WO2016000575A1 - Alliage de magnésium, son procédé de préparation et utilisation - Google Patents
Alliage de magnésium, son procédé de préparation et utilisation Download PDFInfo
- Publication number
- WO2016000575A1 WO2016000575A1 PCT/CN2015/082552 CN2015082552W WO2016000575A1 WO 2016000575 A1 WO2016000575 A1 WO 2016000575A1 CN 2015082552 W CN2015082552 W CN 2015082552W WO 2016000575 A1 WO2016000575 A1 WO 2016000575A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- magnesium alloy
- present disclosure
- content
- total weight
- alloy
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C23/00—Alloys based on magnesium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C23/00—Alloys based on magnesium
- C22C23/02—Alloys based on magnesium with aluminium as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C23/00—Alloys based on magnesium
- C22C23/04—Alloys based on magnesium with zinc or cadmium as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C23/00—Alloys based on magnesium
- C22C23/06—Alloys based on magnesium with a rare earth metal as the next major constituent
Definitions
- the present disclosure relates to alloys, more particularly relates to a magnesium alloy and a method of preparing the magnesium alloy.
- Magnesium (hereinafter, magnesium may be referred to as “Mg” ) has significant features such as light weight to be used in all of the engineering metals, and small density of 1.78 g/cm 3 , which is about 2/9 of that of steel and 2/3 of that of aluminum (hereinafter, aluminum may be referred to as “Al” ) , and Mg is the lightest metal material with an engineering application value at present.
- a magnesium alloy has a relative high specific strength, a relative high specific stiffness, a better shock resistance performance and a higher resistance to radiation. As electronic products become thinner and lighter and functions thereof become more and more diverse, a magnesium alloy with a high strength and high heat conductivity becomes an important candidate among structure materials.
- a conventional die casting magnesium alloy for electronic products relates to AZ91 series alloy, which has a good casting property and mechanical strength, and the strength thereof may be superior to that of ZL104 aluminum alloy, thus being applied widely.
- the heat conductivity coefficient of AZ91 series alloy is only about 70 W/ (m ⁇ K) , far less than the heat conductivity of 100 W/ (m ⁇ K) to cast aluminum alloy. Therefore, use of magnesium alloy with a low heat conductivity as a component of the electronic product may greatly influence the heat dissipation requirement on the electronic product.
- a magnesium alloy may need a relatively good corrosion resistance to meet processing requirements and the usage requirement.
- Embodiments of the present disclosure seek to solve at least one of the problems existing in the prior art to at least some extent, such as low heat conductivity coefficient. Accordingly, the present disclosure aims to provide a magnesium alloy with not only strong mechanical property but also excellent corrosion resistance and high heat conductivity coefficient.
- a magnesium alloy based on a total weight of the magnesium alloy, comprising: about 0.2-1.35wt%of Al; about 0.05-3wt%of Mn; about 0.1-2wt%of Si; about 0-0.005wt%of Fe; about 0-0.01wt%of Cu; about 0-0.01wt%of Ni; about 0-0.01wt%of Co; about 0-1wt%of a rare earth element; about 0-1wt%of Zn; about 0-0.1wt%of Be; about 0-1wt%of Zr; about 0-0.005wt%of Ca; 0-0.005wt%of Sn; and about 90.505-99.65wt%of Mg.
- a magnesium alloy based on a total weight of the magnesium alloy, comprising: about 0.2-1.35wt%of Al; about 0.05-3wt%of Mn; about 0.1-2wt%of Si; about 0-0.005wt%of Fe; about 0-0.01wt%of Cu; about 0-0.01wt%of Ni; about 0-0.01wt%of Co; about 0-1wt%of a rare earth element; about 0-1wt%of Zn; about 0-0.1wt%of Be; about 0-1wt%of Zr; about 0-0.005wt%of Ca; about 0-0.005wt%of Sn; and a balance of Mg.
- a method of preparing a magnesium alloy comprising: smelting and cooling a raw material of the magnesium alloy, in which, the raw material has a composition of the magnesium alloy capable of forming a magnesium alloy above-mentioned.
- the magnesium alloy has not only relative high strength and hardness, but also relative high ductility, which may be able to form a structure component with various kinds of shapes and thickness. It’s more important that, according to embodiments of the present disclosure, the magnesium alloy has a good heat conductivity coefficient, which may be above 100 W/ (m ⁇ K) , even achieve about 120 W/ (m ⁇ K) . Meanwhile, the magnesium alloy of embodiments of the present disclosure has a good corrosion resistance, which may meet the requirements of various processing methods and operating environment.
- the magnesium alloy is suitable to be used as a structure material which may require a high heat-conducting property, especially as a structure component of electronic products.
- a magnesium alloy based on a total weight of the magnesium alloy, the magnesium alloy comprises:
- a magnesium alloy comprising: based on the total weight of the magnesium alloy, 0.2-1.35wt%of Al; 0.05-3wt%of Mn; 0.1-2wt%of Si; 0-0.005wt%of Fe; 0-0.01wt%of Cu; 0-0.01wt%of Ni; 0-0.01wt%of Co; 0-1wt%of a rare earth element; 0-1wt%of Zn; 0-0.1wt%of Be; 0-1wt%of Zr; 0-0.005wt%of Ca; 0-0.005wt%of Sn; and a balance of Mg.
- the magnesium alloy includes Al element.
- Al element in the magnesium alloy all of the casting property, the corrosion resistance and the mechanical property of the magnesium alloy may be improved.
- the content of Al element in the magnesium alloy is too large, the heat conductivity coefficient of the magnesium alloy will be reduced significantly. Therefore, in order to make use of Al element of its advantages such as excellent casting property, corrosion resistance and mechanical property without reducing the heat-conducting property of the magnesium alloy, based on the total weight of the magnesium alloy, the content of Al element in the magnesium alloy ranges from 0.2wt%to 1.35wt%.
- the content of Al element in the magnesium alloy may range from 0.5wt%to 1wt%.
- the magnesium alloy includes Si element.
- Si element and the Mg element in the magnesium alloy may form Mg 2 Si, so that the magnesium alloy may have a relative high hardness and a relative low expansion coefficient, thus improving the mechanical property of the magnesium alloy.
- the casting property of the magnesium alloy may be improved significantly. But if the content of the Si element is too large, it will bring some negative influences on the heat-conducting property and the corrosion resistance of the magnesium alloy.
- the content of Si element ranges from 0.1wt%to 2wt%, alternatively from 1wt%to 2wt%.
- the magnesium alloy may have not only an excellent heat-conducting property, a high hardness and a high strength, but also a good corrosion resistance.
- the magnesium alloy includes Mn element.
- the corrosion resistance of the magnesium alloy may be improved, and the Mn element in the magnesium alloy may act with the Fe element in the magnesium alloy to form a sediment with a high melting point to precipitate out, therefore the melt of the magnesium alloy may be cleaner.
- the Mn element with an appropriate content may improve the casting property of the magnesium alloy. But if the content of the Mn element is too large, the heat-conducting property of the magnesium alloy will reduce significantly.
- the content of the Mn element ranges from 0.05wt%to 3wt%, alternatively from 0.4wt%to 2.6wt%.
- the rare earth element in the magnesium alloy may expand the crystallization temperature interval of the alloy, therefore the casting property of the magnesium alloy may be improved significantly. Meanwhile, the rare earth element in the magnesium alloy has a relative high solid solubility, and may precipitate out a strengthen phase along with a decrease of temperature after smelting. Therefore, with the addition of the rare earth element, the yield strength and the casting property of the magnesium alloy may be improved. While, with the addition of a superfluous rare earth element, the heat conductivity coefficient of the magnesium alloy may be decreased, and the corrosion resistance of the magnesium alloy may get worse.
- the magnesium alloy may include rare earth element, based on the total weight of the magnesium alloy, the content of the rare earth element may below 1wt%.
- the content of the rare earth element ranges from 0.2wt%to 0.5wt%, thus further improving the corrosion resistance of the magnesium alloy, meanwhile, the magnesium alloy may have a relative high heat conductivity coefficient.
- the rare earth element may be at least one selected from a group consisted of Y, Sc, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu.
- the inventors of the present disclosure have found, after long-time experimentation, that, when the rare earth element is selected from at least one selected from a group consisted of Ce, Y and Nd, the exist of an appropriate amount of the rare earth element may obtain a magnesium alloy with a better casting property and solution strengthening property and a higher strength, without an obvious negative influence on the heat conductivity coefficient of the magnesium alloy.
- Zn element in the magnesium alloy may improve solid solubility of Al element in the magnesium alloy.
- Zn is a metal with a low melting point that may significantly decrease the melting point of the alloy and then improve the casting property of the magnesium alloy. But, a superfluous Zn may significantly make influence on the heat conducting property and corrosion resistance, thus decreasing the ductility of the magnesium alloy. Therefore, in some embodiments of the present disclosure, based on the total weight of the magnesium alloy, the content of Zn element is below 1wt%. In some embodiments of the present disclosure, based on the total weight of the magnesium alloy, the content of Zn element ranges from 0.1wt%to 0.5wt%, alternatively, from 0.3wt%to 0.5wt%.
- Be element in the magnesium alloy may form a compact BeO on the surface of the magnesium alloy melt, fill into the loose MgO layer, and decrease the surface contact between the magnesium alloy and the outside world.
- Be element is an important flame retardant for pressure casting the magnesium alloy, and a small quantity of Be element may improve the metallurgical property of the magnesium alloy substantially. Due to that Be element is expensive and the steam and oxide thereof is harmful to people’s health, the content of Be should be controlled appropriately. Meanwhile, a superfluous may decrease the ductility of the magnesium alloy.
- the content of Be element is below 0.1wt%.
- the content of Be ranges from 0.01wt%to 0.05wt%. In some embodiments of the present disclosure, based on the total weight of the present disclosure, the content of Be element in the magnesium alloy ranges from 0.03wt%to 0.05wt%.
- Zr is an important alloying element, which may act with iron compound to form Zr 2 Fe 2 and Zr 2 Fe 3 alloy, so as to precipitate out iron from the alloy before casting, thus improving the purity and the corrosion resistance of the magnesium alloy. Meanwhile, Zr may refine the magnesium alloy grain significantly and improve the mechanical property of the magnesium alloy, but when Zr element is added excessively, the cost of the magnesium alloy may be increased and the overall performance of the magnesium alloy may be influenced.
- the content of Zr is below 1wt%, alternatively from 0.1wt%to 0.5wt%.
- Zr ranges from 0.3wt%to 0.5wt%.
- the magnesium alloy based on the total weight of the magnesium alloy, includes at least one of: 0.1-0.5wt%of Zn, 0.01wt%-0.05wt%of Be and 0.1wt%-0.5wt%of Zr.
- Fe, Cu, Ni, Co, Sn and Ca may have negative influence on the corrosion resistance of the magnesium alloy, if the contents of the above elements are too large, the heat-conducting property may be influenced negatively.
- the content of Fe is below 0.005wt%; the content of Cu is below 0.01wt%, alternatively below 0.005wt%; the content of Ni is below 0.01wt%, alternatively below 0.005wt%; the content of Co is below 0.01wt%, alternatively below 0.005wt%; the content of Sn is below 0.005wt%; and the content of Ca is below 0.005wt%.
- the magnesium alloy includes a small quantity of other metal elements, which may be at least one selected from a group consisted of Li, Na, K, Sr, Ba, Ga, In, Ge, Sb, Bi, V, Nb, Cr, Mo, W, Tc, Ru, Pd, Pt, Ag and Au. Based on the total weight of the present disclosure, the content of the above mentioned other metal elements may be below 1wt%, preferably below 0.5wt%, further preferably 0.2wt%.
- Fe, Cu, Ni, Co, Sn, Ca and other metal elements may come from the impurity in the raw material of the magnesium alloy, or one raw material for preparing one consisting element of the magnesium alloy.
- a magnesium alloy comprising: based on the total weight of the magnesium alloy, 0.2-1.35wt%of Al; 0.05-3wt%of Mn;0.1-2wt%of Si; 0-0.005wt%of Fe; 0-0.01wt%of Cu; 0-0.01wt%of Ni; 0-0.01wt%of Co; 0-1wt%of a rare earth element; 0-1wt%of Zn; 0-0.1wt%of Be; 0-1wt%of Zr; 0-0.005wt%of Ca; 0-0.005wt%of Sn; and a balance of Mg.
- the magnesium alloy may include at least one of the above other metal elements, or none.
- the magnesium alloy may be prepared by a conventional method.
- a method of preparing a magnesium alloy includes: smelting and cooling a raw material of the magnesium alloy, in which, the composition of the raw material is capable of forming a magnesium alloy according to embodiments of the present disclosure.
- compositions of the raw material and the method of preparing the magnesium alloy of the present disclosure may be known to the skilled in the art.
- the smelting is performed at a temperature of 700°C to750°C, for about 20-60 minutes.
- a covering agent is used to protect the melting when smelting.
- the covering agent may be any conventional covering agent in the field of smelting of the magnesium alloy, such as at least one of MgCl 2 , KCl, NaCl and CaF 2 .
- a process of argon stirring is added, in which, argon is argon with a purity above 99.999%.
- the magnesium alloy has not only a good general mechanical performance, but also a yield strength larger than 75 MPa, generally between 100-145 MPa, and a ductility above 7%, generally between 7-10%.
- the magnesium alloy has a good heat-conducting property which may achieve 100W/ (m ⁇ K) . Meanwhile, the magnesium alloy has a relative good corrosion resistance.
- the magnesium alloy is suitable for using as a heat conducting structure material, such as parts of various kinds of electronic products.
- magnesium alloys are prepared according to the following methods respectively, and the hardness, heat conductivity coefficient, tensile strength and corrosion resistance of each magnesium alloy is tested according to the following methods.
- each magnesium alloy is tested according to ISO 6892-1.
- a magnesium alloy melt is injected into a mold cavity to obtain a tensile casting with a thickness of 3 mm, and the tensile strength of the tensile casting is tested with a universal testing machine, in which, the tensile strength is a limit of yielding resulting 0.2%residual deformation, and the ductility is breakage ductility.
- each magnesium alloy is tested by the following method.
- the magnesium alloy is cast into a slice with a size of 100mm ⁇ 100mm ⁇ 1.5mm and immerged into 5wt%NaCl aqueous solution for 48 hours (i.e., 2 days) .
- Examples 1-25 are provided for illustrate the present disclosure.
- Raw materials of the magnesium alloy were provided according to formula Mg 97.3 Al 1.3 Si 1 Mn 0.4 , in which those numbers indicated weight percentages of corresponding elements based on the total weight of the aluminum alloy.
- the raw materials were melted in a smelting furnace at a temperature of 720°C for 30 minutes and argon with a purity of 99.999%was added into the smelting furnace in the process of smelting to obtain a magnesium melt.
- the obtained magnesium melt was injected into a metal mold and dried to obtain a magnesium casting. Then hardness, heat conductivity coefficient, tensile strength, ductility and corrosion speed of the magnesium casting was tested and the results were recorded in the Table 1.
- magnesium alloys E2-E25 were prepared by a method which is substantially the same as the method in Example 1, with the following exceptions.
- magnesium alloys CE1-CE11 were prepared by a method which is substantially the same as the method in Example 1, with the following exceptions.
- the magnesium alloy of the present disclosure has a good comprehensive mechanical property, not only a relatively high strength and hardness, but also a relatively high ductility. It’s more important that, the magnesium alloy of the present disclosure has a good heat conductivity coefficient, such as 100W/ (m ⁇ K) , even 120 W/ (m ⁇ K) or more. Meanwhile, the magnesium alloy of the present disclosure has a good corrosion property.
- Example 4 It can be seen from comparing Example 4 with Comparative Examples 1-2 that if the content of Al in the magnesium alloy was too high, the heat conductivity property will get worse that the heat conductivity coefficient may be less than 100 W/ (m ⁇ K) , which may fail to meet the requirement as a structure part of an electric product.
- an appropriate content of rare earth elements may further improve the strength of the magnesium alloy.
- the rare earth elements include Ce, Y and Nd
- an appropriate content of rare earth elements may have no obvious influence on the heat conducting property of the magnesium alloy.
- the corrosion resistance of the magnesium alloy may be improved.
- Example 7 It can be seen from comparing Example 7 with Examples 11-12 that an appropriate content of Be and Zr may further improve the corrosion resistance of the magnesium alloy. While, it can be seen from comparing Example 12 with Comparative Example 6 that if the content of Zr of the magnesium alloy was too high, the ductility of the magnesium alloy may be decreased, thus the magnesium alloy may be hard to produce thin-type products.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Conductive Materials (AREA)
Abstract
Cette invention concerne un alliage de magnésium comprenant, sur la base du poids total de l'alliage de magnésium : environ 0,2 à 1,35 % en poids d'Al; environ 0,05 à 3 % en poids de Mn; environ 0,1 à 2 % en poids de Si; environ 0 à 0,005 % en poids de Fe; environ 0 à 0,01 % en poids de Cu; environ 0 à 0,01 % en poids de Ni; environ 0 à 0,01 % en poids de Co; environ 0 à 1 % en poids d'un élément de terre rare; environ 0 à 1 % en poids de Zn; environ 0 à 0,1 % en poids de Be; environ 0 à 1 % en poids de Zr; environ 0 à 0,005 % en poids de Ca; 0 à 0,005 % en poids de Sn; et environ 90,505 à 99,65 % en poids de Mg.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410305840.9 | 2014-06-30 | ||
CN201410305840.9A CN105220042A (zh) | 2014-06-30 | 2014-06-30 | 一种镁合金及其制备方法和应用 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016000575A1 true WO2016000575A1 (fr) | 2016-01-07 |
Family
ID=54989306
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2015/082552 WO2016000575A1 (fr) | 2014-06-30 | 2015-06-26 | Alliage de magnésium, son procédé de préparation et utilisation |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN105220042A (fr) |
WO (1) | WO2016000575A1 (fr) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109136704A (zh) * | 2018-09-26 | 2019-01-04 | 浙江海洋大学 | 一种高强度单相(α相)镁锂合金材料及其制备方法 |
JP2019151925A (ja) * | 2018-02-28 | 2019-09-12 | 国立大学法人 熊本大学 | 難燃性マグネシウム合金及びその製造方法 |
CN113862535A (zh) * | 2021-10-08 | 2021-12-31 | 青岛海骊准晶新材料科技有限公司 | 一种低温用镁合金及其制备方法、应用以及冷链托盘 |
CN114672711A (zh) * | 2022-04-15 | 2022-06-28 | 重庆大学 | 一种新型低膨胀二元镁合金及其制备方法 |
CN117778842A (zh) * | 2023-12-25 | 2024-03-29 | 鞍钢股份有限公司 | 一种高性能稀土镁合金冷轧板带及其制备方法 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106756353A (zh) * | 2016-12-05 | 2017-05-31 | 郑州丽福爱生物技术有限公司 | 一种耐冲击复合合金材料及其制备方法 |
CN109136700A (zh) * | 2017-06-16 | 2019-01-04 | 比亚迪股份有限公司 | 高导热镁合金、逆变器壳体、逆变器及汽车 |
CN107541754A (zh) * | 2017-09-08 | 2018-01-05 | 董晓 | 一种抗热裂镁合金的制备方法 |
KR102622846B1 (ko) * | 2018-12-07 | 2024-01-10 | 현대자동차주식회사 | 마그네슘 다이캐스팅 합금 |
CN111455246A (zh) * | 2020-03-02 | 2020-07-28 | 华南理工大学 | 一种高导热镁合金及其制备方法 |
CN111850367A (zh) * | 2020-07-30 | 2020-10-30 | 中国石油化工股份有限公司 | 一种大塑性可溶解镁合金及其制备方法和应用 |
CN114540686B (zh) * | 2022-04-28 | 2023-01-17 | 北京理工大学 | 一种多元微合金化高强高模双相镁锂合金及其制备方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3879038B2 (ja) * | 2001-12-25 | 2007-02-07 | 財団法人新産業創造研究機構 | Mg合金製品の表面処理方法および高耐食性被膜を形成したMg合金製品 |
CN101130841A (zh) * | 2007-10-11 | 2008-02-27 | 孙德春 | 钛稀土镁合金 |
CN101269386A (zh) * | 2007-03-19 | 2008-09-24 | 三井金属矿业株式会社 | 镁合金塑性加工产品及其制造方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4627959A (en) * | 1985-06-18 | 1986-12-09 | Inco Alloys International, Inc. | Production of mechanically alloyed powder |
CN103361527B (zh) * | 2013-07-18 | 2016-01-27 | 天津东义镁制品股份有限公司 | 镁合金散热器及其制造方法 |
-
2014
- 2014-06-30 CN CN201410305840.9A patent/CN105220042A/zh active Pending
-
2015
- 2015-06-26 WO PCT/CN2015/082552 patent/WO2016000575A1/fr active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3879038B2 (ja) * | 2001-12-25 | 2007-02-07 | 財団法人新産業創造研究機構 | Mg合金製品の表面処理方法および高耐食性被膜を形成したMg合金製品 |
CN101269386A (zh) * | 2007-03-19 | 2008-09-24 | 三井金属矿业株式会社 | 镁合金塑性加工产品及其制造方法 |
CN101130841A (zh) * | 2007-10-11 | 2008-02-27 | 孙德春 | 钛稀土镁合金 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019151925A (ja) * | 2018-02-28 | 2019-09-12 | 国立大学法人 熊本大学 | 難燃性マグネシウム合金及びその製造方法 |
JP7362052B2 (ja) | 2018-02-28 | 2023-10-17 | 国立大学法人 熊本大学 | 難燃性マグネシウム合金及びその製造方法 |
CN109136704A (zh) * | 2018-09-26 | 2019-01-04 | 浙江海洋大学 | 一种高强度单相(α相)镁锂合金材料及其制备方法 |
CN113862535A (zh) * | 2021-10-08 | 2021-12-31 | 青岛海骊准晶新材料科技有限公司 | 一种低温用镁合金及其制备方法、应用以及冷链托盘 |
CN114672711A (zh) * | 2022-04-15 | 2022-06-28 | 重庆大学 | 一种新型低膨胀二元镁合金及其制备方法 |
CN114672711B (zh) * | 2022-04-15 | 2023-07-25 | 重庆大学 | 一种低膨胀二元镁合金及其制备方法 |
CN117778842A (zh) * | 2023-12-25 | 2024-03-29 | 鞍钢股份有限公司 | 一种高性能稀土镁合金冷轧板带及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN105220042A (zh) | 2016-01-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016000575A1 (fr) | Alliage de magnésium, son procédé de préparation et utilisation | |
US10519530B2 (en) | Magnesium alloy and method of preparing the same | |
CN102618758B (zh) | 一种低线收缩率铸造镁合金 | |
KR101367892B1 (ko) | 고온용 마그네슘 합금 및 그 제조 방법 | |
CN102732763B (zh) | 一种高强度Mg-Gd-Y-Zn-Mn合金 | |
WO2016015488A1 (fr) | Alliage d'aluminium, son procédé de préparation, et application associée | |
CN102618760B (zh) | 一种含铌的MgAlZn系耐热镁合金 | |
CN102618757B (zh) | 一种耐热镁合金 | |
CN102154580B (zh) | 高强度耐热镁合金材料及其制备工艺 | |
CN102618762B (zh) | 一种耐热镁合金 | |
JP2009203545A (ja) | ダイカスト用Zn合金およびダイカスト用Zn合金を用いたダイカスト部材の製造方法 | |
US10358703B2 (en) | Magnesium alloy and method of preparing the same | |
CN102994835A (zh) | 一种耐热镁合金 | |
CN102994847A (zh) | 一种耐热镁合金 | |
EP2692883B1 (fr) | Alliage maître à base de mg-al-ca pour des alliages de mg, et procédé de production de celui-ci | |
CN105369077A (zh) | 一种铝合金导体材料及其制备方法 | |
EP2865772B1 (fr) | Alliage de fonderie d'aluminium | |
CN104561709B (zh) | 高蠕变性能铸造镁合金及其制备方法 | |
US10619231B2 (en) | Radiating fin formed of aluminum alloy and method for producing the same | |
CN104593653B (zh) | 高强度薄壁部件用镁合金及其制备方法 | |
CN115491558A (zh) | 一种压铸镁合金及其制备方法和应用 | |
CN104561692A (zh) | 一种具有高耐摩擦能力的铝合金材料及其热处理工艺 | |
CN104152771A (zh) | 一种含银稀土高强耐热镁合金及其制备方法 | |
CN104561711A (zh) | 高硬度耐热铸造镁合金及其制备方法 | |
CN103952590A (zh) | 一种含硅锰的稀土铝锌合金及其变质工艺 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15815922 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15815922 Country of ref document: EP Kind code of ref document: A1 |