locally: Coordinated optimal local voltage control in hybrid AC/DC microgrid
Pradhan et al. Energy management system for micro grid pertaining to renewable energy sources: A review
Ye Research on reducing energy consumption cost of 5G Base Station based on photovoltaic energy storage system
Mahato et al. Review of active power control techniques considering the impact of MPPT and FPPT during high PV penetration
CN101330211A (zh) 一种综合利用可再生能源发电与用电的微电网系统
Jordán et al. Towards a zero net energy community microgrid
Reno et al. Multi-Objective Advanced Inverter Controls to Dispatch the Real and Reactive Power of Many Distributed PV Systems.
Luo et al. Load management for multiple datacenters towards demand response in the smart grid integrating renewable energy
Li et al. Micro-grid resource allocation based on multi-objective optimization in cloud platform
Zhang et al. Research on microgrid
Baht et al. Impact of Weather Forecasts and Green Building on Micro Grid Energy Management System
Khatun et al. A Review on Microgrids for Remote Areas Electrification-Technical and Economical Perspective.
Ciocia et al. Subhour simulation of a microgrid of all-electric nzebs based on italian market rules
Cai et al. An Adaptive Control in a LV Distribution Network Integrating Distributed PV Systems by Considering Electricity Substitution
Sui et al. Optimization of Monthly Power Generation Plan for Thermal Power Units Considering Access of Large-scale New Energy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14896983

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12017500226

Country of ref document: PH

122 Ep: pct application non-entry in european phase

Ref document number: 14896983

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 23.06.2017)

122 Ep: pct application non-entry in european phase

Ref document number: 14896983

Country of ref document: EP

Kind code of ref document: A1